Note: This page contains sample records for the topic radioactive metal waste from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

ISOLATION OF RADIOACTIVE METALS FROM LIQUID WASTES  

EPA Science Inventory

Metals are present in many waste streams, and pose challenges with regard to their disposal. Release of metals into the environment presents both human health and ecological concerns. As a result, efforts are directed at reducing their toxicity, bioavailability, and environment...

2

The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088  

SciTech Connect

The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

2013-07-01

3

Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels.  

National Technical Information Service (NTIS)

Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear r...

M. I. Ojovan I. A. Sobolev S. A. Dmitriev

2004-01-01

4

Radioactive wastes  

SciTech Connect

This paper briefly reviews current literature regarding management of radioactive wastes including: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and, environmental occurrence and transport of radionuclides. 193 refs.

Devarakonda, M.S.; Seiler, M.C. [IT Corp., Albuquerque, NM (United States)

1995-06-01

5

Radioactive wastes  

SciTech Connect

This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

Devarakonda, M.S.; Hickox, J.A. [IT Corporation, Albuquerque, NM (United States)

1996-11-01

6

Radioactive wastes  

SciTech Connect

This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs.

Devarakonda, M.S.; Melvin, J.M. (IT Corporation, Albuquerque, NM (United States))

1994-06-01

7

Radioactive wastes  

SciTech Connect

This paper reviews research and technological progress in radioactive waste management and disposal. The scope of material covered is very broad, ranging from international cooperation in radioactive waste management to evaluation of specific treatment technologies. The issue of safely managing and disposing of the plutonium resulting from the dismantling of weapons across the world is discussed and a series of papers on low-level waste management practices across the world is mentioned. Environmental restoration, risk assessment, and the health hazards of radon are also discussed.

Devarakonda, M.S. [International Technology Corp., Albuquerque, NM (United States)

1993-06-01

8

Radioactive Wastes  

NSDL National Science Digital Library

Using Mathcad, Maple, Mathmatica, or MatLab, the user should be able to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal.

Smith, David

2001-01-22

9

Radioactive Wastes  

NSDL National Science Digital Library

Created by David Smith for the Connected Curriculum Project, this module develops multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and discusses storage times for wastes to decay to safe levels for disposal. This is one of a much larger set of learning modules hosted by Duke University.

Smith, David

2010-04-29

10

Radioactive Wastes  

NSDL National Science Digital Library

Created by Lang Moore and David Smith for the Connected Curriculum Project, the purposes of this module are to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal. This is one lesson within a larger set of learning modules hosted by Duke University.

Moore, Lang; Smith, David

2010-07-06

11

Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass  

SciTech Connect

The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1994-05-02

12

Analysis of Th, U, Pu, and Am in radioactive metal waste using extraction chromatography  

Microsoft Academic Search

In order to analyze actinide elements in radioactive metal waste, the dissolution and chemical separation conditions were\\u000a optimized. The surfaces of a type 304 stainless steel plate and of pipe waste sampled from the prototype advanced thermal\\u000a reactor (Fugen) were dissolved in mixed acid solution (HNO3:HCl:H2O = 1:1:4). The resulting solution was evaporated to dryness and dissolved with 2 mol\\/dm3 of HNO3 to

Asako Shimada; Tomoko Haraga; Akiko Hoshi; Yutaka Kameo; Mikio Nakashima; Kuniaki Takahashi

2010-01-01

13

Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems  

SciTech Connect

Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

Bayrakal, S.

1993-09-30

14

Radioactive waste material disposal  

DOEpatents

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24

15

Radioactive waste material disposal  

DOEpatents

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01

16

Microbiological treatment of radioactive wastes.  

National Technical Information Service (NTIS)

The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either remov...

A. J. Francis

1992-01-01

17

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03

18

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01

19

Radioactive Wastes. Revised.  

ERIC Educational Resources Information Center

This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

Fox, Charles H.

20

Hydrogen production during processing of radioactive sludge containing noble metals.  

National Technical Information Service (NTIS)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive slud...

B. C. Ha D. M. Ferrara N. E. Bibler

1992-01-01

21

Radioactive Waste Management.  

National Technical Information Service (NTIS)

Management of radioactive wastes is necessary to protect public health, public safety, and the environment from radioactive materials resulting from national defense programs, energy research and development, and commercial activities. Access to informati...

1988-01-01

22

Radioactive Waste Management.  

National Technical Information Service (NTIS)

Management of radioactive wastes is necessary to protect public health, public safety, and the environment from radioactive materials resulting from national defense programs, energy research and development, and commercial activities. Access to informati...

1990-01-01

23

Canister arrangement for storing radioactive waste  

DOEpatents

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23

24

Engineering 'Deinococcus Radiodurans' for Metal Remediation in Radioactive Mixed Waste Sites. (Final Report, 1997-2004).  

National Technical Information Service (NTIS)

Immense volumes of radioactive waste were generated from the production of 46,000 nuclear weapons in the United States between 1945 and 1986. This is a period when national security priorities often surmounted concerns over the environment. Most wastes in...

M. J. Daly J. K. Fredrickson L. P. Wackett

2005-01-01

25

The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources  

SciTech Connect

Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

Braeckeveldt, Marnix; Preter, Peter De [ONDRAF/NIRAS, Kunstlaan 14, B 1210 Brussels (Belgium); Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An [FANC/AFCN, Ravensteinstraat 36 B 1000 Brussels (Belgium)

2007-07-01

26

DISPOSAL OF RADIOACTIVE WASTES  

Microsoft Academic Search

The amount of radioactive wastes from isotope users in the Federai ; Republic of Germany is rather small. Adequate provisions of the First Radiation ; Protection Ordinance deal with the waste disposal by the deposition into soil or ; ordinary wastes, and the discharge into sewers or surface waters. (auth) O H7655 ; Research progress is reported on biologicai and

Straimer

1962-01-01

27

Radioactive Waste Material Incinerator.  

National Technical Information Service (NTIS)

The incinerator is for the disposal of combustible radioactive waste material. The structure prevents the release of hazardous amounts of radionuclides into the environment. The structure includes a closed system silo-type combustion chamber for the mass ...

C. F. Berghout M. Dauer F. W. Lanard R. P. Minx W. E. Senoski

1965-01-01

28

Incineration of Radioactive Waste.  

National Technical Information Service (NTIS)

In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioacti...

C. Thegerstroem

1980-01-01

29

THERMODYNAMICS OF THE VOLATILIZATION OF ACTINIDE METALS IN THE HIGH-TEMPERATURE TREATMENT OF RADIOACTIVE WASTES  

EPA Science Inventory

We are proposing to perform a detailed study of the volatilization behavior of the U, Pu and possibly Am under conditions relevant to the thermal treatment (destruction) of actinide-containing organic-based mixed and radioactive wastes. The primary objective of this 3-year projec...

30

Disposal of radioactive waste  

NASA Astrophysics Data System (ADS)

The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

Van Dorp, Frits; Grogan, Helen; McCombie, Charles

31

Microbiological treatment of radioactive wastes  

SciTech Connect

The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

Francis, A.J.

1992-12-31

32

Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices  

SciTech Connect

A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

1981-05-01

33

Radioactive waste backup threatens research  

Microsoft Academic Search

Problems in the disposal of low-level radioactive wastes are discussed. Due to the closing of the disposal site at Hanford, Washington, radioactive wastes from medical research at various universities and medical centers around the country have begun to stockpile. The reason given for the closing is that the wastes had been carelessly packaged.

E Marshall

1979-01-01

34

Radioactive waste processing apparatus  

DOEpatents

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01

35

A radioactive metal processing industry perspective source.  

PubMed

The current U.S. economic environment for the disposition of radioactive waste, including very-low-activity metals, is currently experiencing relatively low radioactive disposal costs and readily available disposal space. Despite the recent market increase in demand for recycled scrap metal commodities, there is still little change in the behavior of the nuclear industry (including radioactive waste processors and radioactive scrap metal recyclers) to pursue the recycling of potentially contaminated scrap metal. The relatively low cost of traditional radioactive waste disposal combined with the perceived risks associated with recycling of previously contaminated metals means that most U.S. radioactive facility managers and stakeholders will elect not to recycle. Current technology exists and precedence has been set for prescreening (by means of bulk radioactive assay techniques) scrap metal that is not contaminated and diverting it to industrial landfills for disposal. Other processes also allow some radiologically contaminated metals to be melted and recast into products with low, but acceptable, activity levels for restricted use in the nuclear industry. A new concept is being considered that would create a centralized licensed facility for the process and disposition of "very-low-activity" metals for "directed first use." The advantages to this type of approach would include a standardized method for licensing the clearance process. PMID:17033461

Johnson, A

2006-11-01

36

Treatment of Radioactive Reactive Mixed Waste  

SciTech Connect

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01

37

Politics of Radioactive Waste Disposal  

SciTech Connect

What role does public acceptance play in the siting of facilities and the selection of technologies designed to manage nuclear waste That's the question posed by Ray Kemp in The Politics of Radioactive Waste Disposal. To answer this question, Kemp assesses and compares the decision-making processes in Western Europe, Canada, and the United States.

Kemp, R.

1994-01-01

38

Evaluation of radioactive scrap metal recycling  

Microsoft Academic Search

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is

L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

1995-01-01

39

Radioactive Waste Incineration: Status Report  

SciTech Connect

Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

Diederich, A.R.; Akins, M.J. [WorleyParsons, Reading, PA (United States)

2008-07-01

40

USDOE activities in low-level radioactive waste treatment  

NASA Astrophysics Data System (ADS)

Current research, development and demonstration programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment are described. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas were selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting.

Vath, J. E.

41

Acid Digestion of Combustible Radioactive Wastes.  

National Technical Information Service (NTIS)

The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic ...

C. R. Allen M. D. Crippen R. E. Lerch R. G. Cowan

1982-01-01

42

Radioactive waste: Politics and technology  

SciTech Connect

This book presents an analysis of the divergent strategies used to forge radioactive waste policies in great Britain, Germany, and Sweden. Some basic knowledge of nuclear technology and its public policy development is needed. The book points out that developing institutional frameworks that permit agreement and consent is the principal challenge of radwaste management and places the problem of consent in an institutional framework.

Berkhout, F.

1995-08-01

43

Disposal of low-level radioactive wastes  

Microsoft Academic Search

The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal

W HENDEE

1986-01-01

44

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Microsoft Academic Search

The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling

W. E. Murphie; M. J. Lilly; L. A. Nieves; S. Y. Chen

1993-01-01

45

Radioactive Waste Management BasisApril 2006  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31

46

Regulations on radioactive waste from practices using unsealed radioactive sources  

Microsoft Academic Search

Regulations on handling and disposal of waste from non-nuclear facilities have been in force in Sweden since 1985. These regulations are applicable on the handling of solid and liquid wastes from laboratories covered with licenses granted by the Radiation Protection Authority, SSI, for work with radioactive substances and where work results in production of radioactive wastes. Patient excreta is exempted

Ann-Louis Söderman; Gunilla Hellström

47

"Final Report for Grant No. DE-FG02-97ER62492 "Engineering Deinococcus radiodurans for Metal Remediation in Radioactive Mixed Waste Sites"  

SciTech Connect

The groundwater and sediments of numerous U. S. Department of Energy (DOE) field sites are contaminated with mixtures of heavy metals (e.g., Hg, Cr, Pd) and radionuclides (e.g., U, Tc), as well as the fuel hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX); chlorinated hydrocarbons, such as trichloroethylene (TCE); and polychlorinated biphenyls (PCBs). The remediation of such mixed wastes constitutes an immediate and complex waste management challenge for DOE, particularly in light of the costliness and limited efficacy of current physical and chemical strategies for treating mixed wastes. In situ bioremediation via natural microbial processes (e.g., metal reduction) remains a potent, potentially cost-effective approach to the reductive immobilization or detoxification of environmental contaminants. Seventy million cubic meters of soil and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans. Our recent isolation and characterization of D. radiodurans from a variety of DOE environments, including highly radioactive sediments beneath one of the leaking tanks (SX-108) at the Hanford Site in south-central Washington state, underscores the potential for this species to survive in such extreme environments. Research aimed at developing D. radiodurans for metal remediation in radioactive waste sites was started by this group in September 1997 with support from DOE NABIR grant DE-FG02-97ER62492. Our grant was renewed for the period 2000-2003, which includes work on the thermophilic radiation resistant bacterium Deinococcus geothermalis. Work funded by the existing grant contributed to 18 papers in the period 1997-2004 on the fundamental biology of D. radiodurans and its design for bioremediation of radioactive waste environments. Our progress since September 2000 closely matches the Aims proposed in our second NABIR application and is summarized as follows. We have further refined expression vectors for D. radiodurans and successfully tested engineered strains in natural DOE sediment and groundwater samples. Further, we have shown that D. geothermalis is transformable with plasmids and integration vectors designed for D. radiodurans. This was demonstrated by engineering Hg(II)-resistant D. geothermalis strains capable of reducing Hg(II) at elevated temperatures and under chronic irradiation. Additionally, we showed that D. geothermalis, like D. radiodurans, is naturally capable of reducing U(VI), Cr(VI), and Fe(III). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55 C, of which there are many examples. Our annotation of the D. radiodurans genome has been an important guide throughout this project period and continues to be a source of inspiration in the development of new genetic technologies dedicated to this bacterium. For example, our genome analyses have enabled us to achieve engineering goals that were unattainable in our first NABIR project (1997-2000), where uncertainties relating to its metabolic configuration prevented efforts to expand its metabolic capabilities. As just one example, we showed that D. radiodurans has a functioning tricarboxylic acid (TCA) cycle glyoxylate bypass which could be integrated with toluene oxidation. And, we successfully engineered D. radiodurans to derive carbon and energy from complete toluene mineralization and showed that toluene oxidation can be coupled to cellular biosynthesis, survival, as well as its native and engineered metal reducing capabilities. We have also constructed a whole genome microarray for D. radiodurans covering {approx}94% of its predicted genes and have successfully used the array to examine the response of cells to radiation and other DOE relevant conditions. Similarly, we have used high throughput proteomic approaches to

Michael J. Daly, Ph.D.

2005-03-17

48

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31

49

Recovering metals from wastes  

SciTech Connect

Metal recycling has come a long way from the scrap heap. Today, metals recovery is not simply a matter of collecting and remelting automobile and process scrap and beverage cans for profit, but of wringing out and reusing hazardous metals from plant wastes and soil, to comply with environmental laws. Processes developed to extract metal from ore are being redesigned to recover used metals, and companies in the minerals industry are redirecting their efforts and know how to metal-bearing wastes. Some have even reorganized to emphasize this change in focus. The paper describes catalyst recycling; lead recovery from battery waste and blasting materials; and soil remediation.

Parkinson, G.; Moore, S.; Fouhy, K.

1994-04-01

50

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

SciTech Connect

One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

Jooho, W.; Baldwin, G. T.

2005-04-01

51

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25

52

Acid digestion of combustible radioactive wastes  

Microsoft Academic Search

The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic waste treatment, there was no detectable radionuclide carryover into the exhaust off-gas. The plutonium decontamination factor (DF) between the digester and the second off-gas tower

C. R. Allen; R. E. Lerch; M. D. Crippen; R. G. Cowan

1982-01-01

53

Overview of Radioactive Waste Disposal at Sea  

Microsoft Academic Search

For hundreds of years, the seas have been used as a place to dispose of wastes from human activities. Although no high level radioactive waste has been disposed of into the sea, variable amounts of packaged low level radioactive wastes have been dumped at 47 sites in the northern part of the Atlantic and Pacific Oceans. in 1946 the first

Dominique Calmet

1992-01-01

54

Managing potentially radioactive scrap metal  

SciTech Connect

The National Council on Radiation Protection and Measurements published NCRP Report No. 141 on November 19, 2002. Contract DE-FG02-98CH10945 provided the sole support for this report titled ''Managing Potentially Radioactive Scrap Metal.'' Some preliminary work supported by the U.S. Environmental Protection Agency that led to an NCRP Letter Report provided some background information for this work. NCRP Report No. 141 provides recommendations on the methodologies and techniques available to the United States for disposing of radioactive, contaminated scrap metals.

None

2002-11-19

55

Hanford Site radioactive solid waste acceptance criteria  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste treatment, storage, and disposal facilities for the US Department of Energy-Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This manual defines the criteria that must be met by waste generators for radioactive solid waste to be accepted by Westinghouse Hanford Company for storage or disposal at the 200 Area facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of radioactive solid waste. The criteria in this manual represent a compilation of state and federal regulation, US Department of Energy Orders, Hanford Site requirements, and other rules, regulations, guidelines, and standards as they apply to management of radioactive solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements. 11 refs.

Stickney, R.G.

1990-01-01

56

Radioactive-waste incineration at Purdue University  

SciTech Connect

A study conducted at Purdue University to evaluate the feasibility of using a small (45 kg/h), inexpensive (less than $10K) incinerator for incinerating low-level radioactive waste is described. An oil-fired, dual-chamber pathological waste incinerator was installed on a 12.7-cm-thick concrete floor in a metal quonset building. A standard EPA Method 5 sampling train was used to obtain stack samples. Also, stack gas velocity was measured with a type 5 pitot tube; stack temperature was measured with a thermocouple and pyrometer. The incinerator was tested for emissions from incineration of laboratory animal carcasses, liquid scintillation fluid, and trash. Emissions measured were particulates, SO/sub x/, NO/sub x/, Cl, CO, CO/sub 2/, H/sub 2/O, and unburned hydrocarbons in the particulate fraction. Three analyses were then averaged to arrive at the final determinations. Results of the study demonstrated the feasibility and cost-effectiveness of incinerating radioactive animal carcasses and liquid scintillation fluids, since emissions from those waste types were within EPA and State of Indiana limits. However, emissions from burning of trash exceeded State of Indiana limits. Therefore, incineration of trash alone, particularly if it contains glass or significant amounts of plastic, is not a recommended use of the tested equipment.

Not Available

1982-11-01

57

Metal decontamination for waste minimization using liquid metal refining technology  

SciTech Connect

The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

Joyce, E.L. Jr.; Lally, B. [Los Alamos National Lab., NM (United States); Ozturk, B.; Fruehan, R.J. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1993-09-01

58

Handling and treatment of low-level radioactive wastes from United States gaseous diffusion plants  

Microsoft Academic Search

The US gaseous diffusion plants currently generate very small quantities of low-level radioactive wastes. These wastes consist primarily of airborne effluent solid trapping media and liquid scrubber solutions; liquid effluent treatment sludges; waste oils and solvents; scrap metals; and conventional combustible wastes such as floor sweepings, cleaning rags, and shoe covers. In addition to waste emanating from current operations, large

J. F. Wing; M. E. Mitchell; J. E. Behrend

1983-01-01

59

Phosphate bonded solidification of radioactive incinerator wastes  

SciTech Connect

The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

Walker, B. W.; Langton, C. A.; Singh, D.

