Science.gov

Sample records for radioactive metal ions

  1. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth had very good capacity for these two metals. However, the mechanical strength of Fullers earth granules available commercially was not sufficient for use in a column. In this study chitosan was used as a binder to make Fullers earth beads and were used for adsorption of Cs(I) and Sr(II). (Abstract shortened by UMI.)

  2. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  3. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  4. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  5. Sources of radioactive ions

    SciTech Connect

    Alonso, J.R.

    1985-05-01

    Beams of unstable nuclei can be formed by direct injection of the radioactive atoms into an ion source, or by using the momentum of the primary production beam as the basis for the secondary beam. The effectiveness of this latter mechanism in secondary beam formation, i.e., the quality of the emerging beam (emittance, intensity, energy spread), depends critically on the nuclear reaction kinematics, and on the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies typical of the nuclear reaction process, many of the qualities of the incident beam can be passed on to the secondary beam. Factors affecting secondary beam quality are discussed, along with techniques for isolating and purifying a specific secondary product. The ongoing radioactive beam program at the Bevalac is used as an example, with applications, present performance and plans for improvements.

  6. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  7. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  8. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  9. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  10. A Novel Radioactive Isotope Ion Target SCRIT

    SciTech Connect

    Kurita, Kazuyoshi; Masuda, Tetsuya; Koseki, Tadashi; Noda, Akira; Shirai, Toshiyuki; Tongu, Hiromu; Furukawa, Yukihiro; Tamae, Tadaaki; Ito, Sachiko; Emoto, Takashi; Nakamura, Masato; Wakasugi, Masanori; Yano, Yasushige; Ohnishi, Tetsuya; Suda, Toshimi; Takeda, Hiroyuki; Wang Shuo

    2006-11-20

    Electron scattering is a superior method to investigate the internal structure, such as charge distribution, of atomic nuclei. Most of the radii of nuclei were determined unambiguously by that. However, radioactive isotopes (RI) which recently came up to a major research interest have not been accessible due to the difficulty in making fixed targets and taking measurements before they decay. We proposed a conceptually new target called SCRIT (Self-Confining Radioactive Isotope ion Target) as opposed to a collider method. The luminosity expected for SCRIT is inevitably low (typically on the order of 1.E+27/cm{sup 2}/s) and a large acceptance detector system is required. We plan to perform a coincidence measurement using an electron arm and a recoil ion detector which needs to be developed. Current status of the ion trapping with a prototype SCRIT and the background measurement results in an electron storage ring will be discussed.

  11. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  12. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  13. Radioactive Ion Beam Production Capabilities at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Beene, James R; Dowling, Darryl T; Gross, Carl J; Juras, Raymond C; Liu, Yuan; Meigs, Martha J; Mendez, II, Anthony J; Nazarewicz, Witold; Sinclair, John William; Stracener, Daniel W; Tatum, B Alan

    2011-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of HRIBF is the production of high-quality beams of short-lived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions.

  14. BEARS: Radioactive ion beams at LBNL

    SciTech Connect

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C and 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.

  15. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  16. Laser ion source development at Holifield Radioactive Ion Beam Facility.

    PubMed

    Liu, Y; Gottwald, T; Havener, C C; Howe, J Y; Kiggans, J; Mattolat, C; Vane, C R; Wendt, K; Beene, J R

    2012-02-01

    This report describes the efforts made to develop a resonant-ionization laser ion source based on tunable Ti:sapphire lasers for nuclear physics and astrophysics research at Holifield Radioactive Ion Beam Facility. Three Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate laser power losses due to synchronization delays. Ionization schemes for 14 elements have been obtained. Off-line studies show that the overall efficiency of the laser ion source can be as high as 40%. TaC surface coatings have been investigated for minimizing surface and bulk trapping of the atoms of interest. PMID:22380245

  17. Laser ion source development at Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Liu, Y.; Havener, C. C.; Beene, J. R.; Gottwald, T.; Mattolat, C.; Vane, C. R.; Wendt, K.; Howe, J. Y.; Kiggans, J.

    2012-02-15

    This report describes the efforts made to develop a resonant-ionization laser ion source based on tunable Ti:sapphire lasers for nuclear physics and astrophysics research at Holifield Radioactive Ion Beam Facility. Three Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate laser power losses due to synchronization delays. Ionization schemes for 14 elements have been obtained. Off-line studies show that the overall efficiency of the laser ion source can be as high as 40%. TaC surface coatings have been investigated for minimizing surface and bulk trapping of the atoms of interest.

  18. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  19. Fabrication of radioactive stents by ion implantation

    NASA Astrophysics Data System (ADS)

    Huttel, Erhard; Kaltenbaek, Johann; Schloesser, Klaus; Schweickert, Hermann

    2002-02-01

    Worldwide about one million patients require treatment of stenosed coronary arteries annually. Often a tubular stainless steel mesh (stent) is implanted to mechanically support the injured vessel. Restenosis, an abundant complication (20%-30%) can be prevented, if the vessel is treated with ionizing radiation. Stents can deliver radiation if they are made radioactive. The radio isotope 32P is well suited when ion implanted. Radioactive ions sources require high efficiency to keep the radioactive inventory small. Reliability, ease of operation, and maintenance are mandatory. A small emittance is important to minimize losses during mass separation and beam transport. A 2.45 GHz ECR source was developed for the implantation of 32P. The source consists of two coils for the axial and a permanent hexapole for the radial confinement. The microwaves are fed in radially by a loop connected to a silver plated brass tube surrounding the plasma chamber. The plasma chamber is made from Pyrex. Neutron activated phosphorus, containing 30 ppm 32P, is introduced from the rear end on a rod. As support gas D2 is used. By this 32P+ can be separated from (31PD)+. The extraction is done in two steps: 60 kV-30 kV-ground. Mass separation is accomplished by a double focusing 90° magnet (radius 500 mm). During four years of operation about 1000 radioactive stents per year have been provided for animal experiments and clinical trials. Only one maintenance to exchange the extraction system due to degradation of high voltage stability was required so far.

  20. Method for electrochemical decontamination of radioactive metal

    SciTech Connect

    Ekechukwu, Amy A.

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  1. Radioactive Ion Beam Production Capabilities At The Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Dowling, D. T.; Gross, C. J.; Juras, R. C.; Liu, Y.; Meigs, M. J.; Mendez, A. J.; Nazarewicz, W.; Sinclair, J. W.; Stracener, D. W.; Tatum, B. A.

    2011-06-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of the HRIBF is the production of high quality beams of shortlived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions. HRIBF produces RIBs by the isotope separator on-line (ISOL) technique using a particle accelerator system that consists of the Oak Ridge Isochronous Cyclotron (ORIC) driver accelerator, one of the two Injectors for Radioactive Ion Species (IRIS1 or IRIS2) production systems, and the 25-MV tandem electrostatic accelerator that is used for RIB post-acceleration. ORIC provides a light ion beam (proton, deuteron, or alpha) which is directed onto a thick target mounted in a target-ion source (TIS) assembly located on IRIS1 or IRIS2. Radioactive atoms that diffuse from the target material are ionized, accelerated, mass selected, and transported to the tandem accelerator where they are further accelerated to energies suitable for nuclear physics research. RIBs are transported through a beam line system to various experimental end stations including the Recoil Mass Spectrometer (RMS) for nuclear structure research, and the Daresbury Recoil Separator (DRS) for nuclear astrophysics research. HRIBF also includes two off-line ion source test facilities, one low-power on-line ISOL test facility (OLTF), and one high-power on-line ISOL test facility (HPTL). This paper provides an overview and status update of HRIBF, describes the recently completed 4.7M IRIS2 addition and incorporation of laser systems for beam production and purification, and discusses a proposed replacement of the ORIC driver accelerator.

  2. INEL metal recycle radioactive scrap metal survey report

    SciTech Connect

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

  3. Ion source for radioactive isotopes - IRIS ECR

    SciTech Connect

    Burke, J.T.; Freedman, S.J.; Lyneis, C.M.; Wutte, D.

    2001-01-01

    A compact electron cyclotron resonance ion source for radioactive isotopes (IRIS ECR) has been developed for the {sup 14}O experiment at the 88-Inch Cyclotron. The {sup 14}O experiment is a joint effort between the Nuclear Science Division's Weak Interaction Group and the 88-Inch Cyclotron ECR ion source group. The initial goal of the experimentalists is to measure {sup 14}O half-life and the shape of the beta decay spectrum. The 70 second half-life of {sup 14}O requires producing the isotope on-line at the 88-Inch Cyclotron. The {sup 14}O is generated in the form of {sup 12}C{sup 14}O in a high temperature carbon aerogel target using a 20 MeV {sup 3}He{sup +} beam from the LBNL 88-Inch Cyclotron via the reaction {sup 12}C({sup 3}He,n){sup 14}O. The {sup 14}O atoms are then separated from the other radioactive isotopes produced in the target and then implanted into a thin foil. The implanted target serves to minimize the radiation background and maximize the signal in the beta spectrometer by concentrating the{sup 14}O into a 5mm diameter spot. An 8 meter long stainless steel transfer line connects the target chamber to the IRIS ECR through a turbo molecular pump. The gas coming from the turbo pump is fed into the ion source and ionized, extracted at energies of 20 to 30 keV and mass separated by an analyzing magnet. The ion source started operation in spring 1999 and achieved a beam intensity of 3 x 10{sup 5} {sup 14}O{sup +} ions/second. Extensive developments on the production target were made to increase extraction efficiency of the {sup 14}O. A liquid nitrogen trap was installed between the ECR and the turbo pump to minimize the gas load to the ion source. An improved support gas injection system was installed so that multiple support gases can be introduced. A bias disk is used to stabilize the plasma. A quartz liner in the plasma chamber is used to reduce the hold-up time for oxygen and increase the overall ionization efficiency. The extraction system was also modified to ensure reliable operation at 30 kV. In May 2000 IRIS produced a mass separated beam of {sup 14}O{sup 1+} ions at an average intensity of 2 x 10{sup 7} {sup 14}O{sup 1+} ions per second with a peak intensity of 3 x 10{sup 7} {sup 14}O{sup 1+} ions per second. This is the highest{sup 14}O intensity achieved at any radioactive beam facility to date. The physics program has begun with a measurement of the {sup 14}O lifetime in October 2001 and a test run for the CVC experiment during December 2001.

  4. Miniature high current metal ion source

    SciTech Connect

    Brown, I.G.; Galvin, J.E.; MacGill, R.A.; Wright, R.T.

    1986-04-01

    A small, simple ion source for the production of high brightness beams of metal ions is described. A metal vapor vacuum arc discharge is used to establish the high density plasma from which the ion beam is extracted. The source is finger-sized, and can produce pulsed metal ion beams with current up to the 10 ma range. 9 refs., 6 figs.

  5. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  6. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  7. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  8. Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels

    SciTech Connect

    Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

    2003-02-25

    Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF. When used energy of exothermic reactions in waste thermochemical treatment processing, the problems concerned with heating method choice, appropriate heating equipment operation, and maintenance of this equipment reliability are excluded. Generally, the PMF consists of combustible powder metal, oxygen containing component, and some additives (pore-forming materials, stabilizers, surface-active substances, and other) with a predominance of metal powder. A thermodynamic simulation is applied widely at the designing of the PMF.

  9. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  10. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  11. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process. PMID:23412572

  12. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal complex, thereby enhancing the stability (Figure 1).

  13. TATRA: a versatile high-vacuum tape transportation system for decay studies at radioactive-ion beam facilities

    NASA Astrophysics Data System (ADS)

    Matoušek, V.; Sedlák, M.; Venhart, M.; Janičkovič, D.; Kliman, J.; Petrík, K.; Švec, P.; Švec, , P.; Veselský, M.

    2016-03-01

    A compact and versatile tape transport system for the collection and counting of radioactive samples from radioactive ion beam facilities has been developed. It uses an amorphous metallic tape for transportation of the activity. Because of this material, the system can hold very good vacuum, typically below 10-7 mbar.

  14. Tokai Radioactive Ion Accelerator Complex (TRIAC): present and future

    SciTech Connect

    Jeong, S. C.

    2010-04-30

    Tokai Radioactive Ion Accelerator Complex (TRIAC) is the low-energy accelerator complex for re-accelerating short-lived radioactive ion beams (RIBs) in Japan. After the introduction of the present status of the TRIAC, considered as future extension of the present TRIAC activity, we are going to discuss our experimental proposal to investigate the beta-decay properties of neutron-rich rare isotopes involved in the 3{sup rd} peak in the r-process element abundance.

  15. Protein-Transition Metal Ion Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten showed increases of 2-3 times in modulus with addition of divalent transition metal ions Cu2+ and Zn2+. Increasing concentrations of ions resulted in increased stiffnes...

  16. ISOL science at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Beene, James R; Bardayan, Daniel W; Galindo-Uribarri, Alfredo {nmn}; Gross, Carl J; Jones, K. L.; Liang, J Felix; Nazarewicz, Witold; Stracener, Daniel W; Tatum, B Alan; Varner Jr, Robert L

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  17. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  18. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  19. Search for sterile neutrinos at radioactive ion beam facilities

    NASA Astrophysics Data System (ADS)

    Espinoza, Catalina; Lazauskas, Rimantas; Volpe, Cristina

    2013-07-01

    We propose applications of Radioactive Ion Beam facilities to investigate physics beyond the Standard Model. In particular, we focus upon the search for sterile neutrinos by means of a low energy beta-beam with a Lorentz boost factor of 1. In the considered setup, collected 8Li radioactive ions are sent inside a 4π detector filled with a liquid scintillator, with inverse-beta decay as neutrino detection channel. We provide exclusion curves for the sterile neutrino mixing parameters, based upon the 3+1 formalism, depending upon the achievable ion intensity. The proposed experiment represents a possible alternative to clarify the current anomalies observed in neutrino experiments.

  20. In-Trap Spectroscopy of Charge-Bred Radioactive Ions

    NASA Astrophysics Data System (ADS)

    Lennarz, A.; Grossheim, A.; Leach, K. G.; Alanssari, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo Lpez-Urrutia, J. R.; Gallant, A. T.; Holl, M.; Kwiatkowski, A. A.; Lassen, J.; Macdonald, T. D.; Schultz, B. E.; Seeraji, S.; Simon, M. C.; Andreoiu, C.; Dilling, J.; Frekers, D.

    2014-08-01

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, In124 and Cs124) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (??) decay.

  1. EBIS charge breeder for radioactive ion beams at ATLAS.

    SciTech Connect

    Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.

    2010-07-01

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  2. EBIS charge breeder for radioactive ion beams at ATLAS

    SciTech Connect

    Ostroumov, P.; Alessi, J.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Beebe, E.; Pikin, A.

    2010-07-20

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  3. Low specificity of metal ion binding in the metal ion core of a folded RNA

    PubMed Central

    Travers, Kevin J.; Boyd, Nathan; Herschlag, Daniel

    2007-01-01

    The structure and activity of nucleic acids depend on their interactions with metal ions. Fundamental to these interactions is the degree of specificity observed between the metal ions and nucleic acids, and a complete description of nucleic acid folding requires that we understand the nature of the interactions with metal ions, including specificity. The prior demonstration that high concentrations of monovalent cations prevent nonspecific association of divalent ions with nucleic acids provides a novel and powerful means to examine site-specific metal ion binding isolated from complicating effects of the ion atmosphere. Using these high monovalent cation solution conditions we have monitored the affinity of a series of divalent metal ions for two site-specific metal ion binding sites in the P4-P6 domain of the Tetrahymena group I intron ribozyme. The metal ion core of this highly structured RNA binds two divalent metal ions under these conditions. Despite multiple metal ion–RNA interactions observed in the X-ray crystallographic structure of P4-P6 RNA at the metal ion binding sites, these sites exhibit low specificity among Mn2+, Mg2+, Ca2+, Ni2+, and Zn2+. Nevertheless, the largest divalent metal ions tested, Sr2+ and Ba2+, were excluded from binding, exhibiting affinities at least two orders of magnitude weaker than observed for the other metal ions. Thus, a picture emerges of two metal ion binding sites, each with a high tolerance for metal ions with different properties but also with limits to accommodation. These limits presumably arise from steric or electrostatic features of the metal ion binding sites. PMID:17616553

  4. PROTEIN-TRANSITION METAL ION NETWORKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten had low, medium, and high levels of aspartic and glutamic acid, respectively, and FT-IR showed that the divalent transition metal ions Mn2+, Cu2+, and Zn2+ were tightly ...

  5. [Advances in heavy metal ions immunoassay].

    PubMed

    Liu, Gong-Liang; Wang, Ju-Fang; Li, Zhi-Yong; Liang, Shi-Zhong

    2006-11-01

    Heavy metal leftover on farm and stock products has become a big threat to human. It is necessary to develop some fast and efficient detection methods. Heavy metal immunoassays are new methods for detection of heavy metal ions. Compared to the traditional chemical methods, immunoassays are not only fast, cheap, simple, but also reasonably portable, highly sensitive and selective. It can be used as preliminary screening for rapid determination of heavy metal ions. Except chemical chelators, phytochelatin and metallothionein can also be used for preparing immunogen, both of them can chelate heavy metal ions to carrier protein. There are two prototype assays: polyclonal antibody immunoassay and monoclonal antibody immunoassay. The former includes fluorescence polarization immunoassay; the latter includes indirectly competitive ELISA, one-step competitive immunoassay and KinExA immunoassay. Among these assays, indirectly competitive ELISA which was used for determining heavy metal ions in the early days was easy to be interfered and showed false positive. Fluorescence polarization immunoassay which used polyclonal antibody for determining heavy metal ions was simple and cheap. KinExA instrument could be functioned as an immunosensor for environmental samples. One-step immunoassay which avoided to the addition of second antibody and chromogenic substrate was simple and sensitive. Colloidal gold enhanced immunochromatography assay is a semi-quantitation for determining heavy metal ions. As an adjunctive way for chemical methods, it has the potential application in rapid determination of heavy metal ions. PMID:17168306

  6. Charge breeding simulations for radioactive ion beam production

    SciTech Connect

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.

  7. Status report of stable and radioactive ion beam production at GANILa)

    NASA Astrophysics Data System (ADS)

    Gaubert, G.; Barué, C.; Canet, C.; Cornell, J. C.; Dubois, M.; Dupuis, M.; Eleon, C.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Leroy, R.; Pacquet, J. Y.

    2008-02-01

    GANIL has been producing many stable and radioactive ion beams for nearly 25years. Constant progresses have been made in terms of intensity, stability, and reliability. The intensity for some stable metallic beams now exceeds or approaches the pμA level at an energy up to 95MeV/u, e.g., 1.14pμA for S36 (65% enriched) at 77MeV/u, 0.35pμA for Ni58 (63% enriched) at 74MeV/u. Some recent results with Magnesocene using the metallic ions from volatile compounds method should also make possible the production of metallic beams with an intensity greater than 1pμA. This has still to be measured. The ISOL facility SPIRAL I has been in operation for almost six years. Up to now, 17 exotic He experiments have been done with 14 target/ion-source (TIS) units; 19 other experiments (with O, Ne, Ar, and Kr) have been achieved with 14 TISs. Statistics show a fairly good ratio of available beam time to scheduled beam time. The radioactive beams and available intensities are compiled in this report. Future developments on radioactive ion beam production are briefly presented, while more details will be discussed elsewhere at this conference.

  8. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  9. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  10. Ion beam analysis of radioactive samples

    NASA Astrophysics Data System (ADS)

    Raepsaet, C.; Khodja, H.; Bossis, P.; Pipon, Y.; Roudil, D.

    2009-06-01

    The nuclear microprobe facility of the Pierre Süe Laboratory is fitted with two microbeam lines. One is dedicated to non-active samples. The other one, located in a controlled shielded area, offers the unique feature of being devoted to radioactive samples. Operational since 1998, it is strongly linked to nuclear research programs and has been dimensioned to accept radioactive but non-contaminant radioactive samples, including small quantities of UOX or MOX irradiated fuel. The samples, transported in a shipping cask, are unloaded and handled in hot cells with slaved arms. The analysis chamber, situated in a concrete cell, is equipped with charged particle detectors and a Si(Li) X-ray detector, shielded in order to reduce the radioactive noise produced by the sample, allowing ERDA, RBS, NRA and PIXE. After a description of the facility, including the sample handling in the hot cells and the analysis chamber, we will give an overview of the various experimental programs which have been performed, with an emphasis on the determination of the hydrogen distribution and local content in nuclear fuel cladding tubes.

  11. Physics with energetic radioactive ion beams

    SciTech Connect

    Henning, W.F.

    1996-12-31

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

  12. Method for making radioactive metal articles having small dimensions

    DOEpatents

    Ohriner, Evan K.

    2000-01-01

    A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

  13. REMOVAL OF RADIOACTIVE IONS FROM WATERS

    DOEpatents

    Silker, W.B.

    1962-04-10

    A process for removing neutron-reaction products, such as phosphorus, arsenic, manganese, copper, zinc, lanthanides, and actinides, from aqueous solutions by sorption on particles of aluminum metal is described. (AEC)

  14. Radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Gao, B. S.; Najafi, M. A.; Atanasov, D. R.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, X. C.; Dillmann, I.; Dimopoulou, Ch.; Faestermann, Th.; Geissel, H.; Gernhäuser, R.; Hillenbrand, P.-M.; Kovalenko, O.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Piotrowski, J.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Trageser, Ch.; Tu, X. L.; Weick, H.; Winckler, N.; Xu, H. S.; Yamaguchi, T.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.

    2015-05-01

    Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  15. Immobilized calcein for metal ion preconcentration

    SciTech Connect

    Not Available

    1984-04-01

    A technique is demonstrated for the preparation of immobilized calcein, (2',7',((bis(carboxymethyl)amino)methyl)-fluorescein), to be used for metal ion preconcentration. The calcein is of particular interest as a reagent for transition metals. The preconcentration is demonstrated for cobalt, copper, and nickel ions. Fluorescence spectra of the calcein at various pH values were obtained. Values were determined for the conditional binding constants of immobilized and dissolved calcein with the transition metal ions as a function of pH.

  16. Spin Observables in Reactions with Radioactive Ion Beams

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}; Urrego Blanco, Juan Pablo

    2007-01-01

    Polarization observables in nuclear reactions with exotic nuclei will provide important information concerning structural properties of nuclei and reaction mechanisms. We are currently engaged in exploring the use of polarization observables with radioactive ion beams and in the development of a polarized cryogenic target.

  17. ISOLATION OF RADIOACTIVE METALS FROM LIQUID WASTES

    EPA Science Inventory

    Metals are present in many waste streams, and pose challenges with regard to their disposal. Release of metals into the environment presents both human health and ecological concerns. As a result, efforts are directed at reducing their toxicity, bioavailability, and environment...

  18. Uptake of metal ions on humic acids

    SciTech Connect

    Pehlivan, E.; Arslan, G.

    2006-09-15

    The kinetics, the sorption capacities, pH and temperature dependence of sorption of humic acids (HAs) of Turkish brown coals with respect to Zn(II), Cu(II), Ni(II), Co(II) and Pb(II) ions were investigated, and the roles of the carboxylic and phenolic groups in the adsorption of metals ion on HAs were searched in this work. These metal ions are able to form complex compounds with carboxylic and phenolic groups of HAs. Adsorption equilibrium was achieved in between 50 and 60 min for all studied cations. HAs extracted from different brown coals have been characterized by chemical and physical methods. The chemical properties of HAs showed differences depending on the source from which they were obtained. The sorption of metals on the surface of HAs depends strongly on the pH, and sorption decreases with decreasing pH. Maximum removal of metal ions was demonstrated at pH values of 4.1-5.0. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The {Delta}G{sup 0} became negative as the temperature increased, and so the equilibrium constant decreased slightly. The investigation proved that the HAs are suitable materials for the studied heavy metal ion removal from aqueous solution and could be considered as potential material for purification of effluent polluted with toxic metal ions.

  19. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  20. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  1. The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    SciTech Connect

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Mendes, D. R. Jr.; Pires, K. C. C.; Morcelle, V.; Hussein, M. S.; Barioni, A.; Condori, R. Pampa; Morais, M. C.; Alcantara Nunez, J.; Camargo, O. Jr.; Otani, Y.; Leistenschneider, E.; Scarduelli, V.; Benjamim, E. A.; Arazi, A.; Assuncao, M.

    2009-06-03

    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.

  2. Perspectives with Radioactive Ion Beams at ININ

    NASA Astrophysics Data System (ADS)

    Lazos, A.; Paredes, L.

    1997-05-01

    The Institute (ININ) in collaboration with other universities is considering an H^- cyclotron for two important programs, namely: a) the production of ``exotic" matter by means of the Isotope on Line (ISOL) method, and b) a Radioisotope Production plant for medical applications. The Mexican physics community is interested in nuclear astrophysical reactions and in nuclear structure studies with projectiles close to the proton drip line. The radionuclei will be post-accelerated in a 6 MV Tandem. This new task implies great upgrades, so that to continue with material, environmental, and other studies, a new 1.7 MV electrostatic machine is under evaluation. The intention of the production plant is to fulfill the national medical requirements. A smaller cyclotron will be installed at the National Autonomous University (UNAM) by ININ. Three Emission Computerized Axial Tomography (ECAT) devices will be also acquired. The Radioisotope Ion Beam (RIB), the Tandem, and the Production plant schemes are presented.

  3. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  4. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  5. Bioavailability of metal ions and evolutionary adaptation.

    PubMed

    Hong Enriquez, Rolando P; Do, Trang N

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  6. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  7. Intense metal ion beam source for heavy ion fusion

    SciTech Connect

    Brown, I.G.

    1986-05-01

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C/sup +/ (greater than or equal to99% of the beam in this species and charge state), Cr/sup 2 +/ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed.

  8. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  9. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  10. Metal ions as inflammatory initiators of osteolysis.

    PubMed

    Magone, Kevin; Luckenbill, Daniel; Goswami, Tarun

    2015-05-01

    Osteolysis and aseptic loosening currently contribute 75 % of implant failures. Furthermore, with over four million joint replacements projected to be performed in the United States annually, osteolysis and aseptic loosening may continue to pose a significant morbidity. This paper reviews the osteolysis cascade leading to osteoclast activation and bone resorption at the biochemical level. Additionally, the metal ion release mechanism from metallic implants is elucidated. Even though metal ions are not the predominating initiator of osteolysis, they do increase the concentration of key inflammatory cytokines that stimulate osteoclasts and prove to be a contributor to osteolysis and aseptic loosening. Osteolysis is a competitive mechanism among a number of biological reactions, which includes debris release, macrophage and osteoclast activation, an inflammatory response as well as metal ion release. Pharmacological therapy for component loosening has also been reviewed. A non-surgical treatment of osteolysis has not been found in the literature and thus may become an area of future research. Even though this research is warranted, comprehensively understanding the immune response to orthopedic implants and their metallic ions, and thus, creating improved prostheses appears to be the most cost-effective approach to decrease the morbidity related to osteolysis and to design implants with greater longevity. The ionic forms, cytokines, toxicity, gene expression, biological effects, and hypersensitivity responses of metallic elements from metal implants are summarized as well. PMID:25795427

  11. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  12. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    SciTech Connect

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  13. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    SciTech Connect

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  14. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups • screen candidates and identify ligand architectures that will exhibit enhanced metal ion recognition. These new capabilities are being applied to ligand systems identified under other DOEsponsored projects where studies have suggested that modifying existing architectures will lead to dramatic enhancements in metal ion binding affinity and selectivity. With this in mind, we are collaborating with Professors R. T. Paine (University of New Mexico), K. N. Raymond (University of California, Berkeley), and J. E. Hutchison (University of Oregon), and Dr. B. A. Moyer (Oak Ridge National Laboratory) to obtain experimental validation of the predicted new ligand structures. Successful completion of this study will yield molecular-level insight into the role that ligand architecture plays in controlling metal ion complexation and will provide a computational approach to ligand design.

  15. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  16. The SPES Radioactive Ion Beam facility of INFN

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Spes Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-02-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 40 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research center for radio-isotopes production for medicine and for neutron beams.

  17. The SPES Radioactive-Ion Beam Facility of INFN

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.; Calabretta, L.

    2015-11-01

    A new radioactive-ion beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using a UCx direct target able to sustain a power of 10 kW. The primary proton beam will be provided by a high-current cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions will be produced by proton-induced fission on a uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107-109 pps. The aim of the SPES facility is to deliver high-intensity radioactive-ion beams of neutron-rich nuclei for nuclear physics research, as well as to be an interdisciplinary research center for radioisotope production for medicine and for neutron beams.

  18. The SPES radioactive ion beam project of INFN

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Spes Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galat, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2014-07-01

    The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line) method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.20.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  19. Fluorescent ion indicators for detecting heavy metals

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Hoyland, Brian; Carter, Scott; Zhang, Cailan; Haugland, Richard P.

    1995-05-01

    A series of fluorescent ion indicators were tested for their spectral response to submicromolar levels of 13 divalent and trivalent metal ions in aqueous solution. Upon binding their target ions, these fluorescent compounds exhibit changes in fluorescence emission intensity that are easily detectable, making them useful for direct the detection of soluble heavy metal ions including Hg2+, Cu2+, Ni2+ and Cd2+. The fluorescence response of these indicators to ion binding results from photoinduced electron transfer effects, fluorophore/quencher interactions, fluorescence quenching by heavy metal ions or a combination of these processes. The majority of the indicators we tested bind their target ions reversibly with dissociation constants (Kd) near 1 (mu) M (approximately 1 ppm) and detection limits near 100 nM (approximately 100 ppb) at pH 7. However, several indicators exhibit very high affinity for their target ion; for example, Magnesium GreenTM binds Zn2+ with a Kd near 20 nM. All the indicators synthesized and tested are based on water-soluble fluorophores that have high fluorescence quantum yields (from 0.3 to 0.7) and can be excited with an Ar laser, fluorometer or hand- held UV lamp. Furthermore, the excitation and emission spectra of these indicators are insensitive to pH changes over the range of 5 to 10, as well as to high concentrations of K+, Na+, Ca2+ and Mg2+. These properties make the indicators useful for the direct measurement of metal ions in solutions, such as biological fluids, sea water and waste streams, that contain high concentrations of salts.

  20. Metal ions affecting the skin and eyes.

    PubMed

    Lansdown, Alan B G

    2011-01-01

    The skin and eyes remain in constant exposure to the surrounding environment and are subject to accidental, occupational, and biological risks at all times, Normal development, homeostasis, and repair following injury depend upon appropriate levels of calcium, zinc, magnesium, copper, iron, and minute amounts of other trace metals. Both tissues exist in a permanent state of dynamic equilibrium with the environment whereby cells lost through natural wear and tear are replaced through genetically regulated mitotic patterns. Normal functional requirements of the constituent tissues depend on critical balances between trace metals, metal ion gradients, and specific carrier proteins which are modulated by upregulation of growth factors, cytokines, hormones, and subcellular regulators acting by autocrine, paracrine, and endocrine mechanisms. Metal ion gradients in epidermal tissues serve critical functions in basal cell proliferation, post-mitotic migration, and functional differentiation in normal homeostasis and in repair following injury. Toxic mechanisms reflect imbalances in trace metals or interaction between xenobiotic and trace metals through competitive binding key carrier proteins and metabolic pathways leading to trace metal imbalances and functional impairment. Alternatively, toxic injuries result through direct cytotoxic action of metal ions on cell membranes, intercellular communication, RNA and DNA damage, and mutagenic change. Arsenic is the only primary carcinogen in the skin following ingestion or topical exposure; beryllium, aluminum, and zirconium are a cause of granuloma. Aluminum as a cause for breast cancer is equivocal. Metal toxicities in the eye result from direct accidental or occupational exposure and systemic uptake of neurotoxic metals and their action on the retina and optic nerve. Calcium, zinc, magnesium, and iron are essential trace elements in eye development and physiology but silver, gold, lead, and mercury are absorbed through optic membranes or from the circulation to accumulate in the vitreous leading to local or systemic action. Lead, mercury, cadmium, aluminum, and other xenobiotic metals are implicated in structural and physiological damage in the mammalian eye. Thallium shows an affinity for melanin. PMID:21473382

  1. Metallic ion implantation by using a MEVVA ion source

    NASA Astrophysics Data System (ADS)

    Chengzhou, Ji; Tonghe, Zhang; Huixing, Zhang; Jindong, Xie; Anmin, Wang

    1994-06-01

    Metallic ions (Ti, Mo, W, V, Ni, Y, Fe and Al) extracted from a MEVVA source have been implanted up to high doses (>1 ? 1017 cm?2) into Al and H13 steel. Because of beam heating, rather low energy ions could penetrate quite deeper in the substrates than predicted, stable intermetallic compounds appear as fine precipitates in the doped region, and hence the retained concentration of implants even exceeds the sputter-limited maximum. Multiply charged beam, enhanced diffusion and chemical reaction give great influences to the concentration distribution of implants. All these features are strongly dependent on the chosen ion-target combination.

