Sample records for radioactive metal ions

  1. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth had very good capacity for these two metals. However, the mechanical strength of Fullers earth granules available commercially was not sufficient for use in a column. In this study chitosan was used as a binder to make Fullers earth beads and were used for adsorption of Cs(I) and Sr(II). (Abstract shortened by UMI.)

  2. Charge Breeding of Radioactive Ions

    E-print Network

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  3. The ORNL Radioactive Ion Beam Project

    Microsoft Academic Search

    D. K. Olsen; G. D. Alton; R. L. Auble; C. Baktash; D. T. Dowling; J. D. Garrett; D. L. Haynes; C. M. Jones; R. C. Juras; M. J. Meigs; G. D. Mills; S. W. Mosko; R. L. Robinson; B. A. Tatum; H. Blosser; L. Lee; F. Marti; H. K. Carter; J. Kormicki; P. Mantica; L. Rayburn; C. A. Reed

    1992-01-01

    On June 30, 1992, the Holifield Heavy Ion Research Facility (HHIRF) was shut down as an operating national users' facility for heavy ion physics research and became a construction project to reconfigure the existing accelerator system and develop a first generation radioactive ion beam (RIB) facility. During its 11 years of operation, the HHIRF had over 600 users, of which

  4. The ORNL Radioactive Ion Beam Project

    Microsoft Academic Search

    D. K. Olsen; G. D. Alton; R. L. Auble; C. Baktash; D. T. Dowling; J. D. Garrett; D. L. Haynes; C. M. Jones; R. C. Juras; M. J. Meigs; G. D. Mills; S. W. Mosko; R. L. Robinson; B. A. Tatum; H. Blosser; L. Lee; F. Marti; H. K. Carter; J. Kormicki; P. Mantica; L. Rayburn; C. A. Reed; J. Dellwo; H. Wollnik

    1992-01-01

    On June 30, 1992, the Holifield Heavy Ion Research Facility (HHIRF) was shut down as an operating national users` facility for heavy ion physics research and became a construction project to reconfigure the existing accelerator system and develop a first generation radioactive ion beam (RIB) facility. During its 11 years of operation, the HHIRF had over 600 users, of which

  5. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  6. Ion sources for radioactive beams

    SciTech Connect

    Kirchner, R. [GSI Darmstadt (Germany)

    1994-05-01

    The ion sources reviewed here, most of them developed for isotope separation on-line (ISOL), are classified according to their ionizing mechanism, utilizing electrons, heat, light, and penetration of matter. Emphasis is put on the beam-optical characteristics, ion current density, energy spread, and emittance on the ISOL-essentials {open_quotes}efficient, fast, and selective,{close_quotes} both for the ion source and the complete target/ion source-system.

  7. Radioactive scrap metal decontamination technology assessment report

    Microsoft Academic Search

    J. M. Buckentin; B. K. Damkroger; M. E. Schlienger

    1996-01-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true

  8. Holifield Radioactive Ion Beam Facility Status

    SciTech Connect

    Stracener, Daniel W [ORNL; Beene, James R [ORNL; Dowling, Darryl T [ORNL; Juras, Raymond C [ORNL; Liu, Yuan [ORNL; Meigs, Martha J [ORNL; Mendez, II, Anthony J [ORNL; Mueller, Paul Edward [ORNL; Sinclair, John William [ORNL; Tatum, B Alan [ORNL; Sinclair IV, John W [ORNL

    2009-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) produces high-quality beams of short-lived radioactive isotopes for nuclear science research, and is currently unique worldwide in the ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier. HRIBF is undergoing a multi-phase upgrade. Phase I (completed 2005) was construction of the High Power Target Laboratory to provide the on-going Isotope Separator On-Line (ISOL) development program with a venue for testing new targets, ion sources, and radioactive ion beam (RIB) production techniques with high-power beams. Phase II, which is on schedule for completion in September 2009, is the Injector for Radioactive Ion Species 2 (IRIS2), a second RIB production station that will improve facility reliability and accommodate new ion sources, new RIB production targets, and some innovative RIB purification techniques, including laser applications. The Phase III goal is to substantially improve facility performance by replacing or supplementing the Oak Ridge Isochronous Cyclotron (ORIC) production accelerator with either a high-power 25-50 MeV electron accelerator or a high-current multi-beam commercial cyclotron. Either upgrade is applicable to R&D on isotope production for medical or other applications.

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D. (Lockport, IL); McPheeters, Charles C. (Plainfield, IL)

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Advances in metal ion sources

    SciTech Connect

    Brown, I.G.

    1988-05-01

    Beams of metallic ion species can be produced by the ECR (electron cyclotron resonance) ion source and by the MEVVA (metal vapor vacuum arc) ion source. Although the ECR source is fundamentally a gaseous ion source, metal ion beams can be produced by introducing metallic feed material into the plasma discharge using a number of techniques. The ion charge states can be very high, which is a significant advantage to most applications. The MEVVA ion source, on the other hand, is specifically a metal ion source. It has produced metallic ion beams from virtually all the solid metallic elements at a current of typically hundreds of milliamperes; the ions produced are in general multiply ionized, but not as highly stripped as those generated in the ECR source. Although the MEVVA source at present operates in a pulsed mode with a low duty cycle (less than or equal to 1%), work is in progress to increase the duty cycle significantly. In this paper the operation and performance of the LBL ECR and MEVVA ion sources, with respect to metal ion generation, are described.

  11. Radioactive Ion Beam Production Capabilities at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Beene, James R [ORNL; Dowling, Darryl T [ORNL; Gross, Carl J [ORNL; Juras, Raymond C [ORNL; Liu, Yuan [ORNL; Meigs, Martha J [ORNL; Mendez, II, Anthony J [ORNL; Nazarewicz, Witold [ORNL; Sinclair, John William [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL

    2011-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of HRIBF is the production of high-quality beams of short-lived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions.

  12. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan [ORNL; Beene, James R [ORNL; Havener, Charles C [ORNL; Vane, C Randy [ORNL; Gottwald, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Mattolat, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Lassen, J. [TRIUMF, Canada

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  13. Pure radioactive Ga ion beams provided by new laser ion source for nuclear research at ORNL

    E-print Network

    Pure radioactive Ga ion beams provided by new laser ion source for nuclear research at ORNL pure beams of radioactive nuclei far from stability. · Beams of neutron-rich Ga isotopes were delivered to the Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) with previously unattainable purity

  14. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  15. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  16. A radioactive ion beam facility using photofission

    NASA Astrophysics Data System (ADS)

    Diamond, William T.

    1999-08-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5×10 13 fissions/s from an optimized 235U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production of high yields of neutron-rich ions with reasonable power density in the target. The cost of an electron linac of the required specifications, including the facility shielding, is significantly less than the cost of any other primary-beam accelerator that could produce a comparable fission yield. A high-power electron linac could also be used with a multifoil helium-jet target. A large number of thin uranium foils could be irradiated with the scanned Bremsstrahlung beam and the fission fragments captured in aerosol-loaded helium and transported to an ion source that is well removed from the intense radiation fields of the primary target. The fission yield would be less than 1% of that available from a thick target, but this approach might be the easiest technical solution to obtain useable yields with manageable radiation-safety problems.

  17. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  18. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  19. The production of accelerated radioactive ion beams

    SciTech Connect

    Olsen, D.K.

    1993-11-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL.

  20. Metallic ions in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.

    1972-01-01

    Four positive ion composition measurements of the equatorial E region made at Thumba, India, are presented. During the day, the major ions between 90 and 125 km are NO(+) and O2(+). A metallic ion layer centered at 92 km is observed, and found to contain Mg(+), Fe(+), Ca(+), K(+), Al(+), and Na(+) ions. The layer is explained in terms of a similarly shaped latitude distribution of neutral atoms which are photoionized and charge-exchanged with NO(+) and O2(+). Three body reactions form molecular metallic ions which are rapidly lost by dissociative ion-electron recombination. Nighttime observations show downward drifting of the metallic ion layer caused by equatorial dynamo effects. These ions react and form neutral metals which exchange charges with NO(+) and O2(+) to produce an observed depletion of those ions within the metallic ion region.

  1. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal complex, thereby enhancing the stability (Figure 1).

  2. Preparation of hydrous mixed metal oxides of Sb, Nb, Si, Ti and W with a pyrochlore structure and exchange of radioactive cesium and strontium ions into the materials

    Microsoft Academic Search

    Teresia Möller; Abraham Clearfield; Risto Harjula

    2002-01-01

    Twenty hydrous mixed metal oxides of Sb, Nb, Si, Ti and W have been prepared by both precipitation and hydrothermal reactions and characterized by powder XRD, TGA and elemental analysis. Antimony silicate, niobium silicate, antimony titanate and titanium tungstate based materials crystallized with a cubic pyrochlore structure being analogues of the hydrous antimony pentoxide. The materials were studied for the

  3. Ion sources for radioactive beams and related problems (Review) (invited)

    Microsoft Academic Search

    R. Kirchner; GSI Darmstadt

    1996-01-01

    Ion sources for radioactive beam facilities are integrated systems of production target and ionizer which have to convert the limited number of particles produced in nuclear reactions efficiently and selectively into an ion beam. The figures of merit for such a system are thus its efficiency for a desired isotope and its discrimination against the unwanted elements. The efficiency is

  4. In-Trap Spectroscopy of Charge-Bred Radioactive Ions

    NASA Astrophysics Data System (ADS)

    Lennarz, A.; Grossheim, A.; Leach, K. G.; Alanssari, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J. R.; Gallant, A. T.; Holl, M.; Kwiatkowski, A. A.; Lassen, J.; Macdonald, T. D.; Schultz, B. E.; Seeraji, S.; Simon, M. C.; Andreoiu, C.; Dilling, J.; Frekers, D.

    2014-08-01

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, In124 and Cs124) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (??) decay.

  5. Metal ions binding onto lignocellulosic biosorbent

    Microsoft Academic Search

    K. K. Krishnani; Xiaoguang Meng; L. Dupont

    2009-01-01

    This paper describes the use of a lignocellulosic biosorbent for the adsorption and ion exchange of nine different heavy metals ions. Batch isothermal equilibrium and continuous column adsorption experiments were carried out in an effort to evaluate the maximum adsorption capacity, pH dependence and to study the mechanism of removal of metal ions onto the biosorbent. Bio-sorption data were interpreted

  6. Charge breeding simulations for radioactive ion beam production.

    PubMed

    Variale, V; Rainò, A C; Clauser, T

    2012-02-01

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied. PMID:22380242

  7. Charge breeding simulations for radioactive ion beam production

    SciTech Connect

    Variale, V. [INFN-Bari, Via Orabona, 4, Bari (Italy); Raino, A. C.; Clauser, T. [Physics Department of Bari University and INFN- Bari, Via Orabona, 4, Bari (Italy)

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.

  8. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Behrens, Robert G. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Storms, Edmund K. (Los Alamos, NM); Santandrea, Robert P. (Santa Fe, NM); Swanson, Lynwood W. (McMinnville, OR)

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  9. Metal ion separations by supported liquid membranes

    Microsoft Academic Search

    Josefina de Gyves; Eduardo Rodríguez de San Miguel

    1999-01-01

    Carrier-mediated transport through supported liquid membranes is currently recognized as a potentially valuable technology for selective separation and concentration of toxic and valuable metal ions. In this paper, a review of the fundamental aspects concerning metal ion transport and the influencing factors are surveyed in terms of data modeling, membrane efficiency (permeability, selectivity, stability), and data acquisition and evaluation. An

  10. PROTEIN-TRANSITION METAL ION NETWORKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten had low, medium, and high levels of aspartic and glutamic acid, respectively, and FT-IR showed that the divalent transition metal ions Mn2+, Cu2+, and Zn2+ were tightly ...

  11. COMPUTATIONAL DESIGN OF METAL ION SEQUESTERING AGENTS

    EPA Science Inventory

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides...

  12. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  13. Protocols for implementing DOE authorized release of radioactive scrap metals.

    PubMed

    Chen, S Y; Arnish, J; Kamboj, S; Nieves, L A

    1999-11-01

    A process to implement the U.S. Department of Energy's (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals. PMID:10527156

  14. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C. (Augusta, GA)

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  15. Spin Observables in Reactions with Radioactive Ion Beams

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn} [ORNL; Urrego Blanco, Juan Pablo [ORNL

    2007-01-01

    Polarization observables in nuclear reactions with exotic nuclei will provide important information concerning structural properties of nuclei and reaction mechanisms. We are currently engaged in exploring the use of polarization observables with radioactive ion beams and in the development of a polarized cryogenic target.

  16. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  17. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface. PMID:24593634

  18. Ion sources for initial use at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1993-12-31

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are also under design consideration for generating negative radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.

  19. Ion sources for initial use at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D. [Oak Ridge National Lab., TN (United States)

    1994-05-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are also under design consideration for generating negative radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.

  20. Metallic ion production with the dione EBIS

    NASA Astrophysics Data System (ADS)

    Visentin, B.; Courtois, A.; Gobin, R.; Harrault, F.; Leroy, P. A.

    1997-01-01

    We report the first quantitative results obtained with metallic elements injected from an Hollow Cathode ion source into the Dioné EBIS. These results are concerned with the charge state distribution of gold ions, with a maximum for Au47+ of (1,3 × 107 ions), and the highest charge state detectable on a wire profiler of Au63+. The Au50+ ions have been captured in Mimas storage synchrotron, and an Fe20+ ion beam has been accelerated in the Saturne synchrotron. The Hollow Cathode ion source lifetime has been tested on a long term basis (Au1+ injected into Dioné during six weeks, 24 hours per day). This source, able to produce metallic ions with any buffer gas (Ne, Ar, Kr, Xe, or N) and is also used to inject gaseous ions into Dioné.

  1. Sorption of metal ions on alumina

    SciTech Connect

    Baumgarten, E.; Kirchhausen-Duesing, U. [Heinrich-Heine Univ. Duesseldorf (Germany). Inst. fuer Physikalische Chemie und Elektrochemie] [Heinrich-Heine Univ. Duesseldorf (Germany). Inst. fuer Physikalische Chemie und Elektrochemie

    1997-10-01

    The adsorption of metal ions on aluminas is of great interest in different fields such as geochemistry, oceanography, limnology, and pollution control. Precipitation and adsorption of metal ions (Co(II), Ni(II), Cu(II), and Cr(III)) on {gamma}-alumina were investigated experimentally. A surface chemical reaction model to calculate concentrations of aluminum ions, metal ions, and pH as variables depending on amount of alumina, volume of liquid and gas phase, initial metal concentration, and amount of acid or base added is presented. In the case of Co(II) the pH dependence of rest concentrations with and without alumina is equal; adsorption may be disregarded. For the other ions adsorption is important. Considering the charge of the surface does not improve the fit. In the pH region, where adsorption leads to lower rest concentrations than precipitation, adsorption may be described by a Henry isotherm.

  2. Assessment of recycling or disposal alternatives for radioactive scrap metal

    Microsoft Academic Search

    W. E. Murphie; M. J. Lilly; L. A. Nieves; S. Y. Chen

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes

  3. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  4. The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    SciTech Connect

    Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Mendes, D. R. Jr.; Pires, K. C. C.; Morcelle, V.; Hussein, M. S.; Barioni, A.; Condori, R. Pampa; Morais, M. C.; Alcantara Nunez, J.; Camargo, O. Jr.; Otani, Y.; Leistenschneider, E.; Scarduelli, V. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05389-970 Sao Paulo (Brazil); Benjamim, E. A. [Universidad de Santiago de Compostela, Depto. Fisica Particulas, Facultad Fisica, Campus Sur s/n 15786 Santiago de Compostela (Spain) (Spain); Moro, A. M. [Departamento de FAMN, Universidad de Sevilla, Apdo 1065, E-41080, Sevilla (Spain); Arazi, A. [Laboratorio Tandar, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429), Buenos Aires (Argentina); Assuncao, M. [UNIFESP-Campus de Diadema, SP (Brazil)] (and others)

    2009-06-03

    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of Sao Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as {sup 6}He,{sup 8}Li,{sup 7}Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented.

  5. Charge breeding of radioactive ions with EBIS and EBIT

    E-print Network

    Wenander, Fredrik

    2010-01-01

    A charge state breeder, which transforms externally injected singly charged ions to a higher charge state q+, is an important tool which has applications within atomic, nuclear and even particle physics. The charge breeding concept of radioactive ions has already been demonstrated at REX-ISOLDE/CERN with the use of an Electron beam Ion Source (EBIS) and at several facilities employing Electron Resonance Cyclotron Ion Sources (ECRIS). As will be demonstrated in this paper, EBIS and Electron Beam Ion Traps (EBIT), are well suited for the task as they are capable of delivering clean, highly charged beams within a short transformation time. The increasing demand for highly charged ions of all kind of elements and isotopes, stable and radioactive, to be used for low-energy experiments such as TITAN at TRIUMF and MATS at FAIR, but also for post-acceleration to higher energies, is now pushing the development of the breeders. The next challenge will be to satisfy the needs, for example space-charge capacity, of the s...

  6. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  7. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  8. Detection of Heavy Metal Ions Based on Quantum Point Contacts

    E-print Network

    Zhang, Yanchao

    Detection of Heavy Metal Ions Based on Quantum Point Contacts Vasanth Rajagopalan, Salah Boussaad. The ability to detect trace amounts of metal ions is important because of the toxicity of heavy metal ions on many living organisms and the consequence of heavy metal ions not being biodegradable. To date, heavy

  9. Ion exchange resins for metal finishing wastes

    Microsoft Academic Search

    Juzer Jangbarwala

    1997-01-01

    Many ion exchange techniques applicable to the metal finishing wastes are not used owing to the significant dilution from rinsing and the front and tail portions of the elution curve. Some of these proven techniques were revisited with the thought that new, improved ion exchange systems generating less regenerant waste can make these applications economically viable.

  10. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  11. Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; SPES collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 – 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  12. Synergistic Catalysis of Dimetilan Hydrolysis by Metal Ions and

    E-print Network

    Huang, Ching-Hua

    catalyzed by +II transition metal ions exhibiting strong affinities for nitrogen- and oxygen-donor ligands that dissolved metal ions (1), simple hydrous metal oxides (2-5), and clays (6, 7) can increase hydrolysis rates- chemicalorwiththeattackingnucleophile(e.g.,H2OorOH- ). In other situations, dissolved metal ions and metal oxides decrease

  13. Holifield!Radioactive!Ion!Beam!Facility! Cyclotron!Driver!White!Paper!

    E-print Network

    Holifield!Radioactive!Ion!Beam!Facility! Cyclotron!Driver!White!Paper! ! ! ! ! prepared!in!response!! to!a!recommendation!from!the! !! Annual!Science!and!Technology!Review!! of!the!! Holifield!Radioactive!provides!preliminary!details!of!a!proposed!hadron!driver!accelerator! upgrade!(HDU)!to!the!Holifield!Radioactive!Ion!Beam!Facility!(HRIBF),!a!national!user! facility! for

  14. Upgraded vacuum arc ion source for metal ion implantation.

    PubMed

    Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu; Brown, I G

    2012-02-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed "Mevva," for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes. PMID:22380197

  15. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Division of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Brown, I. G. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  16. Scrap metal management issues associated with naturally occurring radioactive material

    Microsoft Academic Search

    K. P. Smith; D. L. Blunt

    1995-01-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year.

  17. Intense metal ion beam source for heavy ion fusion

    SciTech Connect

    Brown, I.G.

    1986-05-01

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C/sup +/ (greater than or equal to99% of the beam in this species and charge state), Cr/sup 2 +/ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed.

  18. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  19. MEVVA ion source for high current metal ion implantation

    SciTech Connect

    Brown, I.; Washburn, J.

    1986-07-01

    The MEVVA (Metal Vapor Vacuum Arc) ion source is a new kind of source which can produce high current beams of metal ions. Beams of a wide range of elements have been produced, spanning the periodic table from lithium up to and including uranium. The source extraction voltage is up to 60 kV, and we are increasing this up to 120 kV. A total ion beam current of over 1 Ampere has been extracted from the present embodiment of the concept, and this is not an inherent limit. The ion charge state distribution varies with cathode material and arc current, and beams like Li/sup +/, Co/sup +,2+,3+/ and U/sup 3+,4+,5+,6+/ for example, are typical; thus the implantation energy can be up to several hundred kilovolts without additional acceleration. The ion source has potential applications for ion implantation and ion beam mixing for achievement of improved corrosion resistance or wear resistance in metals or surface modification of ceramic materials and semiconductors. Here we outline the source and its performance, and describe some very preliminary implantation work using this source.

  20. Control system for the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.; Juras, R.C.; Meigs, M.J.

    1995-12-31

    A new accelerator control system is being implemented as part of the development of the Holifield Radioactive Ion Beam Facility (HRIBF), a first generation radioactive ion beam (RIB) facility. The pre- existing accelerator control systems are based on 1970`s technology and addition or alteration of controls is cumbersome and costly. A new, unified control system for the cyclotron and tandem accelerators, the RIB injector, ion sources, and accelerator beam lines is based on a commercial product from Vista Control Systems, Inc. Several other accelerator facilities, as well as numerous industrial sites, are now using this system. The control system is distributed over a number of computers which communicate over Ethernet and is easily extensible. Presently, implementation at the HRIBF is based on VAX/VMS, VAX/ELN, VME, and Allen-Bradley PLC5 programmable logic controller architectures. Expansion to include UNIX platforms and CAMAC hardware support is planned. Operator interface is via X- terminals. The system has proven to be quite powerful, yet is has been easy to implement with a small staff. A Vista users group has resulted in shared software to implement specific controls. This paper details present system features and future implementations at the HRIBF.

  1. Development of a radioactive ion beam test stand at LBNL

    SciTech Connect

    Burke, J.; Freedman, S.J.; Fujikawa, B.; Gough, R.A.; Lyneis, C.M.; Vetter, P.; Wutte, D.; Xie, Z.Q.

    1998-10-05

    For the on-line production of a {sup 14}O{sup +} ion beam, an integrated target--transfer line ion source system is now under development at LBNL. {sup 14}O is produced in the form of CO in a high temperature carbon target using a 20 MeV {sup 3}He beam from the LBNL 88'' Cyclotron via the reaction {sup 12}C({sup 3}He,n){sup 14}O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O{sub 2} and CO are presented. Ionization efficiencies of 28% for Ar{sup +}, 1% for CO, 0.7% for O{sup +}, 0.33 for C{sup +} have been measured.

  2. Charge state of ions in liquid metal field ion sources

    NASA Astrophysics Data System (ADS)

    Kingham, D. R.

    1983-07-01

    The post-ionization model of field evaporation is shown to be consistent with observations of singly and doubly charged ions in liquid metal field ion sources. The model can be used to estimate the field strength at the apex of the Taylor cone which is found to be 1.9 2.0 V/Å for a Ga source. Experiments to test the post-ionization model and to determine the apex field strength more accurately are suggested. A possible method of obtaining ˜?A currents of highly charged ions, e.g. Zr4+, Ta4+, Ga3+, As3+, is proposed.

  3. Engineering of microorganisms towards recovery of rare metal ions

    Microsoft Academic Search

    Kouichi Kuroda; Mitsuyoshi Ueda

    2010-01-01

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well\\u000a as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate\\u000a metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins\\u000a in the cytoplasm. As

  4. Potential carcinogenicity of some transition metal ions.

    PubMed

    Dovinová, I; Vachálková, A; Novotný, L

    1999-01-01

    Potential carcinogenicity of some transition metal ions was tested using a direct-current polarography method. The measurements were based on the reduction of tested compounds in an anhydrous solution using alpha-lipoic acid as the detection compound. The potential carcinogenicity was expressed in terms of the parameter tg alpha, which is known to directly correlate with the carcinogenicity of tested compounds. For the metal ions tested, tg alpha was found to decrease in the following sequence: Fe(III) > Pb(II) > V(IV) > Fe(II) > Mn(II) > Cu(II). Zero values of tg alpha were found for Cd(II) and Mn(III). PMID:10065599

  5. Novel metal ion surface modification technique

    SciTech Connect

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 {times} 10{sup 16} atoms/cm{sup 2}, and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs.

  6. Recent results with radioactive ion beams in Brasil (RIBRAS)

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Mendes, D. R., Jr.; Descouvemont, P.; de Faria, P. N.; Barioni, A.; Leistenschneider, E.; Morcelle, V.; Morais, M. C.; Pires, K. C. C.; Condori, R. Pampa; Assunção, M. M.; Scarduelli, V.; Gasques, L. R.; Zamora, J. C.

    2012-10-01

    The RIBRAS facility (Radiactive Ion Beams in Brasil) is installed next to the 8 MV Pelletron Tandem of the Nuclear Physics Laboratory of the Institute of Physics of the University of São Paulo. It consists of two superconducting solenoids with maximum magnetic field of B=6.5T. Light radioactive ion beams are produced through transfer reactions, using solid or gaseous production targets of Be, LiF, 3He etc. The solenoids make a magnetic rigidity selection and the use of the two solenoids with a degrader between them allows the production of quite pure secondary beams. Beams of 6He, 8Li, 7Be, 10Be, 8B, 12B are currently produced and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy secondary targets. Some examples of reactions recently studied are presented below.

  7. Design of high-power ISOL targets for radioactive ion beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Alton, G. D.

    2004-03-01

    In this report, we provide lists of refractory oxides, carbides and refractory metals suitable for use as targets for producing short-lived, proton-rich isotopes of elements (He through Pu) and neutron-rich isotopes of elements (As through Dy) for potential use at high-energy, ISOL-based radioactive ion beam facilities. Complex structure, highly permeable C matrices are described for coating with optimum thicknesses of any type of refractory target material (metal, carbide or oxide). Prescriptions are given for the design and fabrication of custom-engineered targets with diffusion lengths compatible with the release of isotopes of interest within their lifetimes. Computationally derived thermal analysis information is presented for selected low-density, fibrous, highly permeable targets, subjected to direct irradiation with 1 GeV, 100-400 kW proton beams. From these studies, internal thermal radiation is reconfirmed as an important heat transfer (cooling) mechanism within low-density, fibrous and composite targets. By utilization of the radiation cooling effect and beam manipulation techniques, in combination with placement of additional heat shielding on the exit end of targets, beam power depositional densities can be controlled and temperatures homogenized to acceptable levels within fast diffusion release, fast effusive-flow ISOL targets subjected to irradiation with 400 kW proton beams, as required at next-generation radioactive ion beam facilities.

  8. Assessment of recycling or disposal alternatives for radioactive scrap metal

    SciTech Connect

    Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1993-11-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

  9. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  10. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  11. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-09-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  12. Metal ions affecting reproduction and development.

    PubMed

    Apostoli, Pietro; Catalani, Simona

    2011-01-01

    Many metal ions (lead, mercury, arsenic, cadmium, chromium, nickel, vanadium, copper, lithium) exert a wide variety of adverse effects on reproduction and development, including influence on male and female subfertility or fertility, abortions, malformations, birth defects, and effects on the central nervous system. The effects produced by metal ions depend on several factors, such as timing and duration of exposure, their distribution and accumulation in various organs (e.g., the nervous system), and on the interference with specific developmental processes. Neonatal and early postnatal periods are lifespan segments during which sensitivity to metals is high; e.g., lead toxicity on the developing organism is paradigmatic of related well known and still open questions. In more recent decades, important mechanisms of action have been suggested: the endocrine disruption via impact of metal ions on reproductive hormones and the oxidative stress. While experimental data provide clear evidence of effects of many metals, human data are scant and traditionally limited to high levels of a few metal ions, like lead on male fertility. Less documented are reproductive effects for mercury, manganese, chromium, nickel, and arsenic for the same gender. More complex is the demonstration of effects on female reproduction and on pregnancy. The action of lead, arsenic, cadmium, chromium, and mercury may in fact be relevant in several stages, beginning in fetal life, during early development or maturity, and is characterized by subfertility, infertility, intrauterine growth retardation, spontaneous abortions, malformations, birth defects, postnatal death, learning and behavior deficits, and premature aging. Also, for females the evidences of specific aspects such as fertility or abortions are usually higher and clearer from animal experiments than from human studies. PMID:21473384

  13. The effect of acetabular inclination on metal ion levels following metal-on-metal hip arthroplasty.

    PubMed

    Emmanuel, Andrew R; Bergin, Karen M; Kelly, Gabrielle E; McCoy, Gerald F; Wozniak, Andrew P; Quinlan, John F

    2014-01-01

    Acetabular inclination angles have been suggested as a principal determinant of circulating metal ion levels in metal-on-metal hip arthroplasties. We aimed to determine whether inclination angle correlates with ion levels in arthroplasties using the Articular Surface Replacement (ASR) system. Patients undergoing ASR arthroplasties had blood metal ion levels and radiograph analysis performed a mean of 3.2 years after surgery. Inclination angle showed only a weak correlation with cobalt (r=0.21) and chromium (r=0.15) levels. The correlation between inclination angle and cobalt levels was significant only with small femoral components, although it was still weak. Multiple regression showed a complex interaction of factors influencing ion levels but inclination angle accounted for little of this variation. We conclude that the acetabular inclination angle is not a meaningful determinant of metal ion levels in ASR arthroplasties. PMID:23759116

  14. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    PubMed

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. PMID:26001134

  15. Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district

    Microsoft Academic Search

    Michael Schubert; Karsten Osenbrück; Kay Knöller

    2008-01-01

    Naturally occurring stable and radioactive isotopes were used as environmental tracers to investigate contaminant metal mobilization processes in a metal smelter dump mainly consisting of slag. Water emerging from the dump at a spring is heavily contaminated by metals. The smelter dump contains minor amounts of flue dust, a material which shows a high potential for metal mobilization. Nearby dumps

  16. Intense metal-ion-beam production using an impregnated-electrode-type liquid-metal ion source

    Microsoft Academic Search

    Junzo Ishikawa; Hiroshi Tsuji; Yuji Aoyama; Toshinori Takagi

    1990-01-01

    The properties of liquid-metal ion sources are very sensitive to their tip structure. Because the impregnated-electrode-type liquid-metal ion source has a porous tip, it generates more than 300-?A ion currents of various metals including relatively high vapor-pressure metals such as Li, Cu, Ga, Ge, Ag, In, and Au, from which ions can be stably extracted. The large beam divergence, a

  17. a Gas Jet Target for Radioactive Ion Beam Experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Smith, M. S.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Schatz, H.; Montes, F.; Meisel, Z.; Blackmon, J. C.; Linhardt, L. E.; Wiescher, M.; Couder, M.; Berg, G. P. A.; Robertson, D.; Vetter, P. A.; Lemut, A.; Erikson, L.

    2013-03-01

    With the development of new radioactive ion beam (RIB) facilities such as FRIB, which will push measurements further away from stability, the need for improved RIB targets is more crucial than ever. Important scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on hydrogen and helium require targets that are dense, highly localized, and pure. To this end, the JENSA Collaboration led by the Colorado ol of Mines (CSM) is designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target allows for a high density and purity of target nuclei (such as 3He) within a highly confined region, without the use of windows or backing materials, and will also enable the use of state-of-the-art detection systems. The motivation, specifications and status of the CSM gas jet target system is discussed.

  18. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C. (ASRP); (ANSTO); (ANU)

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  19. Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of ?-lactalbumin, which specifically binds one Ca2+, is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  20. On the Metal Ion Selectivity of Oxoacid Extractants

    SciTech Connect

    Hay, Benjamin [ORNL; Chagnes, Alexandre [Chimie ParisTech; Cote, Gerard [Chimie ParisTech

    2013-01-01

    Relationships between metal chelate stability, ligand basicity, and metal ion acidity are reviewed and the general applicability is illustrated by linear correlations between aqueous stability constants and ligand pKa values for 35 metals with 26 ligands. The results confirm that most individual ligands of this type exhibit a stability ordering that correlates with the Lewis acidity of the metal ion. It is concluded that the general metal ion selectivity exhibited by liquid-liquid oxoacid extractants such as carboxylic acids, -diketones, and alkylphosphoric acids reflects the intrinsic affinity of the metal ion for the negative oxygen donor ligand.

  1. ORNL developments in laser ion sources for radioactive ion beam production

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    2014-06-01

    The development of a resonant ionization laser ion source (RILIS) for the production of isotopically pure radioactive ion beams is reported. The application of the laser ion source calls for high elemental selectivity, high efficiency, and fast release of short-lived isotopes. A hot-cavity ion source and three Ti:sapphire lasers pulsed at a 10 kHz rate are employed for the RILIS. The Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate intracavity Pockels cells and output losses due to synchronization delays. The development of ionization schemes for a wide range of elements is important to the success of Ti:sapphire-laser-based RILIS. In off-line studies with stable isotopes, resonant ionization of 14 elements has been studied, leading to new ionization schemes for ten elements. The absolute ionization efficiency of the hot-cavity RILIS has been measured to range from 0.9 % to 40 % for different elements. The mechanisms for ion transportation and confinement in the hot-cavity ion source have been studied using the temporal profiles of the laser-ionized ions. The hot-cavity RILIS has provided beams of neutron-rich Ga isotopes for beta decay studies and enabled the first measurement of the beta decay of the exotic Ga.

  2. A gas jet target for radioactive ion beam experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Bardayan, D. W.; Blackmon, J. C.; Browne, J.; Couder, M.; Erikson, L. E.; Greife, U.; Hager, U.; Kontos, A.; Lemut, A.; Linhardt, L. E.; Meisel, Z.; Montes, F.; Pain, S. D.; Robertson, D.; Sarazin, F.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Vetter, P.; Wiescher, M.

    2013-04-01

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  3. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  4. Metal hydrides for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J.-M.; Aymard, L.