1999-12-03

60

The safe disposal of radioactive wastes  

PubMed Central

A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments.

Kenny, A. W.

1956-01-01

61

Geochemical behavior of disposed radioactive waste  

Microsoft Academic Search

This book examines the complex issue of radioactive waste disposal and the health hazards at underground waste sites. It assesses the chemical and physical behavior of wastes from the nuclear fuel cycle, from nuclear weapons testing, and from medical and research activities. It also reports recent findings in this area and looks at ongoing research.

G. S. Barney; W. W. Schulz; J. D. Navratil

1984-01-01

62

Radioactive solid waste handling at the Plutonium Finishing Plant  

Microsoft Academic Search

The Plutonium Finishing Plant is located on the Hanford Site in the southeast section of Washington State. It has been in operation since 1949. The mission of the plant is to produce plutonium metal and related products for the US Department of Energy defense programs. Solid transuranic, low-level, and mixed wastes are generated at the plant, the radioactive contaminants in

Manthos

1990-01-01

63

Disposal of low-level radioactive wastes.  

PubMed

The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, "The Low-Level Radioactive Waste Policy Act," the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993. PMID:3749914

Hendee, W R

1986-07-01

64

Scrap metal management issues associated with naturally occurring radioactive material  

SciTech Connect

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

Smith, K.P.; Blunt, D.L.

1995-08-01

65

Annual radioactive waste tank inspection program - 1996.  

National Technical Information Service (NTIS)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed s...

F. G. McNatt

1997-01-01

66

USDOE Radioactive Waste Incineration Technology: Status Review.  

National Technical Information Service (NTIS)

Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continue...

L. C. Borduin A. L. Taboas

1980-01-01

67

Evaluation of radioactive scrap metal recycling  

SciTech Connect

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01

68

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

69

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

70

Safety Aspects in Radioactive Waste Management  

Microsoft Academic Search

Bezpe?nostné aspekty mana?mentu rádioaktívneho odpadu In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short- lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-

Peter W. Brennecke

71

Notes on Incineration of Radioactive Waste.  

National Technical Information Service (NTIS)

The problem of finding commercial sites for the disposal of low-level radioactive waste and temporary storage of residues containing transuranic elements has led to research on using a method to reduce the volume of the waste originating from nuclear inst...

L. M. Martin

1984-01-01

72

Reduction of INTEC Analytical Radioactive Liquid Waste  

SciTech Connect

This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

1999-06-01

73

Reduction of INTEC Analytical Radioactive Liquid Wastes  

SciTech Connect

This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

V. J. Johnson; J. S. Hu; A. G. Chambers

1999-06-01

74

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

SciTech Connect

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27

75

Apparatus and method for radioactive waste screening  

DOEpatents

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04

76

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Microsoft Academic Search

The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes

W. E. Murphie; M. J. Lilly; L. A. Nieves; S. Y. Chen

1993-01-01

77

Scrap metal management issues associated with naturally occurring radioactive material  

Microsoft Academic Search

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year.

K. P. Smith; D. L. Blunt

1995-01-01

78

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30

79

Permanent disposal of radioactive particulate waste  

SciTech Connect

A system for storage and encapsulation of radioactive particulate waste, is described comprising: a cartridge having a liquid impervious casing enclosing a waster storage region, a ferromagnetic waste storage matrix housed in the cartridge and occupying at least a major portion of the waste storage region, and an inlet conduit and at least one outlet conduit projecting from the cartridge and communicating with the waste storage region; means for establishing a magnetic field in the matrix; fluid handling means including a source of liquid containing the radioactive waste to be stored in the cartridge, a source of encapsulating material, and a receptacle for receiving flushing water; cartridge filling means including conduits releasably couplable to the conduits associated with the cartridge; and fluid flow control means including remotely controllable valves connected between the fluid handling means and the cartridge filling means.

Troy, M.

1988-04-19

80

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01

81

Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste  

SciTech Connect

Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

Dziewinska, K.M.

1998-09-28

82

Radioactive waste management in the former USSR  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

83

Method for solidification of radioactive and other hazardous waste  

DOEpatents

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01

84

Processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12

85

Processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12

86

Corrosion Studies of Container Materials for Radioactive Waste Disposal in Granite Formation.  

National Technical Information Service (NTIS)

This report describes the research carried out for the assessment of corrosion behaviour of materials selected for the manufacture of containers for disposal of radioactive waste in granite formation. Metals and alloys included in laboratory test program ...

G. Plante M. Helie O. Sanatine A. Cheniere

1984-01-01

87

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy ? Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

C. B. Millet; J. L. Tripp; K. E. Archibald; L. Lauerhauss; M. D. Argyle; R. L. Demmer

1999-02-01

88

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy–Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

Tripp, Julia Lynn; Archibald, Kip Ernest; Argyle, Mark Don; Demmer, Ricky Lynn; Miller, Rose Anna; Lauerhass, Lance

1999-03-01

89

Management of Radioactive Waste and Plutonium in the Swedish Perspective.  

National Technical Information Service (NTIS)

In May 1976 the Governmental Committee on Radioactive Waste (the Aka Committee) submitted its final report to the Swedish Government. The report summarizes a thorough investigation of questions dealing with spent nuclear fuel and radioactive waste. For Sw...

A. Larsson A. Hultgren J. Lind

1977-01-01

90

Properties of Radioactive Wastes and Waste Containers.  

National Technical Information Service (NTIS)

The objectives of this research program at BNL are to provide a technical basis that will assist the NRC's capability to predict low-level waste isolation performance, and to establish regulatory criteria. To meet these objectives, the work undertaken in ...

N. Morcos R. Dayal A. J. Weiss

1982-01-01

91

Method for decontamination of radioactive metal surfaces  

DOEpatents

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01

92

Method for decontamination of radioactive metal surfaces  

DOEpatents

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13

93

Radioactive Waste Management: Yesterday, Today and Tomorrow.  

National Technical Information Service (NTIS)

The public believes that there is a radioactive waste problem, but knowledge in the field is so well advanced that the only problem left is how to choose the most economically effective method among many available. Tailings from uranium ore processing cou...

A. T. Prince

1977-01-01

94

Annual radioactive waste tank inspection program: 1995  

Microsoft Academic Search

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt; F. G. Sr

1996-01-01

95

Annual radioactive waste tank inspection program - 1996  

Microsoft Academic Search

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt

1997-01-01

96

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27

97

Annual radioactive waste tank inspection program - 1999  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14

98

Annual Radioactive Waste Tank Inspection Program 1994  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

McNatt, F.G. Sr.

1995-04-01

99

Annual Radioactive Waste Tank Inspection Program - 1997  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

McNatt, F.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-05-01

100

Annual radioactive waste tank inspection program: 1995  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt, F.G. Sr.

1996-04-01

101

Annual radioactive waste tank inspection program - 1996  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01

102

Confinement Chamber for Radioactive Products or Waste.  

National Technical Information Service (NTIS)

The invention deals with a confinement chamber for radioactive products or wastes that are kept in tanks or in silos buried in the ground. The chamber comprises a combination of an impervious reinforced concrete (RC) support buried in the ground with an R...

1977-01-01

103

Development of long-term performance models for radioactive waste forms  

SciTech Connect

The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

Bacon, Diana H.; Pierce, Eric M.

2011-03-22

104

Controlled Containment, Radioactive Waste Management in the Netherlands  

Microsoft Academic Search

All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad

Codee

2002-01-01

105

Radioactive waste management at a large university medical research complex  

Microsoft Academic Search

This report describes radioactive waste management at Harvard University. To contain costs and to reduce the impact of the low-level radioactive waste policy act, the program takes advantage of decay in storage, incineration, special packaging techniques, and increased training and awareness. A series of metrics, numerical ratios, are presented to evaluate the effectiveness of the radioactive waste management program. Through

J. Ring; F. Osborne; W. Lorenzen

1995-01-01

106

Handbook of high-level radioactive waste transportation  

SciTech Connect

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01

107

Greater confinement disposal of radioactive wastes  

SciTech Connect

Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics.

Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

1985-01-01

108

Hanford radioactive waste management plans  

Microsoft Academic Search

This addendum provides primarily the classified information relative to waste management as called out in the unclassified report. This information is provided in the following tables. In addition to the gaseous radionuclides (Argon 41 (AR-41), Iodine 131 (I-131), Tritium (H-3)) noted in the unclassified report, krypton and xenon are also released during dissolution of fuel. The chemically inert character of

R. W. Harvey; N. T. Karagianes

1970-01-01

109

Reduction of radioactive secondary waste with steam reforming in treatment of waste TBP/dodecane  

SciTech Connect

Waste tributyl phosphate (TBP) and normal dodecane generated from R and D activities on recycle of nuclear fuel has been stored in Japan Atomic Energy Agency (JAEA). If it is incinerated, a large quantity of contaminated phosphorous compounds will be generated as radioactive secondary wastes. The objective of this study is to reduce the generation of the radioactive secondary wastes by the treatment of the waste TBP/dodecane using steam reforming system. We constructed the demonstration scale steam reforming system which consists of a gasification chamber for vaporization of wastes, a metal mesh filter for removal of radioactive nuclides from gasified wastes, a combustion chamber, and scrubbers for removal of phosphorous oxides. We conducted process demonstration tests using waste TBP/dodecane with 0.07 g/L of uranium. We studied the temperature dependence of the gasification ratio of inorganic phosphorus compounds formed by pyrolysis of TBP in the gasification chamber and removal of uranium by the filter. As the results, more than 90% of phosphorus compounds were gasified from the gasification chamber at temperature of 600 deg. C or more, and the uranium concentration in the waste water generated from the off-gas treatment system is under the detection limits. The waste water containing the separated phosphorus compounds can be discharged into the river or the sea as the liquid wastes in which uranium concentration is under the regulatory level. These results show the steam reforming system is effective in the reduction of radioactive secondary waste in the treatment of TBP/dodecane. (authors)

Sone, Tomoyuki; Sasaki, Toshiki; Yamaguchi, Hiromi [Japan Atomic Energy Agency (Japan)

2007-07-01

110

Managing the disposition of potentially radioactive scrap metal.  

PubMed

In 2002, the National Council on Radiation Protection and Measurements (NCRP) issued Report No. 141, Managing Potentially Radioactive Scrap Metal. The report evaluates management policy and related issues regarding scrap metal generated in regulated facilities that have been under radiological control or have radiological concerns. It has been estimated that more than 9 million metric tons of scrap metal of all types that have been associated with the production or use of radioactive materials will be generated during the coming decades at various facilities across the United States. Currently, disposition of such metal has encountered particular obstacles, primarily because of the lack of a consistent disposition policy, systematic regulatory provisions, and, above all, public understanding. Without clarity in the regulatory passage, much of the scrap metal, including metal that has not been contaminated, could be mischaracterized as low-level radioactive waste, resulting in a costly disposition operation. NCRP Report No. 141 identifies this general category of metal as "potentially radioactive scrap metal" (PRSM) and discusses the viable disposition options for facilitating its management. Because much of the PRSM has been found to contain very low residual radioactivity or even none at all, one consideration is to release such metal outside of the radiological control framework. This would require the development and implementation of a set of strict release standards in the United States that would necessarily be risk-based and supported by a comprehensive management scheme. Developing a policy of this kind, however, would entail the resolution of many issues, not the least of which would be public acceptance, including that of the metal industry, of the possible recycling of PRSM in the general commerce. PMID:17033456

Chen, S Y

2006-11-01

111

Control of radioactive waste-glass melters  

SciTech Connect

Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

Bickford, D.F. (Westinghouse Savannah River Co., Aiken, SC (USA)); Hrma, P. (Case Western Reserve Univ., Cleveland, OH (USA)); Bowan, B.W. II (West Valley Nuclear Services Co., Inc., West Valley, NY (USA))

1990-01-01

112

Control of high level radioactive waste-glass melters  

SciTech Connect

Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

Bickford, D.F.; Choi, A.S.

1991-01-01

113

Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management  

Microsoft Academic Search

Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence

Usher

2007-01-01

114

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01

115

Characterization of a ceramic waste form encapsulating radioactive electrorefiner salt  

Microsoft Academic Search

Argonne National Laboratory has developed a ceramic waste form to immobilize radioactive waste salt produced during the electrometallurgical treatment of spent fuel. This study presents the first results from electron microscopy and durability testing of a ceramic waste form produced from that radioactive electrorefiner salt. The waste form consists of two primary phases: sodalite and glass. The sodalite phase appears

T. L. Moschetti; W. Sinkler; T. DiSanto; M. Noy; A. R. Warren; D. G. Cummings; S. G. Johnson; K. M. Goff; K. J. Bateman; S. M. Frank

1999-01-01

116

Application of microwave solidification technology to radioactive waste  

Microsoft Academic Search

The EPA has declared vitrification to be the Best Available Demonstrated Technology (BDAT) for High Level Radioactive Waste (40 CFR 268.42). Vitrification has been chosen as the method of choice for treating a number of radioactive residues and wastes in the DOE complex. Vitrification offers advantages of waste volume reduction, the ability to handle changing waste forms, and a stable,

M. Harris; G. Sprenger; B. Roushey; G. Fenner; R. Nieweg

1995-01-01

117

Waste-acceptance criteria for radioactive waste disposal  

SciTech Connect

A method has been developed for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a disposal facility for radioactive waste. The method starts from the objective of protecting public health and safety by assuring that disposal of the waste will not result in a radiation dose of any member of the general public, in either the short or long term, in excess of an established basic dose limit. A key aspect of the method is the introduction of a confinement factor that characterizes the overall confinement capability of a particular disposal facility and can be used for quantitative performance assessments as well as for establishing facility-specific waste-acceptance criteria. Confinement factors enable direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on rationuclides in the waste streams. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. Application of the method to generic facility designs provides a radional basis for a waste classification system. 14 refs.

Gilbert, T.L.; Meshkov, N.K.

1987-02-01

118

Selection of barrier metals for a waste package in tuff  

SciTech Connect

The Nevada Nuclear Waste Storage Investigation (NNWSI) project under the Civilian Radioactive Waste Management Program is planning a repository at Yucca Mountain at the Nevada Test Site for isolation of high-level nuclear waste. LLNL is developing designs for an engineered barrier system containing several barriers such as the waste form, a canister and/or an overpack, packing, and near field host rock. The selection of metal containment barriers is addressed. 13 references.

Russell, E.W.; McCright, R.D.; O`Neal, W.C.

1983-09-01

119

THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS  

SciTech Connect

The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

Skidmore, E.; Fondeur, F.

2013-04-15

120

Evaluation of the Failure of Radioactive Waste Transfer Line Jacket.  

National Technical Information Service (NTIS)

Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks primarily via an underground transfer piping system. Due to the hazardous nature of the waste, the inner core stainless stee...

B. J. Wiersma K. H. Subramanian A. S. Plummer C. F. Jenkins W. R. Hinz

2007-01-01

121

USDOE radioactive waste incineration technology: status review  

SciTech Connect

Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included.

Borduin, L.C.; Taboas, A.L.

1980-01-01

122

Transport of Carbon Dioxide and Radioactive Waste  

Microsoft Academic Search

\\u000a A comparative assessment of carbon dioxide (CO2) and radioactive waste transport systems associated with electricity generation was undertaken on the basis of 15 criteria\\u000a grouped under three areas, namely the transport chain, policy aspects and state of the technology. For CO2, we considered exclusively the transport that would take place under a future large-scale capture and storage infrastructure.\\u000a Our study

Darío R. Gómez; Michael Tyacke

123

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21

124

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22

125

Commercial low-level radioactive waste transportation safety history  

SciTech Connect

An excellent safety record has been established for the transport of commercial low-level radioactive waste. By using the Radioactive Material Incident Report data base to evaluate transportation accidents involving commercial low-level radioactive waste, it was found that there have been only four transportation accidents involving the release of commercial low-level radioactive waste in the last 20 years. The accidents were minor, and the released materials were quickly repackaged. There has never been a radiologically related injury or death associated with a transportation accident involving commercial low-level radioactive waste.

Garcia, R.S.

1992-03-01

126

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05

127

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23

128

Treatment of radioactive mixed wastes in commercial low-level wastes  

SciTech Connect

Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs.

Kempf, C.R.; MacKenzie, D.R.

1985-01-01

129

Regulatory Approaches for Solid Radioactive Waste Storage in Russia  

Microsoft Academic Search

The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards.

A. Griffith; S. Testov; A. Diaschev; A. Nazarian; A. Ustyuzhanin

2003-01-01

130

LIQUID RADIOACTIVE WASTE DISPOSAL FACILITY. Final Engineering Report  

Microsoft Academic Search

A liquld radioactive waste disposal facility was designed, developed, ; and installed at Nuclear Defense Laboratory for extensive tests and evaluation. ; The facility is being used for concentration of radioactive wastes from the Army ; nuclear power program and biological and medical research. It employs a Pfaulder ; Wiped Film Evaporator to effect gross decontamination of the waste and

W. F. Swanton; M. L. Hyman

1962-01-01

131

Radioactive Waste Disposal Implications of Extending Part IIA to cover Radioactively Contaminated Land  

Microsoft Academic Search

A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA to address radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation.

DJ Nancarrow

132

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

Not Available

1994-08-01

133

Radioactive waste disposal assessment - overview of biosphere processes and models.  

National Technical Information Service (NTIS)

This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive w...

P. J. Coughtrey

1992-01-01

134

Centralized Collection of Radioactive Wastes. Terms and Definitions.  

National Technical Information Service (NTIS)

The standard is based upon the regulation concerning the centralized collection and storage of radioactive wastes of 11 May 1981 and specifies the practical conditions and interactions during collection, transport, storage, and disposal of radioactive was...

1985-01-01

135

Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization  

SciTech Connect

Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated antifoamer appeared to be as effective as nonirradiated antifoamers. Therefore, the results of this research have led to the successful development, demonstration and deployment of the new antifoam in the Defense Waste Processing Facility chemical processing.

