Sample records for radioactive metals columbium

  1. REFRACTORY METALS: TUNGSTEN, TANTALUM, COLUMBIUM, AND RHENIUM

    Microsoft Academic Search

    Pugh

    1958-01-01

    An analysis of the status and prognosis of the refractory metals Ta, Nb, ; W, and Re with respect to hightemperature applications is reviewed. Tensile ; properties, creep-rupture strength, oxidation behavior, and oxidation resistant ; alloys and coatings are discussed. (J.E.D.);

  2. Columbium-, rare-earth-element-, and thorium-bearing veins near Salmon Bay, Southeastern Alaska. Open file report

    SciTech Connect

    Warner, J.D.

    1989-01-01

    In 1984 and 1985 the Bureau of Mines investigated radioactive carbonate veins near Salmon Bay, southeastern Alaska, for concentrations of columbium and associated metals. The veins cut units of graywacke, conglomerate, argillite, and limestone and range in width from less than an inch to greater than 10 ft and have a length ranging from less than a hundred to greater than 1,000 ft. Mineralogy of the veins is complex, and includes thorite, the rare-earth-element minerals monazite, parisite, and bastnaesite, and a columbium mineral that is speculated to be columbite. Gangue minerals include ankerite, dolomite, siderite, quartz and albite. More than seventy veins were sampled but only three contain elevated metal concentrations along a significant strike length. These resources are small compared to columbium, REE, and thorium resources elsewhere in the world.

  3. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  4. Columbium (niobium) recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of columbium in the United States in 1998 with emphasis on the extent to which columbium (niobium) was recycled/reused. Columbium was mostly recycled from products of columbium-bearing steels and superalloys; little was recovered from products specifically for their columbium content. In 1998, about 1,800 metric tons of columbium was recycled/reused, with about 55% derived from old scrap. The columbium recycling rate was calculated to be 22%, and columbium scrap recycling efficiency, 50%.

  5. Applications for Zirconium and Columbium Alloys

    NASA Astrophysics Data System (ADS)

    Condliff, Alex F.

    1986-09-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbium alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis.

  6. 40 CFR 421.110 - Applicability: Description of the primary columbium-tantalum subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Description of the primary columbium-tantalum subcategory. 421.110 Section 421...SOURCE CATEGORY Primary Columbium-Tantalum Subcategory § 421.110 Applicability: Description of the primary columbium-tantalum subcategory. The provisions of...

  7. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  8. Radioactive scrap metal decontamination technology assessment report

    Microsoft Academic Search

    J. M. Buckentin; B. K. Damkroger; M. E. Schlienger

    1996-01-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D. (Lockport, IL); McPheeters, Charles C. (Plainfield, IL)

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  11. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences. PMID:17033460

  12. Effect of solutes in binary columbium /Nb/ alloys on creep strength

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Metcalfe, A. G.

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.

  13. Coated columbium thermal protection systems: An assessment of technological readiness

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1973-01-01

    Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.

  14. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  15. Protocols for implementing DOE authorized release of radioactive scrap metals.

    PubMed

    Chen, S Y; Arnish, J; Kamboj, S; Nieves, L A

    1999-11-01

    A process to implement the U.S. Department of Energy's (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals. PMID:10527156

  16. Assessment of recycling or disposal alternatives for radioactive scrap metal

    Microsoft Academic Search

    W. E. Murphie; M. J. Lilly; L. A. Nieves; S. Y. Chen

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes

  17. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  18. The effects of composition and annealing conditions on the stability of columbium (niobium)-treated low-carbon steels

    Microsoft Academic Search

    R. E. Hook; J. A. Elias

    1972-01-01

    The effects of composition and annealing conditions on the yielding behavior of vacuum melted, columbium(niobium) -treated,\\u000a low-carbon steels were investigated. Additions of columbium were found to result in stabilization,i.e. freedom from inhomogeneous yielding or Lder’s strain in the as-recrystallized condition. Stabilization is accounted for\\u000a by considering the role of columbium as a carbide former, thereby reducing the carbon content in

  19. The effects of composition and annealing conditions on the stability of columbium (niobium)-treated low-carbon steels

    Microsoft Academic Search

    R. E. Hook; J. A. Elias

    1972-01-01

    The effects of composition and annealing conditions on the yielding behavior of vacuum melted, columbium(niobium) -treated, low-carbon steels were investigated. Additions of columbium were found to result in stabilization, i.e. freedom from inhomogeneous yielding or Lüder's strain in the as-recrystallized condition. Stabilization is accounted for by considering the role of columbium as a carbide former, thereby reducing the carbon content

  20. Scrap metal management issues associated with naturally occurring radioactive material

    Microsoft Academic Search

    K. P. Smith; D. L. Blunt

    1995-01-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year.

  1. Assessment of recycling or disposal alternatives for radioactive scrap metal

    SciTech Connect

    Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1993-11-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

  2. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  3. Hydrogen production during processing of radioactive sludge containing noble metals

    SciTech Connect

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-09-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

  4. Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district

    Microsoft Academic Search

    Michael Schubert; Karsten Osenbrück; Kay Knöller

    2008-01-01

    Naturally occurring stable and radioactive isotopes were used as environmental tracers to investigate contaminant metal mobilization processes in a metal smelter dump mainly consisting of slag. Water emerging from the dump at a spring is heavily contaminated by metals. The smelter dump contains minor amounts of flue dust, a material which shows a high potential for metal mobilization. Nearby dumps

  5. Effect of reduction of strategic columbium additions in Inconel 718 alloy on the structure and properties

    NASA Technical Reports Server (NTRS)

    Ziegler, K.; Wallace, J. F.

    1982-01-01

    The amount of columbium which can be removed from Inconel alloy 718 without degrading its high temperature properties was determined. The elements that are substituted are: vanadium and tungsten together and separately; increasing the molybdenum level from 3.0% to 5.8% and increasing the boron to 0.04%.

  6. Effect of solutes in binary columbium (Nb) alloys on creep strength

    Microsoft Academic Search

    M. J. Klein; A. G. Metcalfe

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400°F (760 to 1871°C) for solute concentrations to 20 at. pct using a new method of creep strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase

  7. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  8. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    SciTech Connect

    Pesente, S.; Benettoni, M.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Vanini, S.; Viesti, G.; Zumerle, G. [INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); University of Padova and INFN Sezione di Padova, via Marzolo 8, 35131 Padova Italy (Italy); Bonomi, G.; Zenoni, A. [University of Brescia, via Branze 38, 25123 Brescia and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Calvini, P.; Squarcia, S. [University of Genova and INFN Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy)

    2010-08-04

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  9. Effect of solutes in binary columbium (Nb) alloys on creep strength

    Microsoft Academic Search

    M. J. Klein; A. G. Metcalfe

    1973-01-01

    The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400?F\\u000a (760 to 1871?C) for solute concentrations to 20 at. pct using a new method of creep strength measurement. The technique permits\\u000a rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase

  10. Natural radioactivity and trace metals in crude oils: implication for health

    Microsoft Academic Search

    T. R. Ajayi; N. Torto; P. Tchokossa; A. Akinlua

    2009-01-01

    Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural\\u000a radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental\\u000a health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive\\u000a future study in this

  11. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  12. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling

  13. Analysis of disposition alternatives for radioactively contaminated scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

    1998-01-01

    Millions of tons of slightly radioactive scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are either to develop a regulatory process for decontamination and recycling

  14. Potential radioactive scrap metal quantities from nuclear power plants worldwide

    Microsoft Academic Search

    L. A. Nieves; R. W. Tilbrook

    1996-01-01

    Approximately 12 million tons of scrap metals are likely to be generated worldwide during the next 50 years from decommissioning and dismantling nuclear power plants. A large portion of this material will be only slightly contaminated it at all, and, it it is releasable, it would have a scrap value of billions of dollars. Disposition of the metal is complicated

  15. THE INTERSTITIAL-DISLOCATION DAMPING INTERACTIONS IN COLUMBIUM

    Microsoft Academic Search

    1962-01-01

    A study of niobium was undertaken to determine if coldwork peaks were ; found in other bcc metals beside iron, and if found, to study their ; characteristics, and determine a model for the peak. Cold-work peaks were found ; in niobium-- nitrogen (also tantalum-- nitrogen) alloys. The characteristics of ; the peak were found to be divided into two

  16. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  17. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  18. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    Microsoft Academic Search

    S. Nedilko; Yu. Hizhnyi; O. Chukova; P. Nagornyi; R. Bojko; V. Boyko

    2009-01-01

    The potential use of luminescent probes for control over the structural state of MTi2(PO4)3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi2(PO4)3 (M=Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and

  19. Health risk and impact evaluation for recycling of radioactive scrap metal

    Microsoft Academic Search

    L. A. Nieves; S. Y. Chen; W. E. Murphie; M. J. Lilly

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and\\/or disposal process alternatives. This effort includes development of international inventory estimates

  20. Fernald`s dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    Microsoft Academic Search

    K. L. Yuracko; S. W. Hadley; R. D. Perlack

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and

  1. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Microsoft Academic Search

    Kessinger

    1993-01-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially

  2. Fernald's dilemma: Recycle the radioactively contaminated scrap metal, or bury it?

    Microsoft Academic Search

    Katherine L. Yuracko; Stanton W. Hadley; Robert D. Perlack; Rafael G. Rivera; T. Randall Curlee

    1997-01-01

    During the past 5 years, a number of US Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder

  3. Characterization of Chromized Metallic Surfaces by Means of Radioactive Cr

    Microsoft Academic Search

    V. Rö?iger; A. Freyer; E. Hartmann; C. Treutler; V. Brabec; O. Dragoun; A. Kovalik

    1986-01-01

    The spatial distribution of Cr deposited on metallic surfaces at concentrations of about 10 at\\/cm was examined by detecting the radiation components emitted in the Cr decay. The autoradiography revealed a non-homogeneous Cr covering. Combined Auger electron and X-ray spectroscopies yielded information on the Cr concentration, especially in the 2 nm thick surface layer. This concentration was found to depend

  4. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  5. Development and fabrication of a diffusion welded Columbium alloy heat exchanger. [for space power generation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.

    1978-01-01

    A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.

  6. Interim analysis of long time creep behavior of columbium C-103 alloy

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Titran, R. H.

    1976-01-01

    Analysis of 16 long time creep tests on columbium C-103 alloy (Cb-10Hf-1Ti-0.7Zr) indicates that the calculated stresses to give 1 percent creep strain in 100,000 hours at 1,255 K (1800 F) are 7.93 and 8.96 MPa (1,150 and 1,300 psi) for fine grained and course grained materials, respectively. The apparent activation energy and stress dependence for creep of this alloy are approximately 315 KJ/gmol (75,300 cal/gmol) and 2.51, respectively, based on Dorn-Sherby types of relations. However, the 90 percent confidence limits on these values are wide because of the limited data currently available.

  7. Natural radioactivity contamination problems. Report no. 2. (final)

    SciTech Connect

    Not Available

    1981-09-01

    Levels of naturally occurring radionuclides associated with the bauxite, columbium-tantalum, phosphate, tin, pumice, and titanium mineral extraction industries are reported. Data is also presented on radioactivity measurements in ground water, in selected geothermal waters, and in oil production brines. Radiation protection guidance is provided for uranium recovery from wet-process phosphate plants, for soil contamination limits, and for radiological exposure in natural caves. Dose pathways from incidental uses of naturally occurring radioactive materials are presented. Model state regulations for protecting public health and safety from use and disposal of naturally occurring radioactive material are outlined.

  8. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    SciTech Connect

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  9. The application of metal cutting technologies in tasks performed in radioactive environments

    SciTech Connect

    Fogle, R.F.; Younkins, R.M.

    1997-05-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

  10. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions.

    PubMed

    Even, Julia; Yakushev, Alexander; Düllmann, Christoph E; Dvorak, Jan; Eichler, Robert; Gothe, Oliver; Hild, Daniel; Jäger, Egon; Khuyagbaatar, Jadambaa; Kratz, Jens V; Krier, Jörg; Niewisch, Lorenz; Nitsche, Heino; Pysmenetska, Inna; Schädel, Matthias; Schausten, Brigitta; Türler, Andreas; Wiehl, Norbert; Wittwer, David

    2012-06-18

    Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements. PMID:22663355

  11. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  12. Health risk and impact evaluation for recycling of radioactive scrap metal

    SciTech Connect

    Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States); Murphie, W.E.; Lilly, M.J. III [USDOE, Washington, DC (United States)

    1994-03-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service.

  13. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement

    NASA Astrophysics Data System (ADS)

    Nedilko, S.; Hizhnyi, Yu.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V.

    2009-03-01

    The potential use of luminescent probes for control over the structural state of MTi 2(PO 4) 3 double metal phosphates as host materials for radioactive waste confinement is examined. Luminescence spectra of pure and metal (Al, In, V) and rare-earth (Pr, Sm, Dy) doped MTi 2(PO 4) 3 (M = Li, Na, K) phosphate compounds (in crystalline and related amorphous forms) under X-ray, VUV (synchrotron radiation), UV and visible light excitations are analyzed. Electronic structure and absorption spectra of NaTi 2(PO 4) 3 crystals are calculated by the full-potential LAPW method. The origin of the self and impurity emission bands of MTi 2(PO 4) 3 materials is defined. It was shown that nitrogen laser with 337.1 nm generation wavelength is the most effective excitation source for remote monitoring of incorporation of various types of waste elements into MTi 2(PO 4) 3 hosts and for control over states of these hosts during storage of radioactive waste.

