Science.gov

Sample records for radioactive material handling

  1. Remote automated material handling of radioactive waste containers

    SciTech Connect

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

  2. Safe Handling of Radioactive Materials. Recommendations of the National Committee on Radiation Protection. Handbook 92.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    This handbook is designed to help users of radioactive materials to handle the radioactive material without exposing themselves or others to radiation doses in excess of maximum permissible limits. The discussion of radiation levels is in terms of readings from dosimeters and survey instruments. Safety in the handling of radioactive materials in…

  3. Spoken commands control robot that handles radioactive materials

    SciTech Connect

    Phelan, P.F.; Keddy, C.; Beugelsdojk. T.J.

    1989-01-01

    Several robotic systems have been developed by Los Alamos National Laboratory to handle radioactive material. Because of safety considerations, the robotic system must be under direct human supervision and interactive control continuously. In this paper, we describe the implementation of a voice-recognition system that permits this control, yet allows the robot to perform complex preprogrammed manipulations without the operator's intervention. To provide better interactive control, we connected to the robot's control computer, a speech synthesis unit, which provides audible feedback to the operator. Thus upon completion of a task or if an emergency arises, an appropriate spoken message can be reported by the control computer. The training programming and operation of this commercially available system are discussed, as are the practical problems encountered during operations.

  4. 49 CFR 174.700 - Special handling requirements for Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (radioactive) materials. 174.700 Section 174.700 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.700 Special handling requirements for Class 7 (radioactive) materials. (a) Each rail shipment of low specific...

  5. 49 CFR 174.700 - Special handling requirements for Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (radioactive) materials. 174.700 Section 174.700 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.700 Special handling requirements for Class 7 (radioactive) materials. (a) Each rail shipment of low specific...

  6. 49 CFR 174.700 - Special handling requirements for Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (radioactive) materials. 174.700 Section 174.700 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.700 Special handling requirements for Class 7 (radioactive) materials. (a) Each rail shipment of low specific...

  7. 49 CFR 174.700 - Special handling requirements for Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (radioactive) materials. 174.700 Section 174.700 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.700 Special handling requirements for Class 7 (radioactive) materials. (a) Each rail shipment of low specific...

  8. 49 CFR 174.700 - Special handling requirements for Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (radioactive) materials. 174.700 Section 174.700 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.700 Special handling requirements for Class 7 (radioactive) materials. (a) Each rail shipment of low specific...

  9. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Safety Analysis of 'Older/Aged' Handling and Transportation Equipment for Heavy Loads, Radioactive Waste and Materials in Accordance with German Nuclear Standards KTA 3902, 3903 and 3905

    SciTech Connect

    Macias, P.; Prucker, E.; Stang, W.

    2006-07-01

    The purpose of this paper is to present a general safety analysis of important handling and transportation processes and their related equipment ('load chains' consisting of cranes, load-bearing equipment and load-attaching points). This project was arranged by the responsible Bavarian ministry for environment, health and consumer protection (StMUGV) in agreement with the power plant operators of all Bavarian nuclear power plants to work out potential safety improvements. The range of the equipment (e.g. reactor building, crane, refuelling machine, load-bearing equipment and load-attaching points) covers the handling and transportation of fuel elements (e. g. with fuel flasks), heavy loads (e.g. reactor pressure vessel closure head, shielding slabs) and radioactive materials and waste (e.g. waste flasks, control elements, fuel channels, structure elements). The handling equipment was subjected to a general safety analysis taking into account the ageing of the equipment and the progress of standards. Compliance with the current valid requirements of the state of science and technology as required by German Atomic Act and particularly of the nuclear safety KTA-standards (3902, 3903 and 3905) was examined. The higher protection aims 'safe handling and transportation of heavy loads and safe handling of radioactive materials and waste' of the whole analysis are to avoid a criticality accident, the release of radioactivity and inadmissible effects on important technical equipment and buildings. The scope of the analysis was to check whether these protection aims were fulfilled for all important technical handling and transportation processes. In particularly the design and manufacturing of the components and the regulations of the handling itself were examined. (authors)

  11. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  12. Measurement of natural radioactive nuclide concentrations in various metal ores used as industrial raw materials in Japan and estimation of dose received by workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2009-11-01

    Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of (238)U and (232)Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of (226)Ra, (228)Ra, and (40)K were determined by gamma-ray spectrum. We found the concentrations of (238)U series, (232)Th series, and (40)K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 x 10(-2)Sv y(-1), which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 x 10(-4)Sv y(-1), which was lower than intervention exemption levels (1.0 x 10(-3)Sv y(-1)) given in International Commission of Radiological Protection (ICRP) Publication 82. PMID:19703725

  13. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2014-10-01 2014-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  14. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2011-10-01 2011-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  15. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  16. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  17. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  18. Handling Hazardous Materials.

    ERIC Educational Resources Information Center

    Piper, James; Piverotto, John

    1990-01-01

    Describes a 16-hour course in hazard communication for vocational instructors, which teaches the proper use, storage, and disposal of hazardous materials in the laboratory as well as techniques for teaching safety. (SK)

  19. Handling difficult materials: Textiles

    SciTech Connect

    Polk, T.

    1994-07-01

    As recyclable materials, textiles are a potentially valuable addition to community collection programs. They make up a fairly substantial fraction--about 4%--of the residential solid waste stream, a higher figure than corrugated cardboard or magazines. Textiles have well-established processing and marketing infrastructures, with annual sales of over $1 billion in the US And buyers are out there, willing to pay $40 to $100 per ton. There doesn't seem to be any cumbersome government regulations standing in the way, either. So why are so few municipalities and waste haulers currently attempting to recover textiles The answers can be found in the properties of the material itself and a lack of knowledge about the existing textile recycling industry. There are three main end markets that come from waste textiles. In descending order of market share, they are: used clothing, fiber for paper and re-processing, and industrial wiping and polishing cloths.

  20. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  1. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  3. Container for radioactive materials

    DOEpatents

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  4. Container for radioactive materials

    DOEpatents

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  5. Handling difficult materials: Household appliances

    SciTech Connect

    Woods, R.

    1994-05-01

    At last count in 1990, the US EPA reported that 2.8 million tons of household appliances (often called ''white goods'') were discarded -- about 2% of the municipal solid waste (MSW) stream. These figures may not seem particularly epic, but, considering the potentially harmful coolants, lubricants, and insulating materials left behind in these machines, the amount may be cause for concern. Management of these items is, of course, not impossible, just difficult. As more and more landfills turn white goods away, recycling is becoming the hot'' option. According to a study by the Steel Recycling Institute, about 4 million of the 8 million units discarded in the US were recycled in 1992. Recycling figures like these are impressive for any secondary material, demonstrating the strides appliance recycling has made in recent years. Implemented in May 1993, EPA's final rule on household appliance handling mandates that 80%--90% of all CFC or HCFC coolants must be recovered with certified equipment by a certified technician, who must record how the refrigerant is removed and where it is sent for recovery.

  6. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  7. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  8. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  9. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  10. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  11. Material for radioactive protection

    DOEpatents

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  12. Material handling demands for the future

    SciTech Connect

    Schmidt, B.L.

    1998-07-01

    Material handling will be a necessary element in planning for new facilities, plant expansion, deregulation adjustment, and general improvement in plant efficiency. Fuel switches from high sulfur Eastern coals to low sulfur Western coals, coupled with growing consumer demand will stress existing material handling equipment capacities and ground storage space. Material handling evaluations and feasibility studies are useful tools to assess system performance and inefficiencies, to weigh alternatives and to estimate cost for needed modifications. important issues to be considered in evaluating material handling modifications are: coal characteristics, yard configuration and space, automation and control, and air and water quality. Material handling upgrade projects to meet new and future requirements at coal fuel facilities show a diversity of solutions to problems that have evolved through changing operating requirements. Sample solutions include equipment modifications, automation, dust control techniques, storm water management, and others. Advancing technology will support new and innovative solutions to material handling problems rising from changing needs of the coal fuel industry.

  13. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  14. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  15. Group Technology Applications In Material Handling

    NASA Astrophysics Data System (ADS)

    Han, Chingping; Wong, Tin-Lup

    1989-02-01

    The selections of material handling equipment for different manufacturing components are largely dependent on the characteristics of the component to be manipulated. The tasks of designing or selecting material handling equipment are usually dependent on the experience of the engineer and the equipment available. In this research, the group technology concept is applied to record and organize the material handling information. Expressions related to material handling, such as the weight, size, configurations of the component, etc., are included in a general purpose group technology classification and coding system. Components can be grouped into part families according to their material handling properties. Material handling equipment can then be designed for a group of components or can be selected based on the similarities of a group of parts. In addition, a multi-objective clustering method, which is based on a goal programming theory, is utilized for more effective information searching. This approach assists the engineer in designing the material handling equipment or selecting the available one. Industrial application shows that this approach reduces the design time cycle for material handling equipment and increases in utilization of the available facilities.

  16. Intelligent packaging and material handling

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Shell, Richard; Slutzky, Gale D.

    1991-02-01

    The problem of palletizing (stacking on a pallet) randomly arriving mixed size and content parcels is an important task in most distribution warehouses. Today this task requires human interaction for a solution however recently several attempts have been made to automate the solution. The purpose of this paper is to present an overview of the problem an expert system approach and an estimate of the key subproblems which have been identified which are necessary for a solution. The concepts of space filling and emptying as encountered in warehousing are briefly described. Also brief descriptions of two generations of a robotic system for mixed parcel palletizing are presented. The results with these test systems indicate that automatic parcel handling at speeds comparable to humans is feasible however further work is required to obtain a robust solution.

  17. International radioactive material recycling challenges

    SciTech Connect

    Greeves, John T.; Lieberman, James

    2007-07-01

    The paper explores current examples of successful International radioactive recycling programs and also explores operational regulatory and political challenges that need to be considered for expanding international recycling world-wide. Most countries regulations are fully consistent with the International Atomic Agency (IAEA) Code of Practice on the International Transboundary Movement of Radioactive Material and the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. IAEA member States reported on the status of their efforts to control transboundary movement of radioactive material recently during the Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management meeting in May 2006. (authors)

  18. Radioactive solid waste handling at the Plutonium Finishing Plant

    SciTech Connect

    Manthos, E.J.

    1990-05-01

    The Plutonium Finishing Plant is located on the Hanford Site in the southeast section of Washington State. It has been in operation since 1949. The mission of the plant is to produce plutonium metal and related products for the US Department of Energy defense programs. Solid transuranic, low-level, and mixed wastes are generated at the plant, the radioactive contaminants in the waste being primarily alpha emitting. This paper discusses present waste-handling methods at the plant and recent changes that were made to improve waste characterization. 2 refs.

  19. APPARATUS FOR HANDLING MIXTURES OF SOLID MATERIALS

    DOEpatents

    Hubbell, J.P.

    1959-08-25

    An apparatus is described for handling either a mixture of finely subdivided materials or a single material requiring a compacting action thereon preparatory to a chemical reducing process carried out in a crucible container. The apparatus is designed to deposit a mixture of dust-forming solid materials in a container while confining the materials against escape into the surrounding atmosphere. A movable filling tube, having a compacting member, is connected to the container and to a covered hopper receiving the mixture of materials. The filling tube is capable of reciprocating in the container and their relative positions are dependent upon the pressure established upon the material by the compacting member.

  20. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  1. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  2. Storage depot for radioactive material

    DOEpatents

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  3. Naturally Occurring Radioactive Materials (NORM)

    SciTech Connect

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  4. A Code System for Assessing the Impact from Transporting Radioactive Material.

    Energy Science and Technology Software Center (ESTSC)

    1986-07-23

    Version 00 INTERTRAN-I calculates the radiological impact from incident-free transports and vehicular accidents involving radioactive materials. The code also handles accidents which may occur during handling operations.

  5. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  6. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  7. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  8. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  9. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  10. Enhanced Radioactive Material Source Security.

    PubMed

    Klinger, Joseph G

    2016-02-01

    Requirements for additional security measures for sealed radioactive sources have evolved since they were first implemented after the terrorist events of 11 September 2001. This paper will describe the sequence of those measures, commencing with the early orders issued by the U.S. Nuclear Regulatory Commission to the May 2013 adoption of 10 CFR Part 37, Physical Protections of Category 1 and Category 2 Quantities of Radioactive Material. Part 37 requirements will be discussed in detail, as the 37 NRC Agreement States, which regulate approximately 88% of the radioactive material licensees, will be required to enact by 19 March 2016. In addition to the Part 37 requirements, the paper will also highlight some of the other ongoing efforts of the U.S. Department of Energy's National Nuclear Security Administration's Global Threat Reduction Initiative and the Conference of Radiation Control Program Directors. PMID:26717170

  11. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Spent Ion Exchange Resins From Commercial Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from... Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent...

  12. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  13. Bag-out material handling system

    DOEpatents

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  14. 76 FR 37118 - Manual Materials Handling (MMH) Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... HUMAN SERVICES Centers for Disease Control and Prevention Manual Materials Handling (MMH) Workshop... Health, will be holding a two-day Manual Materials Handling (MMH) Workshop. The Workshop is a National... engineering solutions for manual materials handling jobs in Retail, Wholesale and Warehouse industries....

  15. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  16. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation`s hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation`s system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  17. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2011-10-01 2011-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  18. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  19. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2014-10-01 2014-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  20. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  1. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  2. Materials Handling. Module SH-01. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on materials handling is one of 50 modules concerned with job safety and health. It presents the procedures for safe materials handling. Discussed are manual handling methods (lifting and carrying by hand) and mechanical lifting (lifting by powered trucks, cranes or conveyors). Following the introduction, 15 objectives (each…

  3. System design for safe robotic handling of nuclear materials

    SciTech Connect

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-03-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability.

  4. A sensor-based automation system for handling nuclear materials

    SciTech Connect

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-03-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

  5. Hydrogen control in the handling, shipping, and storage of wet radioactive waste

    SciTech Connect

    Henrie, J O; Flesher, D J; Quinn, G J; Greenborg, J

    1986-02-01

    This document is intended to convey the pertinent information concerning the handling and shipping of wet radioactive wastes which resulted (lessons learned) from the TMI-2 experience. It provides engineering tools, procedures, and precautions that are intended to ensure the safe handling, shipping and storage of wet radioactive wastes. A step-wise procedure is presented that permits the individual investigator to evaluate the potential for flammable gas generation, and to minimize potential hazards, with the intent of meeting the referenced NRC requirements.

  6. 41 CFR 50-204.3 - Material handling and storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Material handling and... CONTRACTS General Safety and Health Standards § 50-204.3 Material handling and storage. (a) Where mechanical... aisles and passageways shall be appropriately marked. (b) Storage of material shall not create a...

  7. 41 CFR 50-204.3 - Material handling and storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Material handling and... CONTRACTS General Safety and Health Standards § 50-204.3 Material handling and storage. (a) Where mechanical... aisles and passageways shall be appropriately marked. (b) Storage of material shall not create a...

  8. 41 CFR 50-204.3 - Material handling and storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Material handling and... CONTRACTS General Safety and Health Standards § 50-204.3 Material handling and storage. (a) Where mechanical... aisles and passageways shall be appropriately marked. (b) Storage of material shall not create a...

  9. 41 CFR 50-204.3 - Material handling and storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Material handling and... CONTRACTS General Safety and Health Standards § 50-204.3 Material handling and storage. (a) Where mechanical... aisles and passageways shall be appropriately marked. (b) Storage of material shall not create a...

  10. Diverter assembly for radioactive material

    DOEpatents

    Andrews, Katherine M.; Starenchak, Robert W.

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  11. Diverter assembly for radioactive material

    DOEpatents

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  12. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in...

  13. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in...

  14. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in...

  15. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in...

  16. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in...

  17. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    SciTech Connect

    Klute, Stefan; Huber, Wolfgang-Bruno

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  18. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  19. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  20. Haz-Safe material handling in hazmat buildings

    SciTech Connect

    Romig, F.W.

    1994-12-31

    Material handling techniques have begun to be utilized in hazmat buildings for maneuvering and stacking of hazardous material containers. Therefore, the efficiencies involved in increased safety and productivity are being realized. In addition, there are savings in HazMat building costs and floor space or real estate inside or outside manufacturing plants. Stacking of containers is being used as structures are beefed up to install crane/hoists or air power mast type stacking machines. The purpose of this paper is to encourage potential HazMat building users and the material handling industry to look for opportunities to project material handling technology into hazmat buildings.