  2. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  3. Production of intense beams of singly charged radioactive ions

    SciTech Connect

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  4. Auger stimulated ion desorption of negative ions via K-capture radioactive decay.

    PubMed

    Verkhoturov, S V; Schweikert, E A; Chechik, V; Sabapathy, R C; Crooks, R M; Parilis, E S

    2001-07-16

    We report on Auger stimulated ion desorption via Coulomb explosion from surface self-assembled alkylthiol and fluorocarbon molecular layers, triggered by K-capture decay of an imbedded radioactive 55Fe atom. The charge state of the ejecta is determined by charge exchange in binary atomic collisions in bulk and electron tunneling outside the solid, as well as by fragmentation of electronically excited molecules or molecular fragments. We describe the first nonbeam experiments documenting positive and abundant negative ion desorption due solely to core electron excitation after radioactive decay. PMID:11461591

  5. Auger Stimulated Ion Desorption of Negative Ions via K -Capture Radioactive Decay

    SciTech Connect

    Verkhoturov, S. V.; Schweikert, E. A.; Chechik, Victor; Sabapathy, Rajaram C.; Crooks, Richard M.; Parilis, E. S.

    2001-07-16

    We report on Auger stimulated ion desorption via Coulomb explosion from surface self-assembled alkylthiol and fluorocarbon molecular layers, triggered by K -capture decay of an imbedded radioactive {sup 55}Fe atom. The charge state of the ejecta is determined by charge exchange in binary atomic collisions in bulk and electron tunneling outside the solid, as well as by fragmentation of electronically excited molecules or molecular fragments. We describe the first nonbeam experiments documenting positive and abundant negative ion desorption due solely to core electron excitation after radioactive decay.

  6. [Development of trace metal ion analysis].

    PubMed

    Kobayashi, J

    2000-09-01

    Analyses of trace biologically essential or toxic ionic compounds found in the environment are very important. However, the lack of sensitivity and interference caused by coexisting components are often serious problems. To determine trace levels of metal ions without the above problems, new preconcentration and analytical methods have been developed. Firstly, three methods for the selective preconcentration of metal ions are shown below: 1) 3-Chloropyridazine-6-carbohydrazide was immobilized on glass beads supports to be used as a column packing material. Multi-metal ions were concentrated on the column and eluted selectively with several buffers and hydrochloric acid. The eluate was analyzed off-line by flame atomized-atomic absorption spectrometry (AAS). This method was able to determine sub-ppb levels of cupper- and cadmium-ions in environmental samples. 2) Salicylideneamino-2-thiophenol was immobilized on the supports. Aluminum ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed off-line by flameless-AAS or on-line by flow injection analysis using pyrocatechol violet for a post-column colorimetric reagent. These methods were able to determine ppb-ppt levels of aluminium in environmental samples and were suitable for its state-analysis. 3) Bathocuproinesulfonic acid was immobilized on the supports. Copper ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed on-line by flow injection analysis using bathocuproinesulfonic acid. This method was able to determine sub-ppb levels of copper in environmental samples. On the other hand, to analyze simultaneously trace metal ions and anions, capillary electrophoresis was performed using ethylenediaminetetraacetic acid as an electrolyte component. Simultaneous determination of several ions in mineral waters was achieved by the system. PMID:11019646

  7. Development of ECR plasmas for radioactive ion beams

    SciTech Connect

    Geller, R.; Bouly, J. L.; Bruandet, J. F.; Chauvin, N.; Curdy, J. C.; Lamy, T.; Nifenecker, H.; Sole, P.; Sortais, P.; Vieux-Rochaz, J. L.

    1999-04-26

    ECR plasmas are utilized for : 1) Charge breeding of 1+ RIB into N+ RIB in continuous regime with an efficiency for one given charge of 10% for noble gases and about 5% for solid elements. 2) Charge breeding with beam bunching (bunch duration 20 ms, 5 Hz) was obtained for Rb{sup 15+} ions with an efficiency of 2.2%. These results are very reproducible and need only about 200 W of RF power. The number of ions contained in one bunch exceeds 1000 times those achieved with EBIS systems. The ECR trap is better suited for pulsed post acceleration. 3) Ion accumulation in the ECR plasma trap may become a method for realizing a radioactive target.

  8. ISOL science at the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Bardayan, D. W.; Galindo Uribarri, A.; Gross, C. J.; Jones, K. L.; Liang, J. F.; Nazarewicz, W.; Stracener, D. W.; Tatum, B. A.; Varner, R. L.

    2011-02-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) provides high-quality Isotope Separator Online beams of short-lived, radioactive nuclei for nuclear structure and reaction studies, astrophysics research, and interdisciplinary applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25 MV tandem, accelerated, and used in experiments. This paper reviews the HRIBF and its users' science. Note that this manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes.

  9. Radiation issues in a radioactive ion decay ring.

    PubMed

    Magistris, M; Silari, M

    2005-01-01

    In a beta-beam facility, a pure beam of electron neutrinos, or their antiparticles, are produced by the decay of fully stripped radioactive ions (6He and 18Ne) circulating in a storage ring. Since the beam is not extracted from the ring, all the particles will eventually be lost somewhere in the machine and thus activate the accelerator components and the surrounding concrete and rock. In particular, as nuclei change their charge in beta-decay, a large part of the particles will be lost in the arcs of the decay ring and mainly irradiate the magnets. The density of inelastic interactions of hadrons in the magnets, concrete and rock and the track-length distribution of secondary hadrons were calculated by means of the FLUKA Monte Carlo code. These values were used to estimate the induced radioactivity in the facility, the dose rates expected in the decay ring and the consequences for the environment. PMID:16381773

  10. Radiation issues in a radioactive ion decay ring.

    TOXLINE Toxicology Bibliographic Information

    Magistris M; Silari M

    2005-01-01

    In a beta-beam facility, a pure beam of electron neutrinos, or their antiparticles, are produced by the decay of fully stripped radioactive ions (6He and 18Ne) circulating in a storage ring. Since the beam is not extracted from the ring, all the particles will eventually be lost somewhere in the machine and thus activate the accelerator components and the surrounding concrete and rock. In particular, as nuclei change their charge in beta-decay, a large part of the particles will be lost in the arcs of the decay ring and mainly irradiate the magnets. The density of inelastic interactions of hadrons in the magnets, concrete and rock and the track-length distribution of secondary hadrons were calculated by means of the FLUKA Monte Carlo code. These values were used to estimate the induced radioactivity in the facility, the dose rates expected in the decay ring and the consequences for the environment.

  11. IMMUNOASSAYS FOR METAL IONS. (R824029)

    EPA Science Inventory

    Abstract

    Antibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  12. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  13. Development of a radioactive ion beam test stand at LBNL

    SciTech Connect

    Burke, J.; Freedman, S.J.; Fujikawa, B.; Gough, R.A.; Lyneis, C.M.; Vetter, P.; Wutte, D.; Xie, Z.Q.

    1998-10-05

    For the on-line production of a {sup 14}O{sup +} ion beam, an integrated target--transfer line ion source system is now under development at LBNL. {sup 14}O is produced in the form of CO in a high temperature carbon target using a 20 MeV {sup 3}He beam from the LBNL 88'' Cyclotron via the reaction {sup 12}C({sup 3}He,n){sup 14}O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O{sub 2} and CO are presented. Ionization efficiencies of 28% for Ar{sup +}, 1% for CO, 0.7% for O{sup +}, 0.33 for C{sup +} have been measured.

  14. Development of a radioactive ion beam test stand at LBNL

    SciTech Connect

    Wutte, D.; Burke, J.; Fujikawa, B.; Vetter, P.; Freedman, S. J.; Gough, R. A.; Lyneis, C. M.; Xie, Z. Q.

    1999-04-26

    For the on-line production of a {sup 14}O{sup +} ion beam, an integrated target-transfer line ion source system is now under development at LBNL. {sup 14}O is produced in the form of CO in a high temperature carbon target using a 20 MeV {sup 3}He beam from the LBNL 88'' Cyclotron via the reaction {sup 12}C({sup 3}He,n){sup 14}O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O{sub 2} and CO are presented. Ionization efficiencies of 28% for Ar{sup +}, 1% for CO, 0.7% for O{sup +}, 0.33 for C{sup +} have been measured.

  15. Metal ions affecting reproduction and development.

    PubMed

    Apostoli, Pietro; Catalani, Simona

    2011-01-01

    Many metal ions (lead, mercury, arsenic, cadmium, chromium, nickel, vanadium, copper, lithium) exert a wide variety of adverse effects on reproduction and development, including influence on male and female subfertility or fertility, abortions, malformations, birth defects, and effects on the central nervous system. The effects produced by metal ions depend on several factors, such as timing and duration of exposure, their distribution and accumulation in various organs (e.g., the nervous system), and on the interference with specific developmental processes. Neonatal and early postnatal periods are lifespan segments during which sensitivity to metals is high; e.g., lead toxicity on the developing organism is paradigmatic of related well known and still open questions. In more recent decades, important mechanisms of action have been suggested: the endocrine disruption via impact of metal ions on reproductive hormones and the oxidative stress. While experimental data provide clear evidence of effects of many metals, human data are scant and traditionally limited to high levels of a few metal ions, like lead on male fertility. Less documented are reproductive effects for mercury, manganese, chromium, nickel, and arsenic for the same gender. More complex is the demonstration of effects on female reproduction and on pregnancy. The action of lead, arsenic, cadmium, chromium, and mercury may in fact be relevant in several stages, beginning in fetal life, during early development or maturity, and is characterized by subfertility, infertility, intrauterine growth retardation, spontaneous abortions, malformations, birth defects, postnatal death, learning and behavior deficits, and premature aging. Also, for females the evidences of specific aspects such as fertility or abortions are usually higher and clearer from animal experiments than from human studies. PMID:21473384

  16. Ion chromatographic determination of transition metals in irradiated nuclear reactor surveillance samples.

    PubMed

    Louw, I

    1996-02-01

    The determination of transition metal ions in radioactive (+/-25 microCi/g) low-alloy steels (nuclear reactor surveillance samples) by ion chromatography (IC) is described. The analysis has been done directly without prior separation of the iron matrix. The eluted metal ions have been detected with a UV-visible spectrophotometric detector after post-column complexation with 4-(2-pyridylazo)resorcinol. The results are in a good agreement with the certified values for the standard reference material used. The method was applied to nuclear reactor surveillance samples for the determination of Cu, Mn, Co and Ni. PMID:15048428

  17. High-current pulsed ion source for metallic ions

    SciTech Connect

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05..pi.. cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable.

  18. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    SciTech Connect

    Not Available

    1993-07-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management.

  19. Recent results with radioactive ion beams in Brasil (RIBRAS)

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Mendes, D. R., Jr.; Descouvemont, P.; de Faria, P. N.; Barioni, A.; Leistenschneider, E.; Morcelle, V.; Morais, M. C.; Pires, K. C. C.; Condori, R. Pampa; Assunção, M. M.; Scarduelli, V.; Gasques, L. R.; Zamora, J. C.

    2012-10-01

    The RIBRAS facility (Radiactive Ion Beams in Brasil) is installed next to the 8 MV Pelletron Tandem of the Nuclear Physics Laboratory of the Institute of Physics of the University of São Paulo. It consists of two superconducting solenoids with maximum magnetic field of B=6.5T. Light radioactive ion beams are produced through transfer reactions, using solid or gaseous production targets of Be, LiF, 3He etc. The solenoids make a magnetic rigidity selection and the use of the two solenoids with a degrader between them allows the production of quite pure secondary beams. Beams of 6He, 8Li, 7Be, 10Be, 8B, 12B are currently produced and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy secondary targets. Some examples of reactions recently studied are presented below.

  20. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    PubMed

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. PMID:26001134

  1. Metal ions in the atmosphere of Neptune.

    PubMed

    Lyons, J R

    1995-02-01

    Microwave propagation experiments performed with Voyager 2 at Neptune revealed sharp layers of electrons in Neptune's lower ionosphere with densities of approximately 10(4) per cubic centimeter. These layers are reminiscent of the sporadic-E layers in the Earth's ionosphere, and when taken together with data from the other giant planets, these data confirm the importance of the magnetic field in layer formation. A photochemical model that incorporates species produced by meteoroid ablation predicts that singly ionized magnesium is the most likely metal to be found in the layers, although laboratory data on the kinetics of metallic atoms and ions in a reducing environment are lacking. The metal chemistry discussed here is directly relevant to the abundant metals observed at the impact site of the G fragment of comet Shoemaker Levy 9 on Jupiter. PMID:7839139

  2. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  3. Cryogenic molecular separation system for radioactive (11)C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K

    2015-12-01

    A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system. PMID:26724018

  4. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  5. Accelerating Radioactive Ion Beams With REX-ISOLDE

    SciTech Connect

    Ames, F.; Emhofer, S.; Habs, D.; Kester, O.; Reisinger, K.; Sieber, T.; Bollen, G.; Cederkaell, J.; Forstner, O.; Wenander, F.; Huber, G.; Wolf, B.; Schwalm, D.; Hahn, R. von; Bergh, P. van den; Duppen, P. van

    2003-08-26

    The post accelerator REX-ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX-ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi-continuous beam from the ISOLDE target-ion-source, and then an electron beam ion source (EBIS) charge-breeds them to a mass-to-charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ, an IH structure and three 7-gap-resonators. The later ones allow a variation of the final energy between 0.8 and 2.2 MeV/u. Although the machine is still in the commissioning phase, first physics experiments have been done with neutron rich Na and Mg isotopes and 9Li. A total efficiency of several percent has already been obtained.

  6. Engineering of microorganisms towards recovery of rare metal ions.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2010-06-01

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. PMID:20393699

  7. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.

    1996-12-31

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the {approximately}1 to {approximately}100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs.

  8. Complexing of metal ions by humic substances

    SciTech Connect

    Bryan, N.D.; Zhang, Y.; Jones, M.N.

    1995-12-31

    The interaction of metal ions with humic substances is being studied using two different techniques. UV-scanning ultracentrifugation is being used to determine molecular weights and to investigate changes in aggregation brought about by metal ion complexation. The relationship between cation charge and conformation of the humic ligands is also being investigated. The complexation of actinide elements (U, Np, Pu, Am) by humic substances from soils contaminated by both natural processes and by low-level effluent releases is also being studied. Gel permeation chromatography has been used to show both that different fractions of humic substances vary greatly in their effectiveness as ligands and that different actinide elements associate with different fractions. These studies have also shown that uranium desorption is kinetically controlled by humic substances.

  9. Interplay of metal ions and urease

    PubMed Central

    Carter, Eric L.; Flugga, Nicholas; Boer, Jodi L.; Mulrooney, Scott B.; Hausinger, Robert P.

    2009-01-01

    Summary Urease, the first enzyme to be crystallized, contains a dinuclear nickel metallocenter that catalyzes the decomposition of urea to produce ammonia, a reaction of great agricultural and medical importance. Several mechanisms of urease catalysis have been proposed on the basis of enzyme crystal structures, model complexes, and computational efforts, but the precise steps in catalysis and the requirement of nickel versus other metals remain unclear. Purified bacterial urease is partially activated via incubation with carbon dioxide plus nickel ions; however, in vitro activation also has been achieved with manganese and cobalt. In vivo activation of most ureases requires accessory proteins that function as nickel metallochaperones and GTP-dependent molecular chaperones or play other roles in the maturation process. In addition, some microorganisms control their levels of urease by metal ion-dependent regulatory mechanisms. PMID:20046957

  10. Design of high-power ISOL targets for radioactive ion beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Alton, G. D.

    2004-03-01

    In this report, we provide lists of refractory oxides, carbides and refractory metals suitable for use as targets for producing short-lived, proton-rich isotopes of elements (He through Pu) and neutron-rich isotopes of elements (As through Dy) for potential use at high-energy, ISOL-based radioactive ion beam facilities. Complex structure, highly permeable C matrices are described for coating with optimum thicknesses of any type of refractory target material (metal, carbide or oxide). Prescriptions are given for the design and fabrication of custom-engineered targets with diffusion lengths compatible with the release of isotopes of interest within their lifetimes. Computationally derived thermal analysis information is presented for selected low-density, fibrous, highly permeable targets, subjected to direct irradiation with 1 GeV, 100-400 kW proton beams. From these studies, internal thermal radiation is reconfirmed as an important heat transfer (cooling) mechanism within low-density, fibrous and composite targets. By utilization of the radiation cooling effect and beam manipulation techniques, in combination with placement of additional heat shielding on the exit end of targets, beam power depositional densities can be controlled and temperatures homogenized to acceptable levels within fast diffusion release, fast effusive-flow ISOL targets subjected to irradiation with 400 kW proton beams, as required at next-generation radioactive ion beam facilities.

  11. Assessment of recycling or disposal alternatives for radioactive scrap metal

    SciTech Connect

    Murphie, W.E.; Lilly, M.J. III; Nieves, L.A.; Chen, S.Y.

    1993-10-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ``tiered`` concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

  12. Metal hydrides for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J.-M.; Aymard, L.

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH2 with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH2 electrode shows a large, reversible capacity of 1,480mAhg-1 at an average voltage of 0.5V versus Li+/Li∘ which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH2. Furthermore, the reaction is not specific to MgH2, as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH2, which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  13. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  14. Metal ion homeostasis and intracellular parasitism.

    PubMed

    Agranoff, D D; Krishna, S

    1998-05-01

    Bacteria possess multiple mechanisms for the transport of metal ions. While many of these systems may have evolved in the first instance to resist the detrimental effects of toxic environmental heavy metals, they have since become adapted to a variety of important homeostatic functions. The 'P'-type ATPases play a key role in metal ion transport in bacteria. A Cu+-ATPase from the intracellular bacterium Listeria monocytogenes is implicated in pathogenesis, and similar pumps in Mycobacterium tuberculosis and M. leprae may play a comparable role. Intracellular bacteria require transition metal cations for the synthesis of superoxide dismutases and catalases, which constitute an important line of defence against macrophage-killing mechanisms. The macrophage protein Nramp1, which confers resistance to a variety of intracellular pathogens, has also been shown recently to be a divalent amphoteric cation transporter. Mycobacterial homologues have recently been identified by genomic analysis. These findings suggest a model in which competition for divalent cations plays a pivotal role in the interaction between host and parasite. PMID:9632246

  15. Analysis of metallic pigments by ion microbeam

    NASA Astrophysics Data System (ADS)

    Pelicon, P.; Klanjšek-Gunde, M.; Kunaver, M.; Simčič, J.; Budnar, M.

    2002-05-01

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2×2 μm 2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree.

  16. Ion source test stand for radioactive beams (abstract)

    NASA Astrophysics Data System (ADS)

    Nolen, J. A.; Decrock, P.; Portillo, M.; Mullen, T. P.; Geraci, A. A.; Barlow, T. A.; Greene, J. P.; Gomes, I.; Batson, C. H.; Saremba, S. E.

    1998-02-01

    A test stand for development of ion sources for radioactive beams is currently being commissioned at Argonne. It is located at the Physics Division's Dynamitron accelerator which will be used as a neutron generator with a flux of up to 1011 neutrons per second created by reactions of 4 MeV deuterons on various targets with beam currents of up to 100 μA. The primary targets will be located adjacent to heated secondary targets inside an on-line ion source. With this neutron-generator facility it will be possible to produce radioactive beams of various isotopes, such as 6He, 24Na, and neutron-rich fission fragments. For example, with a secondary target of uranium carbide containing 25 g of natural or depleted uranium the yields of individual isotopes in the target will be about 107/s for isotopes such as 132Sn, 140Xe, and 142Cs, near the peak of the fission distribution. The ion sources to be evaluated will be located within a shielded cave with walls consisting of 30 cm of steel plus 60 cm of concrete to attenuate the prompt neutron radiation by a factor of about 104. Secondary beams of radioactive fission fragments with intensities on the order of 106/s per isotope will be extracted in the 1+ charge state at energies of 20 keV and mass separated with a Danfysik mass separator. Light isotopes, such as 6He and 24Na, can be produced via (n,α) and (n,p) reactions on appropriate target materials. Commissioning began with measurements of fission yields from primary targets of C, Be, BeO, and BN. A surface ionization source which is a variation of the one used in the TRISTAN on-line mass seperator facility at Brookhaven National Laboratory has been installed and tested with stable Rb and Cs beams. The isotope separator was also commissioned with these beams. The development program will include emittance measurements and source optimization, initially with stable beams, and target-delay-time and release-efficiency measurements for various target/secondary-beam systems.

  17. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  18. Assessment of recycling or disposal alternatives for radioactive scrap metal

    SciTech Connect

    Murphie, W.E.; Lilly, M.J. III; Nieves, L.A.; Chen, S.Y.

    1993-11-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

  19. On the Metal Ion Selectivity of Oxoacid Extractants

    SciTech Connect

    Hay, Benjamin; Chagnes, Alexandre; Cote, Gerard

    2013-01-01

    Relationships between metal chelate stability, ligand basicity, and metal ion acidity are reviewed and the general applicability is illustrated by linear correlations between aqueous stability constants and ligand pKa values for 35 metals with 26 ligands. The results confirm that most individual ligands of this type exhibit a stability ordering that correlates with the Lewis acidity of the metal ion. It is concluded that the general metal ion selectivity exhibited by liquid-liquid oxoacid extractants such as carboxylic acids, -diketones, and alkylphosphoric acids reflects the intrinsic affinity of the metal ion for the negative oxygen donor ligand.

  20. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  1. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Thorn, A.; Ritter, E.; Ullmann, F.; Pilz, W.; Bischoff, L.; Zschornack, G.

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au60 +. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  2. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source.

    PubMed

    Thorn, A; Ritter, E; Ullmann, F; Pilz, W; Bischoff, L; Zschornack, G

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented. PMID:22380207

  3. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  4. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS).

    PubMed

    Segal, M J; Bark, R A; Thomae, R; Donets, E E; Donets, E D; Boytsov, A; Ponkin, D; Ramsdorf, A

    2016-02-01

    An assembly for a commercial Ga(+) liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)-JINR (Dubna, Russia) collaboration. First, results on Ga(+) ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga(+) and Au(+) ion beams will be reported as well. PMID:26931974

  5. a Gas Jet Target for Radioactive Ion Beam Experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Smith, M. S.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Schatz, H.; Montes, F.; Meisel, Z.; Blackmon, J. C.; Linhardt, L. E.; Wiescher, M.; Couder, M.; Berg, G. P. A.; Robertson, D.; Vetter, P. A.; Lemut, A.; Erikson, L.

    2013-03-01

    With the development of new radioactive ion beam (RIB) facilities such as FRIB, which will push measurements further away from stability, the need for improved RIB targets is more crucial than ever. Important scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on hydrogen and helium require targets that are dense, highly localized, and pure. To this end, the JENSA Collaboration led by the Colorado ol of Mines (CSM) is designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target allows for a high density and purity of target nuclei (such as 3He) within a highly confined region, without the use of windows or backing materials, and will also enable the use of state-of-the-art detection systems. The motivation, specifications and status of the CSM gas jet target system is discussed.

  6. Intravascular brachytherapy with radioactive stents produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  7. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  8. Heavy metals, organics and radioactivity in soil of western Serbia.

    PubMed

    Dugalic, Goran; Krstic, Dragana; Jelic, Miodrag; Nikezic, Dragoslav; Milenkovic, Biljana; Pucarevic, Mira; Zeremski-Skoric, Tijana

    2010-05-15

    Western Serbia is a region well-known for potato production. Concentrations of selected metals, polycyclic aromatic hydrocarbons (PAHs) and radioactivity were measured in the soil in order to evaluate the quality and characteristics. The examined soils (Luvisol and Pseudogley) showed unsuitable agrochemical characteristics (acid reaction, low content of organic matter and potassium). Some samples contained Ni, Mn and Cr above the maximal permissible concentration (MPC). The average concentration of total PAHs was 1.92 mg/kg, which is larger than the maximal permissible concentration in Serbia but below the threshold values in the European Union for food production. The average radioactivity of (238)U, (226)Ra, (232)Th, (40)K and the fission product (137)Cs were 60.4+/-26.2, 33.2+/-13.4, 49.1+/-18.5, 379+/-108 and 36.4+/-23.3 Bq/kg. Enhanced radioactivity in the soils was found. The total absorbed dose rate in air above the soil at 1m height calculated for western Serbia was 73.4 nGy/h and the annual effective dose was 90 microSv, which are similar to earlier reports for the study region. PMID:20060645

  9. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-09-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  10. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  11. Methods and devices for the separation of radioactive rare earth metal isotopes from their alkaline earth metal precursors

    SciTech Connect

    Wai, Chein M.

    1993-07-06

    A method is described for the separation of a radioactive rare earth metal isotope or a radioactive isotope of yttrium or scandium from its alkaline earth metal precursor comprising contacting a sample containing at least one of said isotopes and said precursor with an ionizable dibenzo ether derivative.

  12. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  13. Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.

    2015-04-01

    We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.

  14. Polarized proton target for radioactive ion beam experiments

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Satoshi; Uesaka, Tomohiro; Wakui, Takashi; Kawahara, Tomomi; Tateishi, Kenichiro; Chebotaryov, Sergey; Milman, Evgeniy; Sakai, Hideyuki

    2014-09-01

    The world of atomic nuclei is enriched by the strong spin-dependent interaction in nuclear force. For studying roles of such interactions, one of the best approaches is the direct reaction of spin-polarized light ions. From more than half century ago, a number of scattering experiments using polarized proton/deuteron beams have been performed in all over the world. A polarized target for radioactive-ion beam experiments will enable us to apply this powerful approach to the field of unstable nuclei. At RIKEN and CNS, Univ. of Tokyo, we have constructed a solid polarized proton target based on a unique polarizing method. The target has an advantage of the operation under a low magnetic field of 0.1 T, which allows the detection of low-energy recoil protons in the inverse kinematics. Currently achieved polarization is about 20%. The target has already been applied to RI-beam experiments at intermediate energies such as 70-200 MeV/nucleon. In this talk, we will introduce the overview of the polarized target system and present status of the experimental programs such as study of spin-orbit interaction in proton elastic scattering and determination of spin-orbit splitting by (p,2p) knock-out reaction. New physics opportunities expected with low-energy beams will also be covered.

  15. A gas jet target for radioactive ion beam experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Bardayan, D. W.; Blackmon, J. C.; Browne, J.; Couder, M.; Erikson, L. E.; Greife, U.; Hager, U.; Kontos, A.; Lemut, A.; Linhardt, L. E.; Meisel, Z.; Montes, F.; Pain, S. D.; Robertson, D.; Sarazin, F.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Vetter, P.; Wiescher, M.

    2013-04-01

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  16. A gas jet target for radioactive ion beam experiments

    SciTech Connect

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Smith, M. S.; Blackmon, J. C.; Linhardt, L. E.; Browne, J.; Kontos, A.; Meisel, Z.; Montes, F.; Schatz, H.; Erikson, L. E.; Lemut, A.; and others

    2013-04-19

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  17. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  18. Metal Ion Intercalated graphitic as Transparent Electrodes

    NASA Astrophysics Data System (ADS)

    Wan, Jiayu; Bao, Wenzhong; Gu, Feng; Fuhrer, Michael; Hu, Liangbing; UMD Team

    To best utilize the performance of graphene based transparent electrodes, we novelized Li-ion intercalation in graphene, and achieved highest performance of carbon based transparent electrodes. Transmission as high as 91.7% with a sheet resistance of 3.0 ohm/sq is achieved for 19-layer LiC6, significantly higher than any other continuous transparent electrodes. The unconventional modification of ultrathin graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. To achieve low cost, large scale graphene-based transparent electrodes, we further developed Na-ion intercalated printed reduced graphene oxide (RGO) film. The larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. Typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83 kohms/sq to 311 ohms/sq in the printed network was observed. This study demonstrated the great potential of metal-ion intercalation to improve the performance of graphene-based materials for transparent conductor applications.

  19. Charge breeding of isotope on-line-created radioactive ions using an electron cyclotron resonance ion trap

    SciTech Connect

    Geller, R.; Lamy, T.; Sortais, P.

    2006-03-15

    In the coming years huge ion-beam projects are foreseen. They deal with specific isotope on-line (ISOL) beams such as ISOL-created radioactive ions. The beam intensities are exceptionally high (>10{sup 12} ions/s), the radioactive lifetimes are short ({<=}1 s), and the ion energy is very high ({>=}150 GeV/u). In general in order to minimize the size of the accelerator one needs highly charged ISOL ions and therefore charge breeders are a must. In contrast with the CERN system, utilizing a Penning trap and an electron-beam ion source charge breeder (where the maximum ion beam cannot exceed 10{sup 6} ions/s) the Grenoble group launched in 1995 an electron cyclotron resonance (ECR) system capable of storing 10{sup 12} ions/s and delivering highly charged ISOL ions. In this article we show that this storage is possible for low-ion-energy ISOL ions following classical slowing down theory. In this case the injected ISOL ions are slowed down by ion-ion collisions which yield ion storage inside the ECR plasma, but also charge breeding by the energetic ECR electrons bombarding the slowed down ions.

  20. Charge breeding of isotope on-line-created radioactive ions using an electron cyclotron resonance ion trap

    NASA Astrophysics Data System (ADS)

    Geller, R.; Lamy, T.; Sortais, P.

    2006-03-01

    In the coming years huge ion-beam projects are foreseen. They deal with specific isotope on-line (ISOL) beams such as ISOL-created radioactive ions. The beam intensities are exceptionally high (>1012ions/s), the radioactive lifetimes are short (⩽1s), and the ion energy is very high (⩾150GeV/u). In general in order to minimize the size of the accelerator one needs highly charged ISOL ions and therefore charge breeders are a must. In contrast with the CERN system, utilizing a Penning trap and an electron-beam ion source charge breeder (where the maximum ion beam cannot exceed 106ions/s) the Grenoble group launched in 1995 an electron cyclotron resonance (ECR) system capable of storing 1012ions/s and delivering highly charged ISOL ions. In this article we show that this storage is possible for low-ion-energy ISOL ions following classical slowing down theory. In this case the injected ISOL ions are slowed down by ion-ion collisions which yield ion storage inside the ECR plasma, but also charge breeding by the energetic ECR electrons bombarding the slowed down ions.