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH2 with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH2 electrode shows a large, reversible capacity of 1,480mAhg-1 at an average voltage of 0.5V versus Li+/Li? which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH2. Furthermore, the reaction is not specific to MgH2, as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH2, which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  5. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  6. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  7. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G. [Fachrichtung Physik, Technische Universitaet Dresden, Helmholtzstrasse 10, D-01069 Dresden (Germany); Ullmann, F. [DREEBIT GmbH, Zur Wetterwarte 50, D-01109 Dresden (Germany); Pilz, W.; Bischoff, L. [Helmholtzzentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden (Germany)

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  8. SWELLING OF A CHELATING MACROPOROUS RESIN DURING METAL ION EXCHANGE

    Microsoft Academic Search

    F. Mijangos; M. Ortueta; I. Aguirre

    2000-01-01

    The kinetics of heavy metal ion exchange onto a commercial chelating resin was investigated from the standpoint of the swelling-shrinking experienced by the resin bead during the overall ion exchange process. Temporal measurements of the volume variations were carried out for every step of an operational cycle, metal load, elution and regeneration of the ion exchanger, using a microreactor mainly

  9. SMALL-SCALE DECONTAMINATION OF RADIOACTIVE WATERS BY ION EXCHANGE

    Microsoft Academic Search

    M. B. Sonnen; A. D. Ray

    1963-01-01

    Immediately following nuclear war events, it is anticipated that surface ; waters will be contaminated by radioactive fallout materials and it appears ; desirable to minimize the amounts of ingested radioactive materials for a period ; of time to reduce the radiation doses of the population. Although drinking ; waters free of radioactivity may be provided by prior storage, or

  10. The radioactive ion beams facility project for the legnaro laboratories

    NASA Astrophysics Data System (ADS)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  11. Study of a liquid metal ion source for external ion injection into electron-beam ion source

    Microsoft Academic Search

    A. Pikin; J. G. Alessi; E. N. Beebe; A. Kponou; K. Prelec

    2006-01-01

    A liquid metal ion source (LMIS) has several attractive features as an external injector of primary ions (mostly metallic ions) into electron-beam ion source (EBIS). It does not use a buffer gas and therefore it provides only a very small gas load to the system; its control and operation are simple, power consumption does not exceed 10 W, and beam

  12. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions

    E-print Network

    Gastaldo, L; von Seggern, F; Porst, J P; Schäfer, S; Pies, C; Kempf, S; Wolf, T; Fleischmann, A; Enss, C; Herlert, A; Johnston, K

    2012-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of $^{163}$Ho using MMCs having the radioactive $^{163}$Ho ions implanted in the absorber. The implantation of $^{163}$Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future $^{163}$Ho experiments is presented.

  13. Direct reaction measurements with a (132)Sn radioactive ion beam

    SciTech Connect

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK); Kapler, R. [University of Tennessee, Knoxville (UTK); Ma, Zhanwen [ORNL; Moazen, Brian [University of Tennessee, Knoxville (UTK); Cizewski, J. A. [Rutgers University; Hatarik, Robert [Rutgers University; Pain, S. D. [Rutgers University; Swan, T. P. [University of Surrey, UK; Nunes, F. M. [Michigan State University, East Lansing; Adekola, Aderemi S [ORNL; Bardayan, Daniel W [ORNL; Blackmon, Jeff C [ORNL; Chae, Kyung Yuk [ORNL; Liang, J Felix [ORNL; Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; Shapira, Dan [ORNL; Smith, Michael Scott [ORNL; Chipps, Kelly A [ORNL; Erikson, Luke [Colorado School of Mines, Golden; Livesay, R. J. [Colorado School of Mines, Golden; Harlin, Christopher W [ORNL; Patterson, N. P. [University of Surrey, UK; Thomas, J. S. [University of Surrey, England; Kozub, R. L. [Tennessee Technological University; Shriner, Jr., John F [ORNL

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of {sup 132}Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p{sub 1/2} state expected above the N=82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus {sup 208}Pb.

  14. Direct reaction measurements with a 132Sn radioactive ion beam

    SciTech Connect

    Jones, Katherine L.; Nunes, Filomena M.; Adekola, Aderemi S.; Bardayan, Dan W.; Blackmon, Jeff; Chae, K. Y.; Chipps, Kelly A.; Cizewski, Jolie A.; Erikson, Luke E.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, Raymond L.; Liang, J. F.; Livesay, Ronald J.; Ma, Zhongguo J.; Moazen, B. H.; Nesaraja, Caroline D.; Pain, Steven D.; Patterson, N. P.; Shapira, Dan; Shriner, Jr., John F.; Smith, Michael S.; Swan, Thomas P.; Thomas, Jeff S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  15. Silica-Polyamine Composite Materials for Heavy Metal Ion Removal, Recovery, and Recycling. II. Metal Ion Separations from Mine Wastewater and Soft Metal Ion Extraction Efficiency

    Microsoft Academic Search

    ROBERT J. FISCHER; DAVID PANG; SUSAN T. BEATTY; EDWARD ROSENBERG

    1999-01-01

    Silica-polyamine composites have been synthesized which have metal ion capacities as high as 0.84 mmol\\/g for copper ions removed from aqueous solutions. In previous reports it has been demonstrated that these materials survive more than 3000 cycles of metal ion extraction, elution, and regeneration with almost no loss of capacity (less than 10%). This paper describes two modified silica-polyamine composite

  16. Mechanisms of metal ion-coupled electron transfer.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Morimoto, Yuma

    2012-06-28

    Redox inactive metal ions acting as Lewis acids can control electron transfer from electron donors (D) to electron acceptors (A) by binding to radical anions of electron acceptors which act as Lewis bases. Such electron transfer is defined as metal ion-coupled electron transfer (MCET). Mechanisms of metal ion-coupled electron transfer are classified mainly into two pathways, i.e., metal ion binding to electron acceptors followed by electron transfer (MB/ET) and electron transfer followed by metal ion binding to the resulting radical anions of electron acceptors (ET/MB). In the former case, electron transfer and the stronger binding of metal ions to the radical anions occur in a concerted manner. Examples are shown in each case to clarify the factors to control MCET reactions in both thermal and photoinduced electron-transfer reactions including back electron-transfer reactions. PMID:22596095

  17. Method of radioactively labeling diagnostic and therapeutic agents containing a chelating group

    SciTech Connect

    Stavrianopoulos, J.G.

    1987-11-17

    A method of forming a therapeutic or diagnostic agent labeled with a radioactive metal ion is described, which comprises: (A) contacting; (1) an unlabeled therapeutic or diagnostic agent comprising: (a) a molecularly recognizable portion attached to, (b) a chelating portion capable of substantially chelating with the radioactive metal ion, wherein the chelating portion is not a part of the molecularly recognizable portion, with (2) an ion transfer material having the radioactive metal ion bound thereto and having a binding affinity for the radioactive metal ion less than the binding affinity of the chelating portion for the radioactive metal ion. The chelating portion is unchelated or is chelated with a second metal having a binding affinity with the chelating portion less than the binding affinity of the radioactive metal ion, whereby a radiolabeled therapeutic or diagnostic agent is formed by the contacting; and (B) separating the radiolabeled therapeutic or diagnostic agent from the ion transfer material.

  18. CAESIUM FLOODING ON METAL SURFACES AND SPUTTERED NEGATIVE ION YIELDS

    E-print Network

    Paris-Sud XI, Université de

    L-325 CAESIUM FLOODING ON METAL SURFACES AND SPUTTERED NEGATIVE ION YIELDS M. BERNHEIM and G métaux nobles. Abstract. 2014 Energy distributions and yields of secondary negative ions were measured authors have shown that the yield of negative ions may be strongly increased by using caesium primary ions

  19. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    SciTech Connect

    Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Bonomi, G.; Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P.; Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy)

    2010-08-04

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  20. Tolerance of Chlorella vulgaris for metallic and non-metallic ions

    Microsoft Academic Search

    L. E. den Doore de Jong; W. B. Roman

    1965-01-01

    The well-known, extreme sensitivity of algae towards Cu++ ions prompted a systematic investigation of the tolerance ofChlorella vulgaris for both metallic (49) and non-metallic (7) ions. With thirty metals forming weak bases, pH effects were to some extent super-imposed on the toxic effects of the metal ions themselves. With the elements U, Zr, V and Sb, oxy-compounds had to be

  1. Plasma immersion surface modification with metal ion plasma

    SciTech Connect

    Brown, I.G.; Yu, K.M. (Lawrence Berkeley Lab., CA (USA)); Godechot, X. (Lawrence Berkeley Lab., CA (USA) Societe Anonyme d'Etudes et Realisations Nucleaires (SODERN), 94 - Limeil-Brevannes (France))

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs.

  2. Fluorescence imaging of metal ions implicated in diseases.

    PubMed

    Qian, Xuhong; Xu, Zhaochao

    2015-07-01

    Metal ions play an important role in various biological processes, their abnormal homeostasis in cells is related to many diseases, such as neurodegenerative disease, cancer and diabetes. Fluorescent imaging offers a unique route to detect metal ions in cells via a contactless and damage-free way with high spatial and temporal fidelity. Consequently, it represents a promising method to advance the understanding of physiological and pathological functions of metal ions in cell biology. In this highlight article, we will discuss recent advances in fluorescent imaging of metal ions by small-molecule sensors for understanding the role of metals in related diseases. We will also discuss challenges and opportunities for the design of small-molecule sensors for fluorescent detection of cellular metal ions as a potential method for disease diagnosis. PMID:25556818

  3. A biosystem for removal of metal ions from water

    SciTech Connect

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  4. Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions

    E-print Network

    Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation polarizability, of molecular ions composed of one alkali-metal atom and a Strontium ion are determined of molecular ions with laser-cooled atomic ions thus forming so-called ion crystals where individual ions

  5. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  6. Recent developments of SOLEROO: Australia's first high energy radioactive Ion Beam capability

    NASA Astrophysics Data System (ADS)

    Carter, I. P.; Dasgupta, M.; Hinde, D. J.; Luong, D. H.; Williams, E.; Ramachandran, K.; Cook, K. J.; Muirhead, A. G.; Marshall, S.; Tunningley, T.

    2015-04-01

    The first measurements of the Australian National University's new radioactive ion beam capability were carried out using elastic scattering of a 8Li radioactive beam from a 197Au target. The purpose of this experiment was to test the radioactive ion beam capability as a complete system, which uses a pair of twin position-sensitive parallel plate avalanche counters as tracking detectors along with a highly pixelated double sided Si detector array. The tracking detector system allows us to have extremely high purity secondary radioactive ion beams by electronically tagging the reaction products of interest, thus allowing complete separation from the unwanted contaminant beam species of similar mass and charge. Here, some recent developments and characteristics of this system are presented.

  7. Rotational dynamics of metal azide ion pairs in dimethylsulfoxide solutions.

    PubMed

    Son, Hyewon; Kwon, YoungAh; Kim, Jinwoo; Park, Sungnam

    2013-03-01

    Azide ion is an excellent vibrational probe for studying ion-ion and ion-dipole interactions in solutions because its frequency is sensitively dependent on its local environments. When azide ion forms contact ion pairs with cations in dimethylsulfoxide (DMSO), free azide ion and contact ion pairs are spectrally well distinguished in FTIR spectra. Here, we investigated vibrational population relaxation, P(t), and orientational relaxation dynamics, r(t), of free azide ion and contact ion pairs (LiN3, NaN3, NH4N3, MgN3(+), and CaN3(+)) in DMSO by IR pump-probe spectroscopy. For metal azide ion pairs, the metal ion slowed down the vibrational relaxation of azide ion by acting like a thermal insulator. Biexponential behavior of r(t) was analyzed in the wobbling-in-a-cone model. The long time component of r(t) of free azide ion was found to be viscosity-dependent. The wobbling motion of azide ion within the frame of metal azide ion pairs was weakly dependent on the countercation. When the overall orientational relaxation of metal azide ion pairs was analyzed by the extended Debye-Stokes-Einstein equation, it was well described under stick or superstick boundary conditions due to a strong interaction between the metal ion and DMSO molecules. Our experimental results provide important insight in understanding the rotational dynamics of small ionic species in polar solvents when the size of the ionic species is smaller than or comparable to that of the solvent molecule. PMID:23409952

  8. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    PubMed Central

    Kong, Rong-Mei

    2011-01-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+ In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes. PMID:21370984

  9. Synthesis and characterization of metal ion recognition induced conjugated polymers

    SciTech Connect

    Wang, Bing [Argonne National Lab., IL (United States); Wasielewski, M.R. [Argonne National Lab., IL (United States); [Northwestern Univ., Evanston, IL (United States)

    1996-12-31

    The synthesis and metal ion responsive properties of two 2,2{prime}-bipyridyl-phenylene-vinylene based polymers will be presented. These polymers are designed to be partially conjugated in their initial state and fully conjugated when exposed to metal ions so that such ion induced conjugation enhancement can be transduced into a measurable signal. The synthesis of the monomers and the polymers were accomplished by Wittig type reactions between oligo-phenylene-vinylene derived aldehydes and 5,5{prime}- substituted 2,2{prime}-bipyridyl phosphonium salts. It is found that these polymers exhibit highly ionochromic effects on a wide variety of transition and main group metal ions excluding metal ions of alkali and earth alkaline groups. The most striking observation perhaps is the highly specific palladium ion sensing by the polymers.

  10. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  11. Catalytic ozonation of 2-dichlorophenol by metallic ions

    Microsoft Academic Search

    C.-H. Ni; N. Chen; P.-Y. Yang

    This research is mainly to explore functional improvement by adding various kinds of metallic ions in the ozonation of 2-chlorophenol solution. During the experiment, various kinds of metallic ions (Pb+, Cu2+, Zn2+, Fe2+, Ti2+, and Mn2+ ) were added; it was found that the reaction rate increased in all cases. The best result was obtained by using manganese ions, followed

  12. Metal ion implantation in inert polymers for strain gauge applications

    Microsoft Academic Search

    Giovanni Di Girolamo; Marcello Massaro; Emanuela Piscopiello; Leander Tapfer

    2010-01-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1×1016 and 1×1017ions\\/cm2, in order to promote the precipitation of dispersed

  13. Carbon nanostructures for separation, preconcentration and speciation of metal ions

    Microsoft Academic Search

    Krystyna Pyrzynska

    2010-01-01

    Novel carbon-based nanomaterials with unique properties find increasing use in analytical science. This article presents an up-to-date overview of recent applications of carbon nanotubes (CNTs), metal oxide-CNT nanocomposites and carbon-encapsulated magnetic nanoparticles for enrichment and separation of metal ions, and speciation. The sorption mechanism appears to be mainly attributable to chemical interactions between metal ions and the functional groups on

  14. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  15. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  16. Operational characteristics of a metal vapor vacuum arc ion source

    SciTech Connect

    Shiraishi, Hiroshi; Brown, I.G. (Nippon Steel Corp., Kitakyushu (Japan); Lawrence Berkeley Lab., CA (USA))

    1989-06-01

    The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined. 10 refs., 6 figs.

  17. Glucose enhancement of LDL oxidation is strictly metal ion dependent.

    PubMed

    Mowri, H O; Frei, B; Keaney, J F

    2000-11-01

    Recent evidence suggests that lipoprotein oxidation is increased in diabetes, however, the mechanism(s) for such observations are not clear. We examined the effect of glucose on low-density lipoprotein (LDL) oxidation using metal ion-dependent and -independent oxidation systems. Pathophysiological concentrations of glucose (25 mM) enhanced copper-induced LDL oxidation as determined by conjugated diene formation or relative electrophoretic mobility (REM) on agarose gels. Similarly, iron-induced LDL oxidation was stimulated by glucose resulting in 4- to 6-fold greater REM than control incubations without glucose. In contrast, glucose had no effect on metal ion-independent LDL oxidation by aqueous peroxyl radicals. The effect of glucose on metal ion-dependent LDL oxidation was associated with enhanced reduction of metal ions, and in the case of iron-induced LDL oxidation, was completely inhibited by superoxide dismutase. The effect of glucose was mimicked by other reducing sugars, such as fructose and mannose, and the extent to which each sugar enhanced LDL oxidation was closely linked to its metal ion-reducing activity. Thus, promotion of LDL oxidation by glucose is specific for metal ion-dependent oxidation and involves increased metal ion reduction. These results provide one potential mechanism for enhanced LDL oxidation in diabetes. PMID:11063907

  18. Plastic flow in ion-assisted deposition of refractory metals

    Microsoft Academic Search

    F. Sharples; N. Savvides

    1988-01-01

    Ion-assisted deposition of refractory metals (Fe, Mo, Nb, Ta, W, Pt) was studied using an unbalanced magnetron source to provide both the depositing atom flux and the argon ion flux at ion-to-atom flux ratios in the range 2--10. The films were characterized by x-ray diffraction and the measurement of room-temperature electrical resistivity. As the ion bombardment energy was increased, the

  19. Localization of metallic ions with gingival fibroblast subcellular fractions.

    PubMed

    Messer, Regina L W; Lucas, L C

    2002-03-01

    Nickel-based alloys have been in use since the 1930s; however, there are concerns regarding the release of metal ions (Be(+2), Cr(+6), Cr(+3), Ni(+2), Mo(+6)) from these alloys into surrounding tissues. Therefore, the objective of this study was to determine the cellular location and accumulation of ions using atomic absorption spectroscopy and correlate location with the cytotoxic, morphologic, and ultrastructural evaluations reported previously. Human gingival fibroblasts were exposed to the metal ions for 72 h. Controlled atomic absorption spectroscopy studies were used to determine the intracellular location of these ions reported as parts per million metal ions per milligram protein. Enzymatic markers were shown to correspond to the appropriate fraction indicating success in fractionation of the gingival fibroblasts. These results correspond with the cytotoxic, morphologic, and ultrastructural alterations reported previously for fibroblasts exposed to these ions. The highest concentration of beryllium ions occurred in the low-density molecule fraction, where lipofuscin granules were found, which has been shown to contain metal ions. The highest concentrations of hexavalent chromium ions occurred in the plasma membrane and nuclear fractions followed by the mitochondria fraction, which is supported by the ions' ability to oxidize to trivalent chromium accumulating at the membrane as well as the alterations in nuclear and mitochondrial function. For trivalent chromium, the highest concentrations occurred in the low-density molecule and the plasma membrane fractions, which correlates with the ions' inability to readily cross membranes. The highest concentration of molybdenum ions occurred in the plasma membrane fraction correlating with alterations in membrane morphology and increased numbers of myelin figures. The highest concentration of nickel ions was associated with the cytosol fraction where lipid droplets seen in the transmission electron micrographs were located. The current study demonstrates that a successful subcellular fractionation was obtained on gingival fibroblasts and that the location of metallic ions within the fractions correlated with cellular alterations reported previously. PMID:11774304

  20. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  1. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    SciTech Connect

    Nitschke, J.M. (ed.)

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

  2. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    PubMed Central

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  3. Progress in metal ion separation and preconcentration : an overview.

    SciTech Connect

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  4. Cesium Ion Bombardment of Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Tompa, Gary S.

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten has been studied for the incident energy range below 500 eV. When a sample is exposed to a positive cesium ion beam, the work function decreases until steady state is reached with a total dose of less than (DBLTURN)1*10('16) ions/cm('2), for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of (DBLTURN)100 eV for molybdenum and at an incident energy of (DBLTURN)45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. The effects of hydrogen gas coadsorption have also been examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady state coverage has been developed and is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1-(beta))/(gamma) where (beta) is the reflection coefficient and (gamma) is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages. The implications of these results for negative hydrogen surface conversion sources are clear, molybdenum is a better material than tungsten since a much lower work function surface is maintained on molybdenum at converter operating energies.

  5. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity

    PubMed Central

    Cassat, James E.

    2013-01-01

    Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed “nutritional immunity.” To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection. PMID:22048835

  6. Holifield Radioactive Ion Beam Facility A leading international facility with unique capabilities for research in nuclear structure

    E-print Network

    HRIBF Holifield Radioactive Ion Beam Facility A leading international facility with unique (+26 more unaccelerated) · 32 proton-rich species · 143 neutron-rich species The Holifield Radioactive a dedicated user program in nuclear physics using exotic beams. Radioactive species are produced by intense

  7. Natural radioactivity and trace metals in crude oils: implication for health

    Microsoft Academic Search

    T. R. Ajayi; N. Torto; P. Tchokossa; A. Akinlua

    2009-01-01

    Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural\\u000a radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental\\u000a health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive\\u000a future study in this

  8. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  9. High-current metal ion beam extraction from a multicusp ion source

    Microsoft Academic Search

    Yutaka Inouchi; Hideki Tanaka; Hiroshi Inami; Fumio Fukumaru; Kouzi Matsunaga

    1990-01-01

    Improvements have been made in a multicusp ion source, which made it possible to produce metal–vapor plasma and extract a high-current metal ion beam. In the discharge chamber, double radiation shields were set and the inner shields were heated to 1860 K. Therefore, it became possible to maintain enough metal–vapor density to produce plasma without the use of support gas.

  10. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  11. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  12. High-current-density metal-ion implantation

    SciTech Connect

    Wilbur, P.J.; Wei, R. (Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States))

    1992-04-01

    Design features and preliminary performance data for an ion-implantation system that derives its broad, high-current-density beam directly from a steady, metal-plasma discharge in a high temperature graphite chamber are described. Metal vapor is supplied by drawing electron current to an anode-potential crucible to vaporize a pure metal in it. Argon used to start the discharge is turned off once sufficient metal vapor is present to sustain it. Extraction of metal-ion beams that are several centimeters in diameter at current densities ranging to several hundred {mu}A/cm{sup 2} of titanium or copper onto targets 50 cm from the ion source is demonstrated. The system is simple, reliable, and easy to maintain.

  13. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling

  14. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1998-01-01

    Millions of tons of slightly radioactive scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are either to develop a regulatory process for decontamination and recycling

  15. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  16. Detection of Metallic Compounds in Rocket Plumes Using Ion Probes

    NASA Technical Reports Server (NTRS)

    Dunn, Robert W.

    1998-01-01

    This grant experimentally verified that ion probes can consistently detect metallic compounds in a hybrid rocket plume. Two electrostatic detection methods were tested. The first method used an unbiased ion probe. It responded to collisions or near collisions with charged particulates. The amplitude of the response to metallic ions always exceeded that of the combustion products. The second device was a cylindrical Gaussian surface that surrounded, but did not touch, the plume. A charge imbalance in the plume induced a current in cylinder that was detected by a sensitive amplifier. The probe was more sensitive to metallic compounds than the cylinder. However, the Gaussian cylinder demonstrated sufficient sensitivity to warrant serious future consideration. Since the cylinder is nonintrusive, it is particularly attractive. Apparently, ions formed during combustion transfer to the metallic impurities. The formation of these metallic ions slows the ion recombination rate and helps preserve charges in the plume. The electrostatic detectors, in turn, respond to the charges carried by the metallic impurities.

  17. Production of negative hydrogen ions on metal grids

    NASA Astrophysics Data System (ADS)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-01

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  18. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  19. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  20. Numerical modelling of a metallic ion sporadic-E layer

    Microsoft Academic Search

    Malcolm A. MacLeod; Thomas J. Keneshea; Rocco S. Narcisi

    1975-01-01

    A one-dimensional time-dependent model of the ionosphere has been ; developed and applied to the study of a metallic ion sporadic-E layer observed in ; the Aladdin 1 experiment carried out at Eglin AFB, Florida, 20 November 1970. ; The model develops the molecular ion background ionosphere using a dynamic ; photochemical calculation from noon to a time near model

  1. Quantum ion-acoustic wave oscillations in metallic nanowires

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2015-05-01

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  2. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    Microsoft Academic Search

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff; Yali Su

    2003-01-01

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature

  3. Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    E-print Network

    Z. Kohley; G. Christian; T. Baumann; P. A. DeYoung; J. E. Finck; N. Frank; M. Jones; J. K. Smith; J. Snyder; A. Spyrou; M. Thoennessen

    2013-10-03

    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions.

  4. Potential radioactive scrap metal quantities from nuclear power plants worldwide

    Microsoft Academic Search

    L. A. Nieves; R. W. Tilbrook

    1996-01-01

    Approximately 12 million tons of scrap metals are likely to be generated worldwide during the next 50 years from decommissioning and dismantling nuclear power plants. A large portion of this material will be only slightly contaminated it at all, and, it it is releasable, it would have a scrap value of billions of dollars. Disposition of the metal is complicated

  5. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ?1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and ?-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ?107 ?/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 ?/sq the corresponding sheet resistance for pristine PC.

  6. The morphology of metallic ions in the upper atmosphere

    Microsoft Academic Search

    Shiv Kumar

    1980-01-01

    Analysis of metallic ion data from a day-night pair of rockets, OGO 6, and the elliptic phases of AE-C and AE-D shows the presence of Fe(+) ions at altitudes above 400 km only at low magnetic latitudes. The detection probability of this ion decreases with altitude, with a maximum over the Atlantic and a minimum over India; the rocket data

  7. Current and prospective applications of metal ion–protein binding

    Microsoft Academic Search

    E. K. M Ueda; P. W Gout; L Morganti

    2003-01-01

    Since immobilized metal ion affinity chromatography (IMAC) was first introduced, several variants of this method and many other metal affinity-based techniques have been devised. IMAC quickly established itself as a highly reliable purification procedure, showing rapid expansion in the number of preparative and analytical applications while not remaining confined to protein separation. It was soon applied to protein refolding (matrix-assisted

  8. Removal of metal ions from dilute solutions by sorptive flotation

    Microsoft Academic Search

    A. I. Zouboulis; K. A. Matis

    1997-01-01

    The removal of soluble ionic species, such as toxic metal cations or oxyanions, from dilute aqueous solutions, as most waste waters are, was investigated in laboratory?scale experiments (batch and continuous mode) by applying the sorptive flotation process. This method involves the preliminary abstraction or scavenging of metal ions using proper “sorbents”, which exist at the fine or ultrafine particle?size range,

  9. Size effects in metal cluster-ion chemistry

    NASA Astrophysics Data System (ADS)

    Irion, Manfred P.

    1992-11-01

    In a special Fourier-transform ion cyclotron resonance mass spectrometer, the chemical reactions of different metal cluster ions with a variety of reactive gases have been observed at room temperature as a function of cluster size. The cluster ions generated by sputtering with Xe+ primary ions are transported via ion lenses to the analyzer cell, where they can be stored for up to 100s. For noble metals, mere adsorption of 1-4 molecules is the prevalent reaction type. In the case of the more reactive transition metals, addition to the cluster is typically accompanied by dehydrogenation. Several drastic size-specific effects are discussed, which depend not only on the metal alone but also on the complete system of metal cluster ion and reactive gas. For some systems, only a few sizes are reactive with the majority being inert. For others, the reverse is true and the largest number of sizes is maximized. In addition, there are systems where reactivity either oscillates with increasing size or varies smoothly. For some ion/molecule reactions, the absolute rate constants have been measured. Reactions that do not proceed spontaneously (oxidation of copper clusters, methane activation) are induced by resonantly exciting the ions to a higher kinetic energy. The Fe+4 ion is distinguished by a strong reactivity towards NH3 as well as towards C2H4, etc., whereas Ni+4 proves totally inert. This suggests that the tetramer cannot have the same structure in both cases. For the first time, the catalytic activity of a naked gas-phase metal cluster could be proven. Fe+4 was shown by a complex (MS)5 experiment to synthesize benzene from three adsorbed ethene molecules.

  10. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  11. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  12. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  13. Ion source metal-arc fault current protection circuit

    SciTech Connect

    deVries, G.J.; Lietzke, A.F.; van Os, C.F.A.; Stearns, J.W. (Lawrence Berkeley Laboratory, University of California, Berkeley, California (USA))

    1991-12-01

    Ion sources can be damaged by arcs between metallic components of the source if these arcs are permitted to last. The negative-biased low-work-function converter in a surface conversion negative ion source is especially susceptible to metal-arc breakdown damage. Here an electronic circuit for minimizing the damage caused by such an arc is described. The circuit uses a transistor switch and an inductor in series with the converter bias power supply to limit the damage during the metal-arc breakdown.

  14. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  15. Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions

    E-print Network

    Huyse, M; Kudryavtsev, Yuri A; Van Duppen, P

    2002-01-01

    The possibility to use a gas cell filled by noble gas (He or Ar) for thermalizing, storing and transporting radioactive ions is explored by studying experimentally ion - electron recombination of stable Ni, resonantly ionized by laser light. Combined with a literature study on ionization chambers, especially developed for high-intensity applications, conclusions are drawn on the maximum intensity of the incoming ion beam. A practical limit is encountered when the space-charge induced voltage fully counteract the applied voltage on the electrodes collecting the electrons.

  16. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  17. Ion exchange columns for selective removal of cesium from aqueous radioactive waste using hydrous crystalline silico-titanates 

    E-print Network

    Ricci, David Michael

    1995-01-01

    conscious society. In Hanford, WA, hundreds of underground storage tanks hold tens of millions of gallons of aqueous radioactive waste. This liquid waste, which has a very high sodium content, contains trace amounts of radioactive cesium 137. Since... limitations, especially concerning the Hanford waste solution. Calmon (1979) points out that a major limitation with most ion exchangers is that they remove undesirable ions as well as target ions, the exchanger reaches total capacity quicker. In the case...

  18. Ion beam induced nanosized Ag metal clusters in glass

    NASA Astrophysics Data System (ADS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-04-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam.

  19. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    Microsoft Academic Search

    S. Nedilko; Yu. Hizhnyi; O. Chukova; P. Nagornyi; R. Bojko; V. Boyko

    2009-01-01

    The potential use of luminescent probes for control over the structural state of MTi2(PO4)3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi2(PO4)3 (M=Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and

  20. Sorption of Heavy Metal Ions on New Metal-Ligand Complexes Chemically Derived from Lycopodium clavatum

    Microsoft Academic Search

    Erol Pehlivan; Mustafa Ersoz; Salih Yildiz; Harry J. Duncan

    1994-01-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and

  1. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  3. A hollow cathode ion source as an electron-beam ion source injector for metallic elements

    NASA Astrophysics Data System (ADS)

    Visentin, B.; Harrault, F.; Gobin, R.; Leroy, P. A.

    1994-04-01

    A hollow cathode ion source (HCIS) has been developed in our Laboratory to produce, by cathodic sputtering in a glow discharge, a one charge metallic ion beam. This source is used as an injector for the electron-beam ion source (EBIS) Dioné that produce, after ion stripping, a highly charged heavy-ion beam for acceleration in Mimas-Saturne synchrotrons. Due to the good pulse-to-pulse repeatability of the HCIS, the very long lifetime of the cathode (several months), as well as the very good value of the normalized emittance (?norm=4×10-9 ? mrad), this source appears as an ideal EBIS injector for metallic and gaseous elements. In this paper we report the description of the HCIS and the experimental results achieved, after injection in the EBIS, by the production of heavy-ion beams like Fe20+, Au50+, and U55+ (from 4×107 to 9×106 ions/cycle).

  4. Health risk and impact evaluation for recycling of radioactive scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; W. E. Murphie; M. J. Lilly

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes development of international inventory estimates

  5. Fernald`s dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    Microsoft Academic Search

    K. L. Yuracko; S. W. Hadley; R. D. Perlack

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and

  6. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Microsoft Academic Search

    Kessinger

    1993-01-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially

  7. Fernald's dilemma: Recycle the radioactively contaminated scrap metal, or bury it?

    Microsoft Academic Search

    Katherine L. Yuracko; Stanton W. Hadley; Robert D. Perlack; Rafael G. Rivera; T. Randall Curlee

    1997-01-01

    During the past 5 years, a number of US Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder

  8. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H. (White Bear Township, MN)

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  9. Does Ion Release Differ Between Hip Resurfacing and Metal-on-metal THA?

    PubMed Central

    Moroni, Antonio; Cadossi, Matteo; Baldini, Nicola; Giannini, Sandro

    2008-01-01

    Modern metal-on-metal hip resurfacing was introduced as a bone-preserving method of joint reconstruction for young and active patients; however, the large diameter of the bearing surfaces is of concern for potential increased metal ion release. We hypothesized there were no differences in serum concentrations of chromium, cobalt, and molybdenum between patients who had metal-on-metal hip resurfacing (Group A; average head diameter, 48 mm; median followup, 24 months) and patients who had 28-mm metal-on-metal THA (Group B; median followup, 25 months). Serum concentrations also were compared with concentrations in healthy subjects. We identified no differences in ion levels between Groups A and B. A distinction was made according to gender. Women showed a higher chromium release in Group A whereas men had a higher cobalt release in Group B. Values obtained from Group A were higher than those of the control subjects. Our data suggest metal-on-metal bearings for THA should not be rejected because of concern regarding potential increased metal ion release; however, patients with elevated ion levels, even without loosening or toxicity, could be at higher risk and should be followed up periodically. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196364

  10. Recently, crown ethers have become very popular extractants for metal ions separation from aqueous solution. Crown ethers form complex with metal ion.

    E-print Network

    Singh, Jayant K.

    Recently, crown ethers have become very popular extractants for metal ions separation from aqueous solution. Crown ethers form complex with metal ion. Selection of suitable crown ether and metal ion depends on various factors such as proper spatial orientation of the crown ether oxygen dipole in the direction

  11. Batch sorption of divalent metal ions onto brown coal

    SciTech Connect

    Pehlivan, E.; Gode, F. [University of Selcuk, Konya (Turkey). Faculty of Engineering & Architecture

    2006-12-15

    Brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove some contaminants from aqueous solution. The adsorption of some heavy metals from aqueous solutions on the brown coals was studied as a function of pH, contact time, adsorbent dosage and concentration of metal solutions. A carboxyl, phenolic hydroxyl, and metoxyl functional group present on the coal surface was the adsorption site to remove metal ions from solution by means of ion exchange and hydrogen bonding. Effective removal of heavy metals was achieved at pH values of 4.0-5.0. The experimental data have been analyzed using the Langmuir isotherm models. Under optimized conditions, the percentage of metal removal by brown coal adsorption was over 80%.

  12. Ion-Plated Soft Metallic Films Reduce Friction and Wear

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    Ion plating is ion-assisted or glow-discharge surface-deposition technique. In this process, ions or energetic atoms transfer energy, momentum, and charge to substrate and deposited surface film. Process controlled to modify physical characteristics of surface, subsurface chemical conditions, and surface and subsurface microstructures as well. Ion plating with such soft, thin metallic films as gold, silver, or lead has great potential for producing self-contained lubricating surfaces. Such films reduce friction, wear, and corrosion on sliding or rotating mechanical surfaces used in wide range of environments.