Darsh T. Wasan

2002-02-20

136

Radioactive waste storage and disposal in the UK  

SciTech Connect

Even though mankind has evolved in a naturally radioactive environment, the existence of radiation was only discovered about a century or so ago. Since then the use of radioactive materials has grown rapidly and they are now used extensively in hospitals for medical diagnosis and treatment, and in general industry where they are used for measurement and inspection, as well as by the nuclear power industry, research laboratories and defence establishments. Like virtually all of man`s activities, the use of radioactive materials inevitably leads to the production of unwanted waste by-products, some of which will be radioactive. These radioactive wastes can be found in many different solid, liquid or gaseous forms and the radioactivity can range from such low levels that it is radiologically insignificant to levels that could cause death on direct exposure to it. To give a general indication of the levels of radioactivity, the wastes in the UK are usually grouped into three broad categories: (1) Low level waste (LLW): the least radioactive category; (2) Intermediate level waste (ILW); (3) High level waste (HLW): the most radioactive category. This waste is so highly radioactive that it generates significant quantities of heat and it is therefore also sometimes referred to as Heat Generating Waste. Radioactive wastes are produced by many industries in the UK although the majority both in terms of volume and radioactivity content comes from the civil nuclear power industry. This chapter concentrates on describing the way solid radioactive wastes are managed by the UK nuclear industry, within the Governments`s overall policy framework. It includes a description of the types and quantities of waste to be managed, current practices including the disposal of LLW, and plans for a deep repository for both ILW and LLW. 12 refs., 7 figs., 2 tabs.

Johnson, A.D.; Maul, P.R.; Passant, F.H. [Central Electricity Generating Board, Gloucester (United Kingdom)

1990-12-31

137

INEL metal recycle radioactive scrap metal survey report  

Microsoft Academic Search

DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed

Funk

1994-01-01

138

Radioactive scrap metal decontamination technology assessment report  

SciTech Connect

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

1996-04-01

139

Overview of techniques for volume reduction and immobilization of radioactive waste, as investigated at KEMA  

NASA Astrophysics Data System (ADS)

Measures to decrease the amount of radioactive waste generated by power plants, to decontaminate active material, and to reduce the final volume of the waste, e.g., by incineration or acid digestion are reviewed. Organic radioactive wastes from nuclear power plants are treated adequately: only inorganic end-products remain, and they have a relatively small volume and are immobilized. Chemical, biological, and alteration processes therefore do not significantly increase the risk of storage, even if water intrudes the storage facility. The considerable volumes of activated and/or contaminated metal that remain after repair or decommissioning of the plants could be treated. Decontamination and melting may significantly reduce the volume of the final waste. It seems probable that estimates of waste volumes are too pessimistic, and relatively small storage facilities will be sufficient. Waste in those facilities presents unacceptable risk for the biosphere during the period it is considered as radioactive.

Kuypers, J.; Matteman, J. L.; Vanloon, A. J.

140

Geologic disposal of radioactive waste, 1983  

SciTech Connect

Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10{sup -4} Sv/y. 50 references, 11 figures, 6 tables.

Pigford, T.H.

1983-10-01

141

Radioactive scrap metal decontamination technology assessment report.  

National Technical Information Service (NTIS)

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable mate...

J. M. Buckentin B. K. Damkroger M. E. Schlienger

1996-01-01

142

Radioactive Waste Control and Controversy: The History of Radioactive Waste Regulation in the UK  

Microsoft Academic Search

A hundred years on from the discovery of radioactivity, we have the first book describing the history of the regulation in the UK of the waste arising from its many uses. The first book? Believe it or not, yes. There have been others which provide commentaries on the development (or hapless evolution?) of policy per se and it would be

J H Jackson

1999-01-01

143

Dutch geologic radioactive waste disposal project  

NASA Astrophysics Data System (ADS)

Geologic disposal of radioactive waste is reviewed. The radionuclide release consequences of an accidental flooding of the underground excavations was studied. The results of the quantitative examples made for different effective cross sections of the permeable layer connecting the mine excavations with the boundary of the salt dome are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multilayer disposal configurations were analyzed and compared.

Hamstra, J.; Verkerk, B.

144

Issue briefs on low-level radioactive wastes  

SciTech Connect

This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

Not Available

1981-01-01

145

Vitrification Technologies for Treatment of Hazardous and Radioactive Waste.  

National Technical Information Service (NTIS)

The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. Several subgroups of vitrification technologies exist. Discussions of glass structure, applicable waste types, off gas treatment, te...

T. Voskuil

1992-01-01

146

Plasma Separation Process: Disposal of PSP Radioactive Wastes.  

National Technical Information Service (NTIS)

Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes...

1989-01-01

147

Legal Aspects of sub-Seabed Disposal of Radioactive Waste.  

National Technical Information Service (NTIS)

In connection with methods for disposal of highly radioactive waste, that consisting of burying such waste in the sub-seabed arouses an increasingly marked interest among specialists. Apart from the technical difficulties still to be overcome and current ...

P. Reyners

1981-01-01

148

Radioactive waste management in the former USSR. Volume 3.  

National Technical Information Service (NTIS)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union,...

D. J. Bradley

1992-01-01

149

HANDBOOK: VITRIFICATION TECHNOLOGIES FOR TREATMENT OF HAZARDOUS AND RADIOACTIVE WASTE  

EPA Science Inventory

The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. everal subgroups of vitrifications technologies exist. iscussions of glass structure, applicable waste types, off gas treatment, testing and evaluation proce...

150

Hanford radioactive solid waste packaging, storage, and disposal requirements  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This manual defines the requirements that must be met by waste generators for radioactive solid waste to be accepted by Westinghouse Hanford Company for storage or disposal at the 200 Area facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of radioactive solid waste. Requirements in the manual represent a compilation of state and federal regulations, US Department of Energy Orders, Hanford Site requirements, and other rules, regulations, guidelines, and standards as they apply to storage or disposal of radioactive solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements. 20 refs.

Stickney, R.G.

1988-09-01

151

The political science of radioactive waste disposal  

SciTech Connect

This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need for someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}

Jacobi, L.R. Jr. [Texas Los Level Radioactive Waste Disposal Authority, Austin, TX (United States)

1996-06-01

152

A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL  

SciTech Connect

This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

Arrenholz, D.A.; Knight, J.L.

1991-08-01

153

Controlled Containment, Radioactive Waste Management in the Netherlands  

SciTech Connect

All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

Codee, H.

2002-02-26

154

HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE  

SciTech Connect

This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.

Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A.; Savkin, A.E.; Varlakov, A.P.; Karlin, S.V.; Stefanovsky, S.V.; Karlina, O.K.; Semenov, K.N.

2003-02-27

155

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01

156

Radioactive Waste Information for 1998 and Record-To-Date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity; isotopic identity, origin, and status of radioactive waste for calendar year 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Integrated Waste Information System.

D. L. French; R. E. Tallman; K. A. Taylor

1999-07-01

157

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

Microsoft Academic Search

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt

S. A. Dmitriev; D. V. Adamovich; V. I. Demkin; E. M. Timofeev

2003-01-01

158

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01

159

Defense Waste Processing Facility radioactive operations -- Part 2, Glass making  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling.

Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

1996-12-31

160

Significance of radiation effects in solid radioactive waste  

SciTech Connect

Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10/sup 12/ rads, by alpha radiation up to 10/sup 19/ particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established.

Permar, P H; McDonell, W R

1980-01-01

161

Hydrothermal processing of radioactive combustible waste  

SciTech Connect

Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

1998-09-01

162

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Ungan, A. (Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering)

1991-01-01

163

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Ungan, A. [Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering

1991-12-31

164

Management and disposal of waste from sites contaminated by radioactivity  

NASA Astrophysics Data System (ADS)

Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of choice throughout the D & D process is stressed. The subject is introduced by a survey of the common types of radioactive contamination that must be managed and the more important hazards associated with each type. Comparisons are made among high level, transuranic, low level, and radioactive mixed waste, and technologically-enhanced, naturally-occurring radioactive material (TENORM). The development of appropriate clean-up criteria for each category of contaminated waste is described with the aid of examples drawn from actual practice. This includes a discussion of the application of pathway analysis to the derivation of residual radioactive material guidelines. The choice between interim storage and permanent disposal of radioactive wastes is addressed. Approaches to permanent disposal of each category of radioactive waste are described and illustrated with examples of facilities that have been constructed or are planned for implementation in the near future. Actual experience at older, existing, low-level waste disposal facilities is discussed briefly.

Roberts, Carlyle J.

1998-06-01

165

Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations  

Microsoft Academic Search

Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and

D. R. MacKenzie; C. R. Kempf

1986-01-01

166

Management of radioactive mixed wastes in commercial low-level wastes. Draft report for comment  

Microsoft Academic Search

Management options for three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general management targets adopted for mixed wastes are destruction, immobilization, and reclamation. Solidification, adsorption,

C. R. Kempf; D. R. MacKenzie; B. S. Bowerman

1986-01-01

167

Management and disposal of waste from sites contaminated by radioactivity  

Microsoft Academic Search

Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of

C. J. Roberts

1998-01-01

168

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41.

Pike, J.A.

2002-07-09

169

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38, and 41.

Jones (contact), R.T.

2003-02-18

170

Science and technology for disposal of radioactive tank wastes  

Microsoft Academic Search

One of the legacies of the Cold War is a huge stockpile of radioactive wastes generated by over 40 years of nuclear weapons production. Safe treatment and disposal of these wastes, together with the associated problems of facility decommissioning and site clean-up, represents one of the largest and most complex environmental challenges of the present-day. Amongst these nuclear wastes is

W. W. Schulz; N. J. Lombardo

1998-01-01

171

Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility  

SciTech Connect

This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

Gates, R.; Glukhov, A.; Markowski, F.

1996-06-01

172

Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions  

SciTech Connect

A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

Knieper, J.; May, K.; Printz, H.

1984-07-24

173

Polyoxometalates for radioactive waste treatment. 1998 annual progress report  

SciTech Connect

'This research is directed towards the use of polyoxoanions of the early transition metals (primarily tungsten) as possible sequestrants and storage matrices for lanthanide, actinide, and technetium species. The latter substances are important radioactive components of tank wastes from spent commercial nuclear fuel, but are present in low proportion by mass. Technetium is a particularly troublesome component because it is highly mobile in groundwater and is volatilized in vitrification processes currently under examination for long-term storage. Scientific goals: synthesis and characterization of new and selective polyoxotungstate complexes of Ln{sup 3+}, An{sup 4+}, UO{sub 2}{sup 2+}; exploration of stable polyoxoanions containing Tc (using, in the first instance, Re as a nonradioactive surrogate); thermal conversion of polytungstate complexes to tungsten bronze materials for their evaluation as inert storage matrices. This report summarizes the results after 20 months of a 3-year project.'

Pope, M.T.

1998-06-01

174

Analysis of organics in highly radioactive nuclear wastes  

Microsoft Academic Search

Analytical methods are being developed at Pacific Northwest Laboratory (PNL) for the organic analysis of nuclear wastes. In this study our laboratory analyzed the organic content of two highly radioactive wastes, a neutralized cladding removal waste (NCRW) and a volume reduction, double-shell slurry (DSS) waste. In-house methods were developed and U.S. Environmental Protection Agency (EPA) methods were modified for isolating

A. P. Toste; T. J. Lechner-Fish; D. J. Hendren; R. D. Scheele; W. G. Richmond

1988-01-01

175

Process and system for treatment of radioactive waste  

SciTech Connect

In a treatment system of radioactive waste solution including sodium sulfate generated from a boiling water type nuclear reactor, waste solution is fed into a thin film evaporator where the waste solution is evaporated and made into powder while precipitating in a peripheral surface of the evaporator vessel. The surface of the precipitated solid is wiped by rotating wiper blades and removed off as radioactive solid powder. The rotational speed of a rotor to which the wiper blades are secured is controlled at a minimum and necessary rotational speed which contributes to make the waste solution into the powder so that the rate of worn out of the wiper blade is decreased.

Chino, K.; Kudo, K.; Mura, H.; Oda, A.; Talcamuta, Y.

1985-07-02

176

Characterization of a ceramic waste form encapsulating radioactive electrorefiner salt  

SciTech Connect

Argonne National Laboratory has developed a ceramic waste form to immobilize radioactive waste salt produced during the electrometallurgical treatment of spent fuel. This study presents the first results from electron microscopy and durability testing of a ceramic waste form produced from that radioactive electrorefiner salt. The waste form consists of two primary phases: sodalite and glass. The sodalite phase appears to incorporate most of the alkali and alkaline earth fission products. Other fission products (rare earths and yttrium) tend to form a separate phase and are frequently associated with the actinides, which form mixed oxides. Seven-day leach test results are also presented.

Moschetti, T. L.; Sinkler, W.; DiSanto, T.; Noy, M.; Warren, A. R.; Cummings, D. G.; Johnson, S. G.; Goff, K. M.; Bateman, K. J.; Frank, S. M.

1999-11-11

177

Defense Waste Processing Facility Radioactive Operations - Year Two  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first high-level radioactive waste vitrification facility. This waste (130 million liters) which has been stored in carbon steel underground tanks and is now being pretreated, melted into a highly durable borosilicate glass and poured into stainless steel canisters for eventual disposal in a geologic repository. Following a ten-year construction period and nearly three-year nonradioactive test program, the DWPF began radioactive operations in March 1996. The first nine months of radioactive operations have been reported previously. As with any complex technical facility, difficulties were encountered during the transition to radioactive operations. Results of the second year of radioactive operations are presented in this paper. The discussion includes: feed preparation and glass melting, resolution of the melter pouring issues, improvements in processing attainment and throughput, and planned improvements in laboratory attainment and throughput.

Occhipinti, J.E.; Carter, J.T.; Edwards, R.E.; Beck, R.S.; Iverson, D.C.

1998-03-01

178

ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE  

EPA Science Inventory

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

179

Defense waste processing facility radioactive operations. Part 1 - operating experience.  

National Technical Information Service (NTIS)

The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioac...

D. B. Little J. T. Gee W. M. Barnes

1997-01-01

180

Summary Review of Rock Mechanics Workshop on Radioactive Waste Disposal.  

National Technical Information Service (NTIS)

Presentations, critiques and recommendations for the disposal of commercial radioactive waste based upon an analysis of the information presented at the Rock Mechanics Review/Workshop, Denver, Colorado, December 16-17, 1976 are summarized. The workshop, c...

N. L. Carter R. E. Goodman R. H. Merrill

1977-01-01

181

Soil gas surveying at low-level radioactive waste sites.  

National Technical Information Service (NTIS)

Soil gas sampling is a useful screening technique for determining whether volatile organic compounds are present at low-level radioactive waste burial sites. The technique was used at several DOE sites during the DOE Environmental Survey to determine the ...

A. B. Crockett K. S. Moor L. C. Hull

1990-01-01

182

Mitigation of Plant Penetration into Radioactive Waste Utilizing Herbicides.  

National Technical Information Service (NTIS)

This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective her...

G. R. Cox

1982-01-01

183

Radioactive Waste Management in Non-Nuclear Countries - 13070  

SciTech Connect

This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

Kubelka, Dragan; Trifunovic, Dejan [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)] [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)

2013-07-01

184

Supply, Operation and Radioactive Waste Disposal of Nuclear Power Plants.  

National Technical Information Service (NTIS)

The subject of 'Nuclear Fuel Cycle' is treated in 5 reports: 1. Uranium supply; 2. Fabrication and characteristics of fuel elements; 3. Design, operation and safety of nuclear power plants after Harrisburg; 4. Radioactive waste disposal of nuclear power p...

H. Mohrhauer M. Krey G. Haag J. Wolters E. Merz

1981-01-01

185

Conditioning of Medium- and Low-Level Liquid Radioactive Wastes.  

National Technical Information Service (NTIS)

The technology of the medium- and low-level liquid radioactive wastes conditioning is reviewed. Both the commercially available solidification processes, such as the cementation, the bituminization and the urea-formaldehyde solidification, and the process...

A. Donato

1982-01-01

186

Management of Radioactive Wastes: An Overview of the Indian Programme.  

National Technical Information Service (NTIS)

An overview of the management of radioactive wastes with particular reference to the Indian Nuclear Programme is presented. The initial design philosophy of the radwaste management system is discussed in relation to accepting a calculated, minimum dischar...

K. T. Thomas N. S. Sunder Rajan K. Balu A. A. Khan

1977-01-01

187

Assessment of recycling or disposal alternatives for radioactive scrap metal  

SciTech Connect

The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ``tiered`` concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [USDOE Assistant Secretary for Environmental Restoration and Waste Management, Washington, DC (United States). Office of Environmental Restoration; Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-10-01

188

A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal  

SciTech Connect

The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40°C and 28 days were 12 x 10-6 g?m-2 and 2.7 x 10-3 g?m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

Donald, Ian W.; Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

2007-03-31

189

Evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant.  

National Technical Information Service (NTIS)

Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements an...

W. T. Bartlett

1993-01-01

190

Scrap metals industry perspective on radioactive materials.  

PubMed

With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

Turner, Ray

2006-11-01

191

Economics of low-level radioactive waste disposal  

Microsoft Academic Search

Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the

J. Schafer; E. Jennrich

1983-01-01

192

Requirements for shipment of DOE radioactive mixed waste  

SciTech Connect

There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage.

Gablin, K.; No, Hyo; Herman, J.

1993-08-01

193

Dismantlement and radioactive waste management of North Korean nuclear facilities  

Microsoft Academic Search

One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

Jooho Whang; George Thomas Baldwin

2004-01-01

194

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

Microsoft Academic Search

One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

W. Jooho; G. T. Baldwin

2005-01-01

195

Geohazards due to technologically enhanced natural radioactive wastes  

Microsoft Academic Search

Human activities can modify naturally occurring radioactive material (NORM) into technologically enhanced naturally occurring\\u000a radioactive material (TENORM) as a result of industrial activities. Most of these industries do not intend to work with radioactive\\u000a material a priori. However, whenever a uranium- or thorium-bearing mineral is exploited, NORM-containing by-products and TENORM-contaminated\\u000a wastes are created. The industrial use of NORM can result

Friedrich Steinhäusler

2010-01-01

196

In situ electrochemical characterization of grouted radioactive waste  

SciTech Connect

At the Hanford Site, twenty-eight double-shell tanks (DST) and one hundred and forty nine single-shell tanks (SST) are used for storage of radioactive liquid and sludge wastes and sat cake. A fundamental goal of the Westinghouse Hanford Company is to end the current storage practice for liquid wastes and to permanently dispose of the waste. The Hanford Defense Waste Environmental Impact Statement and subsequent record of decision has identified a cement-based waste form for disposal of DST low-level liquid waste. The low level radioactive fractions of these wastes will be immobilized in a cementitious grout at the Hanford Grout Processing Facility and disposed of in concrete vaults of the Grout Disposal Facility. Prior to closing each vault, postcuring verification will show that the final product meets the performance requirements. Any long term disposal system of radioactive waste will require monitoring to warn against structural deterioration and/or leach of the radioactive or hazardous components into the environment. We are investigating the possibility of monitoring the degree of immobilization of the waste by embedding a grid of long-lasting electrodes in grout. This work describes our ongoing attempts to understand the physics and chemistry of charge carriers in the grout under various load conditions.