  14. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  15. Evaluation of coated columbium test panels having application to a secondary nozzle extension for the RL10 rocket engine system, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Murphy, Kenneth S.; Castro, Joaquin H.

    1988-01-01

    The activity performed on the screening and evaluation of various coatings for application on columbium alloy test panels representative of a radiation-cooled nozzle extension for the RL10 rocket engine is summarized. Vendors and processes of candidate coatings were evaluated. Post engine test evaluations of the two selected coatings are discussed.

  16. Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals

    SciTech Connect

    Lee, S.Y.; Lee, K.J.

    1999-07-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

  17. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    PubMed

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data. PMID:15551790

  18. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  19. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    SciTech Connect

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-03-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals.

  20. Design and analysis report for the flight weight 20-inch Columbium secondary nozzle for the RL10 engine

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1989-01-01

    Pratt & Whitney (P and W) is currently under contract to NASA-LeRC for a multi-year program to evaluate the feasibility of the RL10-IIB/IIC engine models and the various improvements which broaden the engine capabilities and range of applications. The features being evaluated include the operation of the RL10 engine at low thrust levels and/or high mixture ratio levels and the addition of a high area ratio (250:1) translating nozzle to the engine to increase its specific impulse while shortening the installed engine length. The translating nozzle for the RL10-IIB/IIC engine is approximately 55 inches long with an exit plane diameter of 71 inches and an inlet plane diameter of 40 inches. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. The length of the subscale nozzle is 20 in.; its exit diameter is 46 in. With the nozzle in the stowed position, an RL10A-3-3A engine system is 70 inches long (Area Ratio = 61:1); with the nozzle deployed the engine length and area ratio are increased to 90 inches and 83:1 respectively. The increase in area ratio provides a calculated increase of 7 + or - 1 second of specific impulse.

  1. Determination of Heavy Metals and Comparison to Gross Radioactivity Concentration in Soil and Sediment Samples of the Bendimahi River Basin (Van, Turkey)

    Microsoft Academic Search

    Özlem Selçuk Zorer; Hasan Ceylan; Mahmut Do?ru

    2009-01-01

    An investigation of radioactivity and some heavy metal distribution in soil and sediment of the river basin (Bendimahi River,\\u000a Van-Turkey) was conducted in two seasons of 2005. The samples of soil and sediment were collected from the basin and investigated\\u000a for concentrations of some heavy metal and natural radioactivity. Concentrations of Pb, Cr, Mn, Fe, Co, Cu, Zn and Cd

  2. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth had very good capacity for these two metals. However, the mechanical strength of Fullers earth granules available commercially was not sufficient for use in a column. In this study chitosan was used as a binder to make Fullers earth beads and were used for adsorption of Cs(I) and Sr(II). (Abstract shortened by UMI.)

  3. RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment

    Microsoft Academic Search

    Jing-Jy Cheng; Bassel Kassas; Charley Yu; John Arnish; Dave LePoire; Shih-Yew Chen; W. A. Williams; A. Wallo; H. Peterson

    2004-01-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the

  4. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    SciTech Connect

    Mizia, R.E. [ed.] [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States). Metal Recycle; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L. [Oregon Graduate Institute of Science and Technology, Portland, OR (United States). Dept. of Materials Science and Engineering

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.

  5. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  6. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    SciTech Connect

    Wegener, Dirk [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kluth, Thomas [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-07-01

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the current potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)

  7. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    Microsoft Academic Search

    Sappok

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel

  8. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  9. COLUMBIUM ALLOY CLAD URANIUM CARBIDE FUEL ELEMENT. Technical Report No. 61-33

    Microsoft Academic Search

    M. Korchynsky; J. J. Finley; J. L. Wilson; S. S. Sarian; H. J. Brown

    1961-01-01

    Methods of fabricating uranium monocarbide by powder metallurgical ; techniques are described. Experimental work includes cold-pressing and ; sintering, vacuum hot-pressing, liquid-phase sintering, and slip-casting. ; Uranium monocarbide powder for these experiments was produced by the methane-; uranium metal reaction. The effect of the various process variables on the ; powder characteristics is discussed. Compatibility of sintered uranium carbide ;

  10. Derivation of guidelines for uranium residual radioactive material in soil at the B&T Metals Company site, Columbus, Ohio

    SciTech Connect

    Kamboj, S.; Nimmagadda, Mm.; Yu, C

    1996-01-01

    Guidelines for uranium residual radioactive material in soil were derived for the B&T Metals Company site in Columbus, Ohio. This site has been identified for remedial action under the US Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 n-mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluations indicate that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total uranium (uranium-234, uranium-235, and uranium-238) at the B&T Metals site did not exceed 1, I 00 pCi/g for Scenario A (industrial worker, current use) or 300 pCi/g for Scenario B (resident with municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 880 pCi/g for Scenario C (resident with an on-site water well, a plausible but unlikely future use).

  11. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    SciTech Connect

    Meehan, R.W. [DOE-Oak Ridge Operations Office, TN (United States)

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  12. Natural radioactive elements and heavy metals in coal, fly ash and bottom ash from a thermal power plant

    SciTech Connect

    Font, J.; Casas, M.; Forteza, R.; Cerda, V.; Garcias, F. (Univ. of the Balearic Islands, Palma de Mallorca (Spain))

    1993-11-01

    The composition of coal used as fuel at a thermal power plant and those of the fly and bottom ashes it produces were determined. Radioactive elements were analysed for by alpha and gamma spectrometry, while sulphur, carbon and nitrogen were determined by burning. Heavy metals were quantified by X-ray fluorescence spectrometry and inductively coupled plasma atomic emission spectroscopy (ICPAES). The low sulphur content of the coal (0.68%) gives rise to fly ash containing only 0.21% of this element. The radiochemical analyses performed by alpha spectrometry revealed that most of the uranium remains in the solid residue resulting from disaggregation of the sample with Na[sub 2]CO[sub 3] in the separation process. Also, the gamma spectrometric results show that the elements from the 4n and 4n + 2 series and [sup 40]K concentrate in fly ash, the mean particle size of which is the smallest of all the residues assayed. 8 refs., 5 figs., 5 tabs.

  13. M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Busch, G.

    1977-01-01

    Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered.

  14. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    Microsoft Academic Search

    Laura A. Vanderberg; Trudi M. Foreman; Moses Attrep; James R. Brainard; Nancy N. Sauer

    1999-01-01

    The redirection and downsizing of the US Department of Energy`s nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous\\/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and

  15. Assessment of natural and artificial radioactivity levels and radiation hazards and their relation to heavy metals in the industrial area of Port Said city, Egypt.

    PubMed

    Attia, T E; Shendi, E H; Shehata, M A

    2015-02-01

    A detailed gamma ray spectrometry survey was carried out to make an action in environmental impact assessment of urbanization and industrialization on Port Said city, Egypt. The concentrations of the measured radioelements U-238, Th-232 in ppm, and K-40 %, in addition to the total counts of three selected randomly dumping sites (A, B, and C) were mapped. The concentration maps represent a base line for the radioactivity in the study area in order to detect any future radioactive contamination. These concentrations are ranging between 0.2 and 21 ppm for U-238 and 0.01 to 13.4 ppm for Th-232 as well as 0.15 to 3.8 % for K-40, whereas the total count values range from 8.7 to 123.6 uR. Moreover, the dose rate was mapped using the same spectrometer and survey parameters in order to assess the radiological effect of these radioelements. The dose rate values range from 0.12 to 1.61 mSv/year. Eighteen soil samples were collected from the sites with high radioelement concentrations and dose rates to determine the activity concentrations of Ra-226, Th-232, and K-40 using HPGe spectrometer. The activity concentrations of Ra-226, Th-232, and K-40 in the measured samples range from 18.03 to 398.66 Bq kg(-1), 5.28 to 75.7 Bq kg(-1), and 3,237.88 to 583.12 Bq kg(-1), respectively. In addition to analyze heavy metal for two high reading samples (a 1 and a 10) which give concentrations of Cd and Zn elements (a 1 40 ppm and a 10 42 ppm) and (a 1 0.90 ppm and a 10 0.97 ppm), respectively, that are in the range of phosphate fertilizer products that suggested a dumped man-made waste in site A. All indicate that the measured values for the soil samples in the two sites of three falls within the world ranges of soil in areas with normal levels of radioactivity, while site A shows a potential radiological risk for human beings, and it is important to carry out dose assessment program with a specifically detailed monitoring program periodically. PMID:25233912

  16. Potential impacts of pending residual radioactivity rules

    Microsoft Academic Search

    1995-01-01

    The purpose of this paper is to present an overview of pending rules governing residual radioactive release criteria and radioactive waste management, and the potential impact of these rules on the Fernald Scrap Metal program. More than 300,000 cubic meters of radioactively contaminated waste will be generated during the dismantlement of three complexes at the Fernald Site over the next

  17. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  18. Using Established Regulations to Recycle Contaminated Metals

    Microsoft Academic Search

    Loewen; Eric Paul

    2000-01-01

    DOE restoration projects require acceptable standards for processing volumetrically contaminated metals: ⢠NRC has no regulations addressing recycling of scrap metal containing residual volumetric radioactivity. ⢠DOE is currently restricting outside radioactive scrap metal sales; however, previous Fernald and Ohio State clean-ups have released metals with measurable levels of radioactivity into the open market. ⢠Public sensitivity to the subject

  19. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation

    NASA Astrophysics Data System (ADS)

    Georgiev, P.; Groudev, S.; Spasova, I.; Nikolova, M.

    2012-04-01

    Cinnamon soils from southeastern Bulgaria are heavily polluted with radionuclides (uranium, radium) and toxic heavy metals (copper and lead) due to the winds transportation of fine particles from flotation dumps to the soil surface. As a result of this, the polluted soils are characterized by a slightly alkaline pH (7.82) and positive net neutralization potential (+136.8 kg CaCO3/t). A fresh sample of cinnamon soil was subjected to remediation under laboratory conditions in four lysimeters each containing 70 kg of soil. The preliminary study revealed that most of the pollutants were presented as carbonate, reducible and oxidisable mobility fractions, i.e. pollutants ions were specifically adsorbed by carbonate and ferric iron minerals or were capsulated in sulfides. The applied soil treatment was connected with leaching of the pollutants located mainly in the horizon A, their transportation through the soil profile as soluble forms, and their precipitation in the rich-in-clay subhorizon B3. The efficiency of leaching depended on the activity of the indigenous microflora and on the chemical processes connected with solubilization of pollutants and formation of stable complexes with some organic compounds, chloride and hydrocarbonate ions. These processes were considerably enhanced by adding hay to the horizon A and irrigating the soil with water solutions containing the above-mentioned ions and some nutrients. After 18 months of treatment, each of the soil profiles in the different lysimeters was divided into five sections reflecting the different soil layers. The soil in these sections was subjected to a detailed chemical analysis and the data obtained were compared with the relevant data obtained before the start of the experiment. The best leaching of pollutants from horizon A was measured in the variants where soil mulching was applied. For example, the best leaching of lead (54.5 %) was found in the variant combining this technique and irrigation with solutions containing only nutrients. The best leaching of uranium (66.3 %), radium (62.5 %), and copper (15.1 %) were measured in the variant in which the soil was subjected to mulching and irrigation with alkaline solutions containing hydocarbonate ions. Despite the higher removal of these pollutants from the soil, the acute soil toxicity towards earthworms (Lumbricus terrestris) was higher in comparison to the toxicity of soil that had been treated in the other variant. Furthermore, the highly alkaline soil pH (10.47) that was determined due to the applied alkaline leaching resulted in an acute soil toxicity to oats (Avena sativa) and clover (Trifolium repens) that was even higher in comparison to the toxicity of the non-treated soil. These data revealed that the soil detoxification was depended not only on the decrease of the total concentration and on the bioavailable forms of above-mentioned pollutants but also on the changes that had taken place in chemical and geotechnical properties of the treated soil.

  20. COATING COLUMBIUM FOR HIGH TEMPERATURES

    Microsoft Academic Search

    Sandoz

    1960-01-01

    An investigation was conducted to find a coating for niobium to make it ; oxidation resistaat. The results obtained at the U. S. Naval Research Laboratory ; using zinc as a coating are reported. Tests conducted on molten zinc dipped ; niobium with an intentional flaw after coating, revealed a moderate hardness ; increase near the flaw. No indication of

  1. Radioactive wastes

    Microsoft Academic Search

    Devarakonda

    1993-01-01

    This paper reviews research and technological progress in radioactive waste management and disposal. The scope of material covered is very broad, ranging from international cooperation in radioactive waste management to evaluation of specific treatment technologies. The issue of safely managing and disposing of the plutonium resulting from the dismantling of weapons across the world is discussed and a series of

  2. Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006

    SciTech Connect

    P. R. Fresquez

    2007-02-28

    Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ({sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of {sup 3}H in soils (690 pCi/mL) were detected along the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of {sup 241}Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for {sup 238}Pu and 5 pCi/g dry for {sup 239,240}Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of {sup 3}H in three soil samples and {sup 241}Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 {micro}g/kg dry of aroclor-1254 and 94 {micro}g/kg dry of aroclor-1260. Radionuclide and inorganic element concentrations in soils collected along a transect from Area G to the Pueblo de San Ildefonso fence line show that most contained concentrations of {sup 241}Am, {sup 238}Pu, and {sup 239,240}Pu above the RSRLs. Overall, all concentrations of radionuclides, heavy metals, and PCBs that were detected above background levels in soils collected around the perimeter of Area G and towards the Pueblo de San Ildefonso boundary were still very low and far below LANL screening levels and regulatory standards.