  1. Behavior of metal ions in bioelectrochemical systems: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  2. Metal ion cooperativity in ribozyme cleavage of RNA

    PubMed Central

    Brännvall, Mathias; Kirsebom, Leif A.

    2001-01-01

    Combinations of chemical and genetic approaches were used to study the function of divalent metal ions in cleavage of RNA by the ribozyme RNase P RNA. We show that different divalent metal ions have differential effects on cleavage site recognition and rescue of cleavage activity by mixing divalent metal ions that do not promote cleavage by themselves. We conclude that efficient and correct cleavage is the result of cooperativity between divalent metal ions bound at different sites in the RNase P RNA-substrate complex. Complementation of a mutant RNase P RNA phenotype as a result of divalent metal ion replacement is demonstrated also. This finding together with other data indicate that one of the metal ions involved in this cooperativity is positioned near the cleavage site. The possibility that the Mg2+/Ca2+ ratio might regulate the activity of biocatalysts that depend on RNA for activity is discussed. PMID:11606743

  3. Extraction characteristics of a high current metal ion source

    NASA Astrophysics Data System (ADS)

    Inouchi, Yutaka; Yamashita, Takatoshi; Fujiwara, Shuichi; Matsuda, Yasuhiro; Inami, Hiroshi; Matsunaga, Kouzi; Matsuda, Koji

    1992-04-01

    A metal ion source has been developed for extracting high current ion beams of high melting point metals. In the discharge chamber, metal vapor was confined in high-temperature shields, and the pure metal plasma was produced by the arc discharge. In order to prevent the vapor deposits, the extraction electrodes were also required to be high temperature. Thus, multislit electrodes were improved to maintain fine beam optics even if they were heated. To investigate the metal ion extraction characteristics, Al ion beams were extracted and compared with Ar ion beams. Furthermore, high current Al, Cr, Si, and Ti ion beams were extracted, and the extracted current ≳100 mA was obtained for each metal.

  4. Fluorescence enhancement aided by metal ion displacement.

    PubMed

    Susini, Vanessa; Ienco, Andrea; Lucia Rossi, Veronica; Paolicchi, Aldo; Sanesi, Antonio

    2016-06-15

    Immunosensors are one of the most common platform used in clinical laboratories, in particular the class based on Enzyme Linked Fluorescent Assays (ELFA) takes advantage of the amplification step of the enzyme, usually the alkaline phosphatase, that catalyzes the hydrolysis of a fluorescent substrate leading it to fluoresce. Anyway, they suffer in sensitivity if compared to molecular diagnostic or more modern in vitro diagnostic devices. In our work, a simple and effective mechanism to enhance the fluorescent signal, and hence the sensitivity of the system, is presented. It is based on the metal ion displacement principle in which a second fluorophore, in our case Calcein Blue, quenched by a cobalt ion is add to the first one (4-MUP), and, in presence of inorganic phosphate, it will be progressively activated by the inorganic phosphate itself leading to the metal displacement. In this way Calcein Blue, newly free to fluoresce, contributes to global fluorescent signal generated by 4-MU. We have tested our proof of principle on a currently used immunoanalyzer, that is VIDAS® system (bioMérieux, Marcy l'Etoile, France) obtaining a fluorescence enhancement of about 50% for each concentration of hydrolyzed 4-MUP tested. PMID:26851581

  5. Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams

    SciTech Connect

    Lee, Dongwon

    2007-05-14

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides {sup 11}C, {sup 14}O and {sup 15}O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as {sup 12}N and {sup 15}F. In this work, the proton capture reaction on {sup 11}C has been evaluated via the indirect d({sup 11}C, {sup 12}N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective {sup 12}N {yields} {sup 11}C+p ANC is found to be (C{sub eff}{sup 12{sub N}}){sup 2} = 1.83 {+-} 0.27 fm{sup -1}. With the high {sup 11}C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the {sup 11}C(p,{gamma}) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed {sup 15}O radioactive ion beam at BEARS was used to study the poorly known level widths of {sup 16}F via the p({sup 15}O,{sup 15}O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in {sup 16}N and {sup 16}O have been well established, but less has been reported on {sup 16}F. Four states of {sup 16}F below 1 MeV have been identified experimentally: 0{sup -}, 1{sup -}, 2{sup -}, and 3{sup -} (E{sub x} = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our study utilized R-matrix analysis and found that the 0- state has a level width of 23.1 {+-} 2.2 keV, and that the broader 1- state has a width of 91.1 {+-} 9.9 keV. The level width of the 2{sup -} state is found to be 3.3 {+-} 0.6 keV which is much narrower than the compiled value of 40 {+-} 30 keV, while a width of 14.1 {+-} 1.7 keV for the 3{sup -} state is in good agreement with the reported value (< 15 keV). These experimental level widths of all four levels are also in accordance with theoretical predictions using single particle shell model calculation.

  6. Predicting relative toxicity of metal ions to bacteria (Microtox{reg_sign}) using ion characteristics

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1995-12-31

    The use of predictive effects models with metals has received little attention in toxicology. The purpose of this study was to predict the relative toxicity of individual metal ions and metal mixtures using ion characteristics. The concentration of metal resulting in a 50% reduction in light output (EC50) in marine bacteria (Vibrio fischeri) was determined for several metals using the Microtox{reg_sign} Toxicity Analyzer. Trends in metal toxicity were predicted by combining metal speciation calculations with empirical models based on metal ion characteristics. These trends were consistent for nine divalent metals (Ca{prime} Cd, Cu, Hg, Mg, Mn, Ni, Pb and Zn) whether the media mimicked salt water (NaC, medium) or freshwater (NaNO{sub 3} medium). When expanding the study to include an additional 14 mono-, di-, and trivalent metal ions, ion characteristics were still useful for predicting the relative toxicity of metal ions to bacteria. The prediction of nonadditive toxic effects using metal mixtures was also possible based on ion characteristics. Overall, models based on ion characteristics show much promise for predicting the relative toxicity of metal ions using the Microtox{reg_sign} assay.

  7. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  8. Biosorption of metal ions from aqueous solutions

    SciTech Connect

    Chen, Jiaping; Yiacoumi, Sotira

    1997-01-01

    Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role in the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.

  9. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Positive metallic ions have been measured in the earth's atmosphere between 85 and 120 km, during the period of the beta Taurids meteor shower, which is associated with Comet Encke. The ions originate during and following ablation of extraterrestrial debris by the earth's atmosphere. The enhancement of metal ion density during meteor showers is primary evidence for their extraterrestrial origin. The present results were obtained from a rocket-borne ion mass spectrometer.

  10. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  11. Plasma immersion ion implantation for reducing metal ion release

    NASA Astrophysics Data System (ADS)

    Díaz, C.; García, J. A.; Mändl, S.; Pereiro, R.; Fernández, B.; Rodríguez, R. J.

    2012-11-01

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  12. Ion implantation of krypton in sputter-deposited metal matrices

    SciTech Connect

    Tingey, G.L.; McClanahan, E.D.; Nesbitt, J.F.

    1980-06-01

    Krypton 85 has been successfully stored in a metal matrix by bombarding the metal surface with krypton ions while the metal is being deposited by sputtering. The krypton is thus incorporated into the metal in concentrations approaching 200 cm/sup 3/ of Kr(STP)cm/sup 3/ of deposit. Cost estimates of a facility to perform this work are given. (GHT)

  13. Direct reaction measurements with a 132Sn radioactive ion beam

    NASA Astrophysics Data System (ADS)

    Jones, K. L.; Nunes, F. M.; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Erikson, L.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, R. L.; Liang, J. F.; Livesay, R.; Ma, Z.; Moazen, B.; Nesaraja, C. D.; Pain, S. D.; Patterson, N. P.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Swan, T. P.; Thomas, J. S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  14. Conformational thermodynamics of metal-ion binding to a protein

    NASA Astrophysics Data System (ADS)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  15. A biosystem for removal of metal ions from water

    SciTech Connect

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  16. Fluorescence imaging of metal ions implicated in diseases.

    PubMed

    Qian, Xuhong; Xu, Zhaochao

    2015-07-21

    Metal ions play an important role in various biological processes, their abnormal homeostasis in cells is related to many diseases, such as neurodegenerative disease, cancer and diabetes. Fluorescent imaging offers a unique route to detect metal ions in cells via a contactless and damage-free way with high spatial and temporal fidelity. Consequently, it represents a promising method to advance the understanding of physiological and pathological functions of metal ions in cell biology. In this highlight article, we will discuss recent advances in fluorescent imaging of metal ions by small-molecule sensors for understanding the role of metals in related diseases. We will also discuss challenges and opportunities for the design of small-molecule sensors for fluorescent detection of cellular metal ions as a potential method for disease diagnosis. PMID:25556818

  17. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  18. Metal Ion Capture Mechanism of a Copper Metallochaperone.

    PubMed

    Chakravorty, Dhruva K; Li, Pengfei; Tran, Trang T; Bayse, Craig A; Merz, Kenneth M

    2016-01-26

    A novel cation-π interaction between the bound Cu(+) metal ion and Trp44 in the periplasmic Cu(+)/Ag(+) metallochaperone Escherichia coli CusF protects Cu(+) from the oxidative influence of the periplasm. In a popular model of metal ion transfer, a conformational change in the metal binding loop disrupts the cation-π interaction and moves Trp44 aside to provide access to the occluded metal ion binding site in an "open" conformation. In this study, our molecular dynamics simulations support this putative mechanism of metal ion transfer. We find that the apoprotein undergoes a transition back and forth from the crystallographically observed "closed" state to the hypothesized open conformation over multiple microseconds. In agreement with nuclear magnetic resonance data, our simulations show that similar transitions are prohibited in Cu(+)·CusF, suggesting that the conformational transitions are gated by a metal ion-mediated second-shell hydrogen bond between metal binding residue His36 and Asp37 of the metal binding loop region. Ab initio quantum mechanical calculations indicate that metal ion binding strengthens this interaction significantly, much like what is found in the case of other metalloproteins. The study builds toward a common evolutionary role of metal ion-mediated second-shell hydrogen bonds in metalloprotein structure and function. PMID:26690586

  19. Retrieval of heavy metal ions from solution via ferritisation.

    PubMed

    Mandaokar, S S; Dharmadhikari, D M; Dara, S S

    1994-01-01

    The paper summarises the results of the studies on retrieval of heavy metal ions in solution by ferritisation and its potential application in waste-water treatment. The optimum procedure for ferritisation of heavy metal ions in solution has been evolved with respect to pH, concentration of Fe2+, rate and time of aeration and temperature. The recommended procedure consists of controlled aeration of the solution containing heavy metal ions and ferrous ions at pH 9.5-10.5 at about 50 degrees C, until the black, granular, magnetic ferrite separates out. The metal ferrites can also be formed, even without heating or forced aeration, by ageing the mixed metal hydroxide precipitate at pH 10 to 11. The metal ferrites formed have been characterised by X-ray diffractometry. The laboratory-scope experiments conducted with synthetic heavy metal solutions as well as actual wastewater from a tanning industry showed that heavy metal ions can be effectively removed from solution to sub-ppm levels. The metal ferrites thus recovered may find commercial application as microwave absorbers, catalysts, metal scavengers, etc. This technique seems to have potential application in simultaneous, one step removal of different heavy metal ions from industrial wastewaters. PMID:15091732

  20. Polyphosphazene membranes for metal ion separations

    SciTech Connect

    Stone, M.L.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL), under sponsorship by the Bureau of Mines, evaluated the use of polyphosphazene-based polymer membranes for chemical separations. Synthetic membranes based on phosphazene inorganic polymers offer the promise of new industrial chemical separation technologies that are more energy efficient and economical than traditional phase change separation processes and extraction techniques. The research focused on the separation of metal ions from aqueous solutions. The polyphosphazene membranes were also tested for gaseous separations, results of which are presented in a separate Report of Investigation. Historically, membranes used for chemical separation have been prepared from organic polymers. In general, these membranes are stable only at temperatures less than 100{degrees}C, within narrow pH ranges, and in a very limited number of organic media. As a result, many organic- based membranes are unsuitable for industrial applications, which often involve harsh environments. In recent years, membrane research has focused on ceramic and metal membranes for use in the adverse environments of separation applications. These membranes are suitable for gas and liquid sieve separation applications, where molecules may be separated based on their molecular size. These membranes are not effective where additional selectivity is needed. A membrane that separates on the basis of solubility and that can perform separations in adverse environments is needed, and this need motivated the investigation of polyphosphazene membranes.

  1. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  2. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    PubMed Central

    Kong, Rong-Mei

    2011-01-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+ In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes. PMID:21370984

  3. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1986-08-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A high current metal ion source, the MEVVA ion source, in which the ion beam is extracted from a metal vapor vacuum arc plasma, has been used to obtain the spectra of multiple charged ions produced within the cathode spots. A computer calculation of the charge state distribution that evolves within the spots via stepwide ionization of ions by electron impact provides a theoretical basis for comparison of the data. In this paper we report on the measured charge state distributions for a wide variety of metallic species and compare these results with the predictions of this theory. 55 refs.

  4. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  5. European research activities on charge state breeding related to radioactive ion beam facilities.

    PubMed

    Lamy, T; Angot, J; Thuillier, T

    2008-02-01

    European effort on charge breeders is mainly dedicated to present and future Radioactive Ion Beam facilities. The main projects are High Intensity and Energy-ISOLDE at CERN, SPIRAL2 at GANIL, and EURISOL. Most of the experimental developments are funded by the European programs EURONS (European Nuclear Structure) and EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility). Two ion source types (electron beam ion source and electron cyclotron resonance ion source) have been adapted to accept the injection and the capture of an ion beam, in order to increase its charge with the highest efficiency within the shortest time. Both charge breeders have advantages and disadvantages with regard to their use in a Radioactive Ion Beam facility. The most important parameters studied are acceptance (in emittance and intensity) of the charge breeder, efficiency, and charge breeding time of a specific n+ charge state, emittance of the extracted n+ beam. The charge breeder parameters are studied with different 1+ ion sources dedicated to 1+ radioactive ion beam production, and the tuning procedure of the charge breeder as a beam line section of a specific accelerator is established and measured too. PMID:18315164

  6. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  7. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    SciTech Connect

    Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G.; Vanini, S.; Viesti, G.; Zumerle, G.; Bonomi, G.; Zenoni, A.; Calvini, P.; Squarcia, S.

    2010-08-04

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  8. Metal ion adsorption at the ionic liquid-mica interface

    NASA Astrophysics Data System (ADS)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G.; Atkin, Rob

    2015-12-01

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ~60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al3+ system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made.Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ~60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al3+ system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. Electronic supplementary information (ESI) available: Ion diameter distribution (grain size analysis) for the PAN + metal ion solutions. See DOI: 10.1039/c5nr05833c

  9. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  10. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a higher polarizability constant. PMID:25664640

  11. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  12. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  13. Metal ion sensing solution containing double crossover DNA

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Dugasani, Sreekantha R.; Cho, Youngho; Oh, Juyeong; Kim, Chulki; Seo, Min Ah; Lee, Taikjin; Jhon, Young Miin; Woo, Deok Ha; Lee, Seok; Jun, Seong Chan; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    The current study describes metal ion sensing with double crossover DNAs (DX1 and DX2), artificially designed as a platform of doping. The sample for sensing is prepared by a facile annealing method to grow the DXs lattice on a silicon/silicon oxide. Adding and incubating metal ion solution with the sensor substrate into the micro-tube lead the optical property change. Photoluminescence (PL) is employed for detecting the concentration of metal ion in the specimen. We investigated PL emission for sensor application with the divalent copper. In the range from 400 to 650 nm, the PL features of samples provide significantly different peak positions with excitation and emission detection. Metal ions contribute to modify the optical characteristics of DX with structural and functional change, which results from the intercalation of them into hydrogen bonding positioned at the center of double helix. The PL intensity is decreased gradually after doping copper ion in the DX tile on the substrate.

  14. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  15. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  16. Metal ion adsorption at the ionic liquid-mica interface.

    PubMed

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2016-01-14

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ∼60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. PMID:26661934

  17. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    PubMed Central

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  18. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis.

    PubMed

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José; Herrera-Esparza, Rafael

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  19. Progress in metal ion separation and preconcentration : an overview.

    SciTech Connect

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  20. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  1. Silica-polyamine composite materials for heavy metal ion removal, recovery, and recycling. 2. Metal ion separations from mine wastewater and soft metal ion extraction efficiency

    SciTech Connect

    Fischer, R.J.; Pang, D.; Beatty, S.T.; Rosenberg, E.

    1999-12-01

    Silica-polyamine composites have been synthesized which have metal ion capacities as high as 0.84 mmol/g for copper ions removed from aqueous solutions. In previous reports it has been demonstrated that these materials survive more than 3,000 cycles of metal ion extraction, elution, and regeneration with almost no loss of capacity (less than 10%). This paper describes two modified silica-polyamine composite materials and reveals the results of tests designed to determine the effectiveness of these materials for extracting and separating metal ions from actual mining wastewater samples. Using these materials, the concentration of copper, aluminum, and zinc in Berkeley Pit mine wastewater is reduced to below allowable discharge limits. The recovered copper and zinc solutions were greater than 90% pure, and metal ion concentration factors of over 20 for copper were realized. Further, the ability of one of these materials to decrease low levels of the soft metals cadmium, mercury, and lead from National Sanitation Foundation recommended challenge levels to below Environmental Protection Agency allowable limits is also reported.

  2. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity

    PubMed Central

    Cassat, James E.

    2013-01-01

    Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed “nutritional immunity.” To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection. PMID:22048835

  3. Catalytic metal ions and enzymatic processing of DNA and RNA.

    PubMed

    Palermo, Giulia; Cavalli, Andrea; Klein, Michael L; Alfonso-Prieto, Mercedes; Dal Peraro, Matteo; De Vivo, Marco

    2015-02-17

    CONSPECTUS: Two-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz ( Proc. Natl. Acad. Sci. U.S.A. 1993 , 90 ( 14 ), 6498 - 6502 ). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving from reactants to products, passing through metastable intermediates and high-energy transition states. In this Account, we discuss the role of multiscale molecular simulations in further disclosing mechanistic insights of 2M-aided catalysis for two prototypical enzymatic targets for drug discovery, namely, ribonuclease H (RNase H) and type II topoisomerase (topoII). In both examples, first-principles molecular simulations, integrated with structural data, emphasize a cooperative motion of the bimetal motif during catalysis. The coordinated motion of both ions is crucial for maintaining a flexible metal-centered structural architecture exquisitely tailored to accommodate the DNA or RNA sugar-phosphate backbone during phosphodiester bond cleavage. Furthermore, our analysis of RNase H and the N-terminal domain (PAN) of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency. These aspects all point to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis, as recently observed experimentally in polymerase ? and homing endonuclease I-DmoI. These computational results, integrated with experimental findings, describe and reinforce the nascent concept of a functional and cooperative dynamics of the catalytic metal ions during the 2M-dependent enzymatic processing of DNA and RNA. Encouraged by the insights provided by computational approaches, we foresee further experiments that will feature the functional and joint dynamics of the catalytic metal ions for nucleic acid processing. This could impact the de novo design of artificial metallonucleases and the rational design of potent metal-chelating inhibitors of pharmaceutically relevant enzymes. PMID:25590654

  4. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  5. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  6. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  7. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges. PMID:15027828

  8. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  9. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  10. An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins

    PubMed Central

    Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J.; Noinaj, Nicholas; Piszczek, Grzegorz; Buchanan, Susan K.; Taraska, Justin W.

    2014-01-01

    Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum. PMID:24752441

  11. Predicting the relative toxicity of metal ions using ion characteristics: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1996-10-01

    Quantitative structure-activity relationships have been used to predict the relative toxicity of organic compounds. Although not as common, ion characteristics have also proven useful for predicting the relative toxicity of metal ions. The purpose of this study was to determine if the relative toxicity of metal ions using the Microtox{reg_sign} bioassay was predictable using ion characteristics. Median effect concentrations (EC50s) were determined for 20 metals in a NaNO{sub 3} medium, which reflected freshwater speciation conditions, using the Microtox bacterial assay. The log of EC50 values was modeled using several ion characteristics, and Akaike`s Information Criterion was calculated to determine which ion characteristics provided the best fit. Whether modeling total ion or free ion EC50 values, the one variable which best modeled EC50s was the softness index, while a combination of {chi}{sub m}{sup 2}r ({chi}{sub m} = electronegativity, r = Pauling ionic radius) and {vert_bar}log K{sub OH}{vert_bar} was the best two-variable model. Other variables, including {Delta}E{sub 0} and {chi}{sub m}{sup 2}r (one-variable models) and (AN/{Delta}IP, {Delta}E{sub 0}) and ({chi}{sub m}{sup 2}r, Z{sup 2}/r) (two-variable models), also gave adequate fits. Modeling with speciated (free ion) versus unspeciated (total ion) EC50 values did not improve fits. Modeling mono-, di-, and trivalent metal ions separately improved the models. The authors conclude that ion characteristics can be used to predict the relative toxicity of metal ions whether in freshwater (NaNO{sub 3} medium) or saltwater (NaCl medium) speciation conditions and that this approach can be applied to metal ions varying widely in both valence and binding tendencies.

  12. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected. PMID:24109750

  13. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    PubMed

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ?HITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ?G(o), ?H, ?S, and ?CP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein. PMID:26794348

  14. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  15. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  16. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  17. Development of a radioactive ion beam test stand at LBNL

    SciTech Connect

    Wutte, D.; Burke, J.; Fujikawa, B.; Vetter, P.; Freedman, S.J.; Gough, R.A.; Lyneis, C.M.; Xie, Z.Q. )

    1999-04-01

    For the on-line production of a [sup 14]O[sup +] ion beam, an integrated target[emdash]transfer line ion source system is now under development at LBNL. [sup 14]O is produced in the form of CO in a high temperature carbon target using a 20 MeV [sup 3]He beam from the LBNL 88[sup [double prime

  18. Poisoning of liquid membrane carriers in extraction of metal ions

    SciTech Connect

    Wang, Yuchun; Wang, Dexian )

    1992-03-01

    As means of effective separation and preconcentration, emulsion liquid membranes (ELMs) have found application in many fields including biochemical separation, wastewater treatment, hydrometallurgy, and preconcentration in analytical chemistry. In the extraction of desired metal (scandium, mixed rare earths) ions using chelating extractants (TTA, HDEHP) as liquid membrane carriers, the carriers will become poisoned owing to the presence of even minute quantity of certain high ionic potential ions in the feed solution. The reason for the poisoning of carriers is that those ions have so much greater affinity than the desired ions for the membrane carrier that the ion-carrier coordination compound cannot be stripped at the interior interface of the membrane and gradually no more free carrier transports any metal ions across the membrane. The calculated results are in agreement with the experiments, and methods to avoid the poisoning are given in the paper.

  19. The acceleration and storage of radioactive ions for a neutrino factory

    SciTech Connect

    B. Autin et al.

    2003-12-23

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for {sup 6}He and 60 for {sup 18}Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  20. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  1. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    SciTech Connect

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

  2. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.

    PubMed

    Stahley, Mary R; Adams, Peter L; Wang, Jimin; Strobel, Scott A

    2007-09-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg(2+) and K(+) ions. Five of the metals bind within 12 A of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function. PMID:17612557

  3. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  4. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczlkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  5. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC.

  6. Industrial Application of Radioactive Ion Beams at the RIKEN RI Beam Factory

    SciTech Connect

    Kambara, Tadashi; Yoshida, Atsushi; Yanagisawa, Yoshiyuki; Kameda, Daisuke; Fukuda, Naoki; Ohnishi, Tetsuya; Kubo, Toshiyuki; Uemoto, Ryuji; Nagano, Akira; Uno, Hiroyuki

    2011-12-13

    The Radioactive Ion Beam Factory (RIBF) at RIKEN is a heavy-ion accelerator facility that can provide intensive beams of radioactive isotopes (RI beam) produced at in-flight RI-beam separators. While the facility is used for experiments of various basic research fields, a new project has been started to open the facility to non-academic proposals from industry. We show an overview of the RIBF and the project of industrial use, and present a utilization of an RI-beam for development of wear diagnostics of industrial materials.

  7. Latest developments at GANIL for stable and radioactive ion beam productiona)

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Barué, C.; Bajeat, O.; Canet, C.; Clément, E.; Cornell, J. C.; Delahaye, P.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frânberg, H.; Frigot, R.; Leboucher, C.; Lecesne, N.; Lecomte, P.; Lehérissier, P.; Lemagnen, F.; Leroy, R.; Maunoury, L.; Méry, A.; De Oliveira, F.; Pichard, A.; Pacquet, J.-Y.; Saint-Laurent, M.-G.; Thomas, J. C.

    2010-02-01

    In the frame of the SPIRAL II (Système de Production d'Ions Radioactifs Accélérés en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

  8. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  9. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  10. RATIONAL DESIGN OF METAL ION SEQUESTERING AGENTS

    EPA Science Inventory

    An enormous amount of radioactive and toxic chemical waste remains at over one hundred sites managed by the Department of Energy. Despite the investment of large sums, major goals associated with the cleanup remain unmet. It is our thesis that economically practical accomplishmen...

  11. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  12. Metal ion induced-assembly of amylose in aqueous solution.

    PubMed

    Li, Yinhui; Lin, Shudong; Hu, Jiwen; Liu, Guojun; Zhang, Gangwei; Tu, Yuanyuan; Luo, Hongsheng; Li, Wei

    2014-02-15

    Cu(2+)/amylose assemblies of various sizes were prepared through the Cu(2+) ion induced-assembly of amylose. These assembly structures were characterized via transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), dynamic light scattering (DLS), (1)H NMR analysis, fluorescence spectroscopy (FL) and UV-vis absorption spectroscopy (UV-vis). The results from these characterizations revealed the existence of a complexation effect and/or a bridging effect between the hydroxyl groups of amylose and Cu(2+) ions, and that the formation of the hydrophobic domains promoted the formation of Cu(2+)/amylose assemblies. The use of other metal ions to induce the formation of spherical, flower- and wire-like amylose assemblies was investigated as well. A preliminary investigation on the ability of amylose to capture various metal ions was also performed, and the results of this work demonstrated that amylose could bind quantitatively metal ions that were at low concentrations. This work provided an alternative strategy for the recovery of precious metals from metal ion-containing aqueous solutions and the reduction of water pollution. PMID:24507310

  13. Metal Vapour Ion Lasers: Kinetic Processes and Gas Discharges

    NASA Astrophysics Data System (ADS)

    Little, Christopher E.

    1996-09-01

    Metal vapour ion lasers are a mature class of gas laser for which a number of applications has developed in recent years. This is the first book to appear in the English language on this topic, and concentrates on the physical processes which occur in the laser, in particular the kinetic processes which are responsible for the pumping of excited ion levels, and the production of population inversion. The most important types of electrical discharges used in this class of laser are discussed in detail, and all the major types of metal vapour ion laser are examined. A highly useful appendix tabulates all the known transitions used in metal vapour ion lasers. Metal Vapour Ion Lasers: Kinetic Processes and Gas Discharges provides a much needed review of this important field. It identifies current problem areas, and points to future research directions. It is an invaluable source for all those, both in industry and academia, working on the development or applications of metal vapour ion lasers, and for all those involved in gas laser research. It will also be of great interest to all those interested in the physics of gas discharges. The authors and translators have been involved with some of the key advances in the field over recent years.

  14. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  15. Luminometric Label Array for Quantification and Identification of Metal Ions.

    PubMed

    Pihlasalo, Sari; Montoya Perez, Ileana; Hollo, Niklas; Hokkanen, Elina; Pahikkala, Tapio; Härmä, Harri

    2016-05-17

    Quantification and identification of metal ions has gained interest in drinking water and environmental analyses. We have developed a novel label array method for the quantification and identification of metal ions in drinking water. This simple ready-to-go method is based on the nonspecific interactions of multiple unstable lanthanide chelates and nonantenna ligands with sample leading to a luminescence signal profile, unique to the sample components. The limit of detection at ppb concentration level and average coefficient of variation of 10% were achieved with the developed label array. The identification of 15 different metal ions including different oxidation states Cr(3+)/Cr(6+), Cu(+)/Cu(2+), Fe(2+)/Fe(3+), and Pb(2+)/Pb(4+) was demonstrated. Moreover, a binary mixture of Cu(2+) and Fe(3+) and ternary mixture of Cd(2+), Ni(2+), and Pb(2+) were measured and individual ions were distinguished. PMID:27086705

  16. Hall transport of divalent metal ion modified DNA lattices

    SciTech Connect

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha; Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  17. Hall transport of divalent metal ion modified DNA lattices

    NASA Astrophysics Data System (ADS)

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Kim, Si Joon; Yoo, Sanghyun; Gnapareddy, Bramaramba; Jung, Joohye; Jung, Tae Soo; Bashar, Saima; Kim, Hyun Jae; Park, Sung Ha

    2015-06-01

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu2+, Ni2+, Zn2+, and Co2+)-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (Cs) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (?Cs) and the nonspecific aggregates (>Cs) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  18. Multiple DNA architectures with the participation of inorganic metal ions.

    PubMed

    Wei, Guangcheng; Dong, Renhao; Gao, Xuedong; Wang, Dong; Feng, Lei; Song, Shasha; Dong, Shuli; Song, Aixin; Hao, Jingcheng

    2014-09-10

    Here we develop a synthetic protocol for assembling DNA with participating metal ions into multiple shapes. DNA molecules first form coordination complexes with metal ions and these coordination complexes become nucleation sites for primary crystals of metal inorganic salt, and then elementary units of space-filling architectures based on specific geometry form, and finally elementary units assemble into variously larger multiple architectures according to different spatial configurations. We anticipate that our strategy for self-assembling various custom architectures is applicable to most biomolecules possessing donor atoms that can form coordination complexes with metal ions. These multiple architectures provide a general platform for the engineering and assembly of advanced materials possessing features on the micrometer scale and having novel activity. PMID:25133761

  19. Metallic dental material biocompatibility in osteoblastlike cells: correlation with metal ion release.

    PubMed

    Cortizo, María C; De Mele, Mónica Fernández L; Cortizo, Ana M

    2004-08-01

    Ions released from metallic dental materials used in orthodontic appliances could induce undesirable effects on cells and tissues. This study evaluates the biocompatibility of two of the most labile components of metallic dental alloys on osteoblastlike cells. The influence of protein and ions on metal dissolution properties is also investigated using different electrolyte solutions. Morphological alterations, cell growth, and differentiation of osteoblasts were assessed after exposure to pure metals (Ag, Cu, Pd, Au) and Ni-Ti alloy and correlated with the kinetics of elements released into the culture media. Results showed that Cu and Ag were the most cytotoxic elements and the other metals were biocompatible with the osteoblasts. The parameters of biocompatibility were correlated with the levels of ions detected into the culture media. Metal ions induced cell death through early mitosis arrest, apoptotic phenomena, and necrotic processes. Voltammograms showed that anions and proteins interfered in the corrosion process. Fetal bovine serum (FBS) strongly affected the electrochemical process, decreasing the oxidation rate of the metals. In conclusion, copper and silver ions showed a time-dependent low biocompatibility, which correlated with the concentration of released ions. The dissolution of the metallic materials was dependent on the composition of the simulated biological media. PMID:15326364

  20. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  1. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  2. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  3. A vacuum spark ion source: High charge state metal ion beams.

    PubMed

    Yushkov, G Yu; Nikolaev, A G; Oks, E M; Frolova, V P

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described. PMID:26931966

  4. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. PMID:26857501

  5. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    SciTech Connect

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-30

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for m{sub n}u<0.2 eV, it is necessary to control the ion momentum with a precision better than deltap/p<10{sup -5}, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(10{sup 18}) decays.

