Science.gov

Sample records for radioactive elements arsenic

  1. TABLE OF RADIOACTIVE ELEMENTS.

    SciTech Connect

    HOLDEN,N.E.

    2001-06-29

    For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

  2. Arsenic

    MedlinePlus

    Arsenic is a natural element found in soil and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can get into air, water, and the ground from wind- ...

  3. Radioactive elements in stellar atmospheres

    SciTech Connect

    Gopka, Vira; Yushchenko, Alexander; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon

    2006-07-12

    The identification of lines of radioactive elements (Tc, Pm and elements with 83radioactive decay of Th and U in the upper levels of stellar atmospheres, contamination of stellar atmosphere by recent SN explosion, and spallation reactions.

  4. Table of radioactive elements

    SciTech Connect

    Holden, N.E.

    1985-01-01

    As has been the custom in the past, the Commission publishes a table of relative atomic masses and halflives of selected radionuclides. The information contained in this table will enable the user to calculate the atomic weight for radioactive materials with a variety of isotopic compositions. The atomic masses have been taken from the 1984 Atomic Mass Table. Some of the halflives have already been documented.

  5. Radioactive dating of the elements

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Thielemann, Friedrich-Karl; Truran, James W.

    1991-01-01

    The extent to which an accurate determination of the age of the Galaxy, and thus a lower bound on the age of the universe, can be obtained from radioactive dating is discussed. Emphasis is given to the use of the long-lived radioactive nuclei Re-187, Th-232, U-238, and U-235. The nature of the production sites of these and other potential Galactic chronometers is examined along with their production ratios. Age determinations from models of nucleocosmochronology are reviewed and compared with age determination from stellar sources and age constraints form cosmological considerations.

  6. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  7. RADIOACTIVE CHEMICAL ELEMENTS IN THE ATOMIC TABLE.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular elements has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass number to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of ''these constants'' for use in chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was most stable, i.e., it had the longest known half-life. In their 1973 report, the Commission noted that the users of the Atomic Weights Table were dissatisfied with the omission of values in the Table for some elements and it was decided to reintroduce the mass number for elements. In their 1983 report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to

  8. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  9. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  10. Dissolved Concentration Limits of Radioactive Elements

    SciTech Connect

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  11. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants. PMID:23771154

  12. Arsenic

    MedlinePlus

    ... mainly found in its less toxic organic form. Industrial processes Arsenic is used industrially as an alloying ... are also required to reduce occupational exposure from industrial processes. Education and community engagement are key factors ...

  13. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. PMID:22406218

  14. SEASONAL VARIATIONS OF ARSENIC AND OTHER TRACE ELEMENTS IN BAY MUSSELS 'MYTILUS EDULIS' (JOURNAL VERSION)

    EPA Science Inventory

    The purposes of this study were to investigate seasonal variations of arsenic in a population of bay mussels (Mytilus edulis) and to compare results with variations of several other trace elements more commonly measured in environmental studies. Seasonal variations of manganese, ...

  15. A new method for the labelling of proteins with radioactive arsenic isotopes

    NASA Astrophysics Data System (ADS)

    Jennewein, M.; Hermanne, A.; Mason, R. P.; Thorpe, P. E.; Rösch, F.

    2006-12-01

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of 72As ( T=26 h) and 74As ( T=17.8 d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG 3 monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ( 74As and 77As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72 h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  16. Distribution and variation of arsenic in Wisconsin surface soils, with data on other trace elements

    USGS Publications Warehouse

    Stensvold, Krista A.

    2012-01-01

    Soils with sandy glacial outwash as a parent material have a lower median arsenic concentration (1.0 mg/kg) than soils forming in other parent materials (1.5 to 3.0 mg/kg). Soil texture and drainage category also influence median arsenic concentration. Finer grained soils have a higher observed range of concentrations. For loamy and loess-dominated soil groups, drainage category influences the median arsenic concentration and observed range of values, but a consistent relationship within the data is not apparent. Statistical analysis of the 16 other elements are presented in this report, but the relationships of concentrations to soil properties or geographic areas were not examined.

  17. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb.

    PubMed

    Kumar, Dharmendra; Singh, Vijay Pratap; Tripathi, Durgesh Kumar; Prasad, Sheo Mohan; Chauhan, Devendra Kumar

    2015-01-01

    Hydroponic experiments were conducted to investigate the effect of arsenic on seedlings of Wrightia arborea and Holoptelea integrifolia. Results revealed that W. arborea could tolerate much higher arsenic concentration than H. integrifolia. Therefore, further investigations were focused on W. arborea using higher arsenic concentrations (0.2-2.0 mM). Seedlings of W. arborea accumulated about 312-2147 and 1048-5688 mg/kg dry weight of arsenic in shoots and roots, respectively, following treatments with 0.2-1.5 mM of arsenic without exhibiting arsenic toxicity signs. However, arsenic at 2.0 mM caused decline in growth. Macronutrients content such as Ca, S (except at 2.0 mM), and K (only in root) increased while Mg, P, and K (shoot) decreased by arsenic treatments. However, the content of micronutrients was enhanced under arsenic treatments. Non-protein thiols (NP-SH) showed positive correlations with arsenic doses up to 0.2-1.5 mM but at 2.0 mM there was a decline in NP-SH thus suggesting important role of NP-SH in imparting arsenic tolerance. This study demonstrated that W. arborea that could tolerate arsenic concentrations up to 0.2-1.5 mM may be useful in arsenic phytoremediation programs. PMID:25237723

  18. STATUS OF RADIOACTIVE ELEMENTS IN THE ATOMIC WEIGHTS TABLE.

    SciTech Connect

    HOLDEN,N.E.

    2003-08-08

    During discussions within the Inorganic Chemistry Division Committee, that dealt with the Periodic Table of the Chemical Elements and the official IUPAC position on its presentation, the following question was raised. When the various chemical elements are presented, each with their appropriate atomic weight value, how should the radioactive elements be presented? The Atomic Weights Commission has treated this question in a number of different ways during the past century, almost in a random manner. This report reviews the position that the Commission has taken as a function of time, as a prelude to a discussion in Ottawa about how the Commission should resolve this question for the future.

  19. Radioactive Elements in the Standard Atomic Weights Table.

    SciTech Connect

    Holden,N.E.

    2007-08-04

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition

  20. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh.

    PubMed

    Rahman, Mohammad Mahmudur; Asaduzzaman, Md; Naidu, Ravi

    2013-11-15

    The study assesses the daily consumption by adults of arsenic (As) and other elements in drinking water and home-grown vegetables in a severely As-contaminated area of Bangladesh. Most of the examined elements in drinking water were below the World Health Organization (WHO) guideline values except As. The median concentrations of As, cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), Mn, nickel (Ni), and zinc (Zn) in vegetables were 90 μg kg(-1), 111 μg kg(-1), 0.80 mg kg(-1), 168 μg kg(-1), 13 mg kg(-1), 2.1 mg kg(-1), 65 mg kg(-1), 1.7 mg kg(-1), and 50 mg kg(-1), respectively. Daily intakes of As, Cd, Cr, Co, Cu, Pb, manganese (Mn), Ni, and Zn from vegetables and drinking water for adults were 839 μg, 2.9 μg, 20.8 μg, 5.5 μg, 0.35 mg, 56.4 μg, 2.0mg, 49.1 μg, and 1.3mg, respectively. The health risks from consuming vegetables were estimated by comparing these figures with the WHO/FAO provisional tolerable weekly or daily intake (PTWI or PTDI). Vegetables alone contribute 0.05 μg of As and 0.008 mg of Cu per kg of body weight (bw) daily; 0.42 μg of Cd, 8.77 mg of Pb, and 0.03 mg of Zn per kg bw weekly. Other food sources and particularly dietary staple rice need to be evaluated to determine the exact health risks from such foods. PMID:22939573

  1. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    SciTech Connect

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition

  2. Vascular Imaging of Solid Tumors in Rats with a Radioactive Arsenic-Labeled Antibody that Binds Exposed Phosphatidylserine

    PubMed Central

    Jennewein, Marc; Lewis, Matthew A.; Zhao, Dawen; Tsyganov, Edward; Slavine, Nikolai; He, Jin; Watkins, Linda; Kodibagkar, Vikram D.; O'Kelly, Sean; Kulkarni, Padmakar; Antich, Peter P.; Hermanne, Alex; Roösch, Frank; Mason, Ralph P.; Thorpe, Philip E.

    2012-01-01

    Purpose We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of vascular endothelial cells in tumors, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a chimeric monoclonal antibody that binds phosphatidylserine could be labeled with radioactive arsenic isotopes and used for molecular imaging of solid tumors in rats. Experimental Design Bavituximab was labeled with 74As (β+,T1/2 17.8 days) or 77As (β−,T1/2 1.6 days) using a novel procedure. The radionuclides of arsenic were selected because their long half-lives are consistent with the long biological half lives of antibodies in vivo and because their chemistry permits stable attachment to antibodies. The radiolabeled antibodies were tested for the ability to image subcutaneous Dunning prostate R3227-AT1 tumors in rats. Results Clear images of the tumors were obtained using planar γ-scintigraphy and positron emission tomography. Biodistribution studies confirmed the specific localization of bavituximab to the tumors. The tumor-to-liver ratio 72 h after injection was 22 for bavituximab compared with 1.5 for an isotype-matched control chimeric antibody of irrelevant specificity. Immunohistochemical studies showed that the bavituximab was labeling the tumor vascular endothelium. Conclusions These results show that radioarsenic-labeled bavituximab has potential as a new tool for imaging the vasculature of solid tumors. PMID:18316558

  3. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic.

    PubMed

    Grandjean, Philippe; Herz, Katherine T

    2015-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. PMID:25175507

  4. Groundwater contamination with arsenic, Selenium and other trace elements in Quetta Valley, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Xiong, Y.; Mahmood, K.; Khan, A. S.; Sultan, M.

    2009-12-01

    This work presents major, minor and trace elements data for groundwater samples collected from wells, tube wells, springs and karezes from Quetta Valley. Collected samples were quantitatively analyzed using ICP (AES) and ICP (MS) for the determination of major (Ca, K, Mg, Na, Si, Cl- and SO4), minor and trace elements (Fe, Mn, B, Ba, Li, Sr, Li, Be, B, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Ag, Cd, Cs, Ba, La, Ce, Pr, Nd145, Nd146, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Th, U). Quetta Valley in Pakistan has frequently experienced shortage of groundwater. In recent years, the water quality has had a sharp decline at many locations. The study of groundwater resources in this valley is an attempt to understand the causes of and sources of contamination. At several locations, nitrate, sulfate, arsenic, selenium, chromium and nickel contamination has been determined. The preliminary results indicate that these contaminations apparently result from a combination of rock alteration and mining activity in the area. Different water sources could have also contributed to the deterioration of the water quality of Quetta Valley. This research provides the basis for future work, which will involve detailed hydrological modeling and water quality studies.

  5. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity.

    PubMed

    Yu, Haiyan; Liu, Su; Li, Mei; Wu, Bing

    2016-04-01

    Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research. PMID:26169729

  6. Earth Abides Arsenic Biotransformations

    PubMed Central

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  7. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  8. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    USGS Publications Warehouse

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  9. Geochemistry of arsenic and other trace elements in a volcanic aquifer system of Kumamoto Area, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, Shahadat; Hosono, Takahiro; Shimada, Jun

    2015-04-01

    Total arsenic (As), As(III) species, dissolved organic carbon (DOC), methane (CH4), sulfur isotope ratios of sulfate (δ34SSO4), major ions and trace elements were measured in groundwater collected from boreholes and wells along the flow lines of western margins of Kumamoto basin, at central part of Kyushu island in southern Japan. Kumamoto city is considered as the largest groundwater city in Japan. 100% people of this city depends on groundwater for their drinking purpose. In this study, we used trace elements data and δ34SSO4 values to better understand the processes that are likely controlling mobilization of As in this area. Arsenic concentrations ranges from 1 to 60.6 μg/L. High concentrations were found in both shallow and deep aquifers. The aquifers are composed of Quaternary volcanic (pyroclastic) flow deposits. In both aquifers, groundwaters evolve along the down flow gradient from oxidizing conditions of recharge area to the reducing conditions of stagnant area of Kumamoto plain. 40% samples from the Kumamoto plain area excced the maximum permissible limit of Japan drinking water quality standard (10 μg/L). In the reducing groundwater, As(III) constitutes typically more, however; 50% samples dominated with As(III) and 50% samples dominated with As(V) species. High As concentrations occur in anaerobic stagnant groundwaters from this plain area with high dissolved Fe, Mn, moderately dissolved HCO3, PO4, DOC and with very low concentrations of NO3 and SO4 suggesting the reducing condition of subsurface aquifer. Moderately positive correlation between As and dissolved Fe, Mn and strong negative correlation between As(III)/As(V) ratio and V, Cr and U reflect the dependence of As concentration on the reductive process. The wide range of δ34SSO4 values (6.8 to 36.1‰) indicate that sulfur is undergoing redox cycling. Highly enriched values suggesting the process was probably mediated by microbial activity. It also be noted from positive values of sulfur

  10. The concentrations of arsenic and other toxic elements in Bangladesh's drinking water.

    PubMed Central

    Frisbie, Seth H; Ortega, Richard; Maynard, Donald M; Sarkar, Bibudhendra

    2002-01-01

    For drinking water, the people of Bangladesh used to rely on surface water, which was often contaminated with bacteria causing diarrhea, cholera, typhoid, and other life-threatening diseases. To reduce the incidences of these diseases, millions of tubewells were installed in Bangladesh since independence in 1971. This recent transition from surface water to groundwater has significantly reduced deaths from waterborne pathogens; however, new evidence suggests disease and death from arsenic (As) and other toxic elements in groundwater are affecting large areas of Bangladesh. In this evaluation, the areal and vertical distribution of As and 29 other inorganic chemicals in groundwater were determined throughout Bangladesh. This study of 30 analytes per sample and 112 samples suggests that the most significant health risk from drinking Bangladesh's tubewell water is chronic As poisoning. The As concentration ranged from < 0.0007 to 0.64 mg/L, with 48% of samples above the 0.01 mg/L World Health Organization drinking water guideline. Furthermore, this study reveals unsafe levels of manganese (Mn), lead (Pb), nickel (Ni), and chromium (Cr). Our survey also suggests that groundwater with unsafe levels of As, Mn, Pb, Ni, and Cr may extend beyond Bangladesh's border into the four adjacent and densely populated states in India. In addition to the health risks from individual toxins, possible multimetal synergistic and inhibitory effects are discussed. Antimony was detected in 98% of the samples from this study and magnifies the toxic effects of As. In contrast, Se and Zn were below our detection limits in large parts of Bangladesh and prevent the toxic effects of As. PMID:12417487

  11. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Arsenic The Basics Arsenic is an element that exists naturally in the Earth’s crust. Small amounts of arsenic are found in some rock, soil, water, and air. When arsenic combines with ...

  12. Identification and quantitation of arsenic species in a dogfish muscle reference material for trace elements

    SciTech Connect

    Beauchemin, D.; Bednas, M.E.; Berman, S.S.; McLaren, J.W.; Siu, K.W.M.; Sturgeon, R.E.

    1988-10-15

    The arsenic species present in a dogfish muscle reference material (DORM-1) have been identified by using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS), thin-layer chromatography, and electron impact mass spectrometry and quantified by using HPLC/ICP-MS and graphite furnace atomic absorption spectrometry. The major species is arsenobetaine (15.7 +/- 0.8 ..mu..g of As/g of DORM-1), constituting about 84% of the total arsenic. For this species, the HPLC/ICP-MS detection limit was 0.3 ng of As.

  13. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  14. Biogeochemical cycle of arsenic and calculating the enrichment factor by using Li element.

    PubMed

    Aksu, Abdullah; Balkis, Nuray; Erşan, Mahmut S; Müftüoğlu, A E; Apak, Reşat

    2010-08-01

    In this study, the biogeochemical cycle of arsenic in the Bosporus and the Golden Horn, which have a two-layer stratified structure, was investigated and the dominant feature in this cycle was observed to be the anthropogenic (domestic + industrial) activities. On the contrary, in the rural areas which are far from human activities, such as Iğneada, the seawater-atmosphere interchange can be observed evidently in the periods covering the primary production. PMID:20379841

  15. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    PubMed

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas. PMID:25965547

  16. [Impact of Radioactive Elements on Microbial Complexes in Cryogenic Soils of Yakutia].