  13. Ion source developments for the production of radioactive isotope beams at TRIUMF

    SciTech Connect

    Ames, F., E-mail: ames@triumf.ca; Bricault, P.; Heggen, H.; Kunz, P.; Lassen, J.; Mjøs, A.; Raeder, S.; Teigelhöfer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)] [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3 (Canada)

    2014-02-15

    At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 ?A of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

  14. Metal chelates of N,N'-dihydroxyethyl-N,N'-ethylenediaminedisuccinic acid and selected metal ions

    E-print Network

    Hampton, Joan Martiner

    1972-01-01

    Ijniverslty Directed by: Arthur E. Martell A quantitative study of the chelating tendencies of N, N'-dihydroxyethyl-N, N'-ethylenediaminedisuccinic acid with a series of metal ions was carried out in aqueous so- lution. Ca(II), Mg(II), Mn(II), Pb(II), Co(II...), Cu(II), Zn(II), Ni (I I), and Fe(I II) are the metal ions employed in this study. Metal chelate formation constants were deter- mined from potentiometric equilibrium data obtained at 25' C and at an ionic strength of 0. 10 (0. 10 M KN03). Metal...

  15. Stopping, Trapping and Cooling of Radioactive Fission Fragments in an Ion Catcher Device

    NASA Astrophysics Data System (ADS)

    Maier, M.; Boudreau, C.; Buchinger, F.; Clark, J. A.; Crawford, J. E.; Dilling, J.; Fukutani, H.; Gulick, S.; Lee, J. K. P.; Moore, R. B.; Savard, G.; Schwartz, J.; Sharma, K. S.

    2001-01-01

    An ion catcher as presented in this contribution is able to create cooled and very clean singly-charged ion pulses out of a ‘hot’ beam within a very short period of time. Precision measurements on shortlived radioactive nuclides become possible. This contribution describes experiments with a 252Cf fission source at the ‘gas-cooler’ at ATLAS (Argonne Tandem Linac Accelerating System) at the Argonne National Laboratories (ANL), Argonne, USA[1]. The system consists of a gas-cell to stop and thermalize the ions, two extraction radio frequency quadrupole structures (RFQ) to separate the ions from the buffer gas and a buncher RFQ to cool and accumulate the ions. The system and its performance is investigated with two independent measurements. The transported activity was measured to determine the efficiency of the system and time of flight measurements (TOF) were performed to determine the transported masses with respect to the transported activity.

  16. The 100-kV gas and metal ion source for high current ion implantation

    NASA Astrophysics Data System (ADS)

    Bugaev, S. P.; Nikolaev, A. G.; Oks, E. M.; Schanin, P. M.; Yushkov, G. Yu.

    1992-04-01

    The TITAN ion source is a new kind of source which can produce high current beams of both metal and gas ions simultaneously or separately. Ion beams of the elements Mg, Al, Ti, Ca, Cr, Fe, Co, Ni, Zn, Sn, Ta, Re, Y, C, He, N, Ar, and Xe have been generated. To obtain metal ions a vacuum arc is used in metal vapors created in ``cathode spots.'' To obtain gas ions a contragated arc discharge in gas current is used. The source extraction voltage is controlled within 10-100 kV. The ion current of both gas and metal was ?1 A. The source operates in a frequency-pulse regime at a pulse-repetition frequency as high as 50 pps. At its normal operation the source provides a dose of 1016 ions/cm2 per minute on a 250-cm2 area surface. The source is constructed according to the program on development of new technologies and is intended for high current surface modification and production of exotic surface alloys. At present, TITAN ion sources are utilized to modify physical-mechanical parameters of different surfaces. Here we outline the ion source and its performance.

  17. Transport of radioactive ion beams and related safety issues: The 132Sn+ case study

    NASA Astrophysics Data System (ADS)

    Osswald, F.; Bouquerel, E.; Boutin, D.; Dinkov, A.; Kazarinov, N.; Perrot, L.; Sellam, A.

    2014-12-01

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  18. New type of metal ion source: Surface diffusion Li{sup +} ion source

    SciTech Connect

    Medvedev, V.K.; Suchorski, Y.; Block, J.H. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)] [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    1995-03-01

    A surface diffusion metal ion source, a new type of metal ion source, is explored. In this device a field desorption process is used to achieve an almost monoenergetic continuous flux of Li{sup +} ions from a [111]-oriented W field emitter. Earlier difficulties with the continuous supply of adatoms, required to produce measurable desorption rates, were overcome by making use of solid state surface diffusion from the Li multilayer reservoir at the shank of the field emitter. The high density of the ion beam (an ion current of 10{sup {minus}12} A was achieved from a W trimer), the extremely narrow energy distribution (full width at half-maximum of 0.25 eV) and the stable geometric form of the emitter itself during the operation are advantages of the new ion source which may be important in different areas of nanotechnology. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  19. Swift heavy ions induced mixing in metal/semiconductor system

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Chauhan, R. S.; Agarwal, D. C.; Kumar, Manvendra; Tripathi, A.; Bolse, W.; Avasthi, D. K.

    2008-04-01

    We have investigated the ion beam mixing in the metal/semiconductor (Cu/Ge) system under swift heavy ion irradiation. For this study the samples have been prepared by electron gun evaporation in ultrahigh vacuum deposition system. The irradiations were performed at room temperature (RT) using 100 MeV Ag ions, 120 MeV and 140 MeV Au ions and at liquid nitrogen temperature (LT) using 120 MeV, 350 MeV Au ions with fluences ranging from 1 × 10 13 to 2.7 × 10 14 ions/cm 2. Characterizations of these samples have been performed using Rutherford backscattering spectroscopy (RBS) and atomic force microscopy (AFM). On analyzing the RBS data, we find that mixing occurs at the interface and it increases with the fluence, electronic energy loss and irradiation temperature. The mixing in this case is due to interdiffusion across the interface during a transient melt phase according to the thermal spike model.

  20. Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal

    PubMed Central

    Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.

    2008-01-01

    In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.5–0.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x? slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731

  1. Metal ion levels and revision rates in metal-on-metal hip resurfacing arthroplasty: a comparative study.

    PubMed

    Robinson, Patrick G; Wilkinson, Andrew J; Meek, Robert M D

    2014-01-01

    Metal-on-metal (MoM) bearings in hip surgery are related to increased blood levels of metal ions. The nature of the relationship between ion levels and failure is still not fully understood. This study compares three cohorts of patients, 120 patients in each cohort, treated with a hip resurfacing arthroplasty, grouped by brand and diameter of femoral component on average four years postoperatively: Birmingham Hip Resurfacing ?50 mm, Durom resurfacing ?50 mm and Durom resurfacing <50 mm. The median blood ion levels of cobalt and chromium were significantly lower in the cohort with the large Durom resurfacing than the other two cohorts (P<0.05). The large BHR and large Durom HRA had revision rates of 3.3%. The small Durom HRA had a revision rate of 8.3%. Elevated blood ion levels can indicate a failing MoM bearing. The large BHR and large Durom HRA have similar revision rates yet the large Durom HRA had significantly lower metal ion levels. When similar ion levels were reported for BHR and small Durom the latter had significantly higher revision rates. This suggests ion levels do not absolutely predict the rate of HRA failure. Since MoM generation of metal ions is not the sole reason of failure, regular clinical and radiographic follow-up should also be in place for patients with these joints. PMID:24500833

  2. Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance

    E-print Network

    Zhang, Yanchao

    Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy voltammetry (ASV) capability has been demonstrated for detecting heavy metal ions in water. Metal ions in water from part-per-million to sub-part-per-billion levels with good linearity. Heavy metal poisoning

  3. Characterization of Chromized Metallic Surfaces by Means of Radioactive Cr

    Microsoft Academic Search

    V. Rö?iger; A. Freyer; E. Hartmann; C. Treutler; V. Brabec; O. Dragoun; A. Kovalik

    1986-01-01

    The spatial distribution of Cr deposited on metallic surfaces at concentrations of about 10 at\\/cm was examined by detecting the radiation components emitted in the Cr decay. The autoradiography revealed a non-homogeneous Cr covering. Combined Auger electron and X-ray spectroscopies yielded information on the Cr concentration, especially in the 2 nm thick surface layer. This concentration was found to depend

  4. Surface metal ion enhancement of thermally treated zeolites

    SciTech Connect

    Willis, W.S.; Suib, S.L.

    1986-09-03

    During the past several years the area of zeolite science has received increasingly intense attention owing to the preparation of new molecular sieves and the availability of modern spectroscopic methods for the study of these materials. The majority of spectroscopic studies of zeolites have focused on measurements of bulk magnetic, electronic, and structural properties, but few surface studies have been reported. Surface-inhomogeneous aluminum and silicon species have recently been reported by Barr and co-workers. In this study the authors have heated metal ion containing zeolites under controlled conditions in order to probe interactions between the zeolite and the metal ion. Here they present preliminary results for Ag/sup +//NaY and Cs/sup +//NaY zeolites studied by X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), and ion scattering spectroscopy (ISS).

  5. Reactions of fourth-period metal ions (Ca + - Zn + ) with O2: Metal-oxide ion bond energies

    NASA Astrophysics Data System (ADS)

    Fisher, Ellen R.; Elkind, J. L.; Clemmer, D. E.; Georgiadis, R.; Loh, S. K.; Aristov, N.; Sunderlin, L. S.; Armentrout, P. B.

    1990-08-01

    Reactions of Ca+, Zn+ and all first-row atomic transition metal ions with O2 are studied using guided ion beam techniques. While reactions of the ground states of Sc+, Ti+, and V+ are exothermic, the remaining metal ions react with O2 in endothermic processes. Analyses of these endothermic reactions provide new determinations of the M+-O bond energies for these eight elements. Source conditions are varied such that the contributions of excited states of the metal ions can be explicitly considered for Mn+, Co+, Ni+, and Cu+. Results (in eV) at 0 K are D0(Ca+-O)= 3.57±0.05, D0(Cr+-O)=3.72±0.12, D0(Mn+-O)=2.95±0.13, D0(Fe+-O)=3.53±0.06 (reported previously), D0(Co+-O)=3.32±0.06, D0(Ni+-O) =2.74±0.07, D0(Cu+-O)=1.62±0.15, and D0(Zn+-O)=1.65±0.12. These values along with literature data for neutral metal oxide bond energies and ionization energies are critically evaluated. Periodic trends in the ionic metal oxide bond energies are compared with those of the neutral metal oxides and those of other related molecules.

  6. Metal plasma immersion ion implantation and deposition: A review

    SciTech Connect

    Anders, A. [Lawrence Berkeley National Lab., CA (United States). Accelerator and Fusion Research Div.

    1996-09-01

    Metal Plasma Immersion Ion Implantation and Deposition (MePIIID) is a hybrid process combining cathodic arc deposition and plasma immersion ion implantation. The properties of metal plasma produced by vacuum arcs are reviewed and the consequences for MePIIID are discussed. Different version of MePIIID are described and compared with traditional methods of surface modification such as ion beam assisted deposition (IBAD). MePIIID is a very versatile approach because of the wide range of ion species and energies used. In one extreme case, films are deposited with ions in the energy range 20--50 eV, and at the other extreme, ions can be implanted with high energy (100 keV or more) without film deposition. Novel features of the technique include the use of improved macroparticle filters; the implementation of several plasma sources for multi-element surface modification; tuning of ion energy during implantation and deposition to tailor the substrate-film intermixed layer and structure of the growing film; simultaneous pulsing of the plasma potential (positive) and substrate bias (negative) with a modified Marx generator; and the use of high ion charge states.

  7. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  8. A Negative-Surface Ionization for Generation of Halogen Radioactive Ion Beams

    SciTech Connect

    Zaim, H.

    2001-04-16

    A simple and efficient negative surface ionization source has been designed, fabricated and initially tested for on-line generation of radioactive ion beams of the halogens (Cl, Br, I, and At) for use in the nuclear-structure and nuclear-astrophysics research programs at the Holifield Radioactive Ion Beam Facility. The source utilizes a solid, spherical geometry LaB{sub 6} surface ionizer for forming highly electronegative atoms and molecules. Despite its widely publicized propensity for being easily poisoned, no evidences of this effect were experienced during testing of the source. Nominal efficiencies of 15% for Br{sup {minus}} beam generation were obtained during off-line evaluation of the source with AlBr3 feed material when account is taken of the fractional dissociation of the molecule. Principles of operation, design features, operational parameter data, initial performance results, and beam quality data (emittance) are presented in this article.

  9. Charge state breeding for the acceleration of radioactive ions at TRIUMF

    SciTech Connect

    Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; McDonald, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Lamy, T. [LPSC, CNRS/IN2P3, UJF, 53 Av. des Martyres, 38026 Grenoble (France)

    2010-02-15

    A 14.5 GHz electron cyclotron resonance ion source (PHOENIX from Pantechnik) has been set up at the Isotope Separation and ACceleration (ISAC) facility at TRIUMF for the charge state breeding of radioactive ions. After extensive testing and optimization on a test bench it has been moved on-line and put into operation. During a first test in 2008 a beam of {sup 80}Rb{sup 14+} was successfully created from {sup 80}Rb{sup 1+} and accelerated by the ISAC postaccelerator. Further tests with different stable and radioactive isotopes from the ISAC on-line sources and from a test source with stable Cs have been carried out. Until now an efficiency of 1.4% for {sup 124}Cs{sup 20+} has been obtained.

  10. Peptide self-assembly triggered by metal ions.

    PubMed

    Zou, Rongfeng; Wang, Qi; Wu, Junchen; Wu, Jingxian; Schmuck, Carsten; Tian, He

    2015-08-01

    Through their unique and specific interactions with various metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. Inspired by natural metallopeptides, chemists have developed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing nanostructures. However, the design of new coordination peptides requires a deep understanding of the structures, assembly properties, and dynamic behaviours of such peptides. This review briefly discusses strategies of peptide self-assembly induced by metal coordination to different natural and non-natural binding sites in the peptide. The structures and functions of the obtained aggregates are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications. PMID:25952028

  11. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R. (Minneapolis, MN); Lundquist, Susan H. (White Bear Township, MN)

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  12. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  13. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R. (Minneapolis, MN); Lundquist, Susan H. (White Bear Township, MN)

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  14. Beam dynamics of a liquid-metal ion source

    SciTech Connect

    Whealton, J.H.; Meszaros, P.S.; Rothe, K.E.; Raridon, R.J.; Ryan, P.M. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (US))

    1990-01-01

    rms emittance growth of liquid-metal ion sources is studied. Processes included are nonlinear expansion through extractor and accelerator fringe fields, nonlinear beam space charge, plasma effects near needle, and waves (either ion acoustic or space charge limited as considered by Dudnikov (private communication, 1988)). This investigation consists of 2-D analysis of appropriate Vlasov--Poisson equations in both steady-state and time-dependent formulations. Various geometries will be considered such as some used by Alton of ORNL.

  15. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    SciTech Connect

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  16. Broad-beam multi-ampere metal ion source

    NASA Astrophysics Data System (ADS)

    Brown, Ian G.; Galvin, James E.; MacGill, Robert A.; Paoloni, Frank J.

    1989-06-01

    An embodiment of the MEVVA (metal vapor vacuum arc) high current metal ion source was developed in which the beam is formed from a 10 cm diameter set of extractor grids and which produces a peak beam current of up to several Amperes. The source, MEVVA V, operates in a pulsed mode with a pulse width at present 0.25 ms and a repetition rate of up to several tens of pulses per second (power supply limited). The multicathode feature that was developed for the prior source version, MEVVA IV, was incorporated here also; one can switch between any of 18 separate cathodes and thus metallic beam species. Maximum beam extraction voltage is over 90 kV, and since the ion charge state typically from Q = 1 to 5, depending on the metal employed, the ion energy in the extracted beam can thus be up to several hundred keV. This source is a new addition to the MEVVA family of metal ion sources, and the operational regimes and the limits to the source performance are being investigated. The source is described and some preliminary results are presented.

  17. Broad-beam multi-ampere metal ion source

    NASA Astrophysics Data System (ADS)

    Brown, Ian G.; Galvin, James E.; MacGill, Robert A.; Paoloni, Frank J.

    1990-01-01

    An embodiment of the MEVVA (metal vapor vacuum arc) high current metal ion source has been developed in which the beam is formed from a 10-cm-diam set of extractor grids and which produces a peak beam current of up to several amperes. The source, MEVVA V, operates in a pulsed mode with a pulsewidth, at present, of 0.25 ms and a repetition rate of up to several tens of pulses per second (power supply limited). The multi-cathode feature that was developed for the prior source version, MEVVA IV, has been incorporated here also; one can switch among any of 18 separate cathodes and thus metallic beam species. Maximum beam extraction voltage is over 90 kV, and since the ion charge states are typically from Q=1 to 5, depending on the metal employed, the ion energy in the extracted beam can thus be up to several hundred keV. This source is a new addition to the MEVVA family of metal ion sources, and we are at present investigating the operational regimes and the limits to the source performance. In this article we describe the source, and present some preliminary results.

  18. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  19. Nuclear and Astro Physics at the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    SciTech Connect

    Cizewski, Jolie A. [Department of Physics and Astronomy, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States)

    2010-10-11

    Neutron transfer reactions with radioactive ion beams of atomic nuclei have been used to probe the shell structure of nuclei far from stability and provide information important to understanding the origin of the elements heavier than iron.

  20. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K. [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Goloubinoff, Pierre [Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Christen, Philipp [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland)], E-mail: christen@bioc.uzh.ch

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  1. Characterization of metal ion binding sites on {ital Datura innoxia} by using lanthanide ion probe spectroscopy

    SciTech Connect

    Drake, L.R.; Hensman, C.E.; Lin, S.; Rayson, G.D. [Department of Chemistry and Biochemistry, New Mexico State University, Box 30001, Department 3C, Las Cruces, New Mexico (United States) 88003-0001] [Department of Chemistry and Biochemistry, New Mexico State University, Box 30001, Department 3C, Las Cruces, New Mexico (United States) 88003-0001; Jackson, P.J. [Environmental Molecular Biology Group, Life Sciences Division, LS-7, Los Alamos National Laboratory, Los Alamos, New Mexico (United States) 87545] [Environmental Molecular Biology Group, Life Sciences Division, LS-7, Los Alamos National Laboratory, Los Alamos, New Mexico (United States) 87545

    1997-10-01

    The excitation spectra associated with the {sup 7}F{sub 0}{r_arrow}{sup 5}D{sub 0} transition of Eu{sup +3} has been used to examine the binding sites on cell wall fragments of {ital Datura innoxia}. Both native and esterified cell wall fragments were each examined at pH 5 and pH 2 to determine the contributions to metal ion sorption from both the carboxylate and sulfonate functional groups. The excitation spectra have been deconvoluted into the individual groups responsible for metal ion uptake. At least four unique binding sites can be described as being responsible for metal ion uptake. The higher affinity sites involve carboxylates in the binding of Eu{sup +3} in a tridentate (3:1 ligand-to-metal ratio) configuration. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  2. Metal plasma immersion ion implantation and deposition using vacuum arc plasma sources

    Microsoft Academic Search

    André Anders; Simone Anders; Ian G. Brown; Michael R. Dickinson; Robert A. MacGill

    1994-01-01

    Plasma source ion implantation (PSII) with metal plasma results in a qualitatively different kind of surface modification than with gaseous plasma due to the condensable nature of the metal plasma, and a new, PSII-related technique can be defined: metal plasma immersion ion implantation and deposition (MPI). Tailored, high-quality films of any solid metal, metal alloy, or carbon (amorphous diamond) can

  3. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs. PMID:18315181

  4. Metallic ions in cometary comae and plasma tails

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.; Axford, W. I.

    1986-06-01

    A surprising result of the International Cometary Explorer (ICE) observations of the comet Giacobini-Zinner was the detection of ions of mass 23-24 AMU with a relatively high abundance. According to the experiments, these ions may be either Na(+) or C2(+), if not both. It is suggested here that the detected ions may indeed be in part Na(+) and/or Mg(+), and that these and other metallic ions, especially Si(+) and Fe(+), may be an important component of the cometary ionosphere and central plasma tail. The reasons are similar in principle to those which account for the prevalence of such ions in sporadic E layers in the terrestrial ionosphere, notably the comparatively short timescales for ionization of their neutral parent atoms and the large difference between the rates of dissociative and radiative recombination.

  5. Metal ion bombardment of onion skin cell wall

    SciTech Connect

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L.D.; Verdaguer, A.; Ratera, I.; Ogletree, D.F.; Monteiro, O.R.; Brown, I.G.

    2004-05-10

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30keV, and the implantation fluence was in the range 1014 1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  6. Changes in blood ion levels after removal of metal-on-metal hip replacements

    PubMed Central

    Durrani, Salim K; Sampson, Barry; Panetta, Therese; Liddle, Alexander D; Sabah, Shiraz A; Chan, Newton K; Skinner, John A; Hart, Alister J

    2014-01-01

    Background and purpose In patients with metal-on-metal (MoM) hip prostheses, pain and joint effusions may be associated with elevated blood levels of cobalt and chromium ions. Since little is known about the kinetics of metal ion clearance from the body and the rate of resolution of elevated blood ion levels, we examined the time course of cobalt and chromium ion levels after revision of MoM hip replacements. Patients and methods We included 16 patients (13 female) who underwent revision of a painful MoM hip (large diameter, modern bearing) without fracture or infection, and who had a minimum of 4 blood metal ion measurements over an average period of 6.1 (0–12) months after revision. Results Average blood ion concentrations at the time of revision were 22 ppb for chromium and 43 ppb for cobalt. The change in ion levels after revision surgery varied extensively between patients. In many cases, over the second and third months after revision surgery ion levels decreased to 50% of the values measured at revision. Decay of chromium levels occurred more slowly than decay of cobalt levels, with a 9% lag in return to normal levels. The rate of decay of both metals followed second-order (exponential) kinetics more closely than first-order (linear) kinetics. Interpretation The elimination of cobalt and chromium from the blood of patients who have undergone revision of painful MoM hip arthroplasties follows an exponential decay curve with a half-life of approximately 50 days. Elevated blood levels of cobalt and chromium ions can persist for at least 1 year after revision, especially in patients with high levels of exposure. PMID:24758321

  7. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  8. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi (Mastic Beach, NY); Kukacka, Lawrence E. (Port Jefferson, NY); Horn, William H. (Brookhaven, NY)

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  9. COAGULATION AND PRECIPITATION OF SELECTED METAL IONS FROM AQUEOUS SOLUTIONS

    EPA Science Inventory

    The report gives results of laboratory jar tests to develop data on the removal from aqueous solution of 12 metal ions of environmental concern. The project, of very limited scope, provides initial screening data only: coagulants were evaluated at only two dose levels (1.1 and 1....

  10. Arrays of Metal Nanostructures Produced by Focussed Ion Beam

    Microsoft Academic Search

    P. Luches; A. di Bona; S. F. Contri; G. C. Gazzadi; P. Vavassori; F. Albertini; F. Casoli; L. Nasi; S. Fabbrici; S. Valeri

    2007-01-01

    We present a study of the magnetic properties of arrays of nanostructures produced in a focussed ion beam-scanning electron microscope dual beam system. The single magnetic units have been isolated either by direct removal of parts of the metallic film or by local modification of the film magnetic properties. The final quality of the shape and the residual damage strictly

  11. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  12. Accumulation of heavy-metal ions by Zoogloea ramigera

    Microsoft Academic Search

    Anders B. Norberg; Hans Persson

    1984-01-01

    Biomass has been produced from glucose using the organism Zoogloea ramigera 115. This biomass has been used to remove copper, cadmium, and uranyl ions from water solutions. The metal uptake was studied with two different methods: either by spectrophotometric measurements on the solutions after flocculation or by potentiometric measurements with amalgam electrodes in order to follow the entire complex formation.

  13. Metal ion deposition from ionized mangetron sputtering discharge

    SciTech Connect

    Rossnagel, S.M.; Hopwood, J. [IBM Research, Yorktown Heights, NY (United States)] [IBM Research, Yorktown Heights, NY (United States)

    1994-01-01

    A technique has been developed for highly efficient postionization of sputtered metal atoms from a magnetron cathode. The process is based on conventional magnetron sputtering with the addition of a high density, inductively coupled rf (RFI) plasma in the region between the sputtering cathode and the sample. Metal atoms sputtered from the cathode due to inert gas ion bombardment transit the rf plasma and can be ionized. The metal ions can then be accelerated to the sample by means of a low voltage dc bias, such that the metal ions arrive at the sample at normal incidence and at a specified energy. The ionization fraction, measured with a gridded mass-sensitive energy analyzer is low at 5 mTorr and can reach 85% at 30 m Torr. Optical emission measurements show scaling of the relative ionization to higher discharge powers. The addition of large fluxes of metal atoms tends to cool the Ar RFI plasma, although this effect depends on the chamber pressure and probably the pressure response of the electron temperature. The technique has been scaled to 300 mm cathodes and 200 mm wafers and demonstrated with Cu,AlCu, and Ti/TiN. Deposition rates are equal to or in some cases larger than conventional magnetron sputtering. A primary application of this technique is lining and filling semiconductor trenches and vias on a manufacturing scale. 10 refs., 2 figs.

  14. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    SciTech Connect

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  15. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Nicholas B. Lentz

    2007-12-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln{sup 11}]-amyloid {beta}-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will become routine tomorrow.

  16. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  17. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  18. Between atomic and nuclear physics: radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Atanasov, Dinko; Blaum, Klaus; Bosch, Fritz; Brandau, Carsten; Bühler, Paul; Chen, Xiangcheng; Dillmann, Iris; Faestermann, Thomas; Gao, Bingshui; Geissel, Hans; Gernhäuser, Roman; Hagmann, Siegbert; Izumikawa, Takuji; Hillenbrand, Pierre-Michel; Kozhuharov, Christophor; Kurcewicz, Jan; Litvinov, Sergey A.; Litvinov, Yuri A.; Ma, Xinwen; Münzenberg, Gottfried; Najafi, Mohammad Ali; Nolden, Fritz; Ohtsubo, Takashi; Ozawa, Akira; Cagla Ozturk, Fatma; Patyk, Zygmunt; Reed, Matthew; Reifarth, Rene; Shahab Sanjari, Mohammad; Schneider, Dieter; Steck, Markus; Stöhlker, Thomas; Sun, Baohua; Suzaki, Fumi; Suzuki, Takeshi; Trageser, Christian; Tu, Xiaolin; Uesaka, Tomohiro; Walker, Philip; Wang, Meng; Weick, Helmut; Winckler, Nicolas; Woods, Philip; Xu, Hushan; Yamaguchi, Takayuki; Yan, Xinliang; Zhang, Yuhu; FRS-ESR, for the; ILIMA; SPARC; TBWD Collaborations

    2015-07-01

    Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities.

  19. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Wysocki, Joseph A. (Oxnard, CA); Storms, Edmund K. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Behrens, Robert G. (Los Alamos, NM); Swanson, Lynwood W. (McMinnville, OR); Bell, Anthony E. (McMinnville, OR)

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  20. Metal negative ion production by an RF sputter self-extraction ion source

    NASA Astrophysics Data System (ADS)

    Yamada, N.; Kasuya, T.; Kenmotsu, T.; Vasquez, M. R., Jr.; Wada, M.

    2013-02-01

    An 80 mm diameter 80 mm long RF sputter type self-extraction negative ion source equipped with a metal sputter target has been tested to investigate the performance of producing beams of negative aluminum (Al) ions. An RF power at 13.56 MHz is directly supplied to a 60 mm diameter target containing a cylindrical and ring permanent magnets to form planar magnetron magnetic field geometry. The target is self-biased to a DC potential at about -250 V with respect to the plasma, and negative ions produced at the surface are self-extracted from the target across the sheath to reach the ion beam extraction hole. Injection of cesium into the discharge enhanced the amount of Al- ions but it also enlarged the impurity ion beam current.

  1. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides.

    PubMed

    Chen, Xiangfeng; Fung, Yi Man Eva; Chan, Wai Yi Kelly; Wong, Pui Shuen; Yeung, Hoi Sze; Chan, T-W Dominic

    2011-12-01

    Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments. PMID:21952786

  2. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    NASA Astrophysics Data System (ADS)

    Ruiz, Chris; Greife, Uwe; Hager, Ulrike

    2014-06-01

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities.

  3. Nuclear Structure Studies with Radioactive Ion Beams in the Mass A = 80 Region

    SciTech Connect

    Galindo-Uribarri, A.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Varner, R. L.; Yu, C.-H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States); Padilla-Rodal, E. [Instituto de Ciencias Nucleares, UNAM, Mexico City 04510 (Mexico); Batchelder, J. C. [UNIRIB, Oak Ridge Associated Universities, Oak Ridge TN 37831 (United States); Urrego-Blanco, J. P. [Department of Physics and Astronomy, University of Tennessee, Knoxville TN 37996 (United States)

    2009-03-10

    An experimental program to measure spectroscopic properties of neutron-rich nuclei in the A = 80 region is underway at the Holifield Radioactive Ion Beam Facility. Our approach has been to get a comprehensive picture of the shell structure in this region by studying a series of properties of low lying states (E(2{sup +}), B(E2), g-factors and quadrupole moments). The beams, instrumentation and techniques developed specifically for this purpose have allowed us to systematically study the behavior of these observables along isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions. We have developed many techniques and detectors for in-beam gamma spectroscopy with radioactive ion beams. Most of the detectors can be used individually or in combination. Generally these detector systems have very large efficiencies. We give examples of their use from three recent experiments; namely, Coulomb excitation of n-rich nuclei along the N = 50 shell closure, the static quadrupole moment of the first 2{sup +} in {sup 78}Ge and g-factor measurements of n-rich isotopes near N = 50.

  4. Nuclear Structure Studies with Radioactive Ion Beams in the Mass A = 80 Region

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn} [ORNL; Padilla, E. [ORNL/Instituto de Ciencias Nucleares, UNAM, Mexico; Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Beene, James R [ORNL; Lagergren, Karin B [ORNL; Mueller, Paul Edward [ORNL; Radford, David C [ORNL; Stracener, Daniel W [ORNL; Urrego-Blanco, J. P. [University of Tennessee, Knoxville (UTK); Varner Jr, Robert L [ORNL; Yu, Chang-Hong [ORNL

    2009-01-01

    An experimental program to measure spectroscopic properties of neutron-rich nuclei in the A = 80 region is underway at the Holifield Radioactive Ion Beam Facility. Our approach has been to get a comprehensive picture of the shell structure in this region by studying a series of properties of low lying states (E (2+), B (E2), g-factors and quadrupole moments). The beams, instrumentation and techniques developed specifically for this purpose have allowed us to systematically study the behavior of these observables along isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions. We have developed many techniques and detectors for in-beam gamma spectroscopy and decay studies with radioactive ion beams. Most of the detectors can be used individually or in combination. Generally these detector systems have very large efficiencies. We give examples of their use from three recent experiments; namely, Coulomb excitation of n-rich nuclei along the N = 50 shell closure, the static quadrupole moment of the first 2+ in 78Ge and g-factor measurements of n-rich isotopes near N = 50.

  5. Thermodynamic Evidence for Negative Charge Stabilization by a Catalytic Metal Ion within an RNA Active Site

    E-print Network

    Herschlag, Dan

    Thermodynamic Evidence for Negative Charge Stabilization by a Catalytic Metal Ion within an RNA models generally hinge upon the assumption that the metal ions stabilize negative charge buildup along evidence that this metal ion interaction facilitates the forward reaction by stabilization of negative

  6. Model of cratering by single ions in heavy metals

    NASA Astrophysics Data System (ADS)

    Kalinichenko, A. I.; Perepelkin, S. S.; Strel'nitskij, V. E.

    2015-04-01

    In the model of the nonlocal thermoelasticpeak (NTP) of ion the theoretical investigation of nanocratering in targets of heavy metals at bombardment by ions Xe+ with energy from 25 eV up to 30 keV is carried out. Simulation using program package SRIM2008 has shown possibility of formation of subsurface singly connected cascade with energy capacity sufficient for arising of the droplet sputtering for Ag targets. Calculations have shown opportunity of cratering on surface of Ag flat targets with yield strength <0.1 GPa at bombardment by Xe+ ions with energy E > 10 keV. Craters are not formed on Pt flat targets. Possible influence of nanoscale roughness on cratering by single ions is discussed.

  7. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1987-09-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A new kind of high current metal ion source in which the ion beam is extracted from a metal vapor vacuum arc plasma has been used to obtain the spectra of multiply charged ions produced within the cathode spots. The cathode materials used and the species reportetd on here are: C, Mg, Al, Si, Ti, Cr, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Rh, Pd, Ag, In, Sn, Gd, Ho, Ta, W, Pt, Au, Pb, Th, and U; the arc current was 200 A for all measurements. Charge state spectra were measured using a time-of-flight method. The arc voltage was also measured. In this paper we report on the measured charge state distributions and arc voltages and compare the distributions with the predictions of a theory in which ionization occurs in the cathode spots via stepwise ionization by electron impact. 64 refs., 10 figs., 3 tabs.

  8. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change

    SciTech Connect

    Welsch, D.J.; Nelsestuen, G.L.

    1988-06-28

    Prothrombin fragment 1 (prothrombin residues 1-156) contains two acetylation sites that are protected from derivatization by calcium. The first site was protected by only calcium while the second site was protected by magnesium as well. To identify this second acetylation site, fragment 1 was first acetylated with unlabeled reagent in the presence of magnesium. Metal ions were removed, and the protein was acetylated with radiolabeled reagent. The incorporated radiolabel was stable over long periods of time and at acidic or basic pH as long as elevated temperatures were avoided. The radiolabel was removed by treatment of the protein at pH 10 and 50 /sup 0/C or with 0.2 M hydroxylamine at 50 /sup 0/C for at least 30 min. Proteolytic degradation of the protein showed that the radioactivity appeared in a tryptic peptide corresponding to residues 94-111 of prothrombin. Amino acid sequence analysis revealed that the radiolabel was associated with an unextracted sequence product. The major radiolabeled product contained Asn/sup 101/-Ser/sup 102/ along with the expected chitobiose attached to Asn-101. NMR analysis revealed the presence of three acetate groups which would correspond to two from the chitobiose plus the incorporated acetate residue. Mass spectral analysis showed the correct mass for this glycopeptide plus a single added acetyl group. Amide /sup 1/H NMR analysis showed only three amide protons rather than the anticipated four. On the basis of these several observations, it is postulated that the site of acetylation is the ..beta..-amide nitrogen of Asn-101. Consequently, these studies showed an unusual chemical reactivity in prothrombin fragment 1. They further show that metal ion binding to prothrombin fragment 1 and subsequent protein fluorescence quenching involve sites ion the kringle region of the protein.