  1. Proposed low-level radioactive waste handling building at Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Low-Level Radioactive Waste Building at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. As a result of the high energy physics program at Fermilab, small quantities of low-level radioactive wastes are generated. These wastes are collected, sorted and packaged for shipment to an off-site disposal facility in Hanford, Washington. The proposed project includes the construction of a new building to house, all low-level radioactive waste handling operations. The building would provide workspace for five full-time workers. The proposed project would improve the efficiency and safety of the low-level radioactive waste handling at Fermilab by upgrading equipment and consolidating operations into one facility.

  2. Apparatus for handling micron size range particulate material

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  3. Standards for material handling and facilities equipment proofload testing

    NASA Technical Reports Server (NTRS)

    Bonn, S. P.

    1970-01-01

    Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.

  4. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    SciTech Connect

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-08-02

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure.

  5. Recognizing the importance of hazardous material storage and handling

    SciTech Connect

    Strycula, J.

    1994-12-31

    Hazardous material storage and handling, of both waste and raw material, is fast becoming the greatest concern of industry, government and the general public. These concerns are compounded in fixed manufacturing facilities due to the already tremendous pressure and scrutiny of government agencies and public watchdogs. Meeting hazardous material management regulations and guidelines head-on minimizes risk and practically eliminates penalties and fines. The Safety or Environmental Director at the facility must not only be concerned with the safe methods of storage and handling of these materials, but also aware of the methods that must be implemented to most effectively minimize and control accidents involving fluid spills, fires, explosions, or air contamination.

  6. Radioactive materials shipping cask anticontamination enclosure

    DOEpatents

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  7. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (ESTSC)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  8. 41 CFR 50-204.3 - Material handling and storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Material handling and storage. 50-204.3 Section 50-204.3 Public Contracts and Property Management Other Provisions Relating to... free from accumulation of materials that constitute hazards from tripping, fire, explosion, or...

  9. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Materials handling equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7112 Materials...

  10. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  11. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  12. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  13. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... uCi/cm2;) for beta and gamma emitters and low toxicity alpha emitters, natural uranium, natural.../cm2 (10−5 uCi/cm2) for all other alpha emitters....

  14. Solar Energy: Materials, Materials Handling, and Fabrication Processes: Student Material. First Edition.

    ERIC Educational Resources Information Center

    Bolin, William Everet; Orsak, Charles G., Jr.

    Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the same course,…

  15. Consumer Products Containing Radioactive Materials

    MedlinePlus

    ... for source and byproduct materials. Washington, DC: U.S. Nuclear Regulatory Commission; NUREG-1717; ... April 2010. The Health Physics Society is a nonprofit scientific professional organization whose ...

  16. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of radioactive material. 76.83 Section 76.83... Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as... paragraphs (c) and (d) of this section, the Corporation may transfer radioactive material: (1) From...

  17. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  18. 29 CFR 1926.251 - Rigging equipment for material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section applies to slings used in conjunction with other material handling equipment for the movement of...: (i) An eye splice made in any wire rope shall have not less than three full tucks. However, this... to be as efficient and which is not otherwise prohibited. (ii) Except for eye splices in the ends...

  19. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Material handling equipment. 1926.602 Section 1926.602 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.602...

  20. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Material handling equipment. 1926.602 Section 1926.602 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.602...

  1. 41 CFR 101-25.405 - Materials handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Materials handling equipment. 101-25.405 Section 101-25.405 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101-25.405...

  2. An Analysis of the Terminal Materials Handling Occupation.

    ERIC Educational Resources Information Center

    Mascio, Joseph W.; O'Connor, Patrick J.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the terminal materials handling occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Five duties are broken down into…

  3. Security in the Transport of Radioactive Materials

    SciTech Connect

    Pope, Ron; Rawl, Richard R

    2010-01-01

    The United States Department of Energy National Nuclear Security Administration's (DOE/NNSA)Global Threat Reduction Initiative (GTRI), the International Atomic Energy Agency (IAEA) and active IAEA Donor States are working together to strengthen the security of nuclear and radioactive materials during transport to mitigate the risks of theft, diversion, or sabotage. International activities have included preparing and publishing the new IAEA guidance document Security in the Transport of Radioactive Material while ensuring that security recommendations do not conflict with requirements for safety during transport, and developing and providing training programs to assist other countries in implementing radioactive material transport security programs. This paper provides a brief update on the status of these transportation security efforts.

  4. Completion of the Radioactive Materials Packaging Handbook

    SciTech Connect

    Shappert, L.B.

    1998-02-01

    The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

  5. Expert systems for the transportation of hazardous and radioactive materials

    SciTech Connect

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-10-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic{trademark} programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them.

  6. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  7. Microwave processing of radioactive materials-I

    SciTech Connect

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs.

  8. Radioactivities in returned lunar materials.

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; D'Amico, J.; Defelice, J.; Spannagel, G.

    1972-01-01

    The difference between the Ar-37 activities from similar locations in the rocks 12002 and 15555 provides direct measures of the Ar-37 activities produced by the 2 November 1969 flare. Differences between the Ar-37 activities in 14321 and 15555 give Ar-37 activities produced by the 24 January 1971 flare. The intensities of the two flares were determined by making use of measured Ar-37 cross sections in simulated lunar material. The depth dependence of tritium in samples and its temperature-release pattern provides information about the sources of the tritium and about the intensity of solar flares integrated over the past 30 years.

  9. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOEpatents

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  10. Recycling and Reuse of Radioactive Materials

    ERIC Educational Resources Information Center

    O'Dou, Thomas Joseph

    2012-01-01

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique…

  11. RADIOACTIVE MATERIALS IN BIOSOLIDS: DOSE MODELING

    EPA Science Inventory

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  12. Radioactivities in returned lunar materials

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Ar37, Ar39, and H3 were measured at four depths (from 0 to 19.5 cm) of the deep core from Apollo 16 and in four other Apollo 16 samples. The Ar37 increased steadily from 40 dpm/kg at the top of the core to 68 dpm/kg at 19-cm depth. The comparison of the Ar37 in the core with that in rock 15555 shows that the solar flare at the time of the Apollo 16 mission was approximately an order of magnitude less intense than solar flares of 24 January 1971 and 2 November 1969, which occurred before the Apollo 14 and 12 missions. The Ar39 activities in the top 19 cm of the deep core varied little with depth. Because the Apollo 16 samples have a much higher Ca content and much lower Fe and Ti contents than do the documented rocks from previous missions, the Ar39 in the Fe, Ca, and K can be determined from Ar39 measurements on lunar material if a Ti cross section is assumed.

  13. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  14. Criteria for onsite transfers of radioactive material

    SciTech Connect

    Opperman, E.K.; Jackson, E.J.; Eggers, A.G.

    1992-12-31

    A general description of the requirements for making onsite transfers of radioactive material is provided in Chapter 2, along with the required sequencey of activities. Various criteria for package use are identified in Chapters 3-13. These criteria provide protection against undue radiation exposure. Package shielding, containment, and surface contamination requirements are established. Criteria for providing criticality safety are enumerated in Chapter 6. Criteria for providing hazards information are established in Chapter 13. A glossary is provided.

  15. 49 CFR 176.72 - Handling of break-bulk hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Handling of break-bulk hazardous materials. 176.72... VESSEL General Handling and Stowage § 176.72 Handling of break-bulk hazardous materials. (a) A metal bale... to lift or move cargo by means of pressure exerted on the packages may not be used for handling...

  16. Integration of Radioactive Material with Microcalorimeter Detectors

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Bond, E. M.; Hoover, A. S.; Kunde, G. J.; Moody, W. A.; Rabin, M. W.; Bennett, D. A.; Hayes-Wehle, J.; Kotsubo, V.; Schmidt, D. R.; Ullom, J. N.

    2014-09-01

    Microcalorimeter detectors with embedded radioactive material offer many possibilities for new types of measurements and applications. We will discuss the designs and methods that we are developing for precise deposition of radioactive material and its encapsulation in the absorber of transition-edge sensor (TES) microcalorimeter detectors for two specific applications. The first application is total nuclear reaction energy (Q) spectroscopy for nuclear forensics measurements of trace actinide samples, where the goal is determination of ratios of isotopes with Q values in the range of 5-7 MeV. Simplified, rapid sample preparation and detector assembly is necessary for practical measurements, while maintaining good energy resolution. The second application is electron capture spectroscopy of isotopes with low Q values, such as Ho, for measurement of neutrino mass. Detectors for electron capture spectroscopy are designed for measuring energies up to approximately 6 keV. Their smaller heat capacity and physical size present unique challenges. Both applications require precise deposition of radioactive material and encapsulation in an absorber with optimized thermal properties and coupling to the TES. We have made detectors for both applications with a variety of designs and assembly methods, and will present their development.

  17. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  18. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  19. Recycling and reuse of radioactive materials

    NASA Astrophysics Data System (ADS)

    O'Dou, Thomas Joseph

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique program capable of turning out graduates that have an understanding of contamination and dose control techniques that complement their knowledge of the elements that they work with. The Program has also adopted a radionuclide recovery and reuse program that has provided materials from other universities, government agencies, and private companies for use in experiments.

  20. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  1. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Authorized use of radioactive material. 76.81 Section 76... § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation shall confine its possession and use of radioactive material to the locations and purposes covered...

  2. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 7 (radioactive) material. 177.842 Section... HIGHWAY Loading and Unloading § 177.842 Class 7 (radioactive) material. (a) The number of packages of Class 7 (radioactive) materials in any transport vehicle or in any single group in any storage...

  3. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  4. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Authorized use of radioactive material. 76.81 Section 76... § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation shall confine its possession and use of radioactive material to the locations and purposes covered...

  5. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Class 7 (radioactive) material. 177.842 Section... HIGHWAY Loading and Unloading § 177.842 Class 7 (radioactive) material. (a) The number of packages of Class 7 (radioactive) materials in any transport vehicle or in any single group in any storage...

  6. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Storage of radioactive materials. 50-204.28 Section 50-204.28 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored...

  7. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Storage of radioactive materials. 50-204.28 Section 50-204.28 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored...

  8. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 7 (radioactive) material. 177.842 Section... HIGHWAY Loading and Unloading § 177.842 Class 7 (radioactive) material. (a) The number of packages of Class 7 (radioactive) materials in any transport vehicle or in any single group in any storage...

  9. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Storage of radioactive materials. 50-204.28 Section 50-204.28 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored...

  10. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Storage of radioactive materials. 50-204.28 Section 50-204.28 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored...

  11. 49 CFR 172.310 - Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Class 7 (radioactive) materials. 172.310 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.310 Class 7 (radioactive) materials. In addition to any other markings required by this subpart, each package containing Class 7 (radioactive) materials must be...

  12. 49 CFR 172.310 - Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 7 (radioactive) materials. 172.310 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.310 Class 7 (radioactive) materials. In addition to any other markings required by this subpart, each package containing Class 7 (radioactive) materials must be...

  13. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Storage of radioactive materials. 50-204.28 Section 50-204.28 Public Contracts and Property Management Other Provisions Relating to... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored...

  14. 49 CFR 172.310 - Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 7 (radioactive) materials. 172.310 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.310 Class 7 (radioactive) materials. In addition to any other markings required by this subpart, each package containing Class 7 (radioactive) materials must be...

  15. 49 CFR 172.310 - Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 7 (radioactive) materials. 172.310 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.310 Class 7 (radioactive) materials. In addition to any other markings required by this subpart, each package containing Class 7 (radioactive) materials must be...

  16. 49 CFR 172.310 - Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 7 (radioactive) materials. 172.310 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.310 Class 7 (radioactive) materials. In addition to any other markings required by this subpart, each package containing Class 7 (radioactive) materials must be...

  17. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  18. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Authorized use of radioactive material. 76.81 Section 76... § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation shall confine its possession and use of radioactive material to the locations and purposes covered...

  19. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 7 (radioactive) material. 177.842 Section... HIGHWAY Loading and Unloading § 177.842 Class 7 (radioactive) material. (a) The number of packages of Class 7 (radioactive) materials in any transport vehicle or in any single group in any storage...

  20. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  1. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Authorized use of radioactive material. 76.81 Section 76... § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation shall confine its possession and use of radioactive material to the locations and purposes covered...

  2. 48 CFR 245.7310-6 - Radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Radioactive material. 245... Radioactive material. The following shall be used whenever the property offered for sale is capable of emitting ionized radiation: Radioactive Material Purchasers are warned that the property may be capable...

  3. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 7 (radioactive) material. 177.842 Section... HIGHWAY Loading and Unloading § 177.842 Class 7 (radioactive) material. (a) The number of packages of Class 7 (radioactive) materials in any transport vehicle or in any single group in any storage...

  4. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  5. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Authorized use of radioactive material. 76.81 Section 76... § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation shall confine its possession and use of radioactive material to the locations and purposes covered...

  6. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Explosives and radioactive materials. 109.559 Section... UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by the master or person in charge, no person may use explosives or radioactive materials and equipment...

  7. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as authorized pursuant to this section....

  8. Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility

    SciTech Connect

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-04-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

  9. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  10. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Haselschwardt, Sally

    2012-01-01

    A Radial Internal Material Handling System (RIMS) has been developed to service a circular floor area in variable gravity. On planetary surfaces, pressurized human habitable volumes will require a means to carry heavy equipment between various locations within the volume of the habitat, regardless of the partial gravity (Earth, moon, Mars, etc). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand off lifted items to other material handling systems through the side hatches, such as through an airlock. This paper describes the RIMS system which is scalable for application in a variety of circular habitat volumes.

  11. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The

  12. Residual radioactive material guidelines: Methodology and applications

    SciTech Connect

    Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III

    1989-01-01

    A methodology to calculate residual radioactive material guidelines was developed for the US Department of Energy (DOE). This methodology is coded in a menu-driven computer program, RESRAD, which can be run on IBM or IBM-compatible microcomputers. Seven pathways of exposure are considered: external radiation, inhalation, and ingestion of plant foods, meat, milk, aquatic foods, and water. The RESRAD code has been applied to several DOE sites to calculate soil cleanup guidelines. This experience has shown that the computer code is easy to use and very user-friendly. 3 refs., 8 figs.

  13. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  14. 48 CFR 52.223-7 - Notice of radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Notice of radioactive....223-7 Notice of radioactive materials. As prescribed in 23.602, insert the following clause: Notice of Radioactive Materials (JAN 1997) (a) The Contractor shall notify the Contracting Officer or designee,...

  15. 48 CFR 52.223-7 - Notice of radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Notice of radioactive....223-7 Notice of radioactive materials. As prescribed in 23.602, insert the following clause: Notice of Radioactive Materials (JAN 1997) (a) The Contractor shall notify the Contracting Officer or designee,...

  16. 48 CFR 52.223-7 - Notice of radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Notice of radioactive....223-7 Notice of radioactive materials. As prescribed in 23.602, insert the following clause: Notice of Radioactive Materials (JAN 1997) (a) The Contractor shall notify the Contracting Officer or designee,...

  17. 48 CFR 52.223-7 - Notice of radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Notice of radioactive....223-7 Notice of radioactive materials. As prescribed in 23.602, insert the following clause: Notice of Radioactive Materials (JAN 1997) (a) The Contractor shall notify the Contracting Officer or designee,...

  18. 48 CFR 52.223-7 - Notice of radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Notice of radioactive....223-7 Notice of radioactive materials. As prescribed in 23.602, insert the following clause: Notice of Radioactive Materials (JAN 1997) (a) The Contractor shall notify the Contracting Officer or designee,...

  19. Is anyone regulating naturally occurring radioactive material? A state survey

    SciTech Connect

    Gross, E.M.; Barisas, S.G.

