Science.gov

Sample records for radioactive metal recycling

  1. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  2. Management options for recycling radioactive scrap metals

    SciTech Connect

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  3. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  4. INEL metal recycle radioactive scrap metal survey report

    SciTech Connect

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

  5. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    SciTech Connect

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  6. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    SciTech Connect

    Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G.; Vanini, S.; Viesti, G.; Zumerle, G.; Bonomi, G.; Zenoni, A.; Calvini, P.; Squarcia, S.

    2010-08-04

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  7. Radioactive tracer test to develop a recycling system for operating reactor scrap metal

    SciTech Connect

    Umemura, A.; Kimura, K.; Takahashi, K.; Sakurai, D.; Yamamoto, M.; Abe, S.

    1995-12-31

    A demonstration test using radio-isotope (RI) tracers during the manufacturing of inner drum shielding material from the recycling of operating reactor scrap metal was completed and the following results were obtained. The behavior of five radionuclides (Mn-54, Co-60, Zn-65, Sr-85 and Cs-137) was established. The time-dependent behaviors of the radionuclides in molten steel and in slag were investigated. The radioactivity distributions in metal products were homogeneous. Dose equivalent rates in the working area were below background levels and radioactive dust concentrations in the air were below detection limits.

  8. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    SciTech Connect

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    SciTech Connect

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.

  10. Economic feasibility of recycling radioactive scrap steel

    SciTech Connect

    Balhiser, B.C.; Rosholt, D.L.; Nichols, F.A.

    1995-12-31

    Radioactive scrap metal has traditionally been disposed of by burial in low-level waste repositories, an option that will become increasingly unattractive if burial costs rise as projected. This paper will examine recycling opportunities that may arise from two divergent economic trends: (1) escalating burial costs, and (2) historically flat product costs from state-of-the-art metal recycle operations. Emphasis will be placed on recycling the radioactive scrap steel (RSS) that will arise from D&D of Government and commercial nuclear facilities in the western United States. An effort is underway to compare processes for recycling RSS at least cost to the generator, least impact to the environment, and minimum worker exposure to radionuclide hazards. An experienced industry team with expertise in radioactive metals recycling, commercial steel recycling, and state-of-the-art metal recycle facilities design has been assembled under subcontract for this purpose. Methods for evaluating process options to arrive at an optimized solution will be discussed in the paper. An analysis of burial versus recycle costs for RSS will also be presented.

  11. International radioactive material recycling challenges

    SciTech Connect

    Greeves, John T.; Lieberman, James

    2007-07-01

    The paper explores current examples of successful International radioactive recycling programs and also explores operational regulatory and political challenges that need to be considered for expanding international recycling world-wide. Most countries regulations are fully consistent with the International Atomic Agency (IAEA) Code of Practice on the International Transboundary Movement of Radioactive Material and the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. IAEA member States reported on the status of their efforts to control transboundary movement of radioactive material recently during the Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management meeting in May 2006. (authors)

  12. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    SciTech Connect

    Meehan, R.W.

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  13. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    SciTech Connect

    Wegener, Dirk; Kluth, Thomas

    2012-07-01

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the current potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)

  14. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  15. Economic feasibility of radioactive scrap steel recycling

    SciTech Connect

    Nichols, F.; Balhiser, R.; Rosholt, D.

    1995-12-31

    In the past, government and commercial nuclear operators treated radioactive scrap steel (RSS) as a liability and disposed of it by burial; this was an accepted and economical solution at that time. Today, environmental concerns about burial are changing the waste disposal picture by (a) causing burial costs to soar rapidly, (b) creating pressure to close existing burial sites, and (c) making it difficult and expensive to open and operate burial facilities. To exacerbate the problem, planned dismantling of nuclear facilities will substantially increase volumes of RSS {open_quotes}waste{close_quotes} over the next 30 yr. This report describes a project with the intention of integrating the current commercial mini-mill approach of recycling uncontaminated steel with radiological controls to design a system that can process contaminated metals at prices significantly below the current processors or burial costs.

  16. Economic feasibility of radioactive scrap steel recycling

    SciTech Connect

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-12-31

    The goal of MSE`s Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less.

  17. INEL metal recycle annual report, FY-94

    SciTech Connect

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business.

  18. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  19. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  20. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  1. Feasibility analysis of recycling radioactive scrap steel

    SciTech Connect

    Nichols, F.; Balhiser, B.; Cignetti, N.

    1995-09-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

  2. The current status of scrap metal recycling

    NASA Astrophysics Data System (ADS)

    Spoel, Han

    1990-04-01

    Although millions of tonnes of metals are recycled around the world every year, even more can be done if the proper economic incentives are present. Increasing the rate of recycle will slow the growth of primary production and reduce the potential for environmental overload. But to progress beyond the present state of affairs, public opinion, regulations and economics must combine to encourage the responsible reprocessing of metal wastes.

  3. Characterization of Transport and Solidification in the Metal Recycling Processes

    SciTech Connect

    M. A. Ebadian; R. C. Xin; Z. F. Dong

    1997-08-06

    The characterization of the transport and solidification of metal in the melting and casting processes is significant for the optimization of the radioactively contaminated metal recycling and refining processes. . In this research project, the transport process in the melting and solidification of metal was numerically predicted, and the microstructure and radionuclide distribution have been characterized by scanning electron microscope/electron diffractive X-ray (SEWEDX) analysis using cesium chloride (CSC1) as the radionuclide surrogate. In the melting and solidification process, a resistance furnace whose heating and cooling rates are program- controlled in the helium atmosphere was used. The characterization procedures included weighing, melting and solidification, weighing after solidification, sample preparation, and SEM/EDX analysis. This analytical methodology can be used to characterize metal recycling and refining products in order to evaluate the performance of the recycling process. The data obtained provide much valuable information that is necessary for the enhancement of radioactive contaminated metal decontamination and recycling technologies. The numerical method for the prediction of the melting and solidification process can be implemented in the control and monitoring system-of the melting and casting process in radioactive contaminated metal recycling. The use of radionuclide surrogates instead of real radionuclides enables the research to be performed without causing harmfid effects on people or the community. This characterization process has been conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University since October 1995. Tests have been conducted on aluminum (Al) and copper (Cu) using cesium chloride (CSCI) as a radionuclide surrogate, and information regarding the radionuclide transfer and distribution in melting and solidification process has been obtained. The numerical simulation of

  4. Recycling and Reuse of Radioactive Materials

    ERIC Educational Resources Information Center

    O'Dou, Thomas Joseph

    2012-01-01

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique…

  5. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future. PMID:25122953

  6. Recycling and reuse of radioactive materials

    NASA Astrophysics Data System (ADS)

    O'Dou, Thomas Joseph

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique program capable of turning out graduates that have an understanding of contamination and dose control techniques that complement their knowledge of the elements that they work with. The Program has also adopted a radionuclide recovery and reuse program that has provided materials from other universities, government agencies, and private companies for use in experiments.

  7. Recycling light metals from end-of-life vehicle

    NASA Astrophysics Data System (ADS)

    Gesing, A.; Wolanski, R.

    2001-11-01

    The amount of aluminum used in cars and light trucks is growing steadily. However, without new developments in aluminum recycling technologies, sheet from automotive aluminum could eventually flood all current markets for recycled aluminum. This article summarizes the use of light metals and different alloys in transportation applications, the current auto recycling system, and new developments in the sorting of light metals by the metal recycling industry and by Huron Valley Steel Corporation, the world’s largest non-ferrous scrap sorter.

  8. Recycling lead to recover refractory precious metals

    NASA Astrophysics Data System (ADS)

    Parga, J. R.; Muzquiz, G. G.; Valenzuela, J. L.; Ojebuoboh, F. K.

    2001-12-01

    Lead recycling has many benefits. For example, it provides an alternative to virgin lead, thereby avoiding the environmental impacts of primary lead smelting. In addition, as with other secondary metal operations, it consumes less energy at a lower cost than primary production. An emerging process has been evaluated in which these attributes are leveraged to process refractory precious metals ores. Direct cyanidation of refractory gold and silver ore yields poor gold and silver recoveries. In fact, some ores are simply not amenable to direct cyanidation. The process described in this paper consists of smelting lead-bearing material together with argentopyrite concentrate that contains precious metals. Sodium carbonate is used as a fluxing agent and scrap iron is used as a reductant. The reaction product is molten lead bullion enriched with the precious metals. Smelting recoveries of both silver and gold can be as high as 98%.

  9. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  10. Waste container fabrication from recycled DOE metal

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1994-02-15

    The Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Much of this material cannot be surface decontaminated. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to {open_quotes}beneficially reuse{close_quotes} this material in applications where small amounts of radioactivity are not a detriment. One example is where RSM is currently being beneficially used to fabricate shield blocks for use in DOE medium energy physics programs. This paper describes other initiatives now underway within DOE to utilize RSM to fabricate other products, such as radioactive waste shipping, storage and disposal containers.

  11. The decommissioning of accelerators: an exercise in the recycling of radioactive material

    NASA Astrophysics Data System (ADS)

    Höfert, M.; Tuyn, J. W. N.; Forkel-Wirth, D.

    1999-06-01

    Compared with the number of nuclear power plants that will be decommissioned over the next few years accelerators are only a "small" source of radioactivity although at CERN the total amount of mostly metallic material activated in the operation of the accelerators is estimated to be of the order of 15 Mtons. Various existing approaches to classify and administer radioactive material will be presented with all of them clearly earmarked by the requirements of the nuclear cycle. There are however important differences between activation in reactors and accelerators that will be worked out. It will be shown that an attitude based on reuse or recycling of activated accelerator material should be preferred to the elimination as radioactive waste.

  12. Assessment of DOE radioactive scrap metal disposition options

    SciTech Connect

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.

  13. Minerals yearbook, 1992: Recycling-nonferrous metals. Annual report

    SciTech Connect

    Carlin, J.F.; Edelstein, D.; Jolly, J.H.; Jolly, J.L.W.; Papp, J.F.

    1994-01-01

    Because of the increasing importance of recycling to domestic metal supply and the intense public interest, the United States Bureau of Mines (USBM) initiated this separate chapter on nonferrous metal recycling as part of its Annual Report series in 1991. A separate chapter on iron and steel scrap already has been part of this series for many years. The focus of this chapter is on aluminum, copper, lead, tin, and zinc recycling.

  14. What do we know about metal recycling rates?

    USGS Publications Warehouse

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  15. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    ERIC Educational Resources Information Center

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  16. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  17. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  18. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  19. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  20. Recycling of base metals from metal wastes of brass foundries

    SciTech Connect

    Nesbitt, C.C.; Xue, S.

    1995-07-01

    A process has been developed to recover and recycle metals from wastes of brass foundries which contain copper, zinc and lead in various quantities. Tests were conducted to evaluate several leachants, including sulfuric acid, ammonia, hydrochloric acid, cyanide and acetic acid, and to determine the optimum leaching conditions, such as air flow rate, initial copper ion concentration, temperature, and agitation strength. Sulfuric acid containing copper sulfate with dissolved oxygen is the most successful leachant. More than 99% of the copper and zinc originally present in the waste was dissolved, while only 0.5% of the lead entered the solution after 14 hours of leaching. The leaching mechanisms of copper, zinc, and lead are proposed. The copper and zinc can be recovered from the solution by electrolytic processing. The unleached residue may be converted to a lead carbonate which can be converted to litharge at 400--450 C and to massicot at temperature above 500 C by calcination.

  1. Bond strength of thermally recycled metal brackets.

    PubMed

    Wheeler, J J; Ackerman, R J

    1983-03-01

    Bracket recycling has emerged concurrently with the practice of direct bonding. This study was undertaken to determine the effect of recycling on the retention of mesh-backed stainless steel brackets. Mesh strand diameter was measured on forty new brackets. These brackets were bonded to recently extracted human premolar teeth, and the tensile force required to fracture each bond was recorded. The brackets were then reconditioned by a thermal process. The mesh strand size was remeasured and the tensile test was repeated. It was found that (1) mesh strand diameter decreased 7 percent during the reconditioning process (93.89 microns +/- 3.17 S.D. compared to 87.07 microns +/- 4.76 S.D., z = 17.62, P less than 1 X 10(-5) ), (2) new bracket bonds were 6 percent stronger than recycled bracket bonds (43.88 pounds +/- 7.98 S.D. bond strength), and (3) reduction in mesh strand diameter during the reconditioning process did not correlate with changes in bond strength between initial and recycled bonding (Pearson r = 0.038). PMID:6338725

  2. Recycling metals from wastes: a novel application of mechanochemistry.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2015-05-19

    Recycling metals from wastes is essential to a resource-efficient economy, and increasing attention from researchers has been devoted to this process in recent years, with emphasis on mechanochemistry technology. The mechanochemical method can make technically feasible the recycling of metals from some specific wastes, such as cathode ray tube (CRT) funnel glass and tungsten carbide waste, while significantly improving recycling efficiency. Particle size reduction, specific surface area increase, crystalline structure decomposition and bond breakage have been identified as the main processes occurring during the mechanochemical operations in the studies. The activation energy required decreases and reaction activity increases, after these changes with activation progress. This study presents an overall review of the applications of mechanochemistry to metal recycling from wastes. The reaction mechanisms, equipment used, method procedures, and optimized operating parameters of each case, as well as methods enhancing the activation process are discussed in detail. The issues to be addressed and perspectives on the future development of mechanochemistry applied for metal recycling are also presented. PMID:25884338

  3. Unanticipated potential cancer risk near metal recycling facilities

    SciTech Connect

    Raun, Loren; Pepple, Karl; Hoyt, Daniel; Richner, Donald; Blanco, Arturo; Li, Jiao

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction

  4. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  5. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Analysis of photon recycling using metallic photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sung; Lin, Shawn-Yu; Chang, Allan S. P.; Lee, Jae-Hwang; Ho, Kai-Ming

    2007-09-01

    We investigate a photon recycling scheme using two-dimensional metallic photonic crystals made of silver to improve the energy efficiency of an incandescent light source. A theoretical framework is presented to analyze the resultant photon-recycled lighting system. Calculation results show that the system can reach a maximum luminous efficiency of 125 lm/W, which is 8 times higher than that of a bare blackbody radiation at 2800 K. The color temperature of the system is calculated to be around 3500 K or below, while the color rendering index is between 68 and 90. These results suggest that a photon-recycled incandescent light source using metallic photonic crystals can be a viable alternative future lighting solution.

  7. Innovative technologies for recycling contaminated concrete and scrap metal

    SciTech Connect

    Bossart, S.J.; Moore, J.

    1993-09-01

    Decontamination and decommissioning of US DOE`s surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019.

  8. Analyzing the methods and merits of recycling fiber metal laminates

    NASA Astrophysics Data System (ADS)

    Tempelman, E.; Dalmijn, W. L.; Vlot, A.

    1996-04-01

    It is technically possible to recycle fiber metal laminates (FMLs) by retrieving the aluminum fraction from FML scrap; this reprocessing becomes economically feasible at a throughput of 50 tonnes or more per year. Until then, FML scrap can be dealt with in conventional ways.

  9. Recycling of Metals and Materials: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Seidman, Ruth K., Comp.; Castrow, Lee, Comp.

    Recycling of metals and materials has as its purpose the easing of two major environmental crises. First, we re-utilize scarce and non-renewable resources. Second, solid waste disposal problems can be alleviated. Industry has long been concerned with reclaiming its own waste products, and is now beginning to respond to the need for dealing with…

  10. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  11. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  12. Recycling metal scrap. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling metal scrap. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries is considered. Analyses of the current global scrap metal recycling trends are included. (Contains 250 citations and includes a subject term index and title list.)

  13. Direct Solid-State Conversion of Recyclable Metals and Alloys

    SciTech Connect

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  14. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    USGS Publications Warehouse

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  15. Recycling of nickel-metal hydride battery scrap

    SciTech Connect

    Lyman, J.W.; Palmer, G.R.

    1994-12-31

    Nickel-metal hydride (Ni-MH) battery technology is being developed as a NiCd replacement for applications in consumer cells and electric vehicle batteries. The U.S. Bureau of Mines is investigating hydrometallurgical recycling technology that separates and recovers individual components from Ni-MH battery scrap. Acid dissolution and metal recovery techniques such as precipitation and solvent extraction produced purified products of rare-earths, nickel, and other metals associated with AB{sub 2} and AB{sub 5} Ni-MH scrap. Tests were conducted on scrap cells of a single chemistry that had been de-canned to reduce iron content. Although recovery techniques have been identified in principal, their applicability to mixed battery waste stream and economic attractiveness remain to be demonstrated. 14 refs.

  16. Proceedings of the waste recycling workshop

    SciTech Connect

    Bailey, R.E.; Thomas, A.F.; Ries, M.A.

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  17. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    SciTech Connect

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

  18. USE OF RECYCLED POLYMERS FOR ENCAPSULATION OF RADIOACTIVE, HAZARDOUS AND MIXED WASTES

    SciTech Connect

    LAGERRAAEN,P.R.; KALB,P.D.

    1997-11-01

    Polyethylene encapsulation is a waste treatment technology developed at Brookhaven National Laboratory using thermoplastic polymers to safely and effectively solidify hazardous, radioactive and mixed wastes for disposal. Over 13 years of development and demonstration with surrogate wastes as well as actual waste streams on both bench and full scale have shown this to be a viable and robust technology with wide application. Process development efforts have previously focused on the use of virgin polymer feedstocks. In order to potentially improve process economics and serve to lessen the municipal waste burden, recycled polymers were investigated for use as encapsulating agents. Recycled plastics included low-density polyethylene, linear low-density polyethylene, high-density polyethylene and polypropylene, and were used as a direct substitute for or blended together with virgin resin. Impacts on processing and final waste form performance were examined.

  19. Recycling in the major metal industries: Trends, developments, and regulatory impacts. Information circular/1994

    SciTech Connect

    Foster, R.J.

    1994-01-01

    Public awareness of, and involvement in, recycling has increased significantly in recent years. The actual magnitude and scope of metals recycling in the United States have gone virtually unnoticed. Over time, both the quantitative and qualitative aspects of secondary metals recovery and reuse have changed substantially, while the attendant regulations have become increasingly stringent. This U.S. Bureau of Mines report examines trends and developments in major metal demand and recycling, and analyzes the possible impacts of regulations with regard to recycling activities.

  20. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  1. 15 CFR 754.7 - Petitions for the imposition of monitoring or controls on recyclable metallic materials; Public...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... monitoring or controls on recyclable metallic materials; Public hearings. 754.7 Section 754.7 Commerce and... for the imposition of monitoring or controls on recyclable metallic materials; Public hearings. (a... petitions seeking the imposition of monitoring or controls on recyclable metallic materials. (b)...

  2. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    SciTech Connect

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing.

  3. Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Joussein, E; Labanowski, J; Lens, P N L; van Hullebusch, E D

    2015-04-01

    In France, more than 250 million metric tons of sludges need to be treated each year. These sludges are either dumped on the landfills or reused as secondary resources in order to preserve natural resources. A large portions of these sludges are mineral sludges, originating from metal recycling plants. In order to estimate their metal recovery potential, these mineral sludges were characterized. Four types of mineral sludge samples were collected from a metal recycling plant (3 from the recycling plant storage areas (bulk storage, barrel storage and storage shed) and 1 from the collection basin). The sludges were characterized, wherein the Mo, Ni, Cr, Co, Zn and W content and speciation were quantified. The samples had pH values between 5.9 and 10.3 with organic matter contents varying between 6.3% (storage shed) and 29.5% (bulk storage) (loss on ignition at 500 °C). Based on their leaching properties, the four mineral sludge samples (in the case of Mo) and the bulk storage sludge (in the case of Ni and Zn) were classified as potentially hazardous regarding the EN 12457-1 and EN 12457-2 method. Mineralogical results reveal that both bulk storage and the storage shed give the highest contributions to the metal content of the collection basin sample. Sequential extraction of the collection basin samples indicated that Mo is bound to the oxidizable and residual fraction, while Ni, Cr and Co were bound to the residual fraction, and Zn to the soluble acid fraction, respectively. W tends to be equally distributed among all extracted fractions. A strong correlation existed between Mo and Co, as well as between Ni, Zn and Cr, respectively. PMID:25623002

  4. Analysis of radioactive metals by spark source mass spectrometry.

    PubMed

    Johnson, A J; Kozy, A; Morris, R N

    1969-04-01

    A spark source mass spectrograph with photographic plate recording has been adapted for the analysis of plutonium and americium metals. Over seventy elements can be determined simultaneously in these metals. A comparison has been made between results obtained by mass spectrography and by conventional methods for impurity elements. The operations involved in handling radioactive materials in the mass spectrograph are also discussed. PMID:18960537

  5. Method for making radioactive metal articles having small dimensions

    DOEpatents

    Ohriner, Evan K.

    2000-01-01

    A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

  6. Risk assessment for chemical pickling of metals contaminated by radioactive materials.

    PubMed

    Donzella, A; Formisano, P; Giroletti, E; Zenoni, A

    2007-01-01

    In recent years, many cases of contamination of metal scraps by unwanted radioactive materials have occurred. Moreover, international organisations are evaluating the possibility to re-use or to recycle metals coming from nuclear power plants. The metal recycling industry has started to worry about radiation exposure of workers that could be in contact with contaminated metals during each manufacturing phase. Risks are strongly dependent on the radiation source features. The aim of this study is to perform risk assessment for workers involved in chemical pickling of steel coils. Monte Carlo simulations have been performed, using the MCNP package and considering coils contaminated with (60)Co, (137)Cs, (241)Am and (226)Ra. Under the most conservative conditions (coil contaminated with 1.0 kBq g(-1) of (60)Co), the dose assessment results lower than the European dose limit for the population (1 mSv y(-1)), considering a maximum number of 10 contaminated coils handled per year. The only exception concerns the case of (241)Am, for which internal contamination could be non- negligible and should be verified in the specific cases. In every case, radiation exposure risk for people standing at 50 m from the coil is widely <1 mSv y(-1). PMID:16849378

  7. Recycling of non-metallic fractions from waste printed circuit boards: a review.

    PubMed

    Guo, Jiuyong; Guo, Jie; Xu, Zhenming

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  8. ISOLATION OF RADIOACTIVE METALS FROM LIQUID WASTES

    EPA Science Inventory

    Metals are present in many waste streams, and pose challenges with regard to their disposal. Release of metals into the environment presents both human health and ecological concerns. As a result, efforts are directed at reducing their toxicity, bioavailability, and environment...

  9. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect

    Adams, V.; Bennett, M.; Bishop, L.

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

  10. Method for electrochemical decontamination of radioactive metal

    SciTech Connect

    Ekechukwu, Amy A.

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  11. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  12. Assessing dietary exposure to cadmium in a metal recycling community in Vietnam: age and gender aspects.

    PubMed

    Ngo, Duc Minh; Hough, Rupert Lloyd; Le, Thi Thuy; Nyberg, Ylva; Le, Bach Mai; Nguyen, Cong Vinh; Nguyen, Manh Khai; Oborn, Ingrid

    2012-02-01

    This study estimates the dietary exposure to cadmium (Cd), and associated potential health risks, for individuals living and working in a metal recycling community (n=132) in Vietnam in comparison to an agricultural (reference) community (n=130). Individual-level exposure to Cd was estimated through analysis of staple foodstuffs combined with information from a food frequency questionnaire. Individual-level exposure estimates were compared with published 'safe' doses to derive a Hazard Quotient (HQ) for each member of the study population. Looking at the populations as a whole, there were no significant differences in the diets of the two villages. However, significantly more rice was consumed by working age adults (18-60 years) in the recycling village compared to the reference village (p<0.001). Rice was the main staple food with individuals consuming 461±162g/d, followed by water spinach (103±51kg/d). Concentrations of Cd in the studied foodstuffs were elevated in the metal recycling village. Values of HQ exceeded unity for 87% of adult participants of the metal recycling community (39% had a HQ>3), while 20% of adult participants from the reference village had an HQ>1. We found an elevated health risk from dietary exposure to Cd in the metal recycling village compared to the reference community. WHO standard of 0.4mg Cd/kg rice may not be protective where people consume large amounts of rice/have relatively low body weight. PMID:22227302

  13. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  14. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    SciTech Connect

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  15. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    SciTech Connect

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  16. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    SciTech Connect

    Braeckeveldt, Marnix; Preter, Peter De

    2007-07-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  17. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  18. Overview of flow studies for recycling metal commodities in the United States

    USGS Publications Warehouse

    Sibley, Scott F.