  9. Degradation of Anthracycline Antitumor Compounds Catalysed by Metal Ions

    PubMed Central

    Haj, Hayet Tayeb-Bel; Garnier-Suillerot, Arlette

    1994-01-01

    The influence of some metal ions on the degradation of anthracyclines was examined. One of the degradation products is the 7,8-dehydro-9,10-desacetyldoxorubicinone, D* (¥), usually formed by hydrolysis at slightly basic pH. D* is a lipophilic compound with no cytostatic properties. Its formation could be responsible for the lack of antitumor activity of the parent compound. The coordination of metal ions to anthracycline derivatives is required to have degradation products. Cations such as Na+, K+, or Ca2+ do not induce the D* formation however metals which can form stable complexes with doxorubicin afford D*. Iron(III) and copper(II) form appreciable amount of D* at slightly acidic pH. Terbium(III) forms D* but its complex is stable only at slightly basic pH. Palladium(II) which does not form D*. The influence of the coordination mode of metal ions to anthracycline on the D* formation is discussed. PMID:18476230

  10. New reaction chamber for transient field g-factor measurements with radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Illana, A.; Perea, A.; Nácher, E.; Orlandi, R.; Jungclaus, A.

    2015-06-01

    A new reaction chamber has been designed and constructed to measure g-factors of short-lived excited states using the Transient Field technique in combination with Coulomb excitation in inverse kinematics. In this paper we will discuss several important aspects which have to be considered in order to successfully carry out this type of measurement with radioactive ion beams, instead of the stable beams used in a wide range of experiments in the past. The technical solutions to the problems arising from the use of such radioactive beams will be exposed in detail and the first successful experiment using the new chamber in combination with MINIBALL cluster detectors at REX-ISOLDE (CERN) will be reported on.

  11. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms.

    PubMed

    Arikawa, Hiroshi; Ando, S; Aoki, T; Ezure, S; Harada, K; Hayamizu, T; Inoue, T; Ishikawa, T; Itoh, M; Kawamura, H; Kato, K; Kato, T; Uchiyama, A; Aoki, T; Furukawa, T; Hatakeyama, A; Hatanaka, K; Imai, K; Murakami, T; Nataraj, H S; Sato, T; Shimizu, Y; Wakasa, T; Yoshida, H P; Sakemi, Y

    2014-02-01

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a (18)O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line. PMID:24593466

  12. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    SciTech Connect

    Arikawa, Hiroshi, E-mail: arikawa@cyric.tohoku.ac.jp; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578 (Japan)] [Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578 (Japan); Aoki, T. [Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan)] [Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)] [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Hatakeyama, A. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan)] [Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan); Hatanaka, K.; Yoshida, H. P. [Research Center for Nuclear Physics, Osaka University, Osaka 606-8502 (Japan)] [Research Center for Nuclear Physics, Osaka University, Osaka 606-8502 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1184 (Japan)] [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1184 (Japan); and others

    2014-02-15

    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a {sup 18}O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  13. Speciation of heavy metal ions as influenced by interactions with montmorillonite, Al hydroxide polymers and citrate

    Microsoft Academic Search

    R. P. T. Janssen

    1995-01-01

    Clay minerals, metal-hydroxides and organic matter can bind metal ions; moreover they also interact with each other. These mutual interactions influence the metal binding to a significant extent. In this study, the speciation of the heavy metal ions Zn and Ph was investigated in model systems consisting of various combinations of the clay mineral montmorillonite (Na saturated), Al hydroxide polymers

  14. Metal ion levels after metal-on-metal proximal femoral replacements: a 30-year follow-up.

    PubMed

    Dunstan, E; Sanghrajka, A P; Tilley, S; Unwin, P; Blunn, G; Cannon, S R; Briggs, T W R

    2005-05-01

    Metal-on-metal hip bearings are being implanted into younger patients. The consequence of elevated levels of potentially carcinogenic metal ions is therefore a cause for concern. We have determined the levels of cobalt (Co), chromium (Cr), titanium (Ti) and vanadium (Va) in the urine and whole blood of patients who had had metal-on-metal and metal-on-polyethylene articulations in situ for more than 30 years. We compared these with each other and with the levels for a control group of subjects. We found significantly elevated levels of whole blood Ti, Va and urinary Cr in all arthroplasty groups. The whole blood and urine levels of Co were grossly elevated, by a factor of 50 and 300 times respectively in patients with loose metal-on-metal articulations when compared with the control group. Stable metal-on-metal articulations showed much lower levels. Elevated levels of whole blood or urinary Co may be useful in identifying metal-on-metal articulations which are loose. PMID:15855362

  15. Electron capture dissociation of peptides metalated with alkaline-earth metal ions

    Microsoft Academic Search

    Y. M. Eva Fung; Haichuan Liu; T.-W. Dominic Chan

    2006-01-01

    The possible use of divalent alkaline-earth metal ions, including Mg2+, Ca2+, Sr2+, and Ba2+, as charge carrier for electron capture dissociation of peptides was investigated. Model peptides of RGGGVGGGR and NGGGWGGGN\\u000a were used to simplify the interpretation of spectral information. It was demonstrated that useful electron capture dissociation\\u000a (ECD) tandem mass spectra of these metalated peptides could be generated. Interestingly,

  16. Beam dynamics of a liquid metal ion source

    SciTech Connect

    Whealton, J.H.; Meszaros, P.S.; Rothe, K.E.; Raridon, R.J.; Ryan, P.M.

    1989-01-01

    RMS emittance growth of liquid metal ion sources is studied. Processes included are nonlinear expansion through extractor and accelerator fringe fields, nonlinear beam space charge, plasma effects near needle, and waves (either ion-acoustic or space charge limited as considered by V.I. Dudnikov). This investigation consists of 2-D analysis of appropriate Vlasov-Poisson equations in both steady-state and time-dependent formulations. Various geometries will be considered such as some used by G. Alton of ORNL. 2 refs., 7 figs.

  17. Ion beam mixing of metal/fluoropolymer interfaces

    NASA Astrophysics Data System (ADS)

    Dennis, D. L.; Giedd, R. E.; Wang, Y. Q.; Glass, G. A.

    1999-06-01

    Ion beam mixing of metals and polymers with very low dielectric constants such as Teflon can provide many applications in the area of electronic materials. This work is a study of the "mixing" effect of 50 keV nitrogen implanted thin metal layers on Teflon PTFE (polytetrafluoroethylene) substrates. RBS analysis shows that the distribution of thin layers of copper and chromium (approximately 300-400 Å thick) through the implant layer of the Teflon depends on the reactivity of the metal. As the implant fluence is increased, the distribution of metal atoms in the polymer matrix becomes concentrated over smaller ranges near the bottom of the implant layer. In situ RGA analysis during the implantation shows the liberation of an abundance of fluorine in many different forms. This is supported by results from a NRA experiment that shows the non-uniform concentration profile of fluorine throughout the implant layer. During the implantation process, the fluorine is released through the incident ion track leaving a carbon and metal rich region near the surface of the implant layer. The fluorine density increases with depth through the implant layer making a smooth transition to the undamaged bulk Teflon below. Low dielectric materials with highly conductive surfaces, such as this one, may provide an opportunity for a broad range of new microelectronic applications.

  18. Stability constants of HBED with various metal ions 

    E-print Network

    Long, Gregory Neal

    1990-01-01

    (III)-HBED stability constant. && Determining the stability constants for HBED with the metal iona Co(II), Ni(II), Cu(II), Ga(III), In(III), Fe(III), and Gd(III) would correct the inaccuracies for the previously measured stability constants of HBED with Ga... constant for HBED, as well as the HBED-metal ion chelate formation constants for Cu(II), Fe(III), and Gd(III), were determined from UV- visible spectrophotometric titrations at varying -log[H]'s. spectrophotometric measurements were necessary...

  19. The corrosion protection of metals by ion vapor deposited aluminum

    SciTech Connect

    Danford, M.D.

    1993-10-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  20. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  1. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  2. Review of work related to ion sources and targets for radioactive beams at Argonne

    SciTech Connect

    Nolen, J.A.

    1995-12-01

    A group including many ANL Physics Division staff and ATLAS outside users has discussed the possibilities for research with radioactive ion beams and prepared a working paper entitled {open_quotes}Concept for an Advanced Exotic Beam Facility Based on ATLAS.{close_quotes} Several subgroups have been working on issues related to ion sources and targets which could be used in the production and ionization of radionuclides with high power primary beams. Present activities include: (a) setting up an ion source test stand to measure emittances and energy spreads of ISOL-type ion sources, (b) experiments to evaluate methods of containing liquid uranium for production targets, (c) experimental evaluation of geometries for the generation of secondary neutron beams for production of radionuclides, (d) setting up an ISOL-type ion source at a neutron generator facility to measure fission fragment release times and efficiencies, and (e) computer simulations of an electron-beam charge-state amplifier to increase the charge states of 1{sup +} secondary beams to 2,3 or 4{sup +}. The present status of these projects and future plans are reported below.

  3. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    SciTech Connect

    Ball, G. C.; Bandyopadhyay, D.; Bricault, P.; Chan, S.; Churchman, R.; Coombes, H.; Dombsky, M.; Garnsworthy, A.; Hackman, G.; Lassen, J.; Morton, A. C.; Pearson, C. J.; Triambak, S.; Williams, S. J. [TRIUMF 4004 Wesbrook, Vancouver BC, V6T 2A3 (Canada); Andreoiu, C.; Cross, D. [Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A IS6 (Canada); Austin, R. A. E.; Colosimo, S.; Kanungo, R. [Department of Astronomy and Physics, St. Mary's University, Halifax, NS, B3H 3C3 (Canada); Becker, J. A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)] (and others)

    2009-03-31

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8{pi} spectrometer and its associated auxiliary detectors is optimize for {beta}-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8{pi} spectrometer.

  4. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil)] [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T. [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)] [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  5. Chelating Agents and the Regulation of Metal Ions

    PubMed Central

    Bulman, Robert A.

    1994-01-01

    Up to about the early 1980s it was perhaps still possible to summarize in a review of a moderate length the development of the medicinal applications of chelation chemistry and the exploitation of such chemistry in regulating the metal ion concentrations in the body. However, in the last few years there has a great surge in the development of chelation chemistry and its usage in medicine and related areas of life sciences research. It is no longer the case that such a review primarily concentrates upon the use of chelating agents in removing toxic metals from the body but it must now cover the use of chelating agents in the imaging procedures nuclear medicine and magnetic resonance imaging (MRI), the use of chelating agents in unravelling the biochemistry of reactive oxidative species (ROS) and the control and measurement of intracellular calcium ions. It is in the recent applications that there have been the greatest developments over the last ten years. PMID:18476223

  6. MRI findings following metal on metal hip arthroplasty and their relationship with metal ion levels and acetabular inclination angles.

    PubMed

    Fox, Ciara M; Bergin, Karen M; Kelly, Gabrielle E; McCoy, Gerry F; Ryan, Anthony G; Quinlan, John F

    2014-08-01

    Following the global recall of all ASR metal on metal hip products, our aim was to correlate MRI findings with acetabular inclination angles and metal ion levels in patients with these implants. Both cobalt and chromium levels were significantly higher in the presence of a periprosthetic fluid collection. There was no association between the presence of a periprosthetic mass, bone marrow oedema, trochanteric bursitis or greater levels of abductor muscle destruction for cobalt or chromium. There was no association between the level of periprosthetic tissue reaction and the acetabular inclination angle with any of the pathologies identified on MRI. The relationship between MRI pathology, metal ion levels and acetabular inclination angles in patients with ASR implants remains unclear adding to the complexity of managing patients. PMID:24793890

  7. Metallic ions and atoms in the upper atmosphere

    Microsoft Academic Search

    Jeffrey M. Forbes; R. G. Roble

    1992-01-01

    The main focus of research under AFOSR Grant F49620-92-J-0092 is to investigate the global and local transport of metallic ions in the upper atmosphere, in particular the layering of ionization, through use of comprehensive numerical models which account for realistic meteoric sources, chemical conversions and sinks, and transport by molecular and eddy diffusion, winds, and electric fields. The ultimate goal

  8. Metallic ions and atoms in the upper atmosphere

    Microsoft Academic Search

    Jeffrey M. Forbes

    1994-01-01

    The main focus of research under AFOSR Grant F49620-920-J-0092 is to investigate the global and local transport of metallic ions in the upper atmosphere, in particular the layering of ionization, through use of comprehensive numerical models which account for realistic meteoric sources, chemical conversions and sinks, and transport by molecular and eddy diffusion, winds and electric fields. The ultimate goal

  9. Thermal analysis of protein–metallic ion systems

    Microsoft Academic Search

    Xiao Hu; David Kaplan; Peggy Cebe

    2009-01-01

    Advanced thermal analysis methods, such as temperature modulated DSC (differential scanning calorimetry) and quasi-isothermal\\u000a TMDSC were used to analyze the protein–metallic ion interactions in silk fibroin proteins. The precise heat capacities were\\u000a measured and theoretically predicted in this study. To remove bound water and simplify the system, a thermal cycling treatment\\u000a through both standard DSC and TMDSC was used to

  10. Ion beam sputter deposition of refractory metal oxides

    SciTech Connect

    Kempf, B.E.; Dinges, H.W.; Poecker, A. [Deutsche Bundespost Telekom Forschungs- und Technologiezentrum, Darmstadt (Germany)

    1995-12-31

    Oxides of hafnium, niobium, tantalum, and zirconium are deposited by ion beam sputtering of the pure metal targets using CO{sub 2} as working gas. The resulting thin films are amorphous, featureless smooth and of excellent adherence to semiconductor substrates. Despite a certain content of carbon they are highly transparent in the visible and near infrared wavelength range as determined by spectroscopic ellipsometry. Their wide range of refractive indices makes them suitable for multilayer optical filter design.

  11. Glucose enhancement of LDL oxidation is strictly metal ion dependent

    Microsoft Academic Search

    Hiro-Omi Mowri; Balz Frei; John F Keaney Jr.

    2000-01-01

    Recent evidence suggests that lipoprotein oxidation is increased in diabetes, however, the mechanism(s) for such observations are not clear. We examined the effect of glucose on low-density lipoprotein (LDL) oxidation using metal ion–dependent and –independent oxidation systems. Pathophysiological concentrations of glucose (25 mM) enhanced copper-induced LDL oxidation as determined by conjugated diene formation or relative electrophoretic mobility (REM) on agarose

  12. Equilibrium sorption isotherm for metal ions on tree fern

    Microsoft Academic Search

    Y. S. Ho; C. T. Huang; H. W. Huang

    2002-01-01

    A new sorbent system for removing heavy metal ions, such as Zn(II), Cu(II) and Pb(II), from aqueous solutions has been investigated. This new sorbent is tree fern, an agriculture product. Variables of the system include solution temperature and sorbent particle size. The experimental results were fitted to the Langmuir, Freundlich and Redlich–Peterson isotherms to obtain the characteristic parameters of each

  13. The application of metal cutting technologies in tasks performed in radioactive environments

    SciTech Connect

    Fogle, R.F.; Younkins, R.M.

    1997-05-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

  14. Production of radioactive Ag ion beams with a chemically selective laser ion source

    NASA Astrophysics Data System (ADS)

    Jading, Y.; Catherall, R.; Jokinen, A.; Jonsson, O. C.; Kugler, E.; Lettry, J.; Ravn, H. L.; Tengblad, O.; Kautzsch, T.; Klöckl, I.; Kratz, K.-L.; Scheerer, F.; Fedoseyev, V. N.; Mishin, V. I.; van Duppen, P.; Wöhr, A.; Walters, W. B.

    1996-04-01

    We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power copper-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

  15. Effects of metallic ion toxicity on human gingival fibroblasts morphology.

    PubMed

    Messer, R L; Bishop, S; Lucas, L C

    1999-09-01

    Alloys used as implant materials release metal ions to surrounding tissues. Cytotoxic substances attack at the molecular level, and these effects are reflected in the structure of the cells and organelles. The objective of this study was to evaluate the cellular morphology and ultrastructural changes of cultured human gingival fibroblasts to salt solutions of ions (beryllium (Be+2), chromium (Cr+6 and Cr+3), nickel (Ni+2), molybdenum (Mo+6)) which may be released from nickel-chromium dental alloys. The concentrations chosen were based on previously conducted cell culture studies. Fibroblasts were exposed to the different ion concentrations for 24 or 72 h. Cellular morphology and ultrastructural features were examined using scanning electron microscopy and transmission electron microscopy. Ultrastructural alterations observed included irregular shaped nuclei for cells exposed to hexavalent chromium and nickel, pseudopodia for cells exposed to beryllium and molybdenum, and lipid droplet formation in cells exposed to nickel. PMID:10503967

  16. Combined Effects of Heavy Metal Ions on Bacteria and the Determination of Heavy Metals by Bioassay

    Microsoft Academic Search

    A. A. Tumanov; P. A. Krest'yaninov

    2004-01-01

    In the framework of the development of bioassay, a procedure was developed for studying the combined effects of heavy metal ions on bacteria. The bacterium Bacillus subtilis niger was proposed as an analytical indicator. A universal calculation system was developed that allows one to obtain and analyze functional models of toxicity and the combined effects of toxicants. Models for the

  17. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse

    Microsoft Academic Search

    Osvaldo Karnitz; Leandro Vinicius Alves Gurgel; Júlio César Perin de Melo; Vagner Roberto Botaro; Tânia Márcia Sacramento Melo; Rossimiriam Pereira de Freitas Gil; Laurent Frédéric Gil

    2007-01-01

    This work describes the preparation of new chelating materials derived from sugarcane bagasse for adsorption of heavy metal ions in aqueous solution. The first part of this report deals with the chemical modification of sugarcane bagasse with succinic anhydride. The carboxylic acid functions introduced into the material were used to anchor polyamines, which resulted in two yet unpublished modified sugarcane

  18. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  19. In vivo liberation of silver ions from metallic silver surfaces.

    PubMed

    Danscher, Gorm; Locht, Linda Jansons

    2010-03-01

    In vivo liberation of electrically charged silver atoms/silver ions from metallic silver pellets, silver grids and silver threads placed in the brain, skin and abdominal cavity was proved by way of the histochemical technique autometallography (AMG). A bio-film or "dissolution membrane" inserted between the metallic surface and macrophages was recognized on the surface of the implanted silver after a short period of time. Bio-released silver ions bound in silver-sulphur nanocrystals were traced within the first 24 h in the "dissolution membrane" and the "dissolucytotic" macrophages. In animals that had survived 10 days or more, silver nanocrystals were detected both extra- and intracellularly in places far away from the implant including regional lymph nodes, liver, kidneys and the central nervous system (CNS). The accumulated silver was always confined to lysosome-like organelles. Dissolucytotic silver was extracellularly related to collagen fibrils and fibres in connective tissue and basement membranes. Our study demonstrates that (1) the number of bio-released silver ions depends on the size of the surface of the implanted silver, (2) the spread of silver ions throughout the body takes place primarily not only through the vascular system, but also by retrograde axonal transport. It is concluded that implantation of silver or silver-plated devices is not recommendable. PMID:20033701

  20. Adsorption of heavy metal ions by immobilized phytic acid

    SciTech Connect

    Tsao, G.T.; Zheng, Yizhou; Lu, J.; Gong, Cheng S. [Purdue Univ., West Lafayette, IN (United States)

    1997-12-31

    Phytic acid (myoinositol hexaphosphate) or its calcium salt, phytate, is an important plant constituents. It accounts for up to 85% of total phosphorus in cereals and legumes. Phytic acid has 12 replaceable protons in the phytic molecule rendering it the ability to complex with multivalent cations and positively charged proteins. Poly 4-vinyl pyridine (PVP) and other strong-based resins have the ability to adsorb phytic acid. PVP has the highest adsorption capacity of 0.51 phytic acid/resins. The PVP resin was used as the support material for the immobilization of phytic acid. The immobilized phytic acid can adsorb heavy metal ions, such as cadmium, copper, lead, nickel, and zinc ions, from aqueous solutions. Adsorption isotherms of the selected ions by immobilized phytic acid were conducted in packed-bed column at room temperature. Results from the adsorption tests showed 6.6 mg of Cd{sup 2+}, 7 mg of Cu{sup 2+}, 7.2 mg of Ni{sup 2+}, 7.4 mg of Pb{sup 2+}, and 7.7 mg of Zn{sup 2+} can be adsorbed by each gram of PVP-phytic acid complex. The use of immobilized phytic acid has the potential for removing metal ions from industrial or mining waste water. 15 refs., 7 figs., 2 tabs.

  1. Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed

    Microsoft Academic Search

    Hao Liang; Qipeng Yuan; Qian Xiao

    2006-01-01

    Effects of six metal ions on the formation of sulforaphane and the liberation of glucose upon hydrolysis of glucoraphanin by myrosinase at neutral pH were studied. The yields of sulforaphane and glucose were determined by HPLC. Copper ion and magnesium ion decreased the yields of sulforaphane and glucose. Ferrous ion and ferric ion inhibited the formation of sulforaphane, but had

  2. Ion exchange selectivities of calcium alginate gels for heavy metals.

    PubMed

    Jodra, Y; Mijangos, F

    2001-01-01

    An equilibrium model has been proposed and verified, based on the conditions in the gel phase and Donnan equilibrium theory, for the analysis of the experimental data on the recovery of lead, copper, cadmium, cobalt, nickel and zinc from synthetic, nonmetallic aqueous solutions on calcium alginate gels. This equilibrium model considers that the system behaves as an ion-exchange process between the calcium in the gels and the divalent metals in solution, and that the metallic portion enclosed in gel fluid is supposed an important quantitative contribution to the total amount of metal uptake by gels. According to the equilibrium constants calculated, it is deduced that the selectivity order is: Pb > Cu > Cd > Ni > Zn > Co. PMID:11380185

  3. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J. (comps.)

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  4. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions.

    PubMed

    Even, Julia; Yakushev, Alexander; Düllmann, Christoph E; Dvorak, Jan; Eichler, Robert; Gothe, Oliver; Hild, Daniel; Jäger, Egon; Khuyagbaatar, Jadambaa; Kratz, Jens V; Krier, Jörg; Niewisch, Lorenz; Nitsche, Heino; Pysmenetska, Inna; Schädel, Matthias; Schausten, Brigitta; Türler, Andreas; Wiehl, Norbert; Wittwer, David

    2012-06-18

    Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements. PMID:22663355

  5. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  6. Health risk and impact evaluation for recycling of radioactive scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States); Murphie, W.E.; Lilly, M.J. III [USDOE, Washington, DC (United States)

    1994-03-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service.

  7. Alkali Metal Ion and Lithium Isotope Selectivity of HZr2(PO4)3

    Microsoft Academic Search

    Takao OI; Yoshichika UCHIYAMA; Morikazu HOSOE; Katsuhiko ITOH

    1999-01-01

    HZr2(PO4)3 has been synthesized by the heat treatment of NH4Zr2(PO4)3 and its properties as an ion exchanger have been examined with the main focus on its alkali metal ion and lithium isotope selectivity. The distribution coefficients for alkali metal ions revealed that HZr2(PO4)3 was lithium ion-specific and showed little affinity toward potassium, rubidium or cesium ion. The lithium and sodium

  8. Radiation damage from single heavy ion impacts on metal surfaces

    SciTech Connect

    Donnelly, S.E. [Univ. of Salford, Manchester (United Kingdom); Birtcher, R.C. [Argonne National Lab., IL (United States). Materials Science Div.

    1998-06-01

    The effects of single ion impacts on the surfaces of films of Au, Ag, In and Pb have been studied using in-situ transmission electron microscopy. On all of these materials, individual ion impacts produce surface craters, in some cases, with associated expelled material. The cratering efficiency scales with the density of the irradiated metal. For very thin Au foils ({approx} 20--50 nm), in some cases individual ions are seen to punch small holes completely through the foil. Continued irradiation results in a thickening of the foil. The process giving rise to crater and hole formation and other changes observed in the thin foils has been found to be due to pulsed localized flow--i.e. melting and flow due to the thermal spikes arising from individual ion impacts. Experiments carried out on thin films of silver sandwiched between SiO{sub 2} layers have indicated that pulsed localized flow also occurs in this system and contributes to the formation of Ag nanoclusters in SiO{sub 2}--a system of interest for its non-linear optical properties. Calculation indicates that, when ion-induced, collision cascades occur near surfaces (within {approx} 5 nm) with energy densities sufficient to cause melting, craters are formed. Crater formation occurs as a result of the explosive outflow of material from the hot molten core of the cascade. Processes occurring in the sandwiched layer are less well understood.

  9. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter ?(?) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA. PMID:24824327

  10. Capillary electrophoresis for trace metal ion analysis in environmental studies.

    PubMed

    Fung, Y S; Tung, H S

    1999-07-01

    A new buffer system consisting of 30 mM hydroxylamine hydrochloride, 0.1 mM 1,10-phenanthroline, 1% methanol and pH 3.7 was optimized for simultaneous determination of water and acid leachable metals from respirable, fine and coarse air particulate matters. A reducing environment was used to resolve metal ions with variable oxidation states. A suitable counteranion was employed to enable acidic pH to be used and methanol was added to improve the resolution of the electropherograms and to achieve simultaneous determination of several metal ions. Compared to existing capillary electrophoresis (CE) buffers, the buffer developed, based on direct UV detection of ion-pair with weak interaction, gives improved resolution and sharper, more stable and well-resolved peaks. It detects total irons and solves interfering problems due to the variable oxidation states of iron in environmental samples. Compared to existing mostly alkaline CE buffers for metal analysis, the acidic nature of the buffer system developed makes the pretreatment step simpler and reduces the risk of reagent contamination. Satisfactory working ranges (15-5500 ppb) and detection limits (0.5-3 ppb) were obtained for leachable Zn, Cu, Co, Fe and Cd. The NIST 1648 urban particulate matters were found to leach out 2.53-42.8% water-extractable and 2.76-71.7% acid-extractable Zn, Cu, Fe and Cd. High iron contents, and lower copper and zinc concentrations were found in respirable suspended particulates (RSP) sampled in Hong Kong. PMID:10445323

  11. Application of ion beams for preparation of TiO 2 thin film photocatalysts operatable under visible light irradiation: Ion-assisted deposition and metal ion-implantation

    Microsoft Academic Search

    H. Yamashita; M. Harada; J. Misaka; H. Nakao; M. Takeuchi; M. Anpo

    2003-01-01

    The visible light sensitive TiO2 thin film photocatalysts can be developed by the application of ion beam techniques, i.e. the combination of an ion-assisted deposition (IAD) method and a metal ion-implantation. The transparent TiO2 thin film photocatalysts have been prepared on silica glass plate by the IAD method. Then the transition metal ions (V+) were implanted into the TiO2 thin

  12. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    SciTech Connect

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  13. Extent and mechanism of metal ion incorporation into precipitated ferrites.

    PubMed

    Klas, Sivan; Dubowski, Yael; Pritosiwi, Gumelar; Gerth, Joachim; Calmano, Wolfgang; Lahav, Ori

    2011-06-01

    The ability of many noniron metals to be incorporated into the structure of ferrites is being utilized in numerous industrial and environmental applications. The incorporation of some of these metals during Fe(II) oxidation-induced precipitation at moderate temperatures (80-100°C) appears to be limited, for reasons not fully understood, and to extents not always agreed (e.g., Ni(2+), Cr(3+)). In this paper, the incorporation maxima of six metals into the structure of precipitated ferrites (in terms of x in Me(x)Fe(3-)(x)O(4), Me represents a noniron metal) were concluded to be 1.0, 1.0, 0.78, 0.49, 0.35, and 0.0 for Zn(2+), Co(2+), Ni(2+), Al(3+), Cd(2+) and Cr(3+), respectively. With the exception of the much larger Cd(2+), these values were associated with kinetic considerations controlled by the H(2)O exchange rate between the hydration shells surrounding the dissolved metal ion. PMID:21421219

  14. Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme.

    PubMed

    Foo, Jee-Loon; Jackson, Colin J; Carr, Paul D; Kim, Hye-Kyung; Schenk, Gerhard; Gahan, Lawrence R; Ollis, David L

    2010-07-15

    The metal ion co-ordination sites of many metalloproteins have been characterized by a variety of spectroscopic techniques and small-molecule model systems, revealing many important insights into the structural determinants of metal ion co-ordination. However, our understanding of this fundamentally and practically important phenomenon remains frustratingly simplistic; in many proteins it is essentially impossible to predict metal ion specificity and the effects of remote 'outer-shell' residues on metal ion co-ordination strength are also poorly defined. This is exemplified by our inability to explain why metalloenzymes with identical metal ion co-ordination spheres, such as the closely related orthologues of bacterial PTE (phosphotriesterase) from Agrobacterium radiobacter and Pseudomonas diminuta, display different metal ion specificity and co-ordination strength. In the present study, we present a series of PTE variants that all possess identical metal ion co-ordination spheres, yet display large differences in their metal ion co-ordination strength. Using measurement of the rates of metal ion dissociation from the active site alongside analysis of structural data obtained through X-ray crystallography, we show that 'outer-shell' residues provide essential support for the metal ion ligands, in effect buttressing them in their optimal orientation. Remote mutations appear to modulate metal ion interactions by increasing or decreasing the stabilizing effects of these networks. The present study therefore provides a description of how the greater protein fold can be modified to 'tune' the strength of metal ion co-ordination and metal ion specificity, as well as reinforcing the concept of proteins as ensembles of conformational states with unique structures and biochemical properties. PMID:20459397

  15. Global transport and localized layering of metallic ions in the upper atmosphere

    Microsoft Academic Search

    L. N. Carter; J. M. Forbes

    1999-01-01

    A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and

  16. Depth profile of residual stress in metal-ion implanted TiN coatings

    Microsoft Academic Search

    David Rafaja; Václav Valvoda; Anthony J. Perry; James R. Treglio

    1997-01-01

    Titanium nitride coatings made by conventional CVD were implanted with metal ions of different species at various energies. Changes occurring in the host structure after the ion implantation were studied using grazing incidence X-ray diffraction. One consequence of the metal ion implantation was an increase of the compressive residual stress in the implantation affected zone. The depth profile of the

  17. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  18. Coexisting Kinetically Distinguishable Forms of Dialkylglycine Decarboxylase Engendered by Alkali Metal Ions

    E-print Network

    Toney, Michael

    Coexisting Kinetically Distinguishable Forms of Dialkylglycine Decarboxylase Engendered by Alkali decarboxylase (DGD) specifically binds alkali metal ions near the active site. Large ions (Rb+, K+) activate. These results suggest that the structure of the protein around the alkali metal ion determines

  19. The titration curve of insulin in the presence of various bivalent metal ions

    PubMed Central

    Graae, John

    1968-01-01

    1. Titration curves of insulin in the presence and absence of various metal ions are reported. 2. The difference in base consumption with and without the metal ions is compared with calculated curves. 3. These experiments suggest that in dilute solutions Zn2+ and Cu2+ ions are bound to ?-amino groups. PMID:5637362

  20. Correlation between the limiting pH of metal ion solubility and total metal concentration

    SciTech Connect

    Apak, R.; Hizal, J.; Ustaer, C. [Istanbul Univ. (Turkey)] [Istanbul Univ. (Turkey)

    1999-03-15

    As an alternative to species distribution diagrams (pM vs pH curves in aqueous solution) drawn for a fixed total metal concentration, this work has developed simple linear models for correlating the limiting pH of metal ion solubility -- in equilibrium with the least soluble amorphous metal hydroxide solid phase -- to the total metal concentration. Thus adsorptive metal removal processes in complex systems can be better designed once the limiting pH of heavy metal solubility (i.e., pH{sup *}) in such a complex environment can be envisaged by simple linear equations. pH{sup *} vs pM{sub t} (M{sub t} = total metal concentration that can exist in aqueous solution in equilibrium with M(OH){sub 2(s)}) linear curves for uranyl-hydroxide, uranyl-carbonate-hydroxide, and mercuric-chloride-hydroxide simple and mixed-ligand systems and cupric-carbonate-hydroxide complexes in equilibrium with mixed hydroxide solid phases may enable the experimental chemist to distinguish true adsorption (e.g., onto hydrous oxide sorbents) from bulk precipitation removal of the metal and to interpret some anomalous metal fixation data -- usually attributed to pure adsorption in the literature -- with precipitation if the pM{sub t} at the studied pH is lower than that tolerated by pH{sup *} vs pM{sub t} curves. This easily predictable pH{sup *} corresponding to a given pM{sub t} may aid the design of desorptive mobilization experiments for certain metals as well as their adsorptive removal with the purpose of simulating metal adsorption and desorption cycles in real complex environments with changing groundwater pH.

  1. Catalytic properties of ion-bombarded non-metals

    NASA Astrophysics Data System (ADS)

    Wolf, G. K.; Zucholl, K.; Folger, H.

    1984-02-01

    Sputtering, ion implantation and ion beam mixing are useful new techniques for producing catalysts consisting of an active metal introduced in a non-active substrate. We studied the performance of implanted and ion beam mixed electrocatalysts containing platinum as the active component in graphite or RuO 2 substrates. The specimens were used as electrodes in electrochemical cells and their activity was studied for the oxidation of formic acid and methanol, the reduction of oxygen and the evolution of hydrogen. All reactions are important for fuel cells and hydrogen production. The intermixing of a thin Pt layer with a RuO 2 substrate by means of 150 keV Kr + beams did not change the activity, normalized to a standard Pt surface concentration, for formic acid oxidation and oxygen reduction. The activity for methanol oxidation, however, decreased with increasing mixing dose and was nearly zero for implanted Pt in RuO 2. For Pt on graphite substrates the activity for all reactions increased with the mixing dose up to 10 16{Kr +}/{cm 2}, and decreased or saturated above this value. The observed dependency of the activity on the individual chemical reaction as well as on the type of substrate was explained provisionally by a cooperation of small particle effects and metal-substrate interactions.