    1993-08-01

    As far as we know, naturally occurring radioactive material (NORM) has surrounded humankind since the beginning of time. However, recent data demonstrating that certain activities concentrate NORM have increased concern regarding its proper handling and disposal and precipitated the development of new NORM-related regulations. The regulation of NORM affects the management of government facilities as well as a broad range of industrial processes. Recognizing that NORM regulation at the federal level is extremely limited, Argonne National Laboratory (ANL) conducted a 50-state survey to determine the extent to which states have assumed the responsibility for regulating NORM as well as the NORM standards that are currently being applied at the state level. Though the survey indicates that NORM regulation comprises a broad spectrum of controls from full licensing requirements to virtually no regulation at afl, a trend is emerging toward recognition of the need for increased regulation of potential NORM hazards, particularly in the absence of federal standards.

  20. Remote material handling in the Plutonium Immobilization Project. Revision 1

    SciTech Connect

    Brault, J.R.

    2000-03-13

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports.

  1. Molten Materials Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  2. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    SciTech Connect

    Mueth, Joachim

    2013-07-01

    waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

  3. Shielding analysis of glove boxes for handling of plutonium materials

    SciTech Connect

    Rainisch, R.

    1996-12-31

    The end of the Cold War has led the U.S. Department of Energy to adopt new programs for the management of excess plutonium materials. The programs center on placing plutonium is safe, long-term storage (50 yr) prior to final disposition. Before the plutonium can be placed in storage, materials will have to be stabilized and repackaged. Savannah River site (SRS) is pursuing the design of facilities for the stabilization of plutonium materials. Plutonium handling is to be performed in airtight glove boxes or similar enclosures. Glove boxes will incorporate radiation shielding for the protection of operators. This paper addresses the shielding configuration of the glove boxes and protection of operating personnel from external radiation. Shielding analysis of the glove boxes included (a) identification of plutonium source terms; (b) analysis of extremity exposures, which pertains to workers hands and forearms exposure; (c) shielding analysis, which includes shielding windows (transparent shielding) and glove-box walls; and (d) measures to enhance the radiological design of the enclosures.

  4. 49 CFR 176.72 - Handling of break-bulk hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Handling of break-bulk hazardous materials. 176.72 Section 176.72 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.72 Handling of break-bulk hazardous materials. (a) A metal...

  5. 49 CFR 176.72 - Handling of break-bulk hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Handling of break-bulk hazardous materials. 176.72 Section 176.72 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.72 Handling of break-bulk hazardous materials. (a) A metal...

  6. 49 CFR 176.72 - Handling of break-bulk hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Handling of break-bulk hazardous materials. 176.72 Section 176.72 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.72 Handling of break-bulk hazardous materials. (a) A metal...

  7. Radioactive materials in biosolids : dose modeling.

    SciTech Connect

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  8. Introduction to naturally occurring radioactive material

    SciTech Connect

    Egidi, P.

    1997-08-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose

  9. Gamma emitting radioactive materials in household dinnerware

    NASA Astrophysics Data System (ADS)

    Khalil, Fawzia Ahmad

    A variety of commonly available household and tableware items and some specialty glass materials commonly found in everyday life were examined for their radioactivity content with two different detection and measurement methods. Dinnerware is produced mainly from clay and sand at high temperatures. Therefore, it should be expected to have some degree of radioactivity. It is also stored in confined places, which permits radon accumulation. The natural radioactivity due to the presence of 238U, 232Th and 40K in dinnerware used in houses was measured. Many dinnerware items from various origins that are sold on the open market were studied. Measurements of specific activities of 238U, 232Th, 40K and 137Cs radionuclide for the samples were carried out. The measurements were made by gamma-ray spectrometry having a high-purity germanium (HpGe) detector connected to a multichannel analyzer and a computer system. The average values of specific activities were (6.03 ± 0.54 to 223.67 ± 22.37 for 238U; 2.87 ± 0.14 to 513.85 ± 15.42 for 232Th; 28.67 ± 2.01 to 2726.70 ± 54.53 for 40K; and 0.592 ± 0.037 to 3.549 ± 0.248 for 137Cs) Bq kg-1, respectively. The glazed samples seemed to contribute most of the activity, although also unglazed samples showed some activity. The absorbed dose rates, radium equivalent and external hazard index were also calculated and tabulated. CR-39 solid-state nuclear track detectors were used to measure the radon track density, exhalation rate and effective radium content for the investigated samples. The exhalation rate was found to vary from 4.376 to 8.144 Bq m-2 d-1. It appears that foreign ceramic products, especially Chinese ones with high uranium content, eventually enter the country. The results from the two methods are compared and their combined uncertainties were estimated from the relation of relative combined variance. In Egypt, no special regulations exist concerning radioactivity in glazed earthenware. On the basis of the previous

  10. RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE

    SciTech Connect

    Watkins, R.; Leduc, D.

    2011-03-24

    Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

  11. WALS: A sensor-based robotic system for handling nuclear materials

    SciTech Connect

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-12-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool.

  12. Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)

    SciTech Connect

    Lorenzen, J,; Lindberg, M.; Luvstrand, J.

    2002-02-26

    Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange resins by pyrolysis, is the vast volume reduction which minimizes the cost for final storage and results in an inert end-product which is feasible for safe final disposal. The amount of uranium in the incinerable waste has impact on the quality of the resulting ash. The quality improves with lower U-content. One way of reducing the Ucontent is leaching using a chemical process before and if necessary also after the incineration. Ranstad Mineral AB has been established in the 1960s to support the Swedish national program for uranium mining in southern Sweden. Ranstad Mineral works among others wit h chemical processes to reduce uranium content by leaching. During 1998-2000 about 150 tons/year have been processed. The goal was to reach uranium residues of less than 0.02% for disposal on the municipal waste disposal.

  13. 9 CFR 318.18 - Handling of certain material for mechanical processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Handling of certain material for mechanical processing. 318.18 Section 318.18 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PREPARATION OF PRODUCTS General § 318.18 Handling of certain material for mechanical processing. Material...

  14. 49 CFR 172.403 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume... 49 Transportation 2 2014-10-01 2014-10-01 false Class 7 (radioactive) material. 172.403 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.403 Class 7 (radioactive) material. (a) Unless excepted...

  15. 49 CFR 172.403 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Register citations affecting § 172.403, see the List of CFR Sections Affected, which appears in the Finding... 49 Transportation 2 2013-10-01 2013-10-01 false Class 7 (radioactive) material. 172.403 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.403 Class 7 (radioactive) material. (a) Unless excepted...

  16. 49 CFR 172.403 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Register citations affecting § 172.403, see the List of CFR Sections Affected, which appears in the Finding... 49 Transportation 2 2012-10-01 2012-10-01 false Class 7 (radioactive) material. 172.403 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.403 Class 7 (radioactive) material. (a) Unless excepted...

  17. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  18. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  19. Transporting radioactive materials: Q & A to your questions

    SciTech Connect

    Not Available

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

  20. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  1. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  2. Learning to Design and Analyze Materials Handling Systems: Developing Multimedia Tools

    ERIC Educational Resources Information Center

    Heragu, Sunderesh; Jennings, Sybillyn

    2003-01-01

    In this paper, we describe aspects related to learning and learning assessment including pedagogy, cognition, pilot study and results from the study. This study is conducted for an educational module on "10 Principles of Materials Handling". This module along with another on "Analysis and Design of Integrated Materials Handling Systems" constitute…

  3. 77 FR 45612 - Federal Acquisition Regulation; Information Collection; Notice of Radioactive Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Regulation; Information Collection; Notice of Radioactive Materials AGENCY: Department of Defense (DOD... approved information collection requirement concerning Notice of Radioactive Materials. Public comments are... comments identified by Information Collection 9000- 0107, Notice of Radioactive Materials, by any of...

  4. Spreadsheet application to classify radioactive material for shipment

    SciTech Connect

    Brown, A.N.

    1997-12-01

    A spreadsheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spreadsheet are used to confirm the proper US Department of Transportation (DOT) classification when offering radioactive material packages for transport. The user must input to the spreadsheet the mass of the material being classified, the physical form (liquid or not), and the activity of each regulated nuclide. The spreadsheet uses these inputs to calculate two general values: (1) the specific activity of the material, and (2) a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material (Yes or No). If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three Low Specific Activity designations (LSA-I, LSA-II, LSA-III, or Not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity).

  5. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  6. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    SciTech Connect

    Wilson, M.J.

    1993-10-01

    The Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration.

  7. Semi-remote handling of radioactive devices in the Fermilab target stations

    SciTech Connect

    Eartly, D.; Currier, R.; Lindberg, J.; Sobczynski, S.; Stredde, H.; Strickland, W.

    1984-01-01

    Six additional, isolated, and self-contained target stations are being built as part of the upgrade of the three Fermilab fixed target Experimental Areas. One new system of shielding and semi-remote component handling via a crane is being developed for all of these. The first of these stations is under test. The system is simple and flexible. It successfully provides semi-remote handling of components from within the shielding of the stations.

  8. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  9. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  10. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  11. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  12. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  13. 49 CFR 174.600 - Special handling requirements for materials extremely poisonous by inhalation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....600 Special handling requirements for materials extremely poisonous by inhalation. A tank car containing a material extremely poisonous by inhalation which is a Division 2.3 material in Hazard Zone A or a Division 6.1 material in Hazard Zone A, as defined in § 173.133(a)(2) of this subchapter, may...

  14. 49 CFR 174.600 - Special handling requirements for materials extremely poisonous by inhalation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....600 Special handling requirements for materials extremely poisonous by inhalation. A tank car containing a material extremely poisonous by inhalation which is a Division 2.3 material in Hazard Zone A or a Division 6.1 material in Hazard Zone A, as defined in § 173.133(a)(2) of this subchapter, may...

  15. 49 CFR 174.600 - Special handling requirements for materials extremely poisonous by inhalation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....600 Special handling requirements for materials extremely poisonous by inhalation. A tank car containing a material extremely poisonous by inhalation which is a Division 2.3 material in Hazard Zone A or a Division 6.1 material in Hazard Zone A, as defined in § 173.133(a)(2) of this subchapter, may...

  16. 49 CFR 174.600 - Special handling requirements for materials extremely poisonous by inhalation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....600 Special handling requirements for materials extremely poisonous by inhalation. A tank car containing a material extremely poisonous by inhalation which is a Division 2.3 material in Hazard Zone A or a Division 6.1 material in Hazard Zone A, as defined in § 173.133(a)(2) of this subchapter, may...

  17. 49 CFR 174.600 - Special handling requirements for materials extremely poisonous by inhalation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....600 Special handling requirements for materials extremely poisonous by inhalation. A tank car containing a material extremely poisonous by inhalation which is a Division 2.3 material in Hazard Zone A or a Division 6.1 material in Hazard Zone A, as defined in § 173.133(a)(2) of this subchapter, may...

  18. Potential of pottery materials in manufacturing radioactive waste containers.

    PubMed

    Helal, A A; Alian, A M; Aly, H M; Khalifa, S M

    2003-07-01

    Various pottery materials were evaluated for possible use in manufacturing containers for radioactive waste. Their potential was examined from the viewpoints of the effectiveness of disposal and the changes induced in them by gamma rays. Samples of these materials were irradiated with high-energy neutrons and gamma rays in a reactor near its core. the physical and mechanical properties of the materials before and after gamma irradiation (in a 60Co gamma cell) were compared. The study showed that pottery materials are resistant to radiation. Therefore, they were proposed for manufacturing drums for disposal of radioactive waste of high gamma activity. PMID:12878117

  19. Activity concentration of natural radioactive nuclides in nonmetallic industrial raw materials in Japan.

    PubMed

    Iwaoka, Kazuki; Tabe, Hiroyuki; Yonehara, Hidenori

    2014-11-01

    Natural materials such as rock, ore, and clay, containing natural radioactive nuclides are widely used as industrial raw materials in Japan. If these are high concentrations, the workers who handle the material can be unknowingly exposed to radiation at a high level. In this study, about 80 nonmetallic natural materials frequently used as industrial raw materials in Japan were comprehensively collected from several industrial companies, and the activity concentrations of (238)U series, (232)Th series and (40)K in the materials was determined by ICP-MS (inductively-coupled plasma mass spectrometer) and gamma ray spectrum analyses. Effective doses to workers handling them were estimated by using methods for dose estimation given in the RP 122. We found the activity concentrations to be lower than the critical values defined by regulatory requirements as described in the IAEA Safety Guide. The maximum estimated effective dose to workers handling these materials was 0.16 mSv y(-1), which was lower than the reference level (1-20 mSv y(-1)) for existing situation given in the ICRP Publ.103. PMID:25046866

  20. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  1. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012

    SciTech Connect

    Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-10-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

  2. Integrating CAD/CAM in Automation and Materials Handling

    ERIC Educational Resources Information Center

    Deal, Walter F.; Jones, Catherine E.

    2012-01-01

    Humans by their very nature are users of tools, materials, and processes as a part of their survival and existence. As humans have progressed over time, their civilizations and societies have changed beyond imagination and have moved from hunters and gatherers of food and materials for survival to sophisticated societies with complex social and…

  3. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... spur railroad tracks where a rolling car could contact other cars being worked, enter a building,...

  4. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... spur railroad tracks where a rolling car could contact other cars being worked, enter a building,...

  5. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... spur railroad tracks where a rolling car could contact other cars being worked, enter a building,...

  6. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... spur railroad tracks where a rolling car could contact other cars being worked, enter a building,...

  7. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... spur railroad tracks where a rolling car could contact other cars being worked, enter a building,...

  8. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect

    1988-06-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

  9. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  10. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  11. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. ); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. )

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  12. Space Station Freedom Toxic and Reactive Materials Handling

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R. (Editor)

    1990-01-01

    Viable research in materials processing in space requires the utilization of a wide variety of chemicals and materials, many of which are considered toxic and/or highly reactive with other substances. A realistic view of the experiments which are most likely to be accomplished in the early Space Station phases are examined and design issues addressed which are related to their safe implementation. Included are discussions of materials research on Skylab, Spacelab, and the Shuttle mid-deck; overviews of early concepts for specialized Space Station systems designed to help contain potential problems; descriptions of industrial experience with ground-based research; and an overview of the state-of-the-art in contamination detection systems.

  13. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  14. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  15. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  16. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  17. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  18. 29 CFR 1926.251 - Rigging equipment for material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... synthetic fiber rope (conventional three strand construction), and synthetic web (nylon, polyester, and... material, and the number of legs if more than one. (e) Synthetic webbing (nylon, polyester, and... shall be taken: (i) Nylon web slings shall not be used where fumes, vapors, sprays, mists or liquids...

  19. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    SciTech Connect

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    2009-01-01

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory for nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.

  20. Postaccident cleanup analysis for transportation of radioactive materials

    SciTech Connect

    Chen, S.Y.; Biwer, B.M.

    1998-07-01

    Approximately 5 to 10 million packages of radioactive material and wastes are shipped annually in the US. Most of these shipments consist of small quantities of medical and research isotopes. However, larger quantities of radioactive wastes are shipped by the US Department of Energy (DOE) via commercial truck or rail service. The number of shipments of radioactive waste is expected to increase over the next several years as efforts to dispose of waste stored and generated at DOE sites progress. The potential for a severe accident involving these anticipated waste shipments is small, but not insignificant. The probability of a severe accident resulting in the largest credible release of material has been estimated to range from approximately 0.01 to 0.1 over the 20-year time period considered for permanent disposal of each of the low-level, transuranic, and high-level radioactive waste types (LLW, TRUW, and HLW). The potential radiological consequences of the most severe credible accident involving each of these waste types could adversely affect the community in which it occurred. These consequences are considered here. Accidents involving spent nuclear fuel (SNF) shipments are of concern to the public and are also considered. In this paper, a pathway analysis code, the RISKIND computer program, has been used as a screening tool to help develop an example action plan for both the early and intermediate phases of an accident involving the release of radioactive materials. RISKIND was developed for the analysis of radiological consequences and health risks to individuals and the collective population from exposures associated with the transport of SNF or other radioactive materials. RISKIND was developed by Argonne National Laboratory under the support of the DOE Office of Civilian Radioactive Waste Management.

  1. Emergency department management of patients internally contaminated with radioactive material.

    PubMed

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2015-02-01

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with 1 or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome to the long-term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, calcium diethylenetriamine pentaacetic acid (DTPA) and zinc DTPA. PMID:25455668

  2. Emergency department management of patients internally contaminated with radioactive material

    DOE PAGESBeta

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  3. Safety assessment of a robotic system handling nuclear material

    SciTech Connect

    Atcitty, C.B.; Robinson, D.G.