Gu, Jingyan; Shen, Wu-Mian; Tomkiewicz, Micha [Brooklyn Coll., NY (United States). Dept. of Physics; Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01

197

Greater-than-Class C low-level waste characterization. Appendix F: Greater-than-Class C low-level radioactive waste light water reactor projections  

SciTech Connect

This study characterizes potential greater-than-Class C low-level radioactive waste streams, estimates the amounts of waste generated, and estimates their radionuclide content and distribution. Several types of low-level radioactive wastes produced by light water reactors were identified in an earlier study as being potential greater-than-Class C low-level waste, including specific activated metal components and certain process wastes in the form of cartridge filters and decontamination resins. Light water reactor operating parameters and current management practices at operating plants were reviewed and used to estimate the amounts of potential greater-than-Class C low-level waste generated per fuel cycle. The amounts of routinely generated activated metal components and process waste were estimated as a function of fuel cycle. Component-specific radionuclide content and distribution was calculated for activated metals components. Empirical data from actual low-level radioactive waste streams were used to estimate radionuclide content and distribution for process wastes. The greater-than-Class C low-level waste volumes that could be generated through plant closure were also estimated, along with volumes and activities for potential greater-than-Class C activated metals generated at decommissioning.

Tuite, P.; Tuite, K.; Levin, A.; O`Kelley, M.

1991-08-01

198

State-of-the-art report on low-level radioactive waste treatment  

SciTech Connect

An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

Kibbey, A.H.; Godbee, H.W.

1980-09-01

199

Assessment of recycling or disposal alternatives for radioactive scrap metal  

SciTech Connect

The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-11-01

200

Leachability testing of metallic wastes.  

PubMed

The performance of two tests, a batch test and a percolation test for the characterization of waste as suggested in the EU council decision 2003/33/EC was investigated. The tests were carried out on two solid waste streams from a metal recycling industry. The concentrations of heavy metals such as Cu, Zn and Pb were more than one order of magnitude lower than the proposed limit values. Generally, batch test values were equal or higher than percolation test values. With the proposed test procedures both materials could be considered as non-dangerous wastes. The test performance was also investigated using a leachant with higher ionic strength instead of demineralized water as prescribed. The results clearly show a significant increase in the concentration of some heavy metals. Total concentrations of phenolic compounds and polychlorinated biphenyls were less than 1 p.p.m. and 2 p.p.b., respectively. The precision of the batch and the percolation tests were on average 48 and 35%, respectively. PMID:16273954

Svensson, Britt-Marie; Mĺrtensson, Lennart; Mathiasson, Lennart; Eskilsson, Linda

2005-10-01

201

78 FR 26812 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b...11005699. A radioactive total of 5,500 Energy of Canada waste). tons of low- Limited facilities as level waste). ``Ultimate Foreign...

2013-05-08

202

Annual Report - FY 2000, Radioactive Waste Shipments to and from the Nevada Test Site, March 2001  

SciTech Connect

This document reports the low-level radioactive waste, mixed low-level radioactive waste, and Polychlorinated Biphenyl contaminated low-level waste transported to or from the Nevada Test Site during fiscal year 2000.

U.S. Department of Energy, Nevada Operations Office

2001-03-01

203

Final repository for Denmark's low- and intermediate level radioactive waste  

NASA Astrophysics Data System (ADS)

Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Řster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risř should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risř, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

2012-12-01

204

Durability of containers for storing solidified radioactive wastes  

Microsoft Academic Search

Details are given of an analysis designed to identify materials suitable for storage of radioactive wastes incorporated into concrete or glass in above ground ambient air. Materials evaluated were carbon and low alloy steels, 304L steel, and Inconels 600 and 625. Wall thicknesses required for waste canisters were estimated from considerations of oxidation of the external surface, reaction with the

C. L. Angerman; W. N. Rankin

1978-01-01

205

RADIOACTIVE CONTAMINANT REMOVAL FROM WASTE WATER: ENGINEERING DESIGN FEATURES  

Microsoft Academic Search

The design and operation of a plant at Oak Ridge National Lab. on thc ; collection, treatment, and disposal of large volume (0.5 to 0.7 mgd), low-level ; radioactive liquid waste are described. The design of the lime-soda softening ; process treatment plant for the removal of Sr and the total rare earths from the ; process waste water is

Culbreath

1959-01-01

206

Thermocouple placement and hot spots in radioactive waste tanks  

Microsoft Academic Search

Analytical solutions to the differential equation describing the conduction of heat from an instantaneous point source were used to analyze the detectability of hot spots in radioactive waste tanks and the potential for thermally initiating runaway chemical reactions. Graphs are presented based upon diffusivities, times, temperatures and heat generation rates which are representative of conditions in the high?level liquid waste

James J. Barker

1996-01-01

207

Nuclear microprobe applications to radioactive waste management basic research  

Microsoft Academic Search

Radioactive waste management is one of the major technical and scientific challenge to be solved by industrialized countries near the beginning of the 21st century. Relevant questions arise about the extrapolation of the long term-behavior of materials from waste package, engineered barriers and near field repository. Whatever the strategical option might be, wet atmosphere or water intrusion through the different

P. Trocellier; V Badillo; N Barré; L Bois; C Cachoir; J. P Gallien; S Guilbert; F Mercier; C Tiffreau

1999-01-01

208

Process for immobilizing radioactive boric acid liquid wastes  

SciTech Connect

A method is described for immobilizing radioactive boric acid waste solutions comprising: neutralizing a boric acid waste solution containing radionuclides with calcium hydroxide and forming a precipitate, evaporating the precipitate to near dryness, and firing the dry precipitate to form a calcium borate glass product containing the radionuclides.

Greenhalgh, W.O.

1986-06-17

209

Test Operation Results of Radioactive Solid Waste Incinerator.  

National Technical Information Service (NTIS)

Test operation of radioactive solid waste incinerator, which is composed of furnace, high temperature filter and other off-gas treatment equipments, has been performed in Oarai, JAERI, with non-active wastes and chemical tracer such as Co, Sr and Cs. As a...

M. Abe Y. Sekiguchi M. Ouchi Y. Shinji N. Mito

1981-01-01

210

APPLICATION OF ADVANCED OXIDATIVE PROCESS IN TREATMENT RADIOACTIVE WASTE  

Microsoft Academic Search

The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement,

Cátia Kim; Solange K. Sakata; Rafael V. P. Ferreira; Julio T. Marumo

211

FOAMING IN RADIOACTIVE WASTE TREATMENT AND IMMOBILIZATION PROCESSES  

EPA Science Inventory

The physical mechanisms of the formation of foam in radioactive waste treatment and waste immobilization processes are poorly understood. The objective of this research is to develop a basic understanding of the mechanisms that produce foaming, to identify the key parameters whic...

212

Fernald's dilemma: Recycle the radioactively contaminated scrap metal, or bury it?  

Microsoft Academic Search

During the past 5 years, a number of US Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder

Katherine L. Yuracko; Stanton W. Hadley; Robert D. Perlack; Rafael G. Rivera; T. Randall Curlee

1997-01-01

213

Health risk and impact evaluation for recycling of radioactive scrap metal  

Microsoft Academic Search

The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes development of international inventory estimates

L. A. Nieves; S. Y. Chen; W. E. Murphie; M. J. Lilly

1994-01-01

214

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01

215

Metal decontamination for waste minimization using liquid metal refining technology  

Microsoft Academic Search

The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high

E. L. Jr. Joyce; B. Lally; B. Ozturk; R. J. Fruehan

1993-01-01

216

Synergistic Inhibitors for Dilute High-Level Radioactive Waste  

SciTech Connect

Cyclic potentiodynamic polarization scans were conducted to determine the effectiveness of various combinations of anodic inhibitors in the prevention of pitting in carbon steel exposed to dilute radioactive waste. Chromate, molybdate, and phosphate were investigated as replacements for nitrite, whose effective concentrations are incompatible with the waste vitrification process. The polarization scans were performed in non-radioactive waste simulants. Their results showed that acceptable combinations of phosphate with chromate and phosphate with molybdate effectively prevented pitting corrosion. Chromate with molybdate could not replace nitrite.

Wiersma, B.J.; Zapp, P.E.

1995-11-01

217

Radioactive waste-Portland cement systems: II, leaching characteristics  

SciTech Connect

Crystal chemical stabilization of radioactive wastes can be achieved during clinkering of ordinary portland cement. Crystallographic relations predict that the radionuclide partitioning in the anhydrous clinkered phases will be maintained in the hydration products. The resulting hydration products are considered to be cementitious hydroxylated radiophases. Simulated leaching experiments demonstrate that the hydroxylated phases are stable and that waste element release rates are lower than for other cementitious waste forms. The formation of tobermorite as a reaction product limits the release of cesium. Radionuclide fixation is described in the context of commercial waste-cement systems, but is applicable to transuranic, medium- and low-level wastes.

Jantzen, C.M.

1984-10-01

218

Flowsheets and source terms for radioactive waste projections  

SciTech Connect

Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

Forsberg, C.W. (comp.)

1985-03-01

219

Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes  

SciTech Connect

Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

2005-03-12

220

System for chemically digesting low level radioactive, solid waste material  

DOEpatents

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01

221

Removal of radioactive and other hazardous material from fluid waste  

DOEpatents

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03

222

Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections  

SciTech Connect

This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging.

Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

1994-09-01

223

Determination of noble metals in Savannah River Site high-level radioactive sludge  

SciTech Connect

High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

1990-12-31

224

Determination of noble metals in Savannah River Site high-level radioactive sludge  

SciTech Connect

High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

1990-01-01

225

Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement  

SciTech Connect

Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01

226

Review and evaluation of metallic TRU nuclear waste consolidation methods  

SciTech Connect

The US Department of Energy established the Commercial Waste Treatment Program to develop, demonstrate, and deploy waste treatment technology. In this report, viable methods are identified that could consolidate the volume of metallic wastes generated in a fuel reprocessing facility. The purpose of this study is to identify, evaluate, and rate processes that have been or could be used to reduce the volume of contaminated/irradiated metallic waste streams and to produce an acceptable waste form in a safe and cost-effective process. A technical comparative evaluation of various consolidation processes was conducted, and these processes were rated as to the feasibility and cost of producing a viable product from a remotely operated radioactive process facility. Out of the wide variety of melting concepts and consolidation systems that might be applicable for consolidating metallic nuclear wastes, the following processes were selected for evaluation: inductoslay melting, rotating nonconsumable electrode melting, plasma arc melting, electroslag melting with two nonconsumable electrodes, vacuum coreless induction melting, and cold compaction. Each process was evaluated and rated on the criteria of complexity of process, state and type of development required, safety, process requirements, and facility requirements. It was concluded that the vacuum coreless induction melting process is the most viable process to consolidate nuclear metallic wastes. 11 references.

Montgomery, D.R.; Nesbitt, J.F.

1983-08-01

227

Method for aqueous radioactive waste treatment  

DOEpatents

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

Bray, L.A.; Burger, L.L.

1994-03-29

228

TREATMENT OF A RADIOACTIVE CONDENSATE WASTE  

Microsoft Academic Search

The over-all process visualized for treating a waste such as Purex Tank ; Farm condensate is illustrated. The waste containing ammonia and organics along ; with a number of radioisotopes is fed to a steam stripper tower. The overhead ; vapors, representing about 5% of the waste, contain most of the ammonia and ; organics. Some radioiodine and radioruthenium are

Skarpelos

1963-01-01

229

Automated NDT Techniques in Radioactive Waste Management.  

National Technical Information Service (NTIS)

The prime NDT method selected for characterization of the waste is real-time x-radiography (RTR). An RTR system specifically designed for the TRU waste inspection is currently being used to develop the best techniques for waste certification. It is based ...

B. A. Barna B. W. Brown B. C. Anderson

1983-01-01

230

Radioactive waste management information for 1996 and record-to-date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and status of radioactive waste for calendar year 1996. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Radioactive Waste Management Information System.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1997-07-01

231

Civilian Radioactive Waste Management System Requirements Document  

SciTech Connect

The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further defining system element functions, decomposing requirements into significantly greater detail, and developing designs of system components, facilities, and equipment. The CRD addresses the identification and control of functional, physical, and operational boundaries between and within CRWMS elements. The CRD establishes requirements regarding key interfaces between the CRWMS and elements external to the CRWMS. Project elements define interfaces between CRWMS program elements. The Program has developed a change management process consistent with DOE Order 413.3-Change 1. Changes to the Secretarial Acquisition Executive and Program-level baselines must be approved by a Program Baseline Change Control Board. Specific thresholds have been established for identifying technical, cost, and schedule changes that require approval. The CRWMS continually evaluates system design and operational concepts to optimize performance and/or cost. The Program has developed systems analysis tools to assess potential enhancements to the physical system and to determine the impacts from cost saving initiatives, scientific and technological improvements, and engineering developments. The results of systems analyses, if appropriate, are factored into revisions to the CRD as revised Programmatic Requirements.

C.A. Kouts

2006-05-10

232

Understanding Low-Level Radioactive Waste. National Low-Level Radioactive Waste Management Program.  

National Technical Information Service (NTIS)

Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level wast...

1983-01-01

233

''Foaming in Radioactive Waste Treatment and Immobilization Processes''  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) is responsible for the safe storage, processing and immobilization of the High Level (radioactive) Waste (HLW) currently stored in approximately fifty million-gallon underground storage tanks. Foam is present in many areas of the HLW processing including HLW chemical processing, HLW evaporation and HLW cesium decontamination. Foam impacts the production rates of each of these facilities. The presence of foam during chemical processing and evaporation steps leads to slower production rates in the high level waste evaporators and in the Defense Waste Processing Facility (DWPF) waste pretreatment and may lead to higher capital costs or slower production in cesium decontamination. Also, excessive foam causes radioactive contamination of the condensate and equipment. Hence, the objective of this research is to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming.

Wasan, Darsh T.

2000-06-01

234

SOLID RADIOACTIVE WASTE TREATMENT INITIATIVES FOR NUCLEAR SUBMARINE DECOMMISSIONING WASTES UNDER THE AMEC PROGRAM  

Microsoft Academic Search

The volume of solid radioactive waste (SRW) generated from decommissioning Russia's nuclear submarines far exceeds existing SRW management capabilities of the Russian Northern Fleet. Inadequate management of this waste poses a substantial threat for pollution of the fragile Arctic environment. The Arctic Military Environmental Cooperation (AMEC) Project 1.3 has assessed waste treatment options, selected technologies, and is now designing and

Andrew Griffith

2001-01-01

235

Radioactive material inventory control at a waste characterization facility  

SciTech Connect

Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility`s nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the {open_quotes}Radioactive Material Inventory System{close_quotes} (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded.

Yong, L.K.; Chapman, J.A.; Schultz, F.J. [Oak Ridge National Laboratory, TN (United States)

1996-06-01

236

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOEpatents

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14

237

Radioactive waste minimization at a large academic medical facility.  

PubMed

The University of Texas Medical Branch (UTMB) at Galveston is a large academic medical center with about 12,700 employees, 350 radioisotope research labs and 200 permitted radioactive materials users. Consequently, UTMB generates a fairly large amount of radioactive waste. The majority of this waste contains short-lived radionuclides, such as 32P, 33P, and 35S, which are held for decay and then disposed at a sanitary landfill. However, some waste, including long-lived waste and stock vials, is compacted into drums and stored in a warehouse facility, on-site, until disposal at a low-level radioactive waste (LLRW) facility. Space in the warehouse is limited but disposal is currently cost prohibitive. A reevaluation of our program was conducted to see if volumes of LLRW requiring disposal at a commercial LLRW facility could be reduced. A reevaluation of the waste streams resulted in the shifting of most of the material that was being drummed for shipment to a LLRW facility to disposal by landfill or incineration. Materials that were previously assumed to be radioactive are now being evaluated prior to disposal to determine if they may be disposed of as non-radioactive waste. Following the initial evaluation, the amount of compacted dry solids assumed to contain long-lived radionuclides was reduced. The space that was saved due to the decrease in drumming for disposal is now used to hold the increased volume of decay-in-storage material. The monetary savings will amount to about $45,000 per year. This program is currently being expanded to reduce other waste streams at the university. PMID:12003027

Krieger, Kenneth; Van Baalen, Mary; Walters, Christopher

2002-05-01

238

Automated NDT techniques in radioactive waste management  

Microsoft Academic Search

The prime NDT method selected for characterization of the waste is real-time x-radiography (RTR). An RTR system specifically designed for the TRU waste inspection is currently being used to develop the best techniques for waste certification. It is based on a standard 420 kV constant potential x-ray machine with a rare-earth fluorescing screen (gadolinium oxysulfide) functioning as an image converter.

B. A. Barna; B. W. Brown; B. C. Anderson

1983-01-01

239

Measurement and calibration of metal and non-metal wastes produced from decommissioning.  

PubMed

This report described a radioactive waste reference drum which was established with large-area sources and metal slices. This reference drum could be applied in calibration or testing of drum counting systems having 4? counting geometry and being made with plastic scintillators. This metal reference drum has the advantages of easy operation, low natural background and it also has agreeable measurement efficiency calibration curves for the drum counting system as the non-metal reference drum studied previously. On the other hand, this study explored the counting efficiency variations of the drum counting system by simulations of the metal reference drum being filled with wastes up to different heights within the drum. With the exploration, it is feasible to correct the measurement errors caused by different quantities of waste filling. PMID:24342558

Yeh, Chin-Hsien; Yuan, Ming-Chen

2014-05-01

240

Stirring system for radioactive waste water storage tank  

SciTech Connect

A stirring system for 100-m[sup 3] radioactive liquid waste tanks was constructed to unify radioactive concentrations in the tank. The stirring system is effective in certifying that the radioactive concentrations in the tanks are less than the legal limits before they are drained away as waste liquid. This system is composed of discharge units, pipe lines, and a controller. The performance of the system was assessed by comparing the calculated red ink and [sup 32]P concentrations with those monitored at six locations in the tanks. The concentration reached equilibrium after stirring 60 o 120 min with discharge units equipped with six fixed openings configured in differing directions. Residual chlorine in city water used for dilution occasionally bleached the red ink and reduced its concentration. The adsorption of [sup 32]P by slime on the walls of the tanks storing actual waste water lowered the equilibrium concentration.

Ogata, Yoshimune; Nishizawa, Kunihide (Nagoya Univ. (Japan). Radioisotope Research Center)

1999-07-01

241

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

242

Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive  

SciTech Connect

This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for Biofilm Engineering (CBE), (Dr. Brent Peyton at) the WSU/NSF IGERT Center for Multiphase Environmental Research (CMER) at Washington State University (WSU), and (Drs. William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US Department of Energy. The project is designed to evaluate the possibility to develop a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We are seeking to gain a better understanding of microbial transformation of chromium, uranium, and carbon tetrachloride by Cellulomonas spp. in simulated subsurface environments.