    PubMed

    Ivanova, T I; Kuz'mina, N P; Sobakin, P I

    2016-01-01

    It has been found that microorganisms in cryogenic soils of Yakutia are resistant to the long-term impact of cesium and thorium. The number of microorganisms in the studied ecological-trophic groups does not depend on the concentrations of radioactive elements. Differences in the number of microorganisms are determined by the physicochemical conditions that are created in different horizons of the soils studied. The long-term impact of radiation (for 36 and 66 years) on microorganisms inhabiting the permafrost soils of Yakutia has developed their adaptive capacity to high concentrations of these radioactive elements. PMID:27396175

  17. Determination of rare and radioactive elements in mineral raw materials

    NASA Astrophysics Data System (ADS)

    Ostroumov, G. V.

    Methods are presented for determining scandium, rare earths, zirconium, hafnium, niobium, tantalum, molybdenum, tungsten, rhenium, as well as uranium, radium, thorium, and their isotopes in mineral raw materials. Geological, mineralogical, and analytical characteristics are given for each of the above elements. The analytical methods discussed here include neutron activation analysis, spectrography, gravimetry, photometry, titration, and electrochemical analysis. Optimum regions are defined for each of these methods. No individual items are abstracted in this volume

  18. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    PubMed

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). PMID:23792415

  19. Separation and recovery of radioactive and non-radioactive toxic trace elements from aqueous industrial effluents.

    PubMed

    Iyer, R H

    2003-09-01

    An update is presented on liquid membrane-based processes as viable and relevant alternatives to conventional approaches such as precipitation, solvent extraction, ion exchange processes and electrochemical techniques for the removal and recovery of some toxic and/or valuable trace metal ions including some actinides and fission products e.g. U, Am, Y etc and As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn etc from radioactive as well as non-radioactive aqueous waste solutions respectively. In particular, results of experiments aimed at developing supported liquid membrane(SLM)-based process using commercially available porous membranes and indigenously prepared track--etch membranes (TEMs) have been critically examined in laboratory studies to generate basic data needed to evaluate their utility for continuous operation without regeneration. These include effect of pore size, porosity, optimum pore size and their reusability. It is clearly demonstrated that indigenously prepared 10 microm thick TEMs with a porosity in the range of 2-5% give comparable transport rates for metal ions-matching with that of commercial membranes of much higher thickness (160 microm) and higher porosity of 60-85%. The smaller thickness of TEMs more than compensates for their lower porosity. It is shown that because of their well defined pore characteristics TEMs could serve as model supports in SLM studies. By comparing the values of permeability coefficient (P) for TEM and polytetraflouroethylene (PTFE) supports for the transport of Pb2+ chosen as a typical divalent metal ion, and using di-2 ethyl hexyl phosphoric acid (D2EHPA) as the carrier, it is unambiguously proved that diffusion of the metal complex across the membrane is the rate controlling step in metal ion transport in SLM-based processes. An overview of the experimental findings along with future outlook and suggestions for further work are presented in this paper. PMID:15242293

  20. Element synthesis calculations for stellar explosions: robust uncertainties, sensitivities, and radioactive ion beam measurements

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Hix, W. Raphael; Parete-Koon, Suzanne; Dessieux, Luc; Ma, Zhanwen; Starrfield, Sumner; Bardayan, Daniel W.; Guidry, Michael W.; Smith, Donald L.; Blackmon, Jeffery C.; Mezzacappa, Anthony

    2004-12-01

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  1. Lunar surface heat flow mapping from radioactive elements measured by Lunar Prospector

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Xiongyao; Li, Qingxia; Lang, Liang; Zheng, Yongchun

    2014-06-01

    An accurate estimate of global surface heat flow is important because it provides strong constraints on interior thermal model and understanding of the thermal state and geologic evolution of the Moon. In this paper, a distribution map of lunar surface heat flow is derived from calibrated Lunar Prospector gamma-ray spectrometer data (K, U and Th abundances). It shows that surface heat flow varies regionally from about 10.6 mW/m2 to 66.1 mW/m2, which is in the same order of magnitude as previous results. In the calculation, lunar surface heat flow includes the heat flow from the non-uniform distribution of radioactive elements K, U and Th and that from secular cooling of the Moon. The calculation of heat flow from radioactive elements is based on the assumption that the radioactive decay of K, U and Th on the Moon is the same as that on the Earth. The heat flow from secular cooling of the Moon is assumed to be equal to the global average radioactive heat flow. Firstly we construct a relationship between radioactive elements K, U and Th and lunar surface heat flow. The key parameter of the characteristic length scale in the relationship is determined by measured surface heat flow and Th abundances at Apollo 15 and 17 landing sites. Then the distribution of lunar surface heat flow is derived by combining other parameters such as lunar crustal thickness measured by Clementine and lunar crustal density. In addition, correlation analysis of the three radioactive elements is carried out due to the higher resolution of Th abundance and for ease of calculation.

  2. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  3. Localization and speciation of arsenic and trace elements in rice tissues

    SciTech Connect

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L.; Weber, John; Skinner, William M.; Gräfe, Markus

    2009-09-14

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations of {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.

  4. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  5. Arsenic and other trace elements in two catfish species from Paranaguá Estuarine Complex, Paraná, Brazil.

    PubMed

    Angeli, J L F; Trevizani, T H; Ribeiro, A; Machado, E C; Figueira, R C L; Markert, B; Fraenzle, S; Wuenschmann, S

    2013-10-01

    Concentrations of arsenic and four additional trace elements (Cu, Cr, Ni, and Zn) were determined by inductively coupled plasma-optical emission spectrometry in the muscular tissue of the yellow catfish (Cathorops spixii) and the urutu catfish (Genidens genidens) from Paranaguá Estuarine Complex, Brazil (PEC). The PEC can be characterized by an environment of high ecological and economic importance in which preserved areas of rainforest and mangroves coexist with urban activities as ports and industries. The average concentrations (in milligram per kilogram dry weight) of elements in the muscle tissue of C. spixii are as follows: Zn (31), As (17), Cu (1.17), Cr (0.62), and Ni (0.28). Similar concentrations could be found in G. genidens with exception of As: Zn (36), As (4.78), Cu (1.14), Cr (0.51), and Ni (0.14). Fish from the geographic northern rural region (Guaraqueçaba-Benito) display higher As concentrations in the muscle tissues than fish found in the south-western (urban) part of the PEC. An international comparison of muscle tissue concentrations of trace elements in fish was made. Except for Ni in C. spixii, a tendency of decrease in element concentration with increasing size (age) of the fish could be observed. According to the National Health Surveillance Agency of Brazil, levels of Cr and As exceeded the permissible limits for seafood. An estimation of the provisional tolerable weekly intake of As was calculated with 109 % for C. spixii and with 29 % for G. genidens. PMID:23584825

  6. Arsenic Exposure and Toxicology: A Historical Perspective

    PubMed Central

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J.

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve. PMID:21750349

  7. In Vivo Effect of Arsenic Trioxide on Keap1-p62-Nrf2 Signaling Pathway in Mouse Liver: Expression of Antioxidant Responsive Element-Driven Genes Related to Glutathione Metabolism

    PubMed Central

    Srivastava, Ritu; Sengupta, Archya; Mukherjee, Sandip; Chatterjee, Sarmishtha; Sudarshan, Muthammal; Chakraborty, Anindita; Bhattacharya, Shelley; Chattopadhyay, Ansuman

    2013-01-01

    Arsenic is a Group I human carcinogen, and chronic arsenic exposure through drinking water is a major threat to human population. Liver is one of the major organs for the detoxification of arsenic. The present study was carried out in mice in vivo after arsenic treatment through drinking water at different doses and time of exposure. Arsenic toxicity is found to be mediated by reactive oxygen species. Nuclear factor (erythroid-2 related) factor 2 (Nrf2)/Keap1 (Kelch-like ECH-associated protein 1)/ARE (antioxidant response element)—driven target gene system protects cells against oxidative stress and maintains cellular oxidative homeostasis. Our result showed 0.4 ppm, 2 ppm, and 4 ppm arsenic trioxide treatment through drinking water for 30 days and 90 days induced damages in the liver of Swiss albino mice as evidenced by histopathology, disturbances in liver function, induction of heat shock protein 70, modulation of trace elements, alteration in reduced glutathione level, glutathione-s-transferase and catalase activity, malondialdehyde production, and induction of apoptosis. Cellular Nrf2 protein level and mRNA level increased in all treatment groups. Keap1 protein as well as mRNA level decreased concomitantly in arsenic treated mice. Our study clearly indicates the important role of Nrf2 in activating ARE driven genes related to GSH metabolic pathway and also the adaptive response mechanisms in arsenic induced hepatotoxicity. PMID:27335833

  8. Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Sridhar, Seetharaman

    2011-10-01

    Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu- x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.

  9. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry

    PubMed Central

    2010-01-01

    Background Geophagy or earth-eating is common amongst some Bangladeshi women, especially those who are pregnant, both in Bangladesh and in the United Kingdom. A large proportion of the population in Bangladesh is already exposed to high concentrations of arsenic (As) and other toxic elements from drinking contaminated groundwater. Additional exposure to As and other toxic elements from non-food sources has not been adequately addressed and here we present the first study to monitor As levels in baked clay (known as sikor). Methods Sikor samples originating from Bangladesh were digested using a microwave digester and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Detailed As speciation analysis was performed using HPLC-ICP-MS. Results Of particular concern were the levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples and their possible impact on human health. Speciation analysis revealed that sikor samples contained mainly inorganic As. Modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. This level of sikor consumption exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold. Conclusion We conclude that sikor can be a significant source of As, Cd and Pb exposure for the Bangladeshi population consuming large quantities of this material. Of particular concern in this regard is geophagy practiced by pregnant women concurrently exposed to As contaminated drinking water. Future studies needs to evaluate the bioavailability of As and other elements from sikor and their impact on human health. PMID:21182763

  10. Tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems

    SciTech Connect

    Benson, L.V.; Teague, L.S.

    1980-08-01

    The rate of release and migration of radionuclides from a nuclear waste repository to the biosphere is dependent on chemical interactions between groundwater, the geologic host rock, and the radioactive waste package. For the purpose of this report, the waste package includes the wasteform, canister, overpack, and repository backfill. Chemical processes of interest include sorption (ion exchange), dissolution, complexation, and precipitation. Thermochemical data for complexation and precipitation calculations for 58 elements common to the radioactive waste package are presented. Standard free energies of formation of free ions, complexes, and solids are listed. Common logarithms of equilibrium constants (log K's) for speciation and precipitation reactions are listed. Unless noted otherwise, all data are for 298.15/sup 0/K and one atmosphere.

  11. Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements

    SciTech Connect

    Konyashov, Vadim V.; Krasnov, Alexander M.

    2002-04-15

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

  12. Solid Phase Biosensors for Arsenic or Cadmium Composed of A trans Factor and cis Element Complex

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Kawakami, Yasunari; Ueda, Shunsaku; Maeda, Isamu

    2011-01-01

    The presence of toxic metals in drinking water has hazardous effects on human health. This study was conducted to develop GFP-based-metal-binding biosensors for on-site assay of toxic metal ions. GFP-tagged ArsR and CadC proteins bound to a cis element, and lost the capability of binding to it in their As- and Cd-binding conformational states, respectively. Water samples containing toxic metals were incubated on a complex of GFP-tagged ArsR or CadC and cis element which was immobilized on a solid surface. Metal concentrations were quantified with fluorescence intensity of the metal-binding states released from the cis element. Fluorescence intensity obtained with the assay significantly increased with increasing concentrations of toxic metals. Detection limits of 1 μg/L for Cd(II) and 5 μg/L for As(III) in purified water and 10 µg/L for Cd(II) and As(III) in tap water and bottled mineral water were achieved by measurement with a battery-powered portable fluorometer after 15-min and 30-min incubation, respectively. A complex of freeze dried GFP-tagged ArsR or CadC binding to cis element was stable at 4 °C and responded to 5 μg/L As(III) or Cd(II). The solid phase biosensors are sensitive, less time-consuming, portable, and could offer a protocol for on-site evaluation of the toxic metals in drinking water. PMID:22346629

  13. Solid phase biosensors for arsenic or cadmium composed of A trans factor and cis element complex.

    PubMed

    Siddiki, Mohammad Shohel Rana; Kawakami, Yasunari; Ueda, Shunsaku; Maeda, Isamu

    2011-01-01

    The presence of toxic metals in drinking water has hazardous effects on human health. This study was conducted to develop GFP-based-metal-binding biosensors for on-site assay of toxic metal ions. GFP-tagged ArsR and CadC proteins bound to a cis element, and lost the capability of binding to it in their As- and Cd-binding conformational states, respectively. Water samples containing toxic metals were incubated on a complex of GFP-tagged ArsR or CadC and cis element which was immobilized on a solid surface. Metal concentrations were quantified with fluorescence intensity of the metal-binding states released from the cis element. Fluorescence intensity obtained with the assay significantly increased with increasing concentrations of toxic metals. Detection limits of 1 μg/L for Cd(II) and 5 μg/L for As(III) in purified water and 10 µg/L for Cd(II) and As(III) in tap water and bottled mineral water were achieved by measurement with a battery-powered portable fluorometer after 15-min and 30-min incubation, respectively. A complex of freeze dried GFP-tagged ArsR or CadC binding to cis element was stable at 4 °C and responded to 5 μg/L As(III) or Cd(II). The solid phase biosensors are sensitive, less time-consuming, portable, and could offer a protocol for on-site evaluation of the toxic metals in drinking water. PMID:22346629

  14. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    PubMed

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since. PMID:21960624

  15. Prolong Restoration of the Water Quality of River Ganga Effect of Heavy Metals and Radioactive Elements.

    PubMed

    Tare, Vinod; Basu, Subhankar

    2014-04-01

    The genesis of the present research was the belief since ages and the observations made through some studies that the water of river Ganga has unique characteristics, which allows storage of water quality even on prolong storage. Very few systematic studies have been conducted to support the contention that the Ganga water indeed has some special composition that could be attributed to its unique storage capacity. It was postulated that prolong restoration of water quality depends on the ability to arrest microbial activity that is generally responsible for deterioration in water quality on prolong storage. Hence, attempt has been made to identify the parameters that are likely to influence the prolong storage of river water. Along with Ganga river water, other three major rivers, viz. Yamuna, Godavari and Narmada, were selected for comparison. Emphasis was made on estimation of heavy metals, radioactive elements, dissolved carbon and other physicochemical parameters such as temperature, pH, alkalinity, hardness and dissolved organic carbon. Based on the available information regarding the impact of heavy metals, radioactive elements vis-à-vis the chemical composition of water on microorganisms in the aquatic environment, an overall impact score for the waters of the four Indian rivers selected in the study has been assigned. PMID:26563059

  16. Elemental characterization of LL-MA radioactive waste packages with the associated particle technique

    SciTech Connect

    Perot, B.; Carasco, C.; Toure, M.; El Kanawati, W.; Eleon, C.

    2011-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R and D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages with analytical methods and with non-destructive nuclear measurements. This paper concerns fast neutron interrogation with the associated particle technique (APT), which brings 3D information about the waste material composition. The characterization of volume elements filled with iron, water, aluminium, and PVC in bituminized and fibre concrete LL-MA waste packages has been investigated with MCNP [1] and MODAR data analysis software [2]. APT provides usable information about major elements presents in the volumes of interest. However, neutron scattering on hydrogen nuclei spreads the tagged neutron beam out of the targeted volume towards surrounding materials, reducing spatial selectivity. Simulation shows that small less than 1 L targets can be characterised up to the half-radius of a 225 L bituminized drum, the matrix of which is very rich in hydrogen. Deeper characterization in concrete is possible but limited by counting statistics due to photon attenuation in this dense matrix and, unless large inspection volumes are considered, by the lack of spatial selectivity of the tagged neutron beam due to neutron scattering. (authors)

  17. Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.

    PubMed

    Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C

    2015-01-01

    The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to

  18. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Ormachea Muñoz, Mauricio; Bhattacharya, Prosun; Sracek, Ondra; Ramos Ramos, Oswaldo; Quintanilla Aguirre, Jorge; Bundschuh, Jochen; Maity, Jyoti Prakash

    2015-07-01

    Numerous hot springs and fumaroles occur along the Andes Mountains, in the Bolivian Altiplano, where people use thermal springs for recreational purposes as pools, baths and also for consumption as drinking water and irrigation once it is mixed with natural surface waters; most of these thermal springs emerge from earth surface and flow naturally into the rivers streams which drain further into the Poopó Lake. Physicochemical characteristics of the thermal water samples showed pH from 6.3 to 8.3 with an average of 7.0, redox potential from +106 to +204 mV with an average of +172 mV, temperatures from 40 to 75 °C with an average of 56 °C and high electrical conductivity ranging from 1.8 to 75 mS/cm and averaged 13 mS/cm. Predominant major ions are Na+ and Cl- and the principal water types are 37.5% Na-Cl type and 37.5% Na-Cl-HCO3 type. Arsenic concentrations ranged from 7.8 to 65.3 μg/L and arsenic speciation indicate the predominance of As(III) species. Sediments collected from the outlets of thermal waters show high iron content, and ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic attenuation by adsorption/co-precipitation processes. Arsenic concentrations in cold water samples from shallow aquifers are higher than those in thermal springs (range < 5.6-233.2 μg/L), it is likely that thermal water discharge is not the main source of high arsenic content in the shallow aquifer as they are very immature and may only have a small component corresponding to the deep geothermal reservoir. As people use both thermal waters and cold waters for consumption, there is a high risk for arsenic exposure in the area.