    1996-02-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable.

  4. Shipment of radioactive materials by the US Department of Energy

    SciTech Connect

    Not Available

    1986-01-01

    This brochure provides notification of, and information on, the general types of radioactive material shipments being transported for or on behalf of DOE in commerce across state and other jurisdictional boundaries. This brochure addresses: packaging and material types, shipment identification, modes of transport/materials shipped, DOE policy for routing and oversize/overweight shipments, DOE policy for notification and cargo security, training, emergency assistance, compensation for nuclear accidents, safety record, and principal DOE contact.

  5. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  6. 10 CFR Appendix A to Part 37 - Category 1 and Category 2 Radioactive Materials

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Category 1 and Category 2 Radioactive Materials A Appendix... QUANTITIES OF RADIOACTIVE MATERIAL Pt. 37, App. A Appendix A to Part 37—Category 1 and Category 2 Radioactive... are provided for practical usefulness only. Radioactive material Category 1(TBq) Category...

  7. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  8. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    NASA Astrophysics Data System (ADS)

    Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  9. A guide to the safe handling of hazardous materials accidents, 2nd edition

    SciTech Connect

    Not Available

    1990-01-01

    This book describes the Department of Transportation hazard classes, the terms used to describe the classes of materials, and emergency control tactics. Each hazard class section also contains a flow chart designed to assist the on-scene emergency responder during the handling of a hazardous material accident.

  10. Storage, Handling and Preservation of Audiovisual Materials. AV in Action 3.

    ERIC Educational Resources Information Center

    Thompson, Anthony Hugh

    Designed to provide the librarian with suggestions and guidelines for storing and preserving audiovisual materials, this pamphlet is divided into four major chapters: (1) Normal Use Storage Conditions; (2) Natural Lifetime, Working Lifetime and Long-Term Storage; (3) Handling; and (4) Shelving of Normal Use Materials. Topics addressed include:…

  11. 30 CFR 77.1915 - Storage and handling of combustible materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of spontaneous combustion shall not be used for fill or as surfacing material within 100 feet of any... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1915 Storage and handling of combustible materials....

  12. 30 CFR 77.1915 - Storage and handling of combustible materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of spontaneous combustion shall not be used for fill or as surfacing material within 100 feet of any... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1915 Storage and handling of combustible materials....

  13. 30 CFR 77.1915 - Storage and handling of combustible materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of spontaneous combustion shall not be used for fill or as surfacing material within 100 feet of any... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1915 Storage and handling of combustible materials....

  14. 30 CFR 77.1915 - Storage and handling of combustible materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of spontaneous combustion shall not be used for fill or as surfacing material within 100 feet of any... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1915 Storage and handling of combustible materials....

  15. 30 CFR 77.1915 - Storage and handling of combustible materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of spontaneous combustion shall not be used for fill or as surfacing material within 100 feet of any... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1915 Storage and handling of combustible materials....

  16. Oak Ridge National Laboratory shipping containers for radioactive materials

    SciTech Connect

    Schaich, R.W.

    1980-05-01

    The types of containers used at ORNL for the transport of radioactive materials are described. Both returnable and non-returnable types are included. Containers for solids, liquids and gases are discussed. Casks for the shipment of uranium, irradiated fuel elements, and non-irradiated fuel elements are also described. Specifications are provided. (DC)

  17. Radioactive Material Transportation Requirements for the Department of Energy

    SciTech Connect

    John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

    2000-07-01

    The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

  18. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A container for storage of radioactive material comprising a container body nd a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  19. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  20. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  1. A pill to treat people exposed to radioactive materials

    SciTech Connect

    Abergel, Rebecca

    2013-10-31

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  2. A pill to treat people exposed to radioactive materials

    ScienceCinema

    Abergel, Rebecca

    2014-06-24

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  3. Experiences managing radioactive material at the National Ignition Facility.

    PubMed

    Thacker, Rick L

    2013-06-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion and experiments studying high energy density science. Many experiments performed at the National Ignition Facility involve radioactive materials; these may take the form of tritium and small quantities of depleted uranium used in targets, activation products created by neutron-producing fusion experiments, and fission products produced by the fast fissioning of the depleted uranium. While planning for the introduction of radioactive material, it was recognized that some of the standard institutional processes would need to be customized to accommodate aspects of NIF operations, such as surface contamination limits, radiological postings, airborne tritium monitoring protocols, and personnel protective equipment. These customizations were overlaid onto existing work practices to accommodate the new hazard of radioactive materials. This paper will discuss preparations that were made prior to the introduction of radioactive material, the types of radiological work activities performed, and the hazards and controls encountered. Updates to processes based on actual monitoring results are also discussed. PMID:23629067

  4. Detection of radioactive materials at Astrakhan

    SciTech Connect

    Cantut, L; Dougan, A; Hemberger, P; Kravenchenko, Gromov, A; Martin, D; Pohl, B; Richardson, J H; Williams, H; York, R; Zaitsev, E

    1999-07-01

    Astrakhan is the major Russian port on the Caspian Sea. Consequently, it is the node for significant river traffic up the Volga, as well as shipments to and from other seaports on the Caspian Sea. The majority of this latter trade across the Caspian Sea is with Iran. The Second Line of Defense and RF SCC identified Astrakhan as one of the top priorities for upgrading with modern radiation detection equipment. The purpose of the cooperative effort between RF SCC and DOE at Astrakhan is to provide the capability through equipment and training to monitor and detect illegal shipments of nuclear materials through Astrakhan. The first facility was equipped with vehicle and rail portal monitoring systems. The second facility was equipped with pedestrian, vehicle and rail portal monitoring systems. A second phase of this project will complete the equipping of Astrakhan by providing additional rail and handheld systems, along with completion of video systems. Associated with both phases is the necessary equipment and procedural training to ensure successful operation of the equipment in order to detect and deter illegal trafficking in nuclear materials. The presentation will described this project and its overall relationship to the Second Line of Defense Program.

  5. Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain

    SciTech Connect

    Walker, Randy M; Kopsick, Deborah A; Warren, Tracy A; Abercrombie, Robert K; Sheldon, Frederick T; Hill, David E; Gross, Ian G; Smith, Cyrus M

    2007-01-01

    One of the main components of the Environmental Protection Agency's (EPA) Clean Materials Program is to prevent the loss of radioactive materials through the use of tracking technologies. If a source is inadvertently lost or purposely abandoned or stolen, it is critical that the source be recovered before harm to the public or the environment occurs. Radio frequency identification (RFID) tagging on radioactive sources is a technology that can be operated in the active or passive mode, has a variety of frequencies available allowing for flexibility in use, is able to transmit detailed data and is discreet. The purpose of the joint DOE and EPA Radiological Source Tracking and Monitoring (RadSTraM) project is to evaluate the viability, effectiveness and scalability of RFID technology under a variety of transportation scenarios. The goal of the Phase II was to continue testing integrated RFID tag systems from various vendors for feasibility in tracking radioactive sealed sources which included the following performance objectives: 1. Validate the performance of RFID intelligent systems to monitor express air shipments of medical radioisotopes in the nationwide supply chain, 2. Quantify the reliability of these tracking systems with regards to probability of tag detection and operational reliability, 3. Determine if the implementation of these systems improves manpower effectiveness, and 4. Demonstrate that RFID tracking and monitoring of radioactive materials is ready for large scale deployment at the National level. For purposes of analysis, the test scenario employed in this study utilized the real world commerce supply chain process for radioactive medical isotopes to validate the performance of intelligent RFID tags. Three different RFID systems were assessed from a shipping and packaging perspective, included varied environmental conditions, varied commodities on board vehicles, temporary staging in shipping terminals using various commodities and normal

  6. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  7. Advance assessment for movement of Haz Cat 3 radioactive materials.

    SciTech Connect

    Vosburg, Susan K.

    2010-04-01

    The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2) HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.

  8. Design and operation of a remotely operated plutonium waste size reduction and material handling process

    SciTech Connect

    Stewart, III, J A; Charlesworth, D L

    1986-01-01

    Noncombustible /sup 238/Pu and /sup 239/Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant, and is being retrievably stored there. As part of the long-term plant to process the stored waste and current waste for permanent disposal, a remote size reduction and material handling process is being cold-tested at Savannah River Laboratory. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system has been completed. Fabrication and acceptance testing of the Telerobat, a robotically controlled manipulator has been completed. Testing is scheduled to begin in 3/86. Design features maximizing the ability to remotely maintain the equipment were incorporated. Complete cold-testing of the equipment is scheduled to be completed in 1987.

  9. Analysis of Material Handling Safety in Construction Sites and Countermeasures for Effective Enhancement

    PubMed Central

    Anil Kumar, C. N.; Sakthivel, M.; Elangovan, R. K.; Arularasu, M.

    2015-01-01

    One of many hazardous workplaces includes the construction sites as they involve several dangerous tasks. Many studies have revealed that material handling equipment is a major cause of accidents at these sites. Though safety measures are being followed and monitored continuously, accident rates are still high as either workers are unaware of hazards or the safety regulations are not being strictly followed. This paper analyses the safety management systems at construction sites through means of questionnaire surveys with employees, specifically referring to safety of material handling equipment. Based on results of the questionnaire surveys, two construction sites were selected for a safety education program targeting worker safety related to material handling equipment. Knowledge levels of the workers were gathered before and after the program and results obtained were subjected to a t-test analysis to mark significance level of the conducted safety education program. PMID:26446572

  10. Stochastic Modeling of Radioactive Material Releases

    SciTech Connect

    Andrus, Jason; Pope, Chad

    2015-09-01

    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was

  11. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect

    Not Available

    1988-04-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material found in the West Lake Landfill. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. 8 refs., 2 figs., 1 tab.

  12. A manual for implementing residual radioactive material guidelines

    SciTech Connect

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  13. Calculations and observations of induced radioactivity in spaceborne materials

    SciTech Connect

    Dyer, C.S.; Truscott, P.R.; Evans, H.E. . Space and Communications Dept.); Hammond, N.; Comber, C. ); Battersby, S. )

    1994-06-01

    All material in space becomes radioactive due to nuclear interactions with cosmic rays, radiation belt protons and solar flare particles. This poses a particular problem for gamma-ray detectors as the energy depositions fall in the precise window of interest. On the positive side, samples returned to earth can be monitored to provide information on the primary and secondary radiations experienced. Here, radiation transport calculations are compared with observations of induced radioactivity obtained from the OSSE experiment on the Compton Observatory and the CREAM experiment on Space Shuttle. These results illustrate the importance of secondary particles.

  14. Demonstration of remotely operated TRU waste size reduction and material handling equipment

    SciTech Connect

    Looper, M G; Charlesworth, D L

    1988-01-01

    The Savannah River Laboratory (SRL) is developing remote size reduction and material handling equipment to prepare /sup 238/Pu contaminated waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The waste is generated at the Savannah River Plant (SRP) from normal operation and decommissioning activity and is retrievably stored onsite. A Transuranic Waste Facility for preparing, size-reducing, and packaging this waste for disposal is scheduled for completion in 1995. A cold test facility for demonstrating the size reduction and material handling equipment was built, and testing began in January 1987. 9 figs., 1 tab.

  15. Human factors programs for high-level radioactive waste handling systems

    SciTech Connect

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process.

  16. Toxic and reactive material handling on Spacelab J and USML-1

    NASA Technical Reports Server (NTRS)

    Dashner, Jack

    1990-01-01

    Spacelab J and USML-1 provide prime examples of materials which are toxic at ambient conditions or toxic during the processing stages. The experimentation requirements are outlined in relation to toxicity and reactive materials handling. Triple containment is the preferred method for prevention of toxic material release in habitable areas for catastrophic hazards. The containments must be adequate for the intended use and environment. When operations preclude triple containment, innovative methods should be explored.

  17. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  18. Quantitative physical and handling characteristics of novel antibacterial braided silk suture materials.

    PubMed

    Chen, Xiaojie; Hou, Dandan; Tang, Xiaoqi; Wang, Lu

    2015-10-01

    Surgical braided silk sutures have been widely used because these materials exhibit good handling characteristics, ease of use, and ideal knot security. However, surgical silk sutures likely cause surgical site infections because these sutures are composed of natural protein materials with a braided structure. As such, antibacterial silk sutures for clinical wound closure should be developed. Braided silk suture could be treated and modified with antibacterial agent, provided that excellent physical and handling characteristics of this material should maximize maintained. This study aimed to quantitatively investigate the effect of antibacterial treatment with different parameters on physical and handling characteristics of novel antibacterial braided silk sutures. Physical and handling characteristics, including appearance, knot-pull tensile strength, pullout friction resistance, tissue drag friction resistance, and bending stiffness, were evaluated. After physical and handling tests were conducted, images showed morphological characteristics were obtained and evaluated to investigate the relationship between antibacterial treatment and physical and handling properties. Results showed that suture diameter increased and reached the nearest thick size specification; knot-pull tensile strength decreased but remained higher than the standard value by at least 40.73%. Fracture asynchronism during knot-pull tensile strength test suggested that the fineness ratio of shell and core strands may enhance knot-pull tensile strength. Static and dynamic frictions of suture-to-suture friction behavior were slightly affected by antibacterial treatment, and changed to less than 16.07% and 32.77%, respectively. Suture-to-tissue friction and bending stiffness increased by approximately 50%; the bending stiffness of the proposed suture remained efficient compared with that of synthetic sutures. Therefore, good physical and handling characteristics can be maintained by selecting

  19. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  20. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. PMID:25816274

  1. 49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tests for special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.469 Tests for special form Class 7 (radioactive) materials. (a) Special form Class 7 (radioactive)...

  2. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  3. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    SciTech Connect

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  4. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.421 Excepted packages for limited quantities of Class 7 (radioactive) materials. (a) A...

  5. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.421 Excepted packages for limited quantities of Class 7 (radioactive) materials. (a) A...

  6. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category...

  7. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.421 Excepted packages for limited quantities of Class 7 (radioactive) materials. (a) A...

  8. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  9. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category...

  10. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category...

  11. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.421 Excepted packages for limited quantities of Class 7 (radioactive) materials. (a) A...

  12. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category...

  13. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.421 Excepted packages for limited quantities of Class 7 (radioactive) materials. A Class...

  14. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  15. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category...

  16. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  17. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  18. 49 CFR 173.423 - Requirements for multiple hazard limited quantity Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Class 7 (radioactive) materials. 173.423 Section 173.423 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.423 Requirements for multiple hazard limited quantity Class 7 (radioactive) materials....

  19. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How can tribes obtain training in handling hazardous material? 170.905 Section 170.905 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear...

  20. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How can tribes obtain training in handling hazardous material? 170.905 Section 170.905 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear...

  1. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND...

  2. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND...

  3. 29 CFR 1926.1000 - Rollover protective structures (ROPS) for material handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material handling equipment: To all rubber-tired, self-propelled scrapers, rubber-tired front-end loaders, rubber-tired dozers, wheel-type agricultural and industrial tractors, crawler tractors, crawler-type... rollover protective structures for compactors and rubber-tired skid-steer equipment is reserved...

  4. 29 CFR 1926.1000 - Rollover protective structures (ROPS) for material handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material handling equipment: To all rubber-tired, self-propelled scrapers, rubber-tired front-end loaders, rubber-tired dozers, wheel-type agricultural and industrial tractors, crawler tractors, crawler-type... rollover protective structures for compactors and rubber-tired skid-steer equipment is reserved...

  5. 29 CFR 1926.1000 - Rollover protective structures (ROPS) for material handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material handling equipment: To all rubber-tired, self-propelled scrapers, rubber-tired front-end loaders, rubber-tired dozers, wheel-type agricultural and industrial tractors, crawler tractors, crawler-type... rollover protective structures for compactors and rubber-tired skid-steer equipment is reserved...

  6. 29 CFR 1926.1000 - Rollover protective structures (ROPS) for material handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material handling equipment: To all rubber-tired, self-propelled scrapers, rubber-tired front-end loaders, rubber-tired dozers, wheel-type agricultural and industrial tractors, crawler tractors, crawler-type... rollover protective structures for compactors and rubber-tired skid-steer equipment is reserved...