  2. Global transport and localized layering of metallic ions in the upper atmosphere

    E-print Network

    Paris-Sud XI, Université de

    Global transport and localized layering of metallic ions in the upper atmosphere L. N. Carter1 , J of the physical and chemical processes aecting atmospheric metallics. Model output analysis con®rms the dominant history of observational work Metallic ions have been the focus of upper atmosphere scienti

  3. Negative Ion Laser Photoelectron Spectroscopy of Mass Selected Small Metal Clusters

    Microsoft Academic Search

    Joe Ho

    1991-01-01

    Negative ion photoelectron spectroscopy is used to study various small metal clusters. In these experiments, a mass-selected beam of metal cluster anions is probed by continuous monochromatic laser radiation, and the kinetic energy distribution of photoelectrons detached from the negative ions is measured. The photoelectron spectra provide important information on electronic and vibrational structure, as well as metal bonding properties.

  4. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions).

    PubMed

    Zhang, Jun Feng; Zhou, Ying; Yoon, Juyoung; Kim, Jong Seung

    2011-07-01

    Due to the wide range of applications and biological significance, the development of optical probes for silver, gold and platinum ions has been an active research area in the past few years. This tutorial review focuses on the recent contributions concerning the fluorescent or colorimetric sensors for these metal ions, and is organized according to their structural classifications (for Ag(+) detection) and unique mechanisms between the sensors and metal ions (for Au(3+) and Pt(2+) detection). PMID:21491036

  5. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    NASA Astrophysics Data System (ADS)

    Nedilko, S.; Hizhnyi, Yu.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V.

    2009-03-01

    The potential use of luminescent probes for control over the structural state of MTi 2(PO 4) 3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi 2(PO 4) 3 (M = Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and visible light excitations are analyzed. Electronic structure and absorption spectra of NaTi 2(PO 4) 3 crystals are calculated by the full-potential LAPW method. The origin of the self and impurity emission bands of MTi 2(PO 4) 3 materials is defined. It was shown that nitrogen laser with 337.1 nm generation wavelength is the most effective excitation source for remote monitoring of incorporation of various types of waste elements into MTi 2(PO 4) 3 hosts and for control over states of these hosts during storage of radioactive waste.

  6. An overview on TRIUMF's developments on ion source for radioactive beams (invited)

    SciTech Connect

    Bricault, Pierre; Ames, Friedhelm; Achtzehn, Tobias; Dombsky, Marik; Labrecque, Francis; Lassen, Jens; Lavoie, Jean-Phillipe; Lecesne, Nathalie [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); GANIL, Boulevard Henri Becquerel, B.P. 55027, 14076 Caen Cedex 05 (France)

    2008-02-15

    The ISAC facility at TRIUMF utilizes up to 100 {mu}A from the 500 MeV H{sup -} cyclotron to produce the radioactive ion beam (RIB) using the isotopic separation on line method. The ISAC-I facility comprised the RIB production target stations, the mass separator, and the beam delivery to low energy area and to a room temperature linear accelerator composed of a four-rod radio frequency quadrupole and an interdigital H-type structure drift tube LINAC. ISAC-I linear accelerator can provide beam from A=3 to 30 amu with an energy range from 0.15 to 1.5 A MeV. Since the beginning of operations target development program has been to increase proton beam currents on targets. Now we routinely operate our target at 50-85 {mu}A and recently we have operated our target at 100 {mu}A. Other developments are in place to add other ion sources, laser, force electron beam induced are discharge and electron cyclotron resonance ion source to the actual surface ion source. The last two five year plans were mainly devoted to the construction of a heavy ion superconducting LINAC (ISAC-II) that will upgrade the mass and the energy range from 30 to 150 and from 1.5 to 6.5 A MeV, respectively. The intermediate stage E{<=}4.2 A MeV is already completed and commissioned; three experiments using {sup 11}Li, {sup 9}Li, and {sup 29}Na have been completed this summer.

  7. Negative ion photoelectron spectroscopy of metal clusters, metal-organic clusters, metal oxides, and metal-doped silicon clusters

    NASA Astrophysics Data System (ADS)

    Zheng, Weijun

    The techniques of time-of-flight mass spectrometry and negative ion photoelectron spectroscopy were utilized to study metal clusters (Mgn -, Znn-, Can -, Mnn-, CuAln -, LiAln-, and NmSn n-), metal-organic complexes (Tin(benzene) m-, Fn(benzene)m- , Nin(benzene)m-), metal oxides(AuO-, PtO-, TaOn -, HfO2-, and MnnO -), and metal-doped semiconductor clusters (CrSin -, GdmSin- and HoSi n-). The study of magnesium and zinc cluster anions shows that they have magic numbers at size 9, 19 and 34, and the closures and reopenings of the s-p band gap are related to the mass spectra magic numbers. The evolution of electronic structure in Can clusters resembles that of Mgn - and Znn- with band gap closure and reopening. However, the electronic structures Can- clusters are more complicated and the magic numbers are different from those of Mgn- and Znn -. That might due to the involvement of calcium's empty d orbitals. In Mn clusters, a dramatic change of electronic structure was observed at Mn5-. The transition of metallic and magnetic properties is strongly related to the s-d hybridization. The photoelectron study of LiAln- is consistent with theoretical predictions, which described LiAl13 as alkali-halide-like ionic entity, Li+(Al13)-. The results of CuAln- show that copper atom might occupy interior position in these clusters. The results of Nam Snn- implied that Na4Sn 4 and NaSn5- could be described as (Na +)4Sn44- and (Na +)Sn52-, respectively. The formation of these species indicates the existence of Zintl phase structure in the gas phase. Tin(Bz)n+1- clusters have multiple-decker sandwich structures with each titanium atom located between two parallel benzene rings. The structures of Fen(Bz)m - and Nin(Bz)m- are characterized with a metal cluster core caged by benzene molecules. The information for the electronic states of PtO, AuO, and TaOn (n = 1--3) were obtained from the photoelectron spectra of their corresponding negative ions. The coincidence between electron affinity and thermodynamic stability was observed in the investigation of ZrO2 - and HfO2-. The studies of MnnO- revealed that addition of oxygen atom could change the magnetic momentum and magnetic coupling in the Mn clusters. The photoelectron spectra of CrSin- (n = 8--12) support the earlier theoretical calculations which found CrSi 12 to be an enhanced stability cluster with its chromium atom encapsulated inside a silicon cage and with its magnetic moment completely quenched by the effects of the surrounding cage. The preliminary results of GdSi n- show that GdSi4, GdSi6 and GdSi9 might be different from their counterparts.

  8. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  9. High-resolution mass spectrometer for liquid metal ion sources

    SciTech Connect

    Wortmann, Martin; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)] [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany); Meijer, Jan [Institut für Experimentelle Physik II, Universität Leipzig, Linnestr. 5, 04103 Leipzig (Germany)] [Institut für Experimentelle Physik II, Universität Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2013-09-15

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E×B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10{sup 6}–10{sup 7} clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  10. Spectropolarimetric titrimetry of metal ions and optically active chelating agents

    E-print Network

    Caldwell, Donald Lee

    1969-01-01

    in approximately 0. 001 N solu- tion is descrioed. Experimental conditions necessary for the successful applicatr~on of spcctropolarimetric titrimetry are listed and evaluated. Pari, ial optical rotatory dispersion curves of the i'ouz teen metal ion-1-PDTA... of an The citations on the following pages follow the style of Anal cical Chemist~r 1 J. B. Biot, Mem. de 1'Inst. , 1$, Part I, 1 (1812). (2) J. B. Biot, Mt. m. Aced. Sci. , 1), g9 (18/5). ($) J. B. B'ot, ibid, d lgd 9$ (18/8). (4) J. B. Blot, , ioid , 2, 41 (1817...

  11. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  12. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  13. Negative ion photoelectron spectroscopy of bare transition metal dimers

    NASA Astrophysics Data System (ADS)

    Barker, Beau J.

    This thesis contains gas phase negative ion photoelectron spectra of Mo2, MoV, CrCu, MoCu and Cu2. Spectra were taken with 488 nm and 514 nm light at a resolution of 4-5 meV. Information such as electron affinities, vibrational frequencies, anharmonicities and bond dissociation energies are reported for the ground and excited electronic states of both the anion and neutral species. Theoretical calculations at the density functional level are also reported for these species. Experiment and theory are used to analyze the bonding in these bare transition metal dimers.

  14. Metal-ion metathesis in metal-organic frameworks: a synthetic route to new metal-organic frameworks.

    PubMed

    Kim, Yonghwi; Das, Sunirban; Bhattacharya, Saurav; Hong, Soonsang; Kim, Min Gyu; Yoon, Minyoung; Natarajan, Srinivasan; Kim, Kimoon

    2012-12-21

    A porous metal-organic framework, Mn(H(3)O)[(Mn(4)Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl(2) under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma-atomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65. PMID:23154964

  15. Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride

    Microsoft Academic Search

    Natrayasamy Viswanathan; S. Meenakshi

    2009-01-01

    Indion FR 10 resin has sulphonic acid functional group (H+ form) possesses appreciable defluoridation capacity (DC) and its DC has been enhanced by chemical modification into Na+ and Al3+ forms by loading respective metal ions in H+ form of resin. The DCs of Na+ and Al3+ forms were found to be 445 and 478mgF?\\/kg, respectively, whereas the DC of H+

  16. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    SciTech Connect

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D. [SFA Inc., 2200 Defense Highway, Suite 405, Crofton, Maryland 21114 (United States); Praxis Inc., 2200 Mill Road, Alexandria, Virginia 22314 (United States); Naval Research Laboratory, Washington, DC 20375 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2005-07-15

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 {mu}s pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized (<200 ns) to improve the capture efficiency of the ions which are injected into an ion trap. During a single discharge, the over-damped pulse produces an ion flux of 8.4x10{sup 9} ions/cm{sup 2}, measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  17. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, CoCZnS-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, ZnCZnS-MMP-1, and the mixed-metal CoCZnS-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling. PMID:26018933

  18. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the gosia code

    E-print Network

    Zieli?ska, M; Wrzosek-Lipska, K; Clément, E; Grahn, T; Kesteloot, N; Napiorkowski, P; Pakarinen, J; Van Duppen, P; Warr, N

    2015-01-01

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960's with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross sections and a lack of complimentary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, {\\rmfamily \\textsc{gosia}}.

  19. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the gosia code

    E-print Network

    M. Zieli?ska; L. P. Gaffney; K. Wrzosek-Lipska; E. Clément; T. Grahn; N. Kesteloot; P. Napiorkowski; J. Pakarinen; P. Van Duppen; N. Warr

    2015-06-16

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960's with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross sections and a lack of complimentary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, {\\rmfamily \\textsc{gosia}}.

  20. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the gosia code

    E-print Network

    M. Zieli?ska; L. P. Gaffney; K. Wrzosek-Lipska; E. Clément; T. Grahn; N. Kesteloot; P. Napiorkowski; J. Pakarinen; P. Van Duppen; N. Warr

    2015-06-15

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960's with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross sections and a lack of complimentary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, {\\rmfamily \\textsc{gosia}}.

  1. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    SciTech Connect

    Urrego-Blanco, J. P. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); van den Brandt, B. [Paul Scherrer Institut, Villigen, Switzerland; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gomez Del Campo, Jorge [ORNL; Hautle, P. [Paul Scherrer Institut, Villigen, Switzerland; Padilla-Rodal, Elizabeth [ORNL; Schmelzbach, P. A. [Paul Scherrer Institut, Villigen, Switzerland

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20 200 m thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3He 4He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12C by protons in inverse kinematics are presented.

  2. Adsorption of metal ions by pecan shell-based granular activated carbons

    Microsoft Academic Search

    R. R Bansode; J. N Losso; W. E Marshall; R. M Rao; R. J Portier

    2003-01-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu2+, Pb2+, Zn2+) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial

  3. Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins

    Microsoft Academic Search

    A. Ravikumar Reddy; K. Hussain Reddy

    2003-01-01

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy\\u000a benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration\\u000a on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH\\u000a 10

  4. Cellular Response to Metallic Ions Released from Nickel-Chromium Dental Alloys

    Microsoft Academic Search

    J. D. Bumgardner; L. C. Lucas

    1995-01-01

    Concerns exist over the potential release of elevated levels of metal ions such as Ni and Be from Ni-Cr dental casting alloys, due to their susceptibility to accelerated corrosion. In this investigation, we evaluated the release of metal ions from four commercial Ni-Cr alloys, representing a range of compositions, in three-day cell culture tests. Metal ion release, as measured by

  5. Macroparticle free metal plasma immersion ion implantation and\\/or deposition in a multifunctional configuration

    Microsoft Academic Search

    T Zhang; B. Y Tang; Z. M Zeng; Q. C Chen; X. B Tian; T. K Kwok; P. K Chu; O. R Monteiro; I. G Brown

    2000-01-01

    For high-dose metal ion implantation, the use of plasma immersion offers the high-rate advantage, but the simultaneous formation of a surface film along with the sub-surface implanted layer is sometimes a detriment. In this work, we describe a metal plasma immersion approach in which pure and macro-particle free implantation (metal and\\/or gas ions), pure deposition without ion implantation, or dynamic

  6. Structure-property relationships in gas-phase protonated and metalated peptide ions 

    E-print Network

    Slaton, James Garrett

    2009-05-15

    Peptide synthesis and metal doping, combined with mass spectrometric and ion mobility spectrometric techniques, have provided a picture of the fragmentation behavior of a large field of homologous peptide ions, represented ...

  7. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure

    SciTech Connect

    Tsuji, M. (Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152 (Japan)); Komarneni, S. (Materials Research Laboratory and Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802-4801 (United States))

    1993-03-01

    The ion-exchange selectivity of divalent transition metal ions on cryptomelane-type manganic acid (CMA) with tunnel structure has been studied using the distribution coefficients ([ital K][sub [ital d

  8. Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers

    E-print Network

    Wadley, Haydn

    Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers X. W. Zhoua the first half of each new material layer was deposited without ion assistance, while the remainder of the layer was deposited with an optimum low ion energy assistance of 4 eV. Modulated low energy ion

  9. Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater.

    PubMed

    Xu, Mingze; Wei, Guodong; Liu, Na; Zhou, Liang; Fu, Chengwei; Chubik, M; Gromov, A; Han, Wei

    2014-01-21

    Reclaimable adsorbents have a critical application in the adsorption of radioactive materials. In this study, the novel bio-nanocomposites comprising fungi and titanate nanotubes are successfully synthesized by a simple and low-cost method. Morphological characterizations and composite mechanism analysis confirm that the composites are sufficiently stable to avoid dust pollution resulting from the titanate nanomaterials. Adsorption experiments demonstrate that the bio-nanocomposites are efficient adsorbents with a saturated sorption capacity as high as 120 mg g(-1) (1.75 meq. g(-1)) for Ba(2+) ions. The results suggest that the bio-nanocomposites can be used as promising radioactive adsorbents for removing radioactive ions from water caused by nuclear leakage. PMID:24287628

  10. Blood metal ion testing is an effective screening tool to identify poorly performing metal-on-metal bearing surfaces

    PubMed Central

    Sidaginamale, R. P.; Joyce, T. J.; Lord, J. K.; Jefferson, R.; Blain, P. G.; Nargol, A. V. F.; Langton, D. J.

    2013-01-01

    Objectives The aims of this piece of work were to: 1) record the background concentrations of blood chromium (Cr) and cobalt (Co) concentrations in a large group of subjects; 2) to compare blood/serum Cr and Co concentrations with retrieved metal-on-metal (MoM) hip resurfacings; 3) to examine the distribution of Co and Cr in the serum and whole blood of patients with MoM hip arthroplasties; and 4) to further understand the partitioning of metal ions between the serum and whole blood fractions. Methods A total of 3042 blood samples donated to the local transfusion centre were analysed to record Co and Cr concentrations. Also, 91 hip resurfacing devices from patients who had given pre-revision blood/serum samples for metal ion analysis underwent volumetric wear assessment using a coordinate measuring machine. Linear regression analysis was carried out and receiver operating characteristic curves were constructed to assess the reliability of metal ions to identify abnormally wearing implants. The relationship between serum and whole blood concentrations of Cr and Co in 1048 patients was analysed using Bland-Altman charts. This relationship was further investigated in an in vitro study during which human blood was spiked with trivalent and hexavalent Cr, the serum then separated and the fractions analysed. Results Only one patient in the transfusion group was found to have a blood Co > 2 µg/l. Blood/Serum Cr and Co concentrations were reliable indicators of abnormal wear. Blood Co appeared to be the most useful clinical test, with a concentration of 4.5 µg/l showing sensitivity and specificity for the detection of abnormal wear of 94% and 95%, respectively. Generated metal ions tended to fill the serum compartment preferentially in vivo and this was replicated in the in vitro study when blood was spiked with trivalent Cr and bivalent Co. Conclusions Blood/serum metal ion concentrations are reliable indicators of abnormal wear processes. Important differences exist however between elements and the blood fraction under study. Future guidelines must take these differences into account. PMID:23836464

  11. Computational study of the complexation of metal ion precursors in dendritic polymers 

    E-print Network

    Tarazona Vasquez, Francisco

    2009-05-15

    applications. Understanding the effect of the environment upon a metal ion-dendrimer system constitutes a step closer to the understanding of the liquid phase templated synthesis of metal nanoparticles. In this dissertation we have used computational techniques...

  12. Accumulation and removal of heavy metal ions by insolubilized-DNA and its interaction.

    PubMed

    Yamada, M; Kato, K; Nomizu, M; Sakairi, N; Ohkawa, K; Yamamoto, H; Nishi, N

    2000-01-01

    DNA was immobilized onto a porous glass bead by a treatment with UV irradiation. The immobilized DNA was insoluble in water and used for accumulation of heavy metal ion. When DNA-immobilized glass bead was added into aqueous solution containing heavy metal ions, such as Hg2+, Cd2+, Pb2+, Zn2+, Cu2+ and Fe3+, the concentration of these metal ions in the solution was decreased. However, the concentration of Mg2+ in the solution was not affected by the addition of the DNA-immobilized glass bead. These results suggested that UV-irradiated DNA selectively accumulated heavy metal ions. PMID:12903348

  13. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  14. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O. [Laboratoire Aime Cotton, CNRS, UPR3321, Ba circumflex t. 505, Univ Paris-Sud, 91405 Orsay Cedex (France); Guerout, R. [Laboratoire Kastler-Brossel, CNRS, ENS, Univ Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France)

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  15. Anion-exchange separations of metal ions in thiocyanate media.

    PubMed

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  16. Nuclear reactions with 11C and 14O radioactive ion beams

    SciTech Connect

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8 proton magic number for odd Z, Tz=-3/2 nuclei. It is expected that future work on proton-rich nuclides will rely heavily on RIBs and/or mass separators. Currently, radioactive ion beam intensities are sufficient for the study of a reasonable number of very proton-rich nuclides.

  17. Most spin-1/2 transition-metal ions do have single ion anisotropy.

    PubMed

    Liu, Jia; Koo, Hyun-Joo; Xiang, Hongjun; Kremer, Reinhard K; Whangbo, Myung-Hwan

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu(2+) ions in CuCl2·2H2O, LiCuVO4, CuCl2, and CuBr2 on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu(2+) ions of Bi2CuO4 and Li2CuO2. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling. PMID:25273418

  18. Most spin-1/2 transition-metal ions do have single ion anisotropy

    SciTech Connect

    Liu, Jia; Whangbo, Myung-Hwan, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 (United States); Koo, Hyun-Joo [Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Xiang, Hongjun, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 (China); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  19. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    E-print Network

    Suter, Dieter

    in a rare-earth-metal-ion-doped crystal Lars Rippe, Mattias Nilsson, and Stefan Kröll Department of Physics on optical interactions in rare-earth- metal-ion-doped crystals. The optical transition lines of the rare-earth-metal out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals

  20. Characteristics and design of metal vacuum arc plasma source power supply for pulsed-mode plasma immersion ion implantation

    Microsoft Academic Search

    L. P. Wang; K. Y. Gan; X. B. Tian; B. Y. Tang; P. K. Chu

    2000-01-01

    Metal vacuum arc plasma sources enhance the capability of plasma immersion ion implantation (PIII) by providing a convenient and efficient means by which to introduce metallic ions into the plasma for metallic ion implantation and\\/or thin film deposition. The power supply of a metal vacuum arc plasma source is usually based on the artificial transformation line design, but it has

  1. Nanoparticles reduce nickel allergy by capturing metal ions

    NASA Astrophysics Data System (ADS)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  2. Nanoparticles reduce nickel allergy by capturing metal ions.

    PubMed

    Vemula, Praveen Kumar; Anderson, R Rox; Karp, Jeffrey M

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation. PMID:21460828

  3. Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals

    SciTech Connect

    Lee, S.Y.; Lee, K.J.

    1999-07-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

  4. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    PubMed

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data. PMID:15551790

  5. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  6. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  7. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    SciTech Connect

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  8. MeRNA: a Database of Metal Ion Binding Sites in RNAStructures

    SciTech Connect

    Stefan, Liliana R.; Zhang, Rui; Levitan, Aaron G.; Hendrix, DonnaF.; Brenner, Steven E.; Holbrook, Stephen R.

    2005-10-05

    Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA 3D structures available from the PDB and Nucleic Acid Database. Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements, in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering. The MeRNA database is accessible at http://merna.lbl.gov.

  9. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  10. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model.

    PubMed

    Palacios, Oscar; Pérez-Rafael, Sílvia; Pagani, Ayelen; Dallinger, Reinhard; Atrian, Sílvia; Capdevila, Mercè

    2014-08-01

    The Helix pomatia metallothionein (MT) system, namely, its two highly specific forms, HpCdMT and HpCuMT, has offered once again an optimum model to study metal-protein specificity. The present work investigates the most unexplored aspect of the coordination behavior of MT polypeptides with respect to either cognate or noncognate metal ions, as opposed to the standard studies of cognate metal ion coordination. To this end, we analyzed the in vivo synthesis of the corresponding complexes with their noncognate metals, and we performed a detailed spectroscopic and spectrometric study of the Zn(2+)/Cd(2+) and Zn(2+)/Cu(+) in vitro replacement reactions on the initial Zn-HpMT species. An HpCuMTAla site-directed mutant, exhibiting differential Cu(+)-binding abilities in vivo, was also included in this study. We demonstrate that when an MT binds its cognate metal, it yields well-folded complexes of limited stoichiometry, representative of minimal-energy conformations. In contrast, the incorporation of noncognate metal ions is better attributed to an unspecific reaction of cysteinic thiolate groups with metal ions, which is dependent on their concentration in the surrounding milieu, where no minimal-energy structure is reached, and otherwise, the MT peptide acts as a multidentate ligand that will bind metal ions until its capacity has been saturated. Additionally, we suggest that previous binding of an MT polypeptide with its noncognate metal ion (e.g., binding of Zn(2+) to the HpCuMT isoform) may preclude the correct folding of the complex with its cognate metal ion. PMID:24687203

  11. Development of LIZ-MEV, a Low Impedance Z-discharge Metal Vapor ion source

    Microsoft Academic Search

    B. M. Johnson; A. Hershcovitch; F. J. Wessel; A. Vandrie; F. Patton; N. Rostoker

    1998-01-01

    Existing heavy-ion sources can produce either high beam currents, but low charge states (e.g., the Metal-Vapor Vacuum Arc [MEVVA]) or high charge states, but low beam currents (e.g., the Electron Beam Ion Source [EBIS]). For heavy ion beam injection (e.g., into the Relativistic Heavy Ion Collider [RHIC] at BNL) our goal is to develop an ion source that produces both

  12. Retention of metal ions in ultrafiltration of mixtures of divalent metal ions and water-soluble polymers at constant ionic strength based on Freundlich and Langmuir isotherms

    Microsoft Academic Search

    Ignacio Moreno-Villoslada; Bernabé L Rivas

    2003-01-01

    The interactions of water-soluble polymers with metal ions are studied by ultrafiltration using a molecular-weight cut off of 5000Da polyethersulfone ultrafiltration membrane. The technique allowed analyzing mathematically the distribution of metal ions bound to previously fractionated high molecular-weight water-soluble polymers or free in the solution from variables experimentally measurable. The Langmuir and Freundlich adsorption isotherms for the system poly(sodium 4-styrenesulfonate)

  13. Status of Tokai Radioactive Ion Accelerator Complex and Feasibility Study for Transfer Reactions Using Low-Energy RNB

    SciTech Connect

    Imai, N.; Arai, A.; Arakaki, Y.; Fuchi, Y.; Hirayama, Y.; Ishiyama, H.; Jeong, S. C.; Kawakami, H.; Miyatake, H.; Niki, K.; Nomura, T.; Okada, M.; Oyaizu, M.; Tanaka, M. H.; Tomizawa, M.; Watanabe, Y. X.; Yoshikawa, Y. [Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Abe, S.; Hanashima, S.; Hashimoto, T. [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan)] (and others)

    2007-05-22

    An ISOL-based radioactive nuclear beam facility, Tokai Radioactive Ion Accelerator Complex (TRIAC), has been jointly constructed by High Energy Accelerator Research Organization (KEK) and Japan Atomic Energy Agency (JAEA). The facility started to provide RNBs for experiments in 2005. RNBs, including fission fragments with energies up to 1.1 MeV/nucleon, are available. The experiments were performed with accelerated 8Li beams of various energies. Current status of the equipments and preliminary results on these experimental studies are presented.

  14. Metal nanocrystal/metal-organic framework core/shell nanostructure from selective self-assembly induced by localization of metal ion precursors on nanocrystal surface.

    PubMed

    Ohhashi, Takashi; Tsuruoka, Takaaki; Matsuyama, Tetsuhiro; Takashima, Yohei; Nawafune, Hidemi; Minami, Hideto; Akamatsu, Kensuke

    2015-08-01

    Metal nanocrystal/metal-organic framework core/shell nanostructures have been constructed using metal ion-trapped nanocrystals as scaffolds through a selective self-assembly of framework components on the nanocrystal surfaces. The resulting nanostructures exhibit unique catalytic activity toward nitrophenol analogs. PMID:25898115

  15. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  16. a Comprehensive Model of Global Transport and Localized Layering of Metallic Ions in the Upper Atmosphere

    Microsoft Academic Search

    Leonard Nelson Carter Jr.

    1995-01-01

    The physics and chemistry of atmospheric metallic ions have been an active area of research for many years; however, a number of issues remain unresolved. Numerical models have been developed and used to establish and validate theories of metallic ion dynamics. While agreement with observational measurements has generally been satisfactory, these models have embodied highly simplified pictures of the total

  17. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review

    Microsoft Academic Search

    W. S. Wan Ngah; M. A. K. M. Hanafiah

    2008-01-01

    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified

  18. Catalytic Ozonation of Citric Acid by Metallic Ions in Aqueous Solution

    Microsoft Academic Search

    Ahmed A. Abd El-Raady; Tsuyoshi Nakajima; Phuong Kimchhayarasy

    2005-01-01

    Ozonation of citric acid in water catalyzed by different ions from the first row of transition metals (Mn, Co, Ti, Fe, Cu, Ni and Zn) was investigated at room temperature. The results showed that at pH=2, where the decomposition of citric acid is negligible by only ozone, the following order of efficiency of metallic ions for the decomposition of citric

  19. Effects of Lability of Metal Complex on Free Ion Measurement Using DMT

    Microsoft Academic Search

    Liping Weng; Riemsdijk van W. H; Erwin J. M. Temminghoff

    2010-01-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, , were derived for DMT. Analysis

  20. Ion implantation and deposition on the inner surfaces of cylinders by exploding metallic foils

    Microsoft Academic Search

    Ordal Demokan

    2000-01-01

    A novel scheme for ion deposition and possibly ion implantation on the inner surfaces of cylindrical targets is proposed and experimentally tested. A large current is passed through a coaxial cable-type structure, composed of a straight conductor and a thin metallic foil, surrounding it. The foil evaporates and ionizes forming a metallic plasma, which is pushed radially outward due to

  1. The Mutation F227I Increases the Coupling of Metal Ion Transport in DCT1*

    E-print Network

    Nelson, Nathan

    that low metal ion to proton trans- port of DCT1 resulting from a proton slippage is not a necessity in the same direction. It supports the idea that the proton slippage has a physiological advan- tage-dependent proton slippage (1, 9, 11). In contrast to DCT1, Smf1p showed a metal ion-independent sodium slip through

  2. Low sputter damage of metal single crystalline surfaces investigated with medium energy ion scattering spectroscopy

    Microsoft Academic Search

    Dae Won Moon; Yongho Ha; Hyun Kyung Kim; Kyung Joong Kim; Hong Seung Kim; Jeong Yong Lee; Sehun Kim

    1999-01-01

    It was observed clearly that the sputter damage due to Ar+ ion bombardment on metal single crystalline surfaces is extremely low and the local surface atomic structure is preserved, which is totally different from semiconductor single crystalline surfaces. Medium energy ion scattering spectroscopy (MEIS) shows that there is little irradiation damage on the metal single crystalline surfaces such as Pt(111),

  3. Highly Emissive Transition Metal Ion Doped Semiconducting Nanocrystals

    SciTech Connect

    Jana, Santanu; Srivastava, Bhupendra B.; Pradhan, Narayan [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sarma, D. D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India)

    2011-07-15

    Doped semiconductor nanocrystals (d-dots), specifically ones not containing heavy metal ions, have the potential to become a class of mainstream emissive materials. Mn- and Cu-doped ZnSe or ZnS d-dots can cover an emission window similar to that of the current workhorse of intrinsic quantum dot (q-dots) emitters, CdSe nanocrystals. We synthesized high quality stable Cu doped ZnSe in nonpolar as well as polar solvent. The emission intensity of these doped nanocrystals is found stable for months under UV irradiation, after different multifunctional ligand which is important for any biological detection. We have also synthesized the stable Mn doped ZnS in nonpolar solvent more than 50% QY.. The doped nanocrystals are characterized by TEM, XRD, EPR and ICP analysis.

  4. Caging metal ions with visible light-responsive nanopolymersomes.

    PubMed

    Griepenburg, Julianne C; Sood, Nimil; Vargo, Kevin B; Williams, Dewight; Rawson, Jeff; Therien, Michael J; Hammer, Daniel A; Dmochowski, Ivan J

    2015-01-20

    Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM. The versatility of this system was demonstrated through the encapsulation and photorelease of a fluorophore (FITC), as well as two different metal ions, Zn(2+) and Ca(2+). PMID:25518002

  5. Synthesis and metal-ion binding properties of monoazathiacrown ethers.

    PubMed

    Tanaka, M; Nakamura, M; Ikeda, T; Ikeda, K; Ando, H; Shibutani, Y; Yajima, S; Kimura, K

    2001-10-19

    Synthetic procedures for monoazathiacrown ethers were explored, and monoazatrithia-12-crown-4, monoazatetrathia-15-crown-5, and monoazapentathia-18-crown-6 were obtained in moderate yields by the reaction of bis(2-chloroethyl)amine with the appropriate dithiols in the presence of lithium hydroxide in THF. To evaluate metal-ion binding properties of the monoazathiacrown ethers by solvent extraction, lipophilic dodecyl and dodecanoyl groups were incorporated onto the monoazathiacrown ethers. The solvent extraction experiments suggested that monoazathiacrown ethers have Ag(+) and Hg(2+) selectivities and that the relative selectivity between Ag(+) and Hg(2+) depends on their nitrogen atom properties and numbers of sulfur atoms reflecting the respective affinities of nitrogen and sulfur atoms to Hg(2+) and Ag(+). An interesting ability to bind Mg(2+) was observed in the case of N-dodecyl monoazatrithia-12-crown-4. PMID:11597221

  6. Electron-impact excitation of singly charged metal ions

    SciTech Connect

    Sharma, L. [Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Surzhykov, A. [Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Srivastava, R. [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Fritzsche, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Department of Physics, Post Office Box 3000, FI-90014 University of Oulu (Finland)

    2011-06-15

    Fully relativistic distorted-wave theory has been applied to study the electron-impact excitation of the ns{sub 1/2}-np{sub 1/2} and ns{sub 1/2}-np{sub 3/2} resonance transitions of singly charged metal ions with one valence electron, viz., Mg{sup +} (n=3), Ca{sup +} (n=4), Zn{sup +} (n=4), Cd{sup +} (n=5), and Ba{sup +} (n=6). Calculations are performed in the range of incident electron energies up to 300 eV for differential and integrated cross sections as well as for the linear polarization of the photon emissions following the decay of excited np{sub 3/2} states. Results are compared with the available experimental data and previous nonrelativistic theoretical calculations. Moreover, analytic fits to our integrated cross sections are provided for potential applications in modeling plasma sources and environments.

  7. Ion-irradiation studies of cascade damage in metals

    SciTech Connect

    Averback, R.S.

    1982-03-01

    Ion-irradiation studies of the fundamental aspects of cascade damage in metals are reviewed. The emphasis of these studies has been the determination of the primary state of damage (i.e. the arrangement of atoms in the cascade region prior to thermal migration of defects). Progress has been made towards understanding the damage function (i.e. the number of Frenkel pairs produced as a function of primary recoil atom energy), the spatial configuration of vacancies and interstitials in the cascade and the cascade-induced mixing of atoms. It is concluded for these studies that the agitation of the lattice in the vicinity of energetic displacement cascades stimulates the defect motion and that such thermal spike motion induces recombination and clustering of Frenkel defects. 9 figures.

  8. High current liquid metal ion source using porous tungsten multiemitters.

    PubMed

    Tajmar, M; Vasiljevich, I; Grienauer, W

    2010-12-01

    We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-?A up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (?PIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. PMID:21111260

  9. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  10. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.

    PubMed

    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  11. SPIRAL2 at GANIL: Next Generation of ISOL Facility for Intense Secondary Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2010-03-01

    To pursue the investigation of a new territory of nuclei with extreme N/Z called terra incognita several projects, all aiming at the increase by several orders of magnitude of the Radioactive Ion Beams (RIB) intensities are now under discussions worldwide. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 Project to be built at GANIL (Caen, France). SPIRAL 2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40MeV (200kW) directed on a C converter+ Uranium target and producing therefore up to 5?1013fissions/s. The expected radioactive beams intensities for exotic species in the mass range from A=60 to A=140, of the order of 106 to 1010pps, will surpass by two orders of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few keV/n to 15 MeV/n. The same driver will accelerate high intensity (100?A to 1 mA), heavy ions up to Ar at 14 MeV/A producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must to study the impact of nuclear fission and fusion on materials. Construction of the SPIRAL2 facility is shared by ten French laboratories and a network of international partners. Under the FP7 framework program of European Union called “Preparatory Phase” for the construction of new facilities, the SPIRAL2 project has been granted a budget of about 4Meuros to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been launched in Oct 2006 and 8 large International collaborations has been built up around new instruments for SPIRAL2. The status of the construction of SPIRAL2 accelerator and technical R&D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.