  19. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.

    PubMed

    He, Xiaoqing; Chen, Michael G; Lin, Gary X; Ma, Qiang

    2006-08-18

    The ubiquitous toxic metalloid arsenic elicits pleiotropic adverse and adaptive responses in mammalian species. The biological targets of arsenic are largely unknown at present. We analyzed the signaling pathway for induction of detoxification gene NAD(P)H-quinone oxidoreductase (Nqo1) by arsenic. Genetic and biochemical evidence revealed that induction required cap 'n' collar basic leucine zipper transcription factor Nrf2 and the antioxidant response element (ARE) of Nqo1. Arsenic stabilized Nrf2 protein, extending the t(1/2) of Nrf2 from 21 to 200 min by inhibiting the Keap1 x Cul3-dependent ubiquitination and proteasomal turnover of Nrf2. Arsenic markedly inhibited the ubiquitination of Nrf2 but did not disrupt the Nrf2 x Keap1 x Cul3 association in the cytoplasm. In the nucleus, arsenic, but not phenolic antioxidant tert-butylhydroquinone, dissociated Nrf2 from Keap1 and Cul3 followed by dimerization of Nrf2 with a Maf protein (Maf G/Maf K). Chromatin immunoprecipitation demonstrated that Nrf2 and Maf associated with the endogenous Nqo1 ARE enhancer constitutively. Arsenic substantially increased the ARE occupancy by Nrf2 and Maf. In addition, Keap1 was shown to be ubiquitinated in the cytoplasm and deubiquitinated in the nucleus in the presence of arsenic without changing the protein level, implicating nuclear-cytoplasmic recycling of Keap1. Our data reveal that arsenic activates the Nrf2/Keap1 signaling pathway through a distinct mechanism from that by antioxidants and suggest an "on-switch" model of Nqo1 transcription in which the binding of Nrf2 x Maf to ARE controls both the basal and inducible expression of Nqo1. PMID:16785233

  20. Metal complexes containing natural and and artificial radioactive elements and their applications.

    PubMed

    Kharissova, Oxana V; Méndez-Rojas, Miguel A; Kharisov, Boris I; Méndez, Ubaldo Ortiz; Martínez, Perla Elizondo

    2014-01-01

    Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m ((99m)Tc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described. PMID:25061724

  1. Arsenic poisoning in dairy cattle from naturally occurring arsenic pyrites.

    PubMed

    Hopkirk, R G

    1987-10-01

    An outbreak of arsenic poisoning occurred in which most of a 200 cow dairy herd were affected and six died. The source of the arsenic was naturally occurring arsenic pyrites from the Waiotapu Stream, near Rotorua. Arsenic levels in the nearby soil were as high as 6618 ppm. There was little evidence to suggest that treatment affected the course of the disease. Haematology was of little use in diagnosis, post-mortem signs were not always consistent and persistence of the element in the liver appeared short. Control of further outbreaks have been based on practical measures to minimise the intake of contaminated soil and free laying water by the stock. PMID:16031332

  2. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries. PMID:21324705

  3. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  4. ARSENIC TECHNICAL WORKSHOP PROCEEDINGS DOCUMENT

    EPA Science Inventory

    Arsenic is a semi-metallic element or metalloid which has several different allotropic forms. Arsenic compounds, mainly as As2O3, can be recovered as a by-product from processing complex ores mined for other minerals such as copper, lead, zinc, gold and silver. Consequently, ...

  5. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  6. Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy

    NASA Astrophysics Data System (ADS)

    Caridi, F.; D'Agostino, M.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A.

    2016-05-01

    River sediment samples from different sites of the coast of Calabria, south of Italy, were analyzed to determine the natural radioactivity concentration of the studied area and to investigate about their geological provenience. The radioactivity investigation was performed by using HPGe gamma spectrometry. Activity concentration data were reported and the influence of the particle size on the radionuclides concentration was investigated. X-ray fluorescence spectrometry (XRF) measurements were performed for the quantitative elemental analysis of the river sediments, revealing the major and minor elements present in the investigated samples. From XRF experimental results it was possible to estimate the geological provenience of the analyzed river sediments. Data obtained in this article provide useful information on the background radioactivity of the studied area and can be further used for radiological mapping of the coast of the Calabria rivers.

  7. Arsenic: The Silent Killer

    SciTech Connect

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  8. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    NASA Astrophysics Data System (ADS)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  9. BEHAVIOR OF ARSENIC AND OTHER REDOX-SENSITIVE ELEMENTS IN CROWLEY LAKE, CA: A RESERVOIR IN THE LOS ANGELES AQUEDUCT SYSTEM. (R826202)

    EPA Science Inventory

    Elevated arsenic concentrations in Crowley Lake derive from upstream geothermal inputs. We examined the water column of Crowley Lake under stratified and unstratified conditions, seeking evidence for algal uptake and transformation of arsenic and its deposition to and release fro...

  10. Spatially resolved elemental mapping of two U.S. rice core collection grain accessions with diverse arsenic accumulation characteristics via synchrotron x-Ray fluorescence microscopy (SXRF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of arsenic in higher than expected concentrations in rice grown in the South Central United States and worldwide has prompted further study to ensure the safety of rice, and rice based products such as infant cereals. In the U.S. arsenic is thought to originate from former arsenical pe...

  11. Calculations of the moon's heat history at different concentrations of radioactive elements taking account of the material differentiation with melting

    NASA Technical Reports Server (NTRS)

    Arnatskaya, O. I.; Alber, Y. I.; Ryazantseva, I. L.

    1974-01-01

    A mathematical procedure for analyzing the heat conductivity of the lunar surface is discussed. The solution is based on homogeneous and laminated moon models and considers the effects of radioactive elements conveyed to the lunar surface by melting. The various parameters which introduce uncertainties into the numerical analysis are identified. The application of data obtained from radio astronomy and from analyses of lunar samples returned by the Apollo flights is explained. Tables of data are included to show the types and amounts of radioactive materials which have been identified.

  12. Mineral resource of the month: arsenic

    USGS Publications Warehouse

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  13. Arsenic round the world: a review.

    PubMed

    Mandal, Badal Kumar; Suzuki, Kazuo T

    2002-08-16

    This review deals with environmental origin, occurrence, episodes, and impact on human health of arsenic. Arsenic, a metalloid occurs naturally, being the 20th most abundant element in the earth's crust, and is a component of more than 245 minerals. These are mostly ores containing sulfide, along with copper, nickel, lead, cobalt, or other metals. Arsenic and its compounds are mobile in the environment. Weathering of rocks converts arsenic sulfides to arsenic trioxide, which enters the arsenic cycle as dust or by dissolution in rain, rivers, or groundwater. So, groundwater contamination by arsenic is a serious threat to mankind all over the world. It can also enter food chain causing wide spread distribution throughout the plant and animal kingdoms. However, fish, fruits, and vegetables primarily contain organic arsenic, less than 10% of the arsenic in these foods exists in the inorganic form, although the arsenic content of many foods (i.e. milk and dairy products, beef and pork, poultry, and cereals) is mainly inorganic, typically 65-75%. A few recent studies report 85-95% inorganic arsenic in rice and vegetables, which suggest more studies for standardisation. Humans are exposed to this toxic arsenic primarily from air, food, and water. Thousands and thousands of people are suffering from the toxic effects of arsenicals in many countries all over the world due to natural groundwater contamination as well as industrial effluent and drainage problems. Arsenic, being a normal component of human body is transported by the blood to different organs in the body, mainly in the form of MMA after ingestion. It causes a variety of adverse health effects to humans after acute and chronic exposures such as dermal changes (pigmentation, hyperkeratoses, and ulceration), respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. Key research

  14. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  15. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  16. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    . Phytochelatins bind diverse thiol-reactive elements like As(III) and are synthesized from amino acids in a three-step enzymatic pathway utilizing three enzymes: ECS = gamma-glutamylcysteine synthetase; GS = GSH synthetase; and PS = phytochelatin synthase. We cloned each of the genes that encode these enzymes and used at least two different plant promoters to express them in transgenic Arabidopsis. We have shown that all three confer significant resistance to arsenic and allow rapid growth on a concentration of arsenic (300 micromolar) that kills wild-type seeds and plants.

  17. Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions, Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Ramos Ramos, Oswaldo Eduardo; Rötting, Tobias S.; French, Megan; Sracek, Ondra; Bundschuh, Jochen; Quintanilla, Jorge; Bhattacharya, Prosun

    2014-10-01

    A geochemical approach was applied to understand the factors controlling the mobilization of As and trace elements (TEs) in mining areas of the Poopó and Antequera River sub-basins on the Bolivian Altiplano. A total of 52 samples (surface, groundwater and geothermal water) were collected during the rainy season (2009). Arsenic, Cd and Mn concentrations exceed World Health Organization (WHO) drinking water guidelines and Bolivian regulations for drinking water in 28 groundwater samples, but Cu, Ni, Pb and Zn do not. Arsenic, Cd, Mn, Pb and Zn concentrations exceed World Health Organization guidelines for drinking water and Bolivian regulations Class A standard for discharge to water bodies in 20 surface water samples, whereas levels of Cu do not, and Ni and Fe rarely exceed regulation and guideline values. Factor analysis was applied to 18 hydrochemical parameters of 52 samples. Five factors for groundwater (plagioclase weathering, dissolution of gypsum and halite, TEs mobilization at acidic pH, sulfide oxidation, and release of As) account for 86.5% of the total variance for Antequera and 83.9% for Poopó sub-basins. Four factors for surface water data (weathering and mobilization of TEs influenced by pH, dissolution of evaporate salts, neutralization of acid mine drainage, and As release due to dissolution of Mn and Fe oxides) account for 91% of the total variance in Antequera and 96% in Poopó sub-basins. The As and TEs mobilized in these regions could affect the local water sources, which is a prevalent concern with respect to water resource management in this semi-arid Altiplano region. Presence of both natural and anthropogenic sources of contamination requires careful monitoring of water quality.

  18. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.

    PubMed

    Ormachea Muñoz, Mauricio; Wern, Hannes; Johnsson, Fredrick; Bhattacharya, Prosun; Sracek, Ondra; Thunvik, Roger; Quintanilla, Jorge; Bundschuh, Jochen

    2013-11-15

    Environmental settings in the southern area of Lake Poopó in the Bolivian highlands, the Altiplano, have generated elevated amounts of arsenic (As) in the water. The area is characterised by a semiarid climate, slow hydrological flow and geologic formations of predominantly volcanic origin. The present study aimed at mapping the extent of the water contamination in the area and to investigate the geogenic sources and processes involved in the release of As to the groundwater. Ground- and surface-water samples were collected from 24 different sites, including drinking water wells and rivers, in the southern Poopó basin in two different field campaigns during the dry and rainy seasons. The results revealed variable levels of As in shallow drinking water wells and average concentration exceeding the WHO guidelines value. Arsenic concentrations range from below 5.2 μg/L (the detection level) to 207 μg/L and averages 72 μg/L. Additionally, high boron (B) concentrations (average 1902 μg/L), and high salinity are further serious concerns for deteriorating the groundwater quality and rendering it unsuitable for drinking. Groundwater is predominantly of the Na-Cl-HCO3 type or the Ca-Na-HCO3 type with neutral or slightly alkaline pH and oxidising character. While farmers are seriously concerned about the water scarcity, and on a few occasions about salinity, there are no concerns about As and B present at levels exceeding the WHO guidelines, and causing negative long term effects on human health. Sediment samples from two soil profiles and a river bed along with fourteen rock samples were also collected and analysed. Sequential extractions of the sediments together with the calculation of the mineral saturation indices indicate that iron oxides and hydroxides are the important secondary minerals phases which are important adsorbents for As. High pH values, and the competition of As with HCO3 and dissolved silica for the adsorption sites probably seems to be an

  19. Methods of analysis for toxic elements in food products. 2. Review of USSR standards on determinations of heavy metals and arsenic

    SciTech Connect

    Skurikhin, I.M.

    1989-03-01

    Methods of analysis prescribed by USSR standards for Hg, Pb, Zn, As, Cd, Cu, Fe, and Sn in foods are described: for Hg--colorimetry of tetraiodide mercurate and atomic absorption spectroscopy (AAS); for Pb, Cd, Zn, and Cu--polarography; for Cu--colorimetry with sodium diethyldithiocarbamate and zinc dibenzyldithiocarbamate; for As--colorimetry with silver diethyldithiocarbamate; for Sn--colorimetry with quercetin; and for Fe--colorimetry with o-phenanthroline. All of the methods have the necessary metrological characteristics, including intralaboratory repeatability value (r), interlaboratory reproducibility value (R), minimum quantity of the element to be determined in the analytical test portion (MQSM), and the coefficients that account for mercury and arsenic losses during analysis. Establishing constant r- and R-values for the methods under consideration is expedient because (a) the methods suggested are used for safety purposes; and (b) the optimum amount of the element studied in the test sample is determined, to a certain degree, by the mass of the test portion.

  20. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  1. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  2. A market basket survey of inorganic arsenic in food.

    PubMed

    Schoof, R A; Yost, L J; Eickhoff, J; Crecelius, E A; Cragin, D W; Meacher, D M; Menzel, D B

    1999-08-01

    Dietary arsenic intake estimates based on surveys of total arsenic concentrations appear to be dominated by intake of the relatively non-toxic, organic arsenic forms found in seafood. Concentrations of inorganic arsenic in food have not been not well characterized. Accurate dietary intake estimates for inorganic arsenic are needed to support studies of arsenic's status as an essential nutrient, and to establish background levels of exposure to inorganic arsenic. In the market basket survey reported here, 40 commodities anticipated to provide at least 90% of dietary inorganic arsenic intake were identified. Four samples of each commodity were collected. Total arsenic was analysed using an NaOH digestion and inductively coupled plasma-mass spectrometry. Separate aliquots were analysed for arsenic species using an HCl digestion and hydride atomic absorption spectroscopy. Consistent with earlier studies, total arsenic concentrations (all concentrations reported as elemental arsenic per tissue wet weight) were highest in the seafoods sampled (ranging from 160 ng/g in freshwater fish to 2360 ng/g in saltwater fish). In contrast, average inorganic arsenic in seafood ranged from less than 1 ng/g to 2 ng/g. The highest inorganic arsenic values were found in raw rice (74 ng/g), followed by flour (11 ng/g), grape juice (9 ng/g) and cooked spinach (6 ng/g). Thus, grains and produce are expected to be significant contributors to dietary inorganic arsenic intake. PMID:10506007

  3. Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles (PM2.5) from Puerto Rico

    PubMed Central

    Figueroa, David Acevedo; Rodríguez-Sierra, Carlos J; Jiménez-Velez, Braulio D

    2015-01-01

    Fine atmospheric particulate PM2.5 (particles with diameters of <2.5 μm) were sampled in an urban industrialized area – Guaynabo, Puerto Rico (Figure 1) – and in a reference less polluted site – Fajardo, Puerto Rico – and analyzed for trace metals, and inorganic and organic elemental carbon. PM2.5 samples were collected from November 2000 to September 2001 using an Andersen Instruments RAAS2.5-400 for periods of 72 h. Metals analyzed were arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) by atomic absorption. Levels of elemental and organic carbon (EC/OC) were also determined. All metals analyzed, except for Fe, were significantly higher in PM2.5 from Guaynabo when compared to Fajardo. Average levels of PM2.5 in Guaynabo were 11.6 versus 8.5 μg/m3 in Fajardo. Average levels of EC were 1.5 and <0.14 μg/m3; and OC levels were 2.2 and <1 μg/m3 for Guaynabo and Fajardo, respectively. Levels of Ni (17 ng/m3) and V (40 ng/m3) determined in PM2.5 from the Guaynabo area were high when compared to other cities, and these metals could be responsible for respiratory problems reported in the area. Multivariate analyses showed strong relationships in Guaynabo between Ni and V, PM2.5 and Fe and As and Cu and Pb. In Fajardo, the strongest associations were obtained between PM2.5 and Fe, Cd and V and Ni and Pb and Cu, these last three elements exhibiting an inverse relationship. PMID:16716038

  4. Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry

    SciTech Connect

    Xie, Xianjun; Wang, Yanxin; Ellis, Andre; Liu, Chongxuan; Duan, Mengyu; Li, Junxia