  6. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1996-11-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified.

  7. Batch sorption of divalent metal ions onto brown coal

    SciTech Connect

    Pehlivan, E.; Gode, F.

    2006-12-15

    Brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove some contaminants from aqueous solution. The adsorption of some heavy metals from aqueous solutions on the brown coals was studied as a function of pH, contact time, adsorbent dosage and concentration of metal solutions. A carboxyl, phenolic hydroxyl, and metoxyl functional group present on the coal surface was the adsorption site to remove metal ions from solution by means of ion exchange and hydrogen bonding. Effective removal of heavy metals was achieved at pH values of 4.0-5.0. The experimental data have been analyzed using the Langmuir isotherm models. Under optimized conditions, the percentage of metal removal by brown coal adsorption was over 80%.

  8. Metallic ion release in artificial saliva of titanium oral implants coupled with different metal superstructures.

    PubMed

    Cortada, M; Giner, L; Costa, S; Gil, F J; Rodríguez, D; Planell, J A

    1997-01-01

    In this work the metallic ion release in oral implants with superstructures of different metals and alloys used in clinical dentistry has been determined. This study has been realized in a saliva environment at 37 degrees C. The measurements of the ion release were carried out by means of the Inductively Coupled Plasma Mass Spectrometry technique. The titanium oral implant coupled with a chromium-nickel alloy releases a high quantity of ions and the implant coupled with the titanium superstructure presents a low value of ion release. PMID:9262834

  9. Does Ion Release Differ Between Hip Resurfacing and Metal-on-metal THA?

    PubMed Central

    Moroni, Antonio; Cadossi, Matteo; Baldini, Nicola; Giannini, Sandro

    2008-01-01

    Modern metal-on-metal hip resurfacing was introduced as a bone-preserving method of joint reconstruction for young and active patients; however, the large diameter of the bearing surfaces is of concern for potential increased metal ion release. We hypothesized there were no differences in serum concentrations of chromium, cobalt, and molybdenum between patients who had metal-on-metal hip resurfacing (Group A; average head diameter, 48 mm; median followup, 24 months) and patients who had 28-mm metal-on-metal THA (Group B; median followup, 25 months). Serum concentrations also were compared with concentrations in healthy subjects. We identified no differences in ion levels between Groups A and B. A distinction was made according to gender. Women showed a higher chromium release in Group A whereas men had a higher cobalt release in Group B. Values obtained from Group A were higher than those of the control subjects. Our data suggest metal-on-metal bearings for THA should not be rejected because of concern regarding potential increased metal ion release; however, patients with elevated ion levels, even without loosening or toxicity, could be at higher risk and should be followed up periodically. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196364

  10. Membranes Remove Metal Ions Fron Industrial Liquids

    NASA Technical Reports Server (NTRS)

    Hsu, W. P. L.; May, C.

    1983-01-01

    Use of membrane films affords convenient and economical alternative for removing and recovering metal cations present in low concentrations from large quantities of liquid solutions. Possible applications of membrane films include use in analytical chemistry for determination of small amounts of toxic metallic impurities in lakes, streams, and municipal effluents. Also suitable for use as absorber of certain pollutant gases and odors present in confined areas.

  11. Catalytic mechanisms of metallohydrolases containing two metal ions.

    PubMed

    Miti?, Nataa; Miraula, Manfredi; Selleck, Christopher; Hadler, Kieran S; Uribe, Elena; Pedroso, Marcelo M; Schenk, Gerhard

    2014-01-01

    At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors. PMID:25458355

  12. Metal ion coupled protein folding and allosteric motions

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2014-03-01

    Many proteins need the help of cofactors for their successful folding and functioning. Metal ions, i.e., Zn2+, Ca2+, and Mg2+ etc., are typical biological cofactors. Binding of metal ions can reshape the energy landscapes of proteins, thereby modifying the folding and allosteric motions. For example, such binding may make the intrinsically disordered proteins have funneled energy landscapes, consequently, ensures their spontaneous folding. In addition, the binding may activate certain biological processes by inducing related conformational changes of regulation proteins. However, how the local interactions involving the metal ion binding can induce the global conformational motions of proteins remains elusive. Investigating such question requires multiple models with different details, including quantum mechanics, atomistic models, and coarse grained models. In our recent work, we have been developing such multiscale methods which can reasonably model the metal ion binding induced charge transfer, protonation/deprotonation, and large conformational motions of proteins. With such multiscale model, we elucidated the zinc-binding induced folding mechanism of classical zinc finger and the calcium-binding induced dynamic symmetry breaking in the allosteric motions of calmodulin. In addition, we studied the coupling of folding, calcium binding and allosteric motions of calmodulin domains. In this talk, I will introduce the above progresses on the metal ion coupled protein folding and allosteric motions. We thank the finacial support from NSFC and the 973 project.

  13. Metal ion binding and the folding of the hairpin ribozyme.

    PubMed Central

    Wilson, Timothy J; Lilley, David M J

    2002-01-01

    The hairpin ribozyme comprises two formally unpaired loops carried on two arms of a four-way helical RNA junction. Addition of divalent metal ions brings about a conformational transition into an antiparallel structure in which there is an intimate association between the loops to generate the active form of the ribozyme. In this study, we have used fluorescence resonance energy transfer to analyze the global folding of the complete ribozyme, and the simple four-way junction derived from it, over a wide concentration range of divalent and monovalent metal ions. The simple junction undergoes an ion-induced rotation into an antiparallel form. In the presence of a constant background concentration of sodium ions, the magnesium-ion-induced transition is characterized by noncooperative binding with a Hill coefficient n = 1. By contrast, the magnesium-ion-induced folding of the complete ribozyme is more complex, involving two distinct binding phases. The first phase occurs in the micromolar range, and involves the cooperative binding of at least three magnesium ions. This can also be achieved by high concentrations of sodium ions, and is therefore likely to be due to diffuse binding of cations at the junction and the interface of the loop-loop interaction. The second phase occurs in the millimolar range, and can only be induced by divalent metal ions. This transition occurs in response to the noncooperative, site-specific binding of magnesium ions. We observe a good correlation between the extent of ion-induced folding and cleavage activity. PMID:12022226

  14. Michigan state upgrade to produce intense radioactive ion beams by fragmentation technique

    SciTech Connect

    Lubkin, G.B.

    1997-05-01

    This article describes the planned upgrading of accelerator facilities to produce intense radioactive ion beams, by a fragmentation technique, for experimental simulation of nucleosynthesis in novas and supernovas. (AIP) {ital 1997 American Institute of Physics.} {copyright} {ital 1997} {ital American Institute of Physics}

  15. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  16. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  17. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  18. Metal ion modulated electron transfer in photosynthetic proteins.

    SciTech Connect

    Utschig, L. M.; Thurnauer, M. C.; Chemistry

    2004-07-01

    Photosynthetic purple bacterial reaction center (RC) proteins are ideal native systems for addressing basic questions regarding the nature of biological electron transfer because both the protein structure and the electron-transfer reactions are well-characterized. Metal ion binding to the RC can affect primary photochemistry and provides a probe for understanding the involvement of local protein environments in electron transfer. The RC has two distinct transition metal ion binding sites, the well-known non-heme Fe{sup 2+} site buried in the protein interior and a recently discovered Zn{sup 2+} site located on the surface of the protein. Fe{sup 2+} removal and Zn{sup 2+} binding systematically affect different electron-transfer steps in the RC. Factors involved in the metal ion alteration of RC electron transfer may provide a paradigm for other biological systems involved in electron transfer.

  19. Low coefficient of thermal expansion polyimides containing metal ion additives

    SciTech Connect

    Stoakley, D.M.; St.Clair, A.K. )

    1992-07-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The CTE's of conventional polyimides range from 30 to 60 ppm/C. Approaches that have been reported to lower their CTE's include linearizing the polymer molecular structure and orienting the polyimide film. This current study involves the incorporation of metal ion-containing additives into polyimides and has resulted in significantly lowered CTE's. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12% to over 100% depending on the choice of additive and its concentration.

  20. Precision mass measurements at TITAN with radioactive ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Macdonald, T. D.; Andreoiu, C.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Man, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2013-12-01

    Measurements of the atomic mass further our understanding in many disciplines from metrology to physics beyond the standard model. The accuracy and precision of Penning trap mass spectrometry have been well demonstrated at TITAN, including measurements of neutron-rich calcium and potassium isotopes to investigate three-body forces in nuclear structure and within the island of inversion to study the mechanism of shell quenching and deformation. By charge breeding ions, TITAN has enhanced the precision of the measurement technique. The precision achieved in the measurement of the superallowed ?-emitter 74Rb in the 8+ charge state rivaled earlier measurements with singly charged ions in a fraction of the time. By breeding 78Rb to the same charge state, the ground state could be easily distinguished from the isomer. Further developments led to threshold charge breeding, which permitted capturing and measuring isobarically and elementally pure ion samples in the Penning trap. This was demonstrated via the Q-value determination of 71Ge. An overview of the TITAN facility and recent results are presented herein.

  1. Metal plasma immersion ion implantation and deposition: A review

    SciTech Connect

    Anders, A.

    1996-09-01

    Metal Plasma Immersion Ion Implantation and Deposition (MePIIID) is a hybrid process combining cathodic arc deposition and plasma immersion ion implantation. The properties of metal plasma produced by vacuum arcs are reviewed and the consequences for MePIIID are discussed. Different version of MePIIID are described and compared with traditional methods of surface modification such as ion beam assisted deposition (IBAD). MePIIID is a very versatile approach because of the wide range of ion species and energies used. In one extreme case, films are deposited with ions in the energy range 20--50 eV, and at the other extreme, ions can be implanted with high energy (100 keV or more) without film deposition. Novel features of the technique include the use of improved macroparticle filters; the implementation of several plasma sources for multi-element surface modification; tuning of ion energy during implantation and deposition to tailor the substrate-film intermixed layer and structure of the growing film; simultaneous pulsing of the plasma potential (positive) and substrate bias (negative) with a modified Marx generator; and the use of high ion charge states.

  2. Metal ion levels and revision rates in metal-on-metal hip resurfacing arthroplasty: a comparative study.

    PubMed

    Robinson, Patrick G; Wilkinson, Andrew J; Meek, Robert M D

    2014-01-01

    Metal-on-metal (MoM) bearings in hip surgery are related to increased blood levels of metal ions. The nature of the relationship between ion levels and failure is still not fully understood. This study compares three cohorts of patients, 120 patients in each cohort, treated with a hip resurfacing arthroplasty, grouped by brand and diameter of femoral component on average four years postoperatively: Birmingham Hip Resurfacing ?50 mm, Durom resurfacing ?50 mm and Durom resurfacing <50 mm. The median blood ion levels of cobalt and chromium were significantly lower in the cohort with the large Durom resurfacing than the other two cohorts (P<0.05). The large BHR and large Durom HRA had revision rates of 3.3%. The small Durom HRA had a revision rate of 8.3%. Elevated blood ion levels can indicate a failing MoM bearing. The large BHR and large Durom HRA have similar revision rates yet the large Durom HRA had significantly lower metal ion levels. When similar ion levels were reported for BHR and small Durom the latter had significantly higher revision rates. This suggests ion levels do not absolutely predict the rate of HRA failure. Since MoM generation of metal ions is not the sole reason of failure, regular clinical and radiographic follow-up should also be in place for patients with these joints. PMID:24500833

  3. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  4. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites. PMID:17816288

  5. Nonlinear Screening and Electron Capture Processes of Ions in Metals

    NASA Astrophysics Data System (ADS)

    Dez Muio, R.; Arnau, A.

    Slow ions interacting with metals introduce a strong rearrangement of electronic charge in their vicinity. We show the way in which density functional theory can be used to describe such displacement of charge and the subsequent modification of the screening properties of the medium. We also discuss some of the electron capture processes that lead to the eventual neutralization of the ions. We particularly focus into the Auger and radiative processes and review some theoretical calculations of the rates for these processes.

  6. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  7. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  8. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  9. Biocombinatorial Selection of Metal Ion-Chelating Peptides

    NASA Astrophysics Data System (ADS)

    Matsubara, Teruhiko; Hiura, Yuko; Kawashiro, Katsuhiro

    A phage-displayed library selection was performed to obtain metal ion-chelating peptides. A dodecamer (12-mer) random peptide library was displayed on the surface of filamentous bacterial phage and subjected to an affinity selection. Four rounds of the selection gave fourteen Zn2+-positive phage clones. Enzyme-linked immunosorbent assay showed that the selected clones specifically bound to Zn2+ and Ni2+, but not to Cu2+ and Fe3+. Deduced amino acid sequences of the clones had histidine-rich consensus motifs. These chelating peptides should be applied to designing for metal ion-trapping biomaterials.

  10. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  11. Substrate and Metal Ion Promiscuity in Mannosylglycerate Synthase*

    PubMed Central

    Nielsen, Morten M.; Suits, Michael D. L.; Yang, Min; Barry, Conor S.; Martinez-Fleites, Carlos; Tailford, Louise E.; Flint, James E.; Dumon, Claire; Davis, Benjamin G.; Gilbert, Harry J.; Davies, Gideon J.

    2011-01-01

    The enzymatic transfer of the sugar mannose from activated sugar donors is central to the synthesis of a wide range of biologically significant polysaccharides and glycoconjugates. In addition to their importance in cellular biology, mannosyltransferases also provide model systems with which to study catalytic mechanisms of glycosyl transfer. Mannosylglycerate synthase (MGS) catalyzes the synthesis of α-mannosyl-d-glycerate using GDP-mannose as the preferred donor species, a reaction that occurs with a net retention of anomeric configuration. Past work has shown that the Rhodothermus marinus MGS, classified as a GT78 glycosyltransferase, displays a GT-A fold and performs catalysis in a metal ion-dependent manner. MGS shows very unusual metal ion dependences with Mg2+ and Ca2+ and, to a lesser extent, Mn2+, Ni2+, and Co2+, thus facilitating catalysis. Here, we probe these dependences through kinetic and calorimetric analyses of wild-type and site-directed variants of the enzyme. Mutation of residues that interact with the guanine base of GDP are correlated with a higher kcat value, whereas substitution of His-217, a key component of the metal coordination site, results in a change in metal specificity to Mn2+. Structural analyses of MGS complexes not only provide insight into metal coordination but also how lactate can function as an alternative acceptor to glycerate. These studies highlight the role of flexible loops in the active center and the subsequent coordination of the divalent metal ion as key factors in MGS catalysis and metal ion dependence. Furthermore, Tyr-220, located on a flexible loop whose conformation is likely influenced by metal binding, also plays a critical role in substrate binding. PMID:21288903

  12. Data mining of metal ion environments present in protein structures

    PubMed Central

    Zheng, Heping; Chruszcz, Maksymilian; Lasota, Piotr; Lebioda, Lukasz; Minor, Wladek

    2010-01-01

    Analysis of metal-protein interaction distances, coordination numbers, B-factors (displacement parameters), and occupancies of metal binding sites in protein structures determined by X-ray crystallography and deposited in the PDB shows many unusual values and unexpected correlations. By measuring the frequency of each amino acid in metal ion binding sites, the positive or negative preferences of each residue for each type of cation were identified. Our approach may be used for fast identification of metal-binding structural motifs that cannot be identified on the basis of sequence similarity alone. The analysis compares data derived separately from high and medium resolution structures from the PDB with those from very high resolution small-molecule structures in the Cambridge Structural Database (CSD). For high resolution protein structures, the distribution of metal-protein or metal-water interaction distances agrees quite well with data from CSD, but the distribution is unrealistically wide for medium (2.0 – 2.5 Å) resolution data. Our analysis of cation B-factors versus average B-factors of atoms in the cation environment reveals substantial numbers of structures contain either an incorrect metal ion assignment or an unusual coordination pattern. Correlation between data resolution and completeness of the metal coordination spheres is also found. PMID:18614239

  13. Ion source developments for the production of radioactive isotope beams at TRIUMF

    SciTech Connect

    Ames, F. Bricault, P.; Heggen, H.; Kunz, P.; Lassen, J.; Mjøs, A.; Raeder, S.; Teigelhöfer, A.

    2014-02-15

    At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 μA of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

  14. How do energetic ions damage metallic surfaces?

    SciTech Connect

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films with (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.

  15. How do energetic ions damage metallic surfaces?

    DOE PAGESBeta

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore » (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.« less

  16. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  17. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  18. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  19. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs. PMID:18315181

  20. Metal ions affecting the gastrointestinal system including the liver.

    PubMed

    Naughton, Declan P; Nepusz, Tamás; Petroczi, Andrea

    2011-01-01

    In the present context, metal ions can be categorized into several classes including those that are essential for life and those that have no known biological function and thus can be considered only as potentially hazardous. Many complexities arise with regard to metal toxicity and there is a paucity of studies relating to many metals which are frequent components of the diet. For many people ingestion of mineral supplements is considered a risk-free health choice despite growing evidence to the contrary. Numerous approaches have been developed to assess risk associated with ingestion of metal ions. These include straightforward estimation of safe limits such as oral reference dose which are often based on data derived from animal experiments. More convoluted approaches such as the Target Hazard Quotient involve assessment of hazard with frequent exposure over long durations such as a lifetime. The latter calculation also affords facile consideration of the effects of many metals together. In many cases, rigorous data are unavailable, hence, large factors of uncertainty are employed to relate risk to humans. Owing to the nature of metal toxicity, data pertaining to the gastrointestinal tract and liver are often acquired from diseases of metal homeostasis or episodes of considerable metal overload. Whilst these studies provide evidence for mechanisms of metal-induced toxicity such as enhancing oxidative stress, extrapolation of these results to healthy individuals or patients with chronic inflammatory diseases is not straightforward. In summary, the diverse nature of metals and their effects on human tissues along with a paucity of studies on the full range of their effects, warrant further in-depth studies on the association of metals to ageing, chronic inflammatory diseases, and cancer. PMID:21473378

  1. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  2. Metal ion bombardment of onion skin cell wall

    SciTech Connect

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L.D.; Verdaguer, A.; Ratera, I.; Ogletree, D.F.; Monteiro, O.R.; Brown, I.G.

    2004-05-10

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30keV, and the implantation fluence was in the range 1014 1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  3. Uptake of Metal Ions by Rhizopus arrhizus Biomass

    PubMed Central

    Tobin, J. M.; Cooper, D. G.; Neufeld, R. J.

    1984-01-01

    Rhizopus arrhizus biomass was found to absorb a variety of different metal cations and anions but did not absorb alkali metal ions. The amount of uptake of the cations was directly related to ionic radii of La3+, Mn2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, Pb2+, UO22+, and Ag+. The uptake of all the cations is consistent with absorption of the metals by sites in the biomass containing phosphate, carboxylate, and other functional groups. The uptake of the molybdate and vanadate anions was strongly pH dependent, and it is proposed that the uptake mechanism involves electrostatic attraction to positively charged functional groups. PMID:16346521

  4. Laser-driven ion sources for metal ion implantation for the reduction of dry friction

    SciTech Connect

    Boody, F. P.; Juha, L.; Kralikova, B.; Krasa, J.; Laska, L.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Straka, P.; Perina, V.; Woryna, E.; Giersch, D.; Hoepfl, R.; Kelly, J. C.; Hora, H.

    1997-04-15

    The anomalously high ion currents and very high ionization levels of laser-produced plasmas give laser-driven ion sources significant advantages over conventional ion sources. In particular, laser-driven ion sources should provide higher currents of metal ions at lower cost, for implantation into solids in order to improve their material properties such as friction. The energy and charge distributions for Pb and Sn ions produced by ablation of solid targets with {approx}25 J, {approx}300 ps iodine laser pulses, resulting in up to 48-times ionized MeV ions, as well as the optimization of focus position, are presented. Implantation of these ions into Ck-45 steel, without electrostatic acceleration, produced profiles with two regions. Almost all of the ions were implanted in a near surface region a few nm deep. However, a small but significant number of ions were implanted as deep as could be measured with Rutherford backscattering (RBS), here 150 nm for Sn and 250 nm for Pb. For the implanted ion densities and profiles achieved, no change in the coefficient of friction was measured for either ion.

  5. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  6. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  7. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  8. Impact of metal ions on netilmicin-melanin interaction.

    PubMed

    Wrześniok, Dorota; Buszman, Ewa; Grzegorczyk, Magdalena; Grzegorczyk, Aneta; Hryniewicz, Tomasz

    2012-01-01

    Netilmicin, which is mainly used as the sulfate, is a semisynthetic, water soluble aminoglycoside antibiotic obtained by chemical modification of sisomicin. It is active against both Gram-positive and Gram-negative bacteria, including strains which are resistant to other aminoglycosides. Netilmicin form complexes with melanin. The aim of the presented work was to examine the effect of Cu2+, Zn2+, Ca2+ and Mg2+ on netilmicin binding to synthetic DOPA-melanin. It has been demonstrated that metal ions decrease the amount of antibiotic bound to melanin as compared with netilmicin-melanin complexes obtained in the absence of metals. It has been also shown that only one class of binding sites participates in netilmicin-[melanin-metal ion] complexes formation with the association constant K approximately 10(3) M(-1). The obtained results demonstrate that Cu2+, Zn2+, Ca2+ and Mg2+ ions modify the interaction between netilmicin and melanin biopolymer. The blocking of some active centers in melanin molecules by metal ions, which potentially exist in living systems, may influence the clinical therapeutic efficiency as well as the undesirable side effects of netilmicin. PMID:22574505

  9. COAGULATION AND PRECIPITATION OF SELECTED METAL IONS FROM AQUEOUS SOLUTIONS

    EPA Science Inventory

    The report gives results of laboratory jar tests to develop data on the removal from aqueous solution of 12 metal ions of environmental concern. The project, of very limited scope, provides initial screening data only: coagulants were evaluated at only two dose levels (1.1 and 1....

  10. Principles Governing Metal Ion Selectivity in Ion Channel Proteins

    NASA Astrophysics Data System (ADS)

    Lim, Carmay

    2014-03-01

    Our research interests are to (i) unravel the principles governing biological processes and use them to identify novel drug targets and guide drug design, and (ii) develop new methods for studying macromolecular interactions. This talk will provide an overview of our work in these two areas and an example of how our studies have helped to unravel the principles underlying the conversion of Ca2+-selective to Na+-selective channels. Ion selectivity of four-domain voltage-gated Ca2+(Cav) and sodium (Nav) channels, which is controlled by the selectivity filter (SF, the narrowest region of an open pore), is crucial for electrical signaling. Over billions of years of evolution, mutation of the Glu from domain II/III in the EEEE/DEEA SF of Ca2+-selective Cav channels to Lys made these channels Na+-selective. This talk will delineate the physical principles why Lys is sufficient for Na+/Ca2+selectivity and why the DEKA SF is more Na+-selective than the DKEA one.

  11. Changes in blood ion levels after removal of metal-on-metal hip replacements

    PubMed Central

    Durrani, Salim K; Sampson, Barry; Panetta, Therese; Liddle, Alexander D; Sabah, Shiraz A; Chan, Newton K; Skinner, John A; Hart, Alister J

    2014-01-01

    Background and purpose In patients with metal-on-metal (MoM) hip prostheses, pain and joint effusions may be associated with elevated blood levels of cobalt and chromium ions. Since little is known about the kinetics of metal ion clearance from the body and the rate of resolution of elevated blood ion levels, we examined the time course of cobalt and chromium ion levels after revision of MoM hip replacements. Patients and methods We included 16 patients (13 female) who underwent revision of a painful MoM hip (large diameter, modern bearing) without fracture or infection, and who had a minimum of 4 blood metal ion measurements over an average period of 6.1 (0–12) months after revision. Results Average blood ion concentrations at the time of revision were 22 ppb for chromium and 43 ppb for cobalt. The change in ion levels after revision surgery varied extensively between patients. In many cases, over the second and third months after revision surgery ion levels decreased to 50% of the values measured at revision. Decay of chromium levels occurred more slowly than decay of cobalt levels, with a 9% lag in return to normal levels. The rate of decay of both metals followed second-order (exponential) kinetics more closely than first-order (linear) kinetics. Interpretation The elimination of cobalt and chromium from the blood of patients who have undergone revision of painful MoM hip arthroplasties follows an exponential decay curve with a half-life of approximately 50 days. Elevated blood levels of cobalt and chromium ions can persist for at least 1 year after revision, especially in patients with high levels of exposure. PMID:24758321

  12. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Nicholas B. Lentz

    2007-12-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln{sup 11}]-amyloid {beta}-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will become routine tomorrow.

  13. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  14. Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal

    PubMed Central

    Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.

    2008-01-01

    In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.50.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x? slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731

  15. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  16. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  17. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  18. Modification of medical metals by ion implantation of copper

    NASA Astrophysics Data System (ADS)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  19. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods.

    PubMed

    Chakravorty, Dhruva K; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J; Giedroc, David P; Merz, Kenneth M

    2013-06-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  20. Charge state breeding for the acceleration of radioactive ions at TRIUMF

    SciTech Connect

    Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; McDonald, M.; Lamy, T.

    2010-02-15

    A 14.5 GHz electron cyclotron resonance ion source (PHOENIX from Pantechnik) has been set up at the Isotope Separation and ACceleration (ISAC) facility at TRIUMF for the charge state breeding of radioactive ions. After extensive testing and optimization on a test bench it has been moved on-line and put into operation. During a first test in 2008 a beam of {sup 80}Rb{sup 14+} was successfully created from {sup 80}Rb{sup 1+} and accelerated by the ISAC postaccelerator. Further tests with different stable and radioactive isotopes from the ISAC on-line sources and from a test source with stable Cs have been carried out. Until now an efficiency of 1.4% for {sup 124}Cs{sup 20+} has been obtained.

  1. Metal negative ion beam extraction from a radio frequency ion source

    SciTech Connect

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  2. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  3. Development of a 1+/N+ setup for the production of multicharged radioactive alkali ions in SPIRAL.

    PubMed

    Eléon, C; Gaubert, G; Jardin, P; Saint-Laurent, M-G; Alcantara, J; Alvès Condé, R; Barué, C; Boilley, D; Cornell, J C; Delahaye, P; Dubois, M; Jacquot, B; Leherissier, P; Leroy, R; Lhersonneau, G; Marie-Jeanne, M; Maunoury, L; Pacquet, J-Y; Pellemoine, F; Pierret, C; Thomas, J C; Villari, A C C

    2008-02-01

    In the framework of the production of radioactive ion beams by the isotope separator online method, a new system has been developed at GANIL/SPIRAL I to produce multicharged alkali ions. The principle, referred to as the "direct 1+/N+ method," consists of a surface ionization source associated with a multicharged electron-cyclotron-resonance ion source without an intermediate mass separator. This new system has been tested online using a (48)Ca primary beam at 60.3 A MeV. The experimental evidence of the direct 1+/N+ process has been obtained for a potential difference between the two sources of 11 V and with a 1+/N+ charge breeding efficiency of 0.04% for (47)K(5+). This value is significantly lower than the value of 6% obtained for stable K ions with the standard 1+/N+ method. A possible explanation is given in the text. PMID:18315159

  4. The radioactive ion beam project at VECC, Kolkata -A status report

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Alok

    2002-12-01

    A project to build an ISOL-post accelerator type of radioactive ion beam (RIB) facility has been undertaken at VECC, Kolkata. The funding for the first phase of the project was approved in August 1997. This phase will be the R&D phase and will be completed by December 2003. The present status of development of the various sub-systems of the RIB facility will be discussed.

  5. Serum metal ion exposure after total knee arthroplasty.

    PubMed

    Luetzner, Joerg; Krummenauer, Frank; Lengel, Attila Michael; Ziegler, Joerg; Witzleb, Wolf-Christoph

    2007-08-01

    All metal implants release metal ions because of corrosion. This has been studied and debated, especially in metal-on-metal total hip arthroplasties. Total knee arthroplasty implants have large metal surface areas and therefore substantial potential for corrosion. We determined changes in serum levels of metal ions in 41 patients after cemented unconstrained total knee arthroplasty without patellar resurfacing, 18 with unilateral total knee arthroplasty (median, 66 months after surgery) and 23 patients with bilateral total knee arthroplasties (75 and 50 months after first and second surgeries, respectively). Serum concentrations of chromium, cobalt, and molybdenum were analyzed and related to the number of total knee arthroplasties and compared with those of 130 control patients without implants. The median chromium, cobalt, and molybdenum concentrations were 0.92, 3.28, and 2.55 microg/L, respectively, in the unilateral total knee arthroplasty sample and 0.98, 4.28, and 2.40 microg/L, respectively, in the bilateral total knee arthroplasty sample. We observed no difference between the serum levels in patients with unilateral and bilateral arthroplasties, but the serum levels of chromium and cobalt of both study groups were greater than those of the control group (less than 0.25 microg/L). The patients who had total knee arthroplasty had molybdenum profiles that were similar to those of the control group (median, 2.11 microg/L). PMID:17438467

  6. Interaction of metal ions with cadmium-induced cellular toxicity

    SciTech Connect

    Stacey, N.H.; Klaassen, C.D.

    1981-01-01

    Interactions between Cd and other metal ions are important from both nutritional and toxicological aspects. As Cd is toxic to isolated hepatocytes, these cells can be used to investigate the effects of other metals on Cd-induced cellular injury. Isolated hepatocytes were incubated at 37/sup 0/C with vehicle (saline); Cd (200 or 400 ..mu..M); or Cd plus Cr, Mn, Zn, Ni, Pb, Se, or Fe (200 to 1000 ..mu..M). Evidence of cellular injury was assessed by loss of intracellular K/sup +/ and aspartate aminotransferase from the hepatocytes. Effects on lipid peroxidation, as measured by concentration of thiobarbituric acid reactants, were assessed. Uptake of /sup 109/Cd and interaction of the other metal ions with this accumulation were also quantitated. Cell injury due to Cd was consistently reduced by Cr, Mn, Zn, Pb, and Fe. Lipid peroxidation due to Cd was inhibited by Cr, Mn, and Zn. All the metals except Ni produced an increase in the amount of Cd accumulated by hepatocytes. There was no consistent relation between reduction of cellular toxicity and either inhibition of lipid peroxidation or uptake of Cd. These experiments show that (1) protective properties of some metals seen in vivo can be demonstrated at the cellular level and (2) protective effects of metals in general on Cd-induced cellular toxicity are not due to a decrease in either Cd uptake or lipid peroxidation.

  7. In vitro cytotoxicity of metallic ions released from dental alloys.

    PubMed

    Milheiro, Ana; Nozaki, Kosuke; Kleverlaan, Cornelis J; Muris, Joris; Miura, Hiroyuki; Feilzer, Albert J

    2016-05-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions. PMID:25549610

  8. The SPES radioactive ion beam project of LNL: status and perspectives

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Prete, G.; Andrigetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2016-01-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 8 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.7 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  9. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2015-12-22

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater. PMID:26631449

  10. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  11. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  12. Peptide immobilisation on porous silicon surface for metal ions detection

    PubMed Central

    2011-01-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution. PMID:21711937

  13. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1987-09-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A new kind of high current metal ion source in which the ion beam is extracted from a metal vapor vacuum arc plasma has been used to obtain the spectra of multiply charged ions produced within the cathode spots. The cathode materials used and the species reportetd on here are: C, Mg, Al, Si, Ti, Cr, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Rh, Pd, Ag, In, Sn, Gd, Ho, Ta, W, Pt, Au, Pb, Th, and U; the arc current was 200 A for all measurements. Charge state spectra were measured using a time-of-flight method. The arc voltage was also measured. In this paper we report on the measured charge state distributions and arc voltages and compare the distributions with the predictions of a theory in which ionization occurs in the cathode spots via stepwise ionization by electron impact. 64 refs., 10 figs., 3 tabs.