    2011-01-01

    Metal supply consists of primary material from a mining operation and secondary material, which is composed of new and old scrap. Recycling, which is the use of secondary material, can contribute significantly to metal production, sometimes accounting for more than 50 percent of raw material supply. From 2001 to 2011, U.S. Geological Survey (USGS) scientists studied 26 metals to ascertain the status and magnitude of their recycling industries. The results were published in chapters A-Z of USGS Circular 1196, entitled, "Flow Studies for Recycling Metal Commodities in the United States." These metals were aluminum (chapter W), antimony (Q), beryllium (P), cadmium (O), chromium (C), cobalt (M), columbium (niobium) (I), copper (X), germanium (V), gold (A), iron and steel (G), lead (F), magnesium (E), manganese (H), mercury (U), molybdenum (L), nickel (Z), platinum (B), selenium (T), silver (N), tantalum (J), tin (K), titanium (Y), tungsten (R), vanadium (S), and zinc (D). Each metal commodity was assigned to a single year: chapters A-M have recycling data for 1998; chapters N-R and U-W have data for 2000, and chapters S, T, and X-Z have data for 2004. This 27th chapter of Circular 1196 is called AA; it includes salient data from each study described in chapters A-Z, along with an analysis of overall trends of metals recycling in the United States during 1998 through 2004 and additional up-to-date reviews of selected metal recycling industries from 1991 through 2008. In the United States for these metals in 1998, 2000, and 2004 (each metal commodity assigned to a single year), 84 million metric tons (Mt) of old scrap was generated. Unrecovered old scrap totaled 43 Mt (about 51 percent of old scrap generated, OSG), old scrap consumed was 38 Mt (about 45 percent of OSG), and net old scrap exports were 3.3 Mt (about 4 percent of OSG). Therefore, there was significant potential for increased recovery from scrap. The total old scrap supply was 88 Mt, and the overall new

  19. ENVIRONMENTALLY CONSCIOUS ELECTROCHEMICAL MACHINING FOR ZERO DISCHARGE AND METAL RECYCLING - PHASE I

    EPA Science Inventory

    This Phase I SBIR addresses the need for a manufacturing method for recovery and recycle of metal removed during electrochemical machining (ECM). Direct current (DC) ECM uses viscous solutions with additives such as fluoride, resulting in difficult to control electrolytes...

  20. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media. PMID:23645478

  1. Recovery of recyclable metals from waste glass melts

    SciTech Connect

    Morgan, A.B.; Schreiber, H.D.

    1994-12-31

    The redox chemistries of copper and silver were determined in borosilicate glass melts representative of those to be used in nuclear waste immobilization and electronic circuit board vitrification. The recovery of these elements during waste processing depend on their solubilities, which are controlled by the Cu{sup 2+}-Cu{sup +}-Cu{sup 0} and Ag{sup +}-Ag{sup 0} redox equilibria in the melt. The copper and the silver redox equilibria operate independently without interaction in melts simultaneously containing both elements. The individual equilibria are independent of the total content of copper (to 10 wt%) and of silver (to 5 wt%) in glass. Immiscible metallic copper separates from the melt at oxygen fugacities more reducing than that required for silver metal precipitation. After settling, the metallic liquids tend to react at the melt/metal interface with the alumina container and {open_quotes}drill{close_quotes} through the container bottom under oxidizing conditions.

  2. Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels

    SciTech Connect

    Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

    2003-02-25

    Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF

  3. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits. PMID:10521343

  4. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    SciTech Connect

    Not Available

    1993-07-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management.

  5. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed. PMID:27078969

  6. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites. PMID:24652574

  7. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

    2003-02-01

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  8. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

    2003-02-26

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  9. Metal complexes containing natural and and artificial radioactive elements and their applications.

    PubMed

    Kharissova, Oxana V; Méndez-Rojas, Miguel A; Kharisov, Boris I; Méndez, Ubaldo Ortiz; Martínez, Perla Elizondo

    2014-01-01

    Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m ((99m)Tc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described. PMID:25061724

  10. 77 FR 65886 - Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office FEDERAL MARITIME COMMISSION Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American Alliance...), hereinafter ``Complainant,'' against Dacon Logistics, LLC dba Coda Forwarding (Dacon); Great American...

  11. New binding materials for metal hydride electrodes which permit good recyclability

    SciTech Connect

    Hara, T.; Yasuda, N. . Development Center); Takeuchi, Y. . Electronics Project Dept.); Sakai, T.; Uchiyama, A.; Miyamura, H.; Kuriyama, N.; Ishikawa, H. )

    1993-09-01

    Thermoplastic elastomers such as styrene-butadiene-styrene block copolymer (SBS) and styrene-ethylene/butylene-styrene block copolymer (SEBS) were used successfully as binding materials for metal hydride (MH) electrodes of a nickel-metal hydride battery. These binding materials have a rubber-like nature and are soluble in organic solvents. It was easy to remove the alloy powder from a used electrode for recycling. The battery performance depended on both the kind and amount of binding materials. The best discharge capacity and rate capability were obtained for MH electrodes containing 2--5 weight percent (w/o) SEBS. The particle size distributions for the alloy were examined successfully.

  12. Children with health impairments by heavy metals in an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. PMID:26829309

  13. PFC Decontamination of a Metal Surface and the Recycling of a Spent PFC Solution

    SciTech Connect

    Jung, C.H.; Won, H.J.; Oh, W.Z.; Moon, J.K.; Park, J.H.

    2006-07-01

    PFC (per-fluorocarbon) ultrasonic decontamination behavior of loosely contaminated metal specimens such as a plate, pipe, welding and a crevice specimen in a mixed solution of PFC and an anionic surfactant was investigated. Perfluoroheptane (C{sub 7}F{sub 16}) was used as a PFC ultrasonic media. The contaminants were completely removed for almost all of the tested specimens except for the longest pipe length specimen. For the 6-cm long specimen, 98.5 % of the contaminants were removed. For the recycling of the PFC solution, a distillation test for the spent PFC solution was also performed. The results show that 97.5 % of the PFC was recycled without a loss of the decontamination efficiency. (authors)

  14. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    SciTech Connect

    Majeski, R.

    2010-05-20

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 deg. C. However, at a sufficiently high operating temperature (700 - 1000 deg. C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment.The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium.Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 deg. C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  15. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    NASA Astrophysics Data System (ADS)

    Majeski, R.

    2010-05-01

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700°C. However, at a sufficiently high operating temperature (700 - 1000 °C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 °C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  16. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    SciTech Connect

    R. Majeski

    2010-01-15

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  17. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. PMID:26577459

  18. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    PubMed

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. PMID:26318969

  19. Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Crain, Robert A.; Schaye, Joop; Bower, Richard G.; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom

    2016-02-01

    We use cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments and OverWhelmingly Large Simulations projects to assess the significance of recycled stellar ejecta as fuel for star formation. The fractional contributions of stellar mass-loss to the cosmic star formation rate (SFR) and stellar mass densities increase with time, reaching 35 and 19 per cent, respectively, at z = 0. The importance of recycling increases steeply with galaxy stellar mass for M* < 1010.5 M⊙, and decreases mildly at higher mass. This trend arises from the mass dependence of feedback associated with star formation and AGN, which preferentially suppresses star formation fuelled by recycling. Recycling is more important for satellites than centrals and its contribution decreases with galactocentric radius. The relative contribution of asymptotic giant branch (AGB) stars increases with time and towards galaxy centres. This is a consequence of the more gradual release of AGB ejecta compared to that of massive stars, and the preferential removal of the latter by star formation-driven outflows and by lock up in stellar remnants. Recycling-fuelled star formation exhibits a tight, positive correlation with galaxy metallicity, with a secondary dependence on the relative abundance of alpha elements (which are predominantly synthesized in massive stars), that is insensitive to the subgrid models for feedback. Hence, our conclusions are directly relevant for the origin of the mass-metallicity relation and metallicity gradients. Applying the relation between recycling and metallicity to the observed mass-metallicity relation yields our best estimate of the mass-dependent contribution of recycling. For centrals with a mass similar to that of the Milky Way, we infer the contributions of recycled stellar ejecta to the SFR and stellar mass to be 35 and 20 per cent, respectively.

  20. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    SciTech Connect

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T.

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  1. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.

    PubMed

    Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M

    2015-01-20

    Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide

  2. Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates.

    PubMed

    Bestgen, Janile O; Cetin, Bora; Tanyu, Burak F

    2016-07-01

    Leaching of metals (calcium (Ca), chromium (Cr), copper, (Cu), iron (Fe), and zinc (Zn)) of recycled concrete aggregates (RCAs) were investigated with four different leachate extraction methods (batch water leach tests (WLTs), toxicity leaching procedure test (TCLP), synthetic precipitation leaching procedure test (SPLP), and pH-dependent leach tests). WLTs were also used to perform a parametric study to evaluate factors including (i) effects of reaction time, (ii) atmosphere, (iii) liquid-to-solid (L/S) ratio, and (iv) particle size of RCA. The results from WLTs showed that reaction time and exposure to atmosphere had impact on leaching behavior of metals. An increase in L/S ratio decreased the effluent pH and all metal concentrations. Particle size of the RCA had impact on some metals but not all. Comparison of the leached concentrations of metals from select RCA samples with WLT method to leached concentrations from TCLP and SPLP methods revealed significant differences. For the same RCA samples, the highest metal concentrations were obtained with TCLP method, followed by WLT and SPLP methods. However, in all tests, the concentrations of all four (Cr, Cu, Fe, and Zn) metals were below the regulatory limits determined by EPA MCLs in all tests with few exceptions. pH-dependent batch water leach tests revealed that leaching pattern for Ca is more cationic whereas for other metals showed more amphoteric. The results obtained from the pH-dependent tests were evaluated with geochemical modeling (MINTEQA2) to estimate the governing leaching mechanisms for different metals. The results indicated that the releases of the elements were solubility-controlled except Cr. PMID:26996910

  3. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius.

    PubMed

    Mauthoor, Sumayya; Mohee, Romeela; Kowlesser, Prakash

    2014-10-01

    This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described and an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined. PMID:24433820

  4. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    PubMed

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. PMID:27371771

  5. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle.

    PubMed

    Tabak, Henry H; Scharp, Richard; Burckle, John; Kawahara, Fred K; Govind, Rakesh

    2003-12-01

    Acid mine drainage (AMD), an acidic metal-bearing wastewater, poses a severe pollution problem attributed to post mining activities. The metals usually encountered in AMD and considered of concern for risk assessment are arsenic, cadmium, iron, lead, manganese, zinc, copper and sulfate. The pollution generated by abandoned mining activities in the area of Butte, Montana has resulted in the designation of the Silver Bow Creek-Butte Area as the largest Superfund (National Priorities List) site in the U.S. This paper reports the results of bench-scale studies conducted to develop a resource recovery based remediation process for the clean up of the Berkeley Pit. The process utilizes selective, sequential precipitation (SSP) of metals as hydroxides and sulfides, such as copper, zinc, aluminum, iron and manganese, from the Berkeley Pit AMD for their removal from the water in a form suitable for additional processing into marketable precipitates and pigments. The metal biorecovery and recycle process is based on complete separation of the biological sulfate reduction step and the metal precipitation step. Hydrogen sulfide produced in the SRB bioreactor systems is used in the precipitation step to form insoluble metal sulfides. The average metal recoveries using the SSP process were as follows: aluminum (as hydroxide) 99.8%, cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper (as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese (as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide) 100%. The average precipitate purity for metals, copper sulfide, ferric hydroxide, zinc sulfide, aluminum hydroxide and manganese sulfide were: 92.4, 81.5, 97.8, 95.6, 92.1 and 75.0%, respectively. The final produced water contained only calcium and magnesium and both sulfate and sulfide concentrations were below usable water limits. Water quality of this agriculturally usable water met the EPA's gold standard criterion. PMID:14669873

  6. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.

    PubMed

    Gagnon, K; Wilson, J S; Holt, C M B; Abrams, D N; McEwan, A J B; Mitlin, D; McQuarrie, S A

    2012-08-01

    There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective. PMID:22750197

  7. The Spanish Protocol for radiological surveillance of metal recycling: a collaboration of government and industry.

    PubMed

    Cadierno, Juan Pedro García; Renedo, J I Serrano; Lopez, E Gil

    2006-11-01

    The presence of radioactive materials in scrap metal has been detected relatively often in recent years. As a result of an accidental melting of a 137Cs source in a Spanish steel mill (Acerinox) in 1998, the national authorities, the involved private companies, and the main trade unions drafted a protocol for prevention of and responding to such events ("Spanish Protocol"). The Protocol was signed in 1999. The number of subscribing companies is 90. The Protocol is a voluntary agreement defining the radiological surveillance of scrap metal and its products and the duties and rights of the signatories. From the effective date of the Protocol to December 2004, 461 pieces of ferric scrap were detected including sources of radiation and contaminated metal. Four melting incidents have happened in different companies. PMID:17033458

  8. Nuclear energy and radioactive waste disposal in the age of recycling

    SciTech Connect

    Conca, James L.; Apted, Michael

    2007-07-01

    The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives will drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)

  9. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. PMID:25460954

  10. Flow studies for recycling metal commodities in the United States [Chapters A-M : gold, platinum, chromium, zinc, magnesium, lead, iron, manganese, columbium (niobium), tantalum, tin, molybdenum, and cobalt

    USGS Publications Warehouse

    Sibley, Scott F., (Edited By)

    2004-01-01

    USGS Circular 1196, 'Flow Studies for Recycling Metal Commodities in the United States,' presents the results of flow studies for recycling 26 metal commodities, from aluminum to zinc. These metals are a key component of the U.S. economy. Overall, recycling accounts for more than half of the U.S. metal supply by weight and roughly 40 percent by value.

  11. Fate of heavy metals and radioactive metals in gasification of sewage sludge

    SciTech Connect

    Marrero, Thomas W.; McAuley, Brendan P.; Sutterlin, William R.; Steven Morris, J.; Manahan, Stanley E

    2004-07-01

    The fates of radioactive cadmium, strontium, cesium, cobalt, arsenic, mercury, zinc, and copper spiked into sewage sludge were determined when the sludge was gasified by a process that maximizes production of char from the sludge (ChemChar process). For the most part the metals were retained in the char product in the gasifier. Small, but measurable quantities of arsenic were mobilized by gasification and slightly more than 1% of the arsenic was detected in the effluent gas. Mercury was largely mobilized from the solids in the gasifier, but most of the mercury was retained in a filter composed of char prepared from the sludge. The small amounts of mercury leaving the gasification system were found to be associated with an aerosol product generated during gasification. The metals retained in the char product of gasification were only partially leachable with 50% concentrated nitric acid.

  12. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    SciTech Connect

    Mauthoor, Sumayya; Mohee, Romeela; Kowlesser, Prakash

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described and an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.

  13. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  14. Challenges of metal recycling and an international covenant as possible instrument of a globally extended producer responsibility.

    PubMed

    Wilts, Hennning; Bringezu, Stefan; Bleischwitz, Raimund; Lucas, Rainer; Wittmer, Dominic

    2011-09-01

    As illustrated by the case studies of end-of-life vehicles and waste electric and electronic equipment, the approach of an extended producer responsibility is undermined by the exports of used and waste products. This fact causes severe deficits regarding circular flows, especially of critical raw materials such as platinum group metals. With regard to global recycling there seems to be a responsibility gap which leads somehow to open ends of waste flows and a loss or down-cycling of potential secondary resources. Existing product-orientated extended producer responsibility (EPR) approaches with mass-based recycling quotas do not create adequate incentives to supply waste materials containing precious metals to a high-quality recycling and should be amended by aspects of a material stewardship. The paper analyses incentive effects on EPR for the mentioned product groups and metals, resulting from existing regulations in Germany. It develops a proposal for an international covenant on metal recycling as a policy instrument for a governance-oriented framework to initiate systemic innovations along the complete value chain taking into account product group- and resource group-specific aspects on different spatial levels. It aims at the effective implementation of a central idea of EPR, the transition of a waste regime still focusing on safe disposal towards a sustainable management of resources for the complete lifecycle of products. PMID:21771872

  15. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1189 Ferguson*, T.D., Chen, A.S.C., and Stencel, N. Recycling a Nonionic Aqueous-Based Metal-Cleaning Solution with a Ceramic Membrane: Pilot Scale Evaluation. Published in: Environmental Progress 20 (2):123-132 (2001). The effectiveness of a zirconium dioxide (ZrO2) ...

  16. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect

    Lutz, J.D.; Wheelis, W.T.; Gundiler, I.H.

    1995-02-01

    Sandia National Laboratories (SNL) is tasked to support the Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials in discrete sub-components. SNL developed and demonstrated a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The remaining components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. The New Mexico Bureau of Mines & Mineral Resources assisted SNL in investigation of size-reduction and separation technologies and in the development of a conceptual design for a mechanical separation system.

  17. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-03-03

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.

  18. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  19. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  20. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions.

    PubMed

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan; Zhang, Chaoliang; Wang, Xu; Liu, Xiangyang

    2016-04-01

    To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Qe) for Cu(2+) of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300°C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments. PMID:26736172

  1. Comparison of alternative remediation technologies for recycled gravel contaminated with heavy metals.

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Huang, Sheng; Zhen, Guangyin; Deng, Guannan; Xie, Tian; Zhao, Youcai

    2015-11-01

    To evaluate the effects of different remediation methods on heavy metals contaminated recycled gravel, three immobilization agents (monopotassium phosphate, lime, nano-iron) and two mobilization agents (glyphosate, humic acid (HA)) were studied and compared. Results indicated that nano-iron powder was found to be more effective to immobilize Zn, Cu, Pb and Cd. Meanwhile, glyphosate presents a higher mobilization effect than HA with removal rates of about 66.7% for Cd, more than 80% for Cr, Cu and Zn, and the highest removal percentage of 85.9% for Cr. After the mobilization by glyphosate, the leaching rates of Zn, Cu and Cr were about 0.8%, and below 0.2% for Pb and Cd. The leaching rates after nano-iron powder treatment were 1.18% for Zn, 0.96% for Cr, 0.61% for Cu, 0.45% for Pb and Cd not detected. The formation and disappearance of metal (Zn/Cu/Cr/Pb/Cd) compounds were firmly confirmed through X-ray diffraction and scanning electron microscopy analyses on crystalline phases and morphological surface structures. PMID:26416851

  2. [Health risk assessment in the metal scrap recycle: the case of Brescia].

    PubMed

    Corsaro, G B; Gabusi, V; Pilisi, A

    2012-01-01

    The recycle of metal scraps is one of the most important industrial activity of Brescia: almost 40% of the metal scraps produced in Italy are reprocessed in this Province. The melting process currently used produces air emissions containing dioxins, PCB and other pollutants which are dispersed in the atmosphere giving a contribution to the general environment pollution. This contribution has been and is being extensively studied in terms of air concentration and soil deposition but, because of its complexity and the difficulty to gather the necessary data, very little investigation has been made up to now on its impact on the health of workers and population. The difficulties are overcome by RAMET, a research Consortium established and financed by the main 24 metallurgical and siderurgical companies of Brescia, which can take advantage of the availability of the production facilities of its shareholders as pilot plants and has access to their database and experience. Starting from this unique favourable condition and in collaboration with the University of Brescia, RAMET is working on a research project having as main objective the assessment of the POPs dose adsorbed and the relevant consequences on workers and public health. The general scheme and organization of this project are given in this paper together with the outlines and the results of the main activities already completed or in progress. PMID:23213800

  3. Melting of low-level radioactive non-ferrous metal for release

    SciTech Connect

    Quade, Ulrich; Kluth, Thomas; Kreh, Rainer

    2007-07-01

    Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

  4. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.

    PubMed

    Gowda, Ravikumar R; Chen, Eugene Y-X

    2016-01-01

    Nanoparticles (NPs) derived from earth-abundant metal(0) carbonyls catalyze conversion of bio-derived levulinic acid into γ-valerolactone in up to 93% isolated yield. This sustainable and green route uses non-precious metal catalysts and can be performed in aqueous or ethanol solution without using hydrogen gas as the hydrogen source. Generation of metal NPs using microwave irradiation greatly enhances the rate of the conversion, enables the use of ethanol as both solvent and hydrogen source without forming the undesired ethyl levulinate, and affords recyclable polymer-stabilized NPs. PMID:26735911

  5. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    PubMed

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-01

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally. PMID:22304328

  6. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. PMID:25089667

  7. Method for separating constituents from solution employing a recyclable Lewis acid metal-hydroxy gel

    SciTech Connect

    Alexander, D.H.

    1995-12-31

    This invention permits radionuclides, heavy metals, and organics to be extracted from solution by scavenging them with an amorphous gel. In the preferred embodiment, a contaminated solution (e.g. from soil washing, decontamination, or groundwater pumping) is transferred to a reaction vessel. The contaminated solution is contacted by the sequestering reagent which might contain for example, aluminate and EDTA anions in a 2.5 M NaOH solution. The pH of the reagent bearing solution is lowered on contact with the contaminated solution, or for example by bubbling carbon dioxide through it, causing an aluminum hydroxide gel to precipitate as the solution drops below the range of 1.8 to 2.5 molar NaOH (less than pH 14). This precipitating gel scavenges waste contaminants as it settles through solution leaving a clean supernatant which is then separated from the gel residue by physical means such as centrifugation, or simple settling. The gel residue containing concentrated contaminants is then redissolved releasing contaminants for separations and processing. This is a critical point: the stabilized gel used in this invention is readily re-dissolved by merely increasing the pH above the gels phase transition to aqueous anions. Thus, concentrated contaminants trapped in the gel can be released for convenient separation from the sequestering reagent, and said reagent can then be recycled.

  8. Decontamination processes for low level radioactive waste metal objects

    SciTech Connect

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-12-31

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan`s radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan`s population, half that of the USA, lives in an area slightly smaller than that of California`s. If everyone`s backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan`s contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R&D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC.

  9. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  10. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  11. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  12. Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China.

    PubMed

    Zhao, Weituo; Ding, Lei; Gu, Xiaowen; Luo, Jie; Liu, Yunlang; Guo, Li; Shi, Yi; Huang, Ting; Cheng, Shenggao

    2015-11-01

    Due to the high threat to human health and the ecosystem from metals, the levels and distribution of As, Hg, Cr, Co, Ni, Cu, Zn, Cd, Pb, Mn, V, Sn, Sb, Li and Be in various layers of soil from an e-waste recycling area in Guiyu, China were investigated. The extent of pollution from the metals in soil was assessed using enrichment factors (EFs) and the Nemerow pollution index (P N ). To determine the metals' integrated potential ecological risks, the potential ecological risk index (RI) was chosen. The concentrations of Hg, Ni, Cu, Cd, Pb, Sn and Sb were mainly enriched in the topsoil. EF values (2-5) of the elements Hg, Co, Ni, Zn, Sn, Li and Be revealed their moderate enrichment status in the topsoil, derived from e-waste recycling activities. P N presented a decreasing trend in different layers in the order topsoil (0-20 cm) > deep soil (100-150 cm) > middle soil (50-100 cm) > shallow soil (20-50 cm). With higher potential ecological risk factor (E(i)), Hg and Cd are the main contributors to the potential ecological risk. With respect to the RI, all the values in soil from the study area exceeded 300, especially for the soil at sites S2, S4, S5, S7 and S8, where RI was greater than 600. Therefore, immediate remediation of the contaminated soil is necessary to prevent the release of metals and potential ecological harm. PMID:26318052

  13. Electrowinning/electrostripping and electrodialysis processes for the recovery and recycle of metals from plating rinse solutions

    SciTech Connect

    Smith, W.H.; Foreman, T.