    2014-11-01

    Arsenic (As)-contaminated aquifer sediments from Datong basin, China have been analyzed to infer the provenance and depositional environment related to As distribution in the aquifer sediments. The As content in the sediments ranged from 2.45 to 27.38 mg/kg with an average value of 9.54 mg/kg, which is comparable to the average value in modern unconsolidated sediments. However, minor variation in As concentration with depth has been observed in the core. There was a significant correlation between Fe, and Al and As, which was attributed to the adsorption or co-precipitation of As onto/with Fe oxides/hydroxides and/or Fe-coated clay minerals. Post-Archean Australian Shale (PAAS)-normalized REEs patterns of sediment samples along the borehole were constant, and the sediments had a notably restricted range of La-N/Yb-N ratios from 0.7 to 1.0. These results suggested that the provenance of the Datong basin remained similar throughout the whole depositional period. The analysis of major geochemical compositions confirmed that all core sediments were from the same sedimentary source and experienced significant sedimentary recycling. The co-variation of As, V/Al, Ni/Al and chemical index of alteration (CIA) values in the sediments along the borehole suggested that As distribution in the sediments was primarily controlled by weathering processes. The calculated CIA values of the sediments along the borehole indicate that a relative strong chemical weathering occurred during the deposition of sediments at depths of similar to 35 to 88 m, which was corresponding to the depth at which high As groundwater was observed at the site. Strong chemical weathering favored the deposition of Fe-bearing minerals including poorly crystalline and crystalline Fe oxide mineral phases and concomitant co-precipitation of As with these minerals in the sediments. Subsequent reductive dissolution of As-bearing poorly crystalline and crystalline Fe oxides would result in the enrichment of As in

  5. Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Xianjun; Wang, Yanxin; Ellis, Andre; Liu, Chongxuan; Duan, Mengyu; Li, Junxia

    2014-11-01

    Arsenic (As)-contaminated aquifer sediments from Datong basin, China have been analyzed to infer the provenance and depositional environment related to As distribution in the aquifer sediments. The As content in the sediments ranged from 2.45 to 27.38 mg/kg with an average value of 9.54 mg/kg, which is comparable to the average value in modern unconsolidated sediments. However, minor variation in As concentration with depth has been observed in the core. There was a significant correlation between Fe, and Al and As, which was attributed to the adsorption or co-precipitation of As onto/with Fe oxides/hydroxides and/or Fe-coated clay minerals. Post-Archean Australian Shale (PAAS)-normalized REEs patterns of sediment samples along the borehole were constant, and the sediments had a notably restricted range of LaN/YbN ratios from 0.7 to 1.0. These results suggested that the provenance of the Datong basin remained similar throughout the whole depositional period. The analysis of major geochemical compositions confirmed that all core sediments were from the same sedimentary source and experienced significant sedimentary recycling. The co-variation of As, V/Al, Ni/Al and chemical index of alteration (CIA) values in the sediments along the borehole suggested that As distribution in the sediments was primarily controlled by weathering processes. The calculated CIA values of the sediments along the borehole indicate that a relative strong chemical weathering occurred during the deposition of sediments at depths of ∼35 to 88 m, which was corresponding to the depth at which high As groundwater was observed at the site. Strong chemical weathering favored the deposition of Fe-bearing minerals including poorly crystalline and crystalline Fe oxide mineral phases and concomitant co-precipitation of As with these minerals in the sediments. Subsequent reductive dissolution of As-bearing poorly crystalline and crystalline Fe oxides would result in the enrichment of As in groundwater

  6. Homicidal arsenic poisoning.

    PubMed

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations. PMID:25344454

  7. Health Effects of Chronic Arsenic Exposure

    PubMed Central

    Hong, Young-Seoub; Song, Ki-Hoon; Chung, Jin-Yong

    2014-01-01

    Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments. PMID:25284195

  8. Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Evans, Larry G.; Hauck, Steven A.; McCoy, Timothy J.; Boynton, William V.; Gillis-Davis, Jeffery J.; Ebel, Denton S.; Goldsten, John O.; Hamara, David K.; Lawrence, David J.; McNutt, Ralph L.; Nittler, Larry R.; Solomon, Sean C.; Rhodes, Edgar A.; Sprague, Ann L.; Starr, Richard D.; Stockstill-Cahill, Karen R.

    2011-09-01

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury’s northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury’s formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  9. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270

  10. Arsenic chemistry in soils and sediments

    SciTech Connect

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved

  11. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    SciTech Connect

    Kitchin, Kirk T. Wallace, Kathleen

    2008-10-15

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive {sup 73}As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of {sup 73}As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H{sub 2}O{sub 2} into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo.

  12. Life and death with arsenic

    PubMed Central

    Rosen, Barry P.; Ajees, A. Abdul; McDermott, Timothy R.

    2013-01-01

    Arsenic and phosphorus are group 15 elements with similar chemical properties. Is it possible that arsenate could replace phosphate in some of the chemicals that are required for life? Phosphate esters are ubiquitous in biomolecules and are essential for life, from the sugar phosphates of intermediary metabolism to ATP to phospholipids to the phosphate backbone of DNA and RNA. Some enzymes that form phosphate esters catalyze the formation of arsenate esters. Arsenate esters hydrolyze very rapidly in aqueous solution, which makes it improbable that phosphorous could be completely replaced with arsenic to support life. Studies of bacterial growth at high arsenic:phosphorus ratios demonstrate that relatively high arsenic concentrations can be tolerated, and that arsenic can become involved in vital functions in the cell, though likely much less efficiently than phosphorus. Recently Wolfe-Simon et al. [1] reported the isolation of a microorganism that they maintain uses arsenic in place of phosphorus for growth. Here, we examine and evaluate their data and conclusions. PMID:21387349

  13. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites. PMID:16120480

  14. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  15. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    SciTech Connect

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-15

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  16. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements.

    PubMed

    Kumar, V Suresh; Kumar, R; Sivaraman, N; Ravisankar, G; Vasudeva Rao, P R

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device. PMID:20886994

  17. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    PubMed

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries. PMID:26431705

  18. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  19. Arsenic: Not So Evil After All?

    NASA Astrophysics Data System (ADS)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  20. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic is not an essential element and can be toxic to both plants and animals in high concentration. Decreasing arsenic concentrations in all foodstuffs, including rice grain, is a desirable goal because of the potential detrimental impacts of As on plant growth and yield and its potential toxici...

  1. Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies.

    PubMed

    Adams, William J; DeForest, David K; Tear, Lucinda M; Payne, Kelly; Brix, Kevin V

    2015-03-01

    This paper presents long-term monitoring data for 19 elements with a focus on arsenic (As), copper (Cu), and selenium (Se), in surface water (2002-2011), brine shrimp (2001-2011), and brine flies (1995-1996) collected from Great Salt Lake (GSL, Utah, USA). In open surface waters, mean (±standard deviation [SD]; range; n) As concentrations were 112 (±22.1; 54.0-169; 47) and 112 μg/L (±35.6; 5.1-175; 68) in filtered and unfiltered surface water samples, respectively, and 16.3 μg/g (±5.6; 5.1-35.2; 62) dry weight (dw) in brine shrimp. Mean (±SD; range; n) Cu concentrations were 4.2 (±2.1; 1.3-12.5; 47) and 6.9 μg/L (±6.6; 1.9-38.1; 68) in filtered and unfiltered surface water samples, respectively, and 20.6 μg/g (±18.4; 5.4-126; 62) dw in brine shrimp. Finally, mean (±SD; range; n) dissolved and total recoverable Se concentrations were 0.6 (±0.1; 0.4-1.2; 61) and 0.9 μg/L (±0.7; 0.5-3.6; 89), respectively, and 3.6 μg/g (±2.2; 1.1-14.9; 98) dw in brine shrimp. Thus, Se in open lake surface waters was most often in the range of 0.5-1 μg/L, and concentrations in both surface water and brine shrimp were comparable to concentrations measured in other monitoring programs for the GSL. Temporally, the statistical significance of differences in mean dissolved or total recoverable As, Cu, and Se concentrations between years was highly variable depending which test statistic was used, and there was no clear evidence of increasing or decreasing trends. In brine shrimp, significant differences in annual mean concentrations of As, Cu, and Se were observed using both parametric and nonparametric statistical approaches, but, as for water, there did not appear to be a consistent increase or decrease in concentrations of these elements over time. PMID:25690606

  2. Some radioactive-elements in the coastal sediments of the Mediterranean Sea.

    PubMed

    Radi Dar, Mahmoud A; El-Saharty, Abeer A

    2013-03-01

    The radioactivities of (234+235)U, (232)Th, (40)K and (137)Cs were measured in the coastal sediments of the western Mediterranean Sea between Alexandria and Salloum, Egypt. The recorded activities of the natural radionuclides were within the range of those measured worldwide. The highest activities of (234+235)U and (40)K (166.5 ± 7.7; 365.8 ± 2.3 Bq kg(-1) dry weight) were measured at Sidi Krir station while El-Max station recorded the highest (232)Th activity (22.7 ± 0.6 Bq kg(-1) dry weight) indicating that these radionuclides may accumulate in ionic and particulate forms from the drainage systems of the fertiliser, petrochemical and paper industries and from agricultural drains and also as the drifted particulates from longshore currents and accretion processes. The lowest (234+235)U activities were recorded at Salloum and the lowest (232)Th and (40)K activities were recorded at El-Hammam, indicating that the accretion process is more active in the eastern Mediterranean. Salloum recorded the highest activity levels for (137)Cs (7.9 ± 0.4 Bq kg(-1) dry weight) showing significant increases of the artificial (137)Cs westwards that may be indicative of to the anthropogenic sources from the northern Mediterranean. PMID:22719046

  3. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  4. Calculations of the moon's thermal history at different concentrations of radioactive elements, taking into account differentiation on melting

    NASA Technical Reports Server (NTRS)

    Ornatskaya, O. I.; Alber, Y. I.; Ryazantseva, I. L.

    1977-01-01

    Calculations of the thermal history of the moon were done by solving the thermal conductivity equation for the case in which the heat sources are the long lived radioactive elements Th, U, and K-40. The concentrations of these elements were adjusted to give 4 variations of heat flow. Calculations indicated that the moon's interior was heated to melting during the first 0.7 to 2.3 x 10 to the 9th power years. The maximum fusion involved practically the entire moon to a distance from 15 to 45 km beneath the surface, and started 3.5 to 4.0 x 10 to the 9th power years ago, or 2.5 x 3.0 x 10 to the 9th power years ago and continued for 1 to 2 x 10 to the 9th power years. The moon today is cooling. The current thickness of the solid crust is from 150 to 200 km and the heat flow exceeds the stationary value 1.5 fold.

  5. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  6. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  7. Occurrence and transformation of arsenic in the marine environment.

    PubMed Central

    Lunde, G

    1977-01-01

    Among the trace elements, arsenic appears to possess a unique position in the environment. When comparing terrestrial and marine organisms there seems to be a significant difference between both level and chemical forms of arsenic. The level of arsenic in terrestrial organisms is seldom above 1 ppm (dry material) whereas the corresponding values for marine organisms vary from several parts per million up to more than 100 ppm. Furthermore, results so far show that marine organisms are able to convert inorganic arsenic into organic arsenic compounds. No evidence points to a corresponding ability in the terrestrial ones. In the aquatic organisms the arsenic is present as both lipid soluble and water soluble compounds. The water-soluble organic arsenic compounds have a basic character and are very stable to chemical and metabolic breakdown. Images FIGURE 5. PMID:908311

  8. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  9. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  10. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  11. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  12. Massive acute arsenic poisonings.

    PubMed

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  13. Toxic Elements in Soil and Groundwater: Short-Time Study on Electrokinetic Removal of Arsenic in the Presence of other Ions

    PubMed Central

    Leszczynska, Danuta; Ahmad, Hafiz

    2006-01-01

    The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA). The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil). Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1) only dc current; and (2) by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours) span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively). Direct analysis of remained arsenic in soil after these tests confirmed

  14. Toxic elements in soil and groundwater: short-time study on electrokinetic removal of arsenic in the presence of other ions.

    PubMed

    Leszczynska, Danuta; Ahmad, Hafiz

    2006-06-01

    The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA). The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil). Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1) only dc current; and (2) by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours) span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively). Direct analysis of remained arsenic in soil after these tests confirmed

  15. Determination of arsenic in crude petroleum and liquid hydrocarbons.

    PubMed

    Puri, B K; Irgolic, K J

    1989-12-01

    Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L(-1) (median 0.84 mg L(-1)). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b "Trace Elements in Residual Fuel Oil". The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 μg g(-1)) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 μg As mL(-1) revealed, that trimethylated arsenic (520 ng mL(-1)) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml(-1)), inorganic arsenic (23 ng mL(-1)), and dimethylated arsenic (low ng mL(-1)) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample. PMID:24202418

  16. Viscoelastic deformation of lunar impact basins: Implications for heterogeneity in the deep crustal paleo-thermal state and radioactive element concentration

    NASA Astrophysics Data System (ADS)

    Kamata, Shunichi; Sugita, Seiji; Abe, Yutaka; Ishihara, Yoshiaki; Harada, Yuji; Morota, Tomokatsu; Namiki, Noriyuki; Iwata, Takahiro; Hanada, Hideo; Araki, Hiroshi; Matsumoto, Koji; Tajika, Eiichi

    2013-03-01

    Diverse geological characteristics found for the three major lunar provinces (i.e., the Feldspathic Highlands Terrane (FHT), the South Pole-Aitken Terrane (SPAT), and the Procerallum KREEP Terrane (PKT)) strongly suggest their distinctly different thermal histories. Quantitative differences among these provinces in their early thermal histories and crustal radioactive element concentrations, however, are highly unknown. One of the few observables that retain a record of the ancient lunar thermal structure is the viscoelastic state of impact basins. This study investigates the long-term evolution of basin structures using global lunar gravity field data obtained by Kaguya tracking and derives constraints for (1) the paleo-thermal state of impact basins and for (2) crustal column-averaged radioactive element concentrations for each province. Our calculation results indicate that impact basins in the central anorthositic region of the FHT (i.e., the FHT-An) require a very cold interior ( dT / dr ≤ 20 K km - 1 on the surface). This result strongly suggests that the deep portion of the thick farside highlands crust is highly depleted in radioactive elements (Th ≤ 0.5 ppm), indicating that the Th-rich SPA basin floor crust is clearly different from the lower crust underneath the FHT-An and cannot be accounted for by simple exposure of the lower crust. Our analysis also indicates that the observed basin structure allows as high as ˜ 6 ppm of column-averaged Th concentration in the crust inside the PKT. These results indicate that radioactive element concentrations deep in the crust probably vary greatly region by region, similarly to those observed on the surface.

  17. Toxic Substances Portal- Arsenic

    MedlinePlus

    ... industrial applications. Organic arsenic compounds are used as pesticides, primarily on cotton fields and orchards. top What ... as copper or lead smelting, wood treating, or pesticide application. top How can arsenic affect my health? ...

  18. Arsenic Trioxide Injection

    MedlinePlus

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  19. Aquatic arsenic: phytoremediation using floating macrophytes.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  20. Arsenic stress after the Proterozoic glaciations

    NASA Astrophysics Data System (ADS)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  1. Arsenic stress after the Proterozoic glaciations.

    PubMed

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life. PMID:26635187

  2. Arsenic stress after the Proterozoic glaciations

    PubMed Central

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life. PMID:26635187

  3. SPECIATION OF ARSENIC IN TARGET FOODS AND COMPOSITE DIET SAMPLES

    EPA Science Inventory

    For the general population, food may surpass drinking water as the major source of ingestion of total elemental arsenic. Accurate assessments of inorganic arsenic intake via food are needed to understand the relative contributions of drinking water and foods to human exposures t...

  4. ARSENIC REMOVAL TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies. T...

  5. The carcinogenicity of arsenic.

    PubMed Central

    Pershagen, G

    1981-01-01

    A carcinogenic role of inorganic arsenic has been suspected for nearly a century. Exposure to inorganic arsenic compounds occurs in some occupational groups, e.g., among smelter workers and workers engaged in the production and use of arsenic containing pesticides. Substantial exposure can also result from drinking water in certain areas and the use of some drugs. Tobacco and wine have had high As concentrations due to the use of arsenic containing pesticides. Inorganic arsenic compounds interfere with DNA repair mechanisms and an increased frequency of chromosomal aberrations have been observed among exposed workers and patients. Epidemiological data show that inorganic arsenic exposure can cause cancer of the lung and skin. The evidence of an etiologic role of arsenic for angiosarcoma of the liver is highly suggestive; however, the association between arsenic and cancer of other sites needs further investigation. No epidemiological data are available on exposure to organic arsenic compounds and cancer. Animal carcinogenicity studies involving exposure to various inorganic and organic arsenic compounds by different routes have been negative, with the possible exception of some preliminary data regarding lung cancer and leukemia. Some studies have indicated an increased mortality from lung cancer in populations living near point emission sources of arsenic into the air. The role of arsenic cannot be evaluated due to lack of exposure data. Epidemiological data suggest that the present WHO standard for drinking water (50 micrograms As/l.) provides only a small safety margin with regard to skin cancer. PMID:7023936

  6. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  7. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  8. Arsenic in Food

    MedlinePlus

    ... inorganic forms. The FDA has been measuring total arsenic concentrations in foods, including rice and juices, through its Total Diet Study program ... readily take up much arsenic from the ground, rice is different because it takes ... has high levels of less toxic organic arsenic. Do organic foods ...