  12. A lithium liquid metal ion source suitable for high voltage terminal applications

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1989-01-01

    Liquid metal ion sources offer potential improvement in lateral resolution over conventionally used gaseous sources for MeV microprobe applications because of their intrinsic brightnesses. The use of a Li liquid metal ion source is particularly attractive because of the increased sensitivity of lithium for detecting hydrogen (hydrogen profiling) and for detecting near surface contaminants through high-resolution Rutherford backscattering spectrometry. However, the technical difficulty of occasional sparking between the needle and extraction electrode requires that the needle of the Li liquid metal ion source be rewetted before reignition can be effected; this problem makes Li liquid metal ion sources of the usual design risky for operation in the insulated high-voltage terminals of accelerators used in such applications. We have designed a reliable, long-lived, Li liquid-metal ion source which has provisions for overcoming this limitation. The design features and performance characteristics of the source are described in this report. 9 refs., 4 figs.

  13. Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions.

    PubMed

    Borai, E H; Breky, M M E; Sayed, M S; Abo-Aly, M M

    2015-07-15

    New nanocomposite material containing TiO2/Poly (acrylamide-styrene sodium sulfonate) [TiO2/(P (AAm-SSS)] was prepared by in-situ intercalative polymerization of poly acrylamide (PAAm) and styrene sodium sulfonate (SSS) in the presence of TiO2 nanoparticles as inorganic filler. N, N-methylene bis acrylamide (MBA) was used as a cross linker. The polymerization process was performed using ?-radiation as reaction initiator. Moreover, new nanocomposite material containing poly styrene-TiO2 (PS-TiO2) was also prepared by ionic polymerization method. Styrene was catalytically polymerized by Ti(4+) via an ionic polymerization route to produce polystyrene (PS). The structure characteristics of the nanocomposites were investigated by XRD, TGA, SEM, surface area, and FTIR. The nanoparticles and nanocomposites were investigated for removal of some metal ions from aqueous solutions. The effective key parameters on the sorption behavior of radioactive cesium (Cs(+)), cobalt (Co(2+)) and europium (Eu(3+)) were investigated using batch equilibrium technique with respect to solution pH and contact time. The obtained results revealed that the equilibrium for Cs(+), Co(2+) and Eu(3)(+) is reached at 2-3 h for all nanocomposites. The data indicated that there is no significant change in the uptake between TiO2 nanoparticles and TiO2-PS. On the contrary, the uptake process is significantly improved using TiO2/(P (AAm-SSS) nanocomposite and the maximum experimental retention capacities for Cs(+), Co(2+) and Eu(3+) were found to be 120, 100.9 and 85.7 mg/g, respectively. PMID:25797394

  14. EPR of radiation centers in ion-implanted glasses simulating vitrified radioactive wastes

    SciTech Connect

    Bogomolova, L.D. [Moscow State Univ. (Russian Federation). Inst. of Nuclear Physics; Teplyakov, Y.G.; Stefanovsky, S.V.; Dmitriyev, S.A. [SIA Radon, Moscow (Russian Federation)

    1995-12-31

    EPR study of paramagnetic defects induced in borosilicate and aluminophosphate glasses simulating vitrified radioactive wastes by bombardment with heavy charge particles are studied. In order to understand the nature of interaction between heavy particles and the surface of oxide glass the authors used the particles of different mass (N, O, Ar, Mn, Cu, Pb). It is shown that two kinds of EPR spectra are induced after bombardment: the broad anisotropic spectrum with g{sub z}=2.016-2.055; g{sub y}=2.01 and g{sub x}=2.002 (A) and narrow symmetric line with g=2.0030{+-}0.0005 and linewidth 0.3-0.4 mT (S). The appearance of similar spectra in glasses of different compositions indicates these spectra belong to common for all the glasses constituent. Such constituent is oxygen, i.e. two kinds of spectra are due to oxygen-associated centers. The relationship between spectral parameters of A is characteristic of different centers: oxygen hole centers, peroxy radicals and molecular O{sub 2}{sup {minus}2} ions. The absence of hyperfine structure of EPR spectra of glasses containing cations with non-zero nuclear magnetic moments suggests that A belongs to the defects which are weakly coupled with glass network. The authors assume that Ais induced mainly by O{sub 2}{sup {minus}} molecular ions. The narrow isotropic S-signal has the maximum intensity in glasses irradiated by oxygen for all the glasses examined. However, for the majority of known oxygen-associated defects the EPR spectra are anisotropic excepting for exotic O{sub 4}{sup {minus}} ions which exhibit almost symmetric narrow line with g=ge (were ge is g-factor of free electron). The authors assume that during bombardment with heavy energetic particles the cavities which are able to accumulate large molecules are formed. Ionizing of these molecules leads to the formation of ions O{sup {minus}}, O{sub 2}{sup {minus}}, O{sub 3}{sup {minus}}, O{sub 4}{sup {minus}}, etc., whose features manifest in EPR spectra.

  15. Sunflower stalks as adsorbents for the removal of metal ions from wastewater

    SciTech Connect

    Sun, G.; Shi, W. [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing] [Univ. of California, Davis, CA (United States). Div. of Textiles and Clothing

    1998-04-01

    Sunflower stalks as adsorbents for the removal of metal ions such as copper, cadmium, zinc, and chromium ions in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of four heavy metals are 29.3 mg/g (Cu{sup 2+}), 30.73 mg/g (Zn{sup 2+}), 42.18 mg/g (Cd{sup 2+}), and 25.07 mg/g (Cr{sup 3+}), respectively. Particle sizes of sunflower stalks affected the adsorption of metal ions; the finer size of particles showed better adsorption to the ions. Temperature also plays an interesting role in the adsorption of different metal ions. Copper, zinc, and cadmium exhibited lower adsorption on sunflower stalks at higher temperature, while chromium showed the opposite phenomenon. The adsorption rates of copper, cadmium, and chromium are quite rapid. Within 60 min of operation about 60--80% of these ions were removed from the solutions.

  16. High energy metal ion implantation using `Magis`, a novel, broad-beam, Marx-generator-based ion source

    SciTech Connect

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ``Magis`` with a single power supply (at ground potential) for both plasma production and ion extraction.

  17. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    SciTech Connect

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-03-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals.

  18. Arrays of Metal Nanostructures Produced by Focussed Ion Beam

    NASA Astrophysics Data System (ADS)

    Luches, P.; di Bona, A.; Contri, S. F.; Gazzadi, G. C.; Vavassori, P.; Albertini, F.; Casoli, F.; Nasi, L.; Fabbrici, S.; Valeri, S.

    2007-12-01

    We present a study of the magnetic properties of arrays of nanostructures produced in a focussed ion beam-scanning electron microscope dual beam system. The single magnetic units have been isolated either by direct removal of parts of the metallic film or by local modification of the film magnetic properties. The final quality of the shape and the residual damage strictly depend on beam parameters (spot size and pixel dwell time) and on the swelling properties of the patterned materials. On square Fe(001) elements with a well-defined intrinsic (magnetocristalline) and shape- and size- induced (shape plus configurational) anisotropy we show that the overall magnetic anisotropy is not a mere superposition of the individual contributions. We also demonstrate that with ion irradiation doses below the milling threshold L10 FePt films with perpendicular magnetic anisotropy undergo a transition from the magnetically hard L10 phase to the magnetically soft A1 phase leading to an out-of-plane to in-plane spin reorientation. The magnetic properties of the planar arrays obtained by local modification of the film are compared to arrays of sculpted structures of the same material.

  19. Sensitive metal ions (II) determination with resonance Raman method.

    PubMed

    Yu, Zhi; Bracero, Lucas A; Chen, Lei; Song, Wei; Wang, Xu; Zhao, Bing

    2013-03-15

    In this paper, a new proposal for the quantitative evaluation of divalent metal ions (M(2+)) is developed by the use of the competitive resonance Raman (RR)-based method. Upon excitation with light of the appropriate wavelength (532 nm), a strong electric field is generated that couples with the resonance of the complex (zincon-M(2+)), increasing the character signals of these complexes, resulting in sensitive detection. Herein, the RR probe, zincon-M(2+) complex that the RR intensity gets lower with the decreasing of the M(2+) concentration, which leads to the transformation of the Raman information. As a result, by using the proposed RR-based method, we could find the liner calibration curves of Cu(2+) and Ni(2+), which show the potential in quantitative evaluation of an unknown sample. In addition, the abundant fingerprint information shows that RR leads to the successful analysis of a blended solution, which contains two ions: Cu(2+) and Ni(2+). PMID:23291229

  20. Analysis of the interactions between He + ions and transition metal surfaces using co-axial impact collision ion scattering spectroscopy

    Microsoft Academic Search

    M. Walker; M. G. Brown; M. Draxler; L. Fishwick; M. G. Dowsett; C. F. McConville

    2011-01-01

    The interactions between low energy He+ ions and a series of transition metal surfaces have been studied using co-axial impact collision ion scattering spectroscopy (CAICISS). Experimental data were collected from the Ni(110), Cu(100), Pd(111), Pt(111) and Au(111) surfaces using ion beams with primary energies between 1.5keV and 4.0keV. The shadow cone radii deduced from the experimental surface peak positions were

  1. Functional Characterization and Metal Ion Specificity of the Metal-Citrate Complex Transporter from Streptomyces coelicolor?

    PubMed Central

    Lensbouer, Joshua J.; Patel, Ami; Sirianni, Joseph P.; Doyle, Robert P.

    2008-01-01

    Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe3+, but uptake was also noted for Ca2+, Pb2+, Ba2+, and Mn2+. Uptake was not observed with the Mg2+, Ni2+, or Co2+ cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca2+, Ba2+, Sr2+) and CitM (Mg2+, Ni2+, Mn2+, Co2+, Zn2+) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe3+-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca2+-citrate, Fe3+-citrate, and Pb2+-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-?-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe3+-citrate and Ca2+-citrate complexes, but not the Pb2+-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate. PMID:18556792

  2. Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances

    Microsoft Academic Search

    Edward Tipping

    1998-01-01

    Humic Ion-Binding Model VI, a discrete site\\/electrostatic model of the interactions of protons and metals with fulvic and humic acids, is applied to 19 sets of published data for proton binding, and 110 sets for metal binding. Proton binding is described with a site density, two median intrinsic equilibrium constants, two parameters defining the spread of equilibrium constants around the

  3. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  4. Post-synthesis addition of transition metal ions and lanthanide ions to the surface of anatase titanium (IV) dioxide nanorods

    NASA Astrophysics Data System (ADS)

    Balasanthiran, Choumini

    Solar energy utilization is an attractive option for new energy technology and economic development. Our research is the formulation of catalyst materials for solar production of hydrogen from water. Titanium(IV) oxide has been explored for water splitting; however, a major challenge is that titanium(IV) oxide can only absorb UV light. Visible light absorption can be increased by metal ion or anion doping by creating interband states. Most dopant protocols lead to deposition of dopant ions throughout the solid, and interfacial deposition has received very little attention. We have developed a method to selectively attach transition metal ions and lanthanide ions on the surface of titanium(IV) oxide nanorods using metal chlorides as precursors. The present study demonstrates that Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu (II), Eu(III), Ce(III), Pr(III) and Er(III) were coordinated to the surface of oleic acid capped TiO2 nanorods (NRs) by post-synthesis method without any phase or morphology transformation. Metal ion loading could be carefully controlled, and we show a titration curve for addition of transition metal ions and Eu(III) to the nanorod surface. The materials were characterized with UV-visible spectroscopy, transmission electron microscopy, elemental analysis, XPS and powder X-ray diffraction. X-ray photoelectron spectra were obtained for a series of M-TiO2 samples in which transition metal (M = Cr, Mn, Fe, Co, Ni, Cu) ions are directly attached to the surface of anatase TiO2 nanocrystals. Further, we report sequential, quantitative loading of transition metal ions (Cr, Mn, Fe, Co, Ni, Cu) to the surface of rod-shape anatase TiO2 nanocrystals in bimetallic combinations (6C2 = 15). TEM, PXRD, UV-Vis, XPS and elemental analysis characterization show that bimetallic combinations were synthesized successfully.

  5. Hydrolysis of Naptalam and Structurally Related Amides: Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces

    E-print Network

    Huang, Ching-Hua

    hydrolysis between pH 3.6 and pH 6.5. Metal ion-naptalam complex formation is important since addition by these groups makes interpretation of hydrolysis experiments more complex than in the case of simple amides ions and cyclodextrin on naptalam hydrolysis. The pH value employed (pH ) 2.0) may have been unsuitable

  6. Ion beam mixing and radiation enhanced diffusion in metal\\/ceramic interfaces

    Microsoft Academic Search

    K. Neubeck; C.-E. Lefaucheur; H. Hahn; A. G. Balogh; H. Baumann; K. Bethge; D. M. Rück

    1995-01-01

    Ion beam techniques are frequently used to modify the physical properties of materials. It is the aim of this contribution to obtain information on ion beam effects on irradiated metal\\/ceramic interfaces with bilayer geometry. Ion beam mixing and radiation enhanced diffusion have been investigated in CuAl2O3, AuAl2O3 and AuZrO2 samples. Specimen, with thicknesses of the metallic film in the range

  7. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress

    Microsoft Academic Search

    Susana M. Gallego; María P. Benavídes; María L. Tomaro

    1996-01-01

    The relationship between heavy metal ion toxicity and oxidative stress in plant cells was studied. Leaf segments from 14 day old sunflower seedlings were incubated in solutions containing 0.5 mM Fe(II), Cu(II) or Cd(II) ions for 12 h in the light. Treatment with metal ions studied produced a decrease in chlorophyll and GSH contents as well as increases in lipid

  8. A neutron beam facility for radioactive ion beams and other applications

    NASA Astrophysics Data System (ADS)

    Tecchio, L. B.

    1999-06-01

    In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.

  9. Role of oxide surface in coordination chemistry of transition metal ions in catalytic systems

    Microsoft Academic Search

    L. Bonneviot; M. Curie

    1988-01-01

    On going from the solution into the bulk of an oxide through the fluid-solid interface, it is possible to encounter four types of coordina- tion chemistry (CC) for a transition metal ion (TMI) : solution coordina- tion chemistry, extraframework ion CC, surface framework ion CC and solid state CC. In each case, the reactivity of the TMI is discussed on

  10. Banana leaves as adsorbents for removal of metal ions from waste water

    Microsoft Academic Search

    A. M. A. Nada; A. A. El-Gendy; S. H. Mohamed

    2010-01-01

    Banana leaves and its derivatives are used as ion exchanger. Incorporation of different functional groups, e.g. phosphate, sulfate and phosphosulfonate onto banana leaves and its constituents (lignin and cellulose) increases their efficiencies toward metal ions uptake. Effect of different treatments on bleached banana leaves as acid or alkali treatment increases the amount of incorporated functional groups. Effect of ion exchange

  11. Arc discharge ion source for europium and other refractory metals implantation

    Microsoft Academic Search

    M. Turek; S. Prucnal; A. Drozdziel; K. Pyszniak

    2009-01-01

    The best method for the impurity doping to the host material is the ion implantation. Due to high melting point of the rare earth standard metal ion sources are useless. One of the solution is to use chemical compounds of rare earths characterized by low melting point. In this paper we describe the novel design of the ion source suitable

  12. PRODUCTION OF NEGATIVE HEAVY ION BEAMS BY CHARGE EXCHANGE IN METAL VAPOUR

    E-print Network

    Paris-Sud XI, Université de

    1471 PRODUCTION OF NEGATIVE HEAVY ION BEAMS BY CHARGE EXCHANGE IN METAL VAPOUR J. HEINEMEIER and P and acceleration of negative heavy ion beams in a tandem accelerator. 03BCA intensities of 20 keV beams.of Li-, Be-separator sources. We found that this is the case even for a number of negative ions (Li-, Bé , B-, Na-, AI-, Câ

  13. In-line nitrogen PIII/ion nitriding processing of metallic materials

    E-print Network

    In-line nitrogen PIII/ion nitriding processing of metallic materials M. Ueda a,*, G.F. Gomes a , E cathode nitrogen glow discharges with 600­1000 V, 50­300 mA were typically obtained using the sample power avail- able), we are studying a hybrid process using nitrogen PIII with ion nitriding. Ion

  14. The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris

    Microsoft Academic Search

    M. Al-Qunaibit; M. Khalil; A. Al-Wassil

    2005-01-01

    The dead dried alga, Chlorella vulgaris, was used for metal ion sequestering. The uptake of each of Cu(II), Cd(II), Fe(III), and Sn(IV) from their aqueous solutions decreased upon reuse of the biomass. Introducing mixed ethanol\\/water (50% v\\/v) metal ion solutions in batch systems enhanced the metal uptake of the exhausted biomass by 90% for iron, 40% for tin and only

  15. Simultaneous multi-element detection of metal ions bound to a Datura innoxia material.

    PubMed

    Williams, Patrick A; Rayson, Gary D

    2003-05-30

    An on-line detection scheme has been developed for the determination of metal ion affinities for binding to a plant-based substrate. This involves monitoring the effluent of a column packed with cell-wall fragments from the plant Datura innoxia for 27 different elements simultaneously by coupling the column to an ICP emission spectrometer. Previously accepted procedures for removing native metal ions from biological materials by washing the material with a pH 2 solution were found to be insufficient for this material. Measurable amounts of Na, Mg, Al, Ca, Mn, Fe, Ni, Cr, Zn, Cd, Pb, Ba, Sr, and Si were all detected in an effluent from the introduction of 1.0M HCl following washing the material in a pH 2 solution. Metal ion breakthrough curves for Cd(2+), Zn(2+), Ni(2+), Cu(2+), and Pb(2+) were found to exhibit an affinity order of Pb(2+)>Cu(2+)>Zn(2+) congruent with Cd(2+)>Ni(2+) for an equimolar mixture of these metal ions. This configuration also enabled the displacement of metal ions to be detected as the breakthrough curve for a subsequent metal ion was monitored. Comparison of Ni and Zn binding indicates a simple ion exchange model is insufficient to explain sequential binding of these metal ions. PMID:12758012

  16. Prediction of Metal Ion–Binding Sites in Proteins Using the Fragment Transformation Method

    PubMed Central

    Lu, Chih-Hao; Lin, Yu-Feng; Lin, Jau-Ji; Yu, Chin-Sheng

    2012-01-01

    The structure of a protein determines its function and its interactions with other factors. Regions of proteins that interact with ligands, substrates, and/or other proteins, tend to be conserved both in sequence and structure, and the residues involved are usually in close spatial proximity. More than 70,000 protein structures are currently found in the Protein Data Bank, and approximately one-third contain metal ions essential for function. Identifying and characterizing metal ion–binding sites experimentally is time-consuming and costly. Many computational methods have been developed to identify metal ion–binding sites, and most use only sequence information. For the work reported herein, we developed a method that uses sequence and structural information to predict the residues in metal ion–binding sites. Six types of metal ion–binding templates– those involving Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, and Zn2+–were constructed using the residues within 3.5 Å of the center of the metal ion. Using the fragment transformation method, we then compared known metal ion–binding sites with the templates to assess the accuracy of our method. Our method achieved an overall 94.6 % accuracy with a true positive rate of 60.5 % at a 5 % false positive rate and therefore constitutes a significant improvement in metal-binding site prediction. PMID:22723976

  17. Thermal stability of {beta}-tricalcium phosphate doped with monovalent metal ions

    SciTech Connect

    Matsumoto, Naoyuki, E-mail: s0573032JG@it-chiba.ac.jp [Department and Faculty of Engineering, Graduate School, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016 (Japan); Yoshida, Katsumi [Mass Transmutation Engineering Division, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hashimoto, Kazuaki, E-mail: kazuaki.hashimoto@it-chiba.ac.jp [Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016 (Japan); Toda, Yoshitomo [Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016 (Japan)

    2009-09-15

    The effect of doping {beta}-tricalcium phosphate with monovalent metal ions (lithium, sodium, and potassium ions) on its thermal stability was evaluated using the formation ratio of {alpha}-tricalcium phosphate and the rate constant for {beta}-{alpha} transformation. The thermal stability of {beta}-tricalcium phosphate doped with monovalent metal ions was higher than that of pure {beta}-tricalcium phosphate, and increased with the amount of metal ions. The increase in stability was attributed to the occupation of all calcium sites including vacancy in {beta}-tricalcium phosphate structure by the calcium ions and monovalent metal ions and the resultant crystal stabilization. However, the thermal stability of {beta}-tricalcium phosphate doped with monovalent metal ions was lower than that of {beta}-tricalcium phosphate doped with magnesium ions. These results indicate that the thermal stability of {beta}-tricalcium phosphate is influenced by the difference in the structural stabilization caused by doping metal ions into different calcium sites in the crystal structure.

  18. Implanted ^3He Targets for Inverse Reaction Studies with Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wheeler, J. L.; Kozub, R. L.; Graves, S. A.; Sissom, D. J.; Stracener, D. W.; Bardayan, D. W.; Jost, C.; O'Malley, P. D.

    2010-11-01

    Proton transfer reactions, such as (^3He,d), are extremely important for measuring the properties of single particle states and resonances. Many such resonances are important in the rp process of explosive nucleosynthesis, but cannot be measured via resonance scattering directly. For the (^3He,d) reaction, it is necessary to use localized ^3He targets, and gas jet targets are expensive and difficult to construct. An alternative approach is to implant ^3He into thin aluminum foils. We are continuing our projectootnotetextD.J. Sissom et al. http://meetings.aps.org/link/BAPS.2008.DNP.DA.92^,ootnotetextJ.L. Wheeler et al. http://meetings.aps.org/link/BAPS.2009.HAW.GB.133 of implanting ^3He into 0.65 ?m thick aluminum foils at the Holifield Radioactive Ion Beam Facility at ORNL. Target profiles are analyzed using Rutherford backscattering to determine the concentration and distribution of the implanted ^3He. An update of these results and a detailed description of the procedures will be presented. This research is supported by the U.S. Department of Energy.

  19. Recent Progress in the Development of a Polarized Proton Target for Reactions with Radioactive Ion Beams

    SciTech Connect

    Urrego Blanco, Juan Pablo [ORNL; Bingham, C. R. [University of Tennessee, Knoxville (UTK); van den Brandt, B. [Paul Scherrer Institut, Villigen, Switzerland; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gomez Del Campo, Jorge [ORNL; Hautle, P. [Paul Scherrer Institut, Villigen, Switzerland; Konter, J. A. [Paul Scherrer Institut, Villigen, Switzerland; Padilla-Rodal, Elizabeth [ORNL; Schmelzbach, P. A. [Paul Scherrer Institut, Villigen, Switzerland

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20 V200 m thickness to be initially used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3He-4He dilution refrigerator in the cryostat. Cooling of the foil is achieved via a superfluid film of 4He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test, using the elastic scattering of 38MeV 12C by protons in inverse kinematics to characterize the target system, are presented.

  20. Radioactive ion beams at ISOLDE/CERN recent developments and perspectives

    SciTech Connect

    Georg, U.; Catherall, R.; Giles, T.; Jonsson, O. C.; Koester, U.; Kugler, E.; Lettry, J.; Nilsson, T.; Ravn, H.; Simon, H.; Tamburella, C. [EP Division, CERN, Geneva (Switzerland); Bennett, J. R. J.; Drumm, P. [CLRC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon (United Kingdom); Bergmann, U. C. [Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus Denmark (Denmark); Fedoseyev, V. N. [Institute of Spectroscopy, Russian Academy of Science Troisk (Russian Federation); Junghans, A. R.; Mishin, V. I.; Schmidt, K.-H. [GSI, Darmstadt (Germany)

    1999-11-16

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from the target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.

  1. Radioactive Ion Beams at ISOLDE/CERN Recent Developments and Perspectives

    SciTech Connect

    U. Georg; J.R.J. Bennett; U.C. Bergmann; R. Catherall; P. Drumm; V.N. Fedoseyev; T. Giles; O.C. Jonsson; A.R. Junghans; U. Koester; E. Kugler; J. Lettry; V.I. Mishin; T. Nilsson; H. Ravn; K.-H. Schmidt; H. Simon; C. Tamburella

    1999-12-31

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from the target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.

  2. Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation.

    PubMed

    Souhan, Brian; Grote, Richard R; Driscoll, Jeffrey B; Lu, Ming; Stein, Aaron; Bakhru, Hassaram; Osgood, Richard M

    2014-04-21

    Metal-semiconductor-metal Si waveguide photodetectors are demonstrated with responsivities of greater than 0.5 A/W at a wavelength of 1550 nm for a device length of 1mm. Sub-bandgap absorption in the Si waveguide is achieved by creating divacancy lattice defects via Si(+) ion implantation. The modal absorption coefficient of the ion-implanted Si waveguide is measured to be ? 185 dB/cm, resulting in a detector responsivity of ? 0.51 A/W at a 50 V bias. The frequency response of a typical 1mm-length detector is measured to be 2.6 GHz, with simulations showing that a frequency response of 9.8 GHz is achievable with an optimized contact configuration and bias voltage of 15 V. Due to the ease with which these devices can be fabricated, and their potential for high performance, these detectors are suitable for various applications in Si-based photonic integrated circuits. PMID:24787805

  3. Metal salts for molecular ion yield enhancement in organic secondary ion mass spectrometry: a critical assessment.

    PubMed

    Delcorte, A; Bertrand, P

    2005-04-01

    In a search for molecular ion signal enhancement in organic SIMS, the efficiency of a series of organic and inorganic salts for molecular cationization has been tested using a panel of nonvolatile molecules with very different chemical characteristics (leucine enkephalin, Irganox 1010, tetraphenylnaphthalene, polystyrene). The compounds used for cationization include alkali bromide and group Ib metal salts (XBr with X = Li, Na, K; CF3CO2Ag; AgNO3; [CH3COCH=C(O-)CH3]2Cu; AuCl3). Alkali ions, very good for polar molecule cationization, prove to be of limited interest for nonpolar molecules such as polystyrene. Silver trifluoroacetate displays excellent results for all the considered molecules, except for leucine enkephalin (which might be due to the use of different solvents for the analyte and the salt). Instead, silver nitrate mixed with leucine enkephalin in an ethanol solution provides intense molecular signals. The influence of the respective concentrations of analyte and salt in solution, of the silver trifluoroacetate solution stability, and of the sample microstructure on the secondary ion intensities are also investigated. The results of other combinations of analyte and salts are reported. Finally, the use of salts is critically compared to other sample preparation procedures previously proposed for SIMS analysis of large organic molecules. PMID:15801744

  4. A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells

    Microsoft Academic Search

    Seyed A. Dastgheib; David A. Rockstraw

    2002-01-01

    Adsorption isotherms for activated carbon made from pecan shells have been obtained at 25°C and an approximate pH of 3 for a number of metal ion solutes. It was found that the Slips and Freundlich equations were satisfactory for explaining the experimental data. The correlation of metal ion adsorption with the solute parameters of metal ion electronegativity and first stability

  5. Leaching of nickel, chromium, and beryllium ions from base metal alloy in an artificial oral environment.

    PubMed

    Tai, Y; De Long, R; Goodkind, R J; Douglas, W H

    1992-10-01

    The use of base metal alloys in dentistry has gained wide popularity in recent years. However, claims of their safety have not been universally accepted. An artificial oral environment capable of reproducing three-dimensional force-movement cycles of human mastication was used to determine whether nickel, chromium, and beryllium ions were leached from base metal alloy. Twelve pairs of crowns were articulated in the following combinations: metal versus metal, metal versus enamel, metal versus porcelain, and metal versus metal without chewing as a control. In a simulated 1-year period of mastication, the results showed that nickel and beryllium metals were released both by dissolution and occlusal wear. These findings suggest that if these conditions occur in the oral cavity, the stability of base-metal alloys is subject to question. Further studies are needed to determine whether the leaching reported has long-term consequences for patients receiving base metal restorations. PMID:1403951

  6. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    PubMed Central

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip resurfacing arthroplasty. Patients with implanted MoM-bearing should receive regular and standardized monitoring of metal ion concentrations. Further research is indicated especially with regard to potential systemic reactions due to accumulation of metal products. PMID:23950923

  7. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  8. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme

    PubMed Central

    Boots, Jennifer L.; Canny, Marella D.; Azimi, Ehsan; Pardi, Arthur

    2008-01-01

    The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed. PMID:18755844

  9. Interaction of blast-furnace slag with heavy metal ions in water solutions

    Microsoft Academic Search

    S. V. Dimitrova; D. R. Mehanjiev

    2000-01-01

    The interaction of Cu, Zn and Ni ions with blast-furnace slag has been investigated in 10?3moll?1 solutions at pH=4.0. It has been established that the sorption of metal ions is accompanied by the partial solubilisation and hydrolysis of the calcium silicates and aluminosilicates of the slag. The sorption is due to various processes: ion-exchange and replacement of calcium ions from

  10. Radiographically undetectable periprosthetic osteolysis with ASR implants: the implication of blood metal ions.

    PubMed

    Randelli, Filippo; Banci, Lorenzo; Favilla, Sara; Maglione, Daniela; Aliprandi, Alberto

    2013-09-01

    Patients with ASR implants (resurfacing and large-diameter (XL) metal-on-metal (MoM) total hip arthroplasty), even if asymptomatic and with a stable prosthesis, may present extremely high blood metal ion levels. We report on a consecutive series of fourteen ASR revisions, focusing on osteolysis and their radiographic correspondence and their correlation with blood metal ion levels. At revision, seven hips revealed severe periacetabular osteolysis which was radiographically undetectable in six and asymptomatic in five. Seven hips with no acetabular osteolysis had significantly lower serum Cr and Co ion concentrations (respectively 25.2, 41.1 ?g/l) compared to the seven hips with severe acetabular bone loss (respectively 70.1, 147.0 ?g/l). Elevated blood metal ion levels should be considered as a warning of undetectable and ongoing periprosthetic osteolysis in asymptomatic patients with ASR prosthesis. PMID:23528557

  11. Metal ion complexation by ionizable crown ethers. Progress report, January 1, 1991--December 31, 1993

    SciTech Connect

    Bartsch, R.A.

    1993-07-01

    Cyclic and acyclic polyether compounds with pendent carboxylic acid, phosphonic acid monoethyl ester, sulfonic acid, phosphinic acid and hydroxamic acid groups have been synthesized. The proton-ionizable polyethers can come with and without lipophilic groups. Two types of lipophilic di-ionizable lariat ethers have been prepared. Conformations of proton-ionizable lariat ethers have been probed. Competitive alkali metal cation transport by syn-(decyl)dibenzo-16-crown-5-oxyacetic acid and lipophilic proton-ionizable dibenzo lariat ethers in polymer-supported liquid membranes was studied. Complexation of alkali metal cations with ionized lariat ethers was studied. Condensation polymerization of cyclic and acyclic dibenzo polyethers containing pendent mono-ionizable groups with formaldehyde produces novel ion exchange resins with both ion exchange sites for metal ion complexation and polyether binding sites for metal ion recognition. Resins prepared from lariat ether dibenzo phosphonic acid monoethyl esters show strong sorption of divalent heavy metal cations with selectivity for Pb{sup 2+}.

  12. Cellular response to metallic ions released from nickel-chromium dental alloys.

    PubMed

    Bumgardner, J D; Lucas, L C

    1995-08-01

    Concerns exist over the potential release of elevated levels of metal ions such as Ni and Be from Ni-Cr dental casting alloys, due to their susceptibility to accelerated corrosion. In this investigation, we evaluated the release of metal ions from four commercial Ni-Cr alloys, representing a range of compositions, in three-day cell culture tests. Metal ion release, as measured by atomic absorption spectroscopy, was correlated to changes in cellular morphology, viability, and proliferation. The results showed that the test alloys and their corrosion products did not affect cellular morphology or viabilities, but did decrease cellular proliferation. The types and amounts of metal ions released, which corresponded to the alloys' reported surface and corrosion properties, also correlated to observed decreases in cellular proliferation after 72 h. Neptune, which caused the smallest decrease in cellular proliferation as compared with control cells, released the lowest amount of corrosion products, due to its corrosion-resistant, high-Cr-Mo-containing, homogeneous surface oxide. The other test alloys, which were susceptible to accelerated corrosion processes, released higher levels of metal ions that correlated to larger decreases in thymidine incorporation. Metal ion levels increased with test time for all alloys but were not proportional to bulk alloy compositions. Ni ions were released at slightly higher than bulk alloy compositions, while Be was released at from four to six times that of bulk alloy compositions. The elevated release of Be ions was associated with reduced cellular proliferation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7560409

  13. Metal-Ion Metathesis and Properties of Triarylboron-Functionalized Metal-Organic Frameworks.

    PubMed

    Wang, Xiaoqing; Zhang, Liangliang; Yang, Jie; Dai, Fangna; Wang, Rongming; Sun, Daofeng

    2015-07-01

    An anionic metal-organic framework, H3 [(Mn4 Cl)3 L8 ]?30?H2 O?2.5?DMF?5?Diox (UPC-15), was successfully prepared by the reaction of MnCl2 with tris(p-carboxylic acid)tridurylborane (H3 L) under solvothermal conditions. UPC-15 with wide-open pores (?18.8?Å) is constructed by packing of octahedral and cuboctahedral cages, and exhibits high gas-sorption capabilities. Notably, UPC-15 shows selective adsorption of cationic dyes due to the anion framework. Moreover, the catalytic and magnetic properties were investigated, and UPC-15 can highly catalyze the cyanosilylation of aromatic aldehydes. UPC-15 exhibits the exchange of metal ions from Mn to Cu in a single-crystal-to-single-crystal manner to generate UPC-16, which could not be obtained by the direct solvothermal reaction of CuCl2 and H3 L. UPC-16 exhibits similar properties for gas sorption, dye separation, and catalytic activity. However, the magnetic behaviors for UPC-15 and UPC-16 are distinct due to the metal-specific properties. Below 47?K, UPC-15 exhibits a ferromagnetic coupling but UPC-16 shows a dominant antiferromagnetic behavior. PMID:25929722

  14. Carboxylate Ion Pairing with Alkali-Metal Ions for ?-Lactoglobulin and Its Role on Aggregation and Interfacial Adsorption.