Gerlach, Robin

2005-06-01

243

Nuclear power and radioactive waste management  

Microsoft Academic Search

The generation of electrical power by nuclear means leads to a very considerable reduction in the quantities of waste which would result from the use of any other fuel. The wastes possess particular hazards which diminish with time. They are most dangerous during the first 500 years whilst fission products are decaying; subsequently their toxicity is comparable with that of

F. S. Feates

1978-01-01

244

Electrically fired incineration of combustible radioactive waste  

Microsoft Academic Search

Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing,

D. Charlesworth; M. Hill

1985-01-01

245

ENGINEERING GEOLOGY OF RADIOACTIVE WASTE DISPOSAL  

Microsoft Academic Search

Three possible methods for future waste disposal are now being ; investigated: fixation in or as solids, disposal into salt, and disposal into ; deep porous formations. The fixation methods now under investigation all involve ; heating the waste, are expensive, and are dangerous to the operators, but the ; solid product once formed would probably be no further hazard.

de Laguna

1962-01-01

246

Potential of pottery materials in manufacturing radioactive waste containers.  

PubMed

Various pottery materials were evaluated for possible use in manufacturing containers for radioactive waste. Their potential was examined from the viewpoints of the effectiveness of disposal and the changes induced in them by gamma rays. Samples of these materials were irradiated with high-energy neutrons and gamma rays in a reactor near its core. the physical and mechanical properties of the materials before and after gamma irradiation (in a 60Co gamma cell) were compared. The study showed that pottery materials are resistant to radiation. Therefore, they were proposed for manufacturing drums for disposal of radioactive waste of high gamma activity. PMID:12878117

Helal, A A; Alian, A M; Aly, H M; Khalifa, S M

2003-07-01

247

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16

248

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16

249

The Defense Waste Processing Facility: Two Years of Radioactive Operation  

SciTech Connect

The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

1998-05-01

250

Radioactive Waste Treatment Using Cement-Glass Solidification Technique  

Microsoft Academic Search

A new radioactive waste treatment system has been developed from the viewpoint of minimizing the volume and then solidifying the waste into a stable form. Emphasis has been placed on long term stability in the final disposal environment by solidification using a new inorganic agent (cement-glass).The primary components of the cement-glass are sodium silicate and phosphorous silicate. The mixing of

Makoto KIKUCHI; Kooichi CHINO; Takashi NISHI; Hiroyuki TSUCHIYA; Naokazu SUMITANI; Osamu AMANO

1992-01-01

251

Theoretical modeling of crevice and pitting corrosion processes in relation to corrosion of radioactive waste containers  

SciTech Connect

A mathematical and numerical model for evaluation of crevice and pitting corrosion in radioactive waste containers is presented. The model considers mass transport, mass transfer at the metal/solution interface, and chemical speciation in the corrosion cavity. The model is compared against experimental data obtained in artificial crevices. Excellent agreement is found between modeled and experimental values. The importance of full consideration of complex ion formation in the aqueous solution is emphasized and illustrated. 10 refs., 5 figs.

Walton, J.C. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1989-09-09

252

Ion Exchange Characteristics of Palladium and Ruthenium from a Simulated Radioactive Liquid Waste  

Microsoft Academic Search

Radioactive high-level liquid wastes contain significant quantities of platinum group metals (PGM), such as palladium [Pd(II)], rhodium [Rh(III)], and ruthenium [Ru(III)]. The PGM are produced as fission products in nuclear reactors. In this study, batch and column experiments were carried out to investigate the ion exchange characteristics of Pd(II) and Ru(III), including the effects of the ionic group of ion

S. H. Lee; H. Chung

2003-01-01

253

Results of field testing of radioactive waste forms using lysimeters  

SciTech Connect

The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed.

McConnell, J.W., Jr.; Rogers, R.D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Jastrow, J.D. (Argonne National Lab., IL (United States)); Wickliff, D.S. (Oak Ridge National Lab., TN (United States))

1992-01-01

254

Results of field testing of radioactive waste forms using lysimeters  

SciTech Connect

The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed.

McConnell, J.W., Jr.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Jastrow, J.D. [Argonne National Lab., IL (United States); Wickliff, D.S. [Oak Ridge National Lab., TN (United States)

1992-08-01

255

Automated NDT techniques in radioactive waste management  

SciTech Connect

The prime NDT method selected for characterization of the waste is real-time x-radiography (RTR). An RTR system specifically designed for the TRU waste inspection is currently being used to develop the best techniques for waste certification. It is based on a standard 420 kV constant potential x-ray machine with a rare-earth fluorescing screen (gadolinium oxysulfide) functioning as an image converter. The low-light-level image produced on the screen is picked up by a CCTV camera with an image intensifier coupled to a plumbicon imaging tube. The system was designed for automated waste container handling and translation. Image analysis is not currently automated, although the CCTV image is digitized to allow signal averaging and edge enhancement through digital filtering. The digitized image is available through an IEEE 488 I/O port for more sophisticated computerized analysis.

Barna, B.A.; Brown, B.W.; Anderson, B.C.

1983-01-01

256

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01

257

Treatment of Radioactive Reactive Mixed Waste  

Microsoft Academic Search

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has

S. Colby; Z. Turner; D. Utley; C. Duy

2006-01-01

258

Design and Construction of Deinococcus radiodurans for Biodegradation of Organic Toxins at Radioactive DOE Waste Sites  

SciTech Connect

Immense volumes of radioactive waste, generated from nuclear weapons production during the Cold War, were disposed directly to the ground. The current expense of remediating these polluted sites is driving the development of alternative remediation strategies using microorganisms. The bacterium Deinococcus radiodurans is the most radiation resistant organism known and can grow in highly irradiating (>60 Gray/h) environments (1). Numerous microorganisms (e.g., Pseudomonas sp.) have been described, and studied in detail, for their ability to transform and degrade a variety of organic pollutants (e.g., toluene), present at many radioactive DOE waste sites. Detoxification of the organic toxins at these sites is an important goal in remediating or stabilizing contaminated sites as well as preventing their further dissemination. The aim of this project is to engineer strains of D. radiodurans that are capable of degrading organic/aromatic hydrocarbons present in radioactive mixed waste sites--sites that contain mixtures of toxic organic compounds, radionuclides and heavy metals. Conventional bioremediating organisms are unable to survive at many of these sites because of their sensitivity to radiation. Generally, microorganisms are sensitive to the damaging effects of ionizing radiation, and most of the bacteria currently being studied as candidates for bioremediation are no exception. For example, Pseudomonas sp. is very sensitive to radiation (more sensitive than E. coli) and is not suited to remediate radioactive wastes. Therefore, radiation resistant microorganisms that can remediate toxic organic compounds need to be found in nature or engineered in the laboratory to address this problem.

Daly, Michael J.; Fredrickson, James K.; Wackett, Lawrence P.

1999-06-01

259

Selected problems of minimization and management of radioactive wastes from nuclear power plant decommissioning. Part 2.  

National Technical Information Service (NTIS)

The processing prior to storage of radioactive wastes produced in nuclear power plant decommissioning is described as are the types of containers employed for waste transport and/or disposal. Data are summarized on exposure of personnel to radioactivity r...

M. Kyrs A. Moravec

1988-01-01

260

Analysis of the Total System Life Cycle Cost of the Civilian Radioactive Waste Management Program.  

National Technical Information Service (NTIS)

The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program represents the Office of Civilian Radioactive Waste Management's most recent estimate of the costs to dispose of the Nation's spent nuclear fuel ...

2001-01-01

261

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01

262

Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect

The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

Not Available

1991-07-01

263

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21

264

Process for Decontaminating Radioactive Waste Water Using a Ferrofluid and Magnetic Separation.  

National Technical Information Service (NTIS)

The present invention provides a process for decontaminating radioactive waste water containing a radioactive element that forms a water-insoluble compound. This process includes the steps of forming the compound of the radioactive element, treating the r...

G. L. Silver

1980-01-01

265

Immobilization of hazardous and radioactive wastes into glass structures  

SciTech Connect

As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions.

Wicks, G.G.

1997-10-01

266

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01

267

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01

268

ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE  

EPA Science Inventory

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

269

Disposal of Radioactive Waste at Hanford Creates Problems  

ERIC Educational Resources Information Center

Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

Chemical and Engineering News, 1978

1978-01-01

270

Method of storing radioactive wastes using modified tobermorite  

DOEpatents

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, Sridhar (State College, PA); Roy, Della M. (State College, PA)

1985-01-01

271

RADIOACTIVE CONTAMINANT REMOVAL FROM WASTE WATER: EVALUATION OF PERFORMANCE  

Microsoft Academic Search

The design and operation of a plant at the Oak Ridge National Lab. for ; the collection, treatment, and disposal of large volume (0.5 to 0.7 mgd). low ; level radioactive liquid waste is described. The performance of the lime-soda ; softening process treatment plant for the removal of Sr and other materials is ; described. (auth);

K. E. Cowser; R. J. Morton

1959-01-01

272

Iraq Liquid Radioactive Waste Tanks Maintenance and Monitoring Program Plan.  

National Technical Information Service (NTIS)

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximate...

E. Sol Shamsaldin J. R. Cochran M. L. Dennis

2011-01-01

273

Method of storing radioactive wastes using modified tobermorite  

SciTech Connect

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1985-08-27

274

USDOE Activities in Low-Level Radioactive Waste Treatment.  

National Technical Information Service (NTIS)

This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US...

J. E. Vath

1981-01-01

275

Management of radioactive waste from nuclear power plants.  

National Technical Information Service (NTIS)

Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Ri...

1993-01-01

276

LOW AND MEDIUM LEVEL RADIOACTIVE WASTE REPOSITORY: RISK PERCEPTION  

Microsoft Academic Search

This paper focuses on the risk perception associated to the installation of low and intermediate level radioactive waste (LLRW and ILRW) disposal facilities. The purpose is to give support for the implementation of a repository in Brazil. Public acceptance results from a long term work and trust is vital for the process as it takes long to be conquered but

Afonso Rodrigues de Aquino; Lilian de Oliveira Bueno; Martha Marques Ferreira Vieira; Edvaldo Roberto; Sandra Aparecida Bellintani

277

Materials evaluation in a low-level radioactive waste incinerator  

Microsoft Academic Search

This paper reports performances of alloys in a low-level radioactive, combustible waste incinerator evaluated. Test coupons and an extracted heat exchanger tube were examined to provide information on alloy behavior in the off-gas system of this facility. Type 316 stainless steel, the alloy of which the heat exchanger is constructed, was most extensively examined. Coupons exposed upstream of the heat

G. R. Smolik; J. D. Dalton

1989-01-01

278

Remote automated material handling of radioactive waste containers  

Microsoft Academic Search

To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker\\/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in

Greager

1994-01-01

279

“Reference Biospheres” for solid radioactive waste disposal: the BIOMASS Methodology  

Microsoft Academic Search

The BIOMASS Theme 1 project has developed a methodology for the logical and defensible construction of ‘assessment biospheres’: mathematical representations of biospheres used in the total system performance assessment of radioactive waste disposal. The BIOMASS Methodology provides a systematic approach to decision making, including decisions on how to address biosphere change.The BIOMASS Methodology was developed through consultation and collaboration with

I. G. Crossland; P. Pinedo; J. H. Kessler; C. Torres-Vidal; B. Walters

2005-01-01

280

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment  

SciTech Connect

This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

2012-11-01

281

Radioactive waste acceptance team and generator interface yields successful implementation of waste acceptance criteria  

SciTech Connect

The Fernald Environmental Management Project has developed a successful Low Level Waste Shipping Program in compliance with the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325, Revision 1. This shipping program is responsible for the successful disposal of more than 4 million cubic feet of Low Level Waste over the past decade. The success of the Fernald Low Level Waste Shipping Program is due to the generator program staff working closely with the DOE-NV Radioactive Waste Acceptance Program Team to achieve win/win situations. The teamwork is the direct result of dedicated, proactive professionals working together toward a common objective: the safe disposition of low level radioactive waste. The growth and development of this program has many lessons learned to share with the low level waste generating community. The recognition of reciprocal interests enables consistently high annual volumes of Fernald waste disposal at the Nevada Test Site without incident. The large volumes successfully disposed serve testimony to the success of the program which is equally important to all Nevada Test Site and Fernald stakeholders. The Fernald approach to success is currently being shared with other low-level waste generators through DOE-NV sponsored outreach programs. This paper introduces examples of Fernald Environmental Restoration Management Corporation contributions to the DOE-NV Radioactive Waste Acceptance Program outreach initiatives. These practices are applicable to other low level waste disposal programs whether federal, commercial, domestic or international.

Rowe, J.G. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Griffin, W.A.; Rast, D.M. [USDOE, Washington, DC (United States)

1996-02-01

282

Integrated approach to hazardous and radioactive waste remediation  

SciTech Connect

The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

Hyde, R.A.; Reece, W.J.

1994-11-01

283

Management of ocean disposal of radioactive wastes: a basis for the control of other pollutants  

SciTech Connect

To manage, on a scientific basis, the quantities of all kinds of waste disposal to coastal waters and open oceans it is necessary to assess the environmental or assimilative capacity for these materials which will not result in an unacceptable biological impact upon the components of the ecosystem nor on man who uses its resources. One approach available is that which has been demonstrated for the management of the disposal of radioactive wastes to the oceans. Methodologies have been developed, both generic and site-specific, which allow the relationship between discharge or release rate and the radiation dose to be established. Guidelines and recommendations which govern acceptable radiation exposed to man have been developed by the International Commission on Radiological Protection (ICRP). These methodologies developed for the control of radioactive wastes can be applied directly for public health protection for non-radioactive wastes such as metals and organochlorine pesticides. ICRP recommendations on justification and optimization can be integrated into an overall management philosophy in order to quantify alternative waste disposal options.

Templeton, W.L.

1981-09-01

284

Radioactive Waste Management Information for 1991 and Record-to-Date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1991. It also summarizes the radiative waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

Litteer, D.L.; Peterson, C.N.; Sims, A.M.

1993-04-01

285

Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia  

Microsoft Academic Search

The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia

K. Kravarik; M. Stubna; A. Pekar; T. Krajc; M. Zatkulak; Z. Holicka; M. Slezak

2006-01-01

286

The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation  

Microsoft Academic Search

The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia

T. Krajc; M. Stubna; K. Kravarik; M. Zatkulak; M. Slezak; V. Remias

2007-01-01

287

Modelling Sequential BIOsphere Systems under CLIMate Change for Radioactive Waste Disposal. Project BIOCLIM  

Microsoft Academic Search

The BIOCLIM project (Modelling Sequential BIOsphere systems under CLIMate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three -year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that

D. Texier; P. Degnan; M. F. Loutre; G. Lemaître; M. Thorne

288

Low-level radioactive waste management at the Nevada Test Site -- Current status  

Microsoft Academic Search

The performance objectives of the Department of Energy`s Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of

B. D. Becker; B. M. Crowe; C. P. Gertz; W. A. Clayton

1999-01-01

289

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01

290

AIRSOURC code aerosol model in radioactive waste tanks  

SciTech Connect

An aerosol model was developed for a radioactive waste tank vapor space and ventilation system. The source of aerosol formation was modeled from gas bubble bursts at the liquid surface. The gases contained in these bubbles are formed by radiolytic breakdown of liquid and organic materials in the radioactive tank contents. The model accounts for the rate of radiolytic gas formation and the rate of tank liquids that are released as aerosols. The concentration of particles in the tank vapor are modeled as a function of the deposition rate of dry particles and the vapor removal rate by ventilation. The ventilation rate in tanks without an active ventilation system has a threshold level that is driven by atmospheric pressure variation. The model predictions are compared to measurements in several typical waste tank vapors of the Hanford Site waste storage tanks.

Roblyer, S.P.

1994-01-01

291

RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS  

SciTech Connect

High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

Fox, K.

2010-09-07

292

Management of radioactive waste from nuclear power plants: An overview  

SciTech Connect

The nuclear power industry, which accounts for about 20% of the total electricity supply, is a vital part of the nation`s energy resource. While it generates approximately one-third of the commercial low-level radioactive waste produced in the country, it has achieved one of the most successful examples in waste minimization. On the other hand, progress on development of new disposal facilities by the state compacts is currently stalled. The milestones have been repeatedly postponed, and the various Acts passed by Congress on nuclear waste disposal have not accomplished what they were intended to do. With dwindling access to waste disposal sites and with escalating disposal costs, the power plant utilities are forced to store wastes onsite as an interim measure. However, such temporary measures are not a permanent solution. A national will is sorely needed to break out of the current impasse.

Devgun, J.S.

1994-07-01

293

Radioactive waste disposal in the marine environment  

Microsoft Academic Search

In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean

D. R. Anderson

1981-01-01

294

Development and application of a radioactivity characterization system for low-level radioactive waste  

NASA Astrophysics Data System (ADS)

Low-level technological radioactive wastes, in Spain, are commonly produced in research and medical centers. These wastes must be characterized before conditioning in order to determine their radioactive content for inventory purposes. A prototype has been designed for beta-gamma radiological characterization of standardized 25 l bags containing heterogeneous low-density technological radioactive wastes within the density range 0.05-0.6 g/cm 3. The system consists of an iron shielding box with three NaI(Tl) and a silicon implanted detectors for gamma and gross beta activity determinations, respectively. The study of the measurement method, carried out with rotating scanning, included the optimization of the detection solid angle to minimize the uncertainties and the influence of the relative position of the radioactive material. Several materials and densities, in the range aforementioned, were considered to obtain the experimental attenuation factors, used for fitting a correction algorithm in function of density and ?-emission energy. The sensitivity of this method, calculated for the most frequent average density of this kind of waste (0.1 g/cm 3), is lower than 50 Bq/kg for the main ?- ? emitters ( 137Cs and 60Co) and lower than 480 Bq/kg for gross beta activity.

Espartero, A. G.; Pińa, G.; Suárez, J. A.

1999-02-01

295

Method and device for incinerating radioactive wastes and preparing burnable wastes for non-polluting storage  

Microsoft Academic Search

An apparatus for incinerating radioactive wastes includes a furnace which has air inlet conduits and a flue gas outlet conduit and air heaters as well as blowers connected to the air inlets for forcing hot air into the furnace. The apparatus further has a feeding device connected to the charging end of the furnace for introducing liquid or solid wastes

Hempelmann

1975-01-01

296

Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects  

SciTech Connect

Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

Bickford, D.F.; Choi, A.S.