    1997-01-01

    Two electrochemical based methods have been evaluated to remove heavy metals from a tin/zinc electroplating rinse solution with subsequent recycle of the metals back into the original plating bath. The first method uses electrodialysis to move tin to the anolyte strip solution as an anionic citrato complex while zinc is distributed to both the anolyte and catholyte, showing it exists as both an anionic citrato complex and in free cationic form. Zinc can be recovered by scraping the loose deposit from the cathode and dissolving it in mineral acid. The second method is a combined electrowinning/electrostripping technique. The process involves continuously flowing the plating rinse solution through a porous graphite cathode and removing the metal ions via electrodeposition. When a sufficient quantity of metal has been deposited, the electrode is placed in a solution whose chemical composition is similar to that of the original plating bath and the metals ions are stripped from the electrode anodically. The resulting solution is then placed into the original plating bath. Both methods were used to treat a surrogate rinse solution originally containing 100-300 parts per million of each metal and were successful in reducing the metal-ion concentrations to less than 15 parts per million each. Approximately 70% of the tin and 100% of the zinc are recoverable by either method.

  14. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness. PMID:26369315

  15. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-01

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239

  16. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    SciTech Connect

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239

  17. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China.

    PubMed

    Wu, Yuanyuan; Li, Yanyan; Kang, Duan; Wang, Jingjing; Zhang, Yanfang; Du, Dongli; Pan, Bishu; Lin, Zhenkun; Huang, Changjiang; Dong, Qiaoxiang

    2016-01-15

    This study was designed to investigate a prevalent brominated flame retardant tetrabromobisphenol A (TBBPA) and four heavy metals of Pb, Cr, As, Cd in dust samples (52 indoor and 52 outdoor) collected from residential houses in an e-waste recycling area in Southeast China. For TBBPA, the mean concentration in indoor dust (3435 ng/g, dw) was higher than that in outdoor dust (1998 ng/g, dw). For heavy metals, the mean concentrations of Pb, Cr, As, Cd were 399, 151, 48.13, and 5.85 mg/kg in indoor dust, respectively, and were 328, 191, 17.59, and 4.07 mg/kg in outdoor dust, respectively. Except for As, concentrations of TBBPA and other metals decreased with the increased distance away from the e-waste recycling center, suggesting significant contribution of e-waste activities. The daily exposure doses of TBBPA ranged from 0.04 to 7.50 ng/kg-bw/day for adults and from 0.31 to 58.54 ng/kg-bw/day for children, representing the highest values reported to date for TBBPA exposure via dust ingestion. Daily exposure doses of Cr, As, and Cd were all below the reference doses. However, daily exposure dose of Pb for children in areas near the e-waste processing center was above the reference dose, posing significant health concern for children in that region. PMID:26410710

  18. Mixing of process heels, process solutions, and recycle streams: Results of the small-scale radioactive tests

    SciTech Connect

    GJ Lumetta; JP Bramson; OT Farmer III; LR Greenwood; FV Hoopes; MA Mann; MJ Steele; RT Steele; RG Swoboda; MW Urie

    2000-05-17

    Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K{sub d} measurements with SuperLig{reg_sign} 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, Small Scale Mixing of Process Heels, Solutions, and Recycle Streams. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  19. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  20. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  1. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration.

    PubMed

    Contreras, M; Pérez-López, R; Gázquez, M J; Morales-Flórez, V; Santos, A; Esquivias, L; Bolívar, J P

    2015-11-01

    The industry of phosphoric acid produces a calcium-rich by-product known as phosphogypsum, which is usually stored in large stacks of millions of tons. Up to now, no commercial application has been widely implemented for its reuse because of the significant presence of potentially toxic contaminants. This work confirmed that up to 96% of the calcium of phosphogypsum could be recycled for CO2 mineral sequestration by a simple two-step process: alkaline dissolution and aqueous carbonation, under ambient pressure and temperature. This CO2 sequestration process based on recycling phosphogypsum wastes would help to mitigate greenhouse gasses emissions. Yet this work goes beyond the validation of the sequestration procedure; it tracks the contaminants, such as trace metals or radionuclides, during the recycling process in the phosphogypsum. Thus, most of the contaminants were transferred from raw phosphogypsum to portlandite, obtained by dissolution of the phosphogypsum in soda, and from portlandite to calcite during aqueous carbonation. These findings provide valuable information for managing phosphogypsum wastes and designing potential technological applications of the by-products of this environmentally-friendly proposal. PMID:26209345

  2. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    PubMed

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. PMID:25819929

  3. Advanced process research and development to enhance metals and materials recycling.

    SciTech Connect

    Daniels, E. J.

    1997-12-05

    Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

  4. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    2016-01-01

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water. PMID:27438241

  5. HEAVY METALS IN RECOVERED FINES FOR CONSTRUCTION AND DEMOLITION DEBRIS RECYCLING FACILITIES IN FLORIDA

    EPA Science Inventory

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil....

  6. Use of natural radionuclides to determine the time range of the accidental melting of an orphan radioactive source in a steel recycling plant.

    PubMed

    Cantaluppi, Chiara; Ceccotto, Federica; Cianchi, Aldo

    2012-02-01

    In the rare event that an orphan radioactive source is melted in an Electric Arc Furnace steel recycling plant, the radionuclides present are partitioned in the different products, by-products and waste. As a consequence of an unforeseen melting of a radiocesium source, cesium radioisotopes can be found in the dust, together with many natural radionuclides from the decay of radon and thoron, which are present in the atmosphere, picked up from the off-gas evacuation system and associated with the dust of the air filtration system ("baghouse"). In this work we verified that the activity concentration of ²¹²Pb in this dust is essentially constant in a specific factory so that it is possible to use it to date back to the time of the accidental melting of the orphan radioactive source. The main features of this method are described below, together with the application to a particular case in which this method was used for dating the moment in which the dust was contaminated with ¹³⁷Cs. PMID:22103976

  7. Study on the decontamination of surface of radioactive metal device using plasmatron

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Keun; Yang, Ik-Jun; Kim, Seung-Hyeon; Rai, Suresh; Lee, Heon-Ju

    2015-09-01

    Radioactive waste contiguously produced during operation of NPP (nuclear power plant). Therefore, KHNP (korea hydro & nuclear power co., ltd) decided to disband the NPP unit 1 in the Kori area. Since most of the metallic radioactive wastes are not contaminated ones themselves but rather ones containing polluted nuclides on their surface, the amount of wastes can be sharply reduced through decontamination process. In this study DC plasmatron and isotope sheet of radioactive cobalt was used to study the decontamination process. Decontamination can be achieved by etching the contaminated layer from the surface. Due to the restricted usage of radioactive materials, we have studied etching of Cobalt (Co) sheet to imitate the radioactive contamination. Plasma was generated using mixture gas of CF4/O2 in the ratio of 10:0, 9:1, 8:2, 7:3, 6:4 maintaining the plasma sample distance of 20 mm, 30 mm, 40 mm and exposed time of 60 sec, 120 sec, 180 sec using fixed Ar carrier gas flow rate of 1000 sccm. As a result, we obtained maximum etching rate of 9.24 μm/min when the mixture ratio of CF4/O2 gas was 4:1, which was confirmed by SEM and mass-meter. It was confirmed that more close positioning the Co samples to the plasmatron nozzle yields maximum etching rate.

  8. Muon Tomography as a Tool to Detect Radioactive Source Shielding in Scrap Metal Containers

    NASA Astrophysics Data System (ADS)

    Bonomi, G.; Cambiaghi, D.; Dassa, L.; Donzella, A.; Subieta, M.; Villa, V.; Zenoni, A.; Furlan, M.; Rigoni, A.; Vanini, S.; Viesti, G.; Zumerle, G.; Benettoni, M.; Checchia, P.; Gonella, F.; Pegoraro, M.; Zanuttigh, P.; Calvagno, G.; Calvini, P.; Squarcia, S.

    2014-02-01

    Muon tomography was recently proposed as a tool to inspect large volumes with the purpose of recognizing high density materials immersed in lower density matrices. The MU-STEEL European project (RFCS-CT-2010-000033) studied the application of such a technique to detect radioactive source shielding in truck containers filled with scrap metals entering steel mill foundries. A description of the muon tomography technique, of the MU-STEEL project and of the obtained results will be presented.

  9. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    SciTech Connect

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  10. Potential of a Hydrometallurgical Recycling Process for Catalysts to Cover the Demand for Critical Metals, Like PGMs and Cerium

    NASA Astrophysics Data System (ADS)

    Steinlechner, Stefan; Antrekowitsch, Jürgen

    2015-02-01

    The metals from the platinum group are used in many different industries, for example dental, jewelry, and chemicals. Nevertheless, the most important use is based on their catalytic properties. Approximately 50% of platinum and palladium are used as automotive and industrial catalysts. In case of rhodium, an even higher percentage (around 80-90%) is used as an alloying element in the active layer of different catalysts. The high required amount of 300-900 kg of treated ore to obtain approximately 1 g of PGM is responsible for the high prices. On average, the contents in the ore of Pt and Pd are 5-10 times higher than Rh and Ru and around 50 times higher than Ir and Os. Additionally, the regional limitation of ore bodies leads to a strong dependence on mainly South Africa and Russia as PGM suppliers. Based on the strong discrepancy in supply and demand of PGM's around the world, recycling of catalysts is mandatory and meaningful from the ecological and economical point of view. Based on the high prices of PGM, the industry is forced to improve the efficiency of catalysts, which is done by improving the wash coat technology. By using rare-earth elements, like cerium oxide, the surface can be increased and the ability to supply oxygen is secured. As a side effect, cerium as an additional critical element is introduced into the recycling circuit of catalytic converters, forming a further valuable component and forming a major challenge for common pyrometallurgical converter recycling. Therefore, this article introduces a hydrometallurgical process, developed together with Railly&Hill Inc., for PGM as well as cerium recovery from catalytic converters.

  11. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis.

    PubMed

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Ekberg, Christian; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  12. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced. PMID:18554788

  13. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    PubMed Central

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Ekberg, Christian; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  14. Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility.

    PubMed

    Wang, Zhong; Wang, WenZhong; Jiang, Dong; Zhang, Ling; Zheng, Yali

    2016-07-28

    Capturing formaldehyde (HCHO) from indoor air with porous adsorbents still faces challenges due to their low uptake capacity, difficult regeneration, and especially, the sorption capacity reduction that is caused by the competitive adsorption of H2O when exposed to a humid atmosphere. In this work, MIL-101 is modified with ethylenediamine (ED) on its open-metal sites to substantially improve the HCHO adsorption properties. The HCHO uptake capacity of modified MIL-101 can be up to 5.49 mmol g(-1) in this study, which is among the highest-levels of various adsorbents reported thus far. Moreover, this modification both improved the material's recyclability and water resistibility, allowing for cyclic and selective tests with stable adsorption capacities, revealing the potential utility of amine-modified MOFs for indoor air purification. PMID:27338802

  15. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal. PMID:26216781

  16. An Ultrahydrophobic Fluorous Metal-Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills.

    PubMed

    Mukherjee, Soumya; Kansara, Ankit M; Saha, Debasis; Gonnade, Rajesh; Mullangi, Dinesh; Manna, Biplab; Desai, Aamod V; Thorat, Shridhar H; Singh, Puyam S; Mukherjee, Arnab; Ghosh, Sujit K

    2016-07-25

    Derived from a strategically chosen hexafluorinated dicarboxylate linker aimed at the designed synthesis of a superhydrophobic metal-organic framework (MOF), the fluorine-rich nanospace of a water-stable MOF (UHMOF-100) exhibits excellent water-repellent features. It registered the highest water contact angle (≈176°) in the MOF domain, marking the first example of an ultrahydrophobic MOF. Various experimental and theoretical studies reinforce its distinctive water-repellent characteristics, and the conjugation of superoleophilicity and unparalleled hydrophobicity of a MOF material has been coherently exploited to achieve real-time oil/water separation in recyclable membrane form, with significant absorption capacity performance. This is also the first report of an oil/water separating fluorinated ultrahydrophobic MOF-based membrane material, with potential promise for tackling marine oil spillages. PMID:27359254

  17. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  18. The application of metal cutting technologies in tasks performed in radioactive environments

    SciTech Connect

    Fogle, R.F.; Younkins, R.M.

    1997-05-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

  19. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent.

    PubMed

    Hadi, Pejman; Gao, Ping; Barford, John P; McKay, Gordon

    2013-05-15

    Printed circuit boards (PCBs) constitute one of the major sources of toxicity in landfill areas throughout the world. Hence, PCB recycling and separation of its metallic and nonmetallic components has been considered a major ecological breakthrough. Many studies focus on the metallic fraction of the PCBs due to its economic benefits whereas the nonmetallic powder (NMP) has been left isolated. In this work, the feasibility of using NMP as an adsorbent to remove charged toxic heavy metal ions have been studied and its efficiency has been compared with two widely-used commercial adsorbents. The results indicated that the virgin NMP material has no adsorption capacity, while the application of an activation stage to modify the NMP process has a significant effect on its porosity and thus adsorption capacity. The Cu and Pb removal capacity of the activated sample (A-NMP) at a pH level of 4 was 3 mmol and 3.4 mmol per gram of the adsorbent, respectively, which was considerably higher than the commercial ones. PMID:23523907

  20. Guidelines for waste reduction and recycling: Metal finishing, electroplating, printed circuit board manufacturing

    SciTech Connect

    Not Available

    1989-07-01

    The guidance manual describes waste reduction techniques for metal finishing, metal fabricating, electroplating, and printed circuitboard manufacturing operations. Techniques which can be applied to a wide range of industrial processes and those which are process-specific are discussed. Evaporation, reverse osmosis, ion exchange, electrodialysis, ultrafiltration, and electrolytic recovery are described. The manual also describes waste reduction assessment procedures.

  1. Ecological vulnerability: seasonal and spatial assessment of trace metals in soils and plants in the vicinity of a scrap metal recycling factory in Southwestern Nigeria.

    PubMed

    Owoade, O K; Awotoye, O O; Salami, O O

    2014-10-01

    The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84-3.12 mg/kg for Pb, 0.26-0.46 mg/kg for Cd, 9.19-24.70 mg/kg for Zn, and 1.46-1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62-0.69 mg/kg for Pb, 0.67-0.78 mg/kg for Cd, 0.84-1.00 mg/kg for Zn, and 1.26-1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes. PMID:25034233

  2. Pollution of the Begej Canal sediment--metals, radioactivity and toxicity assessment.

    PubMed

    Dalmacija, B; Prica, M; Ivancev-Tumbas, I; van der Kooij, A; Roncevic, S; Krcmar, D; Bikit, I; Teodorovic, I

    2006-07-01

    The Begej Canal is one among a large number of canals in Vojvodina (Northern Province of Serbia and Montenegro). The paper describes a study of metal and radioactivity contamination of the Begej Canal sediment. It is also concerned with the evaluation of sediment acute toxicity based on standard test species Daphnia magna and simultaneously extracted metals and acid volatile sulfides. The quality of sediment was assessed according to Dutch standards, but the results were also compared with some Canadian and USEPA (United States Environmental Protection Agency) guidelines for sediment quality. The results showed severe pollution with chromium, copper, cadmium and zinc, whereby the anthropogenic origin of these contaminants was indicated. The tests of toxicity of sediment pore water to D. magna, gave no indication of the presence of substances in acutely toxic concentrations to this species. It can be speculated that, despite of high metal contents, the observed toxicity was low because of the high contents of clay and iron, as well as sulphide. Also, based on a comparison with the Danube sediment and Vojvodina soil in general, the data of the Begej sediment contamination with 238U and 137Cs. The 137Cs data were used for approximate dating of the sediment. No traces of contamination by nuclear power plants in the region were found, while the presence of technologically enhanced naturally occurring radioactive materials (TENORM) was proved. Conclusions based on different criteria for sediment quality assessment were in some cases contradictory. Study also showed that radioactivity aspects can be useful in sediment quality surveys. The obtained results will be invaluable for the future activities regarding integrated water management based on EC Water Framework Directive (2000/60/EC) in the Danube basin, and particularly in the region of crossborder water body of the Begej Canal. PMID:16527352

  3. Bioaccumulations of heavy metals in Ipomoea aquatica grown in bottom ash recycling wastewater.

    PubMed

    Milla, Odette Varela; Rivera, Eva B; Huang, Wu-Jang

    2014-05-01

    A plant bioassay using hydroponically grown Ipomoea aquatica (water spinach) was applied to assess the phytotoxicity of untreated and treated wastewaters from a municipal solid waste incineration bottom ash recycling facility. The 50%-diluted, untreated wastewater exhibited acute toxicity (plants died within 24 hours). Highly diluted doses (3 and 6%) of both wastewater types displayed no significant differences when compared with the control. Treating the wastewater through sequential physical filtration and chemical precipitation processes decreased not only the dissolved solids content but also the pH and salt content. In addition, significant accumulations of Sr, Cr, and Sn were observed in the hydroponically grown I. aquatica plant tissues; in particular, the bioaccumulation of Sr in the leaves and roots was unexpectedly high. PMID:24961066

  4. Recycle of contaminated scrap metal, comprehensive executive summary. Final report, September 30, 1993--March 31, 1996

    SciTech Connect

    1997-06-01

    R&D activities have demonstrated Catalytic Extraction Processing (CEP) to be a robust, one-step process process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. The feed size and composition compatible with CEP have been increased in a short period of time, and additional R&D should lead to the ability to accept a drum (and larger?) size feed of completely uncharacterized waste. Experiments have validated the CPU (Catalytic Processing Unit). Two commercial facilities have been commissioned and are currently processing mixed low level wastes. Expansion of CEP to transuranic and high level wastes should be the next step in the development and deployment of CEP for recycle, reuse, and disposal of materials from DOE decontamination and decommissioning activities.

  5. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions.

    PubMed

    Even, Julia; Yakushev, Alexander; Düllmann, Christoph E; Dvorak, Jan; Eichler, Robert; Gothe, Oliver; Hild, Daniel; Jäger, Egon; Khuyagbaatar, Jadambaa; Kratz, Jens V; Krier, Jörg; Niewisch, Lorenz; Nitsche, Heino; Pysmenetska, Inna; Schädel, Matthias; Schausten, Brigitta; Türler, Andreas; Wiehl, Norbert; Wittwer, David

    2012-06-18

    Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements. PMID:22663355

  6. Steel--Project Fact Sheet: Recycling Acid and Metal Salts from Pickling Liquors

    SciTech Connect

    Poole, L.; Recca, L.

    1999-01-14

    Regenerating hydrochloric acids from metal finishing pickling baths reduces costs, wastes, and produces a valuable by-product--ferrous sulfate. Order your copy of this OIT project fact sheet and learn more about how your company can benefit.

  7. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  8. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  9. Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey.

    PubMed

    Cevik, U; Celik, N; Celik, A; Damla, N; Coskuncelebi, K

    2009-09-01

    The Eastern Black Sea Region of Turkey is one of the main hazelnut producers in Turkey and in the world. Since this region was contaminated by the Chernobyl accident in 1986, a comprehensive study was planned and carried out to determine the radioactivity level in hazelnut growing region. The dose due to consumption of hazelnut by the public was estimated and it was shown that this dose imposes no threat to human health. In addition, heavy metal analysis was performed in the samples and the amount of Cr, Mn, Fe, Ni, Cu, Zn, and Pb were also detected. The results showed that the concentrations of heavy metal are below the daily intake recommended by the international organizations. PMID:19549551

  10. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  11. Recycling, Inc.

    ERIC Educational Resources Information Center

    Martin, Amy

    1992-01-01

    Suggestions for creating a successful office recycling system are enumerated from start up plans to waste reduction and paper recycling. Contact information for recycling equipment, potential buyers of recycled materials, recycled products for purchase, and ideas for promotion and education of staff are included. (MCO)

  12. Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material.

    PubMed

    Lefebvre, Olivier; Tan, Zi; Shen, Yujia; Ng, How Y

    2013-01-01

    Microbial fuel cell (MFC) for wastewater treatment is still hindered by the prohibitive cost of cathode material, especially when platinum is used to catalyze oxygen reduction. In this study, recycled scrap metals could be used efficiently as cathode material in a specially-designed MFC. In terms of raw power, the scrap metals ranked as follows: W/Co > Cu/Ni > Inconel 718 > carpenter alloy; however, in terms of cost and long term stability, Inconel 718 was the preferred choice. Treatment performance--assessed on real and synthetic wastewater--was considerably improved either by filling the anode compartment with carbon granules or by operating the MFC in full-loop mode. The latter option allowed reaching 99.7% acetate removal while generating a maximum power of 36 W m(-3) at an acetate concentration of 2535 mg L(-1). Under these conditions, the energy produced by the system averaged 0.1 kWh m(-3) of wastewater treated. PMID:23138054

  13. A Practical Recycling Project . . .

    ERIC Educational Resources Information Center

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  14. Prolong Restoration of the Water Quality of River Ganga Effect of Heavy Metals and Radioactive Elements.

    PubMed

    Tare, Vinod; Basu, Subhankar

    2014-04-01

    The genesis of the present research was the belief since ages and the observations made through some studies that the water of river Ganga has unique characteristics, which allows storage of water quality even on prolong storage. Very few systematic studies have been conducted to support the contention that the Ganga water indeed has some special composition that could be attributed to its unique storage capacity. It was postulated that prolong restoration of water quality depends on the ability to arrest microbial activity that is generally responsible for deterioration in water quality on prolong storage. Hence, attempt has been made to identify the parameters that are likely to influence the prolong storage of river water. Along with Ganga river water, other three major rivers, viz. Yamuna, Godavari and Narmada, were selected for comparison. Emphasis was made on estimation of heavy metals, radioactive elements, dissolved carbon and other physicochemical parameters such as temperature, pH, alkalinity, hardness and dissolved organic carbon. Based on the available information regarding the impact of heavy metals, radioactive elements vis-à-vis the chemical composition of water on microorganisms in the aquatic environment, an overall impact score for the waters of the four Indian rivers selected in the study has been assigned. PMID:26563059

  15. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    NASA Astrophysics Data System (ADS)

    Nedilko, S.; Hizhnyi, Yu.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V.

    2009-03-01

    The potential use of luminescent probes for control over the structural state of MTi2(PO4)3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi2(PO4)3 (M = Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and visible light excitations are analyzed. Electronic structure and absorption spectra of NaTi2(PO4)3 crystals are calculated by the full-potential LAPW method. The origin of the self and impurity emission bands of MTi2(PO4)3 materials is defined. It was shown that nitrogen laser with 337.1 nm generation wavelength is the most effective excitation source for remote monitoring of incorporation of various types of waste elements into MTi2(PO4)3 hosts and for control over states of these hosts during storage of radioactive waste.

  16. Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants.