  7. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How can tribes obtain training in handling hazardous material? 170.905 Section 170.905 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear...

  8. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How can tribes obtain training in handling hazardous material? 170.905 Section 170.905 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear...

  9. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How can tribes obtain training in handling hazardous material? 170.905 Section 170.905 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear...

  10. Materials Handling and Structures 01.0302 for Agribusiness, Natural Resources, and Environmental Occupations.

    ERIC Educational Resources Information Center

    Finstad, Dennis; And Others

    The document presents unit plans which offer lists of experiences and competencies to be learned in the area of materials handling and structuring for agribusiness, natural resources, and environmental occupations. The units include: (1) farmstead planning and reorganization; (2) site preparation (contour, terraces, waterways; land measurements…

  11. Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines

    SciTech Connect

    Martynov, B.V.

    1995-10-01

    Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

  12. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

  13. Method of encapsulating solid radioactive waste material for storage

    DOEpatents

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  14. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  15. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  16. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  17. Apparatus for remote handling of materials. [mixing or analyzing dangerous chemicals

    NASA Technical Reports Server (NTRS)

    Kimball, R. B.; Hodder, D. T.; Wrinkle, W. W. (Inventor)

    1974-01-01

    Apparatus for remote handling of materials are described. A closed housing is provided with first and second containers and first and second reservoirs for holding materials to be mixed. The materials are transferable from the reservoirs to the first container where they are mixed. The mixed materials are then conveyed from the first container to the second container preferably by dumping the mixed materials into a funnel positioned over the second container. The second container is then moved to a second position for analysis of the mixed materials. For example, the materials may be ignited and the flame analyzed. Access, such as a sight port, is provided in the housing at the analysis position. The device provides a simple and inexpensive apparatus for safely mixing a pyrophoric material and an oxidizer which together form a thermite type mixture that burns to produce a large quantity of heat and light.

  18. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  19. Extending the utility of a radioactive material package

    SciTech Connect

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  20. 25 CFR 170.906 - Who cleans up radioactive and hazardous material spills?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Who cleans up radioactive and hazardous material spills... § 170.906 Who cleans up radioactive and hazardous material spills? The carrier is typically responsible for cleanup of a radioactive or hazardous material spill with assistance from the shipper...

  1. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  2. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  3. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  4. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  5. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  6. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  7. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  8. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  9. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  10. 10 CFR 37.77 - Advance notification of shipment of category 1 quantities of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of radioactive material. 37.77 Section 37.77 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL PROTECTION OF CATEGORY 1 AND CATEGORY 2 QUANTITIES OF RADIOACTIVE MATERIAL Physical Protection in Transit § 37.77 Advance notification of shipment of category 1 quantities of radioactive material. As specified...

  11. 25 CFR 170.906 - Who cleans up radioactive and hazardous material spills?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Who cleans up radioactive and hazardous material spills... § 170.906 Who cleans up radioactive and hazardous material spills? The carrier is typically responsible for cleanup of a radioactive or hazardous material spill with assistance from the shipper...

  12. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  13. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  14. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  15. 25 CFR 170.906 - Who cleans up radioactive and hazardous material spills?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who cleans up radioactive and hazardous material spills... § 170.906 Who cleans up radioactive and hazardous material spills? The carrier is typically responsible for cleanup of a radioactive or hazardous material spill with assistance from the shipper...

  16. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  17. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  18. 25 CFR 170.906 - Who cleans up radioactive and hazardous material spills?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Who cleans up radioactive and hazardous material spills... § 170.906 Who cleans up radioactive and hazardous material spills? The carrier is typically responsible for cleanup of a radioactive or hazardous material spill with assistance from the shipper...

  19. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  20. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  1. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  2. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  3. 25 CFR 170.906 - Who cleans up radioactive and hazardous material spills?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Who cleans up radioactive and hazardous material spills... § 170.906 Who cleans up radioactive and hazardous material spills? The carrier is typically responsible for cleanup of a radioactive or hazardous material spill with assistance from the shipper...

  4. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  5. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... regulations for the packaging and transportation of radioactive material. The NRC is issuing for public...), that would amend its regulations for the packaging and transportation of radioactive material in Part... requirements for the packaging and transportation of radioactive material. III. Draft Regulatory Guide The...

  6. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  7. Naturally occurring radioactive material in the oil and gas industry

    SciTech Connect

    Steingraber, W.A.

    1994-12-31

    Naturally occurring radioactive material (NORM) has been found in the Earth`s crust and soil, the water we drink, the food we eat, the air we breathe, and the tissues of every living organism. It is relatively easy to determine {open_quotes}concentrations{close_quotes}, or specific activity levels, in the range of 1 part per trillion for radioactive materials. With radioactive elements so abundant and detection possible at such low levels, the presence of NORM in oil and gas operations shouldn`t be surprising. In fact, this presence has been recognized since at least the 1930`s, but the phenomenon received only minimal attention in the United States until the mid-1980`s. At that time regulatory agencies in several oil- and gas-producing states began to focus on NORM in the exploration and production segment of the industry, expressing concern over potential health and safety implications. The most significant aspects of NORM in oil production operations include original source, transport media, composition/radionuclides present, measurement methods, health/safety issues, waste classification, and waste disposal. In addition, I will summarize industry-sponsored NORM data collection and analysis efforts being conducted to aid in development of sound policies and procedures to address environmental, health, and safety issues. Current activities by state and federal regulatory agencies relevant to NORM in the oil and gas industry will also be reviewed.

  8. Radioactivity of natural and artificial building materials - a comparative study.

    PubMed

    Szabó, Zs; Völgyesi, P; Nagy, H É; Szabó, Cs; Kis, Z; Csorba, O

    2013-04-01

    Building materials and their additives contain radioactive isotopes, which can increase both external and internal radioactive exposures of humans. In this study Hungarian natural (adobe) and artificial (brick, concrete, coal slag, coal slag concrete and gas silicate) building materials were examined. We qualified 40 samples based on their radium equivalent, activity concentration, external hazard and internal hazard indices and the determined threshold values of these parameters. Absorbed dose rate and annual effective dose for inhabitants living in buildings made of these building materials were also evaluated. The calculations are based on (226)Ra, (232)Th and (40)K activity concentrations determined by gamma-ray spectrometry. Measured radionuclide concentrations and hence, calculated indices and doses of artificial building materials show a rather disparate distribution compared to adobes. The studied coal slag samples among the artificial building materials have elevated (226)Ra content. Natural, i.e. adobe and also brick samples contain higher amount of (40)K compared to other artificial building materials. Correlation coefficients among radionuclide concentrations are consistent with the values in the literature and connected to the natural geochemical behavior of U, Th and K elements. Seven samples (coal slag and coal slag concrete) exceed any of the threshold values of the calculated hazard indices, however only three of them are considered to be risky to use according to the fact that the building material was used in bulk amount or in restricted usage. It is shown, that using different indices can lead to different conclusions; hence we recommend considering more of the indices at the same time when building materials are studied. Additionally, adding two times their statistical uncertainties to their values before comparing to thresholds should be considered for providing a more conservative qualification. We have defined radon hazard portion to point

  9. The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials

    NASA Technical Reports Server (NTRS)

    Reuter, L. L.; Munson, J. B.

    1977-01-01

    Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials.

  10. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  11. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  12. TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM

    SciTech Connect

    T. A. Misiak

    1998-05-21

    This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

  13. Investigation of Shielding Material in Radioactive Waste Management - 13009

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    In this study, various waste packages have been prepared by using different materials. Experimental work has been performed on radiation shielding for gamma and neutron radiation. Various materials were evaluated (e.g. concrete, boron, etc.) related to different application areas in radioactive waste management. Effects of addition boric compound mixtures on shielding properties of concrete have been investigated for neutron radiation. The effect of the mixture addition on the shielding properties of concrete was investigated. The results show that negative effects of boric compounds on the strength of concrete decreasing by increasing boric amounts. Shielding efficiency of prepared mixture added concrete up to 80% better than ordinary concretes for neutron radiation. The attenuation was determined theoretically by calculation and practically by using neutron dose rate measurements. In addition of dose rate measurements, strength tests were applied on test shielding materials. (authors)

  14. TYPE B RADIOACTIVE MATERIAL PACKAGE FAILURE MODES AND CONTENTS COMPLIANCE

    SciTech Connect

    Watkins, R; Steve Hensel, S; Allen Smith, A

    2007-02-21

    Type B radioactive material package failures can occur due to any one of the following: inadequate design, manufacture, and maintenance of packages, load conditions beyond those anticipated in the regulations, and improper package loading and operation. The rigorous package design evaluations performed in the certification process, robust package manufacture quality assurance programs, and demanding load conditions prescribed in the regulations are all well established. This paper focuses on the operational aspects of Type B package loading with respect to an overbatch which may cause a package failure.

  15. Best Practices for the Security of Radioactive Materials

    SciTech Connect

    Coulter, D.T.; Musolino, S.

    2009-05-01

    This work is funded under a grant provided by the US Department of Health and Human Services, Centers for Disease Control. The Department of Health and Mental Hygiene (DOHMH) awarded a contract to Brookhaven National Laboratory (BNL) to develop best practices guidance for Office of Radiological Health (ORH) licensees to increase on-site security to deter and prevent theft of radioactive materials (RAM). The purpose of this document is to describe best practices available to manage the security of radioactive materials in medical centers, hospitals, and research facilities. There are thousands of such facilities in the United States, and recent studies suggest that these materials may be vulnerable to theft or sabotage. Their malevolent use in a radiological-dispersion device (RDD), viz., a dirty bomb, can have severe environmental- and economic- impacts, the associated area denial, and potentially large cleanup costs, as well as other effects on the licensees and the public. These issues are important to all Nuclear Regulatory Commission and Agreement State licensees, and to the general public. This document outlines approaches for the licensees possessing these materials to undertake security audits to identify vulnerabilities in how these materials are stored or used, and to describe best practices to upgrade or enhance their security. Best practices can be described as the most efficient (least amount of effort/cost) and effective (best results) way of accomplishing a task and meeting an objective, based on repeatable procedures that have proven themselves over time for many people and circumstances. Best practices within the security industry include information security, personnel security, administrative security, and physical security. Each discipline within the security industry has its own 'best practices' that have evolved over time into common ones. With respect to radiological devices and radioactive-materials security, industry best practices encompass

  16. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  17. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  18. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  19. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Care following leakage or sifting of radioactive... CARRIAGE BY VESSEL Detailed Requirements for Radioactive Materials § 176.710 Care following leakage or sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment...

  20. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Care following leakage or sifting of radioactive... CARRIAGE BY VESSEL Detailed Requirements for Radioactive Materials § 176.710 Care following leakage or sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment...

  1. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Care following leakage or sifting of radioactive... CARRIAGE BY VESSEL Detailed Requirements for Radioactive Materials § 176.710 Care following leakage or sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment...

  2. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Care following leakage or sifting of radioactive... CARRIAGE BY VESSEL Detailed Requirements for Radioactive Materials § 176.710 Care following leakage or sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment...

  3. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Authorized packages-oxidizing Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7...

  4. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Approval of special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.476 Approval of special form Class 7 (radioactive) materials. (a) Each offeror of special form Class...

  5. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Care following leakage or sifting of radioactive... CARRIAGE BY VESSEL Detailed Requirements for Radioactive Materials § 176.710 Care following leakage or sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment...

  6. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Approval of special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.476 Approval of special form Class 7 (radioactive) materials. (a) Each offeror of special form Class...

  7. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Authorized packages-oxidizing Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7...

  8. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Approval of special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.476 Approval of special form Class 7 (radioactive) materials. (a) Each offeror of special form Class...

  9. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Authorized packages-oxidizing Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7...

  10. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  11. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Authorized packages-oxidizing Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7...

  12. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Authorized packages-oxidizing Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7...

  13. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Approval of special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.476 Approval of special form Class 7 (radioactive) materials. (a) Each offeror of special form Class...

  14. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Approval of special form Class 7 (radioactive... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.476 Approval of special form Class 7 (radioactive) materials. (a) Each offeror of special form Class...

  15. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive... RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive material. Licensees shall, when determining the dose from airborne radioactive material, include...

  16. The assessment of material handling strategies in dealing with sudden loading: the effects of load handling position on trunk biomechanics.

    PubMed

    Ning, Xiaopeng; Zhou, Jie; Dai, Boyi; Jaridi, Majid

    2014-11-01

    Back injury caused by sudden loading is a significant risk among workers that perform manual handling tasks. The present study investigated the effects of load handling position on trunk biomechanics (flexion angle, L5/S1 joint moment and compression force) during sudden loading. Eleven subjects were exposed to a 6.8 kg sudden loading while standing upright, facing forward and holding load at three different vertical heights in the sagittal plane or 45° left to the sagittal plane (created by arm rotation). Results showed that the increase of load holding height significantly elevated the peak L5/S1 joint compression force and reduced the magnitude of trunk flexion. Further, experiencing sudden loading from an asymmetric direction resulted in significantly smaller peak L5/S1 joint compression force, trunk flexion angle and L5/S1 joint moment than a symmetric posture. These findings suggest that handling loads in a lower position could work as a protective strategy during sudden loading. PMID:24766903

  17. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  18. A Retrieval System for Radioactive Target Materials at the NIF

    NASA Astrophysics Data System (ADS)

    Krieger, M.; Shibata, K.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; Sangster, T. C.; Suny Collaboration; Laboratory Collaboration

    2011-10-01

    Currently, solid radioactive material collection from the NIF target chamber is performed via the DIM. The retrieval process takes several hours to complete. To decrease this time for short lived radioisotopes, the Target Materials Retrieval System (TMRS) is being designed to move a radioactive sample from the target chamber to the counting station in less than 50 seconds, using a closed-loop helium filled RaPToRS system. The TMRS consists of three components: the retrieval apparatus, RaPToRS and the counting station. Starting at 0.5 meters from TCC, the sample will move from the vacuum chamber, travel through 60 meters of 10 centimeter diameter RaPToRS tubes, reaching speeds of 10 m/s. The sample will then arrive at the counting station, where it be robotically placed in front of a gamma ray detector. The use of helium will decrease background gamma radiation produced by activated N2 normally found in a pressurized air system. This work was supported in part by the US Department of Energy through the LLE.

  19. Radioactive material package testing capabilities at Sandia National Laboratories

    SciTech Connect

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-12-31

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

  20. Identification of recently handled materials by analysis of latenthuman fingerprints using infrared spectromicroscopy

    SciTech Connect

    Grant, Ashleigh; Wilkinson, T.J.; Holman, Thomas; Martin, MichaelC.

    2005-06-08

    Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of Attenuated Total Reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, non-destructive analytical technique to the forensic study of latent human finger prints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials will be a powerful investigative tool.

  1. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  2. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  3. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  4. 29 CFR 1919.50 - Eligibility for accreditation to certificate shore-based material handling devices covered by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Accreditation To Certificate... material handling devices covered by § 1917.50 of this chapter, safety and health regulations for marine... handling devices covered by § 1917.50 of this chapter, safety and health regulations for marine...

  5. 29 CFR 1917.50 - Certification of marine terminal material handling devices (See also mandatory appendix I, of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Certification of marine terminal material handling devices (See also mandatory appendix I, of this part). 1917.50 Section 1917.50 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Cargo Handling Gear and Equipment...

  6. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477) or you may... International Atomic Energy Agency's (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R... (NRC) will jointly be submitting comments on the draft document to the IAEA. We are requesting...