  9. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: influence on air quality.

    PubMed

    Sánchez de la Campa, Ana M; Sánchez-Rodas, Daniel; González Castanedo, Yolanda; de la Rosa, Jesús D

    2015-06-30

    A characterization of chemical composition and source contribution of PM10 in three representative environments of southwest Spain related to mining activities (mineral extraction, mining waste and Cu-smelting) has been performed. A study of geochemical anomalies was conducted in the samples collected at the three stations between July 2012 and October 2013. The influence of Cu-smelting processes was compared to other mining activities, where common tracers were identified. The Cu and As concentrations in the study area are higher than in other rural and urban stations of Spain, in which geochemical anomalies of As, Se, Bi, Cd, and Pb have been reported. The results of source contribution showed similar geochemical signatures in the industrial and mining factors. However, the contribution to PM10 is different according to the type of industrial activity. These results have been confirmed performing an arsenic speciation analysis of the PM10 samples, in which the mean extraction efficiency of arsenic depended on the origin of the samples. These finding indicate that the atmospheric particulate matter emitted from Cu-smelting has a high residence time in the atmosphere. This indicates that the Cu-smelter can impact areas of high ecological interest and considered as clean air. PMID:25748998

  10. Arsenic-transforming microbes and their role in biomining processes.

    PubMed

    Drewniak, L; Sklodowska, A

    2013-11-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a toxic (also for themselves) form, and (2) How do these microorganisms cope with this toxic element? In this review, we summarize current knowledge about arsenic-transforming microbes and their role in biomining processes. Special consideration is given to studies that have increased our understanding of how microbial activities are linked to the biogeochemistry of arsenic, by examining (1) where and in which forms arsenic occurs in the mining environment, (2) microbial activity in the context of arsenic mineral dissolution and the mechanisms of arsenic resistance, (3) the minerals used and technologies applied in the biomining of arsenic, and (4) how microbes can be used to clean up post-mining environments. PMID:23299972

  11. Reduction and Coordination of Arsenic in Indian Mustard1

    PubMed Central

    Pickering, Ingrid J.; Prince, Roger C.; George, Martin J.; Smith, Robert D.; George, Graham N.; Salt, David E.

    2000-01-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an AsIII-tris-thiolate complex. The majority of the arsenic remains in the roots as an AsIII-tris-thiolate complex, which is indistinguishable from that found in the shoots and from AsIII-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element. PMID:10759512

  12. SPECIATION OF ARSENIC IN EDIBLE BIOTA TO SUPPORT RISK ASSESSMENT DETERMINATION OF RELATIVE SOURCE CONTRIBUTION FOR ARSENIC

    EPA Science Inventory

    The Office of Research and Development has designated the study of arsenic as a high priority research area because of the health risk associated from exposure to this element. Present monitoring efforts are primarily focused on total concentration of arsenic in drinking water. ...

  13. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  14. Arsenic: homicidal intoxication

    SciTech Connect

    Massey, E.W.; Wold, D.; Heyman, A.

    1984-07-01

    Arsenic-induced deaths have been known to occur from accidental poisoning, as a result of medical therapy, and from intentional poisonings in homicide and suicide. Twenty-eight arsenic deaths in North Carolina from 1972 to 1982 included 14 homicides and seven suicides. In addition, 56 hospitalized victims of arsenic poisoning were identified at Duke Medical Center from 1970 to 1980. Four case histories of arsenic poisoning in North Carolina are presented and clinical manifestations are discussed. In view of the continued widespread use of arsenic in industry and agriculture, and its ubiquity in the environment, arsenic poisoning will continue to occur. A need for knowledge of its toxicity and of the clinical manifestations of acute and chronic arsenic poisoning will also continue.

  15. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements

    NASA Astrophysics Data System (ADS)

    Bennett, N. S.; Wong, C. S.; McNally, P. J.

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  16. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  17. Arsenic biomethylation by photosynthetic organisms

    PubMed Central

    Ye, Jun; Rensing, Christopher; Rosen, Barry P.; Zhu, Yong-Guan

    2013-01-01

    Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing ‘smart’ photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food. PMID:22257759

  18. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    SciTech Connect

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.; Owen, Andrew; Reimer, Kenneth J. Cullen, William R.

    2007-08-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.

  19. Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms.

    PubMed

    Yang, Huai-Jen; Lee, Chi-Yu; Chiang, Yu-Ju; Jean, Jiin-Shuh; Shau, Yen-Hong; Takazawa, Eiichi; Jiang, Wei-Teh

    2016-11-01

    High arsenic abundance of 50-700μg/L in the groundwater from the Chianan Plain in southwestern Taiwan is a well-known environmental hazard. The groundwater-associated sediments, however, have not been geochemically characterized, thus hindering a comprehensive understanding of arsenic cycling in this region. In this study, samples collected from a 250m sediment core at the centre of the Chianan Plain were analyzed for arsenic and TOC concentrations (N=158), constituent minerals (N=25), major element abundances (N=105), and sequential arsenic extraction (N=23). The arsenic data show a prevalence of >10mg/kg with higher concentrations of 20-50mg/kg concentrated at 60-80 and 195-210m. Arsenic was extracted mainly as an adsorbate on clay minerals, as a co-precipitate in amorphous iron oxyhydroxide, and as a structural component in clay minerals. Since the sediments consist mainly of quartz, chlorite, and illite, the correlations between arsenic concentration and abundances of K2O and MgO pinpoint illite and chlorite as the major arsenic hosts. The arsenic-total iron correlation reflects the role of chlorite along with the contribution from amorphous iron oxyhydroxide as indicated by arsenic extraction data. Organic matter is not the dominant arsenic host for low TOC content, low arsenic abundance extracted from it, and a relatively low R(2) of the arsenic-TOC correlation. The major constituent minerals in the sediments are the same as those of the upriver metapelites, establishing a sink-source relationship. Composition data from two deep groundwater samples near the sediment core show Eh values and As(V)/As(III) ratios of reducing environments and high arsenic, K, Mg, and Fe contents necessary for deriving arsenic from sediments by desorption from clay and dissolution of iron oxyhydroxide. Therefore, groundwater arsenic was mainly derived from groundwater-associated sediments with limited contributions from other sources, such as mud volcanoes. PMID:27343940

  20. The absorption and excretion of fluoride and arsenic in humans.

    PubMed

    Zheng, Yujian; Wu, Jiyao; Ng, Jack C; Wang, Guoquan; Lian, Wu

    2002-07-01

    The absorption and excretion of fluoride and arsenic were measured in a group of healthy volunteers given drinking water with naturally high concentration of fluoride (F 2.3 mg/l)(,) or high concentration of arsenic (As 0.15 mg/l), or high concentrations of both fluoride and arsenic (F 2.25 mg/l, As 0.23 mg/l and F 4.05 mg/l, As 0.58 mg/l), respectively. The results indicated that, for arsenic, the absorption rate, the proportion of urinary excretion and the biological-half-life did not show statistically significant differences between drinking water containing high arsenic alone and drinking water containing different levels of high arsenic and fluoride. Excretion and retention of arsenic were positively correlated to the total arsenic intake. Similar results were observed for fluoride. This suggests that there are different metabolic processes for arsenic and fluoride in respect to absorption and excretion; and no joint action can be attributed by these two elements. PMID:12076512

  1. COMMONALITIES IN METABOLISM OF ARSENICALS

    EPA Science Inventory

    Elucidating the pathway of inorganic arsenic metabolism shows that some of methylated arsenicals formed as intermediates and products are reactive and toxic species. Hence, methylated arsenicals likely mediate at least some of the toxic and carcinogenic effects associated with e...

  2. Emissions of air toxics from coal-fired boilers: Arsenic

    SciTech Connect

    Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

    1994-08-01

    Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

  3. Arsenic in Ground-Water Resources of the United States

    USGS Publications Warehouse

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  4. The global menace of arsenic and its conventional remediation - A critical review.

    PubMed

    Sarkar, Arpan; Paul, Biswajit

    2016-09-01

    Arsenic is a ubiquitous element found in the earth crust with a varying concentration in the earth soil and water. Arsenic has always been under the scanner due to its toxicity in human beings. Contamination of arsenic in drinking water, which generally finds its source from arsenic-containing aquifers; has severely threatened billions of people all over the world. Arsenic poisoning is worse in Bangladesh where As(III) is abundant in waters of tube wells. Natural occurrence of arsenic in groundwater could result from both, oxidative and reductive dissolution. Geothermally heated water has the potential to liberate arsenic from surrounding rocks. Inorganic arsenic has been found to have more toxicity than the organic forms of arsenic. MMA and DMA are now been considered as the organic arsenic compounds having the potential to impair DNA and that is why MMA and DMA are considered as carcinogens. Endless efforts of researchers have elucidated the source, behavior of arsenic in various parts of the environment, mechanism of toxicity and various remediation processes; although, there are lots of areas still to be addressed. In this article, attempts have been made to lay bare an overview of geochemistry, toxicity and current removal techniques of arsenic together. PMID:27239969

  5. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  6. ARSENIC REMOVAL USING ADSORPTION TECHNOLOGIES

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  7. ADSORPTION TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  8. ARSENIC AND OHIO UTILITIES

    EPA Science Inventory

    The presentation provides information on arsenic removal drinking water treatment systems that are likely to be used in Ohio for arsenic removal. Because most Ohio ground water contain significant amounts of iron, iron removal processes will play a major role in treating Ohio gro...

  9. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  10. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  11. An update on arsenic

    SciTech Connect

    Malachowski, M.E. )

    1990-09-01

    Arsenic poisoning is more than just a medical curiosity. Cases of acute and chronic intoxication continue to occur in the United States. Much is now known about the biochemical mechanisms of injury, which has led to a rational basis for therapy. Most importantly, however, the clinician must stay alert to correctly diagnose and treat cases of arsenic poisoning.23 references.

  12. Arsenic exposure and DNA methylation among elderly men

    PubMed Central

    Lambrou, Angeliki; Baccarelli, Andrea; Wright, Robert O.; Weisskopf, Marc; Bollati, Valentina; Amarasiriwardena, Chitra; Vokonas, Pantel; Schwartz, Joel

    2012-01-01

    BACKGROUND Arsenic exposure has been linked to epigenetic modifications such as DNA methylation in in vitro and animal studies. This association has also been explored in highly exposed human populations, but studies among populations environmentally exposed to low arsenic levels are lacking. METHODS We evaluated the association between exposure to arsenic, measured in toenails, and blood DNA methylation in Alu and Long Interspersed Nucleotide Element-1 (LINE-1) repetitive elements in elderly men environmentally exposed to low levels of arsenic. We also explored potential effect modification by plasma folate, cobalamin (vitamin B12), and pyridoxine (vitamin B6). The study population was 581 participants from the Normative Aging Study in Boston, of whom 434, 140, and 7 had 1, 2, and 3 visits, respectively, between 1999-2002 and 2006-2007. We used mixed-effects models and included interaction terms to assess potential effect modification by nutritional factors. RESULTS There was a trend of increasing Alu and decreasing LINE-1 DNA methylation as arsenic exposure increased. In subjects with plasma folate below the median (< 14.1 ng/ml), arsenic was positively associated with Alu DNA methylation (β=0.08 [95% confidence interval = 0.03 to 0.13] for one interquartile range [0.06μg/g] increase in arsenic) while a negative association was observed in subjects with plasma folate above the median (β=-0.08 [-0.17 to 0.01]). CONCLUSIONS We found an association between arsenic exposure and DNA methylation in Alu repetitive elements that varied by folate level. This suggests a potential role for nutritional factors in arsenic toxicity. PMID:22833016

  13. Acute arsenic intoxication from environmental arsenic exposure

    SciTech Connect

    Franzblau, A.; Lilis, R. )

    1989-11-01

    Reports of acute arsenic poisoning arising from environmental exposure are rare. Two cases of acute arsenic intoxication resulting from ingestion of contaminated well water are described. These patients experienced a variety of problems: acute gastrointestinal symptoms, central and peripheral neurotoxicity, bone marrow suppression, hepatic toxicity, and mild mucous membrane and cutaneous changes. Although located adjacent to an abandoned mine, the well water had been tested for microorganisms only and was found to be safe. Regulations for testing of water from private wells for fitness to drink are frequently nonexistent, or only mandate biologic tests for microorganisms. Well water, particularly in areas near mining activity, should be tested for metals.

  14. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  15. Insertion of (t)BuNC into thorium-phosphorus and thorium-arsenic bonds: phosphaazaallene and arsaazaallene moieties in f element chemistry.

    PubMed

    Behrle, Andrew C; Walensky, Justin R

    2016-06-14

    The reactivity of thorium-phosphido and thorium-arsenido bonds was probed using tert-butyl isocyanide, (t)BuNC. Reaction of (C5Me5)2Th[E(H)R]2, E = P, As; R = 2,4,6-(i)Pr3C6H2, 2,4,6-Me3C6H2 with (t)BuNC affords the first phosphaazaallene and arsaazaallene moieties with an f-element. PMID:27122120

  16. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  17. Environmental biochemistry of arsenic

    SciTech Connect

    Tamaki, S.; Frankenberger, W.T. Jr. )

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  18. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost. PMID:12696647

  19. Effects of Soil Composition and Mineralogy on the Bioaccessibility of Arsenic from Tailings and Soil in Gold Mine Districts of Nova Scotia

    SciTech Connect

    Meunier, Louise; Walker, Stephen R.; Wragg, Joanna; Parsons, Michael B.; Koch, Iris; Jamieson, Heather E.; Reimer, Kenneth J.

    2010-10-20

    Bioaccessibility tests and mineralogical analyses were performed on arsenic-contaminated tailings and soils from gold mine districts of Nova Scotia, Canada, to examine the links between soil composition, mineralogy, and arsenic bioaccessibility. Arsenic bioaccessibility ranges from 0.1% to 49%. A weak correlation was observed between total and bioaccessible arsenic concentrations, and the arsenic bioaccessibility was not correlated with other elements. Bulk X-ray absorption near-edge structure analysis shows arsenic in these near-surface samples is mainly in the pentavalent form, indicating that most of the arsenopyrite (As{sup 1-}) originally present in the tailings and soils has been oxidized during weathering reactions. Detailed mineralogical analyses of individual samples have identified up to seven arsenic species, the relative proportions of which appear to affect arsenic bioaccessibility. The highest arsenic bioaccessibility (up to 49%) is associated with the presence of calcium-iron arsenate. Samples containing arsenic predominantly as arsenopyrite or scorodite have the lowest bioaccessibility (<1%). Other arsenic species identified (predominantly amorphous iron arsenates and arsenic-bearing iron(oxy)hydroxides) are associated with intermediate bioaccessibility (1 to 10%). The presence of a more soluble arsenic phase, even at low concentrations, results in increased arsenic bioaccessibility from the mixed arsenic phases associated with tailings and mine-impacted soils.

  20. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  1. USEPA Arsenic Demonstration Program

    EPA Science Inventory

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  2. REDOX state analysis of platinoid elements in simulated high-level radioactive waste glass by synchrotron radiation based EXAFS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiro; Shiwaku, Hideaki; Nakada, Masami; Komamine, Satoshi; Ochi, Eiji; Akabori, Mitsuo

    2016-04-01

    Extended X-ray Absorption Fine Structure (EXAFS) analyses were performed to evaluate REDOX (REDuction and OXidation) state of platinoid elements in simulated high-level nuclear waste glass samples prepared under different conditions of temperature and atmosphere. At first, EXAFS functions were compared with those of standard materials such as RuO2. Then structural parameters were obtained from a curve fitting analysis. In addition, a fitting analysis used a linear combination of the two standard EXAFS functions of a given elements metal and oxide was applied to determine ratio of metal/oxide in the simulated glass. The redox state of Ru was successfully evaluated from the linear combination fitting results of EXAFS functions. The ratio of metal increased at more reducing atmosphere and at higher temperatures. Chemical form of rhodium oxide in the simulated glass samples was RhO2 unlike expected Rh2O3. It can be estimated rhodium behaves according with ruthenium when the chemical form is oxide.

  3. Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in northern peninsular Malaysia.