1991-12-31

297

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation...HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

2009-01-01

298

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation...HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

2010-01-01

299

Behavior of radioactive iodine and technetium in the spray calcination of high-level waste  

SciTech Connect

The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In this facility, which is installed in a radiochemical cell, small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. Initial operations were completed with nonradioactive, simulated waste solutions (Knox, Siemens and Berger 1981). The first radioactive operations in this facility were performed with a simulated, commercial waste composition containing tracer levels of /sup 99/Tc and /sup 131/I. This report describes the facility and test operations and presents the results of the behavior of /sup 131/I and /sup 99/Tc during solidification of radioactive liquid wastes. During the spray calcination of commercial high-level liquid waste spiked with /sup 99/Tc and /sup 131/I, there was a 0.3 wt% loss of particulates, a 0.15 wt% loss of /sup 99/Tc and a 31 wt% loss of /sup 131/I past the sintered-metal filters. These filters and a venturi scrubber were very efficient in removing particulates and /sup 99/Tc from the off-gas stream. Liquid scrubbers were not efficient in removing /sup 131/I, as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents will be needed to remove iodine. For all future RLSWTF operations where iodine is present, a silver zeolite adsorber will be used.

Knox, C.A.; Farnsworth, R.K.

1981-08-01

300

In situ vitrification of a mixed radioactive and hazardous waste site  

SciTech Connect

A large-scale test of the in situ vitrification (ISV) process was performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington State. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many US Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground. The goals of the test are to demonstrate at least 99% retention of fission products and hazardous metals in the ISV glass during the test; demonstrate the ability of the ISV off-gas treatment system to process a waste site containing significant quantities of combustible material and demonstrate the ability of ISV to vitrify the site to a depth of 20 ft or greater. The test was completed in April 1990. 5 figs.

Campbell, B.E.; Koegler, S.S.

1990-11-01

301

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01

302

Electrically fired incineration of combustible radioactive waste  

SciTech Connect

Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs.

Charlesworth, D.; Hill, M.

1985-01-01

303

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

SciTech Connect

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15

304

Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3  

SciTech Connect

This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

McVey, C.B.

1994-10-13

305

RADIOACTIVE WASTE DISPOSAL IN THE SHIPROCK-TYPE URANIUM MILLING FLOWSHEET  

Microsoft Academic Search

A study was made of possible modifications in conventional uranium ore-; processing steps to confine and permit controlled disposal of radioactive wastes. ; A potential method of minimizing pollution from radioactive nuclides, principally ; radium-226, in uranium mill waste streams is to reuse the waste solutions within ; the mill. Such reuse of waste solution in the Kerr-McGee Shiprock-type process

K. E. Tame; E. G. Valdez; J. B. Rosenbaum

1961-01-01

306

Determination of Iodine-129 in Low Level Radioactive Wastes - 13334  

SciTech Connect

For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

2013-07-01

307

Does fully radioactive glass behave differently than simulated waste glass  

SciTech Connect

There has been interest in the comparison of the leach behavior between fully radioactive and simulated nuclear waste glasses, to assess the differences in reaction mechanism, type, and sequence of secondary phases, and the relative durability among the two types of glasses. The results from these comparisons will provide confidence in the use of the large amount of the data generated in the studies of simulated nuclear waste glass for the modeling of performance of radioactive glasses. Most of the previous comparison studies have been performed at a low to intermediate ratio of glass surface area to solution volume and for time periods of less than one year. These studies have generally concluded there is a little difference in leach behavior between the two glass types. This study reinvestigates that conclusion by utilizing an extensive test matrix, with SA/V ranging between 340 to 20,000 m[sup 1] on three waste glass compositions, for time periods planned up to eight years. The early results are consistent with other studies, in that the leach behavior of simulated waste glasses is similar to that of fully radioactive glasses. However, the longer-term tests at higher SA/V suggest that the leach behavior of the two types of glass diverges, under certain conditions. The longer-term comparison of the leach behavior is discussed.

Feng, X.; Bates, J.K.; Bradley, C.R.; Buck, E.C.

1992-01-01

308

Does fully radioactive glass behave differently than simulated waste glass?  

SciTech Connect

There has been interest in the comparison of the leach behavior between fully radioactive and simulated nuclear waste glasses, to assess the differences in reaction mechanism, type, and sequence of secondary phases, and the relative durability among the two types of glasses. The results from these comparisons will provide confidence in the use of the large amount of the data generated in the studies of simulated nuclear waste glass for the modeling of performance of radioactive glasses. Most of the previous comparison studies have been performed at a low to intermediate ratio of glass surface area to solution volume and for time periods of less than one year. These studies have generally concluded there is a little difference in leach behavior between the two glass types. This study reinvestigates that conclusion by utilizing an extensive test matrix, with SA/V ranging between 340 to 20,000 m{sup 1} on three waste glass compositions, for time periods planned up to eight years. The early results are consistent with other studies, in that the leach behavior of simulated waste glasses is similar to that of fully radioactive glasses. However, the longer-term tests at higher SA/V suggest that the leach behavior of the two types of glass diverges, under certain conditions. The longer-term comparison of the leach behavior is discussed.

Feng, X.; Bates, J.K.; Bradley, C.R.; Buck, E.C.

1992-12-31

309

Confinement matrices for low- and intermediate-level radioactive waste  

NASA Astrophysics Data System (ADS)

Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow-seated repositories in various geological media, and the use of inexpensive borosilicate glass.

Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

2012-02-01

310

Equipment and techniques for remote sampling of stored radioactive waste  

SciTech Connect

Several tools have been developed at the Savannah River Site (SRS) to remotely sample stored radioactive waste. These sampling tools have been developed to determine the chemical characteristics of the waste prior to processing. The processing of waste material varies according to the chemical characteristics of the waste, which change due to additions, settling, mixing, and chemical reactions during storage. Once the waste has been sampled to identify its characteristics, the chemical composition of the waste can then be altered if needed to prepare for processing. Various types of waste material in several types of containment must be sampled at SRS. Stored waste materials consist of liquids, floating organics, sludge, salt and solids. Waste is stored in four basic types of tanks with different means of access and interior obstructions. The waste tanks can only be accessed by small openings: access ports, risers and downcomers. Requirements for sampling depend on the type of tank being accessed, the waste within the tank, and the particular location in the tank desired for taking the sample. Sampling devices have been developed to sample all of the waste material forms found in the SRS tank farms. The fluid type samplers are capable of sampling surface liquid, subsurface liquid at varying depth, surface sludge, subsurface sludge, and floating organics. The solid type samplers are capable of sampling salt, sampling a solid layer on the bottom of the tank, and capturing a small solid mass on the tank bottom. The sampling devices are all designed to access the tanks through small access ports. The samplers are reusable and are designed to allow quick transfer of the samples to shielded packaging for transport, reducing the amount of radiation exposure to sampling personnel. The samplers weigh less than 100 lb. and are designed in sections to allow easy disassembly for storage and transport by personnel. (Abstract Truncated)

Nance, T.A. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-11-20

311

Method for making radioactive metal articles having small dimensions  

DOEpatents

A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

Ohriner, Evan K. (Knoxville, TN)

2000-01-01

312

Integrated AMP–PAN, TRUEX, and SREX testing. II. Flowsheet testing for separation of radionuclides from actual acidic radioactive waste  

Microsoft Academic Search

Three separation processes for the removal of selected fission products, actinides, and Resource Conservation and Recovery Act metals (mercury and lead) have been integrated successfully and tested using actual acidic radioactive waste at the Idaho National Engineering and Environmental Laboratory (INEEL). The separation processes integrated were ion exchange for Cs removal, followed by TRUEX solvent extraction for actinide, Hg, and

J. D. Law; R. S. Herbst; T. A. Todd

2002-01-01

313

Radioactive waste management approaches for developed countries  

SciTech Connect

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, ALSEP, EXAM, or LUCA are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

2013-07-01

314

77 FR 52072 - Request To Amend a License to Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...beneficial reuse 02 11005700. waste including tons or about and processing...fluids, with various conforming animal radionuclides in materials and...and varying radioactive human-animal combinations. waste that is waste) Activity...

2012-08-28

315

Low level liquid radioactive waste treatment at murmansk, russia: facility upgrade and expansion.  

National Technical Information Service (NTIS)

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is eit...

Bowerman Czajkowski Dyer Sorlie

2000-01-01

316

FINAL REPORT. FOAMING AND ANTIFOAMING IN RADIOACTIVE WASTE PRETREATMENT AND IMMOBILIZATION  

EPA Science Inventory

Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the obj...

317

Melting of the metallic wastes generated by dismantling retired nuclear research facilities  

Microsoft Academic Search

The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI

Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

2008-01-01

318

Greater-confinement disposal of low-level radioactive wastes  

SciTech Connect

Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs.

Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

1985-01-01

319

Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005  

SciTech Connect

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

McDowell, Kip; Forrester, Tim [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States); Saunders, Mark [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)] [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)

2013-07-01

320

Low-level radioactive waste form qualification testing  

SciTech Connect

This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

Sohal, M.S.; Akers, D.W.

1998-06-01

321

Managing the uncertainties of low-level radioactive waste disposal.  

PubMed

The disposal of low-level radioactive waste (LLRW) entails financial and safety risks not common to most market commodities. This manifests debilitating uncertainty regarding future waste volume and disposal technology performance in the market for waste disposal services. Dealing with the publicly perceived risks of LLRW disposal increases the total cost of the technology by an order of magnitude, relative to traditional shallow land burial. Therefore, this analysis first examines five proposed disposal facility designs and quantifies the costs associated with these two important sources of uncertainty. Based upon this analysis, a marketable disposal permit mechanism is proposed and analyzed for the purpose of reducing market uncertainty and thereby facilitating a market solution to the waste disposal problem. In addition to quantifying the costs, the results illustrate the ways in which the design of a technology is influenced by its institutional environment, and vice versa. PMID:9739624

Bullard, C W; Weger, H T; Wagner, J

1998-08-01

322

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

NASA Astrophysics Data System (ADS)

The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

Djokic, Denia

323

Radioactive Waste Management information for 1994 and record-to-date  

SciTech Connect

This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1995-07-01

324

Actinide-aluminate Speciation in Alkaline Radioactive Waste  

SciTech Connect

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline washing of tank sludges with NaOH solutions is being proposed to reduce the volume of HLW. Alkaline pretreatment of HLW will be needed to remove aluminum [as NaAl(OH)4] because it significantly reduces the HLW volume; however, the aluminate ion [Al(OH)4 -] enhances actinide solubility via an unknown mechanism. Thus, alkaline wash residues may require an additional treatment to remove actinides. The results of this research will determine the nature TRU (U, Np, Pu, Am) speciation with aluminate anions under alkaline, oxidizing tank-like conditions. Specific issues to be addressed include solubility of these actinides, speciation in aluminate-containing alkaline supernatants, the role of actinide redox states on solubility, and partitioning between supernatant and solid phases, including colloids. Studies will include thermodynamics, kinetics, spectroscopy, electrochemistry, and surface science. We have already determined, for example, that certain high valent forms of Np and Pu are very soluble under alkaline conditions due to the formation of anionic hydroxo complexes, AnO2(OH)4 2- and AnO2(OH)5 3-. The presence of aluminate ions causes the actinide solubilities to increase, although the exact species are not known. We are currently characterizing the high valent TRU elements bound to oxo, water, OH-, and Al(OH)4 -, ligands under waste-like conditions. These waste-like conditions are in the range of 1-3 M excess hydroxide, {approx}0.2 M carbonate, {approx}0.5 M aluminate, for a total sodium of 2-4 M. Molecular structure-specific probes include Raman, multinuclear nuclear magnetic resonance (NMR), extended X-ray absorption fine structure (EXAFS), luminescence, optical absorption (UV-Vis-conventional and photoacoustic) spectroscopies. We anticipate that such new knowledge will impact on clean-up approaches to significantly reduce costs, schedules, and risks. Research Progress and Implications: In the first one and one half years of the project we have determined the true role of aluminate [Al(OH)4 -] anions in enhancing solubility of actinide ions. Last year we reported preliminary spectroscopic observations of a new actinide chemical species in the presence of aluminate anions under alkaline, waste tank-like conditions. We postulated that the aluminate anion acted as a ligand to uranium, and that the new compound was an actinide-aluminate coordination complex of high negative charge. More detailed studies aimed at identification of this new species revealed that it is actually a new dimeric uranyl species, and that there is no aluminate anion in the metal coordination sphere. Rather, the data indicate that the aluminate acts as an electrolyte, and increases the hydroxide ion activity and hence the overall solubility via formation of UO2(OH)5 3-. In general, highly charged species are stabilized by high ionic strength. This will have a direct impact on sludge washing using NaOH to remove aluminate ions from the system. Changes in the aluminate concentration effect the position of the equilibrium outlined below. Furthermore, we also find changes in aluminum chemistry based on the presence of uranium, including aluminate precipitation reactions under conditions where the aluminate anions should be solubilized.

Clark, David C.; Krot, Nikolai N.

2000-06-01

325

Safeguards and security recommendations for the OCRWM (Office of Civilian Radioactive Waste Management) Federal Waste Management System  

Microsoft Academic Search

The systems and procedures that will be part of the Federal Waste Management System (FWMS) -- managed by the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) -- will be subject to the requirements of nuclear materials safeguards. The FWMS will include the acceptance of spent nuclear fuel (SNF) and high-level radioactive wastes (HLW) at the

B. W. Moran; L. G. Fishbone; J. H. Saling; E. R. Johnson; E. F. Wonder; Johnson; VA Fairfax

1989-01-01

326

Metal Poisons in Waste Tanks (U)  

Microsoft Academic Search

Many of the storage tanks with waste from processing fissile materials contain, along with the fissile material, metals which may serve as nuclear criticality poisons. It would be advantageous to the criticality evaluation of these wastes if it can be demonstrated that the poisons remain with the fissile materials and if an always safe poison-to-fissile ratio can be established. The

1996-01-01

327

No Time Wasted. 25 years COVRA: Radioactive Waste Management in the Netherlands  

SciTech Connect

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. December 2007 was a time to commemorate, as the national waste management organisation of the Netherlands, COVRA, celebrated its 12. anniversary. During this period of 25 years a stable policy has been formulated and implemented. For the situation in the Netherlands, it was obvious that a period of long term storage was needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. A historical overview of the activities of COVRA is presented and lessons learned over a period of 25 years are given. (authors)

Codee, H.D.K.; Verhoef, E.V. [COVRA N.V., Vlissingen (Netherlands)

2008-07-01

328

USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY  

SciTech Connect

Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

WESTCOTT, J.L.

2006-11-15

329

USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY  

SciTech Connect

Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

WESTCOTT, J.L.; JOCHEN; PREVETTE

2007-01-02

330

Spent Fuel and High-Level Radioactive Waste Transportation Report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1992-03-01

331

DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES  

SciTech Connect

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

Jantzen, C.

2010-03-18

332

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1990-11-01

333

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1989-11-01

334

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01

335

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01

336

Radioactive Waste Decontamination Using Selentec Mag*SepSM Particles  

SciTech Connect

A sorbent containing crystalline silicotitanate (CST) tested for cesium removal from simulated Savannah River Site (SRS) soluble high activity waste showed rapid kinetics (1 h contact time) and high distribution coefficients (Kd 4000 mL/g of CST). The sorbent was prepared by Selective Environmental Technologies, Inc., (Selentec) as a MAG*SEP particle containing CST obtained from the Molecular Sieve Department of UOP, LLC, Results of preliminary tests suggest potential applications of the Selentec MAG*SEP particles to radioactive waste decontamination at SRS.

Walker, D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-06-01

337

High level radioactive waste management facility design criteria  

SciTech Connect

This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

Sheikh, N.A.; Salaymeh, S.R.

1993-10-01

338

Electric controlled air incinerator for radioactive wastes  

DOEpatents

A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

Warren, Jeffery H. (Aiken, SC); Hootman, Harry E. (Aiken, SC)

1981-01-01

339

Defense waste processing facility radioactive operations. Part 1 - operating experience  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

Little, D.B.; Gee, J.T.; Barnes, W.M.

1997-12-31

340

Immobilization of radioactive wastes: Leachability of glasses containing zirconium  

NASA Astrophysics Data System (ADS)

Sixteen borosilicate glasses containing up to 20% zirconium oxide and 10% simulated fission products or lanthanum oxide were prepared by fusion at 1150 to 1350°C. Their leaching rates in distilled water at 100°C as measured in a Soxhlet extractor varied from 0.9 to 10.9 × 10 -6 g/m 2· s . The results were analysed by multiple linear regression analysis. Some of the glasses studied may constitute a suitable matrix for the disposal of radioactive waste.

St-Pierre, J.; Tran, H. H.; Zikovsky, L.

1982-06-01

341

Heat pipe cooling system for underground, radioactive waste storage tanks  

Microsoft Academic Search

An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu\\/h with a heat sink of 70°F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe

K. C. Cooper; F. C. Prenger

1980-01-01

342

Vapor sampling of the headspace of radioactive waste storage tanks  

Microsoft Academic Search

This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling

Westinghouse Hanford

1996-01-01

343

Effective separation of palladium from simulated high level radioactive waste  

Microsoft Academic Search

Aiming the selective recovery of palladium from high level radioactive liquid waste (HLW), a chelating thiamide type sorbent,\\u000a CWP–TU, was prepared by the modification of Japanese cedar wood powder (CWP). Convection oven and microwave heating were separately\\u000a used for modification purpose and found that microwave heating is more effective over oven heating. CWP–TU was extensively\\u000a studied for the adsorption of

Durga Parajuli; Koichi Hirota; Noriaki Seko

2011-01-01

344

Treatment of mixed radioactive liquid wastes at Argonne National Laboratory  

SciTech Connect

Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

1994-03-01

345

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...fuel, high-level radioactive waste, reactor-related greater than Class C waste...HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...fuel, high-level radioactive waste, reactor-related greater than Class C...

2009-01-01

346

LEACHING OF METALS FROM MINERAL PROCESSING WASTE  

EPA Science Inventory

The purpose of this project is to test the leaching of Mineral processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestiates the levels of metals such as oxoa...

347

LEACHING OF METALS FROM MINERAL PROCESSING WASTE  

EPA Science Inventory

The purpose of this project is to test the leaching of Mineral Processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestimates the levels of metals such as oxo...

348

Metal recycling from scrap and waste materials  

Microsoft Academic Search

Out of a total U.K. consumption of 2.5 million tonnes per annum of nonferrous metals, as much as 33% is recovered from scrap. The structure of the industry which makes this important contribution to the economy is briefly outlined, and the technology is described by which the various nonferrous metals are recovered in reusable form from waste materials. Data on

A. W. Fletcher

1976-01-01

349

Method for recovering metals from waste  

DOEpatents

A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

Wicks, George G. (North Augusta, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1998-01-01

350

Method for recovering metals from waste  

DOEpatents

A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

Wicks, G.G.; Clark, D.E.; Schulz, R.L.

1998-12-01

351

Method for recovering metals from waste  

DOEpatents

A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

Wicks, George G. (North Augusta, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

2000-01-01

352

The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site  

SciTech Connect

A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site.