    PubMed

    Helmisaari, H-S; Salemaa, M; Derome, J; Kiikkilä, O; Uhlig, C; Nieminen, T M

    2007-01-01

    The main aim of this study was to determine how the application of a mulch cover (a mixture of household biocompost and woodchips) onto heavy metal-polluted forest soil affects (i) long-term survival and growth of planted dwarf shrubs and tree seedlings and (ii) natural revegetation. Native woody plants (Pinus sylvestris, Betula pubescens, Empetrum nigrum, and Arctostaphylos uva-ursi) were planted in mulch pockets on mulch-covered and uncovered plots in summer 1996 in a highly polluted Scots pine stand in southwest Finland. Spreading a mulch layer on the soil surface was essential for the recolonization of natural vegetation and increased dwarf shrub survival, partly through protection against drought. Despite initial mortality, transplant establishment was relatively successful during the following 10 yr. Tree species had higher survival rates, but the dwarf shrubs covered a larger area of the soil surface during the experiment. Especially E. nigrum and P. sylvestris proved to be suitable for revegetating heavy metal-polluted and degraded forests. Natural recolonization of pioneer species (e.g., Epilobium angustifolium, Taraxacum coll., and grasses) and tree seedlings (P. sylvestris, Betula sp., and Salix sp.) was strongly enhanced on the mulched plots, whereas there was no natural vegetation on the untreated plots. These results indicate that a heavy metal-polluted site can be ecologically remediated without having to remove the soil. Household compost and woodchips are low-cost mulching materials that are suitable for restoring heavy metal-polluted soil. PMID:17596623

  17. Recycling of complexometric extractants to remediate a soil contaminated with heavy metals.

    PubMed

    Lee, Chia Chi; Marshall, William D

    2002-04-01

    Equilibrations were performed with complexing reagent(s) to mobilise Cd, Cu, Mn, Ni, Pb and Zn from a contaminated urban soil. The metal-laden aqueous extract was treated with zero-valent magnesium (Mg0) or bimetallic mixture (Pd0/Mg0 or Ag0/Mg0) to precipitate the heavy metals from solution while liberating the chelating reagent(s). Post precipitation, the pH of aqueous supernatant fraction was readjusted to approximately 5 and the solution was re-combined with the soil particulates to extract more heavy metal pollutants. A sparing quantity of EDTA (10 mmoles) mobilised 32-54% of the 5 mmoles of heavy-metals from the soil with three cycles but only 0.1% of the iron was removed. Three successive extractions with a mixture of complexing reagents (3 mmoles), 1:1 EDTA plus HEDC [bis-(2-hydroxyethyl)-dithiocarbamate], mobilised approximately 49% of the Pb, approximately 18% of the Zn and approximately 19% of the Mn burden but only 7% of the Cu, and 1% of the Fe from this soil. An appreciable fraction of the mobilised Pb and Cu and a portion of the Zn was cemented to the surfaces of the excess magnesium whereas virtually all of the Fe and Mn was removed from solution as insoluble hydroxides. PMID:11993778

  18. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    EPA Science Inventory

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  19. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  20. Recycling endosomes

    PubMed Central

    Goldenring, James R

    2015-01-01

    The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking. PMID:26022676

  1. Recycling of red muds with the extraction of metals and special additions to cement

    NASA Astrophysics Data System (ADS)

    Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.

    2015-01-01

    The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.

  2. The selective recovery and recycling of heavy metals from soils and sludges

    SciTech Connect

    Elston, G.W.; Burson, J.A.

    1994-12-31

    In 1984, RCRA was amended by the Hazardous and Solid Waste Amendments. A key provision of HSWA is Land Disposal Restrictions (LDR`s aka Land Bans). Over the past six years, nearly all groups of hazardous wastes have become prohibited from land disposal unless they are first treated to meet USEPA specified treatment standards. The final group of wastes to be restricted by the LDR`s is frequently referred to the ``third third`` and includes soils contaminated with regulated metals when these soils fail the USEPA`s Toxicity Characteristic Leaching Procedure. Originally, the ``third third`` was to be banned from land disposal on May 8, 1990. In anticipation of this date, the principals of Earth Treatment Technologies, Inc. initiated the development of an extraction technology for the remediation of metals contaminated soils in 1988. Earth Treatment Technologies, Inc. (ETT) has developed and commercialized an acidic extraction technology for remediation of metals contaminated soils which meets these objectives. This paper describes the process technology and physical configuration of the treatment equipment and provides case studies and process performance results.

  3. Thermodynamic analysis for the controllability of elements in the recycling process of metals.

    PubMed

    Nakajima, Kenichi; Takeda, Osamu; Miki, Takahiro; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2011-06-01

    This study presents the results of chemical thermodynamic analysis on the distribution of elements in the smelting process of metallic materials to examine the controllability of impurities in the pyrometallurgical technique. The results of the present work can give an answer against the frequently given question; "Which impurity element can be removable in metallurgical process?" or "How far can the impurity level be controlled?". The proposed method was applied to estimate the distribution of 29 elements for a copper converter and 26 elements for a steel-making process and shows the distribution tendency of elements among the gas, slag, and metal phases as well as clarifying which metals can be recovered or removed from secondary resources in metallurgical processes. The effects of temperature, oxygen partial pressure, and slag composition on the distribution ratio of elements were also evaluated, and the removal limit or controllability of impurity in these two processes was presented. This study results in thermodynamic features of various elements in the pyrometallurgical process and also shows, even by varying process parameters such as temperature and oxygen partial pressure, no drastic improvement of removal efficiency should be expected, except for lead and tin in copper. PMID:21561121

  4. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    PubMed

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. PMID:25666975

  5. The relationship between magnetic parameters and heavy metal contents of indoor dust in e-waste recycling impacted area, Southeast China.

    PubMed

    Zhu, Zongmin; Han, Zhixuan; Bi, Xiangyang; Yang, Wenlin

    2012-09-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global problem. The aim of this study is to test the applicability of magnetic methods for detecting the metal pollutants emitted from e-waste recycling activities. Dust samples collected from a typical e-waste recycling region in Guiyu, Guangdong Province, China, were investigated using magnetic, geochemical, micro-morphological and mineralogical analysis. The values of mass-specific susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) in dusts from e-waste recycling impacted areas ranged from 101 to 636×10(-8) m(3) kg(-1) and from 10.5 to 85.2×10(-3) Am(2) kg(-1), respectively. There was a significant correlation between SIRM and χ (r(2)=0.747, p<0.001), indicating that ferrimagnetic minerals were dominating χ in the dust samples. The values of χ(fd)% varied from 2.6 to 4.6% with a mean of 3.4%, which suggested that magnetic carriers in the dusts are predominately coarse-grained particles. Two shapes of magnetic particles, spherule (10-150 μm) and angular-shaped particles (30-300 μm), were identified by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analyses. κ-T curves, magnetic hysteresis loops and X-ray diffraction (XRD) analysis indicated that these magnetic particles were magnetite and goethite. There were significant correlations between SIRM and heavy metals (especially Cd, Co, Fe, Ni and Zn) as well as the Tomlinson pollution load index (PLI) of the dust, indicating that SIRM can be used as an efficient proxy for metal pollution in the e-waste recycling impacted area. PMID:22796729

  6. How to recycle asbestos containing materials (ACM)

    SciTech Connect

    Jantzen, C.M.

    2000-04-11

    The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

  7. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    PubMed

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  8. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  9. Radiation and Electromagnetic Induction Data Fusion for Detection of Buried Radioactive Metal Waste - 12282

    SciTech Connect

    Long, Zhiling; Wei, Wei; Turlapaty, Anish; Du, Qian; Younan, Nicolas H.; Waggoner, Charles

    2012-07-01

    At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with survey data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)

  10. The Three Rs: Reduce, Reuse, Recycle.

    ERIC Educational Resources Information Center

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  11. Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals.

    PubMed

    Huang, Chun-Li; Bao, Lian-Jun; Luo, Pei; Wang, Zhao-Yi; Li, Shao-Meng; Zeng, Eddy Y

    2016-11-01

    Health risk of residents dwelling around e-waste recycling zones has been a global concern, but has not been adequately examined. The present study was intended to evaluate the potential health risk of residents through inhalation exposure to size-fractionated particle-bound heavy metals in a typical e-waste recycling zone, South China. Anthropogenic metals (Zn, Se, Pb, Sb, As, and Cd) were predominantly enriched in fine particles (Dp<1.8μm), whereas the crustal elements (Ti, Fe, and Co) tended to accumulate in coarse particles (Dp>1.8μm). Although the daily inhalation intakes of the target metals were significantly lower than those through food consumption and ingestion of house dust, the hazard quotients of total metals for adults (95% CI: 1.0-5.5) and children (95% CI: 3.0-17) were greater than 1. Moreover, the incremental lifetime cancer risks of five carcinogenic metals (Cr, Co, Ni, As, and Cd) for adults and children were 1.3×10(-3) (95% CI: 4.1×10(-4)-3.0×10(-3)) and 3.9×10(-3) (95% CI: 1.3×10(-3)-8.6×10(-3)), respectively, substantially higher than the acceptable cancer risk range of 10(-6)-10(-4). All these findings suggested that health risks were high for local residents dwelling around the e-waste recycling zone through inhalation exposure to particle-bound heavy metals, for both adults and children. PMID:27322902

  12. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    PubMed

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. PMID:24184547

  13. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  14. Benefits of recycling galvanized steel scrap for recovery of high-quality steel and zinc metal

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A. )

    1991-11-04

    Argonne National Laboratory (ANL) and Metal Recovery Industries, Inc. (MRII), in cost-sharing collaboration, have developed an electrolytic process to separate and recover steel and zinc from galvanized steel scrap. This work has been supported by the US DOE. An assessment of available dezinc technology was begun in 1987 which (1) screened process concepts for separating and recovering zinc and steel from galvanized ferrous scrap, (2) selected electrochemical stripping in hot caustic as the most promising process, (3) evaluated the technical and economic feasibility of the selected process on the basis of fundamental electrochemical studies, (4) experimentally verified the technical and economic feasibility of the process in a phased evaluation from bench-scale controlled experiments through batch tests of actual scrap up to six ton lots, and (5) concluded that the process has technical and economic merit and requires larger- scale evaluation in a continuous mode as the final phase of process development. This work has attracted worldwide interest. Preliminary economic analysis indicates that the cost of the recovered ferrous scrap would be about $150/ton (at a base cost of $110/ton for galvanized scrap), including credit for the co-product zinc. Concentrations of zinc, lead, cadmium and other coating constituents on loose scrap are reduced by a minimum of 98%, with zinc, in particular, reduced to below 0.1%. Removal efficiencies on baled scrap with bulk densities between 60 and 245 pounds per cubic foot range from 80 to 90%. About 1000 tons of galvanized scrap bales have been treated in batch operation at MRII in Hamilton, Ontario. A pilot plant for continuous treatment of 40 ton/day of loose scrap is being built by MRII in East Chicago, Indiana, with operation starting in early 1992. 9 refs.

  15. Natural radioactivity and metal contamination of river sediments in the Calabria region, south of Italy

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Marguccio, S.; D'Agostino, M.; Belvedere, A.; Belmusto, G.

    2016-05-01

    River sediments from eight different sites of the coast of Calabria, south of Italy, were sampled to determine natural radioactivity and metal concentrations, in order to assess any possible radiological hazard, the level of contamination and the possible anthropogenic impact in the area. Gamma and X-ray fluorescence (XRF) spectrometry were employed and results of this study show that the mean activity concentrations of radium (in secular equilibrium with uranium) ranged from 15.1Bq/kg to 26.7Bq/kg, that of thorium from 21.8Bq/kg to 48.3Bq/kg and that of potassium from 541.3Bq/kg to 1452.2Bq/kg. In terms of mean mass concentrations, XRF analysis revealed that uranium was lower than 1.5ppm (minimum detectable value), thorium ranged from 6.1ppm to 10.3ppm while potassium ranged from 2.5% to 4.4%. The degree of sediment contaminations were computed using an enrichment factor (EF) and geoaccumulation index ( I geo for some potential hazardous elements. Results suggested that enrichment factor and geoaccumulation values of Pb and Mn were greatest among the studied metals. The study revealed that on the basis of computed indexes, the eight investigated rivers can be classified as no polluted ones.

  16. Radioactivity levels and heavy metals in the urban soil of Central Serbia.

    PubMed

    Milenkovic, B; Stajic, J M; Gulan, Lj; Zeremski, T; Nikezic, D

    2015-11-01

    Radioactivity concentrations and heavy metal content were measured in soil samples collected from the area of Kragujevac, one of the largest cities in Serbia. The specific activities of (226)Ra, (232)Th, (40)K and (137)Cs in 30 samples were measured by gamma spectrometry using an HPGe semiconductor detector. The average values ± standard deviations were 33.5 ± 8.2, 50.3 ± 10.6, 425.8 ± 75.7 and 40.2 ± 26.3 Bq kg(-1), respectively. The activity concentrations of (226)Ra, (232)Th and (137)Cs have shown normal distribution. The annual effective doses, radium equivalent activities, external hazard indexes and excess lifetime cancer risk were also estimated. A RAD7 device was used for measuring radon exhalation rates from several samples with highest content of (226)Ra. The concentrations of As, Co, Cr, Cu, Mn, Ni, Pb and Zn were measured, as well as their EDTA extractable concentrations. Wide ranges of values were obtained, especially for Cr, Mn, Ni, Pb and Zn. The absence of normal distribution indicates anthropogenic origin of Cr, Ni, Pb and Zn. Correlations between radionuclide activities, heavy metal contents and physicochemical properties of analysed soil were determined by Spearman correlation coefficient. Strong positive correlation between (226)Ra and (232)Th was found. PMID:26087932

  17. MOBILE ON-SITE RECYCLING OF METALWORKING FLUIDS

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling metalworking fluids through a mobile recycling unit. The specific recycling unit evaluated is based on the technology of filtration, pasteurization, and centrifugation. Metal...

  18. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    PubMed

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. PMID:26775099

  19. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China.

    PubMed

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia

    2016-09-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk. PMID:27230155

  20. Recycled roads

    SciTech Connect

    Tarricone, P.

    1993-04-01

    This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

  1. A new large-volume metal reference standard for radioactive waste management

    PubMed Central

    Tzika, F.; Hult, M.; Stroh, H.; Marissens, G.; Arnold, D.; Burda, O.; Kovář, P.; Suran, J.; Listkowska, A.; Tyminski, Z.

    2016-01-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of 60Co (0.290±0.006 Bq g−1) and 110mAg (3.05±0.09 Bq g−1) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which 60Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. PMID:25977349

  2. A new large-volume metal reference standard for radioactive waste management.

    PubMed

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. PMID:25977349

  3. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). PMID:27021697

  4. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth

  5. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  6. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE. PMID:19201534

  7. Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil.

    PubMed

    Heck, Karina; De Marco, Évilin Giordana; Duarte, Mariana Wanderlei; Salamoni, Sabrina Pinto; Van Der Sand, Sueli

    2015-06-01

    The composting process is a viable alternative for the recycling of household organic waste and sewage sludge generated during wastewater treatment. However, this technique can select microorganisms resistant to antimicrobials and heavy metals as a result of excess chemicals present in compost windrow. This study evaluates the antimicrobial multiresistant and tolerance to heavy metals in bacteria isolated from the composting process with sewage sludge. Fourteen antimicrobials were used in 344 strains for the resistance profile and four heavy metals (chromium, copper, zinc, and lead) for the minimum biocide concentration assay. The strains used were from the sewage sludge sample (beginning of the process) and the compost sample (end of the process). Strains with higher antimicrobial and heavy metal profile were identified by 16S rRNA gene sequencing. The results showed a multiresistant profile in 48 % of the strains, with the highest percentage of strains resistant to nitrofurantoin (65 %) and β-lactams (58 %). The strains isolated from the sewage sludge and the end of the composting process were more tolerant to copper, with a lethal dose of approximately 900 mg L(-1) for about 50 % of the strains. The genera that showed the highest multiresistant profile and increased tolerance to the metals tested were Pseudomonas and Ochrobactrum. The results of this study may contribute to future research and the revision and regulation of legislation on sewage sludge reuse in soils. PMID:25944755

  8. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water.

    PubMed

    Du, Zhaolin; Zheng, Tong; Wang, Peng; Hao, Linlin; Wang, Yanxia

    2016-02-01

    A low-cost and recyclable biosorbent derived from jute fiber was developed for high efficient adsorption of Pb(II), Cd(II) and Cu(II) from water. The jute fiber was rapidly pretreated and grafted with metal binding groups (COOH) under microwave heating (MH). The adsorption behavior of carboxyl-modified jute fiber under MH treatment (CMJFMH) toward heavy metal ions followed Langmuir isotherm model (R(2)>0.99) with remarkably high adsorption capacity (157.21, 88.98 and 43.98mg/g for Pb(II), Cd(II) and Cu(II), respectively). Also, CMJFMH showed fast removal ability for heavy metals in a highly significant correlation with pseudo second-order kinetics model. Besides, CMJFMH can be easily regenerated with EDTA-2Na solution and reused up to at least four times with equivalent high adsorption capacity. Overall, cheap and abundant production, rapid and facile preparation, fast and efficient adsorption of heavy metals and high regeneration ability can make the CMJFMH a preferred biosorbent for heavy metal removal from water. PMID:26630582

  9. A metallic fuel cycle concept from spent oxide fuel to metallic fuel

    SciTech Connect

    Fujita, Reiko; Kawashima, Masatoshi; Yamaoka, Mitsuaki; Arie, Kazuo; Koyama, Tadafumi

    2007-07-01

    A Metallic fuel cycle concept for Self-Consistent Nuclear Energy System (SCNES) has been proposed in a companion papers. The ultimate goal of the SCNES is to realize sustainable energy supply without endangering the environment and humans. For future transition period from LWR era to SCNES era, a new metallic fuel recycle concept from LWR spent fuel has been proposed in this paper. Combining the technology for electro-reduction of oxide fuels and zirconium recovery by electrorefining in molten salts in the nuclear recycling schemes, the amount of radioactive waste reduced in a proposed metallic fuel cycle concept. If the recovery ratio of zirconium metal from the spent zirconium waste is 95%, the cost estimation in zirconium recycle to the metallic fuel materials has been estimated to be less than 1/25. (authors)

  10. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  11. Municipal solid waste recycling issues

    SciTech Connect

    Lave, L.B.; Hendrickson, C.T.; Conway-Schempf, N.M.; McMichael, F.C.

    1999-10-01

    Municipal solid waste (MSW) recycling targets have been set nationally and in many states. Unfortunately, the definitions of recycling, rates of recycling, and the appropriate components of MSW vary. MSW recycling has been found to be costly for most municipalities compared to landfill disposal. MSW recycling policy should be determined by the cost to the community and to society more generally. In particular, recycling is a good policy only if environmental impacts and the resources used to collect, sort, and recycle a material are less than the environmental impacts and resources needed to provide equivalent virgin material plus the resources needed to dispose of the postconsumer material safely. From a review of the existing economic experience with recycling and an analysis of the environmental benefits (including estimation of external social costs), the authors find that, for most communities, curbside recycling is only justifiable for some postconsumer waste, such as aluminum and other metals. They argue that alternatives to curbside recycling collection should be explored, including product takeback for products with a toxic content (such as batteries) or product redesign to permit more effective product remanufacture.

  12. A γ-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis[C][W

    PubMed Central

    Paulose, Bibin; Chhikara, Sudesh; Coomey, Joshua; Jung, Ha-il; Vatamaniuk, Olena; Dhankher, Om Parkash

    2013-01-01

    Plants detoxify toxic metals through a GSH-dependent pathway. GSH homeostasis is maintained by the γ-glutamyl cycle, which involves GSH synthesis and degradation and the recycling of component amino acids. The enzyme γ-glutamyl cyclotransferase (GGCT) is involved in Glu recycling, but the gene(s) encoding GGCT has not been identified in plants. Here, we report that an Arabidopsis thaliana protein with a cation transport regulator-like domain, hereafter referred to as GGCT2;1, functions as γ-glutamyl cyclotransferase. Heterologous expression of GGCT2;1 in Saccharomyces cerevisiae produced phenotypes that were consistent with decreased GSH content attributable to either GSH degradation or the diversion of γ-glutamyl peptides to produce 5-oxoproline (5-OP). 5-OP levels were further increased by the addition of arsenite and GSH to the medium, indicating that GGCT2;1 participates in the cellular response to arsenic (As) via GSH degradation. Recombinant GGCT2;1 converted both GSH and γ-glutamyl Ala to 5-OP in vitro. GGCT2;1 transcripts were upregulated in As-treated Arabidopsis, and ggct2;1 knockout mutants were more tolerant to As and cadmium than the wild type. Overexpression of GGCT2;1 in Arabidopsis resulted in the accumulation of 5-OP. Under As toxicity, the overexpression lines showed minimal changes in de novo Glu synthesis, while the ggct2;1 mutant increased nitrogen assimilation by severalfold, resulting in a very low As/N ratio in tissue. Thus, our results suggest that GGCT2;1 ensures sufficient GSH turnover during abiotic stress by recycling Glu. PMID:24214398

  13. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  14. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-10-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE`s gaseous diffusion plants.

  15. Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey.

    PubMed

    Korkmaz Görür, F; Keser, R; Akçay, N; Dizman, S

    2012-04-01

    Marine fish is an important daily diet item for the people of Turkey. The Black Sea Region of Turkey was contaminated by the Chernobyl accident in 1986, a comprehensive study was planned and carried out to determine the radioactivity levels ((226)Ra, (232)Th, (40)K and (137)Cs) and heavy metal concentrations (As, Mn, Fe, Cr, Ni, Zn, Cu and Pb) in four of the most common fish species: Engraulis encrasicholus (anchovy), Oncorhynchus mykiss (trout), Trachurus mediterranus (bluefin) and Merlangius merlangus (whiting) samples collected from eight stations in the Black Sea Region of Turkey during 2010. The dose due to consumption of fish by the public was estimated and it was shown that this dose imposes no threat to human healthy. The concentrations of heavy metal are below the daily intake recommended by the international organizations. PMID:22225706

  16. Polybrominated diphenyl ethers (PBDEs) and heavy metals in road dusts from a plastic waste recycling area in north China: implications for human health.

    PubMed

    Tang, Zhenwu; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2016-01-01

    Road dusts were collected from an area where intense mechanical recycling of plastic wastes occurs in Wen'an, north China. These dusts were investigated for polybrominated diphenyl ethers (PBDEs) and heavy metals contamination to assess the health risk related to these components. Decabromodiphenyl ether (BDE-209) and Σ21PBDE concentrations in these dusts ranged from 2.67 to 10,424 ng g(-1) and from 3.23 to 10,640 ng g(-1), respectively. These PBDE concentrations were comparable to those observed in road dust from e-waste recycling areas but were 1-2 orders of magnitude higher than concentrations in outdoor or road dusts from other areas. This indicates that road dusts in the study area have high levels of PBDE pollution. BDE-209 was the predominant congener, accounting for 86.3% of the total PBDE content in dusts. Thus, commercial deca-BDE products were the dominant source. The average concentrations of As, Cd, Cr, Cu, Hg, Pb, Sb, and Zn in these same dust samples were 10.1, 0.495, 112, 54.7, 0.150, 71.8, 10.6, and 186 mg kg(-1), respectively. The geoaccumulation index suggests that road dusts in this area are moderately to heavily polluted with Cd, Hg, and Sb. This study shows that plastic waste processing is a major source of toxic pollutants in road dusts in this area. Although the health risk from exposure to dust PBDEs was low, levels of some heavy metals in this dust exceeded acceptable risk levels for children and are of great concern. PMID:26330321

  17. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni. PMID:25601613

  18. Experiments on rehabilitation of radioactive metallic waste (RMW) of reactor stainless steels of Siberian chemical plant

    NASA Astrophysics Data System (ADS)

    Kolpakov, G. N.; Zakusilov, V. V.; Demyanenko, N. V.; Mishin, A. S.

    2016-06-01

    Stainless steel pipes, used to cool a reactor plant, have a high cost, and after taking a reactor out of service they must be buried together with other radioactive waste. Therefore, the relevant problem is the rinse of pipes from contamination, followed by returning to operation.

  19. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  20. Textile recycling

    SciTech Connect

    Jablonowski, E. ); Carlton, J.

    1995-01-01

    The most common household textiles include clothing, linens, draperies, carpets, shoes, handbags, and rugs. Old clothing, of course, is the most readily reused and/or recycled residentially generated textile category. State and/or local mandates to recycle a percentage of the waste stream are providing the impetus to add new materials to existing collection programs. Concurrently, the textile industry is aggressively trying to increase its throughput by seeking new sources of material to meet increased world demand for product. As experienced with drop-off programs for traditional materials, a majority of residents will not recycle materials unless the collection programs are convenient, i.e., curbside collection. The tonnage of marketable textiles currently being landfilled provide evidence of this. It is the authors' contention that if textile recycling is made convenient and accessible to every household in a municipality or region, then the waste stream disposed may be reduced in a similar fashion as when traditional recyclables are included in curbside programs.

  1. Feasibility of re-melting NORM-contaminated scrap metal

    SciTech Connect

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  2. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  3. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. PMID:26025429

  4. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  5. Recycling policy in the european union

    NASA Astrophysics Data System (ADS)

    Gaballah, I.; Kanari, N.