    PubMed

    Muhammad, Bashir G; Jaafar, Mohammad Suhaimi; Abdul Rahman, Azhar; Ingawa, Farouk Abdulrasheed

    2012-08-01

    Soil serves as a major reservoir for contaminants as it posseses an ability to bind various chemicals together. To safeguard the members of the public from an unwanted exposure, studies were conducted on the sediments and soil from water bodies that form the major sources of domestic water supply in northern peninsular Malaysia for their trace element concentration levels. Neutron Activation Analysis, using Nigeria Research Reactor-1 (NIRR-1) located at the Centre for Energy Research and Training, Zaria, Nigeria was employed as the analytical tool. The elements identified in major quantities include Na, K, and Fe while As, Br, Cr, U, Th, Eu, Cs, Co, La, Sm, Yb, Sc, Zn, Rb, Ba, Lu, Hf, Ta, and Sb were also identified in trace quantities. Gamma spectroscopy was also employed to analyze some soil samples from the same area. The results indicated safe levels in terms of the radium equivalent activity, external hazard index as well as the mean external exposure dose rates from the soil. The overall screening of the domestic water sources with relatively high heavy metals concentration values in sediments and high activity concentration values in soil is strongly recommended as their accumulation overtime as a consequence of leaching into the water may be of health concern to the members of the public. PMID:21901308

  4. Radioactive mineral springs in Delta County, Colorado

    USGS Publications Warehouse

    Cadigan, Robert A.; Rosholt, John N.; Felmlee, J. Karen

    1976-01-01

    The system of springs in Delta County, Colo., contains geochemical clues to the nature and location of buried uranium-mineralized rock. The springs, which occur along the Gunnison River and a principal tributary between Delta and Paonia, are regarded as evidence of a still-functioning hydrothermal system. Associated with the springs are hydrogen sulfide and sulfur dioxide gas seeps, carbon dioxide gas-powered geysers, thick travertine deposits including radioactive travertine, and a flowing warm-water (41?C) radioactive well. Geochemical study of the springs is based on surface observations, on-site water-property measurements, and sampling of water, travertine, soft precipitates, and mud. The spring deposits are mostly carbonates, sulfates, sulfides, and chlorides that locally contain notable amounts of some elements, such as arsenic, barium, lithium, and radium. Samples from five localities have somewhat different trace element assemblages even though they are related to the same hydrothermal system. All the spring waters but one are dominated by sodium chloride or sodium bicarbonate. The exception is an acid sulfate water with a pH of 2.9, which contains high concentrations of aluminum and iron. Most of the detectable radioactivity is due to the presence of radium-226, a uranium daughter product, but at least one spring precipitate contains abundant radium-228, a thorium daughter product. The 5:1 ratio of radium-228 to radium-226 suggests the proximity of a vein-type deposit as a source for the radium. The proposed locus of a thorium-uranium mineral deposit is believed to lie in the vicinity of Paonia, Colo. Exact direction and depth are not determinable from data now available.

  5. Bioaccessibility of lead and arsenic in traditional Indian medicines

    PubMed Central

    Koch, Iris; Moriarty, Maeve; House, Kim; Sui, Jie; Cullen, William R.; Saper, Robert B.; Reimer, Kenneth J.

    2011-01-01

    Arsenic and lead have been found in a number of traditional Ayurvedic medicines, and the practice of Rasa Shastra (combining herbs with metals, minerals and gems), or plant ingredients that contain these elements, may be possible sources. To obtain an estimate of arsenic and lead solubility in the human gastrointestinal tract, bioaccessibility of the two elements was measured in 42 medicines, using a physiologically-based extraction test. The test consisted of a gastric phase at pH 1.8 containing organic acids, pepsin and salt, followed by an intestinal phase, at pH 7 and containing bile and pancreatin. Arsenic speciation was measured in a subset of samples that had sufficiently high arsenic concentrations for the X-ray absorption near edge structure analysis used. Bioaccessible lead was found in 76% of samples, with a large range of bioaccessibility results, but only 29% of samples had bioaccessible arsenic. Lead bioaccessibility was high (close to 100%) in a medicine (Mahayograj Guggulu) that had been compounded with bhasmas (calcined minerals), including naga (lead) bhasma. For the samples in which arsenic speciation was measured, bioaccessible arsenic was correlated with the sum of As(V)–O and As(III)–O and negatively correlated with As–S. These results suggest that the bioaccessible species in the samples had been oxidized from assumed As–S raw medicinal ingredients (realgar, As4S4, added to naga (lead) bhasma and As(III)–S species in plants). Consumption at recommended doses of all medicines with bioaccessibile lead or arsenic would lead to the exceedance of at least one standard for acceptable daily intake of toxic elements. PMID:21864885

  6. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  7. Airborne arsenic exposure and excretion of methylated arsenic compounds.

    PubMed Central

    Smith, T J; Crecelius, E A; Reading, J C

    1977-01-01

    First void urine samples were collected from copper smelter workers exposed to inorganic arsenic and from unexposed controls. Arsenic compounds (As (III), As (V), methylarsonic acid and dimethylarsinic acid) in these samples were analyzed by selective volatilization as arsines with determination of arsenic by plasma excitation emission spectrometry. On the day preceding the urine sample collection a breathing zone measurement was made of respirable arsenic particulates for each subject. It was found that all of the subjects, including the controls excreted arsenic primarily as methylated species. Approximately 50% of the total arsenic was excreted as dimethylarsinic acid and 20% as methylarsonic acid. Slight differences in the proportion of various arsenic compounds were observed with varying levels of inorganic arsenic exposure. Amounts of arsenic species were all closely correlated with each other and with exposure. Irrespirable particulate exposures were measured on a subset of high exposure workers. Irrespirable arsenic was found to be more closely correlated with excretion of arsenic compounds than was respirable arsenic. PMID:908318

  8. Effects of arsenic cell metabolism and cell proliferation: cytogenetic and biochemical studies.

    PubMed Central

    Petres, J; Baron, D; Hagedorn, M

    1977-01-01

    Chromosome analysis of lymphocytes from patients who had been exposed to arsenic showed frequent structural and numerical aberrations, even with an interval of decades since the last exposure. The in vitro addition of sodium arsenate induced the same chromosome changes--even to extreme of chromosome pulverizations--upon lymphocyte cultures from healthy subjects. Radioactive incorporation studies showed that arsenate was able to inhibit dose-dependently the incorporation of radioactively labeled nucleotide in RNA and DNA. Beyond that, arsenic blocked the cells in the S- and G2-phase. A general explanation for the inhibitory effect of inorganic arsenic on cell metabolism is the known strong affinity of arsenic to enzymes, especially to those containing sulfhydryl groups. Images FIGURE 2. a FIGURE 2. b FIGURE 2. c FIGURE 3. a FIGURE 3. b FIGURE 4. PMID:908303

  9. Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements.

    PubMed

    Martin, Rachael; Dowling, Kim; Pearce, Dora C; Florentine, Singarayer; Bennett, John W; Stopic, Attila

    2016-10-01

    Abandoned historical gold mining wastes often exist as geographically extensive, unremediated, and poorly contained deposits that contain elevated levels of As and other potentially toxic elements (PTEs). One of the key variables governing human exposure to PTEs in mine waste is particle size. By applying a size-resolved approach to mine waste characterisation, this study reports on the proportions of mine waste relevant to human exposure and mobility, as well as their corresponding PTE concentrations, in four distinct historical mine wastes from the gold province in Central Victoria, Australia. To the best of our knowledge, such a detailed investigation and comparison of historical mining wastes has not been conducted in this mining-affected region. Mass distribution analysis revealed notable proportions of waste material in the readily ingestible size fraction (≤250 µm; 36.1-75.6 %) and the dust size fraction (≤100 µm; 5.9-45.6 %), suggesting a high potential for human exposure and dust mobilisation. Common to all mine waste types were statistically significant inverse trends between particle size and levels of As and Zn. Enrichment of As in the finest investigated size fraction (≤53 µm) is of particular concern as these particles are highly susceptible to long-distance atmospheric transport. Human populations that reside in the prevailing wind direction from a mine waste deposit may be at risk of As exposure via inhalation and/or ingestion pathways. Enrichment of PTEs in the finer size fractions indicates that human health risk assessments based on bulk contaminant concentrations may underestimate potential exposure intensities. PMID:26537592

  10. A broad view of arsenic.

    PubMed

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  11. Did nature also choose arsenic?

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, Felisa; Davies, Paul C. W.; Anbar, Ariel D.

    2009-04-01

    All known life requires phosphorus (P) in the form of inorganic phosphate (PO43- or Pi) and phosphate-containing organic molecules. Pi serves as the backbone of the nucleic acids that constitute genetic material and as the major repository of chemical energy for metabolism in polyphosphate bonds. Arsenic (As) lies directly below P on the periodic table and so the two elements share many chemical properties, although their chemistries are sufficiently dissimilar that As cannot directly replace P in modern biochemistry. Arsenic is toxic because As and P are similar enough that organisms attempt this substitution. We hypothesize that ancient biochemical systems, analogous to but distinct from those known today, could have utilized arsenate in the equivalent biological role as phosphate. Organisms utilizing such ‘weird life’ biochemical pathways may have supported a ‘shadow biosphere’ at the time of the origin and early evolution of life on Earth or on other planets. Such organisms may even persist on Earth today, undetected, in unusual niches.

  12. Arsenic-Containing Phosphatidylcholines: A New Group of Arsenolipids Discovered in Herring Caviar.

    PubMed

    Viczek, Sandra A; Jensen, Kenneth B; Francesconi, Kevin A

    2016-04-18

    A new group of arsenolipids based on cell-membrane phosphatidylcholines has been discovered in herring caviar (fish roe). A combination of HPLC with elemental and molecular mass spectrometry was used to identify five arsenic-containing phosphatidylcholines; the same technique applied to salmon caviar identified an arsenic-containing phosphatidylethanolamine. The arsenic group in these membrane lipids might impart particular properties to the molecules not displayed by their non-arsenic analogues. Additionally, the new compounds have human health implications according to recent results showing high cytotoxicity for some arsenolipids. PMID:26996517

  13. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  14. Crop Uptake of Arsenic from Flooded Paddy Fields in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Mohr, K.; Boye, K.

    2014-12-01

    Arsenic is found naturally in the soils in the Mekong delta in Vietnam and Cambodia. It originates from erosion in the Himalayas. When similar levels of arsenic are present in well aerated soil, it is not dangerous, because it is strongly bound to soil particles and not readily plant available. Arsenic is released when the soil is saturated with water, and therefore contaminates crops grown in flooded fields. This results in people being exposed to unsafe levels of arsenic from their food, such as rice and lotus, which are normally grown under flooded conditions. Rice is a staple food in these regions, so the transfer of arsenic from soil, to water, and ultimately into the grain, poses a threat to human health. We have conducted a limited, preliminary field survey of arsenic levels in soil, flood water, and crops from distinctly different paddy fields in the lower Mekong delta in Vietnam and Cambodia. The purpose of the study was to identify soils and crops (or specific plant parts) that are especially prone to arsenic transfer from soil to crop, and vice versa (i.e. arsenic uptake is prevented in spite of being present in the soil). In addition to arsenic concentration in soil, plant and water, we are examining other elements, such as carbon, nitrogen, sulfur and iron, which give us clues about what chemical and microbial processes that control the overall arsenic uptake.

  15. ADSORPTION MEDIA FOR ARSENIC REMOVAL

    EPA Science Inventory

    Presentation will discuss the use of adsorptive media for the removal of arsenic from drinking water. Presentation is a fundamental discussion on the use of adsorptive media for arsenic removal and includes information from several EPA field studies on removal of arsenic from dr...

  16. PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC

    EPA Science Inventory

    PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC.

    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder and kidney. In contrast,
    there is no accepted experimental animal model of inorganic arsenic carcinogenesis.
    Proposed mechanisms/modes of action for a...

  17. ARSENIC URINARY METABOLITES: BIOMARKER STUDY

    EPA Science Inventory

    A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...

  18. Arsenic in the soil-natural water-plant system of the Altai region

    NASA Astrophysics Data System (ADS)

    Puzanov, A. V.; Baboshkina, S. V.

    2009-09-01

    The high natural content of total arsenic in the soil cover of the Altai region has been revealed. Natural waters and plants are distinguished by low arsenic concentrations. The intensity of the biogenic and water migration of arsenic does not depend on its total content in the soil. The accumulative distribution of arsenic in the mountainous forest soils of Altai is mainly due to biogenic processes, while in the steppe soils, it is specified by the evaporative concentration. Favorable conditions for arsenic migration are observed in the southeastern Altai during the periods of seasonal moistening. The arsenic content in the soils and plants of technogenic landscapes in the Altai region considerably exceeds the provisional permissible concentrations and the background concentrations of this element.

  19. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    PubMed

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature. PMID:24598788

  20. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis. PMID:26488499

  1. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  2. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    PubMed

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species. PMID:27488197

  3. Arsenic-mediated nephrotoxicity.

    PubMed

    Robles-Osorio, Ma Ludivina; Sabath-Silva, Elizabeth; Sabath, Ernesto

    2015-05-01

    Chronic kidney disease (CKD) is an important global health problem that affects 8-15% of the population according to epidemiological studies done in different countries. Essential to prevention is the knowledge of the environmental factors associated with this disease, and heavy metals such as lead and cadmium are clearly associated with kidney injury and CKD progression. Arsenic is one of the most abundant contaminants in water and soil, and many epidemiological studies have found an association between arsenic and type 2 diabetes mellitus, hypertension and cancer; however, there is a scarcity of epidemiological studies about its association with kidney disease, and the evidence linking urinary arsenic excretion with CKD, higher urinary excretion of low molecular proteins, albuminuria or other markers of renal in injury is still limited, and more studies are necessary to characterize the role of arsenic on renal injury and CKD progression. Global efforts to reduce arsenic exposure remain important and research is also needed to determine whether specific therapies are beneficial in susceptible populations. PMID:25703706

  4. Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon

    NASA Astrophysics Data System (ADS)

    Seyfferth, A.; Gill, R.; Penido, E.

    2014-12-01

    Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.

  5. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  6. Complexity of Arsenic Biogeochemistry in Surface Water Systems as Influenced by a Hydrologic Event

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2006-12-01

    The arsenic cycle in oxic, surface water environments is often controlled by oxy-hydroxide minerals through sorption/desorption and precipitation/dissolution reactions. However, there are numerous instances where these minerals are found in low concentrations and/or are minimally reactive with respect to aqueous arsenic species. The presence of other anions may competitively inhibit arsenic sorption to oxy-hydroxide surfaces, thus increasing the bioavailability of arsenic and the potential toxic impacts. Microbe-mediated reactions can further impact arsenic fate and transport through accumulation and biotransformation. Arsenic biotransformation via reduction and/or methylation may result in an increased proportion of thermodynamically unfavorable arsenic species such as arsenite and methylated arsenicals in oxic surface waters. The reduced arsenic species, arsenite, is considered more mobile and toxic than the oxic species, arsenate while methylated arsenicals are often considered less toxic species. The complexity of these biogeochemical characteristics highlights the importance of studying arsenic in surface water environments. Particulate and aqueous phase metals (Fe, Mn, Al) and anions (As, P, S) were measured in surface water samples collected from the outflow creek of an arsenic-contaminated lake at high and low flow rates. Arsenic speciation, quantified via HPLC-ICP-MS, was dominated by methylated arsenicals at concentrations up to 82.7 μg/l. The common oxide-forming elements, Fe, Mn and Al were measured via ICP-AES at concentrations up to 2.4 mg/l, 0.88 mg/l and 3.3 mg/l, respectively. However, arsenic was not associated with the particulate phase mineralogy, being approximately 100% in the aqueous (< 0.2 μm ) phase, indicating high arsenic bioavailability. High alkalinity, phosphorous and sulfur concentrations up to 516 mgHCO3/meq, 2.0mg/l and 50 mg/l, respectively, likely out-competed arsenic for sorption to these oxide mineral surfaces. Geochemical

  7. Arsenics as bioenergetic substrates.

    PubMed

    van Lis, Robert; Nitschke, Wolfgang; Duval, Simon; Schoepp-Cothenet, Barbara

    2013-02-01

    Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:22982475

  8. Arsenic levels in Oregon waters.

    PubMed Central

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-01-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed. PMID:908291

  9. Environmental Source of Arsenic Exposure

    PubMed Central

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  10. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  11. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  12. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  13. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  14. Arsenic and Selenium

    NASA Astrophysics Data System (ADS)

    Plant, J. A.; Kinniburgh, D. G.; Smedley, P. L.; Fordyce, F. M.; Klinck, B. A.