  14. [Applications of metal ions and their complexes in medicine I].

    PubMed

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions. PMID:15279035

  15. Degradation of Anthracycline Antitumor Compounds Catalysed by Metal Ions

    PubMed Central

    Haj, Hayet Tayeb-Bel; Garnier-Suillerot, Arlette

    1994-01-01

    The influence of some metal ions on the degradation of anthracyclines was examined. One of the degradation products is the 7,8-dehydro-9,10-desacetyldoxorubicinone, D* (¥), usually formed by hydrolysis at slightly basic pH. D* is a lipophilic compound with no cytostatic properties. Its formation could be responsible for the lack of antitumor activity of the parent compound. The coordination of metal ions to anthracycline derivatives is required to have degradation products. Cations such as Na+, K+, or Ca2+ do not induce the D* formation however metals which can form stable complexes with doxorubicin afford D*. Iron(III) and copper(II) form appreciable amount of D* at slightly acidic pH. Terbium(III) forms D* but its complex is stable only at slightly basic pH. Palladium(II) which does not form D*. The influence of the coordination mode of metal ions to anthracycline on the D* formation is discussed. PMID:18476230

  16. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    SciTech Connect

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  17. The Structure of the Metal Transporter Tp34 and its Affinity for Divalent Metal Ions

    NASA Astrophysics Data System (ADS)

    Knutsen, Gregory; Deka, Ranjit; Brautigam, Chad; Tomchick, Diana; Machius, Mischa; Norgard, Michael

    2007-10-01

    Tp34 is periplasmic membrane protein of the nonculitvatable spirochete Treponema pallidum, the pathogen of syphillis. It was proposed that Tp34 is a divalent metal transporter, but the identity of the preferred metal ion(s) was unclear. In this study we investigated the ability of divalent metal ions to induce rTp34 dimerization using hydrodynamic techniques and determine the crystal structure of metal bound forms. Using analytical ultracentrifugation sedimentation velocity experiments, we determined that cobalt is superior to nickel at inducing the dimerization of rTp34. rTp34 was crystallized and selected crystals were incubated at a pH 7.5 with CuSO4 and NiSO4. Diffraction experiments were conducted and the processed electron density maps showed that copper was bound to the major metal binding site as well as to three additional minor binding sites. By contrast nickel was only bound to the major metal binding site in one monomer and to three additional minor sites. These results along with previous findings support evidence of Tp34 being involved with metal transport and/or iron utilization.

  18. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    PubMed

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. PMID:21764065

  19. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    NASA Astrophysics Data System (ADS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  20. Polymer filtration systems for dilute metal ion recovery

    SciTech Connect

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  1. Synthesis of DNA duplexes containing complexes of 5-modified pyrimidine bases and metal ions.

    PubMed

    Iwamoto, Kenji; Hayashi, Kosei; Watanabe, Yuko; Okamoto, Itaru; Ono, Akira

    2007-01-01

    DNA duplexes carrying metal ions at the 5-position of uracil residues were synthesized by mixing oligodeoxyribonucleotides (ODNs) containing 5-formyl uracils, metal ions, and amines. A metal ion binding site may form from the 5-formyl residue and amines. PMID:18029646

  2. Chloride Ion Mediated Synthesis of Metal/Semiconductor Hybrid Nanocrystals.

    PubMed

    Hinrichs, Dominik; Galchenko, Michael; Kodanek, Torben; Naskar, Suraj; Bigall, Nadja C; Dorfs, Dirk

    2016-05-01

    A synthetic route to prepare metal-semiconductor hybrid nanoparticles is presented, along with the possibility to tune the ratio of primary to secondary nucleation and the morphology of the semiconductor material grown on the metal nanoparticle seeds. Gold and cobalt-platinum nanoparticles are employed as metal seeds, on which CdS or CdSe is grown. Using transmission electron microscopy, absorption spectroscopy (UV-vis), and powder X-ray diffraction as characterization techniques, a significant influence of chloride ions on the type of nucleation (that is, secondary or primary nucleation) as well as on the shape of the resulting heterostructures is observed. Partially replacing the commonly used cadmium precursor CdO by varying amounts of CdCl2 opens access to rod-like, multiarmed, flower-like, and bullet-like structures. The results suggest that neither pure CdO nor pure CdCl2 as precursors but only a mixture of both make these structures obtainable. In this article, the influence of the chloride ion concentration during semiconductor growth on metal seeds is investigated in depth. The morphology of the resulting heterostructures is characterized carefully, and a growth mechanism is suggested. Furthermore, it is shown that this synthetic approach can be transferred to seeds of various metals such as platinum, gold, and cobalt platinum. PMID:27031048

  3. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  4. The corrosion protection of metals by ion vapor deposited aluminum

    SciTech Connect

    Danford, M.D.

    1993-10-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  5. Search for new physics with neutrinos at radioactive ion beam facilities

    NASA Astrophysics Data System (ADS)

    Espinoza, Catalina; Lazauskas, Rimantas; Volpe, Cristina

    2012-12-01

    We propose applications of radioactive ion beam facilities to investigate physics beyond the Standard Model. In particular, we focus upon the search for sterile neutrinos and the possible measurement of coherent neutrino-nucleus scattering, by means of a low-energy beta beam with a Lorentz boost factor γ≈1. In both cases, we consider Li8 and B8 ions as neutrino sources. In the considered setup, the collected radioactive ions are sent inside a 4π detector. For the first application, we provide the number of events associated with neutrino-nucleus coherent scattering, when the detector is filled with a noble liquid. For the sterile search, we consider that the spherical detector is filled with a liquid scintillator, and that the neutrino detection channel is inverse beta decay. We provide the exclusion curves for the sterile neutrino mixing parameters, based upon the 3+1 formalism, depending upon the achievable ion intensity. Our results are obtained both from total rates, and by including spectral information with binning in energy and in distance. The proposed experiment represents a possible alternative to clarify the current anomalies observed in neutrino experiments.

  6. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  7. Chelating Agents and the Regulation of Metal Ions

    PubMed Central

    Bulman, Robert A.

    1994-01-01

    Up to about the early 1980s it was perhaps still possible to summarize in a review of a moderate length the development of the medicinal applications of chelation chemistry and the exploitation of such chemistry in regulating the metal ion concentrations in the body. However, in the last few years there has a great surge in the development of chelation chemistry and its usage in medicine and related areas of life sciences research. It is no longer the case that such a review primarily concentrates upon the use of chelating agents in removing toxic metals from the body but it must now cover the use of chelating agents in the imaging procedures nuclear medicine and magnetic resonance imaging (MRI), the use of chelating agents in unravelling the biochemistry of reactive oxidative species (ROS) and the control and measurement of intracellular calcium ions. It is in the recent applications that there have been the greatest developments over the last ten years. PMID:18476223

  8. Nanomagnetic chelators for removal of toxic metal ions

    NASA Astrophysics Data System (ADS)

    Singh, Sarika; Barick, K. C.; Bahadur, D.

    2013-02-01

    Ethylenediamine trtraaceteic acid (EDTA) functionalized Fe3O4 nanomagnetic chelators (NMCs) were synthesized by co-precipitation method followed by in-situ grafting of EDTA. XRD and TEM analyses reveal the formation of highly crystalline single-phase Fe3O4 nanoparticles of size about 10 nm. Surface functionalization of Fe3O4 with EDTA was evident from FTIR spectroscopy, TGA analysis and zeta-potential measurement. These NMCs exhibit superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. It has been observed that NMCs have strong tendency for adsorption of various toxic metal ions (Ni2+, Cr3+, Cu2+, Cd2+, Co2+ and Pb2+) from waste-water. Furthermore, these magnetic chelators can be used as highly efficient separable and reusable material for removal of toxic metal ions.

  9. Photoelectric properties in metal ion modified DNA nanostructure.

    PubMed

    Kulkarni, Atul; Dugasani, Sreekantha Reddy; Jang Ah Kim; Kim; Sung Ha Park; Taesung Kim

    2015-08-01

    Due to specific or as designed self-assembly, DNA nanostructures gaining popularity in various nanoscale electronic applications. Herein, a novel divalent metal ion-DNA complex known as M-DNA have been investigated for its photoelectric characteristics. The increased conductivity of M-DNA thin films is attributed to the metal ion electrical and optical properties. The gate voltage effect along with illumination on the conductivity of M-DNA demonstrates that M-DNA can be used as an active element of a field-effect transistor. The Zn DNA shows maximum conductivity of 300μS/cm at 480 nm light illumination suggest that M-DNA can be utilized in nano-opto-electronics and bio-sensing applications. PMID:26737260

  10. Between atomic and nuclear physics: radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Atanasov, Dinko; Blaum, Klaus; Bosch, Fritz; Brandau, Carsten; Bühler, Paul; Chen, Xiangcheng; Dillmann, Iris; Faestermann, Thomas; Gao, Bingshui; Geissel, Hans; Gernhäuser, Roman; Hagmann, Siegbert; Izumikawa, Takuji; Hillenbrand, Pierre-Michel; Kozhuharov, Christophor; Kurcewicz, Jan; Litvinov, Sergey A.; Litvinov, Yuri A.; Ma, Xinwen; Münzenberg, Gottfried; Najafi, Mohammad Ali; Nolden, Fritz; Ohtsubo, Takashi; Ozawa, Akira; Cagla Ozturk, Fatma; Patyk, Zygmunt; Reed, Matthew; Reifarth, Rene; Shahab Sanjari, Mohammad; Schneider, Dieter; Steck, Markus; Stöhlker, Thomas; Sun, Baohua; Suzaki, Fumi; Suzuki, Takeshi; Trageser, Christian; Tu, Xiaolin; Uesaka, Tomohiro; Walker, Philip; Wang, Meng; Weick, Helmut; Winckler, Nicolas; Woods, Philip; Xu, Hushan; Yamaguchi, Takayuki; Yan, Xinliang; Zhang, Yuhu; FRS-ESR,the; ILIMA; SPARC; TBWD Collaborations

    2015-07-01

    Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities.

  11. Production of intense metal ion beams from ECR ion sources using the MIVOC method

    NASA Astrophysics Data System (ADS)

    Bogomolov, S. L.; Bondarchenko, A. E.; Efremov, A. A.; Kuzmenkov, K. I.; Lebedev, A. N.; Lebedev, K. V.; Lebedev, V. Ya.; Loginov, V. N.; Mironov, V. E.; Yazvitsky, N. Yu.

    2015-12-01

    The production of metal ion beams by electron cyclotron resonance (ECR) ion sources using the MIVOC (Metal Ions from Volatile Compounds) method is described. The method is based on the use of metal compounds which have high vapor pressure at room temperature, e.g., C2B10H12, Fe(C5H5)2, etc. Intense ion beams of B and Fe were produced using this method at the FLNR JINR cyclotrons. Experiments on the production of cobalt, chromium, vanadium, germanium, and hafnium ion beams were performed at the test bench of ECR ion sources. Main efforts were put into production and acceleration of 50Ti ion beams at the U-400 cyclotron. The experiments on the production of 50Ti ion beams were performed at the test bench using natural and enriched compounds of titanium (CH3)5C5Ti(CH3)3. In these experiments, 80 μA 48Ti5+ and 70 μA 48Ti11+ beam currents were obtained at different settings of the source. Following successful tests, two 3-week runs were performed with 50Ti beams at the U-400 cyclotron aimed to perform experiments on the spectroscopy of superheavy elements. The intensity of the injected 50Ti5+ beam was 50-60 μA. The source worked stably during experiments. The compound consumption rate was determined at about 2.4 mg/h, which corresponded to the 50Ti consumption of 0.6 mg/h.

  12. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOEpatents

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  13. Metal ion transport and regulation in Mycobacterium tuberculosis.

    PubMed

    Agranoff, Daniel; Krishna, Sanjeev

    2004-09-01

    The regulation of metal ion concentrations is central to the physiology of the interaction between pathogenic bacteria and their hosts. Apart from the NRAMP orthologue, MntH, metal ion transporters in Mycobacterium tuberculosis have not been studied. Mn, the physiological substrate of MntH in other bacteria, may play an important role as a structural and redox-active cofactor in a wide range of metabolic processes. Fe, Cu and Zn play structural and catalytic roles in metalloenzymes involved in oxidative stress responses. Fe and Mg are required for growth in macrophages. Genomic analyses reveal 28 sequences encoding a broad repertoire of putative metal ion transporters (or transporter subunits), representing 24% of all transporters in this organism. These comprise 8 families of secondary active transporters and 3 families of primary active transporters, including 12,P, type ATPases. Potential metal ion specificities include K+, Na+, Cu2+, Cd2+, Zn2+, Mn2+, Mg2+, Ca2+, Co2+, Ni2+, Fe2+/3+, Hg2+, AsO2- and AsO4(2-). 17 of these transporters are also encoded as complete open reading frames in Mycobacterium leprae, suggesting a role in intracellular survival. Iron transcriptionally regulates a diverse set of genes via the iron-dependent DNA-binding proteins, Fur and IdeR. Changes in Fe and Mg concentrations signal entry into the intracellular compartment and potentially trigger up-regulation of virulence determinants. The plethora of putative transport systems encoded by the M. tuberculosis genome contrasts strikingly with the paucity of experimental data on these systems. The detailed analysis of the temporal pattern of M. tuberculosis transporter gene expression during infection will provide important insights into the basic biology of intracellular parasitism and may help to shape novel therapeutic strategies. PMID:15353332

  14. Metal ions: supporting actors in the playbook of small ribozymes.

    PubMed

    Johnson-Buck, Alexander E; McDowell, Sarah E; Walter, Nils G

    2011-01-01

    Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, as well as in gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes - the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes--catalyze the same self-cleavage reaction as RNase A, resulting in two products, one bearing a 2'-3' cyclic phosphate and the other a 5'-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general. PMID:22010272

  15. Metal Ions: Supporting Actors in the Playbook of Small Ribozymes

    PubMed Central

    Johnson-Buck, Alexander E.; McDowell, Sarah E.; Walter, Nils G.

    2012-01-01

    Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes – the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes – catalyze the same self-cleavage reaction as RNAse A, resulting in two products, one bearing a 2′–3′ cyclic phosphate and the other a 5′-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general. PMID:22010272

  16. NOVEL APPROACH TO METAL-HUMIC COMPLEXATION STUDIES BY LANTHANID ION PROBE SPECTROSCOPY

    EPA Science Inventory

    Naturally occurring humic substances are known to be potentially strong binders of metals in the environment. ensitive spectroscopic technique, based on the unique luminescence properties of the tripositive lanthanide metal ions, has been developed to selectively probe metal bind...

  17. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    SciTech Connect

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  18. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    NASA Astrophysics Data System (ADS)

    Ruiz, Chris; Greife, Uwe; Hager, Ulrike

    2014-06-01

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities.

  19. Nuclear Structure Studies with Radioactive Ion Beams in the Mass A = 80 Region

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}; Padilla, E.; Beene, James R; Lagergren, Karin B; Mueller, Paul Edward; Radford, David C; Stracener, Daniel W; Urrego-Blanco, J. P.; Varner Jr, Robert L; Yu, Chang-Hong

    2009-01-01

    An experimental program to measure spectroscopic properties of neutron-rich nuclei in the A = 80 region is underway at the Holifield Radioactive Ion Beam Facility. Our approach has been to get a comprehensive picture of the shell structure in this region by studying a series of properties of low lying states (E (2+), B (E2), g-factors and quadrupole moments). The beams, instrumentation and techniques developed specifically for this purpose have allowed us to systematically study the behavior of these observables along isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions. We have developed many techniques and detectors for in-beam gamma spectroscopy and decay studies with radioactive ion beams. Most of the detectors can be used individually or in combination. Generally these detector systems have very large efficiencies. We give examples of their use from three recent experiments; namely, Coulomb excitation of n-rich nuclei along the N = 50 shell closure, the static quadrupole moment of the first 2+ in 78Ge and g-factor measurements of n-rich isotopes near N = 50.

  20. Nanostructure operations by means of the liquid metal ion sources.

    PubMed

    Gasanov, I S; Gurbanov, I I

    2012-02-01

    Characteristics of a disperse phase of liquid metal ion source on the basis of various working substances are investigated. It is revealed that generation of the charged particles occurs in the threshold image and is simultaneously accompanied by excitation of capillary instability on a surface of the emitter. The majority of particles has the size about 2 nm (Sn) and a specific charge of 5 × 10(4) C∕kg. If the working liquid possesses high viscosity (Ni), generation of nanodroplets does not occur. Gold nanoparticles are used for deposition on a surface of quartz cantilevers with the purpose of increase in sensitivity of biosensors and on an external surface of carbon nanotubes for creation pressure sensors. By means of an ion source nanostructures can be etched on a flat surface of conductive materials without difficult ion optics. PMID:22380338

  1. Adsorption of heavy metal ions by immobilized phytic acid

    SciTech Connect

    Tsao, G.T.; Zheng, Yizhou; Lu, J.; Gong, Cheng S.

    1997-12-31

    Phytic acid (myoinositol hexaphosphate) or its calcium salt, phytate, is an important plant constituents. It accounts for up to 85% of total phosphorus in cereals and legumes. Phytic acid has 12 replaceable protons in the phytic molecule rendering it the ability to complex with multivalent cations and positively charged proteins. Poly 4-vinyl pyridine (PVP) and other strong-based resins have the ability to adsorb phytic acid. PVP has the highest adsorption capacity of 0.51 phytic acid/resins. The PVP resin was used as the support material for the immobilization of phytic acid. The immobilized phytic acid can adsorb heavy metal ions, such as cadmium, copper, lead, nickel, and zinc ions, from aqueous solutions. Adsorption isotherms of the selected ions by immobilized phytic acid were conducted in packed-bed column at room temperature. Results from the adsorption tests showed 6.6 mg of Cd{sup 2+}, 7 mg of Cu{sup 2+}, 7.2 mg of Ni{sup 2+}, 7.4 mg of Pb{sup 2+}, and 7.7 mg of Zn{sup 2+} can be adsorbed by each gram of PVP-phytic acid complex. The use of immobilized phytic acid has the potential for removing metal ions from industrial or mining waste water. 15 refs., 7 figs., 2 tabs.

  2. Metal ion-complexing polyphosphazene-interpenetrating polymer networks

    SciTech Connect

    Visscher, K.B.; Allcock, H.R.

    1994-11-01

    The synthesis of interpenetrating polymer networks (IPNs) composed of the polyphosphazenes [NP(OCH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}OCH{sub 3}){sub 2}]{sub n} (MEEP), or [NP(OC{sub 6}H{sub 4}COOPr){sub 2}]{sub n} and acidic, ion-complexing organic polymers is reported. These latter polymers included poly(acrylic acid), poly(vinylsulfonic acid sodium salt), poly[bis(undecenyl phosphate)], and poly[(p-methyliminodiacetoxy)styrene]. Several of these IPN systems are capable of selective coordination of specific ions and are prototypes for ion-selective membranes. Full, sequential IPNs were prepared, and these materials were characterized by NMR spectroscopy, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). After metal complexation, the conjugate IPNs were analyzed by electron microscopy and X-ray microanalysis. The metal coordination was used to enhance domain contrast in these systems for electron microscopy studies. Because the IPNs based on MEEP are of particular interest for ion-selective membrane applications, the stability of MEEP in acidic, neutral, and basic aqueous media and the response of the polymer to aqueous salt solutions was also examined. 33 refs., 11 figs., 5 tabs.

  3. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  4. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de; Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T.

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  5. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    SciTech Connect

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  6. Molecular designs for controlling the local environments around metal ions.

    PubMed

    Cook, Sarah A; Borovik, A S

    2015-08-18

    The functions of metal complexes are directly linked to the local environment in which they are housed; modifications to the local environment (or secondary coordination sphere) are known to produce changes in key properties of the metal centers that can affect reactivity. Noncovalent interactions are the most common and influential forces that regulate the properties of secondary coordination spheres, which leads to complexities in structure that are often difficult to achieve in synthetic systems. Using key architectural features from the active sites of metalloproteins as inspiration, we have developed molecular systems that enforce intramolecular hydrogen bonds (H-bonds) around a metal center via incorporation of H-bond donors and acceptors into rigid ligand scaffolds. We have utilized these molecular species to probe mechanistic aspects of biological dioxygen activation and water oxidation. This Account describes the stabilization and characterization of unusual M-oxo and heterobimetallic complexes. These types of species have been implicated in a range of oxidative processes in biology but are often difficult to study because of their inherent reactivity. Our H-bonding ligand systems allowed us to prepare an Fe(III)-oxo species directly from the activation of O2 that was subsequently oxidized to form a monomeric Fe(IV)-oxo species with an S = 2 spin state, similar to those species proposed as key intermediates in non-heme monooxygenases. We also demonstrated that a single Mn(III)-oxo center that was prepared from water could be converted to a high-spin Mn(V)-oxo species via stepwise oxidation, a process that mimics the oxidative charging of the oxygen-evolving complex (OEC) of photosystem II. Current mechanisms for photosynthetic O-O bond formation invoke a Mn(IV)-oxyl species rather than the isoelectronic Mn(V)-oxo system as the key oxidant based on computational studies. However, there is no experimental information to support the existence of a Mn-oxyl radical. We therefore probed the amount of spin density on the oxido ligand of our complexes using EPR spectroscopy in conjunction with oxygen-17 labeling. Our findings showed that there is a significant amount of spin on the oxido ligand, yet the M-oxo bonds are best described as highly covalent and there is no indication that an oxyl radical is formed. These results offer the intriguing possibility that high-spin M-oxo complexes are involved in O-O bond formation in biology. Ligand redesign to incorporate H-bond accepting units (sulfonamido groups) simultaneously provided a metal ion binding pocket, adjacent H-bond acceptors, and an auxiliary binding site for a second metal ion. These properties allowed us to isolate a series of heterobimetallic complexes of Fe(III) and Mn(III) in which a group II metal ion was coordinated within the secondary coordination sphere. Examination of the influence of the second metal ion on the electron transfer properties of the primary metal center revealed unexpected similarities between Ca(II) and Sr(II) ions, a result with relevance to the OEC. In addition, the presence of a second metal ion was found to prevent intramolecular oxidation of the ligand with an O atom transfer reagent. PMID:26181849

  7. Study on the decontamination of surface of radioactive metal device using plasmatron

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Keun; Yang, Ik-Jun; Kim, Seung-Hyeon; Rai, Suresh; Lee, Heon-Ju

    2015-09-01

    Radioactive waste contiguously produced during operation of NPP (nuclear power plant). Therefore, KHNP (korea hydro & nuclear power co., ltd) decided to disband the NPP unit 1 in the Kori area. Since most of the metallic radioactive wastes are not contaminated ones themselves but rather ones containing polluted nuclides on their surface, the amount of wastes can be sharply reduced through decontamination process. In this study DC plasmatron and isotope sheet of radioactive cobalt was used to study the decontamination process. Decontamination can be achieved by etching the contaminated layer from the surface. Due to the restricted usage of radioactive materials, we have studied etching of Cobalt (Co) sheet to imitate the radioactive contamination. Plasma was generated using mixture gas of CF4/O2 in the ratio of 10:0, 9:1, 8:2, 7:3, 6:4 maintaining the plasma sample distance of 20 mm, 30 mm, 40 mm and exposed time of 60 sec, 120 sec, 180 sec using fixed Ar carrier gas flow rate of 1000 sccm. As a result, we obtained maximum etching rate of 9.24 μm/min when the mixture ratio of CF4/O2 gas was 4:1, which was confirmed by SEM and mass-meter. It was confirmed that more close positioning the Co samples to the plasmatron nozzle yields maximum etching rate.

  8. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex-High temperature ion source for short-lived isotopes.

    PubMed

    Otokawa, Y; Osa, A; Sato, T K; Matsuda, M; Ichikawa, S; Jeong, S C

    2010-02-01

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of (238)U. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 degrees C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using (238)U of 640 mg/cm(2) with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as (93)Kr(T(1/2)=1.286 s), (129)In(T(1/2)=0.61 s), and (141)Xe(T(1/2)=1.73 s) with intensity of 10(3) ions/s. PMID:20192400

  9. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex--High temperature ion source for short-lived isotopes

    SciTech Connect

    Otokawa, Y.; Osa, A.; Sato, T. K.; Matsuda, M.; Ichikawa, S.; Jeong, S. C.

    2010-02-15

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of {sup 238}U. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 deg. C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using {sup 238}U of 640 mg/cm{sup 2} with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as {sup 93}Kr(T{sub 1/2}=1.286 s), {sup 129}In(T{sub 1/2}=0.61 s), and {sup 141}Xe(T{sub 1/2}=1.73 s) with intensity of 10{sup 3} ions/s.

  10. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex—High temperature ion source for short-lived isotopesa)

    NASA Astrophysics Data System (ADS)

    Otokawa, Y.; Osa, A.; Sato, T. K.; Matsuda, M.; Ichikawa, S.; Jeong, S. C.

    2010-02-01

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of U238. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 °C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using U238 of 640 mg/cm2 with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as K93r(T1/2=1.286 s), I129n(T1/2=0.61 s), and X141e(T1/2=1.73 s) with intensity of 103 ions/s.

  11. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    SciTech Connect

    Arikawa, Hiroshi Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Sakemi, Y.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Yoshida, H. P.; Imai, K.; and others

    2014-02-15

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a {sup 18}O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  12. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    NASA Astrophysics Data System (ADS)

    Arikawa, Hiroshi; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-02-01

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a 18O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  13. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms.

    PubMed

    Arikawa, Hiroshi; Ando, S; Aoki, T; Ezure, S; Harada, K; Hayamizu, T; Inoue, T; Ishikawa, T; Itoh, M; Kawamura, H; Kato, K; Kato, T; Uchiyama, A; Aoki, T; Furukawa, T; Hatakeyama, A; Hatanaka, K; Imai, K; Murakami, T; Nataraj, H S; Sato, T; Shimizu, Y; Wakasa, T; Yoshida, H P; Sakemi, Y

    2014-02-01

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a (18)O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line. PMID:24593466

  14. Analysis of radioactive waste samples by ion chromatography-ICP/MS

    SciTech Connect

    Farmer, O.T. III; Reeves, J.H.; Wyse, E.J.; Clemeston, C.J.; Barinaga, C.J.; Smith, M.R.; Koppenaal, D.W.

    1994-10-01

    A comprehensive ion chromatography (IC) with beta-counting (beta) and inductively coupled plasma mass spectrometry (ICP/MS) detection approach has been developed to separate and detect 20 radionuclides in a Hanford waste tank sample. The IC separation was performed using a multi-functional group (anion/cation) resin and eluents of oxalic acid, diglycolic acid, and hydrochloric acid. Shorter-lived radionuclides were detected by a solid-state beta scintillation counter on-line with the IC separation. Mass spectrometry detection using an efficient and robust plasma ionization source provides isotopic discernability for both stable isotopes and long-lived radioactive species. Effective separation of over 47 elements and 160 isotopes was obtained from a single-elution scheme lasting 70 min. Automated IC separations provide the potential for rapid isotopic and radionuclide analysis of complex radioactive waste, using minimal sample and reagent volumes and reducing personnel exposures.

  15. New reaction chamber for transient field g-factor measurements with radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Illana, A.; Perea, A.; Nácher, E.; Orlandi, R.; Jungclaus, A.

    2015-06-01

    A new reaction chamber has been designed and constructed to measure g-factors of short-lived excited states using the Transient Field technique in combination with Coulomb excitation in inverse kinematics. In this paper we will discuss several important aspects which have to be considered in order to successfully carry out this type of measurement with radioactive ion beams, instead of the stable beams used in a wide range of experiments in the past. The technical solutions to the problems arising from the use of such radioactive beams will be exposed in detail and the first successful experiment using the new chamber in combination with MINIBALL cluster detectors at REX-ISOLDE (CERN) will be reported on.

  16. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism.

    PubMed

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y; Varnado, Brittany; Beutler, John A; Murelli, Ryan P; Le Grice, Stuart F J; Tang, Liang

    2015-12-15

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg(2+). A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg(2+) from Ca(2+). Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  17. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  18. Stabilization of Metal-Loaded Ion-Exchange Resin with a Porous Silica Supporter Through Thermal Treatment

    SciTech Connect

    Kim, I-T. Park, H-S.; Yoo, J-H.; Kim, J-H.

    2003-02-25

    A new ion exchanger with porous silica as a supporting material and diphosphonic acid as a functional chelating group has been developed at ANL for the effective removal of transition metals and actinide ions from very acidic radioactive liquid wastes. The applicability of this resin for the treatment of low- and/or intermediate-level aqueous waste from nuclear power plants (NPP) has not been reported in scientific literature, but is under study now in Korea. The major radioisotopes in NPP radioactive liquid waste are Cs and Co in neutral pH ranges. This study on the thermal stabilization of metal-loaded waste resin has been carried out in parallel with the sorption experiment. Thermal treatment of metal (Co, Cs or U) loaded resin was accomplished to see the possibility of enhancing the safety and stability of the final product during transportation and disposal. In this paper, characteristics of the metal-loaded resins before and after heat treatment at three different thermal conditions were investigated and compared with each other to see the effectiveness of the thermal treatment method.

  19. No association between serum metal ions and implant fixation in large-head metal-on-metal total hip arthroplasty

    PubMed Central

    Søballe, Kjeld; Jakobsen, Stig Storgaard; Lorenzen, Nina Dyrberg; Mechlenburg, Inger; Stilling, Maiken

    2014-01-01

    Background The mechanism of failure of metal-on-metal (MoM) total hip arthroplasty (THA) has been related to a high rate of metal wear debris, which is partly generated from the head-trunnion interface. However, it is not known whether implant fixation is affected by metal wear debris. Patients and methods 49 cases of MoM THA in 41 patients (10 women) with a mean age of 52 (28–68) years were followed with stereoradiographs after surgery and at 1, 2, and 5 years to analyze implant migration by radiostereometric analysis (RSA). Patients also participated in a 5- to 7-year follow-up with measurement of serum metal ions, questionnaires (Oxford hip score (OHS) and Harris hip score (HHS)), and measurement of cup and stem positions and systemic bone mineral density. Results At 1–2 years, mean total translation (TT) was 0.04 mm (95% CI: –0.07 to 0.14; p = 0.5) for the stems; at 2–5 years, mean TT was 0.13 mm (95% CI: –0.25 to –0.01; p = 0.03), but within the precision limit of the method. For the cups, there was no statistically significant TT or total rotation (TR) at 1–2 and 2–5 years. At 2–5 years, we found 4 cups and 5 stems with TT migrations exceeding the precision limit of the method. There was an association between cup migration and total OHS < 40 (4 patients, 4 hips; p = 0.04), but there were no statistically significant associations between cup or stem migration and T-scores < –1 (n = 10), cup and stem positions, or elevated serum metal ion levels (> 7µg/L (4 patients, 6 hips)). Interpretation Most cups and stems were well-fixed at 1–5 years. However, at 2–5 years, 4 cups and 5 stems had TT migrations above the precision limits, but these patients had serum metal ion levels similar to those of patients without measurable migrations, and they were pain-free. Patients with serum metal ion levels > 7 µg/L had migrations similar to those in patients with serum metal ion levels < 7 µg/L. Metal wear debris does not appear to influence the fixation of hip components in large-head MoM articulations at medium-term follow-up. PMID:24847790

  20. Low-lying resonant states in F16 using a O15 radioactive ion beam

    NASA Astrophysics Data System (ADS)

    Lee, D. W.; Peräjärvi, K.; Powell, J.; O'Neil, J. P.; Moltz, D. M.; Goldberg, V. Z.; Cerny, Joseph

    2007-08-01

    A 120 MeV O15 radioactive ion beam with an intensity on target of 4.5×104 pps has been developed at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. This beam has been used to study the level structure of F16 at low energies via the p(O15, p) reaction using the thick target inverse kinematics method on a polyethylene target. The experimental excitation function was analyzed using R-matrix calculations. Significantly improved values for the level widths of the four low-lying states in F16 are reported. Good agreement with the theoretical spectroscopic factors is also obtained.