  7. Health Physics Code System for Evaluating Accidents Involving Radioactive Materials.

    Energy Science and Technology Software Center (ESTSC)

    2014-10-01

    Version 03 The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes provide a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. The developer's website is: http://www.llnl.gov/nhi/hotspot/. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosivemore » release, fuel fire, or an area contamination event. Additional programs deal specifically with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. The FIDLER program can calibrate radiation survey instruments for ground survey measurements and initial screening of personnel for possible plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented in electronic help files. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Tables and graphical output can be directed to the computer screen, printer, or a disk file. The graphical output consists of dose and ground contamination as a function of plume centerline downwind distance, and radiation dose and ground contamination contours. Users have the option of displaying scenario text on the plots. HOTSPOT 3.0.1 fixes three significant Windows 7 issues: � Executable installed properly under "Program Files/HotSpot 3.0". Installation package now smaller: removed dependency on older Windows DLL files which previously needed to \\ � Forms now properly scale based on DPI instead of font for users who change their screen resolution to something other than 100%. This is a more common feature in Windows 7

  8. Health Physics Code System for Evaluating Accidents Involving Radioactive Materials.

    SciTech Connect

    2014-10-01

    Version 03 The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes provide a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. The developer's website is: http://www.llnl.gov/nhi/hotspot/. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Additional programs deal specifically with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. The FIDLER program can calibrate radiation survey instruments for ground survey measurements and initial screening of personnel for possible plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented in electronic help files. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Tables and graphical output can be directed to the computer screen, printer, or a disk file. The graphical output consists of dose and ground contamination as a function of plume centerline downwind distance, and radiation dose and ground contamination contours. Users have the option of displaying scenario text on the plots. HOTSPOT 3.0.1 fixes three significant Windows 7 issues: � Executable installed properly under "Program Files/HotSpot 3.0". Installation package now smaller: removed dependency on older Windows DLL files which previously needed to \\ � Forms now properly scale based on DPI instead of font for users who change their screen resolution to something other than 100%. This is a more common feature in Windows 7.

  9. Container and closure means for storage of radioactive material

    SciTech Connect

    Bienek, H.; Finkbeiner, R.; Wick, W.

    1984-03-20

    In the final storage of radioactive substances in containers, these containers must be sealed so as to be gas-tight by means of a cover, before they are taken to the final storage place. In order to avoid thermal stress, which has up till now been customary, of the radioactive substances on the one hand and of the container and cover on the other hand, it is proposed that the container and the sealing cover should be suitably ground on their seating areas which cooperate with each other, and when the container is closed the cover is held by prestressing on the seating area of the container. In a preferred method, after grinding, a thin equalizing layer of a highly corrosion-resistant, deformable material is applied to at least one of the seating surfaces of the container and cover, in order to achieve a compensation for any roughness which may be present, which will improve the sealing, depending on the technically and/or economically possible extent of the grinding. It is also possible, however, to form the prestressing by means of a lapped contact.

  10. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. PMID:25816275

  11. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials § 176.108 Supervision of Class 1 (explosive) materials during loading, unloading, handling...

  12. Fast Neutron Radioactivity and Damage Studies on Materials

    SciTech Connect

    Anderson, S.; Spencer, J.; Wolf, Z.; Gallagher, G.; Pellett, D.; Boussoufi, M.; Volk, J.; /Fermilab

    2007-07-23

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) to improve reliability and longevity since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas. Examples include NdFeB magnets, considered for the damping rings, injection and extraction lines and final focus, electronic and electro-optic devices to be utilized in detector readout, accelerator controls and the CCDs required for the vertex detector, as well as high and low temperature superconducting materials (LTSMs) because some magnets will be superconducting. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented for NdFeB materials at EPAC04 where the damage appeared proportional to the distances between the effective operating point and Hc. We have extended those doses, included other manufacturer's samples and measured induced radioactivities. We have also added L and HTSMs as well as a variety of relevant semiconductor and electro-optic materials including PBG fiber that we studied previously only with gamma rays.

  13. Naturally occurring radioactive materials (NORM): a matter of wide societal implication.

    PubMed

    Pescatore, C; Menon, S

    2000-12-01

    Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective. PMID:11302258

  14. [Manual material handling risk assessment and ergonomic improvement in foodstuff retailing company].

    PubMed

    Maso, S; Maccà, I; Simonetti, A; Scopa, P; Paruzzolo, P; Bonacci, A; Murgolo, I; Bartolucci, G B

    2011-01-01

    The aim of this study is to assess and reduce the risk due to manual material handling in a company involved in the foodstuff retailing. The risk assessment was performed by NIOSH Variable Lifing Index in 13 different occupational conditions. As result the risk was present in any case, with VLI values ranging from 2.12 to 2.81. A good risk reduction has been accomplished correcting properly the most important multiplier involved in the computation of the revised NIOSH Lifting equation (lifting frequency and weight of heavier products). Even if the performed risk reduction has been significant, the residual risk is still higher than the level of acceptability. PMID:23393845

  15. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    SciTech Connect

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  16. Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567

    SciTech Connect

    Vandergraaf, Tjalle T.; Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H.; Naghiyev, Jalal A.; Mehdiyeva, Afat A.

    2013-07-01

    The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

  17. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    SciTech Connect

    Luna, Robert E.; Wangler, Michael W.; Selling, Hendrik A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations.

  18. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities...

  19. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities...

  20. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to Part 73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Pt. 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities...

  1. Muscular mechanical energy expenditure as a process for detecting potential risks in manual materials handling.

    PubMed

    Gagnon, M; Smyth, G

    1991-01-01

    The problem of injuries in manual materials handling remains a big concern in industrialized countries. It has become imperative in occupational biomechanics to extend the analyses to all pertinent factors involved in working tasks and to adopt an experimental approach leading to the understanding of the relative demands imposed simultaneously on all body joints. The evaluation of joint muscular work and the processes of energy generation, absorption and transfer appears promising as a tool in the detection of risk factors in working tasks. The present study consisted of evaluating two tasks (lifting and lowering) performed at five different heights (from 15 to 185 cm) with five different loads (from 3.3 to 22.0 kg). The subjects were eight experienced workers from a food product warehouse. Cinematography techniques and two AMTI force platforms were used to collect the data. Dynamic and planar segmental analyses were performed to calculate the net muscular moments at the joints, and work was calculated from the integration of muscular power. Factorial analyses of variance with repeated measures were performed on the dependent variables to evaluate the main effects of tasks, loads, and heights (for lifting and for lowering) and the interactions. The results revealed the adoption of different movement strategies in the handling of heavier loads. In the first, a larger emphasis of energy transfer and movement economy; in the second, a reduction in the relative contribution of the shoulders to the detriment of an increased participation of the lower back and hips was found. The comparison between lifting and lowering tasks indicated that lifting was only slightly more demanding than lowering for maximum muscular moments (about 15%) but much more so for mechanical work (about 40%); however, the nature of the efforts in eccentric contractions suggests that the lowering of heavy loads may be risky. Finally, the results revealed the deviation of height of handling from the

  2. The Preemptive Stocker Dispatching Rule of Automatic Material Handling System in 300 mm Semiconductor Manufacturing Factories

    NASA Astrophysics Data System (ADS)

    Wang, C. N.; Lin, H. S.; Hsu, H. P.; Wang, Yen-Hui; Chang, Y. P.

    2016-04-01

    The integrated circuit (IC) manufacturing industry is one of the biggest output industries in this century. The 300mm wafer fabs is the major fab size of this industry. The automatic material handling system (AMHS) has become one of the most concerned issues among semiconductor manufacturers. The major lot delivery of 300mm fabs is used overhead hoist transport (OHT). The traffic jams are happened frequently due to the wide variety of products and big amount of OHTs moving in the fabs. The purpose of this study is to enhance the delivery performance of automatic material handling and reduce the delay and waiting time of product transportation for both hot lots and normal lots. Therefore, this study proposes an effective OHT dispatching rule: preemptive stocker dispatching (PSD). Simulation experiments are conducted and one of the best differentiated preemptive rule, differentiated preemptive dispatching (DPD), is used for comparison. Compared with DPD, The results indicated that PSD rule can reduce average variable delivery time of normal lots by 13.15%, decreasing average variable delivery time of hot lots by 17.67%. Thus, the PSD rule can effectively reduce the delivery time and enhance productivity in 300 mm wafer fabs.

  3. Age related differences in mechanical demands imposed on the lower back by manual material handling tasks.

    PubMed

    Shojaei, Iman; Vazirian, Milad; Croft, Emily; Nussbaum, Maury A; Bazrgari, Babak

    2016-04-11

    The prevalence of low back pain (LBP) increases with age, yet the underlying mechanism(s) responsible for this remains unclear. To explore the role of biomechanical factors, we investigated age-related differences in lower-back biomechanics during sagittally-symmetric simulated manual material handling tasks. For each task, trunk kinematics and mechanical demand on the lower back were examined, from among 60 participants within five equal-sized and gender-balanced age groups spanning from 20 to 70 years old. The tasks involved lowering a 4.5kg load from an upright standing posture to both knee height and a fixed height and then lifting the load back to the initial upright posture. During these tasks, segmental body kinematics and ground reaction forces were collected using wireless inertial measurement units and a force platform. Overall, older participants completed the tasks with larger pelvic rotation and smaller lumbar flexion. Such adopted trunk kinematics resulted in larger peak shearing demand at the lower back in older vs. younger participants. These results suggest that older individuals may be at a higher risk for developing lower back pain when completing similar manual material handling tasks, consistent with epidemiological evidence for higher risks of occupational low back pain among this cohort. PMID:26556714

  4. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect

    Teese, G.D.; Randall, W.J.

    1992-12-31

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  5. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  6. Radioactive source materials in Los Estados Unidos de Venezuela

    USGS Publications Warehouse

    Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte

    1953-01-01

    This report summarizes the data available on radioactive source materials in Los Estados Unidos de Venezuela accumulated by geologists of the Direccions Tecnica de Geolgia and antecedent agencies prior to June 1951, and the writers from June to November 1951. The investigation comprised preliminary study, field examination, office studies, and the preparation of this report, in which the areas and localities examined are described in detail, the uranium potentialities of Venezuela are summarized, and recommendations are made. Preliminary study was made to select areas and rock types that were known or reported to be radioactive or that geologic experience suggests would be favorable host for uranium deposits, In the office, a study of gamma-ray well logs was started as one means of amassing general radiometric data and of rapidly scanning many of ye rocks in northern Venezuela; gamma-ray logs from about 140 representative wells were examined and their peaks of gamma intensity evaluated; in addition samples were analyzed radiometrically, and petrographically. Radiometic reconnaissance was made in the field during about 3 months of 1951, or about 12 areas, including over 100 localities in the State of Miranda, Carabobo, Yaracuy, Falcon, Lara, Trujillo, Zulia, Merida, Tachira, Bolivar, and Territory Delta Amacuro. During the course of the investigation, both in the filed and office, information was given about geology of uranium deposits, and in techniques used in prospecting and analysis. All studies and this report are designed to supplement and to strengthen the Direccion Tecnica de Geologias's program of investigation of radioactive source in Venezuela now in progress. The uranium potentialities of Los Estados de Venezuela are excellent for large, low-grade deposits of uraniferous phospahtic shales containing from 0.002 to 0.027 percent uranium; fair, for small or moderate-sized, low-grade placer deposits of thorium, rare-earth, and uranium minerals; poor, for

  7. Automation in the Schools: A Presentation on the Automation Study Project Given to the Material Handling Institute, Philadelphia, Pennsylvania.

    ERIC Educational Resources Information Center

    Todd, Ronald D.

    A cooperative Automation Study Project is proposed between The Institute for the Study of Technology in Education (TIE) and the Material Handling Institute (MHI). The project would develop instructional materials to support study about automation, integrate a support equipment system with the materials, and utilize a portion of the resources of…

  8. Regulation of naturally occurring radioactive materials in Australia.

    PubMed

    Jeffries, Cameron; Akber, Riaz; Johnston, Andrew; Cassels, Brad

    2011-07-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia. PMID:21515621

  9. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  10. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Qualification of special form radioactive material. 71.75 Section 71.75 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.75 Qualification of special form...

  11. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4) are... package contains only special form (as defined at 10 CFR 71.4) or gaseous radioactive material; and (2... specified at 49 CFR 172.403 and 172.436-440); or (2) Has been transported as low specific activity...

  12. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Qualification of special form radioactive material. 71.75 Section 71.75 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.75 Qualification of special form...

  13. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4) are... package contains only special form (as defined at 10 CFR 71.4) or gaseous radioactive material; and (2... specified at 49 CFR 172.403 and 172.436-440); or (2) Has been transported as low specific activity...

  14. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4) are... package contains only special form (as defined at 10 CFR 71.4) or gaseous radioactive material; and (2... specified at 49 CFR 172.403 and 172.436-440); or (2) Has been transported as low specific activity...

  15. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Qualification of special form radioactive material. 71.75 Section 71.75 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.75 Qualification of special form...

  16. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4) are... package contains only special form (as defined at 10 CFR 71.4) or gaseous radioactive material; and (2... specified at 49 CFR 172.403 and 172.436-440); or (2) Has been transported as low specific activity...

  17. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4) are... package contains only special form (as defined at 10 CFR 71.4) or gaseous radioactive material; and (2... specified at 49 CFR 172.403 and 172.436-440); or (2) Has been transported as low specific activity...

  18. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Qualification of special form radioactive material. 71.75 Section 71.75 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.75 Qualification of special form...

  19. Minimizing soil remediation volume through specification of excavation and materials handling procedures

    SciTech Connect

    Oresik, W.L.S.; Otten, M.T.; Nelson, M.D.

    1994-12-31

    The technologies currently available for treating soils contaminated with the explosives 2,4,6-trinitroluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX) are both limited and expensive. Therefore, an important consideration in soils remediation is the preparation of construction specifications and contract drawings which limit the volume of soil that will be required to undergo treatment. Construction specifications and contract drawings were developed for the Contaminated Soil Remediation of the Explosives Washout Lagoons at Umatilla Depot Activity (UMDA) with the following primary objectives: (1) limit the volume of soil excavated from the Explosives Washout Lagoons and Explosives Washout Plant Areas, (2) minimize materials handling, and (3) reduce the excavated volume of soil which will undergo treatment.

  20. A Data Envelopment Analysis Model for Selecting Material Handling System Designs

    NASA Astrophysics Data System (ADS)

    Liu, Fuh-Hwa Franklin; Kuo, Wan-Ting

    The material handling system under design is an unmanned job shop with an automated guided vehicle that transport loads within the processing machines. The engineering task is to select the design alternatives that are the combinations of the four design factors: the ratio of production time to transportation time, mean job arrival rate to the system, input/output buffer capacities at each processing machine, and the vehicle control strategies. Each of the design alternatives is simulated to collect the upper and lower bounds of the five performance indices. We develop a Data Envelopment Analysis (DEA) model to assess the 180 designs with imprecise data of the five indices. The three-ways factorial experiment analysis for the assessment results indicates the buffer capacity and the interaction of job arrival rate and buffer capacity affect the performance significantly.

  1. An implementation of redundancy resolution and stability monitoring for a material handling vehicle

    SciTech Connect

    Bangs, A.L.; Pin, F.G.; Killough, S.M.

    1992-01-01

    The ATLAS (All-Terrain Lifter Articulated System) vehicle is a prototype for the next-generation Army material handling vehicle. The vehicle features a redundant manipulator with five degrees of freedom in a plane and a forklift end-effector. The original control system only allowed single joint motion control via a set of joysticks in the cab. A new controller was developed to automatically coordinate all joints in the system and allow the operator to directly control the motions of the end-effector with constant orientation via a single joystick. In addition, a stability monitor was developed that prevents the operator from tipping over the vehicle when manipulating heavy loads of uncertain weight, or warns him of approaching stability limits when driving. Finally, a load-compensation function was developed that automatically tips back the fork tines when a heavy load is lifted. 3 refs.

  2. An implementation of redundancy resolution and stability monitoring for a material handling vehicle

    SciTech Connect

    Bangs, A.L.; Pin, F.G.; Killough, S.M.

    1992-06-01

    The ATLAS (All-Terrain Lifter Articulated System) vehicle is a prototype for the next-generation Army material handling vehicle. The vehicle features a redundant manipulator with five degrees of freedom in a plane and a forklift end-effector. The original control system only allowed single joint motion control via a set of joysticks in the cab. A new controller was developed to automatically coordinate all joints in the system and allow the operator to directly control the motions of the end-effector with constant orientation via a single joystick. In addition, a stability monitor was developed that prevents the operator from tipping over the vehicle when manipulating heavy loads of uncertain weight, or warns him of approaching stability limits when driving. Finally, a load-compensation function was developed that automatically tips back the fork tines when a heavy load is lifted. 3 refs.