  3. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  4. Radioactive Iodine

    MedlinePLUS

    ... form of iodide, is made into two radioactive isotopes that are commonly used in patients with thyroid ... the best results? I-123 is the usual isotope used to take pictures and determine the activity ...

  5. 300 Area radioactive liquid waste streams disposal

    Microsoft Academic Search

    Clukey

    1954-01-01

    In the 300 Area there are three liquid waste streams containing low concentrations of radioactive material which are discharged into the ground. One of these is the process sewer stream from the Metal Preparations facility, the 321 Building Cold Separations Laboratory, and miscellaneous buildings where minor radioactive contamination might occur. The second stream is liquid waste of low or negligible

  6. Feasibility analysis of recycling radioactive scrap steel

    Microsoft Academic Search

    F. Nichols; B. Balhiser; N. Cignetti

    1995-01-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons

  7. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  8. Radioactive Decay

    NSDL National Science Digital Library

    Barker, William

    Created by William Barker and David Smith for the Connected Curriculum Project, this module develops a mathematical model for decay of radioactive substances, and a technique for deciding whether quantitative data fits the model or not. This is one within a much larger set of learning modules hosted by Duke University.

  9. Radioactive Wastes

    NSDL National Science Digital Library

    David Smith

    Using Mathcad, Maple, Mathmatica, or MatLab, the user should be able to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal.

  10. Radioactive Wastes

    NSDL National Science Digital Library

    Smith, David

    Created by David Smith for the Connected Curriculum Project, this module develops multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and discusses storage times for wastes to decay to safe levels for disposal. This is one of a much larger set of learning modules hosted by Duke University.

  11. Radioactive Transitions

    NSDL National Science Digital Library

    This resource provides an interactive activity demonstrating how radioactive transitions (photon absorption and stimulated emission) occur in an optical field. Many important phenomena are emergent behaviors of this dynamic model. An interactive diagram is presented allowing students to experiment and watch a simulation of the result.

  12. Environmental impact of radioactive silver released from nuclear power plant

    Microsoft Academic Search

    Ž. Vukovi?

    2002-01-01

    Radioactive silver 110mAg is not a fission product, but as a contaminant originating from Chernobyl, was registered in many European countries. The environmental impact of radioactive silver was specially expressed in the process of obtaining copper and noble metals from ores originating from opencast mines. Direct consequence was contaminated metal silver in the period of several years after the Chernobyl

  13. Radioactive Wastes

    NSDL National Science Digital Library

    Moore, Lang

    Created by Lang Moore and David Smith for the Connected Curriculum Project, the purposes of this module are to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal. This is one lesson within a larger set of learning modules hosted by Duke University.

  14. PERSPECTIVE: Fireworks and radioactivity

    NASA Astrophysics Data System (ADS)

    Breitenecker, Katharina

    2009-09-01

    Katharina Breitenecker Fireworks, the one and only amongst all other pyrotechnic applications, have pleased the hearts and minds of billions of people all over the world for almost 1000 years. Even though pyrotechnics were originally developed in order to fulfil the needs of military purposes, fireworks began to form a unique part of the cultural heritage of many countries, presumably starting in ancient China during the Song Dynasty (960-1280 AD). Festivities like New Year's Eve, national holidays or activities like music festivals and parish fairs are crowned by a firework display. Fireworks have traditionally been associated with Independence Day celebrations, like 4 July in the United States, Guy Fawkes' Night (5 November) in Britain, or Bastille Day (14 July) in France. Much of Chinese culture is associated with the use of firecrackers to celebrate the New Year and other important occasions. The fascination of fireworks and firecrackers is due to the brilliant colours and booming noises, which have a universal appeal to our basic senses [1]. The basic components of any traditional civil firework is black powder, a mixture of about 75% potassium nitrate, 15% charcoal, and about 10% sulfur [2]. Without the addition of a colouring agent, the fuel would provide an almost white light. Therefore, several metal salts can be added to cause colourful luminescence upon combustion. In general barium is used to obtain a green coloured flame, strontium for red, copper for blue and sodium for yellow [2, 3]. The use of pyrotechnics has raised issues pertaining to health concerns. The health aspects are not only restricted to injuries by accidental ignition of certain devices. Moreover, several recent works identified fireworks and pyrotechnics as causing environmental pollution, which might result in a potential hazard concerning health aspects. The fundamental problem in this respect is that all chemicals used are dispersed in the environment by combustion. This includes both reaction products and unburnt constituents of a pyrotechnic mixture. One major environmental concern in pyrotechnics focuses on the emission of heavy metals. This is the topic discussed in the article by Georg Steinhauser and Andreas Musilek in this issue [4]. A possible interrelationship between respiratory effects and fireworks emissions of barium-rich aerosols was also raised last year [5]. In recent years the potential hazard of naturally occurring radioactive material has become of importance to the scientific community. Naturally occurring radionuclides can be of terrestrial or cosmological origin. Terrestrial radionuclides were present in the presolar cloud that later contracted in order to build our solar system. These radionuclides—mainly heavy metals—and their non-radioactive isotopes are nowadays fixed in the matrix of the Earth's structure. Usually, their percentage is quite small compared to their respective stable isotopes—though there are exceptions like in the case of radium. The problem with environmental pollution due to naturally occurring radioactive material begins when this material is concentrated due to mining and milling, and later further processed [6]. Environmental pollution due to radioactive material goes back as far as the Copper and Iron Ages, when the first mines were erected in order to mine ores (gold, silver, copper, iron, etc), resulting in naturally occurring radioactive material being set free with other dusts into the atmosphere. So where is the link between pyrotechnics and radioactivity? In this article presented by Georg Steinhauser and Andreas Musilek [4], the pyrotechnic ingredients barium nitrate and strontium nitrate are explored with respect to their chemical similarities to radium. The fundamental question, therefore, was whether radium can be processed together with barium and strontium. If so, the production and ignition of these pyrotechnic ingredients could cause atmospheric pollution with radium aerosols, resulting in potential negative health effects, unless an extensive purification of the ores is

  15. Preparation of hydrous mixed metal oxides of Sb, Nb, Si, Ti and W with a pyrochlore structure and exchange of radioactive cesium and strontium ions into the materials

    Microsoft Academic Search

    Teresia Möller; Abraham Clearfield; Risto Harjula

    2002-01-01

    Twenty hydrous mixed metal oxides of Sb, Nb, Si, Ti and W have been prepared by both precipitation and hydrothermal reactions and characterized by powder XRD, TGA and elemental analysis. Antimony silicate, niobium silicate, antimony titanate and titanium tungstate based materials crystallized with a cubic pyrochlore structure being analogues of the hydrous antimony pentoxide. The materials were studied for the

  16. Method of radioactively labeling diagnostic and therapeutic agents containing a chelating group

    SciTech Connect

    Stavrianopoulos, J.G.

    1987-11-17

    A method of forming a therapeutic or diagnostic agent labeled with a radioactive metal ion is described, which comprises: (A) contacting; (1) an unlabeled therapeutic or diagnostic agent comprising: (a) a molecularly recognizable portion attached to, (b) a chelating portion capable of substantially chelating with the radioactive metal ion, wherein the chelating portion is not a part of the molecularly recognizable portion, with (2) an ion transfer material having the radioactive metal ion bound thereto and having a binding affinity for the radioactive metal ion less than the binding affinity of the chelating portion for the radioactive metal ion. The chelating portion is unchelated or is chelated with a second metal having a binding affinity with the chelating portion less than the binding affinity of the radioactive metal ion, whereby a radiolabeled therapeutic or diagnostic agent is formed by the contacting; and (B) separating the radiolabeled therapeutic or diagnostic agent from the ion transfer material.

  17. Microbiological treatment of radioactive wastes

    SciTech Connect

    Francis, A.J.

    1992-12-31

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

  18. Radioactive Materials Product Stewardship

    E-print Network

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University....................................................................................................................................................................6 3. PRODUCT STEWARDSHIP

  19. Heavy-Metal (Fe/Ni/Cu) Behavior in Ultrathin Bonded Silicon-On-Insulator (SOI) Wafers Evaluated Using Radioactive Isotope Tracers

    NASA Astrophysics Data System (ADS)

    Furihata, Jun-Ichiro; Nakano, Masatake; Mitani, Kiyoshi

    2000-04-01

    The behavior of Fe, Ni and Cu in bonded silicon-on-insulator (SOI) wafers thinned down to 0.5 ?m by plasma-assisted chemical etching (PACE) was investigated for the first time by the radioactive isotope tracer method, which can avoid the evaluation errors due to contamination during sample preparation or analysis. When ultrathin bonded SOI wafers without an intentional gettering site were contaminated with Fe or Ni from the surface, Fe and Ni did not diffuse into the substrate through the buried oxide (BOX) layer after annealing in N2(2%O2) ambient at 900°C and 700°C, respectively. Cu easily diffused into the substrate through the BOX layer after annealing at 700°C for 60 min, and was captured at the bonding interface. It was found that the behavior of Ni, which exhibits the same diffusivity in Si as does Cu, was quite different in ultrathin bonded SOI wafers from that in bulk Si wafers due to the BOX layer of the SOI structure.

  20. Assessments of natural radioactivity and determination of heavy metals in soil around industrial dumpsites in Sango-Ota, Ogun state, Nigeria

    PubMed Central

    Ademola, Augustine Kolapo; Ayo, Isreal; Babalola; Folasade, Oluwakemi; Alabi; Onyinye, Dorcas; Onuh; Emmanuel, Enifome; Enyenihi

    2014-01-01

    The activity concentration of natural radionuclides in soil samples from industrial dumpsites in Sango-Ota were determined using gamma-ray spectrometry with NaI(Tl) detector. The mean activity concentration of 226Ra, 232Th and 40K was 3.0 ± 1.2, 33.3 ± 9.8 and 122.1 ± 20.6 Bqkg?1, respectively. Radium equivalent activities were calculated to assess the hazards arising from the use of the soil sample in agriculture. All the calculated values were lower than the world average. The mean concentration of heavy metals in the soil samples were 33.6, 2.9, 3.8, 2.7, 48.9, 1,5, 34.5 and 0.8 mg l-1 for Cu, Mg, Ca, P, Fe, Pb, Zn and Cd, respectively. The concentrations of Cd, Cu and Pb were higher than the natural permissible range in soil. Therefore, the government should discourage the use of the soil around dumpsites for planting because of the presence of heavy metals in the sites. PMID:24872608

  1. Using Established Regulations to Recycle Contaminated Metals

    SciTech Connect

    Loewen, Eric Paul

    2000-09-01

    DOE restoration projects require acceptable standards for processing volumetrically contaminated metals: • NRC has no regulations addressing recycling of scrap metal containing residual volumetric radioactivity. • DOE is currently restricting outside radioactive scrap metal sales; however, previous Fernald and Ohio State clean-ups have released metals with measurable levels of radioactivity into the open market. • Public sensitivity to the subject of non-governmental disposal of materials with residual radioactivity was heightened with the Below Regulatory Concern (BRC) issue. There are no clear guidelines for free release of volumetrically contaminated material.

  2. Method for immobilizing radioactive iodine

    DOEpatents

    Babad, Harry (Richland, WA); Strachan, Denis M. (Richland, WA)

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  3. Giant radioactive halos: indicators of unknown radioactivity?

    PubMed

    Gentry, R V

    1970-08-14

    A new group of giant radioactive halos has been found with radii in excess of anything previously discovered. Since alternate explanations for these giant halos are inconclusive at present, the possibility is considered that they originate with unknown alpha radioactivity, either from isomers of known elements or from superheavy elements. PMID:17791843

  4. Procedures for radioactive I-131

    SciTech Connect

    Sharma, S.C. (Univ. of Louisville, KY (USA))

    1988-12-01

    Details of the radioactive I-131 administration and radiation safety considerations are presented. Topics covered include patient survey, radioactive labelling, levels in patients containing radioactivity, hospital discharge of radioactive patients, and nursing procedures.

  5. Radioactive Counting Clocks

    Microsoft Academic Search

    Shankar Radhakrishnan; Amit Lal

    2006-01-01

    We report on a radioactive counting clock (RCC) based on radioactive beta emissions from nickel-63 thin films. We present a theoretical analysis of the clock that uses the radioactive source (physics package) to lock and stabilize the frequency of a voltage-to-frequency converter (local oscillator). We present frequency stability measurements of the RCC over 10 days of clock operation. We analyze

  6. The niobium (columbium)-platinum constitution diagram

    NASA Astrophysics Data System (ADS)

    Waterstrat, R. M.; Giessen, B. C.