  1. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    SciTech Connect

    Ball, G. C.; Bandyopadhyay, D.; Bricault, P.; Chan, S.; Churchman, R.; Coombes, H.; Dombsky, M.; Garnsworthy, A.; Hackman, G.; Lassen, J.; Morton, A. C.; Pearson, C. J.; Triambak, S.; Williams, S. J.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Colosimo, S.; Kanungo, R.; Becker, J. A.

    2009-03-31

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8{pi} spectrometer and its associated auxiliary detectors is optimize for {beta}-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8{pi} spectrometer.

  2. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing.

    PubMed

    Huang, Hongduan; Liao, Lei; Xu, Xiao; Zou, Mingjian; Liu, Feng; Li, Na

    2013-12-15

    The electron-transfer based quenching effect of commonly encountered transition metal ions on the photoluminescence of grapheme quantum dots (GQDs) was for the first time investigated, and was found to be associated with electron configuration of the individual metal ion. Ethylene diamine tetraacetic acid (EDTA), the metal ion chelator, can competitively interact with metal ions to recover the quenched photoluminescence of GQDs. Basically, metal ions with empty or completely filled d orbits could not quench the photoluminescence of GQDs, but this quenching effect was observed for the metal ions with partly filled d orbits. Based on the quenching-recovering strategy, a simple optical metal sensing platform was established by taking Ni(2+) as an example. Using the nickel ion-specific chelating reagent, dimethylglyoxime (DMG), to replace EDTA, a detection limit of 4.1 ?M was obtained in standard solution. This proposed strategy does not need further functionalization of GQDs, facilitating the application for simple, fast and cost-effective screening of metal ions. PMID:24209324

  3. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA. PMID:24824327

  4. Metal ion binding to phospholipid bilayers evaluated by microaffinity chromatography.

    PubMed

    Ross, Eric E; Hoag, Christian; Pfeifer, Zach; Lundeen, Christopher; Owens, Sarah

    2016-06-17

    Group I and II ion binding to phospholipid membranes was evaluated by affinity chromatography utilizing a new stationary phase system based on lipid bilayers supported within large-pore particles composed of Stöber silica spheres. Using an inductively coupled plasma mass spectrometer for detection, robust determination of binding selectivity within group II ions is achieved with capillary columns containing nanomole quantities of lipid and using picomoles of metal analyte. Columns with a unique lipid formulation can be prepared within three hours using a solvent-casting assembly method. The observable thermotropic phase behavior of dipalmitoylphosphatidylcholine has a significant effect on alkaline metal binding and demonstrates the dynamic nature of the supported bilayers. Of the group I ions, only lithium exhibits retention with neutral phosphatidylcholine bilayer stationary phases. A comparison of Stöber-based supports with two commercially available large-pore silicas reveals the effect that particle structure has on analyte accessibility to the bilayer surface as evaluated by retention per supported lipid mass. PMID:27189434

  5. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  6. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  7. Hierarchically imprinted sorbents for the separation of metal ions

    SciTech Connect

    Dai, S.; Burleigh, M.C.; Ju, Y.H.; Gao, H.J.; Lin, J.S.; Pennycook, S.J.; Barnes, C.E.; Xue, Z.L.

    2000-02-09

    Molecular imprinting involves arranging monomers of polymerization synthesis around a template molecule so that complexes between the monomer and template molecules are formed. Subsequent polymerization of the monomer molecules results in trapping template molecules in a highly cross-linked amorphous polymer matrix. Extraction of the imprint molecules leaves a predetermined arrangement of ligands and a tailored binding pocket. Such imprinted polymers have been used to mimic antibody functions to resolve racemates, and to separate mixtures of metal cations. Thus far, the organization of precursor monomers has been achieved mainly in inhomogeneous organic polymer matrices, with little control over structural parameters, such as pore sizes and surface areas. The authors report the first synthesis of imprinted hybrid sorbent materials with precise control of not only adsorption sites but also pore structures. The concepts behind multilevel imprinting are as follows. Surfactant micelles and metal ions both act as templates in these hierarchically imprinted sorbents. The metal ion and the surfactant are removed from the silica matrix via acid leaching and ethanol extraction, respectively. This results in the formation of different-sized imprints within the silica matrix, each with a specific function.

  8. Extraordinary rates of transition metal ion-mediated ribozyme catalysis

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2006-01-01

    In pre-steady-state, fast-quench kinetic analysis, the tertiary-stabilized hammerhead ribozyme “RzB” cleaves its substrate RNA with maximal measured k obs values of ∼3000 min−1 in 1 mM Mn2+ and ∼780 min−1 in 1 mM Mg2+ at 37°C (pH 7.4). Apparent pKa for the catalytic general base is ∼7.8–8.5, independent of the corresponding metal hydrate pKa, suggesting potential involvement of a nucleobase as general base as suggested previously from nucleobase substitution studies. The pH-rate profile is bell-shaped for Cd2+, for which the general catalytic acid has a pKa of 7.3 ± 0.1. Simulations of the pH-rate relation suggest a pKa for the general catalytic acid to be ∼9.5 in Mn2+ and >9.5 in Mg2+. The acid pKa's follow the trend in the pKa of the hydrated metal ions but are displaced by ∼1–2 pH units in the presence of Cd2+ and Mn2+. One possible explanation for this trend is direct metal ion coordination with a nucleobase, which then acts as general acid. PMID:16912216

  9. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. PMID:26852345

  10. Production of spin-polarized radioactive ion beams via projectile fragmentation reaction

    SciTech Connect

    Kameda, D.; Ueno, H.; Yoshimi, A.; Nagatomo, T.; Sugimoto, T.; Kobayashi, Y.; Watanabe, H.; Ishihara, M.; Asahi, K.; Uchida, M.; Takemura, M.; Shimada, K.; Takase, K.; Inoue, T.; Kijima, G.; Arai, T.; Suda, S.; Nagae, D.; Murata, J.; Kawamura, H.

    2008-02-06

    Spin-polarized radioactive ion beams are produced in the projectile fragmentation reaction induced by intermediate-energy heavy ion beams. The degree of spin polarization shows characteristic dependence on the outgoing momentum of the projectile fragment in the magnitude around 1{approx}10%. The qualitative behavior is well described by the kinematical model of the fragmentation process. Recently, we have successfully produced spin-polarized beams of aluminum isotopes in the mass A{approx}30 region via the fragmentation of 95 MeV/u {sup 40}Ar projectiles. The magnetic moments of {sup 30}Al and {sup 32}Al and the electric quadrupole moments of {sup 31}Al and {sup 32}Al have been measured using the {beta}-NMR technique with the polarized RI beams of the Al isotopes.

  11. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect

    Ma, Y. Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  12. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  13. The titration curve of insulin in the presence of various bivalent metal ions

    PubMed Central

    Graae, John

    1968-01-01

    1. Titration curves of insulin in the presence and absence of various metal ions are reported. 2. The difference in base consumption with and without the metal ions is compared with calculated curves. 3. These experiments suggest that in dilute solutions Zn2+ and Cu2+ ions are bound to α-amino groups. PMID:5637362

  14. High-resolution mass spectrometer for liquid metal ion sources

    SciTech Connect

    Wortmann, Martin; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Meijer, Jan

    2013-09-15

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E×B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10{sup 6}–10{sup 7} clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  15. Helium and argon ion damage in metallic glasses

    NASA Astrophysics Data System (ADS)

    Tyagi, A. K.; Nandedkar, R. V.; Krishan, K.

    1984-05-01

    Metallic glasses Ni 60Nb 40 , Ni 64Zr 36, Ni 33Zr 67, Fe 40Ni 40P 14B 6, Fe 40Ni 40B 20, Fe 80B 20 and Fe 40Ni 38Mo 4B 18 were bombarded at room temperature with helium ions in trie energy range 50-150 keV. Bubble formation, blistering, flaking and repeated exfoliation was observed. Amongst these glasses Ni 60Nb 40 and Ni 64Zr 36 which have good neutronic properties and thermal stability, have also shown higher resistance against blistering and stability under irradiation. The surface damage due to 100 keV argon ion irradiation is also discussed.

  16. Metal-organic frameworks for lithium ion batteries and supercapacitors

    NASA Astrophysics Data System (ADS)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100-1000 m2 g-1) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m2 g-1), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs.

  17. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  18. Temperature Dependence On The Emission Characteristics Of A AuGe Liquid Metal Alloy Ion Source

    NASA Astrophysics Data System (ADS)

    Ganetsos, Theodore; Bischoff, Lothar; Pilz, Wolfgang; Akhmadaliev, Chavkat; Laskaris, Nikos; Kotsos, Bill

    2007-04-01

    Focused ion beam systems employing liquid metal ion sources have become of increasing importance in the microelectronics industry. Maskless ion implantation as a modern patterning technique is one of the most attractive application of Focused Ion Beams. In spite of the fact that a great deal of research has been carried out on liquid metal ion sources, surprisingly few results exist on the temperature dependence of their emission characteristics. In this article we study a AuGe liquid metal alloy ion source. The unusual results are explained in terms of the abnormal behavior of the surface tension of the alloy with temperature.

  19. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  20. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  1. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  2. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    SciTech Connect

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D.

    2005-07-15

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 {mu}s pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized (<200 ns) to improve the capture efficiency of the ions which are injected into an ion trap. During a single discharge, the over-damped pulse produces an ion flux of 8.4x10{sup 9} ions/cm{sup 2}, measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  3. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  4. Cryogenic molecular separation system for radioactive {sup 11}C ion acceleration

    SciTech Connect

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.

    2015-12-15

    A {sup 11}C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. In the ISOL system, {sup 11}CH{sub 4} molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive {sup 12}CH{sub 4} gases, which can simulate the chemical characteristics of {sup 11}CH{sub 4} gases. We investigated the separation of CH{sub 4} molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH{sub 4}. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  5. Electron Cyclotron Resonance (ECR) Ion Source Development at the Holified Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Liu, Yuan; Alton, Gerald; Cole, John; Williams, Cecil; Reed, Charles

    2004-11-01

    Performance of ECR ion sources can be significantly enhanced by increasing the physical size of their ECR zones in relation to the size of their plasma volumes (spatial and frequency domain methods).^3-5 A 6 GHz, all-permanent magnet ECR ion source with a large resonant plasma volume has been tested at ORNL.^6 The magnetic circuit can be configured for creating both flat-β (volume) and conventional minimum-β (surface) resonance conditions. Direct comparisons of the performance of the two source types can be made under similar operating conditions. In this paper, we clearly demonstrate that the flat-β source outperforms its minimum-β counterpart in terms of charge state distribution and intensity within a particular charge state. ^1bilheuxhn@ornl.gov ^2Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. ^3G.D. Alton, D.N. Smithe, Rev. Sci. Instrum. 65 (1994) 775. ^4G.D. Alton et al., Rev. Sci. Instrum. 69 (1998) 2305. ^5Z.Q. Xie, C.M. Lyneis, Rev. Sci. Instrum. 66 (1995) 4218. ^6Y. Liu et al., Rev. Sci. Instrum. 69 (1998) 1311.

  6. Removal and recovery of metal ions from process and waste streams using polymer filtration

    SciTech Connect

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-06-13

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described.

  7. The application of metal cutting technologies in tasks performed in radioactive environments

    SciTech Connect

    Fogle, R.F.; Younkins, R.M.

    1997-05-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

  8. The two faces of metal ions: From implants rejection to tissue repair/regeneration.

    PubMed

    Vasconcelos, Daniel M; Santos, Susana G; Lamghari, Meriem; Barbosa, Mário A

    2016-04-01

    The paradigm of metallic ions as exclusive toxic agents is changing. During the last 60 years, knowledge about toxicological and immunological reactions to metal particles and ions has advanced considerably. Hip prostheses, namely metal-on-metal bearings, have prompted studies about excessive and prolonged exposure to prosthetic debris. In that context, the interactions of metal particles and ions with cells and tissues are mostly harmful, inducing immune responses that lead to osteolysis and implant failure. However, in the last decade, new strategies to promote immunomodulation and healing have emerged based on the unique properties of metallic ions. The atom-size and charge enable ions to interact with key macromolecules (e.g. proteins, nucleic acids) that affect cellular function. Moreover, these agents are inexpensive, stable and can be integrated in biomaterials, which may open new avenues for a novel generation of medical devices. Herein, orthopedic devices are discussed as models for adverse responses to metal ions, and debated together with the potential to use metal ions-based therapies, thus bridging the gap between unmet clinical needs and cutting-edge research. In summary, this review addresses the two "faces" of metallic ions, from pathological responses to innovative research strategies that use metal ions for regenerative medicine. PMID:26851391

  9. Removal and selective recovery of heavy-metal ions from industrial waste waters. Technical completion report

    SciTech Connect

    Darnall, D.W.; Gardea-Torresdey, J.

    1989-02-01

    Accumulation of toxic metal ions in water supplies is a matter of increasingly grave concern. Primarily the undesirable by-products of mining and industrial activity, these ions can cause acute and chronic illnesses in humans and other animals. In an effort to limit further contamination, development of efficient, widely applicable, low-cost methods for removal of heavy-metal ions from waters deserves high priority. One new method that has allowed both the removal and recovery of metal ions from water has been the utilization of microorganisms such as algae. This metal-ion sorption process is based upon the natural, very strong affinity of the cell walls of algae for heavy metal ions. There appear to be distinct advantages of the immobilized algal system over other technology currently used for heavy-metal-ion cleanup from waste waters. The goals of the project were (1) to examine the effects of calcium(II) and magnesium(II) on transition metal binding to the algae, (2) to test the immobilized silica-algal polymers for removal of metal ions from electroplating plant waste waters, (3) to evaluate the effects of culturing conditions on the metal binding capacity of the resulting biomass, and (4) to investigate the mechanism of metal-ion binding to different algae.

  10. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  11. Blood metal ion testing is an effective screening tool to identify poorly performing metal-on-metal bearing surfaces

    PubMed Central

    Sidaginamale, R. P.; Joyce, T. J.; Lord, J. K.; Jefferson, R.; Blain, P. G.; Nargol, A. V. F.; Langton, D. J.

    2013-01-01

    Objectives The aims of this piece of work were to: 1) record the background concentrations of blood chromium (Cr) and cobalt (Co) concentrations in a large group of subjects; 2) to compare blood/serum Cr and Co concentrations with retrieved metal-on-metal (MoM) hip resurfacings; 3) to examine the distribution of Co and Cr in the serum and whole blood of patients with MoM hip arthroplasties; and 4) to further understand the partitioning of metal ions between the serum and whole blood fractions. Methods A total of 3042 blood samples donated to the local transfusion centre were analysed to record Co and Cr concentrations. Also, 91 hip resurfacing devices from patients who had given pre-revision blood/serum samples for metal ion analysis underwent volumetric wear assessment using a coordinate measuring machine. Linear regression analysis was carried out and receiver operating characteristic curves were constructed to assess the reliability of metal ions to identify abnormally wearing implants. The relationship between serum and whole blood concentrations of Cr and Co in 1048 patients was analysed using Bland-Altman charts. This relationship was further investigated in an in vitro study during which human blood was spiked with trivalent and hexavalent Cr, the serum then separated and the fractions analysed. Results Only one patient in the transfusion group was found to have a blood Co > 2 g/l. Blood/Serum Cr and Co concentrations were reliable indicators of abnormal wear. Blood Co appeared to be the most useful clinical test, with a concentration of 4.5 g/l showing sensitivity and specificity for the detection of abnormal wear of 94% and 95%, respectively. Generated metal ions tended to fill the serum compartment preferentially in vivo and this was replicated in the in vitro study when blood was spiked with trivalent Cr and bivalent Co. Conclusions Blood/serum metal ion concentrations are reliable indicators of abnormal wear processes. Important differences exist however between elements and the blood fraction under study. Future guidelines must take these differences into account. PMID:23836464

  12. Pollution of the Begej Canal sediment--metals, radioactivity and toxicity assessment.

    PubMed

    Dalmacija, B; Prica, M; Ivancev-Tumbas, I; van der Kooij, A; Roncevic, S; Krcmar, D; Bikit, I; Teodorovic, I

    2006-07-01

    The Begej Canal is one among a large number of canals in Vojvodina (Northern Province of Serbia and Montenegro). The paper describes a study of metal and radioactivity contamination of the Begej Canal sediment. It is also concerned with the evaluation of sediment acute toxicity based on standard test species Daphnia magna and simultaneously extracted metals and acid volatile sulfides. The quality of sediment was assessed according to Dutch standards, but the results were also compared with some Canadian and USEPA (United States Environmental Protection Agency) guidelines for sediment quality. The results showed severe pollution with chromium, copper, cadmium and zinc, whereby the anthropogenic origin of these contaminants was indicated. The tests of toxicity of sediment pore water to D. magna, gave no indication of the presence of substances in acutely toxic concentrations to this species. It can be speculated that, despite of high metal contents, the observed toxicity was low because of the high contents of clay and iron, as well as sulphide. Also, based on a comparison with the Danube sediment and Vojvodina soil in general, the data of the Begej sediment contamination with 238U and 137Cs. The 137Cs data were used for approximate dating of the sediment. No traces of contamination by nuclear power plants in the region were found, while the presence of technologically enhanced naturally occurring radioactive materials (TENORM) was proved. Conclusions based on different criteria for sediment quality assessment were in some cases contradictory. Study also showed that radioactivity aspects can be useful in sediment quality surveys. The obtained results will be invaluable for the future activities regarding integrated water management based on EC Water Framework Directive (2000/60/EC) in the Danube basin, and particularly in the region of crossborder water body of the Begej Canal. PMID:16527352

  13. Anion-exchange separations of metal ions in thiocyanate media.

    PubMed

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  14. Metal ion sorption by untreated and chemically treated biomass

    SciTech Connect

    Kilbane, J.J.; Xie, J.

    1992-12-31

    The metal-binding ability of biosorbents is well known; however, in comparison with commercial ion-exchange resins the capacity of biosorbents is low. The purpose of this research was to examine chemically modified biosorbents and biosorbents prepared from microorganisms isolated from extreme environments to determine if significant improvements in metal-binding capacity or biosorbents with unique capabilities could be produced. Chemical treatments examined included acid, alkali, carbon disulfide, phosphorus oxychloride, anhydrous formamide, sodium thiosulfate, sodium chloroacetic acid, and phenylsulfonate. Biosorbents were prepared from microorganisms isolated from pristine and acid mine drainage impacted sites and included heterotrophs, methanotrophs, algae, and sulfate reducers. Chemical modification with carbon disulfide, phosphorous oxychloride, and sodium thiosulfate yielded biosorbents with such as much as 74%, 133%, and 155% improvements, respectively, in metal-binding capacity, but the performance of these chemically modified biosorbents deteriorated upon repeated use. A culture isolated from an acid mine drainage impacted site, IGTM17, exhibits about 3-fold higher metal-binding capacity in comparison with other biosorbents examined in this study. IGTM17 also exhibits superior metal-binding ability at decreased pH or in the presence of interfering common cations in comparison with other biosorbents or some commercially available cation exchange resins. Some biosorbents, such as IGTM5, can bind anions. To our knowledge this is the first demonstration of the ability of biosorbents to bind anions. Moreover, preliminary data indicate that the chemical modification of biosorbents may be capable of imparting the ability to selectively bind certain anions. Further research is needed to optimize conditions for the chemical modification and stabilization of biosorbents.

  15. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  16. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure

    SciTech Connect

    Tsuji, M. ); Komarneni, S. )

    1993-03-01

    The ion-exchange selectivity of divalent transition metal ions on cryptomelane-type manganic acid (CMA) with tunnel structure has been studied using the distribution coefficients ([ital K][sub [ital d

  17. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of such glasses because the two network formers will tend to separate into different phases, making it difficult to obtain homogenous samples. The PSF system proved easier to study than other systems. The hopping in this system seems to be dominated by the Greaves mid-range mechanism. In addition, in samples containing the same proportion of iron, conductivities were found to not depend noticeably on composition, supporting the use of models focusing on the transition metal ions in calculating conductivity. Despite ostensibly changing the structural and metrical properties of the network, the ratio of the concentration of the network formers only appears to have an effect on the conductivity through changing the inter-atomic distance of iron. The numerical model adds to the evidence for the dominating contribution on the nearest-neighbor ordering of TI ions on the electrical properties of a glass; especially interesting is the reproducibility of the mixed-transition ion effect (MTE) in a numerical model where ensemble averages are taken over possible arrangements. It was also determined that the disorder arising from the spread between two types of traps can lead to a MIT as function of population. Finally, an outline of the notion of invariance in TI glasses is extended from work done by other authors, creating an opportunity for further research.

  18. State promotion and neutralization оf ions near metal surface

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2011-05-01

    When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  19. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-01

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. PMID:26913810

  20. Most spin-1/2 transition-metal ions do have single ion anisotropy

    SciTech Connect

    Liu, Jia; Whangbo, Myung-Hwan E-mail: mike-whangbo@ncsu.edu; Koo, Hyun-Joo; Xiang, Hongjun E-mail: mike-whangbo@ncsu.edu; Kremer, Reinhard K.

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  1. Recent Results of Experiments with Radioactive 21Na and 7Be ion beams

    SciTech Connect

    Greife, U.; Livesay, Jake; Jewett, Cybele; Chipps, K.; Sarazin, F.; Bardayan, Daniel W; Blackmon, Jeff C; Nesaraja, Caroline D; Smith, Michael Scott; Champagne, A. E.; Fitzgerald, R. P.; Jones, K. L.; Thomas, J. S.; Kozub, R. L.

    2007-03-01

    We report here on experiments with radioactive 21Na and 7Be beams performed by Colorado School of Mines students at the ISAC facility of TRIUMF and the Holifield Radioactive Ion Beam Facility (HRIBF) of ORNL. At TRIUMF, the DRAGON recoil separator and its segmented BGO array were used to investigate higher energy resonances in the reaction H(21Na,gamma)22Mg. Using the HRIBF we performed an experiment with a 7Be ion beam to measure scattering off Hydrogen and Carbon. Both elastic 7Be + p scattering and for the first time resonant inelastic scattering 7Be(p,p0)7Be* were observed.

  2. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  3. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions.

    PubMed

    Kang, In Joong; Khan, Nazmul Abedin; Haque, Enamul; Jhung, Sung Hwa

    2011-05-27

    Chemical and thermal stabilities of isotypic metal-organic frameworks (MOFs) like Al-BDC (Al-benzenedicarboxylate called MIL-53-Al), Cr-BDC (MIL-53-Cr) and V-BDC (MIL-47-V), after purification to remove uncoordinated organic linkers, have been compared to understand the effect of the central metal ions on the stabilities of the porous MOF-type materials. Chemical stability to acids, bases, and water decreases in the order of Cr-BDC>Al-BDC>V-BDC, suggesting stability increases with increasing inertness of the central metal ions. However, thermal stability decreases in the order of Al-BDC>Cr-BDC> V-BDC, and this tendency may be explained by the strength of the metal-oxygen bond in common oxides like Al(2)O(3), Cr(2)O(3), and V(2)O(5). In order to evaluate precisely the stability of a MOF, it is necessary to remove uncoordinated organic linkers that are located in the pores of the MOF, because a filled MOF may be more stable than the same MOF after purification. PMID:21547968

  4. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  5. Hydrated alkali metal ions: spectroscopic evidence for clathrates.

    PubMed

    Cooper, Richard J; Chang, Terrence M; Williams, Evan R

    2013-08-01

    The origin of enhanced abundances for some hydrated alkali metal ions, M(+)(H2O)n, where M = Cs, Rb, K, Na, and Li with between 17 and 21 water molecules attached was investigated with infrared photodissociation (IRPD) spectroscopy and by blackbody infrared radiative dissociation (BIRD) at 133 K. The abundances of clusters of Cs(+), Rb(+), and K(+) with 18 and 20 water molecules are anomalously high compared to the corresponding clusters of Na(+), and Li(+) with 20 water molecules has only a slightly enhanced abundance. BIRD results indicate that the anomalous abundance at n = 20 for the larger ions is due to the high stability of this cluster, and the significant instability of the next largest cluster, consistent with a stable core structure with 20 water molecules. IRPD spectra in the free-OH region (∼3600-3800 cm(-1)) for Cs(+), Rb(+), and K(+) with 18 and 20 water molecules indicates that water molecules with a free-OH stretch accept two hydrogen bonds and donate one hydrogen bond (acceptor-acceptor-donor water) to other water molecules. No acceptor-donor (AD) bands are observed, consistent with clathrate structures for these ions. In contrast, the AD band is significant for Na(+), indicating that these clusters adopt different structures. Results for Li(+) indicate a contribution from clathrate structures at n = 20, but not at other cluster sizes. This analysis is supported by the relative intensities of bands in the hydrogen-bonding region for n = 20. PMID:23808387

  6. Nanoparticles reduce nickel allergy by capturing metal ions

    NASA Astrophysics Data System (ADS)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  7. Prostate cancer outcome and tissue levels of metal ions

    USGS Publications Warehouse

    Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; MacIas, V.; Gao, W.; Liang, W.-M.; Beam, C.; Gray, Michael A.; Kajdacsy-Balla, A.

    2011-01-01

    BACKGROUND There are several studies examining prostate cancer and exposure to cadmium, iron, selenium, and zinc. Less data are available on the possible influence of these metal ions on prostate cancer outcome. This study measured levels of these ions in prostatectomy samples in order to examine possible associations between metal concentrations and disease outcome. METHODS We obtained formalin fixed paraffin embedded tissue blocks of prostatectomy samples of 40 patients with PSA recurrence, matched 1:1 (for year of surgery, race, age, Gleason grading, and pathology TNM classification) with tissue blocks from 40 patients without recurrence (n = 80). Case-control pairs were compared for the levels of metals in areas adjacent to tumors. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for quantification of Cd, Fe, Zn, and Se. RESULTS Patients with biochemical (PSA) recurrence of disease had 12% lower median iron (95 ??g/g vs. 111 ??g/g; P = 0.04) and 21% lower zinc (279 ??g/g vs. 346 ??g/g; P = 0.04) concentrations in the normal-appearing tissue immediately adjacent to cancer areas. Differences in cadmium (0.489 ??g/g vs. 0.439 ??g/g; 4% higher) and selenium (1.68 ??g/g vs. 1.58 ??g/g; 5% higher) levels were not statistically significant in recurrence cases, when compared to non-recurrences (P = 0.40 and 0.21, respectively). CONCLUSIONS There is an association between low zinc and low iron prostate tissue levels and biochemical recurrence in prostate cancer. Whether these novel findings are a cause or effect of more aggressive tumors, or whether low zinc and iron prostatic levels raise implications for therapy, remains to be investigated. Copyright ?? 2011 Wiley-Liss, Inc.

  8. Synthesis and characterization of novel nitrogen-containing ligands for metal ion separations

    NASA Astrophysics Data System (ADS)

    Hoch, Cortney Leigh

    A serious limiting factor in the continued development of nuclear power is the disposal of high-level radioactive waste from spent nuclear fuel. The PUREX process can be used for the recovery of U and Pu, but it does not separate the products of fission which are potentially useful, but currently cause most of our problems with radioactive waste. An important complicating factor is the presence of large amounts of lanthanides in dissolved spent nuclear fuel. The separation of lanthanides (Ln) from actinides (An) is therefore critical to the future of nuclear power. One approach to recovering these materials and decreasing the volume of the radioactive waste is the development of novel, highly selective organic ligands for the lanthanide and actinide ions. The focus of this dissertation is to design and synthesize new tridentate polyaza-ligands expected to exhibit affinity for first-row transition metals, lanthanides and actinides. In general, these chelating agents are structurally and functionally related to the pyridine and bipyridine bis-triazinyl compounds that have been investigated for potential application as separations agents for radioactive materials. Selected 1,2,3-triazoles have been synthesized using Sharpless' "Click Chemistry". Variation of the backbone and substituents on the triazole ring allows for facile modification of the cation binding pocket and phase compatibility properties of the new compounds. Characterization of the new ligands was performed using conventional analytical methods. Overall, the studies with three different ligands revealed useful information about the continuing effort of ligand design for actinide (III)/lanthanide (III) separations. Crystal structures established the purity of the organic molecules by showing that the PTMP and BDTP ligands are able to bind transition metals. Also, it was shown that the BDTB ligand was able to bind to Nd 3+ as observed from the spectrophotometric titrations and the calculated binding constant. To increase the lipophilicity of the ligand, the addition of an alkyl chain on the 4-position of the pyridine ring could be made. This confirms that scientists are advancing in the area of ligand design and hopefully one day the ligand with all of the desired characteristics will be used to close the nuclear fuel cycle.

  9. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  10. Peroxide Stress Elicits Adaptive Changes in Bacterial Metal Ion Homeostasis

    PubMed Central

    Faulkner, Melinda J.

    2011-01-01

    Abstract Exposure to hydrogen peroxide (H2O2) and other reactive oxygen species is a universal feature of life in an aerobic environment. Bacteria express enzymes to detoxify H2O2 and to repair the resulting damage, and their synthesis is typically regulated by redox-sensing transcription factors. The best characterized bacterial peroxide-sensors are Escherichia coli OxyR and Bacillus subtilis PerR. Analysis of their regulons has revealed that, in addition to inducible detoxification enzymes, adaptation to H2O2 is mediated by modifications of metal ion homeostasis. Analogous adaptations appear to be present in other bacteria as here reviewed for Deinococcus radiodurans, Neisseria gonorrhoeae, Streptococcus pyogenes, and Bradyrhizobium japonicum. As a general theme, peroxide stress elicits changes in cytosolic metal distribution with the net effect of reducing the damage caused by reactive ferrous iron. Iron levels are reduced by repression of uptake, sequestration in storage proteins, and incorporation into metalloenzymes. In addition, peroxide-inducible transporters elevate cytosolic levels of Mn(II) and/or Zn(II) that can displace ferrous iron from sensitive targets. Although bacteria differ significantly in the detailed mechanisms employed to modulate cytosolic metal levels, a high Mn:Fe ratio has emerged as one key correlate of reactive oxygen species resistance. Antioxid. Redox Signal. 15, 175–189. PMID:20977351

  11. Sensitivity of FRDA lymphoblasts to salts of transition metal ions.

    PubMed

    Wong, A; Yang, J; Danielson, S; Gellera, C; Taroni, F; Cortopassi, G

    2000-01-01

    Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease resulting from decreased expression of the nuclear-encoded mitochondrial protein, frataxin. FRDA patients have characteristic iron deposits and dysfunction of mitochondrial enzymes in the heart. Inactivation of the frataxin homologue in yeast causes dysregulation of both mitochondrial iron levels and iron export. Previously, we have observed sensitivity of FRDA fibroblasts to FeCl3 and hydrogen peroxide, results consistent with the hypothesis that FRDA cells may experience increased Fenton chemistry. To determine whether the sensitivity of FRDA cells to transition metal ions is a general or specific property, we have compared the sensitivity of lymphoblasts from FRDA patients and healthy controls to the transition metal salts CoCl2, CuSO4 FeCl3 FeSO4, MnCl2, and ZnCl2. FRDA lymphoblasts were significantly more sensitive to FeCl3 and MnCl2 than control cells. However, there were no significant differences observed in sensitivity to CoCl2, CuSO4, FeSO4 and ZnCl2 in the concentration ranges studied. Thus, the sensitivity of FRDA lymphoblasts exposed to transition metals appears to be specific, and could be relevant to the pathophysiological mechanism, which is discussed. PMID:11229359

  12. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  13. Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey.