    2001-11-01

    Recycling in the European Union (EU) has benefited from R&D efforts and strict environmental regulations of the EU’s members. Thanks to the adoption of sustainable development policies by the EU’s European Institutions, economic incentives are expected to further strengthen the recycling industry. Moreover, the historical accumulation of non-ferrous metals in Europe will likely enhance secondary metal production. Also contributing to EU recycling is mining in East European countries and the resulting industrial waste. The rate of growth of the recycling industry is expected to approach double digits for at least this decade.

  6. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry

  7. Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(II)-Porphyrin Metal-Organic Framework (MOF) at RT.

    PubMed

    Deenadayalan, M S; Sharma, Nayuesh; Verma, Praveen Kumar; Nagaraja, C M

    2016-06-01

    A microporous Ni(II)-porphyrin metal-organic framework (MOF), [Ni3(Ni-HTCPP)2(μ2-H2O)2(H2O)4(DMF)2]·2DMF, (MOF1) (where, Ni-HTCPP = 5,10,15,20-tetrakis(4-benzoate) porphyrinato-Ni(II)) has been synthesized by the solvothermal route. Single-crystal X-ray diffraction study of 1 reveals a 2D network structure constituted by Ni3 cluster and [Ni-HTCPP](3-) metalloligand having (3, 6)-connected binodal net with {4(3)}2{4(6)·6(6)·8(3)}-kgd net topology. The 2D layers are further stacked together through π-π interactions between the porphyrin linkers to generate a 3D supramolecular framework which houses 1D channels with dimension of ∼5.0 × 9.0 Å(2) running along the crystallographic a-axis. Visible-light-assisted photocatalytic investigation of MOF1 for heterogeneous reduction of various nitroaromatics at room temperature resulted in the corresponding amines with high yield and selectivity. On the contrary, the Ni(II)-centered porphyrin tetracarboxylic acid [Ni-H4TCPP] metalloligand does not show the photocatalytic activity under similar conditions. The remarkably high catalytic performance of MOF1 over [Ni-H4TCPP] metalloligand has been attributed due to cooperative catalysis involving the Ni-centered porphyrin secendary building units (SBUs) and the Ni3-oxo node. Further, the MOF1 was recycled and reused up to three cycles without any significant loss of catalytic activity as well as structural rigidity. To the best of our knowledge, MOF1 represents the first example of MOF based on 3d metal ion exhibiting visible-light-assisted reduction of nitroaromatics under mild conditions without the assistance of noble metal cocatalysts. PMID:27191376

  8. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  9. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Beneš, O.; Konings, R. J. M.

    2015-10-01

    The chemistry of cesium and iodine is of main importance to quantify the radioactive release in case of a nuclear reactor accident, or sabotage involving irradiated nuclear materials. We studied the interaction of CsI with different metallic fission products such as Mo and Ru. These elements can be released from nuclear fuel when exposed to oxidising conditions, as in the case of contact of overheated nuclear fuel with air (e.g. in a spent fuel cask sabotage, uncovering of a spent fuel pond, or air ingress accidents). Experiments were performed by vaporizing mixtures of the compounds in air, and analysing the produced aerosols in view of a possible gas-gas and gas-aerosol reactions between the compounds. These results were compared with the gaseous species predicted by thermochemical equilibrium calculations and experimental equilibrium vaporization tests using Knudsen Effusion Mass Spectrometry.

  10. Derivation of guidelines for uranium residual radioactive material in soil at the B&T Metals Company site, Columbus, Ohio

    SciTech Connect

    Kamboj, S.; Nimmagadda, Mm.; Yu, C

    1996-01-01

    Guidelines for uranium residual radioactive material in soil were derived for the B&T Metals Company site in Columbus, Ohio. This site has been identified for remedial action under the US Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 n-mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluations indicate that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total uranium (uranium-234, uranium-235, and uranium-238) at the B&T Metals site did not exceed 1, I 00 pCi/g for Scenario A (industrial worker, current use) or 300 pCi/g for Scenario B (resident with municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 880 pCi/g for Scenario C (resident with an on-site water well, a plausible but unlikely future use).

  11. [Use of metal salts for radioprotection of plants during radioactive pollution of the territory].

    PubMed

    Gudkov, I N; Kitsno, V E; Grisiuk, S N; Tkachenko, G M; Ivanova, E A; Saenko, K V; Gural'chuk, Zh Z

    1999-01-01

    The applying salts of some metals to radionuclide contaminated soddy-podzolic soil in the zone of Chernobyl nuclear power station or the spraying of plants by its solutions are showing the radioprotective effect (salts of iron, zinc, cobalt and manganese) and decreasing the uptake of 90Sr and 137Cs through roots (salts of zinc, manganese, boron, lithium, cobalt and copper). PMID:10366969

  12. Water mutagenic potential assessment on a semiarid aquatic ecosystem under influence of heavy metals and natural radioactivity using micronuclei test.

    PubMed

    Chaves, Luiz Cláudio Cardozo; Navoni, Julio Alejandro; de Morais Ferreira, Douglisnilson; Batistuzzo de Medeiros, Silvia; Ferreira da Costa, Thomas; Petta, Reinaldo Antônio; Souza do Amaral, Viviane

    2016-04-01

    The contamination of water bodies by heavy metals and ionizing radiation is a critical environmental issue, which can affect water quality and, thus, human health. This study aimed to evaluate the water quality of the Boqueirão de Parelhas Dam in the Brazilian semiarid region. A 1-year study (2013-2014) was performed through the assessment of physicochemical parameters, heavy metal content, and radioactivity along with the mutagenicity potential of water using micronuclei test in Orechromis niloticus (in vivo) and the cytokinesis-block micronucleus (CBMN) assay in human lymphocytes (in vitro). A deterioration of water organoleptics characteristics by the presence of high levels of sulfate and total solids was observed. High concentrations of aluminum, nickel, silver, and lead along with the alpha particle content were higher than the limits suggested by the World Health Organization and Brazilian legislation for drinking water. An increase in the frequency of micronuclei and nuclear abnormalities was observed in both experimental models. The results obtained confirmed the mutagenic potential present in water samples. This study highlights that geogenic agents affect water quality becoming a human health concern to be taken into account due to the relevance that this water reservoir has in the region. PMID:26732704

  13. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  14. Melting, Solidification, Remelting, and Separation of Glass and Metal

    SciTech Connect

    M. A. Ebadian; R. C.Xin; Z. F. Dong

    1998-11-02

    Several kinds of radioactive waste exist in mixed forms at DOE sites throughout the United States. These Wastes consist of radionuclides and some usefil bme materials. One purpose of waste treatment technologies is to vitrify the radionuclides into durable, stable glass-like materials to reduce the size of the waste form requiring final disposal. The other purpose is to recycle and reuse most of the usefi.d base materials. Thus, improved techniques for the separation of molten metal and glass are essential. Several high temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. These processes include the plasma hearth process, which is being developed by Science Applications International Corporation (SAIC), and the arc melter vitrification process, which is being developed at Idaho National Engineering Laboratory. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to suppoti these process. A separation method is also needed for the radioactively contaminated scrap metal recycling processe; in order to obtain highly refined recycled metals.

  15. Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide.

    PubMed

    Shen, Wen-Jun; Zhuo, Ying; Chai, Ya-Qin; Yuan, Ruo

    2016-09-15

    In this work, a sensitive electrochemical aptasensor was designed for lipopolysaccharide (LPS) detection based on Ce-based metal-organic frameworks (Ce-MOFs) and Zn(2+) dependent DNAzyme-assisted recycling as dual signal amplifiers. Herein, Ce-MOFs were decorated with gold nanoparticles (AuNPs) to obtain AuNPs/Ce-MOFs, and the resultant AuNPs/Ce-MOFs not only acted as nanocarriers to capture -SH terminated hairpin probes 2 (HP2) for acquiring HP2/AuNPs/Ce-MOFs signal probes, but also as catalysts to catalyze the oxidation of ascorbic acid (AA). In the presence of target LPS, report DNA was released from the prepared duplex DNA and then hybridized with hairpin probes 1 (HP1, which were immobilized on the electrode). With the help of Zn(2+), report DNA could act as Zn(2+) dependent DNAzyme to cleave HP1 circularly. Then a large amount of capture probes were produced on the electrode to combine with HP2/AuNPs/Ce-MOFs signal probes. When the detection solution contained electrochemical substrate of AA, AuNPs/Ce-MOFs could oxide AA to obtain enhanced signal. Under the optimized conditions, this proposed aptasensor for LPS exhibited a low detection limit of 3.3 fg/mL with a wide linear range from 10fg/mL to 100ng/mL. PMID:27132003

  16. Minerals yearbook, 1992: Materials recycling. Annual report

    SciTech Connect

    Tanner, A.O.

    1992-01-01

    A large variety of materials are recycled by different sectors of our society. The materials recycling that is mainly addressed in this writing is from waste that is generated after manufacturing and use. Included is recycling that is generally more obvious to the public: the collection, reprocessing, and remanufacture of materials into new products from post-consumer UBC's, scrap metal, glass containers, paper goods, increasingly plastics, as well as rubber tires and other used goods.

  17. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  18. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  19. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China.

    PubMed

    Haribala; Hu, Bitao; Wang, Chengguo; Gerilemandahu; Xu, Xiao; Zhang, Shuai; Bao, Shanhu; Li, Yuhong

    2016-08-01

    Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45μSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient. PMID:27107776

  20. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect

    Spangenberger, Jeff; Jody, Sam

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  1. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  2. Sustainability and the Recycling of Words

    ERIC Educational Resources Information Center

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  3. Marshall Space Flight Center solid waste characterization and recycling improvement study: General office and laboratory waste, scrap metal, office and flight surplus

    NASA Astrophysics Data System (ADS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-04-01

    The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.

  4. Marshall Space Flight Center solid waste characterization and recycling improvement study: General office and laboratory waste, scrap metal, office and flight surplus

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.

  5. Design and calibration of a two-camera (visible to near-infrared and short-wave infrared) hyperspectral acquisition system for the characterization of metallic alloys from the recycling industry

    NASA Astrophysics Data System (ADS)

    Barnabé, Pierre; Dislaire, Godefroid; Leroy, Sophie; Pirard, Eric

    2015-11-01

    The conception of a prototype combining two hyperspectral cameras, one ranging from visible to near-infrared and the other covering short-wave infrared, is presented. The prototype aims at the characterization of millimeter-sized metallic alloys particles, originating from end-of-life vehicles and waste electrical and electronic equipment recycling. This paper is meant to serve as a support for a similar project by presenting difficulties encountered and available solutions. The calibration steps necessary to obtain quality reflectance data are also described. Classification results obtained on 100 metallic fragments dataset are finally presented.

  6. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. PMID:25391553

  7. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting Project," (7) Used Motor Oil Recycling," (8) "Unwrapping…

  8. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  9. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  10. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM 2.5 at an electronic waste recycling site in southeast China

    NASA Astrophysics Data System (ADS)

    Deng, W. J.; Louie, P. K. K.; Liu, W. K.; Bi, X. H.; Fu, J. M.; Wong, M. H.

    Twenty-nine air samples of total suspended particles (TSP, particles less than 30-60 μm) and thirty samples of particles with aerodynamic diameter smaller than 2.5 μm (PM 2.5) were collected at Guiyu, an electronic waste (e-waste) recycling site in southeast China from 16 August 2004 to 17 September 2004. The results showed that mass concentrations contained in TSP and PM 2.5 were 124±44.1 and 62.12±20.5 μg m -3, respectively. The total sum of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) associated with TSP and PM 2.5 ranged from 40.0 to 347 and 22.7 to 263 ng m -3, respectively. Five-ring and six-ring PAHs accounted for 73% of total PAHs. The average concentration of benzo(a) pyrene was 2-6 times higher than in other Asian cities. Concentrations of Cr, Cu and Zn in PM 2.5 of Guiyu were 4-33 times higher than in other Asian countries. In general, there were significant correlations between concentrations of individual contaminants in TSP with PM 2.5 (i.e. PAHs, Cd, Cr, Cu, Pb, Zn, Mn except Ni and As). The high concentrations of both PAHs and heavy metals in air of Guiyu may impose a serious environmental and health concern. Cytotoxicity of the extract of TSP and PM 2.5 of ten 24 h samples collected against human promonocytic leukemia cell line U937 (ATCC 1593.2) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assay. The results showed that under the same concentrations of extract, PM 2.5 cytotoxicity was 2-4 times higher than TSP.

  11. Slag-based materials for toxic metal and radioactive waste stabilization

    SciTech Connect

    Langton, C.A.

    1989-01-01

    The salt solution produced at the Defense Waste Processing Facility (DWPF) is a low-level hazardous waste and has both corrosive and metal toxicity characteristics. A wasteform was designed to stabilize this solution. The objectives were: to eliminate the hazardous characteristics of the waste; and to minimize the release of potential contaminants, such as NO{sub 3}{sup {minus}}, so that drinking water standards would be maintained for groundwater at the perimeter of the disposal site. The ability to produce the wasteform in high volumes and emplace it in an engineered landfill was also necessary for treating and disposing of the large amount of waste. EP toxicity and TCLP testing was conducted to determine whether various saltstone mixes qualified as nonhazardous according to EPA guidelines. Impact of the design landfill on the groundwater was modeled by numeric methods. Data from laboratory leaching studies, large-scale saltstone lysimeter experiments, and disposal site characterization studies were used in the performance assessment. 9 refs., 3 figs., 3 tabs.

  12. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  13. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  14. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  15. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  16. Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea.

    PubMed

    Otansev, Pelin; Taşkın, Halim; Başsarı, Asiye; Varinlioğlu, Ahmet

    2016-07-01

    In this study, the natural and anthropogenic radioactivity levels in the sediment samples collected from the Marmara Sea in Turkey were determined. The average activity concentrations (range) of (226)Ra, (238)U, (232)Th, (40)K and (137)Cs were found to be 23.8 (13.8-34.2) Bq kg(-1), 18.8 (6.4-25.9) Bq kg(-1), 23.02 (6.3-31.1) Bq kg(-1), 558.6 (378.8-693.6) Bq kg(-1) and 9.14 (4.8-16.3) Bq kg(-1), respectively. Our results showed that the average activity concentrations of (226)Ra, (238)U and (232)Th in the sediment samples were within the acceptable limits; whereas the average activity concentration of (40)K in the sediment samples was higher than the worldwide average concentration. The average radium equivalent activity, the average absorbed dose rate and the average external hazard index were calculated as 100.01 Bq kg(-1), 48.32 nGy h(-1) and 0.27, respectively. The average gross alpha and beta activity in the seawater samples were found to be 0.042 Bq L(-1) and 13.402 Bq L(-1), respectively. The gross alpha and beta activity concentrations increased with water depth in the same stations. The average heavy metal concentrations (range) in the sediment samples were 114.6 (21.6-201.7) μg g(-1) for Cr, 568.2 (190.8-1625.1) μg g(-1) for Mn, 39.3 (4.9-83.4) μg g(-1) for Cu, 85.5 (11.0-171.8) μg g(-1) for Zn, 32.9 (9.1-73.1) μg g(-1) for Pb and 49.1 (6.8-103.0) μg g(-1) for Ni. S5 station was heavily polluted by Cr, Cu, Ni and Pb. The results showed that heavy metal enrichment in sediments of the Marmara Sea was widespread. PMID:27060635

  17. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    SciTech Connect

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  18. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  19. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.

  20. Decontaimination of radioactive metals

    SciTech Connect

    Snyder, T.S.; Gass, W.R.; Worcester, S.A.; Ayers, L.J.

    1992-10-20

    This patent describes a method of extracting technetium and actinide radiocontaminants from radiocontaminated nickel comprising the steps: fabricating a nickel electrode contaminated with technetium and actinides; and then anodically dissolving the electrode contaminated with technetium and actinides in a oxidizing acid electrolyte solution to produce a solution containing actinide ions and at least 30 grams/liter of nickel and to oxidize the technetium to produce pertechnetate anions; and then removing pertechnetate anions and actinides by counter-current solvent extraction with a barren solution containing TOPO, D[sub 2]EHPA or mixtures thereof dissolved in an organic solvent, to produce a decontaminated, nickel containing raffinate, and a contaminated, loaded solvent stream; and then stripping the technetium values from the contaminated, loaded solvent stream with hydrochloric acid; passing the decontaminated, nickel containing raffinate through an absorbent for organic solvent; and then electrowinning the raffinate in an electrolysis cell with acidic electrolyte to remove residual actinides present, and to recover cathodic nickel.

  1. Dust recycling technology in Kimitsu Works

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Ibaraki, Tetsuharu

    Dust recycling technology by the rotary hearth furnace has been applied at Nippon Steel‧s Kimitsu Works since 2000. The dust and sludge with iron oxide and carbon are agglomerated into shaped articles and the iron oxide is reduced in a high temperature atmosphere. Zinc and other impurities in the dust and sludge are expelled and exhausted into off gas. The DRI pellets made from the dust and sludge have 70% metallization and are strong enough for being recycled to the blast furnaces. No.1 plant, which was constructed in May 2000 and has an agglomeration method of pelletizing, recycles mainly dry dusts. No.2 plant, which was constructed in December 2002 and has an agglomeration method of extrusion, recycles mainly sludge. The combination of the two plants is a solution for recycling various kinds of dusts and sludge emitted in a large scale steel works as Kimitsu Works

  2. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  3. Aluminum recycling in the United States in 2000

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2006-01-01

    As one of a series of reports on metals recycling, this report discusses the flow of aluminum from production through its uses with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2000. This materials flow study includes a description of aluminum supply and demand factors for the United States to illustrate the extent of aluminum recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of natural resources in a manner that is compatible with sound environmental practices. In 2000, the old scrap recycling efficiency for aluminum was estimated to be 42 percent. Almost 60 percent of the aluminum that was recycled in 2000 came from new scrap, and the recycling rate was estimated to be 36 percent. The principal source of old scrap was recycled aluminum beverage cans.

  4. Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations

    SciTech Connect

    Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

    1987-02-01

    One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl/sub 2/ at 850/sup 0/C. The solvent CaCl/sub 2/ from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl/sub 2/ and incorporating solvent recycle into the batch PuO/sub 2/ reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production.

  5. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  6. Recycle Used Oil on America Recycles Day.

    ERIC Educational Resources Information Center

    White, Boyd W.

    2000-01-01

    Explains that motor oils can be reused and recycled. Educates students about environmental hazards and oil management and includes classroom activities. Addresses the National Science Education Standards. (YDS)

  7. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  8. Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals.

    PubMed

    Castellote, Marta; Andrade, Carmen; Alonso, Cruz

    2002-05-15

    Because the service lives of nuclear power plants are limited to a certain number of years, the need for the management of quite a large volume of radioactive contaminated concrete arises, which, in most cases, was not taken into account when the capacities of the low and medium activity repositories were designed. Therefore, the decontamination of these structures would be of great interest in order to declassify the wastes as radioactive and manage them as conventional ones. This research studies the reliability of the application of electrical fields to decontaminate radioactive contaminated concrete. Three series of decontamination experiments have been carried out, using Cs+, Sr2-, Co2+, and Fe3+ ions added during casting and that have penetrated from the outside, testing carbonated and uncarbonated matrixes, and using laboratory devices as well as the homemade device for in situ application named "honeycomb device". As a result, the application of electrical fields to concrete-contaminated structures has been developed as a new technique to extract radioactive ionic species from concrete. This method of decontamination has been patented by ENRESA (Spanish Company for the Management of Radioactive Wastes) in association with the IETcc. PMID:12038838

  9. Recycling overview in Sweden

    SciTech Connect

    Not Available

    1989-07-01

    This article discusses the recycling programs currently in use in Sweden. Recycling of newspapers, batteries, plastics are all mentioned in this report by the Swedish Association of Public Cleansing and Solid Waste Management.

  10. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  11. Economic analysis of recycling contaminated concrete

    SciTech Connect

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  12. Metal Surface Decontamination by the PFC Solution

    SciTech Connect

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi; Chong-Hun Jung; Won-Zin Oh

    2006-07-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the test results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)

  13. Recycling and the automobile

    SciTech Connect

    Holt, D.J.

    1993-10-01

    This article examines the current status of automobile recycling and contains a summary of a survey which points out the major drivers and their impacts on automotive recycling. The topics of the article include computerized dismantling, polyurethane, sheet molding compound, polyester, thermoplastic polyester, recycling salvaged parts, vinyl and automotive shredder residue.

  14. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  15. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  16. Impacts of EV battery production and recycling

    SciTech Connect

    Gaines, L.; Singh, M.

    1996-06-01

    Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

  17. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2001-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, in the water, and in the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium from extraction through its uses with particular emphasis on recycling. In 1998, the recycling rate for magnesium was estimated to be 33 percent?almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from diecasting operations. The principal source of old scrap was recycled aluminum beverage cans.

  18. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2002-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, the water, and the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium in the United States from extraction through its uses with particular emphasis on recycling. In 1998, the recycling efficiency for magnesium was estimated to be 33 percent--almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from die-casting operations. The principal source of old scrap was recycled aluminum beverage cans.

  19. New approaches for MOX multi-recycling

    SciTech Connect

    Gain, T.; Bouvier, E.; Grosman, R.; Senentz, G.H.; Lelievre, F.; Bailly, F.; Brueziere, J.; Murray, P.

    2013-07-01

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the used assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.

  20. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  1. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  2. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Recyclable automobiles. (Latest citations from Engineered Materials Abstracts). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  4. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Vanadium recycling for fusion reactors

    SciTech Connect

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  6. "Final Report for Grant No. DE-FG02-97ER62492 "Engineering Deinococcus radiodurans for Metal Remediation in Radioactive Mixed Waste Sites"

    SciTech Connect

    Michael J. Daly, Ph.D.

    2005-03-17

    The groundwater and sediments of numerous U. S. Department of Energy (DOE) field sites are contaminated with mixtures of heavy metals (e.g., Hg, Cr, Pd) and radionuclides (e.g., U, Tc), as well as the fuel hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX); chlorinated hydrocarbons, such as trichloroethylene (TCE); and polychlorinated biphenyls (PCBs). The remediation of such mixed wastes constitutes an immediate and complex waste management challenge for DOE, particularly in light of the costliness and limited efficacy of current physical and chemical strategies for treating mixed wastes. In situ bioremediation via natural microbial processes (e.g., metal reduction) remains a potent, potentially cost-effective approach to the reductive immobilization or detoxification of environmental contaminants. Seventy million cubic meters of soil and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans. Our recent isolation and characterization of D. radiodurans from a variety of DOE environments, including highly radioactive sediments beneath one of the leaking tanks (SX-108) at the Hanford Site in south-central Washington state, underscores the potential for this species to survive in such extreme environments. Research aimed at developing D. radiodurans for metal remediation in radioactive waste sites was started by this group in September 1997 with support from DOE NABIR grant DE-FG02-97ER62492. Our grant was renewed for the period 2000-2003, which includes work on the thermophilic radiation resistant bacterium Deinococcus geothermalis. Work funded by the existing grant contributed to 18 papers in the period 1997-2004 on the fundamental biology of D. radiodurans and its design for bioremediation of radioactive waste environments. Our progress since September

  7. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.

    1994-12-31

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP`s off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described.

  8. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  10. Design and calibration of a two-camera (VNIR and SWIR) hyperspectral acquisition system for the characterization of metallic alloys from the recycling industry

    NASA Astrophysics Data System (ADS)

    Barnabé, Pierre; Dislaire, Godefroid; Leroy, Sophie; Pirard, Eric

    2015-04-01

    This paper presents the considerations taken during the conception of a prototype combining two hyperspectral cameras (VNIR and SWIR), dedicated to the characterization of metallic alloys fine-sized particles, coming from end-of-life vehicles and electric and electronic equipment wastes, as well as the calibration steps necessary to obtain quality reflectance data. Classification results obtained on a data-set of 100 metallic fragments, previously characterized with XRF technology, are also presented.