Crowe, B.M.; Hansen, W. [Los Alamos National Lab., NM (United States); Hechnova, A. [Univ. of Nevada, Las Vegas, NV (United States). Harry Reid Center of Environmental Studies; Jacobson, R. [Desert Research Inst., Reno, NV (United States); Voss, C. [Golder Associates, Inc. (United States); Waters, R. [Sandia National Labs., Albuquerque, NM (United States); Sully, M.; Levitt, D. [Bechtel Nevada, Las Vegas, NV (United States)

1999-03-01

353

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128 Section 72.128 Energy NUCLEAR REGULATORY COMMISSION...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER...

2009-01-01

354

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128 Section 72.128 Energy NUCLEAR REGULATORY COMMISSION...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER...

2010-01-01

355

A survey of radioactive waste disposal arrangements in UK hospitals and medical research institutions  

Microsoft Academic Search

The disposal of radioactive waste into the environment is of public interest. The individual discharges of radionuclides from medical institutions are relatively small but the number of such discharges are quite large and the levels of radioactivity discharged to the environment may be readily measured. The aim of this survey is to demonstrate the variation in the radioactive waste that

S. Batchelor; C. Baldock; J. E. Saunders

1991-01-01

356

Disposal of low-level radioactive waste. Impact on the medical profession  

Microsoft Academic Search

During 1985, low-level radioactive waste disposal has become a critical concern. The issue has been forced by the threatened closure of the three commercial disposal sites. The medical community has used radioactive isotopes for decades in nuclear medicine, radiation therapy, radioimmunoassay, and biomedical research. Loss of disposal capacity for radioactive wastes generated by these activities, by the suppliers of radioisotopes,

D. R. Brill; E. W. Allen; L. G. Lutzker; K. A. McKusick; R. J. Petersen; O. M. Powell; G. J. Weir

1985-01-01

357

Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269  

SciTech Connect

The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

Ikeda, Brian M. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)] [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

2013-07-01

358

A Challenge for Radioactive Waste Management: Memory Preservation  

SciTech Connect

ANDRA, the French National Radioactive Waste Management Agency, is responsible for managing all radioactive waste in France over the long term. In the case of short-lived waste for which disposal facilities have a life expectancy of a few centuries, the Agency has set up a system for preserving the memory of those sites. Based on the historical analysis on a comparable timescale and on an appraisal of information-conservation means, a series of regulatory as well as technical provisions was made in order to ensure that sound information be transmitted to future generations. Requirements associated to the provisions deal mostly with legibility and a clear understanding of the information that must be decrypted and understood at least during the lifetime of the facilities (i.e., a few centuries). It must therefore be preserved throughout the same period. Responses to the requirements will be presented notably on various information-recording media, together with the information-diffusion strategy to the different authorities and structures within French society. A concrete illustration of the achievements made so far is the Centre de la Manche Disposal Facility, which was closed down in 1994 and is currently in its post-closure monitoring phase since 2003. In the case of deep geological repositories for long-lived radioactive waste, preserving memory takes a different aspect. First of all, timescales are much longer and are counted in hundreds of thousands of years. It is therefore much more difficult to consider how to maintain the richness of the information over such time periods than it is for short-lived waste. Both the nature and the form of the information to be transmitted must be revised. It would be risky indeed to base memory preservation over the long term on similar mechanisms beyond 1,000 years. Based on the heritage of a much more ancient history, we must seek to find appropriate means in order to develop surface markers and even more to ensure their conservation over compatible timescales with those of deep geological repositories. It will also be necessary, in the light of the experiments and efforts made in order to decrypt the messages written on rupestral paintings or in pyramids, find suitable expression means that will help, not the next few generations, but much more future generations, to grasp the meaning of what we aim at transmitting them. This paper presents the state of the French reflection on memory preservation and transmission over the very long term, for timescales consistent with the long-lived radioactive geological waste disposal projects. (author)

Charton, P.; Ouzounian, G. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

2008-07-01

359

Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages  

SciTech Connect

A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre-existing manufacturing flaw will reach the ''arrest'' state. This paper presents the research results that quantify the threshold stress, threshold stress intensity factor, and the parameters in the crack growth rate equation based on experimental results developed specifically for Alloy 22 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository.

Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

2003-06-20

360

CHARACTERIZATION OF HIGH PHOSPHATE RADIOACTIVE TANK WASTE AND SIMULANT DEVELOPMENT  

SciTech Connect

A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for engineered-scaled testing of pretreatment processes in a non-radiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from irradiated nuclear fuel. The bismuth phosphate sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium. The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus present in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate species. The bismuth in the sludge solids is best described as bismuth ferrite, BiFeO3. Infrared spectral data, microscopy, and thermal analysis data are presented to support these conclusions. The behavior of phosphorus during caustic leaching of the bismuth phosphate sludge solids is also discussed.

Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.

2009-10-15

361

A MODULAR STORE FOR DRUMS OF RADIOACTIVE WASTE  

SciTech Connect

Currently, the United Kingdom has no facility for the disposal of any waste above the low level category, indicating that all intermediate and high level waste, apart from spent fuel, has to be stored on the site of origin. To meet this storage requirement, nuclear sites are resorting to converting existing buildings or contemplating the construction of dedicated facilities, resulting in considerable cost implications. These financing aspects not only concern the construction strategy but also impinge on the ultimate decommissioning costs associated with each particular nuclear site. This paper reports on an investigation to apply the commercially available interlocking hollow block system to the design of a store for drums of radioactive waste. This block system can be quickly, and cost effectively, erected and filled with a choice of dense material. Later, the store can be dismantled with a minimum of disposable radioactive waste and the complete facility re - erected at another location if required, considerably reducing both capital construction and decommissioning costs. The investigation also encompassed a detailed review of the equipment required to place the drums of waste into the store, resulting in a scheme for a remotely operated vehicle that did not rely on umbilical control cables. The drum handler design included for 100% redundancy of all functions, meaning that whichever component failed, the handler was always recoverable to effect the necessary repair. The ultimate aim of the waste drum store review was to produce a facility that was as safe as a conventionally constructed unit, but at a lower overall building and decommissioning cost.

Sims, J.; Holden, G.

2003-02-27

362

Glass matrices for vitrification of radioactive waste - an Update on R & D Efforts  

NASA Astrophysics Data System (ADS)

Radioactive waste gets generated at different stages of nuclear fuel cycle like mining/milling, fuel fabrication, reactor operation, reprocessing of spent fuel and the production & application of radioisotopes for various industrial, medical and research purposes. High Level radioactive Waste (HLW) is generated during reprocessing of spent nuclear fuel and it contains most of the radioactivity present in entire fuel cycle. Vitrification of HLW in borosilicate matrix is being practiced using induction heated metallic melters at industrial scale plants at Tarapur and Trombay [1]. The nature of HLW largely depends on off - reactor cooling of spent nuclear fuel, its type and burn - up, and reprocessing flow sheet. In view of varying characteristics, processing of HLW at Tarapur and Trombay has offered a wide spectrum of challenges in terms of development of matrices and characterization to accommodate compositional changes in waste. The present paper summarizes details of extensive R and D efforts made in the Department of Atomic Energy towards development and characterization of glass formulations for immobilization of HLW.

Raj, Kanwar; Kaushik, C. P.

2009-07-01

363

Communicating Risk to a Concerned Public in Historic Low-Level Radioactive Waste (LLRW) Projects  

Microsoft Academic Search

The Low-Level Radioactive Waste Management Office (LLRWMO) was established in 1982 to carry out federal government responsibility for historic low-level radioactive waste across Canada. Funded through Natural Resources Canada (NRCan) and administered by Atomic Energy of Canada Limited (AECL), the LLRWMO has conducted waste characterization, delineation and remediation projects in British Columbia, the Northwest Territories, Alberta and Ontario. Most (95%)

P. Arthurs; J. L. Herod; S. E. Stickley

2007-01-01

364

DIFFUSION COEFFICIENTS OF CRITICAL RADIONUCLIDES FROM RADIOACTIVE WASTE IN GEOLOGICAL MEDIUM  

Microsoft Academic Search

Diffusion (Ds) and distribution coefficients (K d) are needed to assess the migration of radionuclides through the geological medium proposed to locate the low and intermediate level radioactive waste disposal (an intermediate level radioactive waste is considered that waste who have an activity less than 10 4 Ci\\/m 3 ).

C. Bucur; A. Popa; C. Arsene; M. Olteanu

2000-01-01

365

Mixing Effects on the Precipitation and Cross Flows Filtration of a Hanford Simulated Precipitated Radioactive Waste  

Microsoft Academic Search

As part of the River Protection Project at Hanford, Washington, Bechtel National, Inc. has been contracted by the United States Department of Energy to design a Waste Treatment and Immobilization Plant to stabilize liquid radioactive waste. Because of its experience with radioactive waste stabilization, the Savannah River Technology Center of the Westinghouse Savannah River Company is working with Bechtel National

2004-01-01

366

A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan  

Microsoft Academic Search

For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to

R. G. Knowlton; B. W. Arnold; P. D. Mattie; M. Kuo; N. Tien

2006-01-01

367

Metal-ion recycle technology for metal electroplating waste waters  

SciTech Connect

As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

Sauer, N.N.; Smith, B.F.

1993-06-01

368

Method for electrochemical decontamination of radioactive metal  

DOEpatents

A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

Ekechukwu, Amy A. (Augusta, GA)

2008-06-10

369

Potential for radioactive patient excreta in hospital trash and medical waste  

SciTech Connect

Radioactive excreta from nuclear medicine patients can enter solid waste as common trash and medical biohazardous waste. Many landfills and transfer stations now survey these waste streams with scintillation detectors which may result in rejection of a hospital`s waste. Our survey indicated that on the average either or both of Boston University Medical Center Hospital`s waste streams can contain detectable radioactive excreta on a weekly basis. To avoid potential problems, radiation detectors were installed in areas where housekeepers carting trash and medical waste must pass through to ensure no radioactivity leaves the institution. 3 refs.

Evdokimoff, V.; Cash, C.; Buckley, K. [Boston Univ. Medical Center, MA (United States)] [and others

1994-02-01

370

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOEpatents

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01

371

Fifty years of federal radioactive waste management: Policies and practices  

SciTech Connect

This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

Bradley, R.G.

1997-04-01

372

Regulatory Approaches for Solid Radioactive Waste Storage in Russia  

SciTech Connect

The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

2003-02-26

373

DOE site performance assessment activities. Radioactive Waste Technical Support Program  

SciTech Connect

Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

Not Available

1990-07-01

374

Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1  

Microsoft Academic Search

This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem\\/hr contact dose) and remote-handled (>200 mrem\\/hr contact dose) radioactive waste

F. Feizollahi; D. Shropshire; D. Burton

1994-01-01

375

Risk and impact tradeoffs in radioactive scrap metal management  

Microsoft Academic Search

Two management alternatives for radioactive scrap metal were evaluated: (1) recycling and reuse, and (2) disposal and replacement. The human health risks, environmental impacts, and sociopolitical issues potentially associated with these alternatives were assessed in an international context. For each alternative, the health risks from workplace and transportation accidents are greater in magnitude than the risks from potential exposure to

L. A. Nieves; S. Y. Chen

1995-01-01

376

Radioactive waste management at a large university and medical research complex  

Microsoft Academic Search

A radioactive waste management program was developed for a large university and medical research complex to contain costs and to reduce the impact of the Low-Level Radioactive Waste Policy Act. The program takes advantage of decay-in-storage, incineration, special packaging techniques, and increased training and awareness. A series of metrics are presented to evaluate the effectiveness of the radioactive waste management

Joseph Ring; Frank Osborne; Jacob Shapiro; Robert Johnson

1993-01-01

377

Summary of radioactive solid waste received in the 200 areas during calendar year 1996  

SciTech Connect

Rust Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1996. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document.

Hladek, K.L.

1997-05-21

378

Vitrification of radioactive waste by reaction sintering under pressure  

NASA Astrophysics Data System (ADS)

Silicate nuclear waste glasses were synthesized by reaction sintering of powdered precursors under pressure. The glass samples contained a glass matrix phase with embedded zirconia (baddeleyite) particles. A waste composition with 38 wt% of ZrO 2 was prepared with a waste loading of 30-50 wt% at 800°C and 28 MPa, by hot isostatic pressing. The glass former was commercial amorphous silica powder to which simulated waste was added as calcined oxides. Phase compositions and microstructure of the sintered glass samples were characterized using scanning and analytical electron microscopy. The results show that extensive sintering took place and that a continuous glass phase was formed, particularly at higher waste loading. Waste components such as Na 2O, CaO, MnO 2, La 2O 3, Fe 2O 3, Cr 2O 3, and P 2O 5 dissolved completely in the glass phase. ZrO 2 was also dissolved but recrystallized from the glass as aggregates of baddeleyite crystallites surrounding the original silica particles. MCC-1 type chemical durability tests showed that the glasses are durable with dissolution rates similar to or lower than that of the highly durable French R7T7 borosilicate glass. This glass contains 13 wt% high-level radioactive waste from light water reactor fuel reprocessing and has a melting temperature of 1150°C. The long-term chemical durability of our sintered glasses is expected to be as high as that of rhyolitic glasses, based on hydration energies of 3.7 and 3.3 kJ/mole, respectively. Rhyolitic glasses show little alteration over geological periods of time with a typical corrosion rate of 1 ?m/1000 yr.

Gong, W. L.; Lutze, W.; Abdelouas, A.; Ewing, R. C.

1999-02-01

379

Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)  

SciTech Connect

Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange resins by pyrolysis, is the vast volume reduction which minimizes the cost for final storage and results in an inert end-product which is feasible for safe final disposal. The amount of uranium in the incinerable waste has impact on the quality of the resulting ash. The quality improves with lower U-content. One way of reducing the Ucontent is leaching using a chemical process before and if necessary also after the incineration. Ranstad Mineral AB has been established in the 1960s to support the Swedish national program for uranium mining in southern Sweden. Ranstad Mineral works among others wit h chemical processes to reduce uranium content by leaching. During 1998-2000 about 150 tons/year have been processed. The goal was to reach uranium residues of less than 0.02% for disposal on the municipal waste disposal.

Lorenzen, J,; Lindberg, M.; Luvstrand, J.

2002-02-26

380

Report to Congress: 1995 Annual report on low-level radioactive waste management progress  

SciTech Connect

This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal.

NONE

1996-06-01

381

Engineering Deinococcus geothermailis for Bioremediation of High-Temperature Radioactive Waste Environments  

SciTech Connect

Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes.

Brim, Hassan; Venkateswaran, Amudhan; Kostandarithes, Heather M.; Fredrickson, Jim K.; Daly, Michael J.

2003-08-01

382

Accumulation of heavy metals by vegetables grown in mine wastes  

Microsoft Academic Search

Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments

G. P. Cobb; K. Sands; M. Waters; B. G. Wixson; E. Dorward-King

2000-01-01

383

Radioactive Waste Management Complex low-level waste radiological performance assessment  

SciTech Connect

This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

1994-04-01

384

Incineration of low-level radioactive and mixed wastes: Waste handling and operational issues  

SciTech Connect

As part of a major effort to bring its facilities into compliance with environmental regulations, the U.S. Department of Energy (DOE) is investigating options for managing low-level radioactive and mixed waste (LLR/MW). The overall purpose of the examination is to identify and evaluate the fundamental technical and operational issues associated with the effective, economical, and safe use of incineration for treating both the hazardous and radioactive constituents for these wastes, while minimizing potential risks to human health, welfare, and the environment. The report presents the results of a survey of DOE and commercial incinerators currently operating or 'on stand-by' that may play a role in the treatment of low-level and mixed wastes from remediation and restoration activities. Using this information, the report identifies and discusses current operational and technological issues.

Not Available

1993-04-01

385

Materials evaluation in a low-level radioactive waste incinerator  

SciTech Connect

This paper reports performances of alloys in a low-level radioactive, combustible waste incinerator evaluated. Test coupons and an extracted heat exchanger tube were examined to provide information on alloy behavior in the off-gas system of this facility. Type 316 stainless steel, the alloy of which the heat exchanger is constructed, was most extensively examined. Coupons exposed upstream of the heat exchanger exhibited high temperature corrosion rates of {approximately} 100 mpy (incinerator operation time). The rate observed from the heat exchanger tube was lower, {approximately} 25 mpy. Other alloys were tested to identify potential replacement candidates.

Smolik, G.R.; Dalton, J.D. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (US))

1989-01-01

386

Naturally occurring crystalline phases: analogues for radioactive waste forms  

SciTech Connect

Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

Haaker, R.F.; Ewing, R.C.

1981-01-01

387

Nondestructive examination technologies for inspection of radioactive waste storage tanks  

SciTech Connect

The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites.

Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

1995-08-01

388

Design and testing of wood containers for radioactive waste  

SciTech Connect

A wood container for shipping and storing radioactive waste was designed to eliminate the problems caused by the weight, cost, and shape of the steel containers previously used. Tests specified by federal regulations (compression, free-drop, penetration, and vibration) were conducted on two of the containers, one loaded to 2500 lb and one loaded to 5000 lb. The 5000-lb container failed the free-drop test, but the 2500-lb container easily passed the tests and therefore qualifies as a Type A container. Its simplicity of design, low weight, and ease in handling have proved to be time-saving and cost-effective.

Roberts, R.S.; Barry, P.E.

1981-03-25

389

Risk methodology for geologic disposal of radioactive waste  

SciTech Connect

This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. (Sandia National Labs., Albuquerque, NM (USA)); Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

1990-04-01

390

Site characterization for LIL radioactive waste disposal in Romania  

SciTech Connect

Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background, unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.

Diaconu, D. R. (Daniela R.); Birdsell, K. H. (Kay H.); Witkowski, M. S. (Marc S.)

2001-01-01

391

Investigation of Shielding Material in Radioactive Waste Management - 13009  

SciTech Connect

In this study, various waste packages have been prepared by using different materials. Experimental work has been performed on radiation shielding for gamma and neutron radiation. Various materials were evaluated (e.g. concrete, boron, etc.) related to different application areas in radioactive waste management. Effects of addition boric compound mixtures on shielding properties of concrete have been investigated for neutron radiation. The effect of the mixture addition on the shielding properties of concrete was investigated. The results show that negative effects of boric compounds on the strength of concrete decreasing by increasing boric amounts. Shielding efficiency of prepared mixture added concrete up to 80% better than ordinary concretes for neutron radiation. The attenuation was determined theoretically by calculation and practically by using neutron dose rate measurements. In addition of dose rate measurements, strength tests were applied on test shielding materials. (authors)

OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

2013-07-01

392

77 FR 52073 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...radioactive various 1,000 tons waste that is materials (e.g...with various (Ref. IW022), animal radionuclides in and will not...varying remain in the human-animal combinations. U.S. waste) Activity levels...