    PubMed

    Cevik, U; Celik, N; Celik, A; Damla, N; Coskuncelebi, K

    2009-09-01

    The Eastern Black Sea Region of Turkey is one of the main hazelnut producers in Turkey and in the world. Since this region was contaminated by the Chernobyl accident in 1986, a comprehensive study was planned and carried out to determine the radioactivity level in hazelnut growing region. The dose due to consumption of hazelnut by the public was estimated and it was shown that this dose imposes no threat to human health. In addition, heavy metal analysis was performed in the samples and the amount of Cr, Mn, Fe, Ni, Cu, Zn, and Pb were also detected. The results showed that the concentrations of heavy metal are below the daily intake recommended by the international organizations. PMID:19549551

  14. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  15. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  16. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  17. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    SciTech Connect

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  18. Prolong Restoration of the Water Quality of River Ganga Effect of Heavy Metals and Radioactive Elements.

    PubMed

    Tare, Vinod; Basu, Subhankar

    2014-04-01

    The genesis of the present research was the belief since ages and the observations made through some studies that the water of river Ganga has unique characteristics, which allows storage of water quality even on prolong storage. Very few systematic studies have been conducted to support the contention that the Ganga water indeed has some special composition that could be attributed to its unique storage capacity. It was postulated that prolong restoration of water quality depends on the ability to arrest microbial activity that is generally responsible for deterioration in water quality on prolong storage. Hence, attempt has been made to identify the parameters that are likely to influence the prolong storage of river water. Along with Ganga river water, other three major rivers, viz. Yamuna, Godavari and Narmada, were selected for comparison. Emphasis was made on estimation of heavy metals, radioactive elements, dissolved carbon and other physicochemical parameters such as temperature, pH, alkalinity, hardness and dissolved organic carbon. Based on the available information regarding the impact of heavy metals, radioactive elements vis-à-vis the chemical composition of water on microorganisms in the aquatic environment, an overall impact score for the waters of the four Indian rivers selected in the study has been assigned. PMID:26563059

  19. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    NASA Astrophysics Data System (ADS)

    Nedilko, S.; Hizhnyi, Yu.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V.

    2009-03-01

    The potential use of luminescent probes for control over the structural state of MTi2(PO4)3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi2(PO4)3 (M = Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and visible light excitations are analyzed. Electronic structure and absorption spectra of NaTi2(PO4)3 crystals are calculated by the full-potential LAPW method. The origin of the self and impurity emission bands of MTi2(PO4)3 materials is defined. It was shown that nitrogen laser with 337.1 nm generation wavelength is the most effective excitation source for remote monitoring of incorporation of various types of waste elements into MTi2(PO4)3 hosts and for control over states of these hosts during storage of radioactive waste.

  20. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.

    2016-04-01

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.

  1. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  2. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  3. Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis

    PubMed Central

    Diaz-Ochoa, Vladimir E.; Jellbauer, Stefan; Klaus, Suzi; Raffatellu, Manuela

    2013-01-01

    Transition metal ions are essential micronutrients for all living organisms. In mammals, these ions are often protein-bound and sequestered within cells, limiting their availability to microbes. Moreover, in response to infection, mammalian hosts further reduce the availability of metal nutrients by activating epithelial cells and recruiting neutrophils, both of which release metal-binding proteins with antimicrobial function. Microorganisms, in turn, have evolved sophisticated systems to overcome these limitations and acquire the metal ions essential for their growth. Here we review some of the mechanisms employed by the host and by pathogenic microorganisms to compete for transition metal ions, with a discussion of how evading “nutritional immunity” benefits pathogens. Furthermore, we provide new insights on the mechanisms of host-microbe competition for metal ions in the mucosa, particularly in the inflamed gut. PMID:24478990

  4. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  5. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  6. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  7. MeRNA: a Database of Metal Ion Binding Sites in RNAStructures

    SciTech Connect

    Stefan, Liliana R.; Zhang, Rui; Levitan, Aaron G.; Hendrix, DonnaF.; Brenner, Steven E.; Holbrook, Stephen R.

    2005-10-05

    Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA three-dimensional structures available from the Protein Data Bank (PDB) and Nucleic Acid Database (NDB). Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements; in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure, and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering.

  8. Caging Metal Ions with Visible Light-Responsive Nanopolymersomes

    PubMed Central

    2015-01-01

    Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM. The versatility of this system was demonstrated through the encapsulation and photorelease of a fluorophore (FITC), as well as two different metal ions, Zn2+ and Ca2+. PMID:25518002

  9. Nuclear reactions with 11C and 14O radioactive ion beams

    SciTech Connect

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8 proton magic number for odd Z, Tz=-3/2 nuclei. It is expected that future work on proton-rich nuclides will rely heavily on RIBs and/or mass separators. Currently, radioactive ion beam intensities are sufficient for the study of a reasonable number of very proton-rich nuclides.

  10. Surface Modification of Nanoclays by Catalytically Active Transition Metal Ions

    SciTech Connect

    Nawani,P.; Gelfer, M.; Hsiao, B.; Frenkel, A.; Gilman, J.; Khalid, S.

    2007-01-01

    A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs.

  11. Surface modification of nanoclays by catalytically active transition metal ions.

    PubMed

    Nawani, Pranav; Gelfer, Mikhail Y; Hsiao, Benjamin S; Frenkel, Anatoly; Gilman, Jeffrey W; Khalid, Syed

    2007-09-11

    A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs. PMID:17705406

  12. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    PubMed

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. PMID:25666975

  13. Metal/silicon Interface Analysis Using Secondary Ion Mass Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tonn, Daniel Grant

    Atomic mixing of metal/silicon interfaces has been investigated using secondary ion mass spectroscopy (SIMS). In our first set of experiments, profiles of thin markers of Al, Ti, Mo, and Ag were compared to diffusion theory predictions. The diffusivity D was taken to be depth-dependent and proportional to the nuclear stopping power F(,D). Except for Mo, experimental values obtained for D could be explained by collisional mixing augmented by intra-cascade defect enhanced diffusion. In our second set of experiments, SIMS depth profiles were obtained for multilayer structures of Mg, Al, Ti, Ge, Mo, Ag, and W over the temperature range of 80-775K. At elevated temperatures, enhanced mixing was observed for Al, Ge, Mo, Ag, and W. In the Al and Ag systems, mixing was attributed to intrusion of Si into the thicker metal layers. In the Mo and W systems, the mixing could be attributed to interaction of oversized solute atoms with long range Si vacancy flux produced by the irradiation. Evidence of Mo and W silicide formation was also observed. Increased diffusivity in Ge was attributable to increased interstitial mobility. Mg showed evidence of silicide formation and a peculiar resistance to mixing at elevated temperatures.

  14. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  15. Radioactive Ion Beams for Bio-Medical Research and Nuclear Medical Application

    NASA Astrophysics Data System (ADS)

    Beyer, G. J.

    2002-11-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in bio-medical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio-lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission suitable for SPECT, positron emission suitable for positron emission tomography (PET), α-, β-- and Auger electron emission. The radioactive isotopes obtained at ISOLDE are primary singly charged ions of 60 keV energy, very suitable for a new principle for a radionuclide generator system: the implantation type of the 81Rb/81mKr-generator for in vivo use and useful for new labelling procedures.

  16. Hydrodynamic changes accompanying the loss of metal ions from concanavalin A.

    PubMed Central

    Sawyer, H W; Dabscheck, R; Nott, P R; Selinger, B K; Kuntz, I D

    1975-01-01

    The hydrodynamic changes which accompany the dissociation of metal ions, from concanavalin A at acid pH are a result of charge effects rather than of dissociation of metal ions as such. Measurements of the rotational relaxation time are discussed in terms of the hydration of the protein and its polymeric heterogeneity. PMID:241332

  17. Hydrodynamic changes accompanying the loss of metal ions from concanavalin A.

    PubMed

    Sawyer, H W; Dabscheck, R; Nott, P R; Selinger, B K; Kuntz, I D

    1975-06-01

    The hydrodynamic changes which accompany the dissociation of metal ions, from concanavalin A at acid pH are a result of charge effects rather than of dissociation of metal ions as such. Measurements of the rotational relaxation time are discussed in terms of the hydration of the protein and its polymeric heterogeneity. PMID:241332

  18. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  19. Using diastereopeptides to control metal ion coordination in proteins

    PubMed Central

    Peacock, Anna F. A.; Hemmingsen, Lars; Pecoraro, Vincent L.

    2008-01-01

    Here, we report a previously undescribed approach for controlling metal ion coordination geometry in biomolecules by reorientating amino acid side chains through substitution of L- to D-amino acids. These diastereopeptides allow us to manipulate the spatial orientation of amino acid side chains to alter the sterics of metal binding pockets. We have used this approach to design the de novo metallopeptide, Cd(TRIL12LDL16C)3?, which is an example of Cd(II) bound to 3 L-Cys as exclusively trigonal CdS3, as characterized by a combination of 113Cd NMR and 111mCd PAC spectroscopy. We subsequently show that the physical properties of such a site, such as the high pKa2 for Cd(II) binding of 15.1, is due to the nature of the coordination number and not the ligating group. Further more this approach allowed for the design of a construct, GRANDL12LDL16CL26AL30C, capable of independently binding 2 equivalents of Cd(II) to 2 very similar Cys sites as exclusively 3- and 4-, CdS3 and CdS3O, respectively. Demonstrating that we are capable of controlling the Cd(II) coordination number in these 2 sites solely by varying the nature of a noncoordinating second coordination sphere amino acid, with D-leucine and L-alanine resulting in exclusively 3- and 4-coordinate structures, respectively. Cd(II) was found to selectively bind to the 4-coordinate CdS3O site, demonstrating that a protein can be designed that displays metal-binding selectivity based solely on coordination number control and not on the chemical identity of coordinating ligands. PMID:18940928

  20. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity.

    PubMed

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL(1) and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL(2) derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML((1-2)2) have been synthesized, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mnmetal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu>Mn>Ni>Co>Zn. PMID:22813991

  1. Effects of metal ions on photoinduced electron transfer in zinc porphyrin-naphthalenediimide linked systems.

    PubMed

    Okamoto, Ken; Mori, Yukie; Yamada, Hiroko; Imahori, Hiroshi; Fukuzumi, Shunichi

    2004-01-23

    Zinc porphyrin-naphthalenediimide (ZnP-NIm) dyads and zinc porphyrin-pyromellitdiimide-naphthalenediimide (ZnP-Im-NIm) triad have been employed to examine the effects of metal ions on photoinduced charge-separation (CS) and charge-recombination (CR) processes in the presence of metal ions (scandium triflate (Sc(OTf)(3)) or lutetium triflate (Lu(OTf)(3)), both of which can bind with the radical anion of NIm). Formation of the charge-separated states in the absence and in the presence of Sc(3+) was confirmed by the appearance of absorption bands due to ZnP(.) (+) and NIm(.) (-) in the absence of metal ions and of those due to ZnP(.) (+) and the NIm(.) (-)/Sc(3+) complex in the presence of Sc(3+) in the time-resolved transient absorption spectra of dyads and triad. The lifetimes of the charge-separated states in the presence of 1.0 x 10(-3) M Sc(3+) (14 micros for ZnP-NIm, 8.3 micros for ZnP-Im-NIm) are more than ten times longer than those in the absence of metal ions (1.3 micros for ZnP-NIm, 0.33 micros for ZnP-Im-NIm). In contrast, the rate constants of the CS step determined by the fluorescence lifetime measurements are the same, irrespective of the presence or absence of metal ions. This indicates that photoinduced electron transfer from (1)ZnP(*) to NIm in the presence of Sc(3+) occurs without involvement of the metal ion to produce ZnP(.) (+)-NIm(.) (-), followed by complexation with Sc(3+) to afford the ZnP(.) (+)-NIm(.) (-)/Sc(3+) complex. The one-electron reduction potential (E(red)) of the NIm moiety in the presence of a metal ion is shifted in a positive direction with increasing metal ion concentration, obeying the Nernst equation, whereas the one-electron oxidation potential of the ZnP moiety remains the same. The driving force dependence of the observed rate constants (k(ET)) of CS and CR processes in the absence and in the presence of metal ions is well evaluated in terms of the Marcus theory of electron transfer. In the presence of metal ions, the driving force of the CS process is the same as that in the absence of metal ions, whereas the driving force of the CR process decreases with increasing metal ion concentration. The reorganization energy of the CR process also decreases with increasing metal ion concentration, when the CR rate constant becomes independent of the metal ion concentration. PMID:14735516

  2. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  3. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    PubMed

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed. PMID:22806724

  4. Post-synthesis addition of transition metal ions and lanthanide ions to the surface of anatase titanium (IV) dioxide nanorods

    NASA Astrophysics Data System (ADS)

    Balasanthiran, Choumini

    Solar energy utilization is an attractive option for new energy technology and economic development. Our research is the formulation of catalyst materials for solar production of hydrogen from water. Titanium(IV) oxide has been explored for water splitting; however, a major challenge is that titanium(IV) oxide can only absorb UV light. Visible light absorption can be increased by metal ion or anion doping by creating interband states. Most dopant protocols lead to deposition of dopant ions throughout the solid, and interfacial deposition has received very little attention. We have developed a method to selectively attach transition metal ions and lanthanide ions on the surface of titanium(IV) oxide nanorods using metal chlorides as precursors. The present study demonstrates that Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu (II), Eu(III), Ce(III), Pr(III) and Er(III) were coordinated to the surface of oleic acid capped TiO2 nanorods (NRs) by post-synthesis method without any phase or morphology transformation. Metal ion loading could be carefully controlled, and we show a titration curve for addition of transition metal ions and Eu(III) to the nanorod surface. The materials were characterized with UV-visible spectroscopy, transmission electron microscopy, elemental analysis, XPS and powder X-ray diffraction. X-ray photoelectron spectra were obtained for a series of M-TiO2 samples in which transition metal (M = Cr, Mn, Fe, Co, Ni, Cu) ions are directly attached to the surface of anatase TiO2 nanocrystals. Further, we report sequential, quantitative loading of transition metal ions (Cr, Mn, Fe, Co, Ni, Cu) to the surface of rod-shape anatase TiO2 nanocrystals in bimetallic combinations (6C2 = 15). TEM, PXRD, UV-Vis, XPS and elemental analysis characterization show that bimetallic combinations were synthesized successfully.

  5. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  6. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  7. Graphene-DNAzyme Junctions: A Platform for Direct Metal Ion Detection with Ultrahigh Sensitivity

    PubMed Central

    Gao, Li; Li, Le-Le; Wang, Xiaolong; Wu, Peiwen; Cao, Yang; Liang, Bo; Li, Xin; Lin, Yuanwei

    2015-01-01

    Many metal ions are present in biology and in the human body in trace amounts. Despite numerous efforts, metal sensors with ultrahigh sensitivity (< a few picomolar) are rarely achieved. Here, we describe a platform method that integrates a Cu2+-dependent DNAzyme into graphene-molecule junctions and its application for direct detection of paramagnetic Cu2+ with femtomolar sensitivity and high selectivity. Since DNAzymes specific for other metal ions can be obtained through in vitro selection, the method demonstrated here can be applied to the detection of a broad range of other metal ions. PMID:26417425

  8. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  9. Natural radioactivity and trace metals in crude oils: implication for health.

    PubMed

    Ajayi, T R; Torto, N; Tchokossa, P; Akinlua, A

    2009-02-01

    Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive future study in this respect. The activity concentrations of the radionuclides were measured using a well, accurately calibrated and shielded vertical cryostat, Canberra coaxial high-purity germanium (HPGe) detector system, and the derived doses were evaluated. The metal concentrations were determined by the graphite furnace atomic absorption spectroscopic (GFAAS) method. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by (238)U and (232)Th along with the non-decay series radionuclide, (40)K. The averaged activity concentrations obtained were 10.52 +/- 0.03 Bq kg(-1), 0.80 +/- 0.37 Bq kg(-1) and 0.17 +/- 0.09 Bq kg(-1) for (40)K, (238)U and (232)Th, respectively. The equivalent doses were very low, ranging from 0.0028 to 0.012 mSv year(-1) with a mean value of 0.0070 mSv year(-1). The results obtained were low, and hence, the radioactivity content from the crude oils in the Niger delta oil province of Nigeria do not constitute any health hazard to occupationally exposed workers, the public and the end user. The concentrations of the elements (As, Cd, Co, Fe, Mn, Ni, Se and V) determined ranged from 0.73 to 202.90 ppb with an average of 74.35 ppb for the oil samples analysed. The pattern of occurrence of each element agreed with the earlier studies from other parts of the Niger Delta. It was obvious from this study and previous ones that the Niger Delta oils have low metal contents. However, despite the low concentrations, they could still pose an intrinsic health hazard considering their cumulative effects in the environment. Also, various studies on the impact of oil spillage and activities of oil exploration and production on organisms in the immediate environment suggest this. PMID:18320332

  10. Sunflower stalks as adsorbents for the removal of metal ions from wastewater

    SciTech Connect

    Sun, G.; Shi, W.

    1998-04-01

    Sunflower stalks as adsorbents for the removal of metal ions such as copper, cadmium, zinc, and chromium ions in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of four heavy metals are 29.3 mg/g (Cu{sup 2+}), 30.73 mg/g (Zn{sup 2+}), 42.18 mg/g (Cd{sup 2+}), and 25.07 mg/g (Cr{sup 3+}), respectively. Particle sizes of sunflower stalks affected the adsorption of metal ions; the finer size of particles showed better adsorption to the ions. Temperature also plays an interesting role in the adsorption of different metal ions. Copper, zinc, and cadmium exhibited lower adsorption on sunflower stalks at higher temperature, while chromium showed the opposite phenomenon. The adsorption rates of copper, cadmium, and chromium are quite rapid. Within 60 min of operation about 60--80% of these ions were removed from the solutions.

  11. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.

  12. Electrical-thermal-structural finite element simulation and experimental study of a plasma ion source for the production of radioactive ion beams.

    PubMed

    Manzolaro, M; Meneghetti, G; Andrighetto, A; Vivian, G

    2016-03-01

    The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10(13) fissions per second. The transfer line enables the unstable isotopes generated by the (238)U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed. PMID:27036768

  13. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    SciTech Connect

    Long, Zhiling; Wei, Wei; Turlapaty, Anish; Du, Qian; Younan, Nicolas H.; Waggoner, Charles

    2012-07-01

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with survey data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)

  14. Thio Effects and an Unconventional Metal Ion Rescue in the Genomic HDV Ribozyme§

    PubMed Central

    Thaplyal, Pallavi; Ganguly, Abir; Golden, Barbara L.; Hammes-Schiffer, Sharon; Bevilacqua, Philip C.

    2013-01-01

    Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg2+ ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies on the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn2+. Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd2+. Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg2+ or Cd2+, supporting that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold effect and the slow-reacting phase displaying a thio effect of ~1,000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd2+ of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd2+ inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments on the antigenomic HDV ribozyme. Experiments without divalent ions, with mutants that interfere with Mg2+ binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2’- hydroxyl, supporting the experimental findings. PMID:24001219

  15. Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme.

    PubMed

    Thaplyal, Pallavi; Ganguly, Abir; Golden, Barbara L; Hammes-Schiffer, Sharon; Bevilacqua, Philip C

    2013-09-17

    Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg(2+) ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies of the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn(2+). Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd(2+). Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg(2+) or Cd(2+), supporting the idea that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold and the slow-reacting phase displaying a thio effect of ~1000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd(2+) of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd(2+) inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments with the antigenomic HDV ribozyme. Experiments without divalent ions, with a double mutant that interferes with Mg(2+) binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2'-hydroxyl, supporting the experimental findings. PMID:24001219

  16. METAL INTERACTIONS AT SULFIDE MINERAL SURFACES: PART 3, METAL AFFINITIES IN SINGLE AND MULTIPLE ION ADSORPTION REACTIONS

    EPA Science Inventory

    Adsorption reactions of both single ions and multiple ion mixtures with sulfide minerals (chalcocite, galena, pyrite, and sphalerite) were investigated in the metal concentration range of 0.0001 to 0.00001 M. Chromium (III), iron (III), barium (II), cadmium (II), copper (II), nic...

  17. Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.

    PubMed

    Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2010-11-01

    In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. PMID:20932527

  18. Identifying alkali metal inhibitors of crystal growth: a selection criterion based on ion pair hydration energy.

    PubMed

    Farmanesh, Sahar; Alamani, Bryan G; Rimer, Jeffrey D

    2015-09-21

    We show that alkali metals function as effective modifiers of calcium oxalate monohydrate (COM) crystallization wherein alkali-oxalate ion parings reduce the rate of crystal growth by as much as 60%. Our findings reveal a distinct trend in alkali metal efficacy that cannot be explained by colloidal theories or simple descriptors, such as ion size, but is consistent with a theoretical model that accounts for the ion pair's affinity for water. PMID:26242310

  19. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    SciTech Connect

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  20. The Interchangeability of Plasma and Whole Blood Metal Ion Measurement in the Monitoring of Metal on Metal Hips

    PubMed Central

    Malek, Ibrahim A.; Rogers, Joanne; King, Amanda Christina; Clutton, Juliet; Winson, Daniel; John, Alun

    2015-01-01

    One hundred and twenty six paired samples of plasma and whole blood were measured with inductively coupled plasma mass spectrometry technique for metal ions analysis to determine a relationship between them. There was a significant difference between the mean plasma and whole blood concentrations of both cobalt (Co) and chromium (Cr) (p < 0.0001 for both Co and Cr). The mean ratio between plasma and whole blood Cr and Co was 1.56 (range: 0.39–3.85) and 1.54 (range: 0.64–18.26), respectively, but Bland and Altman analysis illustrated that this relationship was not universal throughout the range of concentrations. There was higher variability at high concentrations for both ions. We conclude that both these concentrations should not be used interchangeably and conversion factors are unreliable due to concentration dependent variability. PMID:26798516

  1. Multicolour photochromism of colloidal solutions of niobate nanosheets intercalated with several kinds of metal ions.

    PubMed

    Kamada, Kai; Tanaka, Yosuke; Tokunaga, Motoko; Ueda, Taro; Hyodo, Takeo; Shimizu, Yasuhiro

    2016-02-25

    Colourless and transparent colloidal solutions of niobate nanosheets intercalated with some kinds of metal ions (M-NNS, M: metal) showed quasi-reversible photochromism. Ultraviolet light irradiation of the solutions induced a change in color while maintaining the transparency, and the color change was dependent on the metal ions. The coloured solutions were bleached by exposure to an oxidizing atmosphere. This cycle could be repeated several times. PMID:26821602

  2. Reactions of atomic transition-metal ions with long-chain alkanes.

    PubMed

    Chen, R; Li, L

    2001-04-01

    Understanding metal ion interactions with long-chain alkanes not only is of fundamental importance in the areas of organometallic chemistry, surface chemistry, and catalysis, but also has significant implication in mass spectrometry method development for the analysis of polyethylene. Polyethylene represents one of the most challenging classes of polymers to be analyzed by mass spectrometry. In this work, reactions of several transition-metal ions including Cr+, Mn+, Fe+, Co+, Ni+, Cu+, and Ag+ with long-chain alkanes, C28H58 and C36H74, are reported. A metal powder and the nonvolatile alkane are co-deposited onto a sample target of a laser desorption/ionization (LDI) time-of-flight mass spectrometer. The metal ions generated by LDI react with the vaporized alkane during desorption. It is found that all these metal ions can form adduct ions with the long-chain alkanes. Fe+, Co+, and Ni+ produce in-source fragment ions resulting from dehydrogenation and dealkylation of the adduct ions. The post-source decay (PSD) spectra of the metal-alkane adduct ions are recorded. It is shown that PSD of Ag+ alkane adduct ions produces bare metal ions only, suggesting weak binding between this metal ion and alkane. The PSD spectra of the Fe+, Co+, and Ni+ alkane adduct ions display extensive fragmentation. Fragment ions are also observed in the PSD spectra of Cr+, Mn+, and Cu+ alkane adduct ions. The high reactivity of Fe+, Co+, and Ni+ is consistent with that observed in small alkane systems. The unusually high reactivity of Cr+, Mn+, and Cu+ is rationalized by a reaction scheme where a long-chain alkane first forms a complex with a metal ion via ion/induced dipole interactions. If sufficient internal energy is gained during the complex formation, metal ions can be inserted into C-H and C-C bonds of the alkane, followed by fragmentation. The thermal energy of the neutral alkane is believed to be the main source of the internal energy acquired in the complex. Finally, the implication of this work on mass spectrometry method development for polyethylene analysis is discussed. PMID:11322183

  3. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues.

    PubMed

    Das, Nigamananda; Jana, Ranajit Kumar

    2006-01-15

    The leached residue, generated after selective extraction of Cu, Ni, and Co in sulfur dioxide-ammonia leaching of manganese nodules, was characterized and batch isothermal adsorption experiments were conducted at ambient temperature to evaluate the effectiveness of the water-washed leached residue for removal of different bivalent metal ions from aqueous synthetic solutions. The effects of pH, initial metal ion concentrations, amount of adsorbent, interfering ions, and heat treatment were also investigated. The uptake of metal ions increased with increasing pH. Under identical conditions the adsorption capacity increased in the order Cd(2+)metal ions present in the leached residue were found to be released during adsorption of heavy metals, which decreased with increased pH and were practically negligible at pH approximately 6.0. Desorption of adsorbed metal ions from metal-loaded leached residue and its regeneration ability were also studied. The results obtained could be useful for considering the leached manganese nodules residue as adsorbent for removal of heavy metal ions from contaminated water bodies. PMID:16095602

  4. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  5. Metal complexes containing natural and and artificial radioactive elements and their applications.

    PubMed

    Kharissova, Oxana V; Méndez-Rojas, Miguel A; Kharisov, Boris I; Méndez, Ubaldo Ortiz; Martínez, Perla Elizondo

    2014-01-01

    Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m ((99m)Tc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described. PMID:25061724

  6. π-Extended dipyrrins capable of highly fluorogenic complexation with metal ions

    PubMed Central

    Filatov, Mikhail A.; Lebedev, Artem Y.; Mukhin, Sergei N.; Vinogradov, Sergei A.; Cheprakov, Andrei V.

    2010-01-01

    Synthesis and properties of a new family of π-extended dipyrrins, capable of forming brightly fluorescent complexes with metal ions, are reported. The metal complexes posses tunable spectral bands and exhibit different emission properties depending on the mode of metal coordination. PMID:20583759

  7. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  8. Status of Tokai Radioactive Ion Accelerator Complex and Feasibility Study for Transfer Reactions Using Low-Energy RNB

    SciTech Connect

    Imai, N.; Arai, A.; Arakaki, Y.; Fuchi, Y.; Hirayama, Y.; Ishiyama, H.; Jeong, S. C.; Kawakami, H.; Miyatake, H.; Niki, K.; Nomura, T.; Okada, M.; Oyaizu, M.; Tanaka, M. H.; Tomizawa, M.; Watanabe, Y. X.; Yoshikawa, Y.; Abe, S.; Hanashima, S.; Hashimoto, T.

    2007-05-22

    An ISOL-based radioactive nuclear beam facility, Tokai Radioactive Ion Accelerator Complex (TRIAC), has been jointly constructed by High Energy Accelerator Research Organization (KEK) and Japan Atomic Energy Agency (JAEA). The facility started to provide RNBs for experiments in 2005. RNBs, including fission fragments with energies up to 1.1 MeV/nucleon, are available. The experiments were performed with accelerated 8Li beams of various energies. Current status of the equipments and preliminary results on these experimental studies are presented.

  9. SPIRAL2 at GANIL: Next Generation of ISOL Facility for Intense Secondary Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2010-03-01

    To pursue the investigation of a new territory of nuclei with extreme N/Z called terra incognita several projects, all aiming at the increase by several orders of magnitude of the Radioactive Ion Beams (RIB) intensities are now under discussions worldwide. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 Project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40MeV (200kW) directed on a C converter+ Uranium target and producing therefore up to 5?1013fissions/s. The expected radioactive beams intensities for exotic species in the mass range from A=60 to A=140, of the order of 106 to 1010pps, will surpass by two orders of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few keV/n to 15 MeV/n. The same driver will accelerate high intensity (100?A to 1 mA), heavy ions up to Ar at 14 MeV/A producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must to study the impact of nuclear fission and fusion on materials. Construction of the SPIRAL2 facility is shared by ten French laboratories and a network of international partners. Under the FP7 framework program of European Union called Preparatory Phase for the construction of new facilities, the SPIRAL2 project has been granted a budget of about 4Meuros to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been launched in Oct 2006 and 8 large International collaborations has been built up around new instruments for SPIRAL2. The status of the construction of SPIRAL2 accelerator and technical R&D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.

  10. EPR of radiation centers in ion-implanted glasses simulating vitrified radioactive wastes

    SciTech Connect

    Bogomolova, L.D.; Teplyakov, Y.G.; Stefanovsky, S.V.; Dmitriyev, S.A.

    1995-12-31

    EPR study of paramagnetic defects induced in borosilicate and aluminophosphate glasses simulating vitrified radioactive wastes by bombardment with heavy charge particles are studied. In order to understand the nature of interaction between heavy particles and the surface of oxide glass the authors used the particles of different mass (N, O, Ar, Mn, Cu, Pb). It is shown that two kinds of EPR spectra are induced after bombardment: the broad anisotropic spectrum with g{sub z}=2.016-2.055; g{sub y}=2.01 and g{sub x}=2.002 (A) and narrow symmetric line with g=2.0030{+-}0.0005 and linewidth 0.3-0.4 mT (S). The appearance of similar spectra in glasses of different compositions indicates these spectra belong to common for all the glasses constituent. Such constituent is oxygen, i.e. two kinds of spectra are due to oxygen-associated centers. The relationship between spectral parameters of A is characteristic of different centers: oxygen hole centers, peroxy radicals and molecular O{sub 2}{sup {minus}2} ions. The absence of hyperfine structure of EPR spectra of glasses containing cations with non-zero nuclear magnetic moments suggests that A belongs to the defects which are weakly coupled with glass network. The authors assume that Ais induced mainly by O{sub 2}{sup {minus}} molecular ions. The narrow isotropic S-signal has the maximum intensity in glasses irradiated by oxygen for all the glasses examined. However, for the majority of known oxygen-associated defects the EPR spectra are anisotropic excepting for exotic O{sub 4}{sup {minus}} ions which exhibit almost symmetric narrow line with g=ge (were ge is g-factor of free electron). The authors assume that during bombardment with heavy energetic particles the cavities which are able to accumulate large molecules are formed. Ionizing of these molecules leads to the formation of ions O{sup {minus}}, O{sub 2}{sup {minus}}, O{sub 3}{sup {minus}}, O{sub 4}{sup {minus}}, etc., whose features manifest in EPR spectra.