    2003-12-01

    Arsenic (As) and selenium (Se) have become increasingly important in environmental geochemistry because of their significance to human health. Their concentrations vary markedly in the environment, partly in relation to geology and partly as a result of human activity. Some of the contamination evident today probably dates back to the first settled civilizations which used metals.Arsenic is in group 15 of the periodic table (Table 1) and is usually described as a metalloid. It has only one stable isotope, 75As. It can exist in the -III, -I, 0, III, and V oxidation states (Table 2).

  15. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  16. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  17. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    EPA Science Inventory

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  18. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 μg/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions. PMID:25252363

  19. Cancer in Experimental Animals Exposed to Arsenic and Arsenic Compounds

    PubMed Central

    Tokar, Erik J.; Benbrahim-Tallaa, Lamia; Ward, Jerold M.; Lunn, Ruth; Sams, Reeder L.; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic is a ubiquitous environmental contaminant that has long been considered a human carcinogen. Recent studies raise further concern about the metalloid as a major, naturally occurring carcinogen in the environment. However, during this same period it has proven difficult to provide experimental evidence of the carcinogenicity of inorganic arsenic in laboratory animals and, until recently, there was considered to be a lack of clear evidence for carcinogenicity of any arsenical in animals. More recent work with arsenical methylation metabolites and early life exposures to inorganic arsenic has now provided evidence of carcinogenicity in rodents. Given that tens of millions of people worldwide are exposed to potentially unhealthy levels of environmental arsenic, in vivo rodent models of arsenic carcinogenesis are a clear necessity for resolving critical issues, like mechanisms of action, target tissue specificity, and sensitive subpopulations, and in developing strategies to reduce cancers in exposed human populations. This work reviews the available rodent studies considered relevant to carcinogenic assessment of arsenicals, taking advantage of the most recent review by the International Agency for Research on Cancer (IARC) that has not yet appeared as a full monograph but has been summarized (IARC 2009). Many valid studies show that arsenic can interact with other carcinogens/agents to enhance oncogenesis, and help elucidate mechanisms, and these too are summarized in this review. Finally, this body of rodent work is discussed in light of its impact on mechanisms and in the context of the persistent argument that arsenic is not carcinogenic in animals. PMID:20812815

  20. Movement and distribution of arsenic in the Aberjona watershed.

    PubMed Central

    Hemond, H F

    1995-01-01

    The distribution and movement of arsenic was investigated on the Aberjona watershed in eastern Massachusetts for the purpose of identifying where and by what processes present and past human exposures to this element could have occurred. It was found that although most of the arsenic was originally released in the headwaters of the watershed, extensive migration had occurred, and the potential for human exposure existed far from designated hazardous waste sites. Both surface water and groundwater were found to be important transport pathways; arsenic moved between these two media at several locations in the watershed, with hydrology and concomitant redox, sorption, and alkylation processes determining the observed patterns of arsenic movement. These findings demonstrate that risk assessments or remedial investigations restricted to designated sites or properties in a watershed may yield both an inaccurate picture of the overall risks presented by a chemical and a less-than-optimum focus for remedial efforts. Since total recovery of the arsenic on this watershed is probably not feasible, cost-effective management will also depend on an adequate understanding of arsenic biogeochemistry and hydrologic transport processes at the watershed scale. Because the Aberjona Watershed is typical of many urban, industrialized areas, these results suggest that the whole watershed often defines the appropriate unit for investigation of chemical contamination in the environment. PMID:7621797

  1. Life Redefined: Microbes Built with Arsenic

    SciTech Connect

    Webb, Sam

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  2. A survey of arsenic, manganese, boron, thorium, and other toxic metals in the groundwater of a West Bengal, India neighbourhood.

    PubMed

    Bacquart, Thomas; Bradshaw, Kelly; Frisbie, Seth; Mitchell, Erika; Springston, George; Defelice, Jeffrey; Dustin, Hannah; Sarkar, Bibudhendra

    2012-07-01

    Around 150 million people are at risk from arsenic-contaminated groundwater in India and Bangladesh. Multiple metal analysis in Bangladesh has found other toxic elements above the World Health Organization (WHO) health-based drinking water guidelines which significantly increases the number of people at risk due to drinking groundwater. In this study, drinking water samples from the Bongaon area (North 24 Parganas district, West Bengal, India) were analyzed for multiple metal contamination in order to evaluate groundwater quality on the neighbourhood scale. Each sample was analyzed for arsenic (As), boron (B), barium (Ba), chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and uranium (U). Arsenic was found above the WHO health-based drinking water guideline in 50% of these tubewells. Mn and B were found at significant concentrations in 19% and 6% of these tubewells, respectively. The maps of As, Mn, and B concentrations suggest that approximately 75% of this area has no safe tubewells. The concentrations of As, Mn, B, and many other toxic elements are independent of each other. The concentrations of Pb and U were not found above WHO health-based drinking water guidelines but they were statistically related to each other (p-value = 0.001). An analysis of selected isotopes in the Uranium, Actinium, and Thorium Radioactive Decay Series revealed the presence of thorium (Th) in 31% of these tubewells. This discovery of Th, which does not have a WHO health-based drinking water guideline, is a potential public health challenge. In sum, the widespread presence and independent distribution of other metals besides As must be taken into consideration for drinking water remediation strategies involving well switching or home-scale water treatment. PMID:22491819

  3. Bengal arsenic, an archive of Himalaya orogeny and paleohydrology.

    PubMed

    Guillot, Stephane; Charlet, Laurent

    2007-10-01

    Holocene groundwater in many districts of the West Bengal and parts of Bangladesh are enriched in arsenic enhancing poisoning effect on humans. One of the main problems to depict the source of arsenic is that this element is very mobile and can be easily removed and recombined from the source during alteration processes, transport and mobilization in sediments. The Ganga-Brahmaputra river system mainly contributed to the buildup of the Bengal fan, which is considered one of the largest modern deltas of the world, then the possible source of the As has probably to be search within the Himalayan belt. We propose that the Indus-Tsangpo suture zone dominated by arc-related rocks and more particularly by large volume of serpentinites enriched in arsenic could be one of the primary source of arsenic. The fact that, the present day arsenic concentration in the main Himalayan river, and particularly the Siang-Brahmaputra river system is not so high as expected can be explained by strong aridic conditions present day prevailing in the Indus-Suture zone and do not favored the weathering of serpentinites into As rich-smectite and Fe-hydroxydes. For the Ganga basin, the original source of arsenic has to be search in the weathering of arc related rocks in the Indus-Tsangpo suture zone followed by its intermediate storage into the sediments of the Siwalik foreland basin, playing the role of arsenic reservoir from Miocene to Pleistocene. Intense tectonic activity in the front of the Himalayan belt associated with high rainfall conditions during the Holocene allowed the arsenic to be remobilized and transported toward the Bay of Bengal. PMID:17952779

  4. Groundwater Arsenic Contamination in Kopruoren Basin (Kutahya), Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, S.; Dokuz, U.; Celik, M.; Cheng, Z.

    2012-12-01

    Groundwater quality in the Kopruoren Basin located to the west of Kutahya city in western Anatolia was investigated. Kopruoren Basin is about 275 km2 with about 6,000 residents, but the surface and ground-water quality in this basin impacts a much larger population since the area is located upstream of Kutahya and Eskisehir plains. Groundwater occurs under confined conditions in the limestones of Pliocene units. The only silver deposit of Turkey is developed in the metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gumuskoy. The amount of silver manufactured annually comprises about 1% of the World's Silver Production. The cyanide-rich wastes of the Eti Gumus silver plant is stored in waste pools. There have been debates about the safety of this facility after a major collapse occurred in one of the pools in May 2011. In this study samples from 31 wells and 21 springs were collected in July and October 2011 and May 2012. The groundwaters are of Ca-Mg-HCO3 type, with arsenic, zinc and antimony occurring at high concentrations. Dissolved arsenic concentrations are as high as 48 ug/L in springs and 734 ug/L in well water. Arsenic in 57% of the springs and 68% of the wells exceeded the WHO guideline value (10 ug/L). Natural sources of arsenic in the area include the dissolution of arsenic-rich minerals such as realgar and orpiment associated with the mineral deposits in the southern part of the study area. In the northern part, arsenic is enriched due to the dissolution of arsenic-bearing coal deposits. Besides these natural sources of contamination, the silver mining activity could be an important anthropogenic source. The leakage of cyanide and arsenic, together with other trace elements to the environment from the waste pools, will continue to poison the environment if necessary precautions are not taken immediately.

  5. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution. PMID:21692537

  6. Invertebrates control metals and arsenic sequestration as ecosystem engineers.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Mkandawire, Martin; Dudel, E Gert

    2010-03-01

    Organic sediments are known to be a significant sink of inorganic elements in polluted freshwater ecosystems. Hence, we investigated the role of invertebrate shredders (the freshwater shrimp Gammarus pulex L.) in metal and arsenic enrichment into organic partitions of sediments in a wetland stream at former uranium mining site. Metal and metalloid content in leaf litter increased significantly during decomposition, while at the same time the carbon content decreased. During decomposition, G. pulex as a ecosystem engineer facilitated significantly the enrichment of magnesium (250%), manganese (560%), cobalt (310%), copper (200%), zinc (43%), arsenic (670%), cadmium (100%) and lead (1340%) into small particle sizes. The enrichments occur under very high concentrations of dissolved organic carbon. Small particles have high surface area that results in high biofilm development. Further, the highest amounts of elements were observed in biofilms. Therefore, invertebrate shredder like G. pulex can enhance retention of large amounts of metal and arsenic in wetlands. PMID:20132960

  7. EPA STUDIES OF ARSENIC SPECIATION IN SEAFOOD MATRICES WITH AN EMPHASIS ON EXTRACTABILITY AND ARSENOSUGAR INTEGRITY

    EPA Science Inventory

    The anthropogenic and geological occurrence of arsenic (As) results in human exposure to a potentially carcinogenic element. The two predominant pathways to As exposure are drinking water (DW) and dietary ingestion (DI). DW exposures are almost exclusively toxic inorganic As. ...

  8. ARSENIC TREATMENT OPTIONS

    EPA Science Inventory

    The PPT presentation will provide information on the drinking water treatment options for small utilities to remove arsenic from ground water. The discussion will include information on the EPA BAT listed processes and on some of the newer technologies, such as the iron based ad...

  9. Ingestion and excretion of arsenic compounds present in edible brown algae, Hijikia fusiforme, by mice.

    PubMed

    Ichikawa, Satoshi; Nozawa, Shihoko; Hanaoka, Ken'ichi; Kaise, Toshikazu

    2010-02-01

    The element arsenic is a carcinogen and toxic for humans and other living organisms. Some seaweeds contain high amounts of inorganic arsenic (iAs). In particular, Hijikia fusiforme has a high iAs content of approximately 50%. In this study, we examined the absorption, metabolism, excretion, and accumulation of arsenic compounds in mice after the administration of Hijiki. The single-dose experiment, wherein a single dose of cooked Hijiki was administered to the mice, revealed that the urinary and fecal excretion of arsenic compounds was the highest on the first day of dosing, and it became clear that 66-92% of arsenic was excreted within 3 days after administration of the first dose. The repeated-dose experiment, wherein repeated doses of cooked or dried Hijiki were administered to the mice, arsenic was detected in all the tissues, but only approximately 5% of the administered dose of arsenic was detected as residual arsenic. These results suggest that the arsenic present in cooked Hijiki is accumulated in very small amounts in mice. PMID:19808076

  10. Arsenic Content in American Wine.

    PubMed

    Wilson, Denise

    2015-10-01

    Recent studies that have investigated arsenic content in juice, rice, milk, broth (beef and chicken), and other foods have stimulated an interest in understanding how prevalent arsenic contamination is in the U.S. food and beverage supply. The study described here focused on quantifying arsenic levels in wine. A total of 65 representative wines from the top four wine-producing states in the U.S. were analyzed for arsenic content. All samples contained arsenic levels that exceeded the U.S. Environmental Protection Agency (U.S. EPA) exposure limit for drinking water of 10 parts per billion (ppb) and all samples contained inorganic arsenic. The average arsenic detected among all samples studied was 23.3 ppb. Lead, a common co-contaminant to arsenic, was detected in 58% of samples tested, but only 5% exceeded the U.S. EPA exposure limit for drinking water of 15 ppb. Arsenic levels in American wines exceeded those found in other studies involving water, bottled water, apple juice, apple juice blend, milk, rice syrup, and other beverages. When taken in the context of consumption patterns in the U.S., the pervasive presence of arsenic in wine can pose a potential health risk to regular adult wine drinkers. PMID:26591333

  11. Arsenic in shrimp from Kuwait

    SciTech Connect

    Bou-Olayan, A.H.; Al-Yakoob, S.; Al-Hossaini, M.

    1995-04-01

    Arsenic is ubiquitous in the environment and can accumulate in food via contaminated soil, water or air. It enters the food chain through dry and wet atmospheric deposition. Combustion of oil and coal, use of arsenical fertilizers and pesticides and smelting of ores contributes significantly to the natural background of arsenic in soils and sediments. The metal can be transferred from soil to man through plants. In spite of variation in acute, subacute, and chronic toxic effects to plants and animals, evidence of nutritional essentiality of arsenic for rats, goats, and guinea pigs has been suggested, but has not been confirmed for humans. Adverse toxic effects of arsenic as well as its widespread distribution in the environment raises concern about levels of arsenic in man`s diet. Higher levels of arsenic in the diet can result in a higher accumulation rate. Arsenic levels in marine organisms are influenced by species differences, size of organism, and human activities. Bottom dwellers such as shrimp, crab, and lobster accumulate more arsenic than fish due to their frequent contact with bottom sediments. Shrimp constitute approximately 30% of mean total seafood consumption in Kuwait. This study was designed to determine the accumulation of arsenic in the commercially important jinga shrimp (Metapenaeus affinis) and grooved tiger prawn (Penaeus semisulcatus). 13 refs., 3 figs., 1 tab.

  12. RESULTS FROM ANALYSIS OF THE FIRST AND SECOND STRIP EFFLUENT COALESCER ELEMENTS FROM RADIOACTIVE OPERATIONS OF THE MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect

    Peters, T.; Fondeur, F.; Fink, S.

    2011-06-28

    The coalescer elements for the Strip Effluent (SE) acid within the Modular Caustic-Side Solvent Extraction Unit (MCU) experienced elevated differential pressure drop during radioactive operations. Following the end of operations for the first Macrobatch campaign and soon after start of the second Macrobatch campaign, personnel removed the coalescer media and provided to Savannah River National Laboratory (SRNL) for diagnostic investigation of the causes of reduced flow. This report summarizes those studies. Two Strip Effluent (SE) coalescers were delivered to the Savannah River National Laboratory (SRNL). One was removed from the Modular Caustic-Side Solvent Extraction Unit (MCU) between processing of Macrobatch 1 and 2 (coalescer 'Alpha'), and the second was removed from MCU after processing of {approx}24,000 gallons of salt solution (coalescer 'Beta'). Both coalescers underwent the same general strip acid flush program to reduce the dose and were delivered to SRNL for analysis of potential occluding solids. Analysis of Coalescer Alpha indicates the presence of aluminum hydroxide solids and aluminosilicate solids, while analysis of Coalescer Beta indicates the presence of aluminum hydroxide solids, but no aluminosilicates. Leaching studies on sections of both coalescers were performed. The results indicate that the coalescers had different amounts of solids present on them at the time of removal. Finally, samples of free liquids retrieved from both coalescers indicate no excessive amounts of CSSX solvent present. Given the strip acid flushing that occurred in the SE coalescers, the solids we detected on the coalescers are probably indicative of a larger quantity of these solids present before the strip acid flushing. Under this scenario, the excessive pressure drops are due to the solids and not from organic fouling.

  13. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  14. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    SciTech Connect

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP

  15. Arsenic sequestration by ferric iron plaque on cattail roots.

    PubMed

    Blute, Nicole Keon; Brabander, Daniel J; Hemond, Harold F; Sutton, Stephen R; Newville, Matthew G; Rivers, Mark L

    2004-11-15

    Typha latifolia (cattail) sequesters arsenic within predominantlyferric iron root coatings, thus decreasing mobility of this toxic element in wetland sediments. Element-specific XRF microtomographic imaging illustrated a high spatial correlation between iron and arsenic in root plaques, with little arsenic in the interior of the roots. XANES analyses demonstrated that the plaque was predominantly ferric iron and contained approximately 20% As(III) and 80% As(V), which is significant because the two oxidation states form species that differ in toxicity and mobility. For the first time, spatial distribution maps of As oxidation states were developed, indicating that As(III) and As(V) are both fairly heterogeneous throughoutthe plaque. Chemical extractions showed that As was strongly adsorbed in the plaque rather than coprecipitated. Iron and arsenic concentrations ranged from 0.03 to 0.8 g Fe g(-1) wet plaque and 30 to 1200 microg As g(-1) wet plaque, consistent with a mechanism of As adsorption onto Fe(III) oxyhydroxide plaque. Because this mechanism decreases the concentrations of both As(III) and As(V) in groundwater, we propose that disruption of vegetation could increase the concentrations of mobile arsenic. PMID:15573609

  16. Mobilization of Arsenic in Groundwater of Holocene Delta, Indian Segment

    NASA Astrophysics Data System (ADS)

    Chatterjee, D.