    1985-11-01

    The Nb-Pt system was investigated over the entire composition range by metallography and X-ray diffraction analysis. The solubility limits of terminal and intermediate phases and solidus temperatures were determined. ?-Nb dissolves ?12 at. pct Pt at 2040 °C and ?5 at. pct Pt at 1150 °C; ?-Pt dissolves ?20 at. pct Nb at 2000 °C and ? 18 at. pct Nb at temperatures below 1700 °C. The presence of six intermediate phases, Nb3Pt (Cr3O, A15 or ?-W type), ?(?Nb2Pt, ?-U type), Nb1-xPt1+x (AuCd type), ?'-Pt (undetermined structure), NbPt2 (MoPt2 type), ?-NbPt3 (TiCu3 type), and ?-NbPt3 (?-NbPt3 type) was confirmed. The phase NbPt3 melts congruently at ?2040 °C, and ? forms peritectically at ?1800 °C. By analogy with related systems, the high-temperature phase ?'-Pt is probably an extension of and isomorphous with ?-Pt solid solution. Eight three-phase reactions are described, the mean atomic volumes are given, and crystal chemical relationships among the six homologous T5-T10 systems (T5 = V, Nb, Ta; T6 = Pd, Pt) are discussed.

  7. WM'05 Conference, February 27 March 3, 2005, Tucson, AZ WM-5202 INTERNATIONAL APPROACH TO MONITORING FOR RADIOACTIVELY

    E-print Network

    processing industries are very concerned about the importation of scrap metal contaminated by radioactivity TO MONITORING FOR RADIOACTIVELY CONTAMINATED SCRAP METAL Deborah Kopsick, U.S. Environmental Protection Agency within the scrap metal industry to share data and experiences on contaminated scrap incidents, especially

  8. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  9. SPECIAL ARTICLE: The use of radioactive isotopes in metallurgy

    Microsoft Academic Search

    R. Shuttleworth

    1953-01-01

    The ?-radiation from radioactive isotopes is used for radiography, and the ?-radiation for gauging the thickness of foils or, by back-scattering, the thickness of a coating on a base metal. The high sensitivity and ease with which isotopes can be detected and measured provides an easy method of estimating minute amounts of metal that have been labelled by pile irradiation.

  10. SUBSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY METALS

    Microsoft Academic Search

    B. S. Lement; D. A. Thomas; S. Weissmann; W. S. Owen; P. B. Hirsch

    1961-01-01

    Quantitative resuits on the substructural characteristics of tungsten, ; molybdenum, tantalum, and columbium are being obtained through the coordinated ; programs of the five participating laboratorses. Changes in subboundary spacing ; of worked materials have been measured microscopically as a function of annealing ; temperature, and corresponding changes in particle size and lattice strain have ; been obtained by Fourier

  11. Radioactivity and food

    SciTech Connect

    Olszyna-Marzys, A.E. (Laboratorio Unificado de Control de Alimentos y Medicamentos (LUCAM) (Guatemala))

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  12. ORNL radioactive waste operations

    SciTech Connect

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

  13. New heavy proton radioactivities

    SciTech Connect

    Davids, C.N. [Argonne National Lab., IL (United States); Woods, P.J. [Edinburgh Univ. (United Kingdom); Batchelder, J.C. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others

    1995-08-01

    The new proton radioactivities {sup 165,166,167}Ir, {sup 171}Au, and {sup 185}Bi have been observed, extending our knowledge of proton radioactivity up to and beyond the Z=82 closed shell. For Z=77 and 79, the transitions can be explained using simple shell-model arguments. The case of {sup 185}Bi represents the first example of proton radioactivity from an intruder state.

  14. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    Microsoft Academic Search

    Mautz

    1975-01-01

    Literature on the common metals industries, scrap metal relationships, ; and transportation aspects has been reviewed as background information in a study ; to determine the feasibility of a portable melting facility for radioactively ; contaminated metals. This report draws substantially on government-sponsored ; studies. Aluminum, copper, iron and steel, and nickel metal industries are ; discussed from the viewpoints

  15. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  16. Radioactive waste storage issues

    Microsoft Academic Search

    Kunz

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and

  17. Biodegradation of radioactive animals

    Microsoft Academic Search

    Nicolas Party; Esmeralda Party; Amy Wilkerson; Edward L. Gershey

    1995-01-01

    The two most common disposal alternatives for animals contaminated with radioactive materials are incineration and burial. For most of the country burial has entailed shipping the carcasses to a commercial disposal facility at Barnwell, South Carolina, where it was landfilled along with other solid radioactive waste. Unfortunately, since 30 June 1994, this facility accepts waste generated by the states of

  18. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  19. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D. [Tennessee Technological Univ., Cookeville, TN (United States); Egan, B.Z. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  20. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ?25% acquiring preassembled metal cofactors. The remaining ?70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  1. Recycling radioactively contaminated materials: Experience and prognosis

    Microsoft Academic Search

    D. E. Large; H. W. Arrowsmith

    1993-01-01

    In recent years, federal agencies, especially the U.S. Department of Energy (DOE), the U.S. Department of Defense (DOD), the U.S. Environmental Protection Agency, and the U.S. Nuclear Regulatory Commission (NRC), as well as the commercial nuclear enterprise, have begun to consider certain radioactively contaminated materials as resources for beneficial reuse rather than wastes. Most outstanding among these materials is metal

  2. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  3. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  4. Radioactive Decay Calculator

    NSDL National Science Digital Library

    Alan Enns

    This online calculator computes radioactive decay, timed decay, and timed solid disposal for a databank containing 116 isotopes. It also features University of British Columbia disposal limits and a unit converter and date/time calculators. These tools calculate the half-life for selected isotopes; radioactive decay final activity, given the initial activity and decay time; the decay time, given the initial and final activities; and the decay time, given the mass of a solid and the initial activity.

  5. Biodegradation of radioactive animals

    SciTech Connect

    Party, N.; Party, E.; Wilkerson, A. [Rockefeller Univ., NY (United States)] [and others

    1995-06-01

    The two most common disposal alternatives for animals contaminated with radioactive materials are incineration and burial. For most of the country burial has entailed shipping the carcasses to a commercial disposal facility at Barnwell, South Carolina, where it was landfilled along with other solid radioactive waste. Unfortunately, since 30 June 1994, this facility accepts waste generated by the states of the Southeast Compact only. Therefore, burial is no longer an option for most of the country`s generators and incineration is an option only for those institutions which have, or have access to, an incinerator that is permitted to burn radioactive materials and that accepts animal carcasses with de minimis levels of radioactive contaminants. Many institutions, especially those in congested urban areas where the public does not support incineration, do not have viable outlets for radioactive animal carcasses. Interim, on-site storage poses problems of its own. Biodegradation of animal carcasses with dermestid beetles is an inexpensive approach to this waste management problem. 7 refs., 3 figs., 1 tab.

  6. Biodegradation of radioactive animals.

    PubMed

    Party, N; Party, E; Wilkerson, A; Gershey, E L

    1995-06-01

    The two most common disposal alternatives for animals contaminated with radioactive materials are incineration and burial. For most of the country burial has entailed shipping the carcasses to a commercial disposal facility at Barnwell, South Carolina, where it was landfilled along with other solid radioactive waste. Unfortunately, since 30 June 1994, this facility accepts waste generated by the states of the Southeast Compact only. Therefore, burial is no longer an option for most of the country's generators and incineration is an option only for those institutions which have, or have access to, an incinerator that is permitted to burn radioactive materials and that accepts animal carcasses with de minimis levels of radioactive contaminants. Many institutions, especially those in congested urban areas where the public does not support incineration, do not have viable outlets for radioactive animal carcasses. Interim, on-site storage poses problems of its own. Biodegradation of animal carcasses with dermestid beetles is an inexpensive approach to this waste management problem. PMID:7759267

  7. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  8. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    Microsoft Academic Search

    S. J. Bossart; J. Hyde

    1993-01-01

    One of the US Department of Energy's (DOE) major goals is to clean up its contaminated facilities by the year 2019. The primary contaminants at DOE sites are radioactive materials, organic compounds, and heavy metals. The most common radioactive materials are isotopes of uranium and plutonium, although lesser quantities of thorium, technetium, neptunium and americium are also found. Organic contamination

  9. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  10. Catalytic extraction processing of contaminated scrap metal

    Microsoft Academic Search

    T. P. Griffin; J. E. Johnston

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which

  11. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  12. New Proton Radioactivity Measurements

    E-print Network

    Edinburgh, University of

    New Proton Radioactivity Measurements Richard J. Irvine Thesis submitted for the degree of Doctor to search for examples of proton emission from ground and low­lying states in odd­Z nuclei at the proton into a double­sided silicon strip detector system, where their subsequent particle decays (proton or alpha) were

  13. TABLE OF RADIOACTIVE ELEMENTS.

    SciTech Connect

    HOLDEN,N.E.

    2001-06-29

    For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

  14. Radioactivity and foods

    SciTech Connect

    Olszyna-Marzys, A.E. (Unified Lab. of Food and Drug Control, Guatemala City (Guatemala))

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food--on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undersirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chenobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods.

  15. RADIOACTIVE MATERIALS SENSORS

    Microsoft Academic Search

    Robert M. Mayo; Daniel L. Stephens

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs

  16. [Radioactivity of bone cement].

    PubMed

    Scherer, M A; Winkler, R; Ascherl, R; Lenz, E

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between < 1 and 100 Bq/kg. The content of U-238 and K-40 always was below the limit of detection (< 1-< 10 Bq/kg). Significant differences were detected in the amount of Ra-226, Pb-210, and Ra-228 detected between different samples of the same product from the same manufacturer, as well as between various types of cements. The highest radioactivity level was measured for Ra-226. Although stochastic radiation effects can not totally be excluded, it is extremely unlikely that the small amount of radioactive substances additionally transferred into the body by the bone cement has negative effects on the recipient's organism or on the fate of the alloplastic implant: "The risk factor and extrapolation in a low dosage range ... do not lead to an underestimation but more likely to an overestimation of the radiation hazard" [18]. PMID:8441806

  17. NATURAL RADIOACTIVE ELEMENTS IN PLANTS

    Microsoft Academic Search

    Kovalevskii

    1962-01-01

    Selective absorption of Ra, U, and Th isotopes by plants and the ; radioactive equilibrium of Ha isotopes and their decay products were studied. ; The accumulation of U, Ha, and other rare-earth elements by plants is determined ; by chemical rather than radioactive properties. In spite of the fact that the ; number of BETA decays from natural radioactive

  18. Fusion reactor radioactive waste management

    Microsoft Academic Search

    J. D. Kaser; A. K. Postma; D. J. Bradley

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed.

  19. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  20. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  1. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    Microsoft Academic Search

    R. H. Little; P. R. Maul; J. S. S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level

  2. Table of radioactive elements

    NASA Astrophysics Data System (ADS)

    Holden, N. E.

    As has been the custom in the past, the Commission publishes a table of relative atomic masses and half-lives of selected radionuclides. The information contained in this table will enable the user to calculate the atomic weight for radioactive materials with a variety of isotopic compositions. The atomic masses have been taken from the 1984 Atomic Mass Table. Some of the half-lives have already been documented.

  3. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  4. ELECTROLYTIC SEPARATION OF METALLIC ISOTOPES

    Microsoft Academic Search

    J. H. Andrews; I. Ceresna; F. A. Rohrman; W. F. Utlaut

    1956-01-01

    BS>By use of Ni⁶³ as a radioactive tracer it was found possible ; with electrochemical techniques to enrich the concentration of this Ni in the ; cathodic deposit. Nickel 63 apparently behaves more like a noble metal than do ; the ordinary Ni isotopes. Attempts to enrich Cd, Ag, and U by similar ; electrolytic means have not been successful

  5. Advanced technologies for decontamination and conversion of scrap metals

    Microsoft Academic Search

    T. R. Muth; J. Moore; D. Olson; B. Mishra

    1994-01-01

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s

  6. Radioactive and magnetic investigations

    NASA Technical Reports Server (NTRS)

    Heye, D.; Beiersdorf, H.

    1979-01-01

    Age and growth pattern determination of manganese nodules were explored. Two methods are discussed: (1) measurement of the presence of radioactive iodine isotopes; which is effective only up to 3.105 years, and (2) measurements of magnetism. The growth rates of three nodules were determined. The surface of the nodule was recent, and the overall age of the nodule could be determined with accuracy of better than 30%. Measurement of paleomagnetic effect was attempted to determine wider age ranges, however, the measured sign changes could not be interpreted as paleomagnetic reversals.

  7. Simpler radioactive wastewater processing.

    PubMed

    Rodríguez, José Canga; Luh, Volker

    2011-11-01

    José Canga Rodríguez, key account manager, Pharmaceutical and Life Sciences, EnviroChemie, and Volker Luh, CEO of EnviroDTS, describe the development, and recent successful application, of a new technology for dealing safely and effectively with the radioactive "wastewater" generated by patients who have undergone radiotherapy in nuclear medicine facilities. The BioChroma process provides what is reportedly not only a more flexible means than traditional "delay and decay" systems of dealing with this "by-product" of medical treatment, but also one that requires less plant space, affords less risk of leakage or cross-contamination, and is easier to install. PMID:22368885

  8. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  9. Process for recovering niobium and\\/or tantalum metal compound from such ores further containing complexes of uranium, thorium, titanium and\\/or rare earth metals

    Microsoft Academic Search

    W. Floeter; G. Schoening; K. Schroeer

    1984-01-01

    A process for recovering one or more non-radioactive transition metal compounds from an ore containing one or more compounds of said transition metal or metals and further containing at least one complex of a member selected from the group consisting of uranium, thorium, radium, titanium, and rare earth metals, which comprises decomposing said ore in crushed condition by means of

  10. FINAL REPORT. REMOVAL OF RADIOACTIVE CATIONS AND ANIONS FROM POLLUTED WATER USING LIGAND-MODIFIED COLLOID-ENHANCED ULTRAFILTRATION

    EPA Science Inventory

    The purpose of this project was to develop, optimize, and evaluate new separation methods for removal of hazardous (radionuclides and toxic non-radioactive contaminants) metal ions from either ground water or aqueous waste solutions produced during Decontamination and Decommissio...