  11. Potential GTCC LLW sealed radiation source recycle initiatives

    SciTech Connect

    Fischer, D

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

  12. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. PMID:27337434

  13. Resource Recovery. Redefining the 3 Rs. Reduce...Reuse...Recycle. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Discusses the problems of waste disposal, recycling, and resource recovery. Includes information on the social and cultural impact, the three classes of resource recovery (reuse, direct recycling, and indirect recycling), and specific products (paper, glass, plastics, metals, and so on). Includes a student quiz and possible outcomes. (JOW)

  14. Tritium recycling (processing) facility design

    SciTech Connect

    Metzler, J.; Le, T.

    1995-10-01

    The maintenance of a nuclear weapons capability requires the periodic replacement of tritium contained in each of the weapons in the nuclear weapons stockpile because the radioactive decay of tritium reduces its quantity by about 5.5 percent per year. The Tritium Recycling Plant (TRP) performs the activities necessary to recover, purify, and recycle tritium returned from the field. Tritium is contained in vessels called reservoirs. The TRP also has the capability to conduct environmental tests to ensure the reliability and quality of the reservoirs. Currently, the U.S. has no source of new tritium. The proposed new TRP is an option the U.S. Department of Energy (U.S. DOE) is considering that could be collocated with the new Tritium Supply Plant if it is built at Oak Ridge, Pantex, Nevada Test Site, or Idaho National Engineering Laboratory. It will comply with applicable environment, safety and health, (ES&H) regulations and orders. If the new Tritium Supply Plant is built at the Savannah River Site, the existing TRP would be upgraded, as necessary. 3 refs., 4 figs.

  15. AIRCRAFT INDUSTRY WASTEWATER RECYCLING

    EPA Science Inventory

    The feasibility of recycling certain categories of water used in the manufacture of airplanes was demonstrated. Water in four categories was continuously recycled in 380-liter (100-gallon) treatment plants; chemical process rinse water, dye-penetrant crack-detection rinse water, ...

  16. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  17. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  18. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  19. Reuse, Reduce, Recycle.

    ERIC Educational Resources Information Center

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  20. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  1. The development of recycle-friendly automotive aluminum alloys

    NASA Astrophysics Data System (ADS)

    Das, Subodh K.; Green, J. A. S.; Kaufman, J. Gilbert

    2007-11-01

    The continuing growth of aluminum alloy usage in transportation applications, notably passenger automobiles and minivans, and the demonstrated economic benefits of recycling aluminum-rich vehicles increase the need to seriously consider the desirability of designing recycling-friendly alloys. This article focuses on that aspect of the recycling process for passenger vehicles. The goals are to illustrate the opportunities afforded by identifying and taking full advantage of potential metal streams in guiding the development of new alloys that use those streams. In speculating on several possible aluminum recovery practices and systems that might be used in recycling passenger vehicles, likely compositions are identified and preliminary assessments of their usefulness for direct recycling are made. Specific compositions for possible new recycle-friendly alloys are suggested. In addition, recommendations on how the aluminum enterprise, including industry, academia, and government, can work together to achieve the aggressive but important goals described here are discussed.

  2. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains a minimum of 160 citations and includes a subject term index and title list.)

  3. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  4. Advances in plastic recycling. Volume 1: Recycling of polyurethanes

    SciTech Connect

    Frisch, K.C.; Klempner, D.; Prentice, G.

    1999-07-01

    ``Recycling of Polyurethanes'', the first volume in the Advances in Plastics Recycling series, is focused on the physical and chemical recycling of polyurethanes, with attention given to energy conversion. A compilation of the present ongoing studies on recycling of urethane and, in general, isocyanate-based polymers, the focus is on thermosetting urethane polymers. Contents include: Recycling of Polyurethane Plastics in the European Automotive Industry; Present State of Polyurethane Recycling in Europe; Processing Overview of Bonded Polyurethane Foam; Mechanical Recycling of Polyurethane Scrap; Ecostream{trademark}--A Technology Beyond Recycling; Recycling of Flexible polyurethane Foam; General purpose Adhesives Prepared from Chemically Recycled Waste Rigid Polyurethane Foams; and Utilization of Isocyanate Binders in Recycling of Scrap Automotive Headliners.

  5. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    SciTech Connect

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  6. Integrated Recycling Test Fuel Fabrication

    SciTech Connect

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  7. Recycling: General studies. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

  10. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  11. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  12. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  13. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  14. Method and apparatus for reclaiming metal values from electric arc furnace flue dust and sludge and rendering residual solids recyclable or non-hazardous

    SciTech Connect

    Bishop, N.G.; Bottinelli, N.E.; Kotraba, N.L.

    1988-07-19

    This patent describes an apparatus for treating dust and sludge contaminated with heavy metals and heavy metal oxides, comprising: waste material storage means; a mixer; means communicating with the waste material storage means and the mixer for introducing the waste material, solid carbonaceous material, and an organic binder to the mixer; a pelletizing device; means for introducing material from the mixer into the pelletizing device; pelletizer discharge means; an inclined rotary reduction smelter vessel having a charging and pouring opening in one end thereof; means for introducing pellets from the pelletizer discharge means to the rotary reduction smelter vessel; retractable burner means for heating the interior of the smelter vessel; means for rotating the smelter vessel about its inclined axis; and means for tilting the smelter vessel about a horizontal axis.

  15. Recovering recyclable materials from shredder residue

    NASA Astrophysics Data System (ADS)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.

    1994-02-01

    Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.

  16. Recovery of recyclable materials from shredder residue

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

    1994-01-01

    Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

  17. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    PubMed Central

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  18. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    PubMed

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  19. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  20. Assessment of natural and artificial radioactivity levels and radiation hazards and their relation to heavy metals in the industrial area of Port Said city, Egypt.

    PubMed

    Attia, T E; Shendi, E H; Shehata, M A

    2015-02-01

    A detailed gamma ray spectrometry survey was carried out to make an action in environmental impact assessment of urbanization and industrialization on Port Said city, Egypt. The concentrations of the measured radioelements U-238, Th-232 in ppm, and K-40 %, in addition to the total counts of three selected randomly dumping sites (A, B, and C) were mapped. The concentration maps represent a base line for the radioactivity in the study area in order to detect any future radioactive contamination. These concentrations are ranging between 0.2 and 21 ppm for U-238 and 0.01 to 13.4 ppm for Th-232 as well as 0.15 to 3.8 % for K-40, whereas the total count values range from 8.7 to 123.6 uR. Moreover, the dose rate was mapped using the same spectrometer and survey parameters in order to assess the radiological effect of these radioelements. The dose rate values range from 0.12 to 1.61 mSv/year. Eighteen soil samples were collected from the sites with high radioelement concentrations and dose rates to determine the activity concentrations of Ra-226, Th-232, and K-40 using HPGe spectrometer. The activity concentrations of Ra-226, Th-232, and K-40 in the measured samples range from 18.03 to 398.66 Bq kg(-1), 5.28 to 75.7 Bq kg(-1), and 3,237.88 to 583.12 Bq kg(-1), respectively. In addition to analyze heavy metal for two high reading samples (a 1 and a 10) which give concentrations of Cd and Zn elements (a 1 40 ppm and a 10 42 ppm) and (a 1 0.90 ppm and a 10 0.97 ppm), respectively, that are in the range of phosphate fertilizer products that suggested a dumped man-made waste in site A. All indicate that the measured values for the soil samples in the two sites of three falls within the world ranges of soil in areas with normal levels of radioactivity, while site A shows a potential radiological risk for human beings, and it is important to carry out dose assessment program with a specifically detailed monitoring program periodically. PMID:25233912

  1. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  2. Impact of San Diego`s mandatory recycling ordinance on meeting the California 50% recycling goal

    SciTech Connect

    Anthony, R.V.; Worrell, W.A.

    1998-12-31

    When AB 939, The Integrated Waste Management Act of 1989, was chaptered into law, the Statewide recycling rate was 12%. The year 1990 was set as the base year. 1995 was a set as a target for the first 25% of the resources to be diverted. The year 2000 is the date for the 50% target. Today the Statewide average is around 30%. In San Diego, one reason landfill tonnage`s are down is that most of the cities have attained 40% diversions and beyond. The County Recycling Plan, initiated by then Supervisor Susan Golding in 1988, called for a 30% diversion of resources from County Landfills. One aspect of this plan was to use landfill fees to pay for trucks and bins. The County granted these to the cities and their contractors to begin the first residential and commercial recyclable materials` collections. The County put a ban on the burial of designated recyclables at County Landfills into effect in 1992. Wasted resources disposed at County Landfills dropped from 2.4 million tons in 1990 to 1.3 million tons in 1993, more than 45%. This program was recognized in 1990, by the California Department of Conservation, Division of Recycling as the best in the State, and by the National Recycling Coalition in 1993 as the best in the nation. The public sees recycling as a resource management issue. In some cities, the public has voted to pay for the opportunity to recycle discarded resources. The increased availability of these recovered materials has created thousands of new jobs and businesses. This is a hundred times more jobs than the number of jobs supported by the landfilling of these resources. These businesses have been started to provide the collection, processing, transportation, and remanufacturing of products related to the recovered metal, glass, fiber, plastic and organics. Most people who recycle think they can diminish the impact on the planet by putting back some of what they have used.

  3. Recycling and reuse: Are they the answer

    SciTech Connect

    Not Available

    1994-11-01

    At a time when reuse is widely recognized as a partial solution to the US mounting waste problem, it comes as no surprise that drinking water suppliers are giving thought to reclaiming residuals. This reuse may occur within the treatment plant, for example, by recovering alum from sludge or recycling waste streams, or outside the plant, where endeavors such as controlled land application return components of sludge to the soil. By nature, sludges and other residuals likely contain contaminants that have been removed from the water--e.g., Giardia and Cryptosporidium, trihalomethane precursors, and heavy metals. Recycling waste flows has the potential to disturb the treatment process or to affect the quality of finished water. Proper treatment and monitoring of waste streams can render them acceptable for recycling.

  4. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  5. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  6. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-12-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  7. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-01-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  8. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Zheng, Xiangbin; Reponen, Tiina; Chen, Aimin; Huo, Xia

    2016-03-01

    This study was to investigate the levels of heavy metals in PM2.5 and in blood, the prevalence of respiratory symptoms and asthma, and the related factors to them. Lead and cadmium in both PM2.5 and blood were significant higher in Guiyu (exposed area) than Haojiang (reference area) (p < 0.05), however, no significant difference was found for chromium and manganese in PM2.5 and in blood. The prevalence of cough, phlegm, dyspnea, and wheeze of children was higher in Guiyu compared to Haojiang (p < 0.05). No significant difference was found for the prevalence of asthma in children between Guiyu and Haojiang. Living in Guiyu was positively associated with blood lead (B = 0.196, p < 0.001), blood cadmium (B = 0.148, p < 0.05) and cough (OR, 2.37; 95% CI, 1.30-4.32; p < 0.01). Blood lead>5 μg/dL was significantly associated with asthma (OR, 9.50; 95% CI, 1.16-77.49). Higher blood chromium and blood manganese were associated with more cough and wheeze, respectively. Our data suggest that living in e-waste exposed area may lead to increased levels of heavy metals, and accelerated prevalence of respiratory symptoms and asthma. PMID:26803791

  9. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water. PMID:16406295

  10. Electrolytic recycling of a carbonate salt in a process with a dissolution of spent nuclear fuel in a strong alkaline carbonate media

    SciTech Connect

    Kwang-Wook Kim; In-Tae Kim; Seong-Min Kim; Yeon-Hwa Kim; Eil-Hee Lee; Kwang-Yong Jee

    2007-07-01

    A removal of only uranium from spent nuclear fuel with the concepts of a high proliferation-resistance and a minimal generation of waste is helpful for a spent fuel management in view of a volume reduction of the high level radioactive waste generated from the spent fuel treatment. That can be accomplished by a process using a selective oxidative dissolution of the spent fuel in a carbonate solution of high alkalinity. In this work, an electrolytic method for a de-carbonation and a recovery of CO{sub 2} for recycling the used carbonate solution contaminated with some impurity metal ions generated in such a process with a concept of zero-release of waste solution was studied. A carbonate solution generated from such a system was confirmed to be completely recycled within the system, while the impurity ions being separated from the carbonate solution. (authors)

  11. Recycling of electric-arc-furnace dust

    SciTech Connect

    Sresty, G.C.

    1990-05-01

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  12. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    PubMed

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. PMID:25920778

  13. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  14. Deep Recycling of Carbon

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.

    2012-12-01

    While most of the subducted H2O is recycled at shallow and subarc depths, carbon is less readily mobilized and susceptive to complex redox processes involving CO2 in solids, fluids and melts, elemental carbon, Fe- and Si- carbides, and methane. Here I review the various ways of recycling carbon during subduction and present a spectrum of possible reaction products in the mantle. Metamorphic reactions liberate <20% of the subducted CO2 to the subarc region (Connolly 2005, EPSL). Larger amounts might be mobilized through (sediment) melting. Although the wet pelite solidus is only shifted by 30-50 oC (at 3 GPa) with carbonates, the latter remain stable with melts that are saturated in a H2O+CO2-fluid. Complete dissolution of carbonates requires temperatures above any predicted subduction geotherm. Carbonated sediments yield CO2-rich phonolites to 5 GPa but carbonatites at higher pressures. The silicate melts become increasingly potassic with pressure, while the alkali-rich carbonatites have their highest K/Na at 8 GPa, slightly decreasing to 13 GPa and become sodic with the disappearance of residual cpx at ~16 GPa. What may happen when carbonated pelite derived melts migrate into the mantle is illustrated in Central Italy: in this case, it can be experimentally demonstrated that hybridization of ultrapotassic phonolitic melts with ~2 wt% H2O and ~6 wt% CO2 in the mantle results in the primitive parents of the ultrapotassic kamafugite suites which have ~43 wt% SiO2. Hence, despite a crustal isotopic signature of C, O, and Sr in these rocks, the CO2 of the Italian magmatism does not stem from assimilation in the crust but from melts derived from subducted marine carbonates mixed with pelagic clays and then reacted in the mantle. The migration of CO2-bearing fluids and melts into the mantle may lead to a redox-shock. Where high liquid/mantle ratios prevail, carbonatites rest in their oxidized form and may only freeze in relatively cold lithospheric keels where they form

  15. Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in northern peninsular Malaysia.

    PubMed

    Muhammad, Bashir G; Jaafar, Mohammad Suhaimi; Abdul Rahman, Azhar; Ingawa, Farouk Abdulrasheed

    2012-08-01

    Soil serves as a major reservoir for contaminants as it posseses an ability to bind various chemicals together. To safeguard the members of the public from an unwanted exposure, studies were conducted on the sediments and soil from water bodies that form the major sources of domestic water supply in northern peninsular Malaysia for their trace element concentration levels. Neutron Activation Analysis, using Nigeria Research Reactor-1 (NIRR-1) located at the Centre for Energy Research and Training, Zaria, Nigeria was employed as the analytical tool. The elements identified in major quantities include Na, K, and Fe while As, Br, Cr, U, Th, Eu, Cs, Co, La, Sm, Yb, Sc, Zn, Rb, Ba, Lu, Hf, Ta, and Sb were also identified in trace quantities. Gamma spectroscopy was also employed to analyze some soil samples from the same area. The results indicated safe levels in terms of the radium equivalent activity, external hazard index as well as the mean external exposure dose rates from the soil. The overall screening of the domestic water sources with relatively high heavy metals concentration values in sediments and high activity concentration values in soil is strongly recommended as their accumulation overtime as a consequence of leaching into the water may be of health concern to the members of the public. PMID:21901308

  16. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steels

    SciTech Connect

    Chernicoff, W.P.; Chou, K.C.; Gao, H.; MacDonald, C.J.; Molecke, M.A.; Pal, U.B.; Van Den, J.; Woolley, D.

    1999-06-30

    Downsizing and decommissioning of nuclear operations is increasing the stockpile of Radioactive Scrap Metal (RSM). It is estimated that the annual generation of RSM for the entire DOE complex will be approximately 120,000 metric tons beginning in the year 2000. Out of which contaminated stainless steel with high chromium and nickel contents constitutes 25-30 wt. % [1]. Disposal of this material not only represents resource and value lost, but also necessitates long term monitoring for environmental compliance. The latter results in additional recurring expense. Therefore, it is desirable to be able to decontaminate the radioactive stainless steel to a satisfactory level that can be recycled or at least used for fabrication of containers for RSM disposal instead of using virgin stainless steel. Decontamination of radioactive stainless steel using the ESR process is investigated. In this paper the relevant slag properties, capacity to incorporate the radioactive contaminant, slag-metal partition coefficient, volatilization rate, volatile species, viscosity, electrical conductivity and surface tension are presented as a function of temperature. The impact of these properties on the ESR decontamination process is discussed.

  17. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  18. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  19. Cobalt recycling in the United States in 1998

    USGS Publications Warehouse

    Shedd, Kim B.

    2002-01-01

    This report is one of a series of reports on metals recycling. It defines and quantifies the 1998 flow of cobalt-bearing materials in the United States, from imports and stock releases through consumption and disposition, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of cobalt?s many and diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 1998, an estimated 32 percent of U.S. cobalt supply was derived from scrap. The ratio of cobalt consumed from new scrap to that from old scrap was estimated to be 50:50. Of all the cobalt in old scrap available for recycling, an estimated 68 percent was either consumed in the United States or exported to be recycled.

  20. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that pays for itself'' through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  1. Solid waste recycling activities at the Kansas City Plant

    SciTech Connect

    Brown, D.L.; Huyett, J.D.; Westlake, N.M.

    1992-02-01

    The DCP has as Proactive Solid Waste Recycling Program. Historical activities have consisted of extensive Precious and Scarp Metal Recovery through dedicated efforts of the Excess and Reclamation department. This is the only organization at the KCP that ``pays for itself`` through utilization of manpower to recover reclaimable material from the teardown of scrap parts, equipment, and machinery. The KCP also initiated an expansion of this program through increased efforts to recovery recyclable materials from normal plant trash. Efforts to date have resulted in the establishment of waste paper and cafeteria grease recycling programs. Another initiative nearing fruition is to recycle waste styrofoam. Activities are also underway to establish future programs to recycle spent carbon, other plastic resins, glass and cardboard.

  2. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  3. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  4. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  5. Process design and solvent recycle for the supercritical Fischer-Tropsch synthesis

    SciTech Connect

    Wensheng Linghu; Xiaohong Li; Kenji Asami; Kaoru Fujimoto

    2006-02-01

    A recycle reactor system for supercritical Fischer-Tropsch synthesis was successfully designed and tested. The new reactor system has these characteristics: (1) integration of supercritical Fischer-Tropsch reactions, natural separation of produced wax from liquid phase, and recycle of the solvent and (2) natural recycle of solvent driven by self-gravity. A 20% Co/SiO{sub 2} catalyst and n-hexane were used as a catalyst and supercritical fluid, respectively. The results show that the average CO conversion at the steady state was 45% with recycle and 58% without recycle. The lumped hydrocarbon products distribution did not have any obvious difference between with and without recycle operation; however, {alpha}-olefin content of products with recycle was lower than that without recycle. The XRD result indicates that most of the reduced cobalt remains in the metallic state during the Fischer-Tropsch reactions for both cases. 22 refs., 3 figs., 1 tab.

  6. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  7. NRC's 13th Annual Congress highlights the mainstream of recycling

    SciTech Connect

    White, K.M.

    1994-12-01

    The theme of the National Recycling Coalition's (NRC, Washington, DC) recent 13th Annual Congress and Exposition in Portland, OR, was ''Jump into the Mainstream: Recycle,'' which is an action organizers of the show set out to prove is currently happening across this country. Indeed, this year's congress was designed to demonstrate how far recycling has jumped into the mainstream of American life, and show attendees what it will take to make recycling succeed in the future. Lending testament to recycling's increasing visibility, the most dominant topic at this year's show was the creation of national recycling policy. Through this agenda, and other programs that surfaced at the congress, NRC is hoping to move closer to its goal of making recycling as mainstream as taking out the garbage. NRC's board of directors unanimously voted to adopt a draft advocacy message that promotes recycling initiatives at the national level, but rejected a proposed demand-side initiative that would have established post-consumer-content recycling rates for certain materials, with product-specific, minimum-content standards as an alternative method of compliance. The initiative had called for glass, metal, paper, plastic, and wood used in primary and secondary packaging to achieve a 50% post-consumer recycling rate by the year 2000. As an alternative method of compliance, individual companies could meet the following post-consumer, minimum-content standards for products: glass, metal, paper, plastic, and wood packaging: 40% by 2000; newsprint and tissue paper: 50% by 2000; and printing and writing papers: 25% by 2000.

  8. Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report

    SciTech Connect

    Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

    1995-03-01

    Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

  9. A survey of monitoring and assay systems for release of metals from radiation controlled areas at LANL.

    SciTech Connect

    Gruetzmacher, K. M.; MacArthur, D. W.

    2002-01-01

    At Los Alamos National Laboratory (LANL), a recent effort in waste minimization has focused on scrap metal from radiological controlled areas (RCAs). In particular, scrap metal from RCAs needs to be dispositioned in a reasonable and cost effective manner. Recycling of DOE scrap metals from RCAs is currently under a self-imposed moratorium. Since recycling is not available and reuse is difficult, often metal waste from RCAs, which could otherwise be recycled, is disposed of as low-level waste. Estimates at LANL put the cost of low-level waste disposal at $550 to $4000 per cubic meter, depending on the type of waste and the disposal site. If the waste is mixed, the cost for treatment and disposal can be as high as $50,000 per cubic meter. Disposal of scrap metal as low-level waste uses up valuable space in the low-level waste disposal areas and requires transportation to the disposal site under Department of Transportation (DOT) regulations for low-level waste. In contrast, disposal as non-radioactive waste costs as little as $2 per cubic meter. While recycling is unavailable, disposing of the metal at an industrial waste site could be the best solution for this waste stream. A Green Is Clean (GIC) type verification program needs to be in place to provide the greatest assurance that the waste does not contain DOE added radioactivity. This paper is a review of available and emerging radiation monitoring and assay systems that could be used for scrap metal as part of the LANL GIC program.

  10. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation

    NASA Astrophysics Data System (ADS)

    Georgiev, P.; Groudev, S.; Spasova, I.; Nikolova, M.

    2012-04-01

    Cinnamon soils from southeastern Bulgaria are heavily polluted with radionuclides (uranium, radium) and toxic heavy metals (copper and lead) due to the winds transportation of fine particles from flotation dumps to the soil surface. As a result of this, the polluted soils are characterized by a slightly alkaline pH (7.82) and positive net neutralization potential (+136.8 kg CaCO3/t). A fresh sample of cinnamon soil was subjected to remediation under laboratory conditions in four lysimeters each containing 70 kg of soil. The preliminary study revealed that most of the pollutants were presented as carbonate, reducible and oxidisable mobility fractions, i.e. pollutants ions were specifically adsorbed by carbonate and ferric iron minerals or were capsulated in sulfides. The applied soil treatment was connected with leaching of the pollutants located mainly in the horizon A, their transportation through the soil profile as soluble forms, and their precipitation in the rich-in-clay subhorizon B3. The efficiency of leaching depended on the activity of the indigenous microflora and on the chemical processes connected with solubilization of pollutants and formation of stable complexes with some organic compounds, chloride and hydrocarbonate ions. These processes were considerably enhanced by adding hay to the horizon A and irrigating the soil with water solutions containing the above-mentioned ions and some nutrients. After 18 months of treatment, each of the soil profiles in the different lysimeters was divided into five sections reflecting the different soil layers. The soil in these sections was subjected to a detailed chemical analysis and the data obtained were compared with the relevant data obtained before the start of the experiment. The best leaching of pollutants from horizon A was measured in the variants where soil mulching was applied. For example, the best leaching of lead (54.5 %) was found in the variant combining this technique and irrigation with solutions

  11. Who owns the recyclables

    SciTech Connect

    Parker, B.

    1994-05-01

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental question in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials

  12. Scrap tire recycling

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1997-03-01

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  13. World War II and the birth of modern recycling

    SciTech Connect

    Woods, R.; Peterson, C.