    PubMed

    Beierlein, Frank R; Clark, Timothy; Braunschweig, Björn; Engelhardt, Kathrin; Glas, Lena; Peukert, Wolfgang

    2015-04-30

    We report a combined experimental and computational study of the whey protein ?-lactoglobulin (BLG) in different electrolyte solutions. Vibrational sum-frequency generation (SFG) and ellipsometry were used to investigate the molecular structure of BLG modified air-water interfaces as a function of LiCl, NaCl, and KCl concentrations. Molecular dynamics (MD) simulations and thermodynamic integration provided details of the ion pairing of protein surface residues with alkali-metal cations. Our results at pH 6.2 indicate that BLG at the air-water interface forms mono- and bilayers preferably at low and high ionic strength, respectively. Results from SFG spectroscopy and ellipsometry are consistent with intimate ion pairing of alkali-metal cations with aspartate and glutamate carboxylates, which is shown to be more effective for smaller cations (Li(+) and Na(+)). MD simulations show not only carboxylate-alkali-metal ion pairs but also ion multiplets with the alkali-metal ion in a bridging position between two or more carboxylates. Consequently, alkali-metal cations can bridge carboxylates not only within a monomer but also between monomers, thus providing an important dimerization mechanism between hydrophilic surface patches. PMID:25825918

  15. Determination of trace metal ions in common salt by stripping voltammetry.

    PubMed

    Ali, A M

    1999-01-01

    Sensitive voltammetric methods using cathodic and anodic differential pulse stripping techniques were applied for determination of trace ions cadmium(II), cobalt(II), copper(II), lead(II), manganese(II), nickel(II), and zinc(II), which are usually found in different grades of common salt as contaminants. The optimal conditions, i.e., deposition time, preconcentration potential, supporting electrolyte, and ionic strength, were investigated for each metal ion. Concentration of the metal ion was determined by the standard addition method. Metal content varied according to the quality of the table salt. PMID:10589495

  16. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    NASA Astrophysics Data System (ADS)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, S. S.

    2015-02-01

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ?75 J/cm2 by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ?50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ?50 J/cm2. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ?10 J/cm2. A broader ion component is observed at larger angles for fluences larger than ?10 J/cm2. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ?66 J/cm2. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  17. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W. (Seabrook, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. Cytotoxicity of Metal Ions Released from Nitinol Alloys on Endothelial Cells

    PubMed Central

    Haider, W.; Munroe, N.; Tek, V.; Gill, P.K.S.; Tang, Y.; McGoron, A.J.

    2011-01-01

    Most implantable medical devices are expected to function in the body over an extended period of time. Therefore, immersion tests under simulated conditions can be useful for assessing the amount of metal ions released in situ. In this investigation, dissolved ions from as-received binary and ternary Nitinol alloys in cell culture media were periodically measured under static and dynamic conditions. Endothelial cells were grown in aliquots of culture media obtained and the effect of dissolved ions on cell proliferation and viability of endothelial cells (HUVEC) was studied by cytotoxicity assays. The concentration of metal ions in the media was measured by inductively coupled plasma mass spectrometry. PMID:21666855

  19. Cytotoxicity of Metal Ions Released from Nitinol Alloys on Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Haider, W.; Munroe, N.; Tek, V.; Gill, P. K. S.; Tang, Y.; McGoron, A. J.

    2011-07-01

    Most implantable medical devices are expected to function in the body over an extended period of time. Therefore, immersion tests under simulated conditions can be useful for assessing the amount of metal ions released in situ. In this investigation, dissolved ions from as-received binary and ternary Nitinol alloys in cell culture media were periodically measured under static and dynamic conditions. Endothelial cells were grown in aliquots of culture media obtained and the effect of dissolved ions on cell proliferation and viability of endothelial cells (HUVEC) was studied by cytotoxicity assays. The concentration of metal ions in the media was measured by inductively coupled plasma mass spectrometry.

  20. Sputtering of parent-like ions from large organic adsorbates on metals under keV ion bombardment

    NASA Astrophysics Data System (ADS)

    Delcorte, A.; Bertrand, P.

    1998-09-01

    Thin films of hydrocarbon molecules, unsaturated fatty acid and low molecular weight polystyrene deposited on different metal substrates (silver, copper and gold) were bombarded by 15 keV Ga ions and the secondary ions were mass- and energy-analysed by means of a time-of-flight secondary ion mass spectrometer. The samples were studied in order to evidence the effects of different substrates and coverages on the emission of the parent and cationised molecular ions, and to gain a better understanding of the large molecular ion emission processes. Ion beam degradation studies were realised for fundamental purposes too. In general, the kinetic energy distributions of metal-cationised molecules are broad in comparison with those of the parent ions, and of the smaller polystyrene fingerprint ions. In addition, the velocity distributions of the parent ions and of the metal-cationised molecules are similar. Parent ions of aromatic molecules are, on average, more energetic than those of aliphatic molecules. In the case of metal-cationised molecules, the three hypotheses of emission of a preformed complex, recombination in the selvedge and metastable decay of larger aggregates are critically reviewed in comparison with the experimental data. The recombination hypothesis cannot account for the whole set of observations. On the other hand, the very different evolutions of the parent ions and of the metal-cationised molecules in the degradation experiments cannot be explained solely in the frame of metastable decay reactions, although the kinetic energy measurements show that a significant fraction of the parent-like ions are produced in the vacuum. The augmentation of the secondary ion kinetic energy with increasing molecule size for triacontane monomers and dimers, and for silver-cationised polystyrene oligomers, is in disagreement with the sputtering by a single cascade atom, too. Finally, the discussion outlines the conditions that must be satisfied to model the experimental observations and proposes a view of the sputtering of these large molecular cations based on multiple collision processes and possible subsequent dissociation in the vacuum.

  1. Searching for new luminescent chemosensors for metal ions

    NASA Astrophysics Data System (ADS)

    Prodi, Luca; Bolletta, Fabrizio; Montalti, Marco; Zaccheroni, Nelsi

    1999-05-01

    Aiming to develop new fluorescent chemosensors for biological and environmental applications, we have designed and synthesized new chemical species able to reversibly bind alkali, earth-alkali, and transition metal ions. For signaling the binding of the target analyte, we have inserted in the structure of the chemosensors different luminophores, such as dioxyxanthone derivatives, dansyl derivatives, ruthenium complexes, and hydroxyquinoline derivatives. In solution, the binding is always signaled by pronounced changes in the photophysical properties of the inserted luminophore such as emission wavelength and intensity, and excited state lifetime. The mechanism for the signal transduction strongly depends on the chosen receptor and luminophore moieties, and has been investigated in detail by means of steady state and time resolved spectroscopy. In all cases, the synthesized chemosensors have proved to be chemically and photochemically stable. Good selectivity and affinity has been obtained with different sensors for K+, Mg2+, Ba2+, Zn2+, Ni2+ and Cu2+, even in physiological pH conditions. Moreover the use of an array of these sensors in optodes could lead to the construction of the so called electronic tongues. All these features make these sensors promising candidates for analytical applications.

  2. Toxicity of metallic ions and oxides to rabbit alveolar macrophages

    SciTech Connect

    Labedzka, M.; Gulyas, H.; Schmidt, N.; Gercken, G. (Univ. of Hamburg (Germany, F.R.))

    1989-04-01

    The effects of soluble compounds and oxides of As, Cd, Cu, Hg, Ni, Pb, Sb, Sn, V, and Zn on oxidative metabolism and membrane integrity of rabbit alveolar macrophages were studied by 24-hr in vitro exposure. Oxidative metabolism induced by phagocytosis of opsonized zymosan was measured by H{sub 2}O{sub 2} and O{sub 2}{sup {minus}} release and by chemiluminescence in the presence of luminol. Membrane integrity was estimated by extracellular LDH activity. Metallic ions and oxides inhibited the release of active oxygen species. Cd(II), As(III), and V(V) were the most toxic elements as measured by all investigated parameters. Cu(II) decreased O{sub 2}{sup {minus}} release and chemiluminescence effectively but H{sub 2}O{sub 2} release and membrane integrity less. Chemiluminescence was decreased strongly by Hg(II) while O{sub 2}{sup {minus}} and H{sub 2}O{sub 2} release were depressed moderately. Zn(II) and Sb(III) compounds caused medium toxicity and the tested Sn, Ni, and Pb compounds showed only faint toxic effects.

  3. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    SciTech Connect

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  4. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira [Hokkaido Univ., Hakodate (Japan)] [Hokkaido Univ., Hakodate (Japan)

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  5. Elastomeric Nanocomposite Foams for the Removal of Heavy Metal Ions from Water.

    PubMed

    Chavan, Asmita A; Li, Hongbo; Scarpellini, Alice; Marras, Sergio; Manna, Liberato; Athanassiou, Athanassia; Fragouli, Despina

    2015-07-15

    We report the fabrication and utilization of elastomeric polymer nanocomposite foams for the efficient removal of Pb(2+) and Hg(2+) heavy metal ions from polluted water. The polydimethylsiloxane (PDMS) foams are properly modified in order to become hydrophilic and allow the polluted water to penetrate in their volume. The ZnSe colloidal nanocrystals (NCs) that decorate the surface of the foams, act as active components able to entrap the metal ions. In this way, after the dipping of the nanocomposite foams in water polluted with Pb(2+) or Hg(2+), a cation exchange reaction takes place, and the heavy metal ions are successfully removed. The removal capacity for the Pb(2+) ions exceeds 98% and the removal of Hg(2+) ions approaches almost 100% in the studied concentrations region of 20-40 ppm. The reaction is concluded after 24 h, but it should be noticed that after the first hour, more than 95% of both the metal ions is removed. The color of the foams changes upon heavy metal ions entrapment, providing thus the opportunity of an easy detection of the presence of the ions in water. Taking into account that the fabricated foams provide good elastic properties and resistance to heat, they can be used in different conditions of water remediation. PMID:26133912

  6. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    PubMed Central

    2013-01-01

    Background and purpose Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties. Methods Studies were searched for in the Medline database, Embase, and the Cochrane Database of Systematic Reviews. Highest mean or median ion concentrations of Cr and Co after a minimum of 1 year of follow-up were extracted and grouped according to sample- and articulation type, and average values were calculated. Results 43 studies were included and 16 different MoM implants were identified. For the different types of bearings, average ion concentrations and range were calculated from the mean or median ion concentration. The average Cr concentration ranged between 0.5 and 2.5 ?g/L in blood and between 0.8 and 5.1 ?g/L in serum. For Co, the range was 0.7–3.4 ?g/L in blood and 0.3–7.5 ?g/L in serum. Interpretation When the average blood ion concentrations calculated for the different implants, together with the concentrations measured in the individual studies, were compared with the upper acceptable limit for Cr and Co in blood, no clear pattern was recognized. Furthermore, we were unable to detect any clear difference in ion concentrations between different types of implants (THA and resurfacing). PMID:23594249

  7. Determination of Heavy Metals and Comparison to Gross Radioactivity Concentration in Soil and Sediment Samples of the Bendimahi River Basin (Van, Turkey)

    Microsoft Academic Search

    Özlem Selçuk Zorer; Hasan Ceylan; Mahmut Do?ru

    2009-01-01

    An investigation of radioactivity and some heavy metal distribution in soil and sediment of the river basin (Bendimahi River,\\u000a Van-Turkey) was conducted in two seasons of 2005. The samples of soil and sediment were collected from the basin and investigated\\u000a for concentrations of some heavy metal and natural radioactivity. Concentrations of Pb, Cr, Mn, Fe, Co, Cu, Zn and Cd

  8. The role of diffusion in ISOL targets for the production of radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Beyer, G. J.; Hagebø, E.; Novgorodov, A. F.; Ravn, H. L.; Isolde Collaboration

    2003-05-01

    On-line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500-1000 MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powders of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600-1000 MeV) at the Dubna synchrocyclotron, the CERN synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice type of the host material used as matrix or target on the diffusion will be evaluated from these systematics. Special attention was directed to the release of group I-, II- and III-elements. Arrhenius plots lead to activation energies of the diffusion process. Results:A strong radius determined diffusion behaviour was found: DIIIB> DIIA> DIA> DVIIIA, ( DY> DSr> DRb> DKr). Rare earth elements diffuse as Me 3+-species. Within the host elements of one period of the periodic table the diffusion of the trace elements changes in the following order: DIIIB> DIVB? DVB> DVIB. In a given target trace elements of group I and II of a lower period diffuse faster than the corresponding elements of the higher period of the periodic table. D2ndperiod> D5thperiod> D6thperiod, ( DBe? DSr> DBa). The diffusion determined transport rate of nuclear reaction products in solid target materials is often satisfactory, and consequently several refractory metals are suited as targets for fast on-line separation of short-lived nuclear reaction products. The delay times measured in on-line mode at ISOLDE, however, are significantly shorter. An enhancement of the diffusion under radiation condition is considered, subject for further systematic studies. The results obtained in this systematic study may also be applied in the development of alternative separation technologies in medical radionuclide production.

  9. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E. [Cumhuriyet Univ., Sivas (Turkey); Gueven, O. [Hacettepe Univ., Ankara (Turkey)

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  10. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    E-print Network

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  11. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results. PMID:16843592

  12. Structure-property relationships in gas-phase protonated and metalated peptide ions

    E-print Network

    Slaton, James Garrett

    2009-05-15

    ], and in particular, the charge derivatization study of Allison [16]. Our objectives are to 1) determine the location of the charge within the peptide ions, 2) assess differences in the fragmentation chemistry of the protonated and metalated peptides, 3) establish...

  13. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  14. Plastic flow produced by single ion impacts on metals.

    SciTech Connect

    Birtcher, R. C.

    1998-10-30

    Single ion impacts have been observed using in situ transmission electron microscopy and video recording with a time resolution of 33 milliseconds. Gold was irradiated at 50 K and room temperature. Single ion impacts produce holes, modify existing holes, and extrude material into the initial specimen hole and holes formed by other ion impacts. The same behavior is observed at both temperatures. At both temperatures, ion impacts result in craters and ejected material. Ion impacts produce more small craters than large ones for all ion masses, while heavier mass ions produce more and larger craters than lighter mass ions. This comparison is affected by the ion energy. As the energy of an ion is increased, the probability for deposition near the surface decreases and fewer craters are formed. For a given ion mass, crater production depends on the probability for displacement cascade production in the near surface region. Crater and holes are stable at room temperature, however, ion impacts near an existing crater may cause flow of material into the crater either reshaping or annihilating it. Holes and craters result from the explosive outflow of material from the molten zone of near-surface cascades. The outflow may take the form of molten material, a solid lid or an ejected particle. The surface is a major perturbation on displacement cascades resulting from ion impacts.

  15. Oscillatory concentration pulses of some divalent metal ions induced by a redox oscillator

    E-print Network

    Epstein, Irving R.

    + and Ni2+ are induced by adding these species to the BrO3 À ­SO3 2À chemical oscillator in a flow reactor. In the systems examined here, the oscillatory reductant SO3 2À binds the free metal ion in a MSO3 precipitate, reducing its level to a minimal value when [SO3 2À ] is high, followed by release of the metal ion when

  16. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review

    Microsoft Academic Search

    Gadupudi Purnachadra Rao; Chungsying Lu; Fengsheng Su

    2007-01-01

    In this article, the technical feasibility of various kinds of raw and surface oxidized carbon nanotubes (CNTs) for sorption of divalent metal ions (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+) from aqueous solution is reviewed. The sorption mechanisms appear mainly attributable to chemical interactions between the metal ions and the surface functional groups of the CNTs. The sorption capacities of CNTs remarkably

  17. The use of amidoximated cellulose for the removalof metal ions and dyes from waste waters

    Microsoft Academic Search

    Rima Saliba; Helene Gauthier; Robert Gauthier; Michelle Petit-Ramel

    2002-01-01

    The adsorption of metal ions such as Cu(II), Cr(III), Cd(II) and Ni(II)and dyes such as Acid Blue 25, Calmagite and Eriochrome Blue Black Bis performed onto amidoximated cellulose (Am-Cell). Different ways are possible for theadsorption of these pollutants onto Am-Cell : adsorption of each pollutantaloneon the support, or cumulative adsorption of both metal ions and dyes on the samesupport. In

  18. Sensitive non-radioactive dot-blot hybridization using DNA probes labelled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence.

    PubMed Central

    Oser, A; Roth, W K; Valet, G

    1988-01-01

    A new labelling method for cloned DNA probes used in hybridization assays is described. The DNA insert of recombinant plasmid DNA was made partially single-stranded for the labelling reaction by a restriction enzyme digest, followed by a controlled exonuclease III incubation. A thiol-containing psoralen derivative was covalently bound through irradiation with UV-light to the remaining double-stranded region of the plasmid DNA. The psoralen-SH groups were labelled with a large number of metal chelators (diethylentriamine pentaacetic acid, DTPA) using poly-L-lysine as a macromolecular carrier. The main advantage of the labelling procedure is that a high degree of labelling is achieved without modification of the single-stranded DNA hybridizing sequences. The specific hybrids were labelled after filter hybridization with europium ions through the chelating groups of DTPA. The europium ions were quantitatively detected by time-resolved fluorometry. The sensitivity of the assay for target DNA detection was in the low picogram range, comparable to radioactively labelled DNA probes. PMID:3344204

  19. The role of metal ions in X-ray induced photochemistry

    E-print Network

    Stumpf, Vasili; Cederbaum, Lorenz S

    2015-01-01

    Metal ions play numerous important roles in biological systems being central to the function of biomolecules. In this letter we show that the absorption of X-rays by these ions leads to a complicated chain of ultrafast relaxation steps resulting in the complete degradation of their nearest environment. We conducted high quality ab initio studies on microsolvated Mg clusters demonstrating that ionisation of an 1s-electron of Mg leads to a complicated electronic cascade comprising both intra- and intermolecular steps and lasting only a few hundreds femtoseconds. The metal cation reverts to its original charge state at the end of the cascade, while the nearest solvation shell becomes multiply ionised and large concentrations of radical and slow electron species build up in the metal vicinity. We conclude that such cascades involving metal ions are essential for understanding the radiation chemistry of solutions and radiation damage to metal containing biomolecules.

  20. A comprehensive platform to investigate protein-metal ion interactions by affinity capillary electrophoresis.

    PubMed

    Alhazmi, Hassan A; Nachbar, Markus; Albishri, Hassan M; Abd El-Hady, Deia; Redweik, Sabine; El Deeb, Sami; Wätzig, Hermann

    2015-03-25

    In this work, the behavior of several metal ions with different globular proteins was investigated by affinity capillary electrophoresis. Screening was conducted by applying a proper rinsing protocol developed by our group. The use of 0.1M EDTA in the rinsing solution successfully desorbs metal ions from the capillary wall. The mobility ratio was used to evaluate the precision of the method. Excellent precision for repeated runs was achieved for different protein metal ion interactions (RSD% of 0.05-1.0%). Run times were less than 6 min for all of the investigated interactions. The method has been successfully applied for the interaction study of Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Al(3+), Ga(3+), La(3+), Pd(2+), Ir(3+), Ru(3+), Rh(3+), Pt(2+), Pt(4+), Os(3+), Au(3+), Au(+), Ag(+), Cu(1+), Cu(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cr(3+), V(3+), MoO4(2-) and SeO3(2-) with bovine serum albumin, ovalbumin, ?-lactoglobulin and myoglobin. Different interaction values were obtained for most of the tested metal ions even for that in the same metal group. Results were discussed and compared in view of metal and semimetal group's interaction behavior with the tested proteins. The calculated normalized difference of mobility ratios for each protein-metal ion interaction and its sign (positive and negative) has been successfully used to detect the interaction and estimate further coordination of the bound metal ion, respectively. The comprehensive platform summarizes all the obtained interaction results, and is valuable for any future protein-metal ion investigation. PMID:25638307

  1. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  2. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  3. Luminescence studies of metal ion-binding sites on Datura innoxia biomaterial

    SciTech Connect

    Ke, H.Y.D.; Anderson, W.L.; Moncrief, R.M.; Rayson, G.D. (New Mexico State Univ., Las Cruces, NM (United States)); Jackson, P.J. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The metal ion-binding interactions between a series of metal ions and Datura innoxia cell wall fragments have been investigated using Eu[sup 3+] luminescence. An affinity order of Cu[sup 2+] [approximately] Ag[sup +] > Ni[sup 2+] > Cd[sup 2+] > Eu[sup 2+] > Sr[sup 2+] Ba[sup 2+] for total metal ion binding to D. innoxia cell material has been obtained when pH [ge] 5. Both electrostatic and complexation interactions have been verified to be involved in metal ion-binding interactions. Carboxylate groups have been demonstrated to be the dominant functional group responsible for the binding of most of the metal ions studied. At least two binding sites have been demonstrated to be involved in the binding of Ag[sup +] at different Ag[sup +] concentrations. One site is pH-independent and displays a greater affinity with a lower availability than the other, which is pH-dependent. The studies of competitive uptake by carboxylate groups between Eu[sup 3+] and the metal ions studied demonstrate an affinity order of Cu[sup 2+] > Ag[sup +] > Ni[sup 2+] > Sr[sup 2+] > Ba[sup 2+] > Cd[sup 2+]. 28 refs., 5 figs.

  4. High-energy metal ion implantation for reduction of surface resistivity of alumina ceramic

    SciTech Connect

    Gushenets, V. I.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu. [Institute of High Current Electronics SB RAS, Tomsk (Russian Federation); Brown, I. G. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-02-15

    In this work, the possibility to increase the surface conductivity of ceramic insulators through their treatment with accelerated metal ion beams produced by a MevvaV.Ru vacuum arc source is demonstrated. The increase in surface conductivity is made possible due to experimental conditions in which an insulated collector is charged by beam ions to a potential many times lower than the accelerating voltage, and hence, than the average beam ion energy. The observed effect of charge neutralization of the accelerated ion beam is presumably associated with electrons knocked out of the electrodes of the accelerating system of the source and of the walls of the vacuum chamber by the accelerated ions.

  5. Self-propelled droplets for extracting rare-earth metal ions.

    PubMed

    Ban, Takahiko; Tani, Kentaro; Nakata, Hiroki; Okano, Yasunori

    2014-09-01

    We have developed self-propelled droplets having the abilities to detect a chemical gradient, to move toward a higher concentration of a specific metal ion (particularly the dysprosium ion), and to extract it. Such abilities rely on the high surface activity of di(2-ethylhexyl) phosphoric acid (DEHPA) in response to pH and the affinity of DEHPA for the dysprosium ion. We used two external stimuli as chemical signals to control droplet motion: a pH signal to induce motility and metal ions to induce directional sensing. The oil droplets loaded with DEHPA spontaneously move around beyond the threshold of pH even in a homogeneous pH field. In the presence of a gel block containing metal ions, the droplets show directional sensing and their motility is biased toward higher concentrations. The metal ions investigated can be arranged in decreasing order of directional sensing as Dy(3+)? Nd(3+) > Y(3+) > Gd(3+). Furthermore, the analysis of components by using an atomic absorption spectrophotometer reveals that the metal ions can be extracted from the environmental media to the interiors of the droplets. This system may offer alternative self-propelled nano/microscale machines to bubble thrust engines powered by asymmetrical catalysts. PMID:25029997

  6. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    PubMed

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. PMID:21295909

  7. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2005-06-01

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  8. Metal ion complexes with native cyclodextrins. An overview

    Microsoft Academic Search

    Eugenijus Norkus

    2009-01-01

    The review presents a survey of the metal complexing properties of native cyclodextrins (including deprotonation in alkaline\\u000a medium) and a report on some recent results on composition and stability of metal–cyclodextrin complexes.

  9. Heavy metal accumulation (lead and cadmium) and ion exchange in three species of Sphagnaceae

    Microsoft Academic Search

    K. Breuer; A. Melzer

    1990-01-01

    Three different species of Sphagnum mosses originating from a bog (“Hochmoor”) were examined with respect to their behaviour of accumulation of heavy metal ions lead and cadmium. A strong bond of double charged Pb could be found independent of the Sphagnum species. When competitive reactions were performed in test solutions, with two ions (Pb2+ and one alkali or one earthalkali

  10. Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals

    E-print Network

    Ceder, Gerbrand

    Designing Multielectron Lithium-Ion Phosphate Cathodes by Mixing Transition Metals Geoffroy Hautier, Massachusetts 02139, United States ABSTRACT: Finding new polyanionic Li-ion battery cathodes with higher capacities than LiFePO4 is currently a major target of battery research. One approach toward this goal

  11. 900 keV gold ion sputter etching of silicon and metals

    Microsoft Academic Search

    Gary A. Glass; Johnny F. Dias; Alexander D. Dymnikov; Bibhudutta Rout

    2008-01-01

    Au ions (900keV) have been used to directly sputter etch microstructures in silicon, aluminum, copper and silver. The results presented clearly demonstrate that high energy heavy ions can be used to fabricate microstructures in selected metals and silicon in a single step process.

  12. 900 keV gold ion sputter etching of silicon and metals

    Microsoft Academic Search

    Gary A. Glass; Johnny F. Dias; Alexander D. Dymnikov; Bibhudutta Rout

    2008-01-01

    Au ions (900 keV) have been used to directly sputter etch microstructures in silicon, aluminum, copper and silver. The results presented clearly demonstrate that high energy heavy ions can be used to fabricate microstructures in selected metals and silicon in a single step process.

  13. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    NASA Technical Reports Server (NTRS)

    Thompson, David W.

    1993-01-01

    Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on selective gas permeability. Much more commonly than above, polyimide films are prepared by casting the film as the poly(amic acid) precursor which is then converted to the imidized form during the thermal cure cycle. Very limited success was achieved in the past in adding lanthanide metal ions to the amide precursors because of gellation and lack of solubility. With the use of the diketone ligands cited above, the solubility and gellation problems were overcome. However, the films after curing were clear but unacceptably brittle. Attempts to overcome this cure embrittlement problem are in progress.

  14. Improved ion extraction from an electron cyclotron resonance ion source by a metal-dielectric-extraction electrode

    SciTech Connect

    Schachter, L.; Dobrescu, S.; Stiebing, K.E. [National Institute for Physics and Nuclear Engineering (IFIN-HH), P.O. Box MG-6, Bucharest (Romania); Institut fuer Kernphysik der Johann Wolfgang Goethe-Universitaet (IKF), Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany)

    2006-03-15

    The goal of the experiment was to study the influence and the physics of the boundary region (between the plasma and the extraction potential) with direct impact on the source ion-beam output. A specially processed high-emissive metal-dielectric structure was installed on the extraction electrode of the Frankfurt 14 GHz electron cyclotron resonance ion source (ECRIS), forming a so-called metal-dielectric- (MD) extraction electrode. The emissive layer of the disk faced the plasma; its inner hole was about the size of the normal extraction hole of the ECRIS. The output of the ECRIS in the presence of the MD electrode was compared with the outputs for the standard configuration (overall stainless-steel plasma chamber) and with the same plasma chamber with the radial wall covered by a highly electron emissive MD liner that raise the plasma electron density and temperature. The charge state distributions of the argon ions extracted from the source show an important increase of the ion beam for the high charge states as compared to the standard situation whereas the low charge states are less reduced than in the case of the presence of a MD liner. Due to the special position of the dielectric layer, the MD electrode introduces a new effect, which is connected to its property of becoming a positively charged surface under electron and ion bombardment. The MD electrode creates a quasiconfinement of the peripheral ions in the extraction, those ions that are normally lost to a conducting extraction electrode.

  15. Evaluation of dry ashing in conjunction with ion chromatographic determination of transition metal ions in pig feed samples.

    PubMed

    Van paemel, Marleen R; De Rycke, Herman; Millet, Sam; Hesta, Myriam; Janssens, Geert P J

    2005-03-23

    The contents of transition metal ions iron, copper, zinc, and manganese were simultaneously determined in pig feed using an ion chromatographic technique (IC) preceded by dry ashing. Employing ion exchange, the ions were separated on an IonPac CS5A column used in combination with a pyridine-2,6-dicarboxylic acid based eluent. The separation was followed by spectrophotometric detection after postcolumn reaction with 4-(2-pyridylazo)resorcinol. Dry ashing parameters were varied to assess their role in potential analyte loss. Quantitative recoveries (>95%) were obtained for all analytes with a dry ashing method that included a moderate temperature-time regime and ash leaching support in the form of sonication and heat treatment. The use of HCl as leaching acid and the presence of alkaline earths in the matrix solution did not interfere with the chromatographic separation. PMID:15769106

  16. Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA2

    Microsoft Academic Search

    Recep Ali Kumbasar

    2010-01-01

    In present study, selective extraction of cadmium from acidic leach solutions, containing various heavy metal ions, by emulsion liquid membrane (ELM) is studied. For this reason, the zinc plant copper cake was leached with sulfuric acid and main acidic leach solution containing Zn(II), Cu(II), Fe(II), Cd(II), Co(II) and Ni(II) ions was obtained. After Zn(II), Cu(II), Fe(II) and Cd(II) ions in

  17. Meteors and Metal Ion Layers in the Atmospheres of Triton and Venus

    Microsoft Academic Search

    W. D. Pesnell; J. M. Grebowsky

    2003-01-01

    Previous work has shown that the flux and velocity of micrometeoroids are sufficient both to provide meteor displays and to maintain persistent layers of metallic ions in the atmosphere of almost every planet. Ablation in the atmosphere evaporates the meteoric material, creating meteors and depositing metal atoms. The deposited atoms are then ionized by a variety of mechanisms, with the

  18. Ammonium Acetate Extracts and Their Analysis for the Speciation of Metal Ions in Soils and Sediments

    Microsoft Academic Search

    M. Ure; R. Thomas; D. Littlejohn

    1993-01-01

    The use of ammonium acetate (1 mol\\/l at pH 7) extraction of soils and sediments for the speciation of metal ions is briefly discussed. Because the sensitivity of flame atomic absorption spectrometry (FAAS) is insufficiently sensitive for the determination of many of the heavy metals in ammonium acetate extracts of unpolluted, and even in some polluted soils, the use of

  19. Alkali Metal Ion Binding to Glutamine and Glutamine Derivatives Investigated by Infrared Action Spectroscopy and Theory

    E-print Network

    Cohen, Ronald C.

    Alkali Metal Ion Binding to Glutamine and Glutamine Derivatives Investigated by Infrared Action ReceiVed: June 11, 2008 The gas-phase structures of alkali-metal cationized glutamine are investigated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent

  20. The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering

    Microsoft Academic Search

    Cheng-Chung Lee; Jin-Cherng Hsu; Daw-Heng Wong

    2001-01-01

    The characteristics of ion beam sputtered metallic oxides deposited in high vacuum are analyzed by X-ray diffractometer, atomic force microscopy, spectrophotometer and ellipsometer. The metallic oxide thin films include aluminum oxide, niobium oxide, silicon oxide, tantalum oxide, zirconium oxide, and titanium oxide. The structure, surface morphology and optical constant are described. An oxide film with low surface roughness, low extinction

  1. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: ION EXCHANGE

    EPA Science Inventory

    This Technology Transfer ummary Report is one of a series of reports that summarizes a pollution control technology for the metal finishing industry. he 45-page report is intended to promote an understanding of the use of ion exchange in the metal finishing industry. The sections...

  2. Taper corrosion in modular hip prostheses: analysis of serum metal ions in 19 patients.

    PubMed

    Vundelinckx, Bart J; Verhelst, Luk A; De Schepper, Jo

    2013-08-01

    Recently, concerns have been raised about the use of metal-on-metal (MoM) implants. This has led to the recall of several resurfacing and large-diameter total hip arthroplasties (THA). Any MoM interface can be the cause of metal debris and adverse tissue reactions. We analyzed serum metal ions and HOOS scores in 19 of 306 patients treated with a THA with modular neck section. The only MoM interface in this particular implant is the taper between the neck and the stem. The articulating surface consists of a ceramic-on-polyethylene or ceramic-on-ceramic interface. As such, this study looks at the metal ion production from the modular neck section. One of 306 implants needed revision at 52-month follow-up because of an adverse reaction to metal debris (ARMD). PMID:23523216

  3. Liquid-liquid extraction of some lanthanide metal ions by polyoxyalkylene systems.

    PubMed

    Jaber, A M; Al-Naser, A E

    1997-10-01

    Polyoxyalkylene systems, namely, polypropylene glycol (PPG-1025), polyethylene glycol (PEG-600) and polybutadieneoxide (PBDO-700) dissolved in either nitrobenzene or 1,2-dichloroethane have been tested as prospective extractants for some lanthanide metal ions (Eu(3+), Pr(3+) and Er(3+)) from their aqueous solutions in the presence of picrate anions. The metal ions were quantified before and after extraction using the inductively coupled plasma emission spectrophotometry technique. The percent extraction and the distribution coefficients have indicated that pH of the aqueous phase, picrate concentration and the organic solvent are the major parameters that affect the extraction efficiency of the metal ions. The optimum pH range was found to be 3.5-5.5 and the picrate concentration should be as high as possible; however, a picrate concentration of about 0.05 M proved to be adequate for a near quantitative extraction. In all cases, nitrobenzene enhanced a higher percent extraction compared to 1,2-dichloroethane. The efficiency of the polyoxyalkylene systems to extract certain lanthanide metal ions was in the order PBDO-700>PPG-1025>PEG-600 when nitrobenzene was the organic solvent and in the order PPG-1025>PBDO-700 approximately PEG-600 when 1,2-dichloroethane used as the solvent in the organic phase. The extractability of PPG-1025 towards the lanthanide metal ions was in the order Pr(3+)>Eu(3+)>Er(3+) irrespective of the organic solvent used. The stoichiometry of the extracted polyoxyalkylene ion-pairs with the lanthanide metal ions has been estimated. Each mole of metal ions is associated with three moles of picrate anions and 13 to 14 moles of propyleneoxide units in the case of PPG-1025, and about 9 to 10 moles of ethyleneoxide units in the case of PEG-600 and 10 moles of butadieneoxide units in the case of PBDO-700. PMID:18966911

  4. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of {sup 20,21,29}Na

    SciTech Connect

    Schumaker, M. A.; Svensson, C. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Millar, B. A.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J. [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Hurst, A. M.; Wu, C. Y.; Becker, J. A.; Stoyer, M. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Cline, D.; Hayes, A. B.; Whitbeck, A. [Department of Physics and Astronomy, University of Rochester, Rochester, New York, 14627 (United States); Hackman, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada)] (and others)

    2009-03-10

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art {gamma}-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type {gamma}-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  5. The properties of high-intensity impregnated-electrode-type liquid-metal ion sources

    Microsoft Academic Search

    Junzo Ishikawa

    1989-01-01

    The impregnated-electrode-type liquid-metal ion source has a porous tip structure produced by sintering tungsten powders. Thus, stable operation over a wide range of emission currents (a few to several hundred muA) is possible, since the liquid-metal flow rate can be controlled. In addition, various liquid metals at relatively high vapor pressure (maximum pressure: 0.3 Torr) can be ionized. This type

  6. Inhibition of Cellulase-Catalyzed Lignocellulosic Hydrolysis by Iron and Oxidative Metal Ions and Complexes ?

    PubMed Central

    Tejirian, Ani; Xu, Feng

    2010-01-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed. PMID:20889796

  7. Quantum size effect in the electron exchange between a H- ion and a thin metal disk

    NASA Astrophysics Data System (ADS)

    Gainullin, I. K.; Urazgildin, I. F.