  11. Does bearing size influence metal ion levels in large-head metal-on-metal total hip arthroplasty? A comparison of three total hip systems

    PubMed Central

    2014-01-01

    Background The purpose of the study was twofold: first, to determine whether there is a statistically significant difference in the metal ion levels among three different large-head metal-on-metal (MOM) total hip systems. The second objective was to assess whether position of the implanted prostheses, patient demographics or factors such as activity levels influence overall blood metal ion levels and whether there is a difference in the functional outcomes between the systems. Methods In a cross-sectional cohort study, three different metal-on-metal total hip systems were assessed: two monoblock heads, the Durom socket (Zimmer, Warsaw, IN, USA) and the Birmingham socket (Smith and Nephew, Memphis, TN, USA), and one modular metal-on-metal total hip system (Pinnacle, Depuy Orthopedics, Warsaw, IN, USA). Fifty-four patients were recruited, with a mean age of 59.7 years and a mean follow-up time of 41 months (12 to 60). Patients were evaluated clinically, radiologically and biochemically. Statistical analysis was performed on all collected data to assess any differences between the three groups in terms of overall blood metal ion levels and also to identify whether there was any other factor within the group demographics and outcomes that could influence the mean levels of Co and Cr. Results Although the functional outcome scores were similar in all three groups, the blood metal ion levels in the larger monoblock large heads (Durom, Birmingham sockets) were significantly raised compared with those of the Pinnacle group. In addition, the metal ion levels were not found to have a statistically significant relationship to the anteversion or abduction angles as measured on the radiographs. Conclusions When considering a MOM THR, the use of a monoblock large-head system leads to higher elevations in whole blood metal ions and offers no advantage over a smaller head modular system. PMID:24472283

  12. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  13. Heavy-ion induced electronic desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  14. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    SciTech Connect

    Molvik, A. W.; Covo, M. Kireeff; Westenskow, G.; Kollmus, H.; Bellachioma, M. C.; Bender, M.; Kraemer, A.; Mahner, E.; Bieniosek, F. M.; Kwan, J.; Seidl, P. A.; Hedlund, E.; Westerberg, L.; Malyshev, O. B.; Prost, L.

    2007-02-09

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  15. Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions.

    PubMed

    Borai, E H; Breky, M M E; Sayed, M S; Abo-Aly, M M

    2015-07-15

    New nanocomposite material containing TiO2/Poly (acrylamide-styrene sodium sulfonate) [TiO2/(P (AAm-SSS)] was prepared by in-situ intercalative polymerization of poly acrylamide (PAAm) and styrene sodium sulfonate (SSS) in the presence of TiO2 nanoparticles as inorganic filler. N, N-methylene bis acrylamide (MBA) was used as a cross linker. The polymerization process was performed using γ-radiation as reaction initiator. Moreover, new nanocomposite material containing poly styrene-TiO2 (PS-TiO2) was also prepared by ionic polymerization method. Styrene was catalytically polymerized by Ti(4+) via an ionic polymerization route to produce polystyrene (PS). The structure characteristics of the nanocomposites were investigated by XRD, TGA, SEM, surface area, and FTIR. The nanoparticles and nanocomposites were investigated for removal of some metal ions from aqueous solutions. The effective key parameters on the sorption behavior of radioactive cesium (Cs(+)), cobalt (Co(2+)) and europium (Eu(3+)) were investigated using batch equilibrium technique with respect to solution pH and contact time. The obtained results revealed that the equilibrium for Cs(+), Co(2+) and Eu(3)(+) is reached at 2-3 h for all nanocomposites. The data indicated that there is no significant change in the uptake between TiO2 nanoparticles and TiO2-PS. On the contrary, the uptake process is significantly improved using TiO2/(P (AAm-SSS) nanocomposite and the maximum experimental retention capacities for Cs(+), Co(2+) and Eu(3+) were found to be 120, 100.9 and 85.7 mg/g, respectively. PMID:25797394

  16. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  17. The removal by crab shell of mixed heavy metal ions in aqueous solution.

    PubMed

    Kim, Dong Seog

    2003-05-01

    In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+). PMID:12507879

  18. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  19. Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions.

    PubMed

    Ji, Qinghua; An, Xiaoqiang; Liu, Huijuan; Guo, Lin; Qu, Jiuhui

    2015-11-24

    Metal ion separation is crucial to environmental decontamination, chromatography, and metal recovery and recycling. Theoretical studies have suggested that the ion distributions in the electric double-layer (EDL) region depend on the nature of the ions and the characteristics of the charged electrode surface. We believe that rational design of the electrode material and device structure will enable EDL-based devices to be utilized in the separation of aqueous metal ions. On the basis of this concept, we fabricate an EDL separation (EDLS) device based on sandwich-structured N-functionalized graphene sheets (CN-GS) for selective separation of aqueous toxic heavy metal ions. We demonstrate that the EDLS enables randomly distributed soluble ions to form a coordination-driven layer and electrostatic-driven layer in the interfacial region of the CN-GS/solution. Through tuning the surface potential of the CN-GS, the effective separation of heavy metal ions (coordination-driven layer) from alkali or alkaline earth metal ions (electrostatic-driven layer) can be achieved. PMID:26481603

  20. Calculated distortions induced by metal-ion binding to simple oligonucleotide systems: Implications for toxicity

    SciTech Connect

    Turner, J.E.; Hingerty, B.E.; England, M.W.; Jacobson, K.B.

    1990-01-01

    We have previously published detailed results of calculations of the binding of the metal ions, Cd{sup 2+} and Ca{sup 2+}, to the dinucleoside monophosphate GpC in water. These ions, which have the same charge and radius, differ enormously in their toxicity to man and other biological systems. Our calculations showed contrasting behavior in the binding of these two metal ions to GpC. We suggest the hypothesis that structural distortions calculated for metal ions binding to simple nucleic-acid systems might serve as a indicator of an ion's potential ability to alter molecular activity and hence to be toxic to an organism. Furthermore, the degree of distortion might be correlated with the degree of toxicity as measured by some suitable criteria. The present paper reports the results of binding calculations for a number of other metal ions, of different valence states, with several dinucleoside monophosphates in water. A general trend of distortion with the type of binding of the metal ions is found. We are seeking quantitative measures of distortion to correlate with indicators of acute toxicity that we have measured for 24 metal ions using mice, Drosophila, and CHO cells. 3 refs., 3 figs.

  1. Metal ion complexation by ionizable crown ethers. Progress report, January 1, 1991--December 31, 1993

    SciTech Connect

    Bartsch, R.A.

    1993-07-01

    Cyclic and acyclic polyether compounds with pendent carboxylic acid, phosphonic acid monoethyl ester, sulfonic acid, phosphinic acid and hydroxamic acid groups have been synthesized. The proton-ionizable polyethers can come with and without lipophilic groups. Two types of lipophilic di-ionizable lariat ethers have been prepared. Conformations of proton-ionizable lariat ethers have been probed. Competitive alkali metal cation transport by syn-(decyl)dibenzo-16-crown-5-oxyacetic acid and lipophilic proton-ionizable dibenzo lariat ethers in polymer-supported liquid membranes was studied. Complexation of alkali metal cations with ionized lariat ethers was studied. Condensation polymerization of cyclic and acyclic dibenzo polyethers containing pendent mono-ionizable groups with formaldehyde produces novel ion exchange resins with both ion exchange sites for metal ion complexation and polyether binding sites for metal ion recognition. Resins prepared from lariat ether dibenzo phosphonic acid monoethyl esters show strong sorption of divalent heavy metal cations with selectivity for Pb{sup 2+}.

  2. Enzymatically and combinatorially generated array-based polyphenol metal ion sensor.

    PubMed

    Wu, X; Kim, J; Dordick, J S

    2000-01-01

    Phenolic polymers were synthesized via soybean hull peroxidase catalysis and used as metal-based sensor components in a polymer array. A sensor array for Fe(3+), Cu(2+), Co(2+), and Ni(2+) has been developed consisting of 15 phenolic homopolymers and copolymers generated from five phenolic monomers by peroxidase-catalyzed oxidative polymerization. Sensing was based on the change of intrinsic polyphenol fluorescence upon addition of a metal ion or a metal ion mixture to an aqueous suspension of a polyphenol. Importantly, the fluorescence response of copolymers differed, in some cases dramatically, from the constituent homopolymers and was dependent upon the relative ratio of monomers that comprise the polymer. This finding suggests that an extremely broad range of sensor arrays can be generated from a limited number of phenolic monomers. Using a statistical analysis, histograms constructed for the four different metal ions yielded unique fingerprints of the array response and can be used to identify specific metal ions. PMID:10835257

  3. Polymer Nanocomposites Based on Transition Metal Ion Modified Organoclays

    SciTech Connect

    Nawani,P.; Desai, P.; Lundwall, M.; Gelfer, M.; Hsiao, B.; Rafailovich, M.; Frenkel, A.; Tsou, A.; Gilman, J.; Khalid, S.

    2007-01-01

    A unique class of nanocomposites containing organoclays modified with catalytically active transition metal ions (TMI) and ethylene vinyl acetate (EVA) copolymers was prepared. The morphology, thermal and rheological properties of these nanocomposites were studied by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray scattering/diffraction and oscillatory shear rheometry. TMI-modified organoclays were thought to possess pillaring of multivalent TMI in the interlayer silicate gallery, leading to a notable reduction of the interlayer d-spacing. The resulting nanocomposites exhibited significantly improved thermal stability and fire retardation properties, but similar morphology (i.e., an intercalated-exfoliated structure) and rheological properties comparable with EVA nanocomposites containing unmodified organoclays. It appears that the compressed organic component in the TMI-modified organoclay can still facilitate the intercalation/exfoliation processes of polymer molecules, especially under extensive shearing conditions. The improved fire retardation in nanocomposites with TMI-modified organoclays can be attributed to enhanced carbonaceous char formation during combustion, i.e., charring promoted by the presence of catalytically active TMI.

  4. Toxicity of metallic ions and oxides to rabbit alveolar macrophages

    SciTech Connect

    Labedzka, M.; Gulyas, H.; Schmidt, N.; Gercken, G. )

    1989-04-01

    The effects of soluble compounds and oxides of As, Cd, Cu, Hg, Ni, Pb, Sb, Sn, V, and Zn on oxidative metabolism and membrane integrity of rabbit alveolar macrophages were studied by 24-hr in vitro exposure. Oxidative metabolism induced by phagocytosis of opsonized zymosan was measured by H{sub 2}O{sub 2} and O{sub 2}{sup {minus}} release and by chemiluminescence in the presence of luminol. Membrane integrity was estimated by extracellular LDH activity. Metallic ions and oxides inhibited the release of active oxygen species. Cd(II), As(III), and V(V) were the most toxic elements as measured by all investigated parameters. Cu(II) decreased O{sub 2}{sup {minus}} release and chemiluminescence effectively but H{sub 2}O{sub 2} release and membrane integrity less. Chemiluminescence was decreased strongly by Hg(II) while O{sub 2}{sup {minus}} and H{sub 2}O{sub 2} release were depressed moderately. Zn(II) and Sb(III) compounds caused medium toxicity and the tested Sn, Ni, and Pb compounds showed only faint toxic effects.

  5. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    SciTech Connect

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  6. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  7. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams.

    PubMed

    Manzolaro, M; Meneghetti, G; Andrighetto, A; Vivian, G; D'Agostini, F

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10(13) fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed. PMID:26932055

  8. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.; D'Agostini, F.

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  9. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    PubMed Central

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip resurfacing arthroplasty. Patients with implanted MoM-bearing should receive regular and standardized monitoring of metal ion concentrations. Further research is indicated especially with regard to potential systemic reactions due to accumulation of metal products. PMID:23950923

  10. Carboxylate Ion Pairing with Alkali-Metal Ions for β-Lactoglobulin and Its Role on Aggregation and Interfacial Adsorption.

    PubMed

    Beierlein, Frank R; Clark, Timothy; Braunschweig, Björn; Engelhardt, Kathrin; Glas, Lena; Peukert, Wolfgang

    2015-04-30

    We report a combined experimental and computational study of the whey protein β-lactoglobulin (BLG) in different electrolyte solutions. Vibrational sum-frequency generation (SFG) and ellipsometry were used to investigate the molecular structure of BLG modified air-water interfaces as a function of LiCl, NaCl, and KCl concentrations. Molecular dynamics (MD) simulations and thermodynamic integration provided details of the ion pairing of protein surface residues with alkali-metal cations. Our results at pH 6.2 indicate that BLG at the air-water interface forms mono- and bilayers preferably at low and high ionic strength, respectively. Results from SFG spectroscopy and ellipsometry are consistent with intimate ion pairing of alkali-metal cations with aspartate and glutamate carboxylates, which is shown to be more effective for smaller cations (Li(+) and Na(+)). MD simulations show not only carboxylate-alkali-metal ion pairs but also ion multiplets with the alkali-metal ion in a bridging position between two or more carboxylates. Consequently, alkali-metal cations can bridge carboxylates not only within a monomer but also between monomers, thus providing an important dimerization mechanism between hydrophilic surface patches. PMID:25825918

  11. Development of DOE complex wide authorized release protocols for radioactive scrap metals.

    SciTech Connect

    Chen, S. Y.

    1998-11-23

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D&D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D&D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities.

  12. Structures and energetics of complexation of metal ions with ammonia, water, and benzene: A computational study.

    PubMed

    Sharma, Bhaskar; Neela, Y Indra; Narahari Sastry, G

    2016-04-30

    Quantum chemical calculations have been performed at CCSD(T)/def2-TZVP level to investigate the strength and nature of interactions of ammonia (NH3 ), water (H2 O), and benzene (C6 H6 ) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6 H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3 . Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) analysis has been employed at PBE0AC/def2-TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT-SAPT result shows that for the metal ion complexes with H2 O electrostatic component is the major contributor to the BE whereas, for C6 H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s-block metal ions, whereas, for the d and p-block metal ion complexes both electrostatic and polarization components are important. The geometry (M(+) -N and M(+) -O distance for NH3 and H2 O complexes respectively, and cation-π distance for C6 H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3 , H2 O, and C6 H6 complexes shows that the charge transfer to metal ions is higher in case of C6 H6 complexes. © 2016 Wiley Periodicals, Inc. PMID:26833683

  13. Advanced target concepts for production of radioactive ions and neutrino beams

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Neutrino-Factory Working Group; Ravn, H. L.

    2003-05-01

    The 1-20 MW of proton beam power which modern accelerator technology put at our disposal for production of intense secondary beams presents a major technically challenge to the production targets. A conceptual design is presented for a high power pion production target and collection system, which was originally suggested to be used as the source for the proposed CERN muon-neutrino factory. It will be shown that the major parts of this target could also serve as an efficient spallation neutron source for production of 6He and fission products in the two-step converter target concept. The heart of the system consists of a free surface mercury jet with a high axial velocity, which allows the heat to be carried away efficiently from the production region. For the neutrino factory the secondary pions are collected and injected into the pion decay channel by means of a magnetic horn. For the radioactive ion-beam facility the Hg-jet is surrounded by the high-temperature isotope separator on-line (ISOL) production target. The suggested mechanical layout and technical parameters of the Hg-jet, ISOL target, horn and cooling system are discussed. The critical issues are identified and a description of the R&D program designed to provide experimental proof of the principle as well as providing engineering parameters is given.

  14. UV-Vis Spectroscopy for Characterization of Metal Nanoparticles Formed from Reduction of Metal Ions During Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Okitsu, Kenji

    The reduction processes of metal ions can be used to prepare metal nanoparticles in an aqueous solution, in which UV-Vis spectroscopy can be used as an excellent tool to characterize the properties of metal nanoparticles, in particular the size and shape of the metal nanoparticles and their surface property in the state of the colloidal dispersion system. In addition, UV-Vis spectroscopy enables the amount of precursor metal ions used during the formation of metal nanoparticles to be measured. In this chapter, the sonochemical reduction processes for Pd(II), Au(III), Pt(II), Pt(IV), Ag(I), and MnO{4/-} are described on the basis of changes in the absorption spectrum during ultrasonic irradiation to understand the sonochemical reduction mechanism of metal ions. In addition, the optical properties of the sonochemically formed metal nanoparticles such as the spherical nanoparticles of Pd, Au, Pt, Ag, MnO2, and Au/Pd and the shape-controlled nanoparticles are reviewed to understand the formation processes during ultrasonic irradiation.

  15. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    NASA Astrophysics Data System (ADS)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, S. S.

    2015-02-01

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm2 by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm2. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm2. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm2. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm2. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  16. Film-pore diffusion modeling for the sorption of metal ions from aqueous effluents onto peat.

    PubMed

    Chen, B; Hui, C W; McKay, G

    2001-10-01

    The sorption of three metal ions, namely, copper, nickel and lead onto sphagnum peat moss has been studied using an agitated batch sorber system. The equilibrium isotherms were determined and kinetic runs were performed over a range of concentrations for each metal ion. A film-pore diffusion mass transfer model has been developed based on a single effective diffusion coefficient for each system. Error analysis of the experimental and theoretical data indicated relatively large errors at low initial metal ion concentrations. Therefore the model was modified to introduce a surface coverage concentration dependent effective diffusivity to account for a contribution from surface diffusion. PMID:11547855

  17. New optical properties of MgO after MeV metal ion implantation

    SciTech Connect

    Zimmerman, R. L.; Ila, D.; Williams, E. K.; Sarkisov, S. S.; Poker, D. B.; Hensley, D. K.

    1999-06-10

    The implantation of metal ions into single crystals of MgO(100) followed by thermal annealing leads to an increase in absorption of ultra violet and visible light. Metal ions of Au, Sn, Ag, Cu and Ti were implanted at a depth of a few thousand Angstroms followed by thermal annealing. MgO samples implanted with He and Si ions at greater depths were used to study the optical effects and thermal annealing of radiation damage. The influence of bombardment fluence and heat treatment on the size of the metal clusters and on the fraction of atoms in clusters were measured using absorption photospectrometry.

  18. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source

    SciTech Connect

    Naik, V.; Chakrabarti, A.; Bhattacharjee, M.; Karmakar, P.; Bandyopadhyay, A.; Dechoudhury, S.; Mondal, M.; Pandey, H. K.; Lavanyakumar, D.; Mandi, T. K.; Dutta, D. P.; Kundu Roy, T.; Bhowmick, D.; Sanyal, D.; Srivastava, S. C. L.; Ray, A.; Ali, Md. S.; Bhattacharjee, S.

    2013-03-15

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms/molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms/molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of {sup 14}O (71 s), {sup 42}K (12.4 h), {sup 43}K (22.2 h), and {sup 41}Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10{sup 3} particles per second (pps). About 3.2 Multiplication-Sign 10{sup 3} pps of 1.4 MeV {sup 14}O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  19. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source.

    PubMed

    Naik, V; Chakrabarti, A; Bhattacharjee, M; Karmakar, P; Bandyopadhyay, A; Bhattacharjee, S; Dechoudhury, S; Mondal, M; Pandey, H K; Lavanyakumar, D; Mandi, T K; Dutta, D P; Kundu Roy, T; Bhowmick, D; Sanyal, D; Srivastava, S C L; Ray, A; Ali, Md S

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms∕molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms∕molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of (14)O (71 s), (42)K (12.4 h), (43)K (22.2 h), and (41)Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10(3) particles per second (pps). About 3.2 × 10(3) pps of 1.4 MeV (14)O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future. PMID:23556809

  20. A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source

    NASA Astrophysics Data System (ADS)

    Naik, V.; Chakrabarti, A.; Bhattacharjee, M.; Karmakar, P.; Bandyopadhyay, A.; Bhattacharjee, S.; Dechoudhury, S.; Mondal, M.; Pandey, H. K.; Lavanyakumar, D.; Mandi, T. K.; Dutta, D. P.; Kundu Roy, T.; Bhowmick, D.; Sanyal, D.; Srivastava, S. C. L.; Ray, A.; Ali, Md. S.

    2013-03-01

    Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms/molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms/molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of 14O (71 s), 42K (12.4 h), 43K (22.2 h), and 41Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 103 particles per second (pps). About 3.2 × 103 pps of 1.4 MeV 14O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

  1. Determination of the isomeric fraction in a postaccelerated radioactive ion beam using the coupled decay-chain equations

    NASA Astrophysics Data System (ADS)

    Ekström, A.; Cederkäll, J.; DiJulio, D. D.; Fahlander, C.; Van de Walle, J.

    2010-03-01

    A method based on the coupled decay-chain equations for extracting the isotopic and the isomeric composition of a postaccelerated radioactive ion beam is presented and demonstrated on a data set from a Coulomb excitation experiment. This is the first attempt of analyzing the content of a postaccelerated radioactive ion beam using this technique. The beam composition is required for an absolute normalization of the measurement. The strength of the method, as compared to present online-based methods, lies in the determination of the isomeric fraction of a partially isomeric beam using all data accumulated during the experiment. We discuss the limitations and sensitivity of the method with respect to the γ-ray detection efficiency and the accumulated flux.

  2. Biosorption/heavy metal ions from industrial/mining waste waters. Technical completion report

    SciTech Connect

    Darnall, D.

    1986-06-01

    The interactions between algal biomass and various metal ions were investigated. For most of the ions examined, uptake is dependent upon pH, with cations bound most strongly above pH 4 and complex anions bound most strongly at lower pH values. Heat treatment of the biomass was found to have little effect on binding capacity. As with other ion-exchange matrices, the extent of metal-ion removal is strongly influenced by the solution composition - in particular, the pressure of competing ligands.

  3. Cytotoxicity of Metal Ions Released from Nitinol Alloys on Endothelial Cells

    PubMed Central

    Haider, W.; Munroe, N.; Tek, V.; Gill, P.K.S.; Tang, Y.; McGoron, A.J.

    2011-01-01

    Most implantable medical devices are expected to function in the body over an extended period of time. Therefore, immersion tests under simulated conditions can be useful for assessing the amount of metal ions released in situ. In this investigation, dissolved ions from as-received binary and ternary Nitinol alloys in cell culture media were periodically measured under static and dynamic conditions. Endothelial cells were grown in aliquots of culture media obtained and the effect of dissolved ions on cell proliferation and viability of endothelial cells (HUVEC) was studied by cytotoxicity assays. The concentration of metal ions in the media was measured by inductively coupled plasma mass spectrometry. PMID:21666855

  4. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Gross, C. J.; Ginter, T. N.; Shapira, D.; Milner, W. T.; McConnell, J. W.; James, A. N.; Johnson, J. W.; Mas, J.; Mantica, P. F.; Auble, R. L.; Das, J. J.; Blankenship, J. L.; Hamilton, J. H.; Robinson, R. L.; Akovali, Y. A.; Baktash, C.; Batchelder, J. C.; Bingham, C. R.; Brinkman, M. J.; Carter, H. K.; Cunningham, R. A.; Davinson, T.; Fox, J. D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J. F.; MacDonald, B. D.; MacKenzie, J.; Paul, S. D.; Piechaczek, A.; Radford, D. C.; Ramayya, A. V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K. S.; Weintraub, W.; Williams, C.; Woods, P. J.; Yu, C.-H.; Zganjar, E. F.

    2000-08-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of 10% in energy and 4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices.

  5. Plastic flow produced by single ion impacts on metals.

    SciTech Connect

    Birtcher, R. C.

    1998-10-30

    Single ion impacts have been observed using in situ transmission electron microscopy and video recording with a time resolution of 33 milliseconds. Gold was irradiated at 50 K and room temperature. Single ion impacts produce holes, modify existing holes, and extrude material into the initial specimen hole and holes formed by other ion impacts. The same behavior is observed at both temperatures. At both temperatures, ion impacts result in craters and ejected material. Ion impacts produce more small craters than large ones for all ion masses, while heavier mass ions produce more and larger craters than lighter mass ions. This comparison is affected by the ion energy. As the energy of an ion is increased, the probability for deposition near the surface decreases and fewer craters are formed. For a given ion mass, crater production depends on the probability for displacement cascade production in the near surface region. Crater and holes are stable at room temperature, however, ion impacts near an existing crater may cause flow of material into the crater either reshaping or annihilating it. Holes and craters result from the explosive outflow of material from the molten zone of near-surface cascades. The outflow may take the form of molten material, a solid lid or an ejected particle. The surface is a major perturbation on displacement cascades resulting from ion impacts.

  6. Recoil in vacuum for Te ions: Calibration, models, and applications to radioactive-beam g-factor measurements

    SciTech Connect

    Stuchbery, A. E.; Stone, N. J.

    2007-09-15

    In the light of new g factor results for the stable isotopes between {sup 122}Te and {sup 130}Te, the calibration and modeling of the recoil-in-vacuum (RIV) interaction for Te ions is reexamined, and the recent radioactive-beam g factor measurement on {sup 132}Te by the RIV technique is reevaluated. The implications for further RIV g-factor measurements in the {sup 132}Sn region are discussed.

  7. Comparative leaching studies of [sup 60]Co from spent radioactive ion-exchange resin incorporated in cement

    SciTech Connect

    Plecas, I.; Peric, A.; Glodic, S.; Kostadinovic, A. )

    1995-02-01

    Leaching of [sup 60]Co from ion-exchange resin incorporated in cement using two methods based on theoretical equation has been developed. These were: Method 1, diffusion equation derived for a plane source model and Method 2, empirical model employing a polynomial equation. Results presented in this paper are examples of data obtained in a cement testing project which will influence the design of the future radioactive waste storage center.

  8. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    PubMed

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses. PMID:26901477

  9. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer

    PubMed Central

    Bollivar, David W; Clauson, Cheryl; Lighthall, Rachel; Forbes, Siiri; Kokona, Bashkim; Fairman, Robert; Kundrat, Lenka; Jaffe, Eileen K

    2004-01-01

    Background The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. Results The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn2+, or Mg2+, which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the Km value shows an acidic pKa of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. Conclusion The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific activity when compared to other octameric PBGS proteins. PMID:15555082

  10. Electrochemical preparation of metal microstructures on large areas of etched ion track membranes

    NASA Astrophysics Data System (ADS)

    Dobrev, D.; Vetter, J.; Angert, N.

    1999-01-01

    A microgalvanic method for metal filling of etched ion tracks in organic foils on large areas is described. The method and the used galvanic cell permit the deposition of stable standing individual metal whiskers with high aspect ratio and a density of 10 5-10 8 per cm 2 on an area of 12.5 cm 2. The method was verified with copper and it is suitable also for various other metals. It can be applied for the replication of etched ion tracks and for the fabrication of microstructures containing large numbers of individual metal whiskers.

  11. Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes

    PubMed Central

    Dean, Kevin M.; Qin, Yan; Palmer, Amy E.

    2012-01-01

    Quantifying the amount and defining the location of metal ions in cells and organisms are critical steps in understanding metal homeostasis and how dyshomeostasis causes or is a consequence of disease. A number of recent advances have been made in the development and application of analytical methods to visualize metal ions in biological specimens. Here, we briefly summarize these advances before focusing in more depth on probes for examining transition metals in living cells with high spatial and temporal resolution using fluorescence microscopy. PMID:22521452

  12. Method and apparatus for providing negative ions of actinide-metal hexafluorides

    DOEpatents

    Compton, Robert N.; Reinhardt, Paul W.; Garrett, William R.

    1978-01-01

    This invention relates to a novel method and a novel generator, or source, for providing gaseous negative ions of selected metal hexafluorides. The method is summarized as follows: in an evacuated zone, reacting gaseous fluorine with an actinide-metal body selected from the group consisting of uranium, plutonium, neptunium, and americium to convert at least part of the metal to the hexafluoride state, thus producing gaseous negatively charged metal-hexafluoride ions in the evacuated zone, and applying an electric field to the zone to remove the ions therefrom. The ion source comprises a chamber defining a reaction zone; means for evacuating the zone; an actinide-metal body in the zone, the metal being uranium, plutonium, neptunium, or americium; means for contacting the body with gaseous fluorine to convert at least a part thereof to the hexafluoride state; and means for applying an electric field to the evacuated zone to extract gaseous, negatively charged metal-hexafluoride ions therefrom. The invention provides unique advantages over conventional surface-ionization techniques for producing such ions.

  13. Hybrid gas-metal co-implantation with a modified vacuum arc ion source

    SciTech Connect

    Oks, E.M.; Yushkov, G.Y.; Evans, P.J.; Oztarhan, A.; Brown, I.G.; Dickinson, M.R.; Liu, F.; MacGill, R.A.; Monteiro, O.R.; Wang, Z.

    1996-08-01

    Energetic beams of mixed metal and gaseous ion species can be generated with a vacuum arc ion source by adding gas to the arc discharge region. This could be an important tool for ion implantation research by providing a method for forming buried layers of mixed composition such as e.g. metal oxides and nitrides. In work to date, we have formed a number of mixed metal-gas ion beams including Ti+N, Pt+N, Al+O, and Zr+O. The particle current fractions of the metal-gas ion components in the beam ranged from 100% metallic to about 80% gaseous, depending on operational parameters. We have used this new variant of the vacuum arc ion source to carry out some exploratory studies of the effect of Al+O and Zr+O co-implantation on tribology of stainless steel. Here we describe the ion source modifications, species and charge state of the hybrid beams produced, and results of preliminary studies of surface modification of stainless steel by co-implantation of mixed Al/O or Zr/O ion beams. 5 figs, 21 refs.

  14. Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water.

    PubMed

    Chavan, Asmita A; Li, Hongbo; Scarpellini, Alice; Marras, Sergio; Manna, Liberato; Athanassiou, Athanassia; Fragouli, Despina

    2015-07-15

    We report the fabrication and utilization of elastomeric polymer nanocomposite foams for the efficient removal of Pb2+ and Hg2+ heavy metal ions from polluted water. The polydimethylsiloxane (PDMS) foams are properly modified in order to become hydrophilic and allow the polluted water to penetrate in their volume. The ZnSe colloidal nanocrystals (NCs) that decorate the surface of the foams, act as active components able to entrap the metal ions. In this way, after the dipping of the nanocomposite foams in water polluted with Pb2+ or Hg2+, a cation exchange reaction takes place, and the heavy metal ions are successfully removed. The removal capacity for the Pb2+ ions exceeds 98% and the removal of Hg2+ ions approaches almost 100% in the studied concentrations region of 20-40 ppm. The reaction is concluded after 24 h, but it should be noticed that after the first hour, more than 95% of both the metal ions is removed. The color of the foams changes upon heavy metal ions entrapment, providing thus the opportunity of an easy detection of the presence of the ions in water. Taking into account that the fabricated foams provide good elastic properties and resistance to heat, they can be used in different conditions of water remediation. PMID:26133912

  15. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  17. Negative ion production by backscattering from alkali-metal surfaces bombarded by ions of hydrogen and deuterium

    SciTech Connect

    Schneider, P.J.

    1980-03-01

    Measurements have been made of the total backscattered D/sup -/ and H/sup -/ yields from thick, clean targets of Cs, Rb, K, Na, and Li, bombarded with H/sub 2//sup +/, H/sub 3//sup +/, D/sub 2//sup +/, and D/sub 3//sup +/ with incident energies from 0.15 to 4.0 keV/nucleus. All of the measurements were made at background pressures less than 10/sup -9/ Torr and the alkali-metal targets were evaporated onto a cold substrate (T = 77K) in situ to assure thick, uncontaminated targets. Measurements of the H/sup -/ yield from various transition metal targets with thin coverages of alkali-metals have also been made as a function of the surface work function. The negative ion yields are discussed in terms of the probabilities of reflection of the incident particles, of formation of the negative ion at the surface and of the survival of the negative ion leaving the surface. For each thick alkali-metal target, the negative ion yield measurements have been used in a least squares fit to determine two parameters in a theoretically derived expression for the negative ion yield. The parameters obtained from a thick Na target have been used to calculate the yield from a Cu target with thin coverage of Na (such that the surface work function is equal to thick Na).

  18. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  19. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2005-06-01

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  20. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse.

    PubMed

    Perera, Lalith; Freudenthal, Bret D; Beard, William A; Shock, David D; Pedersen, Lee G; Wilson, Samuel H

    2015-09-22

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is "balanced," as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3' of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability. PMID:26351676