2012-08-28

393

Analysis of the Total System Life Cycle Cost for the Civilian Radioactive Waste Management Program.  

National Technical Information Service (NTIS)

The total system life cycle cost (TSLCC) analysis for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Polic...

1985-01-01

394

Management of Radioactive Waste Arising from the Medical, Industrial, and Research Use of Radionuclides.  

National Technical Information Service (NTIS)

The management of radioactive wastes in Australia is reviewed. Technical criteria for regulated user-disposal, shallow ground disposal and long-term storage are examined. Options for ensuring adequate regional and national access to waste repositories are...

1985-01-01

395

Space Storage of Radioactive Waste - the Final Solution for Low-Cost and Safe Final Storage.  

National Technical Information Service (NTIS)

The authors propose to store dangerous waste (in this case high-level radioactive waste) in special satellites in high orbits. Technical aspects, safety, and cost are discussed. The proposal is considered acceptable from the technological and economic poi...

D. Hayn H. O. Ruppe R. H. Schmucker

1980-01-01

396

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2011 CFR

...DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of...

2011-04-01

397

Structural Integrity Assessment of Underground Piping Associated with the Transfer of Radioactive Waste.  

National Technical Information Service (NTIS)

Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure th...

A. S. Plummer B. F. Wiersma G. D. Thaxton

2006-01-01

398

Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.  

PubMed

The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. PMID:24331854

Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

2014-05-01

399

International program to study subseabed disposal of high-level radioactive wastes  

SciTech Connect

This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

1984-01-01

400

Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land  

Microsoft Academic Search

A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of

D. J. Nancarrow; M. M. White

2004-01-01

401

Impact of radioactive waste heat on soil temperatures  

SciTech Connect

Consideration of the impact of radioactive waste heat is necessary for many aspects of potential repository design. Waste heat will alter the mineralogy of the host rock, and may change the character of the zeolitic units below the potential repository that are likely to be the primary natural barriers to radionuclide migration. The impact of waste heat on the near-surface temperature within the soil zone is the focus of the present study. Since 1990, the Nuclear Waste Technical Review Board (NWTRB) has raised the issue of potential impacts on the aboveground ecosystem from increases in soil temperatures. This study is a first step toward understanding the relevant heat transfer processes that controls the near-surface thermal regime and to place bounds on the expected timing and magnitude of the temperature rise. Two-dimensional, site scale thermohydrologic calculations will be used to simulate the large-scale thermohydrologic processes that will feed heat to the soil zone. The potential influence of this heat on soil-zone temperatures will then be examined in a series of simplified one-dimensional model calculations. In future efforts the measured soil-zone temperature variations in the air will be used to calibrate the model, which will tighten the bounds on the possible temperature rise. This study is a precursor to more detailed, three-dimensional simulations with a calibrated model. If it is determined that direct coupling of the site scale and soil zones would be beneficial, this will be done as well.

Robinson, B.A.; Gable, C.W.; Lowman, J.P.

1999-01-04

402

Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model  

SciTech Connect

Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

Streatfield, R.E.; Hebditch, D.J. [British Nuclear Group, Berkeley Centre C11, Berkeley, Gloucestershire, GL 13 9PB (United Kingdom); Swift, B.T.; Hoch, A.R. [Serco Assurance, Harwell Business Centre, Didcot, Oxfordshire, OX 11 ORA (United Kingdom); Constable, M. [AEA Technology Plc., B44 Winfrith, Dorchester, Dorset, DT2 8WQ (United Kingdom)

2006-07-01

403

Description of Site Operations at the Low-Level Radioactive Waste Disposal Site  

Microsoft Academic Search

The purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than

Y. T. Mohamed; M. A. Hasan; Y. F. Lasheen

2007-01-01

404

Production of metal waste forms from spent fuel treatment  

SciTech Connect

Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

1995-02-01

405

High level radioactive waste vitrification process equipment component testing  

NASA Astrophysics Data System (ADS)

Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

1985-04-01

406

High level radioactive waste vitrification process equipment component testing  

SciTech Connect

Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

1985-04-01

407

Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage  

SciTech Connect

The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

NONE

1996-04-01

408

Electrochemical corrosion testing of metal waste forms  

Microsoft Academic Search

Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also

D. P. Abraham; J. J. Peterson; H. K. Katyal; D. D. Keiser; B. A. Hilton

1999-01-01

409

Corrosion study for a radioactive waste vitrification facility  

SciTech Connect

A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE`s Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200{degree}C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack.

Imrich, K.J.; Jenkins, C.F.

1993-10-01

410

Public perception of low-level radioactive waste disposal issues  

SciTech Connect

The objectives of the study were to: (1) gather information on how people perceive low-level radioactive-waste-disposal issues; (2) compare the perceptions between organized citizen interest group members and non-group members within the same community; (3) compare the perceptions between interest group members living near open sites, closed sites and proposed sites; (4) compare the perceptions between non-group members living near open sites, closed sites and proposed sites; and (5) identify aspects of crucial low-level radioactive-waste policy questions that should be considered in policy decision making. Findings indicate that significant results between interest-group member respondents (IGMRs) and nongroup member respondents (NGMRs) were rarely the result of interest-group members being on one side and nongroup member respondents being on the other side of an issue. Rather, significance usually occurred when there were varying degrees of agreement of disagreement between the two types of respondents on a particular question, with the IGMRs typically registering stronger levels of agreement of disagreement. Priority issues identified by both IGMRs and NGMRs included public health and safety; risk perception; economic concerns; and environmental factors.

Kozak, R.M.

1987-01-01

411

Current status of the radioactive waste management programme in Spain  

SciTech Connect

Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as 'master plan' of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the most relevant events especially focused on optimizing the existing capacity and the start-up of a purpose -built disposal area for VLLW. Concerning the HLW programme, two aspects may be distinguished in the direct management of spent fuel: temporary storage and long-term management. In this regards, a major challenge has been the decision adopted by the Spanish Government to set up a Inter-ministerial Committee for the establishment of the criteria that must be met by the site of the Centralized Intermediate Storage (CTS) facility as the first and necessary step for the process. Also the developments of the long-term management programme will be presented in the frame of the ENRESA's R and D programme. Finally, in the field of decommissioning they will be presented the PIMIC project at the CIEMAT centre and the activities in course for the decommissioning of Jose Cabrera NPP. (authors)

Lang-Lenton Leon, Jorge; Garcia Neri, Emilio [ENRESA, Emilio Vargas No. 7. E-28043 Madrid (Spain)

2007-07-01

412

The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes  

SciTech Connect

This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process.

Ross, W.A.; Kindle, C.H.

1992-04-01

413

Effective Removal of Cesium and Strontium from Radioactive Wastes Using Chemical Treatment Followed by Ultra Filtration  

Microsoft Academic Search

Chemical treatment assumes an important role in the management of radioactive wastes as it is a simple technique and offers advantage in terms of handling of wastes thereby reducing the risk of mansievert exposure. Low level wastes (LLW) and intermediate level wastes (ILW) are generated in various facets of nuclear fuel cycle and have various chemical composition. A systematic study

S. V. S. Rao; Biplob Paul; K. B. Lal; S. V. Narasimhan; Jaleel Ahmed

2000-01-01

414

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

Microsoft Academic Search

The majority of solidification\\/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of

P. D. Kalb; J. H. Heiser; P. Colombo

1990-01-01

415

Melting of the metallic wastes generated by dismantling retired nuclear research facilities  

SciTech Connect

The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was improved by the addition of a CaF{sub 2} slag former at up to 20%. The {sup 137}Cs was partitioned between the slag and the dust phases in the offgas. In the pilot scale melting test, the cobalt mostly remained in the ingot phase and the cesium was mainly found in the quenching water and slag.

Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi [150, Dukjin-Dong, Yuseong-Gu, Daejeon, 305-353 (Korea, Republic of)

2008-01-15

416

Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste  

Microsoft Academic Search

Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNOâ, NaOH, NaâSOâ, and NaNOâ. After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have

Langton

1984-01-01

417

Geological challenges in radioactive waste isolation: Third worldwide review  

SciTech Connect

The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

2001-12-01

418

Central Facility for Processing and Deposition of Low- and Intermediate-Level Radioactive Waste and Deposition of High-Level Radioactive Waste and Irradiated Fission Elements. COVRA'S Choice.  

National Technical Information Service (NTIS)

The Dutch minister of town and country planning, housing of the people and environmental control has decided that the Dutch Central Organization for Radioactive Waste (COVRA) is permitted to make a selection out of three available areas for deposition of ...

1986-01-01

419

Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program  

SciTech Connect

The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

NONE

1995-04-01

420

The Black Sea: A Georeactor to Immobilize Metal Wastes  

Microsoft Academic Search

\\u000a Industries in many countries produce a range of metal wastes (metal sludges, residues from etching baths or galvanization\\u000a processes, metal-rich fly ashes, tailings from ore dressing operations, metallurgical slags etc.). If the metals cannot be\\u000a recycled, these wastes are disposed in specially adapted isolated landfills, often after conversion into (hydro-)oxide sludges.\\u000a Such metal-rich waste deposits will require “eternal” monitoring, and

R. D. Schuiling

421

Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.  

PubMed

In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry. PMID:24638274

Osmanlioglu, Ahmet Erdal

2014-05-01

422

Use of poisoned land\\/inland seas for low level radioactive waste disposal  

Microsoft Academic Search

The total interior drainage of closed hydrologic basins and the natural toxicity of many dry salt basins make them possible candidates for the siting of low-level radioactive waste storage facilities. Further, such sites will also be suitable for non-radioactive waste storage as well. This study is directed at identification and description of such naturally occurring poisoned areas, at compilation and

D. G. Brookins; H. A. Vogler; J. J. Cohen

1983-01-01

423

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

None

1997-05-20

424

2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

Bechtel Nevada

2006-02-01

425

Advances in cement solidification technology for waste radioactive ion exchange resins: A review  

Microsoft Academic Search

Treatment and disposal of waste radioactive ion exchange resins is one of the most urgent problems for nuclear industries in China. Cement solidification technology has many advantages, such as requiring simple equipment, easy scaling-up, low working temperature, no trouble of gas cleaning and low cost. It is a suitable technology for treatment of waste radioactive resins, and has been widely

Junfeng Li; Jianlong Wang

2006-01-01

426

Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor  

Microsoft Academic Search

The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials (60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes

G. Abramenkova; M. Klavins; A. Abramenkovs

2008-01-01

427

Low sintering temperature glass waste forms for sequestering radioactive iodine  

DOEpatents

Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

2012-09-11

428

Office of Civilian Radioactive Waste Management annual capacity report  

SciTech Connect

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CRF 961) requires the Department of Energy (DOE) to issue and Annual Capacity Report (ACR) for planning purposes. This report is currently scheduled to be the last in the series of ACRs to be published by DOE. The Standard Disposal Contract states that beginning in April 1991, DOE will publish the first annual Acceptance Priority Ranking report which will formally set forth the acceptance queue in which Purchasers will receive priority for allocation of the Waste Management System (WMS) acceptance capacity. This 1990 issue of the ACR utilizes two projected WMS waste acceptance schedules as the bases for allocation of acceptance capacity to the Purchasers for a 10-year period following the projected commencement of facility operations. The acceptance schedules were selected to be representative of upper and lower boundaries for a WMS which includes a Monitored Retrievable Storage (MRS) facility capable of receiving and storing SNF starting in 1998. 6 refs., 4 tabs.

Not Available

1990-12-01

429

Processing of historic high radioactive waste coming from nuclear applications  

SciTech Connect

At ECN-NRG irradiations of materials have been performed with the aid of the High Flux Reactor at the site for investigations of their properties under different conditions as well for nuclear isotope productions since 1967 e.g. molybdenum. The high radioactive waste (HRW) coming from these nuclear applications are stored since the start in an interim storage facility located at the site. Due to the site license the HRW has to be transported to COVRA. Therefore a project has been set-up to transport all the HRW to COVRA. However, COVRA accepts a limited number of HLW containers among the CASTOR{sup R} MTR-2 container and thus all temporary stored drums have to be over packed. As the existing infra structure at the site is not suited a new facility has to be build. This also creates the opportunity to minimize, by separation of the HRW in low- and intermediate level waste, the amount of waste that has to be classified as HLW. The applied methodology, design and specifications of the HRW-ILW non-destructive assay characterization and separation system will be described. (authors)

Van Velzen, L.P.M.; Vos, R.M. de; Roobol, L.P. [Nuclear Research and consultancy Group - NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); IJpelaan, R.; Van Tongeren, R. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

2007-07-01

430

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOEpatents

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

Cao, H.; Adams, J.W.; Kalb, P.D.

1998-11-24

431

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOEpatents

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

Cao, H.; Adams, J.W.; Kalb, P.D.

1999-03-09

432

Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass  

SciTech Connect

The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

Bennett, W.M. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-08-06

433

Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 3. Expected Effect of Fusion Reactor on Global Environment 3.1 Research Aimed at Reducing Radioactive Waste  

NASA Astrophysics Data System (ADS)

Waste management at fusion power plants is reviewed. Recent study indicates that most of the waste from a fusion reactor can be cleared from regulatory control over a 50-year cooling after decommissioning. In addition, the remaining metal radioactive waste is anticipated to be recyclable within 100-year cooling. These results indicate the prospect of a low emission system of fusion energy materials.

Tobita, Kenji; Hiwatari, Ryouji

434

Rhode Island State Briefing Book on low-level radioactive-waste management  

SciTech Connect

The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

Not Available

1981-07-01

435

Analysis of the Total System Life Cycle Cost of the Civilian Radioactive Waste Management Program, Fiscal Year 2007.  

National Technical Information Service (NTIS)

The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Managements (OCRWM) May 2007 total system cost estimate for the disposal of the Nations spent n...

2008-01-01

436

Iron Phosphate Glass as Potential Waste Matrix for High-Level Radioactive Waste  

SciTech Connect

Recently, Iron Phosphate Glass (IPG) is investigated as the alternative final waste form for High-Level Radioactive Waste (HLW) in U.S. This study is aimed to investigate feasibility of IPG to HLW arising from commercial reprocessing in Japan. In order to evaluate favorable preparation conditions, maximum waste loading and property of IPG, the melting tests were carried. From the results of melting tests, the favorable preparation conditions was with matrix of Fe/P 0.43 (mole ratio in products) and melting at 1200{sup o} for 4h. The products of 10-20mass% waste loading of simulated HLW were glassy and had no crystal peaks, however the product of 30mass% waste loading showed some crystal peaks by XRD analysis. IPG and Borosilicate glass (BG) had about the same thermal properties. As a result, IPG had enough potential for high waste loading and the extremely good chemical durability for consideration as a waste form for Japanese HLW.

Fukui, T.; Ishinomori, T.; Endo, Y.; Sazarashi, M.; Ono, S.; Suzuki, K.

2003-02-25

437

Metal Poisons in Waste Tanks (U)  

SciTech Connect

Many of the storage tanks with waste from processing fissile materials contain, along with the fissile material, metals which may serve as nuclear criticality poisons. It would be advantageous to the criticality evaluation of these wastes if it can be demonstrated that the poisons remain with the fissile materials and if an always safe poison-to-fissile ratio can be established. The first task, demonstrating that the materials stay together, is the job of the chemist, the second, demonstrating an always safe ratio, is the job of the physicist. The latter task is the object of this paper

Williamson, T.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-10-14

438

Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Preteatment and Immobilization Processes  

SciTech Connect

The objectives of this research effort are to develop a fundamental understanding of the physico-chemical mechanisms that produce foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research will be tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

Wasan, Darsh T.; Nikolov, Alex

2005-06-01

439

Recycling radioactive scrap metal by producing concrete shielding with steel granules  

SciTech Connect

Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete.

Sappok, M. [Siempelkamp Giesserei GmbH, Krefeld (Germany)

1996-12-31

440

The application of metal cutting technologies in tasks performed in radioactive environments  

SciTech Connect

The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

Fogle, R.F.; Younkins, R.M.

1997-05-01

441

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27

442

Monte Carlo simulations of radioactive waste embedded into EPDM and effect of lead filler  

NASA Astrophysics Data System (ADS)

Radioactive waste is generated from the nuclear industry and should be processed and disposed of according to the regulations set by the appropriate regulatory authority. Ethylene propylene diene monomer (EPDM) is a widely used polymer and might be considered as a potential candidate radioactive waste encapsulation material. In this study, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the polymer matrix) was determined using Monte Carlo simulations. The change in the dose rate within the waste drum with different amounts of lead filler was also simulated. It was seen that lead filler would decrease the dose delivered to the polymer by means of energy dissipation. Moreover, the change of mechanical properties of EPDM was estimated and their variation within the waste drum was determined for the duration of 15, 30 and 300 years after embedding.

Özdemir, Tonguç

2014-05-01

443

DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS  

SciTech Connect

The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

Poirier, M; David Herman, D; Samuel Fink, S

2008-02-25

444

The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory  

SciTech Connect

The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs.

Malinauskas, A.P.

1991-01-01

445

Structure and Vibrational Spectra of Slags Produced from Radioactive Waste  

NASA Astrophysics Data System (ADS)

The structure of the anionic motif of aluminosilicate and aluminoborosilicate glasses containing simulated slags from a solid radioactive waste incinerator was studied by IR and Raman spectroscopy. Spectra of melted slag were consistent with Si-O tetrahedra with various numbers of bridging O ions and Al-O tetrahedra embedded in the Si-O network in the slag vitreous and crystalline phases (nepheline, nagelschmidtite). Vibrations of doubly and triply bound Si-O tetrahedra and Al-O tetrahedra embedded between them were mainly responsible for the spectra as the content of sodium disilicate fl ux and the glass fraction in the materials increased. Addition of sodium tetraborate fl ux caused the appearance of B-O vibrations of predominantly three-coordinate B and a tendency toward chemical differentiation preceding phase separation.

Malinina, G. A.; Stefanovsky, S. V.

2014-05-01

446

Geotechnical aspects of investigations at Stripa on radioactive waste isolation  

SciTech Connect

Access to a granitic rock mass in an iron ore mine in Sweden has provided a unique opportunity for a series of investigations on problems involved in geologic storage of radioactive waste. Important results have been obtained that would not have emerged if these experiments had not been carried out underground at depths comparable with those envisaged for an actual repository. It was observed that as the rock mass was heated, the temperature variations over time and space could be reasonably well predicted using available theory and appropriate values of material properties. However, because the rock is fractured, predicting the thermochenical behavior is much more involved. The role of the discontinuities is a key factor and is not yet well understood. The fracture network is also the dominant factor in controlling rock mass permeability. A new method of measuring average permeability on a very large scale is reported.

Witherspoon, P.A.

1981-08-01

447

Russian Containers for Transportation of Solid Radioactive Waste  

SciTech Connect

The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified.

Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

2002-02-28

448