  11. 68 FR 65120 - Approaches to an Integrated Framework for Management and Disposal of Low-Activity Radioactive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2003-11-18

    ...retardation effects (primarily sorption into the geologic media and solubility constraints); and [sbull] Radioactive decay along the...including mining (coal, metals, rare earths, and uranium), fertilizer production, oil and gas production, incorporation into...

  12. Radioactive Sources in Chemical Laboratories

    Microsoft Academic Search

    Helena Jan

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96\\/29\\/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware

  13. Radioactive waste disposal classification system

    Microsoft Academic Search

    1979-01-01

    The Nuclear Regulatory Commission, as part of its development of regulations for the disposal of radioactive waste, has contracted for the development of a radioactive waste classification system. The need for removing the waste from man's environment increases as the potential for endangering the health and safety of the public increases. The classification system being proposed is based on the

  14. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  15. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  16. Advanced technologies for decontamination and conversion of scrap metal

    Microsoft Academic Search

    V. MacNair; T. Muth; K. Shasteen; A. Liby; G. Hradil; B. Mishra

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion

  17. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  18. Mathematical modeling of radioactive waste glass melter

    SciTech Connect

    Choi, I.G.

    1990-01-01

    The radioactive waste glass melter used at Savannah River Site (SRS) is a liquid slurry feed joule-heated ceramic melter. The physical nature of a joule-heated meter is complex and involves interactions between electric, thermal, and flow fields. These interactions take place through strongly temperature-dependent glass properties, natural convection, advection, diffusion, and volumetrically distributed joule heating sources. The cold feed on top of heated glass distabilizes the flow field and develops unsteady asymmetric flow motions underneath. Thus waste glass modeling requires solving a full 3-D, unsteady, momentum, energy, and electric equation with temperature-dependent properties. Simulation of noble metal deposit process requires an additional mass diffusion equation that is coupled to the momentum equation through mass advection term. The objective of this paper is to identify critical issues anticipated in the Defense Waste Process Facility (DWPF) melter operation and address how these issues can be resolved with current state-of-the-art mathematical modeling techniques.

  19. Mathematical modeling of radioactive waste glass melter

    SciTech Connect

    Choi, I.G.

    1990-12-31

    The radioactive waste glass melter used at Savannah River Site (SRS) is a liquid slurry feed joule-heated ceramic melter. The physical nature of a joule-heated meter is complex and involves interactions between electric, thermal, and flow fields. These interactions take place through strongly temperature-dependent glass properties, natural convection, advection, diffusion, and volumetrically distributed joule heating sources. The cold feed on top of heated glass distabilizes the flow field and develops unsteady asymmetric flow motions underneath. Thus waste glass modeling requires solving a full 3-D, unsteady, momentum, energy, and electric equation with temperature-dependent properties. Simulation of noble metal deposit process requires an additional mass diffusion equation that is coupled to the momentum equation through mass advection term. The objective of this paper is to identify critical issues anticipated in the Defense Waste Process Facility (DWPF) melter operation and address how these issues can be resolved with current state-of-the-art mathematical modeling techniques.

  20. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    SciTech Connect

    Motojima, K.; Kawamura, F.

    1984-05-15

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time.

  1. Design and Construction of Deinococcus Radiodurans for Biodegradation of Organic Toxins at Radioactive DOE Waste Sites

    SciTech Connect

    Michael J. Daly; Lawrence P. Wackett; James K. Fredrickson

    2001-04-22

    Seventy million cubic meters of ground and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans that is being engineered to express bioremediating functions. Research aimed at developing D. radiodurans for organic toxin degradation in highly radioactive waste sites containing radionuclides, heavy metals, and toxic organic compounds was started by this group.Work funded by the existing grant has already contributed to eleven papers on the fundamental biology of D. radiodurans and its design for bioremediation of highly radioactive waste environments

  2. Development of long-term performance models for radioactive waste forms

    SciTech Connect

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  3. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178...Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal...

  4. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178...Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal...

  5. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178...Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal...

  6. 49 CFR 178.358 - Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Specification 21PF fire and shock resistant, phenolic-foam insulated, metal overpack. 178...Radioactive) Materials § 178.358 Specification 21PF fire and shock resistant, phenolic-foam insulated, metal...

  7. Radioactivity in nuclear medicine

    SciTech Connect

    Wolf, A.P. [Brookhaven National Lab., Upton, NY (United States)

    1996-10-01

    The use of radioactivity in biomedical research probably goes back to the efforts of George von Hevesy and his concept of the tag(tracer). The first use of a tracer in humans was perhaps the work of H. Blumgart in 1927 when he used a solution of radon to trace the human bloodstream. In the mid 1930`s Robley Evans (MIT) suggested using {open_quotes}radioiodine{close_quotes} as a tracer in thyroid disease. From that point on radionuclides weir, firmly entrenched in medicine and biomedical research. At first iodine-128 was used, then iodine-131. In 1938 Segre and Seaborg described the discovery of Technetium-99m, the isotope which in later years would account for the major use in nuclear medicine practice. In 1946, the AEC issued its now classic list of radioisotopes for use in the scientific community. The age of the reactor had begun bringing about a revolution in one area of medical practice. The accelerator started coming back into favor in the 1950s but began to hit its stride in the 1960s and beyond, principally with making available iodine-123, thallium-201 and the positron emitters carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The history of radiochemistry, chemistry and uses of these and the number of other important radionuclides will be discussed.

  8. Radioactive decay data tables

    SciTech Connect

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  9. Consumer Products Containing Radioactive Materials

    MedlinePLUS

    ... require that these devices be registered or licensed. Granite Countertops Granite can release the radioactive gas radon into the ... released can vary considerably from one type of granite to another, the radon concentrations in most kitchens ...

  10. Solubility data in radioactive waste disposal

    Microsoft Academic Search

    Hans Wanner

    2007-01-01

    Radioactive waste arises mainly from the generation of nuclear power but also from the use of radioactive materials in medicine, industry, and research. It occurs in a variety of forms and may range from slightly to highly radioactive. It is a worldwide consensus that radioactive waste should be disposed of in a permanent way which ensures protection of hu- mans

  11. Introduction to naturally occurring radioactive material

    SciTech Connect

    Egidi, P.

    1997-08-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

  12. Optimization of Thermochemical, Kinetic, and Electrochemical Factors Governing Partitioning of Radionuclides during Melt Decontamination of Radioactively Contaminated Stainless Steel

    Microsoft Academic Search

    James A. Van Den Avyle; David Melgaard; Martin Molecke; Greg J. Shelmidine; Uday Pal; Sergie I. Bychkov

    1999-01-01

    Metal waste generated from domestic nuclear operations for defense and commercial applications has led to a growing stockpile of radioactively contaminated scrap metal, much of which is stainless steel. This steel contains large quantities of strategic elements such as nickel and chromium and constitutes a valuable domestic resource [1]. A significant fraction of this material cannot be efficiently surface decontaminated,

  13. Field repair of coated columbium Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1972-01-01

    The requirements for field repair of coated columbian panels were studied, and the probable cause of damage were identified. The following types of repair methods were developed, and are ready for use on an operational system: replacement of fused slurrey silicide coating by a short processing cycle using a focused radiant spot heater; repair of the coating by a glassy matrix ceramic composition which is painted or sprayed over the defective area; and repair of the protective coating by plasma spraying molybdenum disilicide over the damaged area employing portable equipment.

  14. TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING FACILITY IS USED FOR WELDING REFRACTORY METALS IN CONNECTION WITH THE COLUMBIUM LIQUID SODIUM LOOP PROJECT

  15. 40 CFR 421.111 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Columbium-Tantalum Subcategory § 421.111 Specialized definitions. For the purpose of this subpart the general definitions,...

  16. Metal Surface Decontamination by the PFC Solution

    Microsoft Academic Search

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi; Chong-Hun Jung; Won-Zin Oh

    2006-01-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the

  17. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  18. Radioactive dating of the elements

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Thielemann, Friedrich-Karl; Truran, James W.

    1991-01-01

    The extent to which an accurate determination of the age of the Galaxy, and thus a lower bound on the age of the universe, can be obtained from radioactive dating is discussed. Emphasis is given to the use of the long-lived radioactive nuclei Re-187, Th-232, U-238, and U-235. The nature of the production sites of these and other potential Galactic chronometers is examined along with their production ratios. Age determinations from models of nucleocosmochronology are reviewed and compared with age determination from stellar sources and age constraints form cosmological considerations.

  19. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  20. Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal

    PubMed Central

    Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.

    2008-01-01

    In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.5–0.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x? slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731

  1. Imaging of radioactive material and its host particle from the nuclear power plant accident in Japan by using imaging plate and electron microscopy

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Zaizen, Yuji; Kimura, Tohru; Sakoh, Hiroshi; Igarashi, Yasuhito

    2013-04-01

    The Fukushima Daiichi Nuclear Power Plant accident in Japan on March, 2012, dispersed radioactive materials. In the Meteorological Research Institute, where locates 170 km south west from the power plant, we collected two types of filter aerosol samples and wet and dry deposition particles before and after the accident. Using these samples, we analyzed 1) radioactivity using an imaging plate (IP), which visualizes the radioactivity of samples in a two-dimensional plane with space resolution ~0.05 mm and 2) shape and compositions of particles that host radioactive materials using a scanning electron microscope (SEM) with energy-dispersive X-ray spectrometer (EDS). From the samples collected on March 15 and 21, we found radioactive spots on the filter samples using the IP, suggesting that radioactive materials, presumably Cs, were carried from the power plant. Radioactivity was also detected over the aggregates of dust particles in wet and dry deposition samples collected from March 2011. We did not find any detectable radioactive materials after the April when using the IP. We further investigated the radioactive spots using the SEM to identify the host particles of the radioactive materials and to detect radioactive materials from the EDS analysis. From the SEM analysis, we found that the particles on the filters include sulfate, mineral dust, and metals, but there were no particular particles or materials in the radioactive spots comparing to those in other area. The result suggests that the radioactive materials are hosted on the surface of other particles or inside them. We, so far, did not obtain any evidences that the radioactive materials are particulate with larger than 0.1 micro meter. Further analysis will need to identify the source of radioactive spots from individual particles using a manipulator as well as SEM and IP. Such studies will reveal where the radioactive materials exist in the environment, how they resuspend in the air, and how they could bring the health impact.

  2. Durability of containers for storing solidified radioactive wastes. [Cor-Ten A

    Microsoft Academic Search

    C. L. Angerman; W. N. Rankin

    1976-01-01

    Most concepts for the disposal of highly radioactive waste involve converting the waste to a solid form like concrete or glass and storing this solid form in metal containers. Two major factors in the final selection of materials for these containers are the compatibility between waste form and container material and the durability of the material at temperatures and stresses

  3. Characterization of radioactive-waste drum contents using real-time x-radiography

    Microsoft Academic Search

    B. A. Barna; J. R. Bishoff; W. W. Reinhardt

    1982-01-01

    Low-level transuranic (TRU) waste is stored in a retrievable manner at the Radioactive Waste Management Complex (RWMC) operated by EG and G Idaho, Inc., for the Department of Energy. The waste, consisting of contaminated rags, paper, plastic, laboratory glassware, tools, scrap metal, wood, electrical components and parts, sludges, etc., is packed in various sized sealed containers, including 55 gallon drums.

  4. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steels

    Microsoft Academic Search

    W. P. Chernicoff; K. C. Chou; H. Gao; C. J. MacDonald; M. A. Molecke; U. B. Pal; J. Van Den; D. Woolley

    1999-01-01

    Downsizing and decommissioning of nuclear operations is increasing the stockpile of Radioactive Scrap Metal (RSM). It is estimated that the annual generation of RSM for the entire DOE complex will be approximately 120,000 metric tons beginning in the year 2000. Out of which contaminated stainless steel with high chromium and nickel contents constitutes 25-30 wt. % [1]. Disposal of this

  5. Numerical simulation of high-level radioactive nuclear waste glass production

    SciTech Connect

    Choi, I.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Ungan, A. [Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering

    1991-12-31

    Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

  6. Numerical simulation of high-level radioactive nuclear waste glass production

    SciTech Connect

    Choi, I.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Ungan, A. (Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering)

    1991-01-01

    Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

  7. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.

  8. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  9. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  10. IN-SITU CHELATION AND EXTRACTION OF HEAVY METAL OXIDES USING MODIFIED SUPERCRITICAL CARBON DIOXIDE

    Microsoft Academic Search

    Tessy Vincent; P. K. Wattal; Mamata Mukhopadhay

    A b s t r a c t Conventional processes used in nuclear facilities, engaged in the extraction of heavy metals, generate considerable quantity of radioactive liquid wastes that requires further treatment. Use of SFE significantly reduces the waste volumes. It, additionally, avoids the dissolution step prior to extraction. A method of extracting metals directly from metal oxides by exposing

  11. Radioactive preionization in space lasers

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.

    1984-10-01

    Radioactive preionization may have advantages over X-ray or UV preionization when simplicity, power consumption, and weight are at a premium, as in space lasers. Computations show that a few Ci/sq cm of Sr-90 in the laser sidewalls or the electrodes results in a homogeneous electron-source strength exceeding 10 to the 14th/cu cm sec.