    2007-12-01

    often enriched with DOC ( range- 1.2- 7.0 mg/L) where as deep aquifers ( 100- 304 m ) are relatively containing low amount of DOC ( 0.4- 1.9 mg/L). This reflects the influence of local processes at shallow depths where oxidative as well as microbial degeneration of carbon sink is playing crucial role in arsenic mobilization. This also suggests that the break down of organic matter is the principal process in the shallow reducing aquifers with high/low arsenic along with high / low - coupled redox sensitive species and DOC. The presence of DOC in shallow aquifers also indicates that organic matter is relatively young and more reactive. High PCO2 values, relatively high redox sensitive elements, low Eh and absence of DO are the hydrogeochemical fingerprints of the BDP shallow aquifers. Delta building processes are also important to explain arsenic sourcing and mobilization (deeper arsenics- bearing middle delta aquifers with low concentration of chloride as well as deeper saline tidal deposits aquifers of lower delta with / without low arsenic). Both the deeper aquifers are also containing high bicarbonate. This indicates that mineral carbonates (both simple and complex) are also playing important role in arsenic mobilization at least in deeper aquifers. The study also deals with the role of secondary minerals (mica/clay) in arsenic mobilization. The XPS studies on mica further strengthen that the surface chemistry and role of Fe (II) are also important issue to understand the difference of high/low arsenic in between shallow and deep aquifers in BDP.

  17. Speciation and behavior of arsenic in evaporation basins, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal of saline subsurface drainage waters from croplands into evaporation basins (or ponds) in the San Joaquin Valley of California causes excessive accumulation of salts and elevated concentrations of arsenic (As), a potentially high risk element with little information about its fate, in the a...

  18. Arsenic content of homeopathic medicines

    SciTech Connect

    Kerr, H.D.; Saryan, L.A.

    1986-01-01

    In order to test the widely held assumption that homeopathic medicines contain negligible quantities of their major ingredients, six such medicines labeled in Latin as containing arsenic were purchased over the counter and by mail order and their arsenic contents measured. Values determined were similar to those expected from label information in only two of six and were markedly at variance in the remaining four. Arsenic was present in notable quantities in two preparations. Most sales personnel interviewed could not identify arsenic as being an ingredient in these preparations and were therefore incapable of warning the general public of possible dangers from ingestion. No such warnings appeared on the labels.

  19. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  20. Arsenic contamination in water, soil, sediment and rice of central India.

    PubMed

    Patel, K S; Shrivas, K; Brandt, R; Jakubowski, N; Corns, W; Hoffmann, P

    2005-04-01

    Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n = 64), soil (n = 30), sediment (n = 27) and rice grain (n = 10) were ranged from 15 to 825 microg L(-1), 9 to 390 mg kg(-1), 19 to 489 mg kg(-1) and 0.018 to 0.446 mg kg(-1), respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 microg L(-1). The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg(-1) with median value of 9.5 mg kg(-1). The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.). PMID:16003581

  1. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations

    PubMed Central

    Keren, Ray; Lavy, Adi; Mayzel, Boaz; Ilan, Micha

    2015-01-01

    Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxicelement arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight). The 54 isolated bacteria were grouped to 15 operational taxonomic units (OTUs) and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic–magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide. PMID:25762993

  2. Case Report: Potential Arsenic Toxicosis Secondary to Herbal Kelp Supplement

    PubMed Central

    Amster, Eric; Tiwary, Asheesh; Schenker, Marc B.

    2007-01-01

    Context Medicinal use of dietary herbal supplements can cause inadvertent arsenic toxicosis. Case Presentation A 54-year-old woman was referred to the University of California, Davis, Occupational Medicine Clinic with a 2-year history of worsening alopecia and memory loss. She also reported having a rash, increasing fatigue, nausea, and vomiting, disabling her to the point where she could no longer work full-time. A thorough exposure history revealed that she took daily kelp supplements. A urine sample showed an arsenic level of 83.6 μg/g creatinine (normal < 50 μg/g creatinine). A sample from her kelp supplements contained 8.5 mg/kg (ppm) arsenic. Within weeks of discontinuing the supplements, her symptoms resolved and arsenic blood and urine levels were undetectable. Discussion To evaluate the extent of arsenic contamination in commercially available kelp, we analyzed nine samples randomly obtained from local health food stores. Eight of the nine samples showed detectable levels of arsenic higher than the Food and Drug Administration tolerance level of 0.5 to 2 ppm for certain food products. None of the supplements contained information regarding the possibility of contamination with arsenic or other heavy metals. The 1994 Dietary Supplement Health and Education Act (DSHEA) has changed the way dietary herbal therapies are marketed and regulated in the United States. Less regulation of dietary herbal therapies will make inadvertent toxicities a more frequent occurrence. Relevance to Clinical Practice Clinicians should be aware of the potential for heavy metal toxicity due to chronic use of dietary herbal supplements. Inquiring about use of dietary supplements is an important element of the medical history. PMID:17450231

  3. Arsenic and fluoride in the groundwater of Mexico.

    PubMed

    Armienta, M A; Segovia, N

    2008-08-01

    Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas. PMID:18335171

  4. Arsenic toxicity changes in the presence of sediment

    SciTech Connect

    Burton, G.A. Jr.; Lazorchak, J.M.; Waller, W.T.; Lanza, G.R.

    1987-03-01

    Arsenic has been widely used in herbicides resulting in high soil and sediment concentrations in some areas. D. magna has been a commonly used indicator of aquatic toxicity and standardized methods have been developed for acute toxicity testing. Arsenic is quite similar chemically to phosphorus and sulfur, thus it produces toxic effects, in part, by replacing these elements in essential metabolic processes. The effect of sediments on ameliorating metal toxicity to Daphnia has not been reported. However, arsenic and other metalloids/metal are known to concentrate in sediment and adsorb to particulates. This study investigated the effect of sediments on standard arsenite LC50 determinations with D. magna and alkaline phosphatase activity (APA).

  5. OPTIMIZING ARSENIC REMOVAL DURING IRON REMOVAL PROCESSES

    EPA Science Inventory

    The recently promulgated Arsenic rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  6. KINETIC AND DYNAMIC ASPECTS OF ARSENIC TOXICITY

    EPA Science Inventory

    This project integrates research on aspects of the kinetic and dynamic behavior of arsenic. A PBPK model for arsenic will be developed using metabolism and disposition data from studies in mice. Retention of arsenic in the tissues following exposure to arsenic will be investigate...

  7. Arsenic Is A Genotoxic Carcinogen

    EPA Science Inventory

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  8. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    EPA Science Inventory

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  9. MECHANISMS OF ARSENICAL INDUCED MALFORMATIONS

    EPA Science Inventory

    Our research uses the whole embryo culture system to expose mouse embryos to arsenic at the neurulation stage of development (This stage of development is most susceptible to arsenical-induced defects). This includes studies to assess the distribution of cells in the cell cycle a...

  10. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  11. Electrophoretic deposition of adsorbed arsenic on fine iron oxide particles in tap water

    NASA Astrophysics Data System (ADS)

    Sharif, Syahira Mohd; Bakar, Noor Fitrah Abu; Naim, M. Nazli; Rahman, Norazah Abd; Talib, Suhaimi Abdul

    2016-02-01

    Electrophoretic deposition (EPD) technique has been demonstrated to remove arsenic with natural adsorbent (fine iron oxide particles) in tap water samples. Characterizations of metal element particularly arsenic and fine iron oxide particles in tap water from two different locations, i.e. commercial and residential areas, were conducted. Results showed that the concentration of arsenic in tap water from residential area was higher than commercial area samples i.e. 0.022 ± 0.004 and 0.016 ± 0.008 ppm, respectively. The same finding was observed in zeta potential value where it was higher in the residential area than commercial area, i.e. -42.27 ± 0.12 and -34.83 ± 0.23 mV, respectively. During the removal of arsenic using the EPD technique, direct current (DC) voltage was varied from 5 to 25V at a constant electrode distance of 30 mm. Effect of zeta potential, voltage and electrode type were intensively investigated. High percentage removal of arsenic was obtained from carbon plate than carbon fibre electrode. The percentage removal of arsenic from all samples slightly decreased with increasing of the applied voltage. EDX analysis confirmed that arsenic has adsorbed onto deposited iron oxide particles on the anode electrode. Overall, EPD technique was found to be successful in removing arsenic onto fine iron oxide particles in tap water with 26% ± 1.05 of removal.

  12. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  13. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Qinzhong; Zhang, Zhiyong; Ma, Yuhui; He, Xiao; Zhao, Yuliang; Chai, Zhifang

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (Δ H 0 , Δ S 0 , and Δ G 0 ) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment.

  14. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  15. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal. PMID:16256172

  16. Amphoteric arsenic in GaN

    SciTech Connect

    Wahl, U.; Correia, J. G.; Araujo, J. P.; Rita, E.; Soares, J. C.

    2007-04-30

    The authors have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive {sup 73}As. They give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As{sub Ga} 'antisites' are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called miscibility gap in ternary GaAs{sub 1-x}N{sub x} compounds, which cannot be grown with a single phase for values of x in the range of 0.1

  17. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  18. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  19. Impurity centers of tin in glassy arsenic chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Dashina, A. Yu.; Marchenko, A. V.; Seregin, P. P.; Terukov, E. I.

    2011-06-15

    {sup 119}Sn atoms produced by radioactive decay of {sup 119}Sb impurity atoms in the structure of As{sub x}S{sub 1-x} and As{sub x}Se{sub 1-x} glasses are stabilized in the form of Sn{sup 2+} and Sn{sup 4+} ions at arsenic sites and correspond to ionized states of the amphoteric two-electron center with negative correlation energy (Sn{sup 2+} is an ionized acceptor, and Sn{sup 4+} is an ionized donor), whereas the neutral state of the Sn{sup 3+} center is unstable. The fraction of Sn{sup 4+} states increases with chalcogen content in glass. {sup 119}Sn atoms produced by radioactive decay of {sup 119m}Te impurity atoms in the structure of As{sub x}S{sub 1-x} and As{sub x}Se{sub 1-x} glasses are stabilized at chalcogen sites (they are electrically inactive) and arsenic sites, and the fraction of arsenic atoms decreases with the chalcogen content in glass.

  20. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1995-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  1. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1994-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  2. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  3. Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods.

    PubMed

    Jackson, Brian P; Punshon, Tracy

    2015-03-01

    Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the-art methods, and use of spatially resolved techniques for localizing the distribution of arsenic and mercury within rice grains. Total elemental analysis of foods is relatively well-established, but the push for ever lower detection limits requires that methods be robust from potential matrix interferences, which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation, and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal- and plant-based foods, particularly for arsenic, cadmium, and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012

  4. The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.).

    PubMed

    Spanu, Antonino; Daga, Leonardo; Orlandoni, Anna Maria; Sanna, Gavino

    2012-08-01

    The bioaccumulation of arsenic compounds in rice is of great concern worldwide because rice is the staple food for billions of people and arsenic is one of the most toxic and carcinogenic elements at even trace amounts. The uptake of arsenic compounds in rice comes mainly from its interaction with system soil/water in the reducing conditions typical of paddy fields and is influenced by the irrigation used. We demonstrate that the use of sprinkler irrigation produces rice kernels with a concentration of total arsenic about fifty times lower when compared to rice grown under continuous flooding irrigation. The average total amount of arsenic, measured by a fully validated ICP-MS method, in 37 rice grain genotypes grown with sprinkler irrigation was 2.8 ± 2.5 μg kg(-1), whereas the average amount measured in the same genotypes grown under identical conditions, but using continuous flooding irrigation was 163 ± 23 μg kg(-1). In addition, we find that the average concentration of total arsenic in rice grains cultivated under sprinkler irrigation is close to the total arsenic concentration found in irrigation waters. Our results suggest that, in our experimental conditions, the natural bioaccumulation of this element in rice grains may be completely circumvented by adopting an appropriate irrigation technique. PMID:22765219

  5. Enrichment processes of arsenic in oxidic sedimentary rocks - from geochemical and genetic characterization to potential mobility.

    PubMed

    Banning, Andre; Rüde, Thomas R

    2010-11-01

    Sedimentary marine iron ores of Jurassic age and Tertiary marine sandy sediments containing iron hydroxides concretions have been sampled from boreholes and outcrops in two study areas in Germany to examine iron and arsenic accumulation processes. Samples were analyzed for bulk rock geochemistry (INAA/ICP-OES), quantitative mineralogy (XRD with Rietveld analysis), element distribution (electron microprobe) and arsenic fractionation (sequential extraction). Bulk Jurassic ores contain an average arsenic content of 123 μg g(-1) hosted in mainly goethite ooids which slowly formed in times of condensed sedimentation. Enrichment occurred syndepositionally and is therefore characterized as primary. Iron concretions in Tertiary sediments mainly consist of goethite and yield arsenic up to 1860 μg g(-1). The accumulation process is secondary as it took place in the course of oxidation of the originally reduced marine sediments under terrestrial conditions, leading to element redistribution and local enrichment in the near-surface part. The scale of enrichment was assessed calculating Enrichment Factors, indicating that arsenic accumulation was favoured over other potential contaminants. In spite of higher bulk arsenic contents in the oxidic rocks, the mainly pyrite-hosted As pool within the reduced deeper part of the Tertiary sediments is shown to have a higher potential for remobilization and creation of elevated arsenic concentrations in groundwater. PMID:20561664

  6. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  7. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  8. Response of the microbial metallome to arsenic stress

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Lancaster, W. A.; Menon, A. L.; Yannone, S. M.; Adams, M. W.; Tainer, J. A.

    2012-12-01

    Life depends on access to nutrients in the environment. While elements such as nitrogen, carbon, sulfur and phosphorus are fundamental to microbial survival, trace nutrient elements like iron, molybdenum and copper show dramatically different profiles depending on environmental conditions. These elements are known nutrients but also can be toxic at higher concentrations. For low or limiting concentrations of one nutrient element, microbes may utilize another element to serve similar functions often, but not always, in similar macromolecular structures. Well-characterized elemental exchanges include manganese for iron and tungsten for molybdenum. Here we report on our preliminary metallomic analyses of the Gammaproteobacterium Halomonas sp. str. GFAJ-1 grown under severe arsenic stress. We analyzed 53 elements by ICP-MS, in order to determine which elements are tightly, weakly or not bound to soluble macromolecules (> 3 kDa). We specifically investigated the changes to the metallome of GFAJ-1cells that were grown in the synthetic minimal medium AML60 supplemented with 50 mM arsenate (As(V)), 50 μM phosphate (P) or 50 mM As(V) plus 50 μM P. Further studies will identify which macromolecules are associated with the various elements. This research extends our understanding of metal assimilation in microbes in response to tandem phosphorus limitation coupled to extreme arsenic concentrations and furthermore contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  9. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    PubMed

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L. PMID:26657392

  10. Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Stein, Ariel F.; Castell, Nuria; de la Rosa, Jesus D.; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Draxler, Roland R.

    2012-03-01

    Arsenic is a toxic element for human health. Consequently, a mean annual target level for arsenic at 6 ng m-3 in PM10 was established by the European Directive 2004/107/CE to take effect January 2013. Cu-smelters can contribute to one-third of total emissions of arsenic in the atmosphere. Surface observations taken near a large Cu-smelter in the city of Huelva (Spain) show hourly arsenic concentrations in the range of 0-20 ng m-3. The arsenic peaks of 20 ng m-3 are higher than values normally observed in urban areas around Europe by a factor of 10. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model has been employed to predict arsenic emissions, transport, and dispersion from the Cu-smelter. The model utilized outputs from different meteorological models and variations in the model physics options to simulate the uncertainty in the dispersion of the arsenic plume. Modeling outputs from the physics ensemble for each meteorological model driving HYSPLIT show the same number of arsenic peaks. HYSPLIT coupled with the Weather Research and Forecasting (WRF-ARW) meteorological output predicted the right number of peaks for arsenic concentration at the observation site. The best results were obtained when the WRF simulation used both four-dimensional data assimilation and surface analysis nudging. The prediction was good in local sea breeze circulations or when the flow was dominated by the synoptic scale prevailing winds. However, the predicted peak was delayed when the transport and dispersion was under the influence of an Atlantic cyclone. The calculated concentration map suggests that the plume from the Cu-smelter can cause arsenic pollution events in the city of Huelva as well as other cities and tourist areas in southwestern Spain.