    1995-04-01

    The concept of reusing waste materials had been around for many decades before the war, but few municipalities collected recyclables in an organized, controlled fashion. Though today`s thriving recycling industry seems brand new, its roots run far deeper to a time when both industry and citizens were called upon to help save the world. With so many goods rationed during World War II, hundreds of collectors would buy scrap metal and textiles and resell them back to mills.

  14. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  15. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  16. Recycling of lead solder dross, Generated from PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter

    2011-08-01

    The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.

  17. Closed loop recycling of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  18. Waste printed circuit board recycling techniques and product utilization.

    PubMed

    Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. PMID:25285997

  19. Advanced technologies for decomtamination and conversion of scrap metal

    SciTech Connect

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  20. Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122

    SciTech Connect

    Murray, P.; Bailly, F.; Bouvier, E.; Gain, T.; Lelievre, F.; Senentz, G.H.; Collins, E.

    2012-07-01

    are assessed where current US inventory is treated; Pu recycled in LWR MOX fuels, and used MOX fuels themselves are treated in a continuous partitioning-transmutation mode (case 2a) or until the whole current UNF inventory (64,000 MT in 2010) has been treated followed by disposal of the MOX UNF to a geologic repository (case 2b). In the recycling scenario, two cases (2a and 2b) are considered. Benefits achieved are compared with the once through scenario (case 1) where UNF in the current US inventory are disposed directly to a geologic repository. For each scenario, the heat load and radioactivity of the high activity wastes disposed to a geologic repository are calculated and the savings in natural resources quantified, and compared with the once-through fuel cycle. Assuming an initial pilot recycling facility with a capacity of 800 metric tons a year of heavy metal begins operation in 2030, ∼8 metric tons per year of Pu is recovered from the LEUOx UNF inventory, and is used to produce fresh MOX fuels. At a later time, additional treatment and recycling capacities are assumed to begin operation, to accommodate blending and recycling of used MOX Pu, up to 2,400 MT/yr treatment capacity to enable processing UNF slightly faster than the rate of generation. Results of this scenario analysis study show the flexibility of the recycling scenarios so that Pu is managed in a way that avoids accumulating used MOX fuels. If at some future date, the decision is made to dispose of the MOX UNF to a geologic repository (case 2b), the scenario is neutral to final repository heat load in comparison to the direct disposal of all UNF (case 1), while diminishing use of natural uranium, enrichment, UNF accumulation, and the volume of HLW. Further recycling of Pu at the end of the scenario (case 2a) would exhibit further benefits. As expected, Pu-241 and Am-241 are the source of long term HLW heat load and Am-241 and Np-237 are the source of long term radiotoxicity. When advanced

  1. Recycled materials in asphalt pavements, January 1980-June 1991 (citations from the NTIS database). Rept. for Jan 80-Jun 91

    SciTech Connect

    Not Available

    1991-06-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (The bibliography contains 75 citations.) (Also includes title list and subject index.)

  2. Recycling Decisions and Green Design.

    ERIC Educational Resources Information Center

    Lave, Lester B.; And Others

    1994-01-01

    Explores the facts and perceptions regarding recycling, what can be done to make products more environmentally compatible, and how to think about recycling decisions in a more helpful way. (Contains 39 references.) (MDH)

  3. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  4. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  5. RECYCLABILITY INDEX FOR AUTOMOBILES

    EPA Science Inventory

    The project's purpose is to create a rating system for the ecological impacts of vehicles at the end of their life based on recyclability, toxic material content, and ultimate disposal. Each year, 10-11 million vehicles are retired from service in the United States. The vehi...

  6. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  7. Recycling Study Guide.

    ERIC Educational Resources Information Center

    Hallowell, Anne; And Others

    This study guide was designed to help teachers and students understand the problems surrounding solid wastes. It includes an overview of solid waste and recycling, a glossary, suggested activities and a list of resource publications, audiovisual materials and organizations. There are 19 activity suggestions included in this guide designed for use…

  8. The Recycle Team.

    ERIC Educational Resources Information Center

    Scott, Roger; And Others

    This guide provides lessons that enable students to learn how important it is for each of us to take care of the environment by minimizing the problems caused by too much trash. In the 10 lessons included here, students and their families learn how they can be part of the solution by practicing source reduction and by reusing, recycling, and…

  9. System and method for recycling used oil filters

    SciTech Connect

    McCarty, M.W.; Taylor, J.M.; Baillie, L.A.

    1993-08-17

    A system is described for recycling oil filters comprising: (a) means for shredding used oil filters, said filters comprising ferrous metal parts and nonmetal parts, and containing trapped oil, into smaller metal parts and nonmetal parts, and for releasing at least a portion of the trapped oil; (b) means for separating the released oil from the metal parts and nonmetal parts; (c) means for separating the metal parts from the nonmetal parts without incineration using gravitational and magnetic means; (d) means for draining oil from the separated metal parts and nonmetal parts; (e) means for separately recovering the oil, the metal parts, and the nonmetal parts; and (f) means for compacting the separated nonmetal parts. A method is also described for recycling used oil filters using this system.

  10. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  11. Recycling of the #5 polymer.

    PubMed

    Xanthos, Marino

    2012-08-10

    Polypropylene (PP) is a widely used plastic with consumer applications ranging from food packaging to automotive parts, including car battery casings. To differentiate it from other recyclable plastics, it is designated as #5. Here, the factors contributing to PP recycling rates are briefly reviewed. Considerations include collection and separation efficiency, processing chemistry, and market dynamics for the products derived from recyclates. PMID:22879510

  12. Optimization of Thermochemical, Kinetic, and Electrochemical Factors Governing Partitioning of Radionuclides During Melt Decontamination of Radioactively Contaminated Stainless Steel

    SciTech Connect

    VAN DEN AVYLE,JAMES A.; MALGAARD,DAVID; MOLECKE,MARTIN; PAL,UDAY B.; WILLIAMSON,RODNEY L.; ZHIDKOV,VASILY V.

    1999-06-15

    The Research Objectives of this project are to characterize and optimize the use of molten slags to melt decontaminate radioactive stainless steel scrap metal. The major focus is on optimizing the electroslag remelting (ESR) process, a widely used industrial process for stainless steels and other alloys, which can produce high quality ingots directly suitable for forging, rolling, and parts fabrication. It is our goal to have a melting process ready for a DOE D and D demonstration at the end of the third year of EMSP sponsorship, and this technology could be applied to effective stainless steel scrap recycle for internal DOE applications. It also has potential international applications. The technical approach has several elements: (1) characterize the thermodynamics and kinetics of slag/metal/contaminate reactions by models and experiments, (2) determine the capacity of slags for radioactive containment, (3) characterize the minimum levels of residual slags and contaminates in processed metal, and (4) create an experimental and model-based database on achievable levels of decontamination to support recycle applications. Much of the experimental work on this project is necessarily focused on reactions of slags with surrogate compounds which behave similar to radioactive transuranic and actinide species. This work is being conducted at three locations. At Boston University, Prof. Uday Pal's group conducts fundamental studies on electrochemical and thermochemical reactions among slags, metal, and surrogate contaminate compounds. The purpose of this work is to develop a detailed understanding of reactions in slags through small laboratory scale experiments and modeling. At Sandia, this fundamental information is applied to the design of electroslag melting experiments with surrogates to produce and characterize metal ingots. In addition, ESR furnace conditions are characterized, and both thermodynamic and ESR process models are utilized to optimize the process. To

  13. Recycling: General studies. January 1987-November 1991 (Citations from the NTIS Data-Base). Rept. for Jan 87-Nov 91

    SciTech Connect

    Not Available

    1991-10-01

    The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 177 citations with title list and subject index.)

  14. Melt processing of radioactive waste: A technical overview

    SciTech Connect

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  15. Murder with Radioactive Polonium Metal.

    PubMed

    Kato, T A; Wozniak, D E

    2014-07-01

    The physical and biological aspects of polonium-210, one of the most hazardous radioisotopes, are summarized. Although this radioisotope is naturally occurring and rare, it received quite a bit of attention after it was used in the 2006 assassination of former Russian Intelligence member Alexander Litvinenko in London. Recent reports on the suspected murder of Yasser Arafat with polonium-210 are also discussed. PMID:26227029

  16. Automotive recycling in the United States : energy conservation and enviromental benefits.

    SciTech Connect

    Pomykala, J. A; Jody, B. J.; Daniels, E. J.; Spangenberger, J. S.; Energy Systems

    2007-11-01

    The production and use of polymers has been growing and that trend is expected to continue. Likewise, the production of metals from ores is on the rise because of increasing demand. Recycling polymers and residual metals can result in significant energy savings and environmental benefits including a reduction in CO2 emissions. This article describes recycling options for the polymers and metals in end-of-life vehicles.

  17. Automotive recycling in the United States: Energy conservation and environmental benefits

    NASA Astrophysics Data System (ADS)

    Pomykala, J. A.; Jody, B. J.; Daniels, E. J.; Spangenberger, J. S.

    2007-11-01

    The production and use of polymers has been growing and that trend is expected to continue. Likewise, the production of metals from ores is on the rise because of increasing demand. Recycling polymers and residual metals can result in significant energy savings and environmental benefits including a reduction in CO2 emissions. This article describes recycling options for the polymers and metals in end-of-life vehicles.

  18. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  19. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  20. Alternative Approaches to Recycling Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Hannum, William H.

    2007-04-01

    Nuclear power exists, and as the demand for non-fossil electricity generation increases, many more nuclear plants are being planned and built. The result is growing inventories of spent nuclear fuel containing plutonium that -- in principle, at least -- can be used to make nuclear explosives. There are countries and organizations that are believed to want nuclear weapons, posing a knotty proliferation problem that calls for realistic control of nuclear materials. Phasing out nuclear power and sequestering all dangerous materials in guarded storage or in geological formations would not be a realistic approach. Plutonium from commercial spent fuel is very hard to make into a weapon. However, a rogue nation could operate a power plant so as to produce plutonium with weapons-quality isotopics, and then chemically purify it. IAEA safeguards are designed to discourage this, but the only enforcement is referral to the United Nations General Assembly. The traditional reprocessing method, PUREX, produces plutonium that has the chemical purity needed for weapons. However, there are alternative approaches that produce only highly radioactive blends of fissionable materials and fission products. Recycle offers a market for spent nuclear fuel, promoting more rigorous accounting of these materials. Unlike PUREX, the new technologies permit the recycle and consumption of essentially all of the high-hazard transuranics, and will reduce the required isolation time for the waste to less than 500 years. Facilities for recovering recyclable materials from LWR spent fuel will be large and expensive. Only a very few such plants will be needed, leading to appropriate concentration of safeguards measures. Plants for recycling the spent fuel from fast burner reactors can be collocated with the power plants and share the safeguards.

  1. The low-low-level mixed waste regulatory gap: A disposal and recycle impasse

    SciTech Connect

    Logan, S.E.

    1994-12-31

    Small steel mills in the United States receive and melt scrap steel in electric arc furnaces. The off-gas from these furnaces carries dust to the bag house where the dust is trapped and recovered. The EAF (Electric Arc Furnace) dust contains hazardous components lead, cadmium and chromium, causing it to be designated as U.S. EPA hazardous waste K061. The dust also carries about 20% zinc, a valuable byproduct for recovery. The EAF dust is normally either disposed of at a landfill licensed for hazardous wastes, or sent to a High Temperature Metal Recovery (HTMR) facility for recycle processing. During the past few years, there have been a number of incidents in which an industrial gauge source, containing the radioisotope Cs-137, has been inadvertently included in a load of scrap steel charged to an arc furnace. In each incident, the cesium and its encapsulation and holder melted, releasing the cesium into the off-gas system where it became distributed in hundreds of tons of EAF dust in the ducts and in the bag house. The contaminated dust, having both hazardous and radioactive components is a mixed waste. A regulatory gap exists that prevents disposition of this material, through it has only a low-low-level of radioactivity. A risk assessment was conducted for a midwest steel company that experienced a cesium meltdown incident. Most of the stored dust from this incident has an activity level less than the limit for the lowest category of LLW by a factor of 5,800, and some is only slightly above background. The significant pathways calculated include direct exposure to masses of the dust, ingestion of leachate and groundwater at a hazardous waste landfill, and potential releases to air and water during HTMR recycle processing.

  2. Decontamination of metals by melt refining/slagging: First year progress report

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1994-03-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult. The problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technologies for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of pilot scale melting demonstrations (100-500 lbs) to be conducted at selected commercial facilities. This program will identify methods that can be used to recycle stainless steel RSM which will be used to fabricate high and low level waste canisters for the Idaho Waste Immobilization Facility. This report summarizes the results of an extensive literature review and the first year`s progress on slag design, small-scale melt refining of surrogate-containing stainless steel (presently only a three month effort), and pilot-scale preparation of surrogate master ingots.

  3. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  4. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  5. Simulated Radioactivity

    ERIC Educational Resources Information Center

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  6. Concentrating Radioactivity

    ERIC Educational Resources Information Center

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  7. Metals separation using solvent extractants on magnetic microparticles

    SciTech Connect

    Nunez, L.; Pourfarzaneh, M.

    1997-12-31

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed.

  8. Evaluation of HPGe spectrometric devices in monitoring the level of radioactive contamination in metallurgical industry

    NASA Astrophysics Data System (ADS)

    Petrucci, A.; Arnold, D.; Burda, O.; De Felice, P.; Garcia-Toraño, E.; Mejuto, M.; Peyres, V.; Šolc, J.; Vodenik, B.

    2015-10-01

    This paper presents the results of the tests of High Purity Germanium (HPGe) based gamma spectrometers employed for radioactivity control carried out on a daily basis in steel factories. This new application of this type of detector is part of the Joint Research Project (JRP) MetroMETAL supported by the European Metrology Research Programme (EMRP). The final purpose of the project was the improvement and standardisation of the measurement methods and systems for the control of radioactivity of recycled metal scraps at the beginning of the working process and for the certification of the absence of any radioactive contamination above the clearance levels (IAEA-TECDOC-8S5) in final steel products, Clearance levels for radionuclides in solid materials: application of exemption principles). Two prototypes based on HPGe detectors were designed and assembled to suit the needs of steel mills which had been examined previously. The evaluation of the two prototypes, carried out at three steel factories with standard sources of 60Co, 137Cs, 192Ir, 226Ra and 241Am in three different matrices (slag, fume dust and cast steel) and with samples provided on-site by the factories, was successful. The measurements proved the superiority of the prototypes over the scintillation detectors now commonly used regarding energy resolution and multi-nuclide identification capability. The detection limits were assessed and are presented as well.

  9. The development and prospects of the end-of-life vehicle recycling system in Taiwan.

    PubMed

    Chen, Kuan-chung; Huang, Shih-han; Lian, I-wei

    2010-01-01

    Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the "End-of-life vehicle recycling guidelines" under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection-Disposal-Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars. PMID:20382516

  10. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  11. Electroless nickel recycling via electrodialysis

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-04-01

    Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

  12. Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006

    SciTech Connect

    P. R. Fresquez

    2007-02-28

    Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ({sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of {sup 3}H in soils (690 pCi/mL) were detected along the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of {sup 241}Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for {sup 238}Pu and 5 pCi/g dry for {sup 239,240}Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of {sup 3}H in three soil samples and {sup 241}Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 {micro}g/kg dry of aroclor-1254 and 94 {micro}g/kg dry of aroclor-1260. Radionuclide and inorganic element

  13. Understanding recycling behavior in Kentucky: Who recycles and why

    NASA Astrophysics Data System (ADS)

    Morgan, Fred W.; Hughes, Margaret V.

    2006-08-01

    Recycling behavior and the motivations behind recycling are being analyzed in a collaborative study between the Sloan Industry Center for a Sustainable Aluminum Industry, the Center for Aluminum Technology, Secat, and the Gatton College of Business and Economics at the University of Kentucky in Lexington. The goals of this study are to determine why people recycle and to find ways to motivate people to recycle more, using Fayette County, Kentucky, as a sample study. It is hoped that the information gathered through educational and motivational efforts in this county can be used on a larger scale in communities throughout the United States.

  14. Why recycle? A comparison of recycling motivations in four communities

    NASA Astrophysics Data System (ADS)

    Vining, Joanne; Linn, Nancy; Burdge, Rabel J.

    1992-11-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded five factors interpreted as altruism, personal inconvenience, social influences, economic incentives, and household storage. The four communities were shown to be significantly different in multivariate analyses of the five motivational factors. However, attempts to explain these community differences with regression analyses, which predicted the motivational factors with dummy codes for planning stages, a measure of self-reported recycling behavior, and sociodemographic measures were unsatisfactory. Contrary to expectation, the solid waste management planning stages of the cities (curbside pickup, recycling dropoff center, and planning in progress) contributed only very slightly to the prediction of motivational factors for recycling. Community differences were better explained by different underlying motivational structures among the four communities. Altruistic reasons for recycling (e.g., conserving resources) composed the only factor which was similar across the four communities. This factor was also perceived to be the most important reason for recycling by respondents from all four communities. The results of the study supported the notion that convenient, voluntary recycling programs that rely on environmental concern and conscience for motivation are useful approaches to reducing waste.

  15. Magnetic nano-sorbents for fast separation of radioactive waste

    SciTech Connect

    Zhang, Huijin; Kaur, Maninder; Qiang, You

    2013-07-01

    In order to find a cost effective and environmentally benign technology to treat the liquid radioactive waste into a safe and stable form for resource recycling or ultimate disposal, this study investigates the separation of radioactive elements from aqueous systems using magnetic nano-sorbents. Our current study focuses on novel magnetic nano-sorbents by attaching DTPA molecules onto the surface of double coated magnetic nanoparticles (dMNPs), and performed preliminary sorption tests using heavy metal ions as surrogates for radionuclides. The results showed that the sorption of cadmium (Cd) and lead (Pb) onto the dMNP-DTPA conjugates was fast, the equilibrium was reached in 30 min. The calculated sorption capacities were 8.06 mg/g for Cd and 12.09 mg/g for Pb. After sorption, the complex of heavy elements captured by nano-sorbents can be easily manipulated and separated from solution in less than 1 min by applying a small external magnetic field. In addition, the sorption results demonstrate that dMNP-DTPA conjugates have a very strong chelating power in highly diluted Cd and Pb solutions (1-10 μg/L). Therefore, as a simple, fast, and compact process, this separation method has a great potential in the treatment of high level waste with low concentration of transuranic elements compared to tradition nuclear waste treatment. (authors)

  16. Printed-circuit-board manufacturer maximizes recycling opportunities

    SciTech Connect

    Edelstein, P. )

    1993-02-01

    A major New England printed-circuit-board manufacturer has avoided land disposal of several metallic wastes for more than 15 years by recycling them offsite. For example, the company uses ammoniacal etchant to etch copper. Waste generated by this process is used by an offsite recycler to produce copper compounds for pressure-treated lumber and for use as a catalyst. Sodium persulfate and peroxide-sulfuric micro-etchants are used at the facility, generating a crude copper sulfate solution, and copper sulfate also is the basis for the company's electroplating process. Wastes from all of these processes are used by an offsite recycler to produce copper compounds that are sold for use in wood treatment and as mining reagents. Finally, metal hydroxide sludge generated by the company's wastewater treatment system contains substantial amounts of copper, which is sent for refining at a copper smelter.

  17. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  18. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  19. PFC concentration and recycle

    SciTech Connect

    Tom, G.M.; McManus, J.; Knolle, W.; Stoll, I.

    1994-12-31

    The semiconductor industry uses PFC gases such as CF{sub 4} and C{sub 2}F{sub 6} as etchant and cleaning gases during plasma processes. The gases do not fully react within the reactor chamber. The unused gases enter the atmosphere through the process effluent. These gases have long persistence in the atmosphere and absorb infrared radiation. The PFC gases are, therefore, potential global warming gases. A method is described that will recover and recycle PFC gases. The method that the authors have employed to trap and concentrate the PFC gases is based on a dual bed adsorber. The adsorption material is activated carbon.

  20. Recycled rubber roads

    SciTech Connect

    Not Available

    1989-02-01

    The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

  1. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  3. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  4. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-05-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio (w/c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  5. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  6. Decontamination and Recycling of Radioactive Material from Retired Components

    SciTech Connect

    Bushart, S.P.; Wood, C.J.; Bradbury, D.; Elder, G.

    2007-07-01

    This paper describes the development of the EPRI DFDX (Decontamination For Decommissioning, electrochemical ion exchange) process for the chemical decontamination of reactor coolant systems and components. A US patent has been awarded and a plant, conforming to exacting nuclear industry standards, has been constructed to demonstrate the process at a number of sites. The plant has completed successful demonstration tests at Studsvik in Sweden and Dounreay in Scotland. The R and D phase for this technology is now complete, and the plant is now in commercial operation in the United Kingdom. (authors)

  7. 40 CFR 261.6 - Requirements for recyclable materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to either the Federal manifesting requirements of 40 CFR Part 262, to the universal waste management... disposal (40 CFR part 266, subpart C); (ii) Hazardous wastes burned (as defined in section 266.100(a)) in... (40 CFR part 266, subpart H); (iii) Recyclable materials from which precious metals are reclaimed...

  8. EVALUATION OF USFILTER MEMBRALOX SILVERBACK MODEL 900 AKALINE CLEANER RECYCLING SYSTEM

    EPA Science Inventory

    The Membralox Silverback Model 900 (Silverback Unit) is a microfiltration system for recycling used alkaline cleaning solutions (cleaners). Alkaline cleaning is performed on metal parts at different times during the manufacturing process to remove oils, coolants and other metalwo...

  9. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  10. Radioactive wastes

    SciTech Connect

    Devarakonda, M.S.; Hickox, J.A.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

  11. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  12. Current Status and Tasks in Development of Cable Recycling Technology

    NASA Astrophysics Data System (ADS)

    Ezure, Takashi; Goto, Kazuhiko

    This paper shows current status and tasks in development of cable recycling technology and it’s items to be solved. Electric cable recycle system has been activated especially for copper conductor recycle in Japan. Previously removed cable coverings materials were mainly land filled. But landfill capacity is decreased and limited in recent years, at the same time, recycle technology was highly developed. A cable recycle technology has 4 tasks. (1) Applying new high efficiency separation system instead of electrostatic and gravity methods to classify mixed various kind of plastics materials including recently developed ecological material (ex PE, PVC, Rubber), (2) Removing heavy metal, especially lead from PVC material, (3) Treatment of optical glass fiber core, which has possibility going to be harmful micro particles, and (4) Establishment of social recycle system for electric wire and cable. Taking action for these tasks shall be proceeded under environmentally sensitive technology together with local government, user, manufacturer, and waste-disposal company on cost performance basis.

  13. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1997-12-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 264 citations and includes a subject term index and title list.)

  15. TOMATO CLEANING AND WATER RECYCLE

    EPA Science Inventory

    A full-scale dump tank water recycle system was developed and demonstrated. A false bottom-ejector transport system removed soil from the water. Clarified water was either recycled back to the dump tank or discharged to the sewer. A vacuum belt was developed for dewatering the mu...

  16. Garbage project on recycling behavior

    SciTech Connect

    McGuire, R.H.; Hughes, W.W.; Rathje, W.L.

    1982-02-01

    Results are presented of a study undertaken to determine the factors which are most effective in motivating different socio-economic groups to change their recycling behaviors and participate in recycling programs. Four types of data were collected and analyzed in Tucson: (1) purchase data from local recyclers, (2) traditional interview-survey data on recycling behavior, (3) long-term and short-term household refuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are tuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are the same across census tracts with significantly different socio-economic characteristics. Further, analysis of interview and garbage data matched by household reaffirm that what people say about recycling and how they dispose of recyclable materials are two different things. Thus, interview reports of newspaper recycling correlate with higher income informants, but their interview reports do not correlate with what is thrown into their garbage cans. Money is concluded to be the most powerful incentive toward recycling.

  17. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  18. Information Sources on Rural Recycling.