  12. Radioactive waste: Politics and technology

    SciTech Connect

    Berkhout, F.

    1995-08-01

    This book presents an analysis of the divergent strategies used to forge radioactive waste policies in great Britain, Germany, and Sweden. Some basic knowledge of nuclear technology and its public policy development is needed. The book points out that developing institutional frameworks that permit agreement and consent is the principal challenge of radwaste management and places the problem of consent in an institutional framework.

  13. Radioactivity in bottled mineral waters

    Microsoft Academic Search

    A Mart??n Sánchez; M. P Rubio Montero; V Gómez Escobar; M Jurado Vargas

    1999-01-01

    Consumption of bottled mineral water is a growing practice and is sometimes a necessity rather than a choice. In this work, a study of the radioactive content of a wide selection of commercial bottled mineral waters for human intake was carried out. The origins of the analyzed waters were very different, coming from various locations in France, Portugal and Spain.

  14. Undiagnosed Illnesses and Radioactive Warfare

    Microsoft Academic Search

    Asaf Durakoviæ

    The internal contamination with depleted uranium (DU) isotopes was detected in British, Canadian, and United States Gulf War veterans as late as nine years after inhalational exposure to radioactive dust in the Persian Gulf War I. DU iso- topes were also identified in a Canadian veteran's autopsy samples of lung, liver, kidney, and bone. In soil samples from Kosovo, hundreds

  15. Electrodynamic radioactivity detector for microparticles

    NASA Astrophysics Data System (ADS)

    Ward, T. L.; Davis, E. J.; Jenkins, R. W., Jr.; McRae, D. D.

    1989-03-01

    A new technique for the measurement of the radioactive decay of single microparticles has been demonstrated. Although the experiments were made with droplets of order 20 ?m in diameter, microparticles in the range 0.1-100 ?m can be accommodated. An electrodynamic balance and combination light-scattering photometer were used to measure the charge-loss rate and size of a charged microsphere suspended in a laser beam by superposed ac and dc electrical fields. The charged particle undergoes charge loss in the partially ionized gas atmosphere which results from radioactive decay of 14C-tagged compounds, and the rate of charge loss is proportional to the rate of decay here. The charge on a particle was determined by measuring the dc voltage necessary to stably suspend the particle against gravity while simultaneously determining the droplet size by light-scattering techniques. The parameters which affect the operation of the electrodynamic balance as a radioactivity detector are examined, and the limits of its sensitivity are explored. Radioactivity levels as low as 120 pCi have been measured, and it appears that by reducing the background contamination inside our balance activity levels on the order of 10 pCi can be detected. This new technique has application in the measurement of activity levels and source discrimination of natural and man-made aerosols and smokes and is also useful for studies involving specifically labeled radio-chemical probes.

  16. Life cycle management of radioactive materials packaging

    Microsoft Academic Search

    Y. Liu; S. Bellamy; J. Shuler

    2007-01-01

    The objective of life cycle management of radioactive materials packaging is to ensure the safety functions (i.e. containment of radioactivity, protection against radiation, and criticality safety for fissile contents) during the entire life cycle of the packaging in storage, transportation and disposal. A framework has been developed for life cycle management regarding type B radioactive and fissile materials packaging, drawing

  17. On the production of radioactive stents.

    PubMed

    Fehsenfeld, P; Golombeck, M; Kleinrahm, A; Schlösser, K; Schüssler, B; Schweickert, H; Hehrlein, C

    1998-01-01

    In the last few years, radioactive stents has been proved to inhibit neointima formation. This paper describes the actual status of producing such radioactive stents. After a short discussion of the different radioisotopes suitable for radioactive stents, potential production methods are discussed. The ion beam implantation of P-32 applied at the Karlsruhe Research Centre shall be described in more detail. PMID:10406687

  18. Radioactive isotopes in Danish drinking water

    E-print Network

    Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

  19. Charge distributions and coagulation of radioactive aerosols

    Microsoft Academic Search

    C. F. Clement; R. A. Clement; R. G. Harrison

    1995-01-01

    The self-charging of radioactive aerosols will be reduced by background ions, such as those produced by radioactive gases. The sources of these background ions and their production rates are specified for a reactor containment atmosphere during a possible nuclear accident. Previous theory is extended to calculate the charging of a polydisperse radioactive aerosol. Gaussian approximations to charge distributions on an

  20. On the production of radioactive stents

    NASA Astrophysics Data System (ADS)

    Schlösser, K.; Schweickert, H.

    2001-07-01

    In the last years radioactive stents proved to inhibit neointima formation. This paper describes the actual status of producing such radioactive stents. After a short discussion of the different radioisotopes suitable for radioactive stents, potential production methods are discussed. The ion beam implantation of P-32 applied at the Karlsruhe Research Center shall be described in more detail.

  1. Laboratory Surveys when Working with Radioactive Materials

    E-print Network

    Jia, Songtao

    Laboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9 be surveyed every month in which radioactive materials in unsealed for are used. B. Applicability to order, use and store radioactive materials. D. Procedures 1. General Procedures Monthly surveys

  2. Silicone metalization

    DOEpatents

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Deposition and removal of radioactive isotopes from LMFBR components

    SciTech Connect

    Hill, E.F.; Lutton, J.M.; Maffei, H.P.

    1980-01-01

    The development of an analytical model to describe the production, transport and eventual removal of radioactive materials in the primary sodium of LMFBR's is a continuing Sodium Technology activity sponsored by the Department of Energy. This paper describes studies directed toward obtaining an understanding of the deposition from sodium of fuel cladding activated corrosion products onto stainless steel alloys and the effect of their diffusion into the base metal on the process required to decontaminate it. The objective of the decontamination operation is to reduce the activity to a level allowing hands on maintenance without causing unacceptable damage to the component.

  5. Radon adsorbed in activated charcoal—a simple and safe radiation source for teaching practical radioactivity in schools and colleges

    NASA Astrophysics Data System (ADS)

    Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.

    2012-07-01

    Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal. Radon gas from ambient air in the laboratory was adsorbed into about 70 g of activated charcoal inside metallic canisters. Gamma radiation was subsequently emitted from the canisters, following the radioactive decay of radon and its progenies. The intensities of the emitted gamma-rays were measured at suitable intervals using a NaI gamma-ray detector. The counts obtained were analysed and used to demonstrate the radioactive decay law and determine the half-life of radon. In addition to learning the basic properties of radioactivity the students also get practical experience about the existence of natural sources of radiation in the environment.

  6. RADIOACTIVE WATER POSES NEW PROBLEMS

    Microsoft Academic Search

    C. T. Dickert; R. Hetherington; C. F. Raines

    1958-01-01

    The problems causcd by water impurities in power reactors are reviewed. ; Although high-pressure conventional steam boilers require high-quality water, the ; standards for nuclear reactor systems are extraordinarily high by comparison. ; Adverse chemical reactions include the normal corrosion reactions between metal ; and water and between metal and dissolved oxygen; the dissociation of water by ; fast neutrons,

  7. METALS: MICROBIAL PROCESSES AFFECTING METALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of metals in the environment due to anthropogenic activities has led to concern over the long-term fate of metal contaminants and the impact of metal accumulation on terrestrial and aquatic ecosystems. In nature, microorganisms carry out many different processes that influence the b...

  8. Decontamination of metals by melt refining\\/slagging: First year progress report

    Microsoft Academic Search

    R. E. Mizia; S. A. Worcester; L. G. Twidwell; D. J. Paolini; T. A. Weldon

    1994-01-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult. The problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse

  9. The standardization of radioactive preparations

    Microsoft Academic Search

    K. K. Aglintsev; F. M. Karavaev; A. A. Konstantinov; G. P. Ostromukhova; E. A. Kholnova

    1956-01-01

    The article describes methods and apparatus used in the D. L Mendeleev All-Union Scientific Research Institute of M etrology for the accurate measurement of a number of dosimetric characteristics of radioactive preparations: activity (calorimetric and ionization methods and the method of absolute B-counting), y-equivalent (ionization chamber With 4~r solid angle), and the magnitude of the dose of y-radiation (normal lont.zatJon

  10. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  11. Radioactivity of spent TRIGA fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  12. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  13. Melt processing of radioactive waste: A technical overview

    SciTech Connect

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  14. Optimization of thermochemical, kinetic, and electrochemical factors governing partitioning of radionuclides during melt decontamination of radioactively contaminated stainless steel. 1998 annual progress report

    Microsoft Academic Search

    Avyle; J. A. van den

    1998-01-01

    'Melt decontamination of radioactive scrap metal could convert a disposal liability into a final product that would reduce the total volume of material necessary for burial and save substantial material costs. The goal of this project is to optimize a melt decontamination process through a basic understanding of the factors which govern the partitioning of various radionuclides between metal, slag,

  15. Control of high level radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  16. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  17. About radioactivity in some PMMA bone cements.

    PubMed

    Hopf, W; Hopf, C G; Glöbel, B

    1990-01-01

    Various bone cements containing zirconium oxide (ZrO2) as X-ray contrast medium were tested for radioactivity by means of a gamma spectrometer. All measured bone cements (PALACOS, IMPLAST, SULFIX-6) showed a certain degree of radioactivity. The radiation source in the bone cement is the added zirconium oxide, which is polluted by radioactive elements. As these X-ray contrast media remain in the body for decades as components of the bone cement, the radioactive zirconium oxides should be substituted by high purity radiation-free zirconium oxide or barium sulfate. PMID:2239190

  18. 30. Radioactivity and radiation protection 1 30. RADIOACTIVITY AND RADIATION PROTECTION

    E-print Network

    30. Radioactivity and radiation protection 1 30. RADIOACTIVITY AND RADIATION PROTECTION Revised for the 2012 edition (pdg.lbl.gov) February 16, 2012 14:08 #12;2 30. Radioactivity and radiation protection radiation in a volume element of a specified material divided by the mass of this volume element. · Kerma, K

  19. 33. Radioactivity and radiation protection 1 33. RADIOACTIVITY AND RADIATION PROTECTION

    E-print Network

    33. Radioactivity and radiation protection 1 33. RADIOACTIVITY AND RADIATION PROTECTION Revised://pdg.lbl.gov) June 18, 2012 16:20 #12;2 33. Radioactivity and radiation protection tissue caused by different radiation in a volume element of a specified material divided by the mass of this volume element. · Kerma, K

  20. 30. Radioactivity and radiation protection 1 30. RADIOACTIVITY AND RADIATION PROTECTION

    E-print Network

    30. Radioactivity and radiation protection 1 30. RADIOACTIVITY AND RADIATION PROTECTION Revised;2 30. Radioactivity and radiation protection caused by different radiation types R weighted with so radiation in a volume element of a specified material divided by the mass of this volume element. · Kerma, K

  1. Charge Breeding of Radioactive Ions

    E-print Network

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  2. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    SciTech Connect

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A.; Savkin, A.E.; Varlakov, A.P.; Karlin, S.V.; Stefanovsky, S.V.; Karlina, O.K.; Semenov, K.N.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.

  3. Compilation of current literature on seals, closures, and leakage for radioactive material packagings

    SciTech Connect

    Warrant, M.M.; Ottinger, C.A.

    1989-01-01

    This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

  4. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  5. Pb-Radioactivity in superheavy elements

    E-print Network

    Kumar, Sushil

    2011-01-01

    The Pb-radioactivity in the superheavy mass region is studied within the frame work of PCM model,the calculation of Pb-Radioactivity looks favorably for the cluster decay studies in superheavy mass region as in the heavy mass region.

  6. Natural radioactivity in Italian ceramic tiles

    Microsoft Academic Search

    S. Righi; A. Albertazzi; R. Guerra; M. Jeyapandian; S. Verità

    2009-01-01

    and, therefore, reference is often made to radium instead of uranium (EC, 1999). The knowledge of the natural radioactivity of building materials is important for the determination of population exposure to radiations, as most of the people spend ~80% of their time indoors (UNSCEAR, 1993). High levels of radioactivity in construction materials can increase external and internal indoor exposure. Currently,

  7. Keynote lecture IRPA 12 Radioactive Waste Management

    Microsoft Academic Search

    Jean-Christophe NIEL

    A common property of radioactive waste is that it presents a hazard to human health and the environment. Then, it must be managed in order to reduce risks to acceptable levels. The preferred strategy for the management of all radioactive waste is to contain it and isolate it from the accessible biosphere during its decay. However, the controlled discharge of

  8. Guide to radioactive waste management literature

    Microsoft Academic Search

    B. L. Houser; C. F. Holoway; D. G. Madewell

    1977-01-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of

  9. Radioactivity of the moon and planets

    Microsoft Academic Search

    Iu. A. Surkov

    1981-01-01

    The major results of studies of the radioactivity of the moon and terrestrial planets are reviewed. Measurements of the cosmogenic and natural radioactivity of the moon and Mars were obtained from planetary orbiter measurements, and those of Venus by in situ measurements, in addition to measurements of lunar samples brought back to earth. For the case of the moon, the

  10. Metals 2000

    SciTech Connect

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  11. Optimization of Thermochemical, Kinetic, and Electrochemical Factors Governing Partitioning of Radionuclides During Melt Decontamination of Radioactively Contaminated Stainless Steel

    Microsoft Academic Search

    JAMES A. VAN DEN AVYLE; DAVID MALGAARD; MARTIN MOLECKE; UDAY B. PAL; RODNEY L. WILLIAMSON; VASILY V. ZHIDKOV

    1999-01-01

    The Research Objectives of this project are to characterize and optimize the use of molten slags to melt decontaminate radioactive stainless steel scrap metal. The major focus is on optimizing the electroslag remelting (ESR) process, a widely used industrial process for stainless steels and other alloys, which can produce high quality ingots directly suitable for forging, rolling, and parts fabrication.