  3. Reconversion to coal and its impact on material handling systems at the Danskammer Power Station

    SciTech Connect

    Whipple, J.T.; Foley, G.F.; Collett, E.G.

    1986-01-01

    Reconversion to coal of Units 3 and 4 at the Danskammer Station of Central Hudson Gas and Electric is now underway. The Danskammer Station is located in the Town of Newburgh on the west bank of the Hudson River and includes four generating units. Construction of No. 3 rated at 147 MW was completed in 1959 and unit 4 rated at 239 MW in 1967. These units, along with the first two units, were converted to oil firing in 1970 and 1971. The reconstruction of the Materials Handling System, which had not been used in 15 years, presented a challenge to develop the best system operation utilizing as much as possible of the existing system while at the same time having an efficient, safe and environmentally acceptable plant. The various alternatives considered are noted, along with details of the final system that is being installed at the present time.

  4. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  5. Incorporation of safety interlocks in commercial robotics for handling of nuclear materials

    SciTech Connect

    Moore, F.W.

    1986-04-30

    Current robotic systems have been developed primarily for the automotive and electronic industry. The adaptation of these commercial robotic systems to applications in the manufacturing of nuclear fuel requires the addition of safety interlocks as to the handling and accountability of nuclear materials. Also, additional safety interlocks are required when the robots are operated in containment enclosures that are environmentally sealed. Interlocks have been incorporated into a commercial robot. The robotic system has been installed in the containment enclosure as part of the pellet storage subsystem into the Secure Automated Fabrication (SAF) facility currently being built by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE). The system has been installed in the Fuel Cycle Plant and is scheduled for initial operational testing in 1986.

  6. A comparative life cycle assessment of material handling systems for sustainable mining.

    PubMed

    Erkayaoğlu, M; Demirel, N

    2016-06-01

    In this comprehensive LCA comparison study, main objectives are to investigate life cycle environmental impacts of off-highway mining trucks and belt conveyors in surface mining. The research methodology essentially entails determination of the functional unit as 20,000 tons/day coal production transported for 5 km distance. After the system boundary was selected as the entire life cycle of material handling systems including pre-manufacturing of steel parts and plastic components, manufacturing, transportation, and utilization data was compiled from equipment manufacturers and the Eco-invent database. Life cycle impact categories for both material-handling systems were identified and the developed model was implemented using SIMAPRO 7.3. Climate change and acidification were selected as major impact categories as they were considered to be major concerns in mining industry. Although manufacturing stage had a significant impact on all of the environmental parameters, utilization stage was the hotspot for the selected impact categories. The results of this study revealed that belt conveyors have a greater environmental burden in climate change impact category when compared to the trucks. On the other hand, trucks have a greater environmental burden in acidification impact category when compared to the belt conveyors. This study implied that technological improvement in fuel combustion and electricity generation is crucial for the improvement of environmental profiles of off-highway trucks and belt conveyors in the mining industry. The main novelty of this study is that it is the first initiative in applying LCA in the Turkish mining industry. PMID:26986638

  7. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Bullen, D.B.; Gdowski, G.E. ); Weiss, H. )

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  8. Application of the Commission's recommendations to naturally occurring radioactive material.

    PubMed

    Lecomte, J-F

    2015-06-01

    Since publication of the 2007 Recommendations (ICRP Publication 103), the International Commission on Radiological Protection has focused on preparing a series of publications dedicated to different types of existing exposure situations, such as radon exposure, cosmic exposure in aviation, and exposure to naturally occurring radioactive material (NORM). The publication related to NORM will present the main types of corresponding activities, and describe the characteristics of NORM exposure. It will also develop a conceptual framework for the practical application of the Commission's system to NORM exposure. In particular, the publication will explain why NORM activities are generally considered to be existing exposure situations, and when some of them should be managed as planned exposure situations. It will indicate when the workers should be considered as occupationally exposed. It will also provide recommendations regarding application of the three principles of radiological protection. The need to consider the justification of the re-use or recycling of residues carefully will be highlighted. Guidance will be provided for selection of the reference level, and for implementation of the optimisation process through a graded approach including both prevention and mitigation of exposures. Flexibility will be recommended for the application of dose limits, notably when the situation is managed as a planned exposure situation. PMID:25816272

  9. A Compton imaging device for radioactive material detection

    NASA Astrophysics Data System (ADS)

    Hoover, Andrew S.; Baird, William; Kippen, R. Marc; Rawool-Sullivan, Mohini W.; Sullivan, John P.

    2004-10-01

    The most serious terrorist threat we face today may come from radiological dispersion devices and unsecured nuclear weapons. It is imperative for national security that we develop and implement radiation detection technology capable of locating and tracking nuclear material moving across and within our borders. Many radionuclides emit gamma rays in the 0.2 -- 3 MeV range. Unfortunately, current gamma ray detection technology is inadequate for providing precise and efficient measurements of localized radioactive sources. Common detectors available today suffer from large background rates and have only minimal ability to localize the position of the source without the use of mechanical collimators, which reduces efficiency. Imaging detectors using the Compton scattering process have the potential to provide greatly improved sensitivity through their ability to reject off-source background. We are developing a prototype device to demonstrate the Compton imaging technology. The detector consists of several layers of pixelated silicon detectors followed by an array of CsI crystals coupled to photodiodes. Here we present the concept of our detector design and results from Monte Carlo simulations of our prototype detector.

  10. Doses to railroad workers from shipments of radioactive materials

    SciTech Connect

    Fields, D.E.; Cottrell, W.D.

    1988-01-01

    Fissile and high-level radioactive wastes are currently transported over long distances by truck and by rail transportation systems. The primary form of fissile material is spent reactor fuel. Transportation operations within DOE are controlled through the Transportation Operations and Management System. DOE projected increases in the rate of shipments have generated concern by railroad companies that railroad workers may be exposed to levels of radiation sufficiently high that a radiation protection program may need to be implemented. To address railroad company concerns, the Health and Safety Research Division at Oak Ridge National Laboratory has estimated doses to railroad workers for two exposure scenarios that were constructed using worker activity data obtained from CSX Transportation for crew and maintenance workers. This characterization of railroad worker activity patterns includes a quantitative evaluation of the duration and rate of exposure. These duration and exposure rate values were evaluated using each of three exposure rate vs. distance models to generate exposure estimates. 14 refs., 1 tab.

  11. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by § 172.403 of this subchapter to be labeled Radioactive Yellow-II or Radioactive Yellow-III unless:...

  12. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by § 172.403 of this subchapter to be labeled Radioactive Yellow-II or Radioactive Yellow-III unless:...

  13. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by § 172.403 of this subchapter to be labeled Radioactive Yellow-II or Radioactive Yellow-III unless:...

  14. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by § 172.403 of this subchapter to be labeled Radioactive Yellow-II or Radioactive Yellow-III unless:...

  15. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by § 172.403 of this subchapter to be labeled Radioactive Yellow-II or Radioactive Yellow-III unless:...

  16. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  17. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  18. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  19. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee,...

  20. 10 CFR 71.127 - Handling, storage, and shipping control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Handling, storage, and shipping control. 71.127 Section 71.127 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality Assurance § 71.127 Handling, storage, and shipping control. The licensee, certificate holder, and applicant for a CoC shall...

  1. All the things I have - handling one's material room in old age.

    PubMed

    Larsson Ranada, Asa; Hagberg, Jan-Erik

    2014-12-01

    The article explores how old people who live in their ordinary home, reason and act regarding their 'material room' (technical objects, such as household appliances, communication tools and things, such as furniture, personal belongings, gadgets, books, paintings, and memorabilia). The interest is in how they, as a consequence of their aging, look at acquiring new objects and phasing out older objects from the home. This is a broader approach than in most other studies of how old people relate to materiality in which attention is mostly paid either to adjustments to the physical environment or to the importance of personal possessions. In the latter cases, the focus is on downsizing processes (e.g. household disbandment or casser maison) in connection with a move to smaller accommodation or to a nursing home. The article is based on a study in which thirteen older people (median age 87), living in a Swedish town of medium size were interviewed (2012) for a third time. The questions concerned the need and desire for new objects, replacement of broken objects, sorting out the home or elsewhere, most cherished possessions, and the role of family members such as children and grandchildren. The results reveal the complexity of how one handles the material room. Most evident is the participants' reluctance to acquire new objects or even to replace broken things. Nearly all of them had considered, but few had started, a process of sorting out objects. These standpoints in combination resulted in a relatively intact material room, which was motivated by an ambition to simplify daily life or to facilitate the approaching dissolution of the home. Some objects of special value and other cherished objects materialized the connections between generations within a family. Some participants wanted to spare their children the burden of having to decide on what to do with their possessions. Others (mostly men), on the contrary, relied on their children to do the sorting out after

  2. A multi-user real time inventorying system for radioactive materials: a networking approach.

    PubMed

    Mehta, S; Bandyopadhyay, D; Hoory, S

    1998-01-01

    A computerized system for radioisotope management and real time inventory coordinated across a large organization is reported. It handles hundreds of individual users and their separate inventory records. Use of highly efficient computer network and database technologies makes it possible to accept, maintain, and furnish all records related to receipt, usage, and disposal of the radioactive materials for the users separately and collectively. The system's central processor is an HP-9000/800 G60 RISC server and users from across the organization use their personal computers to login to this server using the TCP/IP networking protocol, which makes distributed use of the system possible. Radioisotope decay is automatically calculated by the program, so that it can make the up-to-date radioisotope inventory data of an entire institution available immediately. The system is specifically designed to allow use by large numbers of users (about 300) and accommodates high volumes of data input and retrieval without compromising simplicity and accuracy. Overall, it is an example of a true multi-user, on-line, relational database information system that makes the functioning of a radiation safety department efficient. PMID:9415583

  3. Risk assessment for chemical pickling of metals contaminated by radioactive materials.

    PubMed

    Donzella, A; Formisano, P; Giroletti, E; Zenoni, A

    2007-01-01

    In recent years, many cases of contamination of metal scraps by unwanted radioactive materials have occurred. Moreover, international organisations are evaluating the possibility to re-use or to recycle metals coming from nuclear power plants. The metal recycling industry has started to worry about radiation exposure of workers that could be in contact with contaminated metals during each manufacturing phase. Risks are strongly dependent on the radiation source features. The aim of this study is to perform risk assessment for workers involved in chemical pickling of steel coils. Monte Carlo simulations have been performed, using the MCNP package and considering coils contaminated with (60)Co, (137)Cs, (241)Am and (226)Ra. Under the most conservative conditions (coil contaminated with 1.0 kBq g(-1) of (60)Co), the dose assessment results lower than the European dose limit for the population (1 mSv y(-1)), considering a maximum number of 10 contaminated coils handled per year. The only exception concerns the case of (241)Am, for which internal contamination could be non- negligible and should be verified in the specific cases. In every case, radiation exposure risk for people standing at 50 m from the coil is widely <1 mSv y(-1). PMID:16849378

  4. Radioactive materials in biosolids : national survey, dose modeling, and publicly owned treatment works (POTW) guidance.

    SciTech Connect

    Bastian, R. K.; Bachmaier, J. T.; Schmidt, D. W.; Salomon, S. N.; Jones, A.; Chiu, W. A.; Setlow, L. W.; Wolbarst, A. B.; Yu, C.; Goodman, J.; Lenhart, T.; Environmental Assessment; U.S. EPA; U.S. DOE; U.S. NRC; NJ Dept of Environmental Radiation; NE Ohio Regional Sewer District

    2005-01-01

    Received for publication March 1, 2004. The Nuclear Regulatory Commission (NRC) announced the availability of three new documents concerning radioactive materials in sewage sludge and ash from publicly owned treatment works (POTW). One of the documents is a report presenting the results of a volunteer survey of sewage sludge and ash samples provided by 313 POTWs. The second document is a dose modeling document, using multiple exposure pathway modeling focused on a series of generic scenarios, to track possible exposure of POTW workers and members of the general public to radioactivity from the sewage sludge or ash. The third document is a guidance report providing recommendations on the management of radioactivity in sewage sludge and ash for POTW owners and operators. This paper explains how radioactive materials enter POTWs, provides criteria for evaluating levels of radioactive material in sludge and ash, and gives a summary of the results of the survey and dose modeling efforts.

  5. Experiences in the field of radioactive materials seizures in the Czech Republic

    SciTech Connect

    Svoboda, Karel; Podlaha, Josef; Sir, David; Mudra, Josef

    2007-07-01

    In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, the number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials

  6. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactive material in effluents-nuclear power reactors. 50.34a Section 50.34a Energy NUCLEAR REGULATORY... objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a... equipment to be installed to maintain control over radioactive materials in gaseous and liquid...

  7. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environmental radiation standards in 40 CFR part 190, levels of radiation or releases of radioactive material in... of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR..., radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  8. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactive material disposal sites. 40.27 Section 40.27 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... lease any subsurface mineral rights associated with land on which residual radioactive materials...

  9. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactive material in effluents-nuclear power reactors. 50.34a Section 50.34a Energy NUCLEAR REGULATORY... objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a... equipment to be installed to maintain control over radioactive materials in gaseous and liquid...

  10. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactive material in effluents-nuclear power reactors. 50.34a Section 50.34a Energy NUCLEAR REGULATORY... objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a... equipment to be installed to maintain control over radioactive materials in gaseous and liquid...

  11. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... environmental radiation standards in 40 CFR part 190, levels of radiation or releases of radioactive material in... of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR..., radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  12. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environmental radiation standards in 40 CFR part 190, levels of radiation or releases of radioactive material in... of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR..., radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  13. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactive material disposal sites. 40.27 Section 40.27 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... lease any subsurface mineral rights associated with land on which residual radioactive materials...

  14. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactive material disposal sites. 40.27 Section 40.27 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... lease any subsurface mineral rights associated with land on which residual radioactive materials...

  15. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactive material disposal sites. 40.27 Section 40.27 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... lease any subsurface mineral rights associated with land on which residual radioactive materials...

  16. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive material disposal sites. 40.27 Section 40.27 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... lease any subsurface mineral rights associated with land on which residual radioactive materials...

  17. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  18. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  19. Evaluation and redesign of manual material handling in a vaccine production centre's warehouse.

    PubMed

    Torres, Yaniel; Viña, Silvio

    2012-01-01

    This study was conducted in a warehouse at a vaccine production centre where improvement to existing storage and working conditions were sought through the construction of a new refrigerated store section (2-8C°). Warehousing tasks were videotaped and ergonomics analysis tools were used to assess the risk of developing MSDs. Specifically, these tools were the Rapid Entire Body Assessment (REBA) and the NIOSH equation. The current plant layout was sketched and analyzed to find possible targets for improvement trough the application of general work space design and ergonomics principles. Seven of the eight postures evaluated with REBA had a total score between 8 and 10, meaning a high risk, and only one was at a medium risk level. Nine of the eleven manual material handling tasks analyzed with the NIOSH equation had a Lifting Index between 1.14 and 1.80 and two had a recommended weight limit of 0 kg, indicating a need for job redesign. Solutions included the redesign of shelves, the design of a two-step stair and a trolley with adjustable height; also, changes in work methods were proposed by introducing a two-workers lifting strategy and job rotation, and, finally, a restructuring of plant layout was completed. PMID:22317092

  20. Methodology on Investigating the Influences of Automated Material Handling System in Automotive Assembly Process

    NASA Astrophysics Data System (ADS)

    Saffar, Seha; Azni Jafar, Fairul; Jamaludin, Zamberi

    2016-02-01

    A case study was selected as a method to collect data in actual industry situation. The study aimed to assess the influences of automated material handling system in automotive industry by proposing a new design of integration system through simulation, and analyze the significant effect and influence of the system. The method approach tool will be CAD Software (Delmia & Quest). The process of preliminary data gathering in phase 1 will collect all data related from actual industry situation. It is expected to produce a guideline and limitation in designing a new integration system later. In phase 2, an idea or concept of design will be done by using 10 principles of design consideration for manufacturing. A full factorial design will be used as design of experiment in order to analyze the performance measured of the integration system with the current system in case study. From the result of the experiment, an ANOVA analysis will be done to study the performance measured. Thus, it is expected that influences can be seen from the improvement made in the system.