    2006-11-01

    The resonant charge transfer (RCT) between a hydrogen anion and a thin aluminum disk is investigated by means of the wave-packet propagation method that does not exploit the perturbation theory. The RCT on a thin metal disk is found to exhibit quantum size effects due to the finite size of the disk. Survival amplitude of ion state has been calculated as a function of the distance to the ion-surface in a normal collision. It is shown that depending on the projectile velocity, the ion can interact with disk as if with bulk metal, thin film or nano-structure with the energy quantized by polar and normal coordinates.

  8. Investigation of transition metal ion doping behaviors on TiO 2 nanoparticles

    Microsoft Academic Search

    Jianhua Chen; Maosheng Yao; Xiaolin Wang

    2008-01-01

    In this research, we have studied the doping behaviors of eight transition metal ion dopants on the crystal phase, particle\\u000a sizes, XRD patterns, adsorption spectra, anatase fraction, and photoreactivity of TiO2 nanoparticles. The pristine and ion-doped TiO2 nanoparticles of 15.91-25.47 nm were prepared using sol–gel method. Test metal ion concentrations ranged from 0.00002 to\\u000a 0.2 at.%. The absorption spectra of the

  9. SPECTROSCOPY OF METAL ION COMPLEXES: Gas-Phase Models for Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael A.

    1997-10-01

    Weakly bound metal ion complexes are produced in molecular beams and studied with mass-selected laser photodissociation spectroscopy. The metal ions Mg+ and Ca+ are the focus of these studies because they have a single valence electron and strong atomic resonance lines in convenient wavelength regions. Weakly bound complexes of these ions with rare-gas atoms and small molecules are prepared with laser vaporization in a pulsed nozzle cluster source. The vibrationally and rotationally resolved electronic spectra obtained for these complexes help to determine the complexes' structures and bonding energetics. Observations from these studies have provided many new insights into the fundamental interactions in electrostatic bonding.

  10. The Correlation of Serum Metal Ions with Functional Outcome Scores at Three-to-Six Years following Large Head Metal-on-Metal Hip Arthroplasty

    PubMed Central

    Patange Subbarao, Sheethal Prasad; Malek, Ibrahim A.; Mohanty, Khitish; Thomas, Phillip; John, Alun

    2013-01-01

    Based on success of hip resurfacing, large head Metal on Metal (MoM) hip arthroplasty has gained significant popularity in recent years. There are growing concerns about metal ions related soft tissue abnormalities. The aim of this study was to define a correlation of metal ions with various functional outcome scores following large head MoM hip arthroplasty. Consecutive cohort of 70 patients (76 hips) with large head MoM hip arthroplasty using SL-Plus femoral stem and Cormet acetabular component were prospectively followed up. An independent observer assessed the patients which included serology for metal ion levels and collection of Oxford Hip, Harris hip, WOMAC, SF-36 & modified UCLA scores. Median serum cobalt and chromium levels were 3.10??g/L (0.35–62.92) and 4.21??g/L (0.73–69.27) with total of median 7.30??g/L (2.38–132.19). The median Oxford, Harris, WOMAC, SF-36 and modified UCLA scores were 36 (6–48), 87 (21–100), 36 (24–110), 104 (10–125), and 3 (1–9), respectively. Seventeen patients had elevated serum cobalt and chromium levels ?7??g/L. There was no significant correlation between serum metal ion levels with any of these outcome scores. We recommend extreme caution during follow up of these patients with large head MoM arthroplasty. PMID:24959353

  11. RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment

    Microsoft Academic Search

    Jing-Jy Cheng; Bassel Kassas; Charley Yu; John Arnish; Dave LePoire; Shih-Yew Chen; W. A. Williams; A. Wallo; H. Peterson

    2004-01-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the

  12. Transmittance properties and TEM observation of metal doped glass by field-assisted ion exchange

    NASA Astrophysics Data System (ADS)

    Matsusaka, Souta; Nomura, Taketsugu; Hidai, Hirofumi; Chiba, Akira; Morita, Noboru

    2014-08-01

    Metal (silver or copper) ions were doped into borosilicate glass using an electric field- assisted ion exchange method. The optical transmittance of the metal doped glass was measured to determine why the doped glass exhibited an excellent laser micro-machinability. The doped metal ions were found to have enhanced the optical absorption of the glass, especially in the ultraviolet range. This in turn facilitated the efficient absorption of incident laser irradiation, and hence improved laser machinability of the glass. The metal doped glass also exhibited some absorption in the visible range, leading to a slight yellow-brown coloration. Transmission electron microscope (TEM) observations indicated that the metal ions had penetrated the glass and therein formed nanometer-sized (~6 nm) fine particles. In an attempt to control the optical characteristics in the ultraviolet-visible range, metal doped glass was heat-treated following the ion exchange doping step. In the case of silver-doped glass with heat treatment at 723 K, silver nanoparticles aggregated locally yielding an inhomogeneous structure. The heat-treated samples had a high optical absorption in the ultraviolet range.

  13. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  14. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    SciTech Connect

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  15. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A. (GSK)

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  16. Permeation, regulation and control of expression of TRP channels by trace metal ions.

    PubMed

    Bouron, Alexandre; Kiselyov, Kirill; Oberwinkler, Johannes

    2015-06-01

    Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels. PMID:25106481

  17. Boron-based anion receptors in lithium-ion and metal-air batteries

    NASA Astrophysics Data System (ADS)

    Prakash Reddy, V.; Blanco, Mario; Bugga, Ratnakumar

    2014-02-01

    Boron-based anion receptors, widely used as biosensors, are currently being explored as electrolyte-additives in lithium ion batteries and metal-air batteries, towards the goal of realizing high voltage, high energy density batteries. The potential advantage of the boron-based anion receptors as electrolyte-additives is to improve the lithium ion or metal-air battery cell cycle performance, and increase lithium ion transference numbers and ionic conductivity. These anion receptors also have unique characteristics that facilitate in maintaining a stable solid electrolyte interface (SEI) at the electrode surface. In this comprehensive review, we have outlined the synthesis, computational studies, and applications of various classes of boron-based anion receptors in lithium ion and metal-air batteries.

  18. A flexible zwitterion ligand based lanthanide metal-organic framework for luminescence sensing of metal ions and small molecules.

    PubMed

    Wen, Rong-Mei; Han, Song-De; Ren, Guo-Jian; Chang, Ze; Li, Yun-Wu; Bu, Xian-He

    2015-06-28

    A new lanthanide metal-organic framework was constructed using a tripodal flexible zwitterion ligand (H3LBr3) which takes a chair-shaped configuration. The luminescence of the compound displays highly selective sensing of the Fe(3+) ion and nitrobenzene. PMID:25300876

  19. Ion densities in an ac metal halide arc discharge

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Drakakis, E.

    2003-02-01

    The time-dependent density of mercury ions, sodium ions, and electrons is determined experimentally at the center of a high-pressure mercury discharge with sodium iodide as additive operated on alternating current within transparent quartz tube. The technique used is based on emission lines, and is independent of thermodynamic equilibrium assumptions. The results show that at sinusoidal low-frequency excitation the electrons come mainly from mercury ionization, the electron and mercury-ion densities vary strongly within the ac cycle, whereas the modulation of the sodium-ion density is significantly less pronounced. Results are also obtained assuming thermodynamic equilibrium and compared with the initial ones.

  20. Quantum size effect in the resonant electron transfer between an ion and a thin metal film

    NASA Astrophysics Data System (ADS)

    Usman, E. Yu.; Urazgil'din, I. F.; Borisov, A. G.; Gauyacq, J. P.

    2001-11-01

    The resonant charge transfer (RCT) process between an H- ion and a thin Al film is studied using a wave-packet propagation method. Both the static situation, with a fixed ion surface distance, and the dynamical situation, with a moving ion, are investigated. The RCT on a thin metal film is found to exhibit quantum size effects due to the finite thickness of the film. The way the case of the semi-infinite metal is recovered for thick films is discussed in detail. The conditions for observing quantum size effects in the RCT process are defined and discussed in terms of the various characteristic times of the system. In particular, it is shown that the quantum size effects disappear in the case of fast collisions, where the RCT on a thin metal film becomes basically identical to that on a semi-infinite metal surface.

  1. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Assmann, W.; Schubert, M.; Held, A.; Pichler, A.; Chill, A.; Kiermaier, S.; Schlösser, K.; Busch, H.; Schenk, K.; Streufert, D.; Lanzl, I.

    2007-04-01

    A biodegradable, ?-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the ?-emitter 32P. The influence of ion implantation and gamma sterilisation on degradation and 32P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10 15 ions/cm 2) and gamma dose (25 kGy) are found to be tolerable.

  2. Impact of pH on binding metal ions by Datura innoxia biomass

    SciTech Connect

    Moncrief, R.M.; Anderson, W.L.; Ke, H.Y.D.; Rayston, G.D. [New Mexico State Univ., Las Cruces, NM (United States); Jackson, P.J. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1995-06-01

    Metal ion binding to biomaterials derived from cultured antheral cells of Datura innoxia has been investigated as a function of solution pH. Specifically, the binding of Ba{sup 2+}, Cd{sup 2}, Cu{sup 2}, Ni{sup 2+}, and Sr{sup 2+} was studied at pH 1-6, inclusive, in 0.1 M MES solutions. For 10 mg{center_dot}L{sup -1} metal ion solutions, maximum binding was observed for solutions at pH 5. The dependence of metal ion binding on solution pH was studied for the biomass both free in solution and immobilized in a polysilicate matrix. A significant change in the pH-dependent binding of each of these metals was observed when the cell material was immobilized. These variations in the impact of metal solution pH could not be explained by the Lewis acidity of the metal ions. The involvement of conformational changes of the macromolecular components of the material for the formation of metal-selective coordination sites is postulated.

  3. The source of midlatitude metallic ions at F-region altitudes

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pharo, M. W., III

    1985-01-01

    The results of a survey of metallic ions detected by the Bennett Ion Mass Spectrometer flown on the Atmospheric Explorer satellites are presented and discussed. The nighttime distribution of these ions observed in the F-region at middle latitudes can be accounted for by the presence of fast upward Pederson ion drifts that are produced by intense poleward-directed electric fields with magnitudes typical of those defining subauroral drift events. Such fields, which arise in the vicinity of the main electron density trough at night, result in the rapid movement of long-lived meteoric ions upwards out of their source region into the F-region. Neutral wind drag by the equatorially-directed nightside neutral wind component can lift the ions higher along the field lines until the downward drag of major ion diffusion forces them to layer under F-max.

  4. Research on heavy metal ions detection in soil with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Mao-hua; Cao, Wei; Zhang, Zhen-wei

    2011-08-01

    Nowadays, heavy metals pollution is becoming a serious problem in agriculture. This paper reports a preliminary work on a feasibility study of applying terahertz (THz) technology for heavy metal ions detection in soil. This study was first conducted at Oklahoma State University, and then carried out at China Agricultural University and Capital Normal University. Pure soil was collected in an experimental field, which contains nearly no heavy metal ions from standard detection; in the experiment, heavy metal ions were mainly Pb2+, Cr3+, Zn2+ and Cu2+ from chemical compounds. Based on the National Standard for Heavy Metals Pollution, a set of soil samples with different polluted levels were prepared in the lab. The metal ions concentration levels were selected as 50ppm, 300ppm and 700ppm. Each soil sample was pre-processed by collecting, weighing, mixing, drying, grinding and labeling before measurements. The thickness of soil samples was selected as 1.5mm and 3mm. The absorption spectra for the soil samples with different heavy metal ions were collected using THz time-domain spectroscopy (THz-TDS) equipments separately at Oklahoma State University and Capital Normal University. The test results showed that soil samples with Pb2+, Cr3+, Zn2+ and Cu2+ had different absorption characteristics within the bandwidth of 0.1-1.1THz. A narrow bandwidth only up to 1.1THz was got because the soil particles showed much absorption and scattering properties to the THz spectroscopy. Different soil samples with different concentration of heavy metal ions also showed much difference and it could be used to predict the heavy metal concentration in the future. The results from the preliminary study show a potential of THz technology applied for heavy metal ions detection in agricultural fields environment. However, since the high scattering features of samples and high cost of equipments, the measurement methods and practical issues needs to be further investigated and improved to make the THz technology a feasible tool for soil heavy metal ions detection.

  5. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    SciTech Connect

    Mizia, R.E. [ed.] [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States). Metal Recycle; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L. [Oregon Graduate Institute of Science and Technology, Portland, OR (United States). Dept. of Materials Science and Engineering

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.

  6. Recent results from the low inductance Z-discharge metal vapor ion source

    NASA Astrophysics Data System (ADS)

    Debolt, N.; Hershcovitch, A.; Johnson, B. M.; Rostoker, N.; VanDrie, A.; Wessel, F.

    2002-02-01

    The low inductance Z-discharge metal vapor (LIZ-MeV) ion source, which uses a magnetized Z-pinch, is a pseudo-spark device capable of producing intense currents (several kA) of highly charged gold or other ions. Typical operations produce an extracted charge-state distribution with a range in gold ion charge state from 4 to 19. Time-of-flight (TOF) spectra (excluding contributions from impurities) indicate that charge states at least as high as Au+12 were generated. Various TOF spectra are presented here to support this conclusion. Although the results are preliminary, LIZ-MeV shows great potential. Existing heavy-ion sources can produce either high beam currents, but low charge states (e.g., the metal-vapor vacuum arc) or high charge states, but low beam currents (e.g., the electron beam ion source). For ion beam injection our goal has been to develop an ion source that produces both high charge states and high beam currents. The existing LIZ-MeV has sufficiently large electron impact energies and electron current densities, but performance is limited by charge exchange with ambient gas and short confinement times. Plans are underway to add another Z-pinch stage to both lengthen confinement times and to minimize charge-state reducing processes. Such an enhanced LIZ-MeV should eventually produce even larger currents of more highly ionized heavy metal ions for accelerator applications.

  7. FINAL REPORT. REMOVAL OF RADIOACTIVE CATIONS AND ANIONS FROM POLLUTED WATER USING LIGAND-MODIFIED COLLOID-ENHANCED ULTRAFILTRATION

    EPA Science Inventory

    The purpose of this project was to develop, optimize, and evaluate new separation methods for removal of hazardous (radionuclides and toxic non-radioactive contaminants) metal ions from either ground water or aqueous waste solutions produced during Decontamination and Decommissio...

  8. METAL IONS SORPTION ON INSOLUBLE FERROCYANIDES AND OTHER SORBENT MATERIALS

    Microsoft Academic Search

    Zahia Harrache; Mohamed O. Mecherri; Madjid Hadioui; Ourdia Zamoum; Mehmet A. Oturan

    2009-01-01

    Different types of insoluble pure and mixed ferrocyanides have been used to retain cadmium and zinc ions. This retention appears to be assigned to ion-exchange and the isotherms show that this process can be described with the Langmuir model of sorption rather than the Freundlich type which is proved to be less applicable. In addition, this study shows that the

  9. Covalent bonding and magnetic properties of transition metal ions

    Microsoft Academic Search

    J. Owen; J. H. M. Thornley

    1966-01-01

    This review is mainly concerned with octahedrally co-ordinated ions with an unfilled d shell. The wave functions of the magnetic electrons are considered first, the covalency being taken into account by admixing ligand s and p orbits into the central ion d orbits. The origin of these admixtures is discussed in a simple way, and a short survey is given

  10. Extending studies of the fusion of heavy nuclei to the neutron rich region using accelerated radioactive ion beams.

    SciTech Connect

    Shapira, Dan [ORNL

    2011-01-01

    One of the stated goals for proposed and existing facilities that produce and accelerate radioactive ion beams is to explore and achieve a new understanding of the reactions mechanisms leading to the synthesis of the heaviest nuclei. Nuclear synthesis of two large nuclei into a single entity is a complex multistep process. The beam intensities of radioactive ions accelerated at present day facilities are not sufficient to synthesize super heavy elements. However the study of the iso-spin dependence of nuclear synthesis and the many processes competing with it can be carried out at present day facilities. Of special interest are cases where the interacting nuclei and the synthesized product are extremely neutron-rich. The effects of neutron excess on the reaction processes leading to the formation of the synthesized nucleus that emerged in earlier studies are poorly understood and sometimes counter intuitive. Results from measurements performed at HRIBF, as well as our plans for future measurements and the equipment being prepared will be presented.

  11. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  12. A Novel Methodology for Metal Ion Separation Based on Molecularly Imprinting

    SciTech Connect

    Zuo, Xiaobin; Mosha, Donnati; Hassan, Mansour M.; Givens, Richard S.; Busch, Daryle H.

    2004-03-31

    The siderophore-based extraction of iron from the soil by bacteria is proposed as a model for a new separation methodology labeled the soil poutice, a molecular device that would selectively retrieve the complex of a targeted metal ion. In this report we described the synthesis and characterization of molecularly imprinted polymers and their application in the specific recognition of macrocyclic metal complexes. The imprinting is based on non-covalent interactions such as hydrogen bonding, electrostatic attractions and minor metal-ligand coordination. Good rebinding capacity for the imprinting metal complex was observed in acetonitrile as well as in water. The polymers are resistant to strong acids and oxidizing agents and showed an increase of rebinding capacity during cycles of reuse. The imprinting procedure, combined with the previously known selective chelation of macrocyclic ligands, supports the feasibility of a new methodology that can be used to extract waste metal ions effectively and selectively from soils and ground water.

  13. Poly(ether) urethane reactivity with metal-ion in calcification and environmental stress cracking.

    PubMed

    Thoma, R J

    1987-04-01

    Since their introduction to the biomedical community in 1967, polyurethanes have been used in a number of biomedical applications. In chronic applications evidence is now available which suggests that polyurethanes may be subject to various cracking phenomena. Environmental stress cracking and calcification are two phenomena resulting in poly(ether)urethane cracking, which have been shown to be enhanced by ion complexation. Much evidence now exists which defines the ability of poly(ether)urethanes to selectively extract ions, especially calcium ion from solution. Metal ion binding appears to enhance environmental stress cracking and appears to be a first step in the process of calcification. PMID:3506954

  14. Metal Ion Interactions with Phosphoenolpyruvate Carboxylase from Crassula argentea and Zea mays1

    PubMed Central

    Nguyen, Tien T.; Ngam-ek, Apinya; Jenkins, Joane; Grover, Scott D.

    1988-01-01

    Metal ion interactions with phosphoenolpyruvate carboxylase from the CAM plant Crassula argentea and the C4 plant Zea mays were kinetically analyzed. Fe2+ and Cd2+ were found to be active metal cofactors along with the previously known active metals Mg2+, Mn2+, and Co2+. In studies with the Crassula enzyme, Mg2+ yielded the highest Vmax value but also generated the highest values of Km(metal) and Km(pep). For these five active metals lower Km(metal) values tended to be associated with lower Km(pep) values. PEP saturation curves showed more kinetic cooperativity than the corresponding metal saturation curves. The activating metal ions all have ionic radii in the range of 0.86 to 1.09 Å. Ca2+, Sr2+, Ba2+, and Ni2+ inhibited competitively with respect to Mg2+, whereas Be2+, Cu2+, Zn2+, and Pd2+ showed mixed-type inhibition. Vmax trends with the five active metals were similar for the C. argentea and Z. mays enzymes except that Cd2+ was less effective with the maize enzyme. Km(metal) values were 10- to 60-fold higher in the enzyme from Z. mays. PMID:16665847

  15. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, Patrick R. (Idaho Falls, ID); Pfister, Robert M. (Powell, OH)

    1995-01-01

    A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

  16. CMOS-compatible metal-stabilized nanostructured Si as anodes for lithium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Lee, Gibaek; Schweizer, Stefan L.; Wehrspohn, Ralf B.

    2014-11-01

    The properties of fully complementary metal-oxide semiconductor (CMOS)-compatible metal-coated nanostructured silicon anodes for Li-ion microbatteries have been studied. The one-dimensional nanowires on black silicon (nb-Si) were prepared by inductively coupled plasma (ICP) etching and the metal (Au and Cu) coatings by successive magnetron sputtering technique. The Cu-coated nb-Si show the most promising electrochemical performance enhancements for the initial specific capacity as well as their cyclability compared to pristine nb-Si. The electrochemical and microstructural properties before and after cycling of the metal-coated nb-Si compared to their pristine counterparts are discussed in detail.

  17. Gas phase reactions of electrons, negative ions and free-radicals with transition metal complexes

    NASA Astrophysics Data System (ADS)

    Dillow, Glen William

    1986-11-01

    Negative chemical ionization (NCI) mass spectrometry is used as a probe to examine the negative ion chemistry of metal coordination complexes in the gas phase. Reaction of metal complexes with electrons, nucleophiles, and free-radicals in several NCI plasmas are identified. The first phase details the characterization of (M + CnH2n)(-) and (M + CnH2n + 1)(-) (n=1-5) hydrocarbon adduct ions which are observed at m/z values above the molecular ion, (M)(-), in the methane NCI mass spectra of a variety of metal coordination complexes. In the second and major phase of the project, the reagent gases NF3, CF2Cl2, and CF3Br are used as negative channel chemical ionization reagent gases to generate high abundances of fluoride, chloride, and bromide ions respectively, and the gas phase negative ion chemistry of a variety of metal coordination complexes in the presence of these reagent gases is examined. The NCI mass spectra are reported for the zinc (II) complexes of acetylacetone and its fluorinated analogs, as well as the cobalt (II), nickel (II), copper (II), and zinc (II) complexes of acetylacetone, N,N'-ethylenebis (salicylimine), and meso-tetraphenylporphin. Evidence is presented for the occurrence of a variety of ion/molecule and free radical/molecule processes as well as resonance electron capture.

  18. Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope

    NASA Astrophysics Data System (ADS)

    Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz

    1991-07-01

    A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 ?m for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 ?A and 10 ?m respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.

  19. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  20. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    PubMed

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+?yellow, Cu2+?blue, Fe3+?brown, Pb2+?white, Mn2+?tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 ?M for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed. PMID:25567035

  1. Single (19)F probe for simultaneous detection of multiple metal ions using miCEST MRI.

    PubMed

    Bar-Shir, Amnon; Yadav, Nirbhay N; Gilad, Assaf A; van Zijl, Peter C M; McMahon, Michael T; Bulte, Jeff W M

    2015-01-14

    The local presence and concentration of metal ions in biological systems has been extensively studied ex vivo using fluorescent dyes. However, the detection of multiple metal ions in vivo remains a major challenge. We present a magnetic resonance imaging (MRI)-based method for noninvasive detection of specific ions that may be coexisting, using the tetrafluorinated derivative of the BAPTA (TF-BAPTA) chelate as a (19)F chelate analogue of existing optical dyes. Taking advantage of the difference in the ion-specific (19)F nuclear magnetic resonance (NMR) chemical shift offset (??) values between the ion-bound and free TF-BAPTA, we exploited the dynamic exchange between ion-bound and free TF-BAPTA to obtain MRI contrast with multi-ion chemical exchange saturation transfer (miCEST). We demonstrate that TF-BAPTA as a prototype single (19)F probe can be used to separately visualize mixed Zn(2+) and Fe(2+) ions in a specific and simultaneous fashion, without interference from potential competitive ions. PMID:25523816

  2. Arc discharge ion source for europium and other refractory metals implantation.

    PubMed

    Turek, M; Prucnal, S; Dro?dziel, A; Pyszniak, K

    2009-04-01

    The best method for the impurity doping to the host material is the ion implantation. Due to high melting point of the rare earth standard metal ion sources are useless. One of the solution is to use chemical compounds of rare earths characterized by low melting point. In this paper we describe the novel design of the ion source suitable for refractory metal (e.g., rare earths) ion implantation. The dependencies of Eu(+) current on cathode and arc currents as well as on hydrogen flow are presented. Europium (III) chloride as the source of the europium atoms was used. Europium ions were produced during collisions of evaporated and decomposed EuCl(3) molecules with fast electrons. The typical current of the europium ion beam extracted from the ion source was 25 microA for the extraction voltage of 25 kV. The ion source works without maintenance breaks for approximately 50 h, which enables high dose implantation. The presented ion source needs neither advanced high power supplies nor high vacuum regime. PMID:19405653

  3. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The effects of nine metal cations Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water:TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion Mg(2+), Ca(2+), Y(3+) or the water:TEOS mole ratio had no appreaciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  4. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  5. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  6. Ion Distributions in Metal-Etch Plasma Processing Discharges

    NASA Astrophysics Data System (ADS)

    Nichols, Christopher; Woodworth, Joseph; Hamilton, Thomas

    1997-10-01

    We are using a mass spectrometer and gridded energy analyzers to determine positive ion species, fluxes and energy distributions in discharge mixtures of Cl2, BCl3 and Ar. Our experiments are being carried out in an inductively coupled GEC Ref cell using a variety of electrode materials. In most of the discharges studied, the ion energy distribution formed a single peak, well speateted from zero energy. In Cl2/BCl3 discharges, ion flux and energy were not affected when a Si wafer was placed on the stainless lower electrode, but increased significantly when the electrode was changed to anodized aluminum. Positive ion species were dominated by BCl2+, Cl2+ and Cl+. This work was supported by the United States Department of Energy under Contract DEAC0R-94-AL85000 and by SEMATECH. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Government.

  7. High intensity metal ion beam production with ECR ion sources atthe Lawrence Berkeley National Laboratory

    Microsoft Academic Search

    D. Wutte; S. Abbott; M. A. Leitner; C. M. Lyneis

    2001-01-01

    The large number of different experiments performed at the 88 Inch Cyclotron requires great variety and flexibility in the production of ion beams. This flexibility is provided by the two high performance electron cyclotron resonance (ECR) ion sources, the LBL ECR and the AECR-U, which can produce beams of ions as light as hydrogen and as heavy as uranium. With

  8. High intensity metal ion beam production with ECR ion sources at the Lawrence Berkeley National Laboratory

    Microsoft Academic Search

    D. Wutte; S. Abbott; M. A. Leitner; C. M. Lyneis

    2002-01-01

    The large number of different experiments performed at the 88 Inch Cyclotron requires great variety and flexibility in the production of ion beams. This flexibility is provided by the two high performance electron cyclotron resonance (ECR) ion sources, the LBL ECR and the AECR-U, which can produce beams of ions as light as hydrogen and as heavy as uranium. With

  9. Metal oxides deposited using ion assisted deposition at low temperature

    Microsoft Academic Search

    Forrest L. Williams; D. W. Reicher; C. Juang; J. R. McNeil

    1989-01-01

    We have investigated the use of ion assisted deposition (IAD) to deposit thin films of AlâOâ, TaâOâ, and TiOâ at a low substrate temperature (T\\/sub sub\\/approx. =100 °C). Refractive indices of films deposited using IAD initially increase for a corresponding increase in ion current density until the current density reaches a so-called ''critical value.'' Films deposited at bombardment levels greater

  10. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    SciTech Connect

    Wegener, Dirk [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kluth, Thomas [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-07-01

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the current potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)

  11. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  12. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, P.R.; Pfister, R.M.

    1995-06-27

    A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.

  13. Electronic transport modification of single-walled carbon nanotubes by encapsulating alkali-metal ions

    NASA Astrophysics Data System (ADS)

    Izumida, T.; Jeong, G.-H.; Hirata, T.; Hatakeyama, R.; Neo, Y.; Mimura, H.

    2005-06-01

    We have produced alkali-metal encapsulated single-walled carbon nanotubes using a method of alkali-metal plasma ion irradiation. After plasma ion irradiation, alkali-metal encapsulated single-walled carbon nanotubes are sonicated for several hours in N,N-dimethylformamide to make well dispersed solution, then applied on a field-effect transistor substrate. As a result of measurements, pristine semiconducting single-walled carbon nanotubes show p-type conductivity, but Cs-encapsulated single-walled carbon nanotubes show n-type transport properties. This drastic change can be explained by electron transfer from encapsulated Cs atoms toward the surrounding SWNTs. At 11 K, the Coulomb oscillation is observed, implying that an inhomogeneous encapsulation profile of Cs atoms form several quantum dots. Thus, the electronic properties of SWNTs are found to be successfully controlled by plasma ion irradiation.

  14. The stratum corneum comprises three layers with distinct metal-ion barrier properties.

    PubMed

    Kubo, Akiharu; Ishizaki, Itsuko; Kubo, Akiko; Kawasaki, Hiroshi; Nagao, Keisuke; Ohashi, Yoshiharu; Amagai, Masayuki

    2013-01-01

    The stratum corneum (SC), the outermost barrier of mammalian bodies, consists of layers of cornified keratinocytes with intercellular spaces sealed with lipids. The insolubility of the SC has hampered in-depth analysis, and the SC has been considered a homogeneous barrier. Here, we applied time-of-flight secondary ion mass spectrometry to demonstrate that the SC consists of three layers with distinct properties. Arginine, a major component of filaggrin-derived natural moisturizing factors, was concentrated in the middle layer, suggesting that this layer functions in skin hydration. Topical application of metal ions revealed that the outer layer allowed their passive influx and efflux, while the middle and lower layers exhibited distinct barrier properties, depending on the metal tested. Notably, filaggrin deficiency abrogated the lower layer barrier, allowing specific metal ions to permeate viable layers. These findings elucidate the multi-layered barrier function of the SC and its defects in filaggrin-deficient atopic disease patients. PMID:23615774

  15. The stratum corneum comprises three layers with distinct metal-ion barrier properties

    PubMed Central

    Kubo, Akiharu; Ishizaki, Itsuko; Kubo, Akiko; Kawasaki, Hiroshi; Nagao, Keisuke; Ohashi, Yoshiharu; Amagai, Masayuki

    2013-01-01

    The stratum corneum (SC), the outermost barrier of mammalian bodies, consists of layers of cornified keratinocytes with intercellular spaces sealed with lipids. The insolubility of the SC has hampered in-depth analysis, and the SC has been considered a homogeneous barrier. Here, we applied time-of-flight secondary ion mass spectrometry to demonstrate that the SC consists of three layers with distinct properties. Arginine, a major component of filaggrin-derived natural moisturizing factors, was concentrated in the middle layer, suggesting that this layer functions in skin hydration. Topical application of metal ions revealed that the outer layer allowed their passive influx and efflux, while the middle and lower layers exhibited distinct barrier properties, depending on the metal tested. Notably, filaggrin deficiency abrogated the lower layer barrier, allowing specific metal ions to permeate viable layers. These findings elucidate the multi-layered barrier function of the SC and its defects in filaggrin-deficient atopic disease patients. PMID:23615774

  16. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    E-print Network

    A. Yu. Didyk; R. Wi?niewski; K. Kitowski; V. Kulikauskas; T. Wilczynska; A. A. Shiryaev; Ya. V. Zubavichus

    2011-02-04

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd-alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25 keV deuterium ions at fluences in the range (1.2{\\div}2.3)x1022 D+/m2. The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions from V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium.

  17. Carbon nanotube-based metal-ion catchers as supramolecular depolluting materials.

    PubMed

    Maggini, Laura; De Leo, Federica; Marega, Riccardo; Tóháti, Hajnalka-Mária; Kamarás, Katalin; Bonifazi, Davide

    2011-10-17

    Herein, we report the first example of supramolecular carbon nanotube (CNT)-based ion catchers as simple and effective tools for removing divalent metal ions from organic solvents. In particular, covalently functionalized multi-walled carbon nanotubes (MWCNTs) appended with pyridyl groups self-aggregate in solution into bundles in the presence of divalent metal ions (e.g., Cd²?, Cu²?, Ni²?, Pb²?, Zn²?). Such self-aggregation behavior leads to insoluble materials that, upon treatment with weak acids, can be regenerated and reused for further complexation. All materials and complexation/decomplexation steps were thoroughly characterized by using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and different microscopy-based techniques, namely, transmission electron, scanning electron, and atomic force microscopy (TEM, SEM, and AFM). The supramolecular system engineered in this work is the first example of an easy and fully sustainable material with great potential applications for depolluting liquid waste from metal contamination. PMID:21905238

  18. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. PMID:25127598

  19. Sorptive removal of technetium from alkaline heavy metals sludge filtrate containing nitrate ion

    Microsoft Academic Search

    W. D. Bostick; B. S. Evans-Brown

    1988-01-01

    A so-called ''raffinate'' waste stream is generated from various uranium recovery and equipment cleaning and decontamination activities at the X-705 facility of the Portsmouth (Ohio) Gaseous Diffusion Plant (PORTS). The composition of this waste stream is generally characterized by high concentrations of nitric acid, toxic heavy metals, and low level of radioactive nuclides (²³⁵U, ⁹⁹Tc). We have found that cross-linked

  20. Optical fibre made from heavy metal oxide glasses doped by Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dorosz, Dominik

    2005-09-01

    Optical fibres made from heavy metal oxide glasses doped by Dy3+ ions with the numerical aperture 0,4 - 0,9 are presented. Heavy metal oxide glasses in the system PbO-Ga2O3-Bi2O3-CdO doped by 1500 ppm Dy3+ ions were used. The method of their preparation and physical properties as well the results of luminescence investigations of Dy3+ ions embedded in glass hosts are reported. Double-crucible drawing technique was applied to obtain optical fibre doped by Dy3+ ions. Core and cladding glasses have been obtained by modification the base glass with small amounts of cadmium and gallium. In such a way these glasses possessed the same technological parameters which can be controlled in a wide range.