    ERIC Educational Resources Information Center

    Notess, Greg; Kuske, Jodee

    1992-01-01

    Provides resources for rural recycling operations with the principle aim of assisting rural government officials, planners, residents, and educators to encourage recycling as an integral part of an individual's or community's solid waste management plan. Sources range from bibliographies, directories, and government documents to case studies. (49…

  19. American Art of Conspicuous Recycling.

    ERIC Educational Resources Information Center

    Gomez, Aurelia

    1999-01-01

    Characterizes the use of recycling "junk" as a means for creating art by exploring various recycling traditions that are present in the United States. Demonstrates to students that "junk" can be fashioned into beautiful works of art. Offers four works of art and provides discussion questions and project ideas for each artwork. (CMK)

  20. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19 activities…

  1. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  2. Training Governments to Buy Recycled.

    ERIC Educational Resources Information Center

    Keller, Richard

    1995-01-01

    Describes a program developed by the Northeast Maryland Waste Disposal Authority to teach government buyers how to buy recycled materials. The program consists of a hands-on training seminar and a manual that offers step-by-step instructions for setting up a buy-recycled purchasing program. (LZ)

  3. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  4. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  5. Naturally Occurring Radioactive Materials (NORM)

    SciTech Connect

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  6. Is recycling worth the trouble

    SciTech Connect

    Boltz, C.M.

    1995-03-01

    A panel of waste industry experts met recently at a Washington, DC, conference to discuss and debate the costs, benefits, and economics of recycling solid waste. The nearly unanimous conclusion from some of the speakers--that recycling, as it is implemented today, has costs that far outweigh its benefits--is evidence of a growing backlash among solid waste officials against a recycling movement they feel has been grossly over-inflated by environmental groups as a solution to a non-existent problem known as the garbage crisis. The public should not place such a strong emphasis on recycling as a cure-all for environmental problems, according to the panel of four waste management policy analysts at The State of Garbage'' session held in mid-January at the 1995 US/Canadian Federation Solid Waste Management Conference. Moreover, some panel members said, recycling should take place only if it makes economic sense.

  7. Recycled materials in asphalt pavements. October 1973-November 1989 (Citations from the NTIS data base). Report for October 1973-November 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the recycling of asphalt-pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains 110 citations fully indexed and including a title list.)

  8. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)

    SciTech Connect

    Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H.

    2010-05-15

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  11. Measurement of natural radioactive nuclide concentrations in various metal ores used as industrial raw materials in Japan and estimation of dose received by workers handling them.

    PubMed

    Iwaoka, Kazuki; Tagami, Keiko; Yonehara, Hidenori

    2009-11-01

    Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of (238)U and (232)Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of (226)Ra, (228)Ra, and (40)K were determined by gamma-ray spectrum. We found the concentrations of (238)U series, (232)Th series, and (40)K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 x 10(-2)Sv y(-1), which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 x 10(-4)Sv y(-1), which was lower than intervention exemption levels (1.0 x 10(-3)Sv y(-1)) given in International Commission of Radiological Protection (ICRP) Publication 82. PMID:19703725

  12. Soil recycling paves the way for treating brownfields

    SciTech Connect

    Gladdys, R.

    1996-02-01

    A soil recycling and stabilization process allows once-contaminated soil to be incorporated into paving materials. Contaminated soils is more widespread than often realized, with one of the more common sources being petroleum products such as fuel oil and gasoline. Until recently, the conventional solution was to have the material excavated, separated from remining soil and trucked to a hazardous waste landfill. This article describes an alternative approach under the following topics: move the solution, not the problem; on site recycling; heavy metals stabilization; economics.

  13. State-of-the-art report on low-level radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Kibbey, A. H.; Godbee, H. W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have similar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. The treatment of radioactive medical and bioresearch wastes is described. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly.

  14. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  15. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  16. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation

  17. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  18. RECOVERY OF METALS USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  19. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  20. Recycling and Life Cycle Issues

    SciTech Connect

    Das, Sujit

    2010-01-01

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  1. 76 FR 56490 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... Country from application No., docket No. Duratek Services, Inc., August Class A radioactive Radionuclide For recycle and Canada. 17, 2011, August 18, 2011, waste in the form reallocation: beneficial...

  2. Proposed construction and operation of a Low Level Radioactive Waste Metal Melting Facility affecting TVA Tract No. XWBR-688IE, Watts Bar Reservoir for Scientific Ecology Group, Inc. , Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-06-01

    The Scientific Ecology Group, Incorporated (SEG), a wholly owned subsidiary of Westinghouse Electric Corporation, has proposed to construct and operate a Low Level Radioactive Waste (LLRW) Metal Melting Facility (MMF) on TVA Tract No. XWBR-688IE, Parcel 1, Roane County, Tennessee. The MMF would be located on the grounds of SEG's existing facility, on a recently filled area adjacent to SEG's existing process and incinerator buildings. The purpose of this Environmental Assessment (EA) is to determine the environmental impacts associated with approving, denying, or adopting reasonable alternatives to a request by SEG for TVA's approval of the MMF. This EA will assess these impacts to determine if the proposed development, with identified mitigation, could reasonably proceed without significant adverse effects on the environment, based on the information provided by SEG.

  3. Enterohepatic recycling of estrogen and its relevance with female fertility.

    PubMed

    Sher, A; Rahman, M A

    2000-10-01

    Enterohepatic recycling of estrogen after oral administration of 1 mg non-radioactive estriol was studied in fourteen women selected as the control subjects and ten infertile women in whom the infertility was appearing to be of endocrine origin. The extent of enterohepatic recycling of estriol (E3) during the early follicular phase of menstrual cycle was assessed by monitoring during 48 h the urinary excretion of its two major metabolites i.e; estriol 16 alpha-glucuronide (E3-16 alpha-CG) and estriol-3 glucuronide (E3-3-G). The change in urinary level of E3-3-G with respect to E3-16 alpha-G was considered to reflect the extent of enterohepatic recycling of estriol. Lower values of urinary output of both metabolites in the infertile women as compared with the control subjects and the urinary excretion profile of both metabolites during 48 h after estriol ingestion reveal that the reduced extent of enterohepatic recycling could possibly be one of the factors which contribute towards the incidence of infertility in women. PMID:11059833

  4. Radioactive Waste Management

    NASA Astrophysics Data System (ADS)

    Baisden, P. A.; Atkins-Duffin, C. E.

    Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

  5. Progress reported in PET recycling

    SciTech Connect

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  6. New approaches to recycling tires

    SciTech Connect

    Spencer, R.

    1991-03-01

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  7. Operating A Recycling Program: A Citizen's Guide.

    ERIC Educational Resources Information Center

    Mulligan, Kevin; Powell, Jerry

    Presented are recycling program alternatives, procedures for handling and marketing recyclable materials, and suggestions for financing and publicizing a recycling operation. This publication offers a general overview of the possibilities and potential pitfalls of recycling efforts, thereby serving as a catalyst and guide for organizations wishing…

  8. You're a "What"? Recycling Coordinator

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  9. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  10. An evaluation of concrete recycling and reuse practices

    SciTech Connect

    Nakhjiri, K.S.; MacKinney, J.

    1997-02-01

    Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material should be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.

  11. Corporate America urges consumers to buy recycled

    SciTech Connect

    Rabasca, L.

    1995-04-01

    The National Recycling Coalition`s (NRC, Washington, DC) buy Recycled Business Alliance (BRBA), the US EPA`s WasteWi$e program, and the US Conference of Mayors` (Washington, DC) buy-recycled program are just a few of the national groups that have formed since 1990 to encourage the purchase of products made from recyclables. Indeed, corporate America and governments are buying recycled. More than $1 billion worth of recycled-content products have been bought by McDonald`s Corp. since 1990. The nearly 950 members of the BRBA reported spending $9.1 billion on recycled-content products in 1993. State governments reported in 1993 that they had spent more than $600 million on recycled products. Several states, cities, and counties have adopted buy-recycled executive orders. Now, many of these companies and government officials are urging consumers to use their own purchasing power to spur markets for recyclables.

  12. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  13. Vanadium recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  14. Cathode refunctionalization as a lithium ion battery recycling alternative

    NASA Astrophysics Data System (ADS)

    Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle

    2014-06-01

    An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.

  15. Auto shredder residue recycling: Mechanical separation and pyrolysis.

    PubMed

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier; Morselli, Luciano

    2012-05-01

    Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible. PMID:22119051

  16. Recycling`s regulatory burden: A case study -- the Modesto Tire Disposal Project

    SciTech Connect

    Tomeo, E.

    1995-12-31

    The Modesto Tire Disposal Project is a 14 MW electric power generating facility in Westley, CA fueled on whole waste tires. A by-product of the incineration process is a zinc-rich fly ash which contains low concentrations of lead and cadmium. The project`s preferred disposition for the fly ash is recycling through reclamation of its valuable metals. Under California regulation, the fly ash is considered a hazardous waste, and its handling and transportation is severely restricted. Federal regulation doe snot impose such restrictions. The fly ash from the project was recycled for years. However, internal regulatory review and subsequent conference with regulators determined that the environmentally sound transportation practices that had been utilized were not regulatorily compliant. As a result of compliance initiatives, the valuable fly ash had to be disposed of in class 1 landfills for the past year. The return to a recycle option remains elusive. This presentation reviews some of the regulatory hurdles and the economic harm done to the project in order to maintain strict compliance with California hazardous waste regulations.

  17. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  18. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  19. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  20. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  1. Refuse recycling and recovery

    SciTech Connect

    Holmes, J.R.

    1981-01-01

    Sanitary landfill of domestic, commercial, and industrial wastes is the predominant method of waste disposal in the United Kingdom. Although there was various waste disposal processes at various stages of design and test, landfill and incineration are still the only reliable methods of waste processing. Methods of recovery and use of refuse are examined in this book together with various separation processes, waste derived fuels, refuse composting, and glass and metal recovery. (Refs. 39).

  2. Recycling concepts for thermoplastic composites

    SciTech Connect

    Lochem, J.H. van; Henriksen, C.; Lund, H.H.

    1995-10-01

    Thermoplastic short fiber composite materials are increasingly being used as insulating materials in electricity distribution. Economically they possess good opportunities for material recycling and reuse due to the high virgin price. To investigate the recycling potential of post-consumer components, PPS40%GF and PBT30%GF, representing commonly used insulating materials, have been artificially aged and recycled. To simulate 10 years of service life, injection molded tensile bars have been aged in different environments varying temperature, humidity and pH. After accelerated aging, the aging state has been characterized by tensile and impact strength, viscoelastic behavior (DMTA), molecular weight, crystallinity (DSC) and fracture behavior (SEM). These properties have been compared to virgin material. The aged materials have been recycled by regranulation and compounds with different ratios virgin/aged material and different coupling agents to repair the glass-matrix interface. Injection molded compounds were characterized by short and long term properties. Recompounding PBT30%GF with virgin material and no added coupling agents results in a partial recovery of the fiber-matrix adhesion. Based on the first short-term characterizations PBT30%GF seems not very suitable for reuse in primary applications. PPS40%GF seems more suitable for reuse in primary applications after recycling. Although the short-term mechanical properties of the aged batches do not recover after recycling, the fiber-matrix adhesion improves especially when adding coupling agents. Further long-term testing in creep and humid environments during the remaining part of this project will show whether the improved interface properties make recycled materials valuable for reuse in various industrial applications.

  3. Recycling Of Bomb Produced Cl 36

    NASA Astrophysics Data System (ADS)

    Lazarev, V.; Blinov, A.; Huber, Th.; Kubo, F.; Nolte, E.

    The success of accelerated mass-spectrometry (AMS) has allowed the measuring of very small quantities of radioactive nuclides with the ratio to their stable isotope up to 10-14. With the help of this method the concentration of 36Cl in natural samples can be investigated. The main sources of 36Cl in the atmosphere are a) The natural production in nuclear reactions induced by the interaction of high energy cosmic rays with atmospheric Ar. b) The production by the interaction of high neutron fluxes emitted by the nuclear weapon tests with stable chlorine. c) The production in different reactors with the following release (e.g. Chernobyl accident). The analysis of 36Cl time profile in Greenland showed the fast removal of chlorine from the atmosphere so that nowadays only the natural production of 36Cl is of importance. However the measurement of 36Cl in modern precipitation revealed the significant excess of its concentration over the simulated predictions. The recycling of chlorine as an explanation of the observed discrepancy is ar- gued. The biosphere could take up a part of the fallen down bomb produced 36Cl and releases it into the troposphere in the form of CH3Cl. To check the hypothesis the experiment to collect methyl chloride from the air and to measure 36Cl was set up. The high observed ratio 36 Cl/Cl proves that the chlorine recycling really takes place. Additionally, in order to get more information about the distribution of 36Cl the measurements of its concentration in lakes with long flushing times were performed. With the help of modeling the different sources of 36Cl can be distinguished. The dominant source of 36Cl in many Alpine lakes is chlorine, released during the accident on the Chernobyl nuclear power plant.

  4. Integrated steel producers race the recycling clock

    SciTech Connect

    McManus, G.J.

    1996-01-01

    When classed as waste, the leftover oxides of blast furnaces and oxygen furnaces must go into landfill. That is an expensive option. Assuming there is space and permission for land disposal, this may be only a temporary solution. Finally, there is an economic incentive to replace some amount of scrap with the iron units in waste. The various factors have brought a concerted recycling push. With increased use of galvanized scrap, a growing portion of the waste is zinc coated. Unlike electric furnace dust, the waste from blast furnaces and oxygen furnaces doesn`t have enough zinc to be classed as hazardous. In theory, repeated cycling will concentrate the zinc but there is uncertainty about what actually happens. There are ways to remove zinc from waste, however, favorable economics have tended to require high concentrations of zinc. New processes and conditions could change the economic equation. The ultimate answer to recycling could be a facility specifically designed for converting waste into usable metal.

  5. 50 Simple Things Kids Can Do To Recycle. California Edition.

    ERIC Educational Resources Information Center

    Javna, John

    This book provides 50 recycling ideas for children and features Recycle Rex, the state of California's "spokesdinosaur" for recycling. An introduction contains recycling background information on waste disposal options and reducing, reusing, and recycling. Recycling suggestions are divided into nine sections: (1) "Learn What You Can Recycle"…

  6. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir

    2012-07-01

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  7. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  8. What can Recycling in Thermal Reactors Accomplish?

    SciTech Connect

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  9. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  10. Recycling of polymer waste with fluid catalytic cracking catalysts.

    PubMed

    Ali, Salmiaton; Garforth, Arthur; Fakhru'l-Razi, A

    2006-01-01

    Feedstock recycling of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Fresh and steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as used FCC catalysts (E-Cats) with different levels of metal poisoning. Fresh FCC catalysts gave the highest results of HDPE degradation in terms of yield of volatile hydrocarbon product. Meanwhile, steamed FCC catalysts and used FCC catalysts showed similar but lower yields. Overall, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste. PMID:16760091

  11. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    SciTech Connect

    Tsai, K. F.; Lee, Y. S.; Chao, H. E.

    2003-02-24

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps was carried out by the Institute of Nuclear Energy Research (INER) Taiwan, ROC. The experimental melting process has a pretreatment step that includes a series of cutting and removal of scales, sludge, as well as combustible and volatile materials on/in the steel scraps. After pretreatment the surface of the steel scraps are relatively clean. Then the scraps are melted by a pilot-type induction furnace. This experiment finally produced seven ingots with a total weight of 2,849 kg and 96.8% recovery. All of the surface dose rates are of the background values. The activity concentrations of these ingots are also below the regulatory criteria. Thus, these NORM-bearing steel scraps are ready for recycling. This study has been granted by the regulatory authority.

  12. Advanced technologies for decontamination and conversion of scrap metals

    SciTech Connect

    Muth, T.R.; Moore, J.; Olson, D.; Mishra, B.

    1994-12-31

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.

  13. Autogenous grinding for bath scraps recycling

    SciTech Connect

    Pinoncely, A.; Podda, P.

    1996-10-01

    In the early 80`s, FCB designed an original process for the recycling of bath scraps in Aluminum smelters, using a single stage fully air-swept autogenous mill. Since then, the 9 industrial references confirmed and even exceeded the expectation in terms of dust-free and easy to run operation, high recovery ratio of bath among the metallic scraps, and low maintenance cost. Problems encountered on conventional processes belong to the old days, and new projects tend to give an increasing importance to classification and storage of crushed products, autogenous grinding being already recognized as the most suitable, simple and reliable process route. The present paper describes this original process and draws up the overall performances of ten years of experience.

  14. A process to recycle thin film PV materials

    SciTech Connect

    Goozner, R.E.; Drinkard, W.F.; Long, M.O.; Byrd, C.M.

    1997-12-31

    The wide scale interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules is tempered by the use of toxic metals such as cadmium and selenium in their manufacture. Drinkard Metalox has adapted hydrometallurgical technology to recycle CdTe cells. The process will remove all the Cd and Te while, enabling reuse of substrates. Downstream processing recovers Te as metal from the lixivant, and removal of the lixivant leaves behind a pure Cd product. This process can also be utilized to process CIS cells. The lixivant will remove all the photoactive metals from the substrate of scrap CIS cells. A metallic stream of mixed Cu and Se metal is removed from the leachate by electrochemical methods. Subsequent processing will win purified Se.

  15. PERSPECTIVE: Fireworks and radioactivity

    NASA Astrophysics Data System (ADS)

    Breitenecker, Katharina

    2009-09-01

    both reaction products and unburnt constituents of a pyrotechnic mixture. One major environmental concern in pyrotechnics focuses on the emission of heavy metals. This is the topic discussed in the article by Georg Steinhauser and Andreas Musilek in this issue [4]. A possible interrelationship between respiratory effects and fireworks emissions of barium-rich aerosols was also raised last year [5]. In recent years the potential hazard of naturally occurring radioactive material has become of importance to the scientific community. Naturally occurring radionuclides can be of terrestrial or cosmological origin. Terrestrial radionuclides were present in the presolar cloud that later contracted in order to build our solar system. These radionuclides—mainly heavy metals—and their non-radioactive isotopes are nowadays fixed in the matrix of the Earth's structure. Usually, their percentage is quite small compared to their respective stable isotopes—though there are exceptions like in the case of radium. The problem with environmental pollution due to naturally occurring radioactive material begins when this material is concentrated due to mining and milling, and later further processed [6]. Environmental pollution due to radioactive material goes back as far as the Copper and Iron Ages, when the first mines were erected in order to mine ores (gold, silver, copper, iron, etc), resulting in naturally occurring radioactive material being set free with other dusts into the atmosphere. So where is the link between pyrotechnics and radioactivity? In this article presented by Georg Steinhauser and Andreas Musilek [4], the pyrotechnic ingredients barium nitrate and strontium nitrate are explored with respect to their chemical similarities to radium. The fundamental question, therefore, was whether radium can be processed together with barium and strontium. If so, the production and ignition of these pyrotechnic ingredients could cause atmospheric pollution with radium aerosols

  16. Recycling Expensive Medication: Why Not?

    PubMed Central

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  17. Recycling expensive medication: why not?

    PubMed

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  18. Regulation of naturally occurring radioactive materials in Australia.

    PubMed

    Jeffries, Cameron; Akber, Riaz; Johnston, Andrew; Cassels, Brad

    2011-07-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia. PMID:21515621

  19. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  20. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  1. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented. PMID:25407107

  2. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  3. Nickel recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  4. Issues of natural radioactivity in phosphates

    SciTech Connect

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.

  5. Microbiological treatment of radioactive wastes

    SciTech Connect

    Francis, A.J.

    1992-12-31

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

  6. Process to recycle shredder residue

    DOEpatents

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  7. Polymer recycling: opportunities and limitations.

    PubMed Central

    Stein, R S

    1992-01-01

    The disposal of polymer solid waste by means other than landfilling is necessary. The various approaches-source reduction, incineration, degradation, composting, and recycling-all have their roles and must be employed in an integrated manner. Where appropriate, recycling has ecological advantages, but its application is dependent upon the feasibility of collection, sorting, and/or compatibilization of resulting mixtures to produce economically viable products. The practice should be encouraged by societal or legislative pressure which recognizes that the cost of disposal should be a factor in determining the cost of a product. PMID:11607263

  8. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  9. A Guide to Running a Recycling Project. [Includes Recycling Handbook].

    ERIC Educational Resources Information Center

    Oregon Recycling Information and Organizing Network, Portland.

    This guide, designed for both students and adults, is intended for individuals who feel they might be interested in establishing a recycling depot. The guide includes such pertinent information as deciding how to set up a depot, markets and transportation, preparation of materials, where to place the depot and when to operate it, publicity and…

  10. The Recycling Solution: How I Increased Recycling on Dilworth Road

    ERIC Educational Resources Information Center

    Keller, J. Jacob

    2010-01-01

    The grandson of Fred Keller, one of the founders of behavior analysis, Jacob was 10 years old when he conducted the project for his elementary school science fair. We recently contacted Jacob to learn more about his project. He told us the inspiration came from a class field trip to the county recycling center, which included seeing video footage…

  11. Assessments of natural radioactivity and determination of heavy metals in soil around industrial dumpsites in Sango-Ota, Ogun state, Nigeria

    PubMed Central

    Ademola, Augustine Kolapo; Ayo, Isreal; Babalola; Folasade, Oluwakemi; Alabi; Onyinye, Dorcas; Onuh; Emmanuel, Enifome; Enyenihi

    2014-01-01

    The activity concentration of natural radionuclides in soil samples from industrial dumpsites in Sango-Ota were determined using gamma-ray spectrometry with NaI(Tl) detector. The mean activity concentration of 226Ra, 232Th and 40K was 3.0 ± 1.2, 33.3 ± 9.8 and 122.1 ± 20.6 Bqkg−1, respectively. Radium equivalent activities were calculated to assess the hazards arising from the use of the soil sample in agriculture. All the calculated values were lower than the world average. The mean concentration of heavy metals in the soil samples were 33.6, 2.9, 3.8, 2.7, 48.9, 1,5, 34.5 and 0.8 mg l-1 for Cu, Mg, Ca, P, Fe, Pb, Zn and Cd, respectively. The concentrations of Cd, Cu and Pb were higher than the natural permissible range in soil. Therefore, the government should discourage the use of the soil around dumpsites for planting because of the presence of heavy metals in the sites. PMID:24872608

  12. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    SciTech Connect

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.; Mizia, R.E.

    1995-01-01

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  13. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  14. Food Service Recycling: Whose Responsibility Is It?

    ERIC Educational Resources Information Center

    Settanni, Barbara

    1990-01-01

    The food service department at a Pennsylvania school district recycles polystyrene "styrofoam" cups, plates, and food trays. In addition, the department recycles glass, aluminum, and paper. Offers advice on how to set up a school program. (MLF)

  15. Household-battery recycling plant

    SciTech Connect

    Weber, A.; Antenen, A.

    1995-12-31

    Batrec operates a plant for the recycling of used dry batteries with a capacity of 3,000 tons per year. The plant is situated in a tourist area of Switzerland and has complied with all the strict emission restrictions. The process yields four products: FeMn, Zn, Hg and slag. No hazardous waste is produced. All types of batteries can be treated.

  16. Recycling, Thermodynamics and Environmental Thrift

    ERIC Educational Resources Information Center

    Berry, R. Stephen

    1972-01-01

    Compares the cost, in terms of thermodynamic potential, of manufacturing automobiles from raw mineral resources or from recycled vehicles, and of the production of extended-life products. Uses this as an example for arguing that new technologies, with efficiencies closer to the theoretical themodynamic minima, are needed if a society is to…

  17. Recycling: Activities for the Classroom.

    ERIC Educational Resources Information Center

    Bowman, Mary Lynne, Comp.; Coon, Herbert L., Comp.

    This publication provides 80 classroom activities for the teacher. These activities are designed for elementary through high school students and are action-oriented for participation in the school community. Each activity is classified according to appropriate grade level, subject matter, and recycling concept involved. In addition, each activity…

  18. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  19. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  20. NATURAL SURFACTANTS IN PAPER RECYCLING

    EPA Science Inventory

    The objective of this project is to introduce new types of surfactants based on renewable materials (sugar surfactants) for use in ink removal from recycled paper. By applying green chemistry approaches we not only will solve an important industry and environmental problem but...