  12. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 2011-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172... Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE WHITE-I label must be as follows:...

  13. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2010-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172... Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE WHITE-I label must be as follows:...

  14. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive...

  15. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive...

  16. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive...

  17. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive...

  18. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive...

  19. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...containers, and devices. (b) Except for sealed radioactive sources consisting solely of gaseous radioactive material or tritium, each accountable sealed radioactive source shall be subject to a source leak test upon receipt, when damage is...

  20. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...containers, and devices. (b) Except for sealed radioactive sources consisting solely of gaseous radioactive material or tritium, each accountable sealed radioactive source shall be subject to a source leak test upon receipt, when damage is...

  1. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...containers, and devices. (b) Except for sealed radioactive sources consisting solely of gaseous radioactive material or tritium, each accountable sealed radioactive source shall be subject to a source leak test upon receipt, when damage is...

  2. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...containers, and devices. (b) Except for sealed radioactive sources consisting solely of gaseous radioactive material or tritium, each accountable sealed radioactive source shall be subject to a source leak test upon receipt, when damage is...

  3. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...containers, and devices. (b) Except for sealed radioactive sources consisting solely of gaseous radioactive material or tritium, each accountable sealed radioactive source shall be subject to a source leak test upon receipt, when damage is...

  4. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline

    2011-08-01

    A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation. PMID:21451948

  5. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  6. Diverter assembly for radioactive material

    DOEpatents

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  7. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    Muth, T.R.; Shasteen, K.E.; Liby, A.L. [and others

    1995-12-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities.

  8. Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)

    Microsoft Academic Search

    J Lorenzen; M. Lindberg; J. Luvstrand

    2002-01-01

    Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange

  9. A powder metallurgy approach for production of innovative radioactive waste forms

    SciTech Connect

    Keiser, D.D. Jr.; Crawford, D.C. [Argonne National Lab., Idaho Falls, ID (United States); Bhaduri, S. [Univ. of Idaho, Moscow, ID (United States)] [and others

    1997-07-01

    The feasibility of producing a single metal-matrix composite form rather than two separate forms consisting of a cast metal alloy ingot (such as Type 316SS + Zr) and a ceramic glass-bonded zeolite Na{sub 12}(AlO{sub 2}){sub 12}(SiO{sub 2}){sub 12} has been demonstrated. This powder metallurgy approach consists of mixing the powder of the two separate waste forms together followed by compaction by hot isostatic pressing. Such a radioactive waste form would have the potential advantages of reducing the total waste volume, good thermal conductivity, stability, and surfaces with limited oxide layer formation. 5 refs., 8 figs., 2 tabs.

  10. Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2)

    Microsoft Academic Search

    Alexandra C. Miller; Kia Brooks; Jan Smith; Natalie Page

    2004-01-01

    Depleted uranium (DU) and heavy-metal tungsten alloys (HMTAs) are dense heavy-metals used primarily in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U isotopes, DU is a low specific activity, high-density heavy metal. In contrast, the non-radioactive HMTAs are composed of a mixture of tungsten (91–93%), nickel (3–5%), and cobalt (2–4%) particles. The

  11. ADVANCED TECHNOLOGIES FOR DECONTAMINATION AND CONVERSION OF SCRAP METAL

    Microsoft Academic Search

    Jagdish Malhotra

    2000-01-01

    The Department of Energy (DOE) confronts the major responsibility of decommissioni ng most of the U.S. Nuclear Complex, which also includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of

  12. Advanced technologies for decomtamination and conversion of scrap metal

    Microsoft Academic Search

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for

  13. Microbial transformation of low-level radioactive waste

    SciTech Connect

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions.

  14. Magnetic nano-sorbents for fast separation of radioactive waste

    SciTech Connect

    Zhang, Huijin [Environmental Science Program, University of Idaho, Moscow, ID 83844 (United States); Kaur, Maninder [Department of Physics, University of Idaho, Moscow, ID 83844 (United States); Qiang, You [Environmental Science Program, University of Idaho, Moscow, ID 83844 (United States); Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2013-07-01

    In order to find a cost effective and environmentally benign technology to treat the liquid radioactive waste into a safe and stable form for resource recycling or ultimate disposal, this study investigates the separation of radioactive elements from aqueous systems using magnetic nano-sorbents. Our current study focuses on novel magnetic nano-sorbents by attaching DTPA molecules onto the surface of double coated magnetic nanoparticles (dMNPs), and performed preliminary sorption tests using heavy metal ions as surrogates for radionuclides. The results showed that the sorption of cadmium (Cd) and lead (Pb) onto the dMNP-DTPA conjugates was fast, the equilibrium was reached in 30 min. The calculated sorption capacities were 8.06 mg/g for Cd and 12.09 mg/g for Pb. After sorption, the complex of heavy elements captured by nano-sorbents can be easily manipulated and separated from solution in less than 1 min by applying a small external magnetic field. In addition, the sorption results demonstrate that dMNP-DTPA conjugates have a very strong chelating power in highly diluted Cd and Pb solutions (1-10 ?g/L). Therefore, as a simple, fast, and compact process, this separation method has a great potential in the treatment of high level waste with low concentration of transuranic elements compared to tradition nuclear waste treatment. (authors)

  15. Transporting large volumes of residual radioactive material: FUSRAP solutions

    SciTech Connect

    Pressnell, T.; McDaniel, P. [Bechtel National Inc., Oak Ridge, TN (United States); Darby, J. [Dept. of Energy, Oak Ridge, TN (United States)

    1997-09-01

    During the 1940s, 1950s and 1960s, many sites in the United States were used by the Manhattan Engineer District and the Atomic Energy Commission for processing and storing uranium and thorium ores and metals. Some of the sites were owned by the federal government; others were owned by universities or other institutions; and still others, such as chemical plants, were privately owned. The Formerly Utilized Sites Remedial Action Program (FUSRAP) is one of several U.S. Department of Energy programs created to address radioactive contamination in excess of guidelines at these sites. FUSRAP currently includes 46 sites in 14 states. This article includes the following topics in describing FUSRAP work: Logistics challenges; engineering challenges (package inspection, equipment compatability, moisture content requirements, waste volume estimation); Traffic management.

  16. Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567

    SciTech Connect

    Vandergraaf, Tjalle T. [Consultant, Pinawa, MB, R0E 1L0 (Canada)] [Consultant, Pinawa, MB, R0E 1L0 (Canada); Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H. [Baku State University, Baku (Azerbaijan)] [Baku State University, Baku (Azerbaijan); Naghiyev, Jalal A. [Institute of Radiation Problems of ANAS, Baku (Azerbaijan)] [Institute of Radiation Problems of ANAS, Baku (Azerbaijan); Mehdiyeva, Afat A. [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)] [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)

    2013-07-01

    The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

  17. Predictions of LDEF radioactivity and comparison with measurements

    SciTech Connect

    Armstrong, T.W.; Colborn, B.L.; Harmon, B.A.; Laird, C.E. [Science Applications International Corp., Prospect, TN (United States); [Univ. of Eastern Kentucky, Richmond, KY (United States)

    1995-02-01

    As part of the program to utilize LDEF data for evaluation and improvement of current ionizing radiation environmental models and related predictive methods for future LEO missions, calculations have been carried out to compare with the induced radioactivity measured in metal samples placed on LDEF. The predicted activation is about a factor of two lower than observed, which is attributed to deficiencies in the AP8 trapped proton model. It is shown that this finding based on activation sample data is consistent with comparisons made with other LDEF activation and dose data. Plans for confirming these results utilizing additional LDEF data sets, and plans for model modifications to improve the agreement with LDEF data, are discussed.

  18. Radiation protection and radioactive scales in oil and gas production

    SciTech Connect

    Testa, C.; Desideri, D.; Meli, M.A.; Roselli, C. [Urbino Univ. (Italy); Bassignani, A.; Colombo, G.; Fantoni, R.F. [National Radiation Protection Institute, Milan (Italy)

    1994-07-01

    Low specific-activity scales consisting of alkaline earth metal carbonates and sulfates are often present in some gaseous and liquid hydrocarbon plants. These scales contain a certain concentration of radium, uranium, and thorium which can cause a risk of gamma irradiation and internal radiocontamination when they must be mechanically removed. The gamma dose rates and the {sup 238}U, {sup 232}Th, {sup 226}Ra concentrations were determined in sludges, scales, and waters of some gas and oil hydrocarbon plants located in Italy, Congo, and Tunisia. {sup 238}U and {sup 232}Th concentrations were very low. The isotopes {sup 238}U and {sup 234}U resulted in radioactive equilibrium, while {sup 232}Th and {sup 238}Th were not always in equilibrium. A rough correlation was found between the gamma dose rate and the {sup 226}Ra concentration. Some considerations and conclusions about radiation protection problems are pointed out. 16 refs., 6 tabs.

  19. Radioactive anomaly discrimination from spectral ratios

    DOEpatents

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  20. Bioremediation of metal contamination

    Microsoft Academic Search

    Derek R Lovley; John D Coates

    1997-01-01

    Recent studies have demonstrated that microbes might be used to remediate metal contamination by removing metals from contaminated water or waste streams, sequestering metals in soils and sediments or solubilizing metals to aid in their extraction. This is primarily accomplished either by biosorption of metals or enzymatically catalyzed changes in the metal redox state. Bioremediation of metals is still primarily

  1. Overflow of Radioactive Water from K Basins

    SciTech Connect

    RITTMANN, P.D.

    1999-10-06

    This report documents the dose calculations for the postulated K Basin overflow accident using current methods to model the environmental doses for radioactive releases into the Columbia River and the air.

  2. Central Storage for Unsealed Radioactive Materials

    E-print Network

    Pawlowski, Wojtek

    Central Storage for Unsealed Radioactive Materials Radiation Safety Form PERMIT HOLDER NAME:______________________________ PHONE #: ____________________________ ADDRESS/DEPT.: _______________________________ Storage Location: Refrigerator Freezer Dry Storage List each item being transferred to storage separately: EH&S LAB WIPE SURVEY

  3. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  4. Radioactively Contaminated National Priorities List (NPL) Sites

    MedlinePLUS

    ... SD UT WY [ regions ] Region 9 AZ · CA · HI · NV · AS · GU · TT · NI Trust Territories · Northern ... in Arizona go to: Region 9 : AZ CA HI NV AS GU [ regions ] [ previous location ] California Radioactively ...

  5. Using Popcorn to Simulate Radioactive Decay

    NSDL National Science Digital Library

    Jennifer Wenner

    Popping popcorn in your class is an excellent way to illustrate both the spontaneity and irreversible change associated with radioactive decay. It helps students to understand the unpredictability of decay.

  6. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  7. Operational experience at radioactive waste treatment plant, after 15 years

    Microsoft Academic Search

    Sanhueza-Mir; Azucena

    2007-01-01

    Available in abstract form only. Full text of publication follows: The experience of the radioactive waste treatment plant (PTDR) in Chile, which centralizes all activities related to pre-disposal activities in the radioactive waste management, in the country is presented. It is the solely waste treatment plant in the country, where radioactive waste are received from all nuclear and radioactive waste

  8. Radioactive Waste Management: a current awareness bulletin. [DOE abstract journal

    Microsoft Academic Search

    McLaren

    1983-01-01

    Management of radioactive wastes is necessary to protect public health, public safety, and the environment from radioactive materials resulting from national defense programs, energy research and development, and commercial activities. Access to information on the critical topics of spent fuel transport and storage, radioactive effluents from nuclear facilities, techniques of processing radioactive wastes, and ultimate disposal of the wastes is

  9. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  10. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  11. Low-level radioactive waste management

    Microsoft Academic Search

    1979-01-01

    This publication contains the proceedings of the Twelfth Mid-year Topical Symposium of the Health Physics Society on Low-Level Radioactive Waste Management held in Williamsburg, Virginia, February 11-15, 1979. There are fifty-seven papers included covering such topics on radioactive waste management as (1) the origin, (2) handling and transportation, (3) disposal operations and alternatives (4) regulatory aspects, (5) environmental, and (6)

  12. Salivary gland dysfunction following radioactive iodine therapy

    SciTech Connect

    Wiesenfeld, D.; Webster, G.; Cameron, F.; Ferguson, M.M.; MacFadyen, E.E.; MacFarlane, T.W.

    1983-02-01

    Radioactive iodine is used extensively for the treatment of thyrotoxicosis and thyroid carcinoma. Iodine is actively taken up by the salivary glands and, following its use, salivary dysfunction may result as a consequence of radiation damage. The literature is reviewed and a case is reported in which a patient presented with a significant increase in caries rate attributed to salivary dysfunction following radioactive iodine therapy for a thyroid carcinoma.