  1. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    SciTech Connect

    Hartnett, C.

    1994-12-31

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act ({open_quotes}CERCLA{close_quotes}) and the Atomic Energy Act ({open_quotes}AEA{close_quotes}) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission ({open_quotes}NRC{close_quotes}) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency ({open_quotes}EPA{close_quotes}) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA`s liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites.

  2. 29 CFR 1919.50 - Eligibility for accreditation to certificate shore-based material handling devices covered by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Eligibility for accreditation to certificate shore-based material handling devices covered by § 1917.50 of this chapter, safety and health regulations for marine terminals. 1919.50 Section 1919.50 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT...

  3. 75 FR 52033 - Rigging Equipment for Material Handling; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...OSHA solicits public comments concerning its proposal to extend the Office of Management and Budget's (OMB) approval of the information collection requirements contained in paragraphs (b)(1), (b)(6)(i), (b)(6)(ii), (c)(15)(ii), (e)(1)(i), (ii), and (iii) and (f)(2) of the Standard on Rigging Equipment for Material Handling (29 CFR 1926.251). These paragraphs require affixing identification......

  4. The Education of Staff and Users for the Proper Handling and Care of Archival Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Ford, Helen

    The United Nations Educational, Scientific and Cultural Organization (UNESCO) Records and Archives Management Programme (RAMP) works primarily to help developing countries meet archive and record management needs. This study is intended to inform archivists, curators, and users in the proper handling and care of archival materials. The publication…

  5. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What requirements must I follow for cranes and... CONTINENTAL SHELF General Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in...

  6. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What requirements must I follow for cranes and... CONTINENTAL SHELF General Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in...

  7. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What requirements must I follow for cranes and... CONTINENTAL SHELF General Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in...

  8. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    SciTech Connect

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  9. Search for and analysis of radioactive halos in lunar material

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1976-01-01

    The lunar halo search was conducted because halos in terrestrial minerals serve as pointers to localized radioactivity, and make possible analytical studies on the problems of isotopic dating and mode of crystallization of the host mineral. Ancillary studies were conducted on terrestrial halos and on certain samples of special origin such as tektites and meteorites.

  10. Induced Radioactivity in Recovered Skylab Materials. [gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.

    1980-01-01

    Four radioactive isotopes found in aluminum and stainless steel samples from Skylab debris were recovered in Australia. The low-level activity was induced by high-energy protons and neutrons in the space environment. Measurements of the specific activities are given.

  11. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  12. 15. BUILDING 227B. RADIOACTIVE MATERIAL STORAGE. ARCHITECTURAL LAYOUT. November 20, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. BUILDING 227B. RADIOACTIVE MATERIAL STORAGE. ARCHITECTURAL LAYOUT. November 20, 1970 - Frankford Arsenal, Building No. 227, South side of Hagner Road between Ripley & Mellon Streets, Philadelphia, Philadelphia County, PA

  13. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    SciTech Connect

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  14. Code System for Calculating Internal and External Doses Resulting from an Atmospheric Release of Radioactive Material.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-15

    WRAITH calculates the atmospheric transport of radioactive material to each of a number of downwind receptor points and the external and internal doses to a reference man at each of the receptor points.

  15. 77 FR 66466 - Federal Acquisition Regulation; Submission for OMB Review; Notice of Radioactive Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... published in the Federal Register at 77 FR 45612, on August 1, 2012. No comments were received. Public...., Washington, DC 20417. ATTN: Hada Flowers/IC 9000-0107, Notice of Radioactive Materials. Instructions:...

  16. Assessment of risks to individuals from the transportation of radioactive materials

    SciTech Connect

    Biwer, B.M.; Monette, F.A.; LePoire, D.J.; Chen, S.Y.

    1995-06-01

    The radiological impacts to individuals from the transportation of radioactive materials must be assessed when evaluating alternatives for major federal actions as required by the National Environmental Policy Act. Public comments on past environmental impact statements indicate that the public is concerned about the risks of radiation exposure to individuals along a transport route from radioactive materials shipments. Individuals may be exposed during routine, incident-free, transport of radioactive materials or, potentially, as a result of transportation accidents. This paper discusses the computer model RISKIND, which was developed at Argonne National Laboratory to estimate the potential radiological risks to individuals and population subgroups from the transportation of radioactive materials. The code was designed to use site-specific data to provide a detailed analysis for each receptor location. This type of analysis complements the traditional collective population transportation risk analyses conducted for radiological transportation risk assessments.

  17. HM-164: radioactive materials; routing and driver training requirements. Final report

    SciTech Connect

    Mullen, S.A.; Welch, M.J.; Welles, B.W.

    1986-03-01

    This report summarizes the history and comments on HM-164 from January 1976 to January 1986. HM-164 was created by the US Department of Transportation in response to proliferating state and local laws prohibiting or restricting highway movement of radioactive materials and establishes a nationally consistent highway routing system for radioactive materials. Upheld by the US Supreme Court in February, 1984, HM-164 has formed the basis for a number of state and local laws to be held inconsistent with federal laws.

  18. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    SciTech Connect

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  19. Comparison of Customer Preference for Bulk Material Handling Equipment through Fuzzy-AHP Approach

    NASA Astrophysics Data System (ADS)

    Sen, Kingshuk; Ghosh, Surojit; Sarkar, Bijan

    2016-06-01

    In the present study, customer's perception has played one of the important roles for selection of the exact equipment out of available alternatives. The present study is dealt with the method of optimization of selection criteria of a material handling equipment, based on the technical specifications considered to be available at the user end. In this work, the needs of customers have been identified and prioritized, that lead to the selection of number of criteria, which have direct effect upon the performance of the equipment. To check the consistency of selection criteria, first of all an AHP based methodology is adopted with the identified criteria and available product categories, based upon which, the judgments of the users are defined to derive the priority scales. Such judgments expressed the relative strength or intensity of the impact of the elements of the hierarchy. Subsequently, all the alternatives have ranked for each identified criteria with subsequent constitution of weighted matrices. The same has been compared with the normalized values of approximate selling prices of the equipments to determine individual cost-benefit ratio. Based on the cost-benefit ratio, the equipment is ranked. With same conditions, the study is obtained again with a Fuzzy AHP concept, where a fuzzy linguistic approach has reduced the amount of uncertainty in decision making, caused by conventional AHP due to lack of deterministic approach. The priority vectors of category and criteria are determined separately and multiplied to obtain composite score. Subsequently, the average of fuzzy weights was determined and the preferences of equipment are ranked.

  20. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    SciTech Connect

    Jim Jnatt

    2001-08-24

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the

  1. Compilation of current literature on seals, closures, and leakage for radioactive material packagings

    SciTech Connect

    Warrant, M.M.; Ottinger, C.A.

    1989-01-01

    This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

  2. Prediction of Radioactive Material Proliferation in Abukuma Basin using USLE

    NASA Astrophysics Data System (ADS)

    Yi, C. J.

    2014-12-01

    Due to the nuclear-power plant accident after the 2011 Great East Japan Earthquake and Tsunami, the residents who had resided within 20 km from the Daiichi Fukushima Nuclear Power Plant had forced to leave their hometown. The impacts by the radioactive contamination extended to numerous social elements, such as food, economy, civil engineering, community rebuilding, etc. Japanese government agencies have measured the level of radioactive contamination in urban, agricultural area, forest, riverine and ocean. The research found that the concentration level of cesium-137 (137Cs) is higher in the forest than an open area such as paddy field or rural town. Litter layers and surface layers, especially, are found to be significantly contaminated. The study calculated the estimation of contaminated soil erosion using the USLE which the idea is based on scenario that addresses a question, what if 137Cs would carry out from the forest after intensive rainfall. Predicting radioactively contaminated areas after intense rainfall is a critical matter for the future watershed risk management.

  3. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  4. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  5. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  6. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  7. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  8. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  9. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  10. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    SciTech Connect

    Xu, George; Zhang, Xi-Cheng

    1999-06-01

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

  11. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    SciTech Connect

    Xu, George; Zhang, Xi-Cheng

    2000-06-01

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

  12. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  13. Solidification of radioactive waste resins using cement mixed with organic material

    NASA Astrophysics Data System (ADS)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-01

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  14. A Survey of Current Literature on Sampling, Sample Handling, and Long Term Storage for Environmental Materials.

    ERIC Educational Resources Information Center

    Maienthal, E. J.; Becker, D. A.

    This report presents the results of an extensive literature survey undertaken to establish optimum sampling, sample handling and long-term storage techniques for a wide variety of environmental samples to retain sample integrity. The components of interest are trace elements, organics, pesticides, radionuclides and microbiologicals. A bibliography…

  15. Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings

    SciTech Connect

    Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

    2009-06-12

    In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

  16. Radioactivity measurements of ITER materials using the TFTR D-T neutron field

    SciTech Connect

    Kumar, A.; Abdou, M.A.; Barnes, C.W.; Kugel, H.W.; Loughlin, M.J.

    1994-08-01

    The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials. for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc. zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.

  17. Sub-Kelvin Thermal Conductivity and Radioactivity of Some Useful Materials in Low Background Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Kellaris, N.; Daal, M.; Epland, M.; Pepin, M.; Kamaev, O.; Cushman, P.; Kramer, E.; Sadoulet, B.; Mirabolfathi, N.; Golwala, S.; Runyan, M.

    2014-08-01

    We present measurements of the thermal conductivity between 0.05 and 1 K, and radioactive contamination levels, for some thermally isolating materials. TIMET Ti 15-3-3-3, Mersen grade 2020 graphite, Vespel SP-1, Vespel SP-22, Vespel SCP-5000, Vespel SCP-5050, Graphlite CFRP, and a Kapton/epoxy composite are all investigated. Thermal conductivities were measured using a single-heater longitudinal heat flow method. Material radioactivity was determined for the materials at a low background counting facility using a high-purity gamma detector and GEANT4 Monte Carlo simulations.

  18. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  19. Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling

    SciTech Connect

    JANSKY, M.T.

    2000-05-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process

  20. FINAL REPORT: REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    EPA Science Inventory

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying ha...

  1. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    EPA Science Inventory

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. Current practice to identify hazardous asbe...

  2. Subthreshold neutron interrogator for detection of radioactive materials

    DOEpatents

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  3. Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours

    NASA Astrophysics Data System (ADS)

    Martín, F.; Pujadas, M.; Artiñano, B.; Gómez-Moreno, F.; Palomino, I.; Moreno, N.; Alastuey, A.; Querol, X.; Basora, J.; Luaces, J. A.; Guerra, A.

    The objective of this paper is to show the methodology developed to estimate particle emissions from several typical activities of bulk handling in harbours. It is based on several field experiments carried out in the Harbour of Tarragona, where high time resolution monitors were deployed close to different areas of bulk solids handling operations. Monitors recorded particle concentrations and meteorological variables. A high-resolution dispersion model is used to estimate the emission rates that best fits the observations. Results were comparable to those obtained with the AP-42 (EPA). The new emission estimates are used as input for an emission model called EMIPORT. The model also employs AP-42 (EPA) emission factors as a complement. This work is one of the activities of the LIFE project called HADA (Herramienta Automática de Diagnóstico Ambiental or in English Automatic Tool for Environmental Diagnostic).

  4. Derivation of uranium residual radioactive material guidelines for the Ventron site

    SciTech Connect

    Loureiro, C.; Yu, C.; Jones, L.

    1992-03-01

    Residual radioactive material guidelines for uranium were derived for the Ventron site in Beverly, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). The derivations for the single radionuclides and the total uranium guidelines were based on the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Ventron site should not exceed a dose of 100 mrem/yr following remedial action. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation.

  5. Development of international standards for instrumentation used for detection of illicit trafficking of radioactive material

    SciTech Connect

    Chiaro Jr, Peter John

    2009-01-01

    Subcommittee 45B Radiation Protection Instrumentation of the International Electrotechnical Commission (IEC) is charged with the development of international standards for instrumentation used for monitoring of illicit trafficking of radioactive material through international boarders and territories, as well as inside countries. Currently three IEC standards are published. The international participation and the main characteristics of the following three standards are discussed and presented: IEC 62327 Hand-held Instruments for the Detection and Identification of Radionuclides and Additionally for the Indication of Ambient Dose Equivalent Rate from Photon Radiation , IEC 62401 Alarming Personal Radiation Devices for Detection of Illicit Trafficking of Radioactive Material and IEC 62244 Installed Radiation Monitors for the Detection of Radioactive and Special Nuclear Materials at National Borders .

  6. The decommissioning of accelerators: an exercise in the recycling of radioactive material

    NASA Astrophysics Data System (ADS)

    Höfert, M.; Tuyn, J. W. N.; Forkel-Wirth, D.

    1999-06-01

    Compared with the number of nuclear power plants that will be decommissioned over the next few years accelerators are only a "small" source of radioactivity although at CERN the total amount of mostly metallic material activated in the operation of the accelerators is estimated to be of the order of 15 Mtons. Various existing approaches to classify and administer radioactive material will be presented with all of them clearly earmarked by the requirements of the nuclear cycle. There are however important differences between activation in reactors and accelerators that will be worked out. It will be shown that an attitude based on reuse or recycling of activated accelerator material should be preferred to the elimination as radioactive waste.

  7. Derivation of uranium residual radioactive material guidelines for the former Alba Craft Laboratory site, Oxford, Ohio

    SciTech Connect

    Nimmagadda, M.; Faillace, E.; Yu, C.

    1994-01-01

    Residual radioactive material guidelines for uranium were derived for the former Alba Craft Laboratory site in Oxford, Ohio. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). Single nuclide and total uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the former Alba Craft Laboratory site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios (Yu et al. 1993). The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation.

  8. Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

    SciTech Connect

    Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

    1999-05-01

    Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

  9. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Ramsey, W.G.; Cicero-Herman, C.A.; Bickford, D.F.

    1999-09-28

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140 C to about 210 C for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Structural analysis in support of the waterborne transport of radioactive materials

    SciTech Connect

    Ammerman, D.J.

    1996-08-01

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations.

  12. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  13. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  14. Remediation of a Former USAF Radioactive Material Disposal Site

    SciTech Connect

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while

  15. Container materials for isolation of radioactive waste in salt

    SciTech Connect

    Streicher, M.A.; Andrews, A.

    1987-10-01

    The workshop reviewed the extensive data on the corrosion resistance of low-carbon steel in simulated salt repository environments, determined whether these data were sufficient to recommend low-carbon steel for fabrication of the container, and assessed the suitability of other materials under consideration in the SRP. The panelists determined the need for testing and research programs, recommended experimental approaches, and recommended materials based on existing technology. On the first day of the workshop, presentations were made on waste package requirements; the expected corrosion environment; degradation processes, including a review of data from corrosion tests on carbon steel; and rationales for container design and materials, modeling studies, and planned future work. The second day was devoted to a panel caucus, presentation of workshop findings, and open discussion. 76 refs., 2 figs., 3 tabs.

  16. Implementation of Control Measures for Radioactive Waste Packages with Respect to the Materials Composition - 12365

    SciTech Connect

    Steyer, S.; Kugel, K.; Brennecke, P.; Boetsch, W.; Gruendler, D.; Haider, C.

    2012-07-01

    In addition to the radiological characterization and control measures the materials composition has to be described and respective control measures need to be implemented. The approach to verify the materials composition depends on the status of the waste: - During conditioning of raw waste the control of the materials composition has to be taken into account. - For already conditioned waste a retrospective qualification of the process might be possible. - If retrospective process qualification is not possible, legacy waste can be qualified by spot checking according to the materials composition requirements The integration of the control of the material composition in the quality control system for radioactive waste is discussed and examples of control measures are given. With the materials-list and the packaging-list the Federal Office for Radiation Protection (BfS) provides an appropriate tool to describe the materials composition of radioactive waste packages. The control measures with respect to the materials composition integrate well in the established quality control framework for radioactive waste. The system is flexible enough to deal with waste products of different qualities: raw waste, qualified conditioned waste or legacy waste. Control measures to verify the materials composition can be accomplished with minimal radiation exposure and without undue burden on the waste producers and conditioners. (authors)

  17. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  19. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    SciTech Connect

    XU, X. George; Zhang, X.C.

    2002-05-10

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

  20. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    SciTech Connect

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-08-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.