  13. Synthesis of radioactive and nonradioactive nanostructures through radiolytic and wet chemistry

    NASA Astrophysics Data System (ADS)

    Rojas Marin, Jessika Viviana

    In this work the synthesis of non radioactive and radioactive nanoparticles (NPs) through radiolytic and wet chemistry was studied. Non radioactive NPs of rhenium, iridium, and rhodium were synthesized from aqueous solutions containing the metal salt precursors by gamma irradiation. The solutions were irradiated to generate reducing species that led to the nucleation and growth of the nanoparticles. Amorphous rhenium oxide nanoparticles with average sizes ranging from 10 nm to 55 nm were obtained. Metallic iridium and rhodium nanoparticles were produced in polyvinyl-pyrrolidone (PVP) having narrow particle size distributions and average particle sizes from 2 nm to 6 nm. The stability of the NPs in PVP was explained based on the interaction of the metal with both of the functional groups, C-N and C=O, of the PVP. Iridium NPs supported on carbon nanotubes were also synthesized by gamma irradiation. The NPs were finely distributed on the surface of the nanotubes. The nanoparticle yield was found to increase with the radiation dose and the precursor concentration. The synthesis of radioactive NPs, specifically lanthanum phosphate containing 223Ra and 225Ra isotopes, was carried out in aqueous media using a precipitation method. The NPs crystallized in rhabdophane structure with a mean particle size of 3.4 nm and 6.3 nm for core and core-2shells respectively. The ability of LaPO4 NPs to retain the isotopes within their structure was investigated. It was found that core NPs retained up to 88% of the activity over a period of 35 days. It was also found that the addition of two LaPO4 shells to the core NPs increases the retention ability up to 99.99%. This fact suggests that LaPO4 NPs are potential carriers of radium isotopes for targeted alpha therapy.

  14. Process for direct conversion of reactive metals to glass

    DOEpatents

    Rajan, John B. (Naperville, IL); Kumar, Romesh (Naperville, IL); Vissers, Donald R. (Naperville, IL)

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  15. Feasibility of re-melting NORM-contaminated scrap metal

    SciTech Connect

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  16. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  17. Clad metal joint closure

    SciTech Connect

    Siebert, O.W.

    1985-04-09

    A plasma arc spray overlay of cladding metals is used over joints between clad metal pieces to provide a continuous cladding metal surface. The technique permits applying an overlay of a high melting point cladding metal to a cladding metal surface without excessive heating of the backing metal.

  18. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  19. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

  20. Design and Construction of Deinococcus radiodurans for Biodegradation of Organic Toxins at Radioactive DOE Waste Sites

    SciTech Connect

    Daly, Michael J.; Fredrickson, James K.; Wackett, Lawrence P.

    1999-06-01

    Immense volumes of radioactive waste, generated from nuclear weapons production during the Cold War, were disposed directly to the ground. The current expense of remediating these polluted sites is driving the development of alternative remediation strategies using microorganisms. The bacterium Deinococcus radiodurans is the most radiation resistant organism known and can grow in highly irradiating (>60 Gray/h) environments (1). Numerous microorganisms (e.g., Pseudomonas sp.) have been described, and studied in detail, for their ability to transform and degrade a variety of organic pollutants (e.g., toluene), present at many radioactive DOE waste sites. Detoxification of the organic toxins at these sites is an important goal in remediating or stabilizing contaminated sites as well as preventing their further dissemination. The aim of this project is to engineer strains of D. radiodurans that are capable of degrading organic/aromatic hydrocarbons present in radioactive mixed waste sites--sites that contain mixtures of toxic organic compounds, radionuclides and heavy metals. Conventional bioremediating organisms are unable to survive at many of these sites because of their sensitivity to radiation. Generally, microorganisms are sensitive to the damaging effects of ionizing radiation, and most of the bacteria currently being studied as candidates for bioremediation are no exception. For example, Pseudomonas sp. is very sensitive to radiation (more sensitive than E. coli) and is not suited to remediate radioactive wastes. Therefore, radiation resistant microorganisms that can remediate toxic organic compounds need to be found in nature or engineered in the laboratory to address this problem.

  1. Low-activity radioactive materials management at the U.S. Department of Energy.

    PubMed

    Marcinowski, Frank; Tonkay, Douglas W

    2006-11-01

    The U.S. Department of Energy (U.S. DOE) is making significant progress with the cleanup of its legacy radioactively-contaminated facilities and sites left from research and development and production of nuclear materials and weapons. Sites like Rocky Flats, Battelle Columbus Laboratories, Fernald, Mound, Brookhaven National Laboratory, Hanford, and Oak Ridge are faced daily with decisions related to disposition of waste and radioactive material. One key to this success is the disposition of waste arising from cleanup. Most of the generated waste volume has very low levels of radioactive contamination. The waste includes contaminated soil, debris from demolition, or scrap metal and equipment. The cost of disposing of large volumes of waste can be prohibitive, so there is incentive to find innovative ways to disposition wastes. This paper describes the current status of policy development in this area, such as development of a draft programmatic environmental impact statement and monitoring of related rulemaking at the U.S. Nuclear Regulatory Commission. The paper also provides an overview of draft U.S. DOE guidance on control and release of property with residual radioactive material, and site-specific applications of DOE guidance. PMID:17033462

  2. Environmental radioactivity in the Arctic, Antarctic

    SciTech Connect

    Palmer, H.

    1993-12-01

    This conference on radioactivity in the Arctic and Antarctic was held in Kirkenes, Norway and sponsored by the Norwegian Radiation Protection Authority and the Department of Radiation Physics, Sweden's University of Lund. Radioactivity in the Arctic is the result of both natural phenomena and human activities. Natural or background radioactivity is a result of the breakdown and erosion of rocks that contain naturally radioactive minerals. But the levels introduced by dumping, weapons testing, and industrial activities far exceed such natural levels. Conference delegates cited such contamination sources as: Chernobyl's nuclear reactor accident; Wastes from fuel reprocessing plants at Sellafield (UK) and La Hague (France); Weapons testing in and around Novaya Zemlya; Ocean dumping of reactors, waste containers, and liquid wastes; Runoff from watersheds containing soil and organic material contaminated by atmospheric fallout; Atmospheric fallout from decades of weapons tests by various nations; and, Accidents involving nuclear submarines. The potential for increased radioactive pollution is of great concern and these questions were addressed by several speakers.

  3. Radioactive waste management in a hospital.

    PubMed

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  4. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  5. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  6. Metal glasses

    NASA Astrophysics Data System (ADS)

    Belen'kii, Aleksei Iakovlevich

    1987-02-01

    Methods of producing amorphous alloys of various systems (e.g., Pd-Si, Fe-B, Ni-P, Ni-Nb, Ni-Ta, Co-Gd, Fe-Gd, Mg-Zn,and Ca-Al) are briefly discussed, and the atomic structure and properties of such alloys are examined. In particular, attention is given to anomalies in the low-temperature behavior of amorphous alloys, their electrical and magnetic properties, strength, ductility, and corosion stability. Some aplications of metal glasses are mentioned.

  7. Low radioactivity spectral gamma calibration facility

    SciTech Connect

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.; Lavelle, M.J.; Smith, A.R.; Hearst, J.R.; Wollenberg, H.A.; Flexser, S.

    1986-01-01

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.

  8. Type A radioactive liquid sample packaging family

    SciTech Connect

    Edwards, W.S.

    1995-11-01

    Westinghouse Hanford Company (WHC) has developed two packagings that can be used to ship Type A quantities of radioactive liquids. WHC designed these packagings to take advantage of commercially available items where feasible to reduce the overall packaging cost. The Hedgehog packaging can ship up to one liter of Type A radioactive liquid with no shielding and 15 cm of distance between the liquid and the package exterior, or 30 ml of liquid with 3.8 cm of stainless steel shielding and 19 cm of distance between the liquid and the package exterior. The One Liter Shipper can ship up to one liter of Type A radioactive liquid that does not require shielding.

  9. Radioactive tank waste remediation focus area

    SciTech Connect

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  10. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F. (Los Alamos, NM)

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  11. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    PubMed

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts. PMID:25764851

  12. Plasma processing for the treatment and immobilization of radioactive tank waste

    SciTech Connect

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; Swensrud, R.L.; Yang, W.C.; Darr, M.F.; D`Amico, N. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States). Environmental Technologies Dept.

    1995-12-31

    Plasma melting technology has been applied by the Westinghouse Science and Technology Center to treatment of radioactive tank wastes from the DOE complex, containing high sodium content, nitrates, hazardous organics, and a wide range of radioactive species. In simulant tests, successful continuous calcination of tank waste has been demonstrated at pilot plant scale, forming a free-flowing molten product which solubilizes aluminum and heavy metals, and which when quenched in water yields a solution from which strontium and transuranics may be separated by filtration. One-step vitrification of tank waste liquid has also been demonstrated at the pilot scale, in which 7 metric tons per day of good quality waste glass were produced by plasma vitrification of tank waste simulant with glassformer frit additive. This technology is reliable and readily scaled to the 200 tonne/day throughput required to meet DOE milestones for remediation of tank waste stored at the Hanford Reservation in eastern Washington State.

  13. Remote analyses of highly radioactive samples by x-ray fluorescence

    SciTech Connect

    Warrant, R.W.; Shurtliff, R.M.; Haskell, K.J.; Ryder, W.A.

    1991-09-11

    The Idaho Chemical Processing Plant (ICPP) is a multipurpose nuclear fuel and waste processing facility located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The plant is presently operated for the Department of Energy (DOE) by a subsidiary of Westinghouse Electric Company, Westinghouse Idaho Nuclear Company (WINCO). The facility receives and processes a large variety of reactor fuel types. The analysis of spent nuclear fuel reprocessing streams causes some unique problems for the analytical chemist. The major problems are the high levels of radioactivity, the complex solution of fuel components, fission products, dissolved cladding, and dissolver solutions as well as the need for rapid results. For the analysis of the heavy metals in these complex radioactive samples, the technique of wavelength dispersive X-ray fluorescence offers some distinct advantages. The method is specific, highly automated, and the sample requires minimum preparation.

  14. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  15. Guidelines for handling radioactively contaminated decedents.

    PubMed

    Wood, Charles M; DePaolo, Frank; Whitaker, Doggett

    2008-05-01

    The Centers for Disease Control and Prevention recently issued guidelines for medical examiners, coroners, and morticians in dealing with decedents after detonation of an improvised nuclear device (IND) or radiological dispersal device (RDD) (). Partners in this effort included the New York City Office of Chief Medical Examiner and the National Funeral Directors' Association. This paper describes the handling techniques required for loose surface contamination, radioactive shrapnel, and internal contamination caused by inhaling or ingesting radioactive materials from an IND or RDD, and provides suggested guidelines for medical examiners, coroners, and morticians to deal with these situations. PMID:18403956

  16. Summary -- Experiments with Radioactive Beams Working Group

    SciTech Connect

    Vieira, D.J. (Los Alamos National Lab., NM (United States)); Wiescher, M. (Notre Dame Univ., IN (United States))

    1992-01-01

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  17. Summary -- Experiments with Radioactive Beams Working Group

    SciTech Connect

    Vieira, D.J. [Los Alamos National Lab., NM (United States); Wiescher, M. [Notre Dame Univ., IN (United States)

    1992-12-31

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  18. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization

    SciTech Connect

    Darsh T. Wasan

    2002-02-20

    Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated antifoamer appeared to be as effective as nonirradiated antifoamers. Therefore, the results of this research have led to the successful development, demonstration and deployment of the new antifoam in the Defense Waste Processing Facility chemical processing.

  19. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

    2012-07-01

    This paper presents the results of research activities aimed at creation of a principally new LRW distilling treatment method. The new process is based on the instantaneous evaporation method widely used in distillation units. The main difference of the proposed process is that the vapor condensation is conducted without using heat exchangers in practically ideal mode by way of direct contacting in a vapor-liquid system. This process is conducted in a specially designed ejector unit in supersonic mode. Further recuperation of excess heat of vaporization is carried out in a standard heat exchanger. Such an arrangement of the process, together with use of the barometric height principle, allows to carry out LRW evaporation under low temperatures, which enables to use excess heat from NPS for heating initial LRW. Thermal calculations and model experiments have revealed that, in this case, the expenditure of energy for LRW treatment by distilling will not exceed 3 kilowatt-hour/m{sup 3}, which is comparable with the reverse-osmosis desalination method. Besides, the proposed devices are 4 to 5 times less metal-intensive than standard evaporation units. These devices are also characterized by versatility. Experiments have revealed that the new method can be used for evaporation of practically any types of LRW, including those containing a considerable amount of oil products. Owing to arrangement of the evaporation process at low temperatures, the new devices are not sensitive to 'scale formation'. This is why, they can be used for concentrating brines of up to 500-600 g/l. New types of such evaporating devices can be required both for LRW treatment processes at nuclear-power plants under design and for treating 'non-standard' LRW with complex physicochemical and radionuclide composition resulting from the disaster at the Fukushima I Nuclear Power Plant.) As a result of accidents at nuclear energy objects, as it has recently happened at NPP 'Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those containing hardness salts, resulted in generation of LRW concentrate 300-600 g/l. The method is based o

  20. Radioactive Ion Beam Production Capabilities at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Beene, James R [ORNL; Dowling, Darryl T [ORNL; Gross, Carl J [ORNL; Juras, Raymond C [ORNL; Liu, Yuan [ORNL; Meigs, Martha J [ORNL; Mendez, II, Anthony J [ORNL; Nazarewicz, Witold [ORNL; Sinclair, John William [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL

    2011-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of HRIBF is the production of high-quality beams of short-lived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions.

  1. Melting, Solidification, Remelting, and Separation of Glass and Metal

    SciTech Connect

    M. A. Ebadian; R. C.Xin; Z. F. Dong

    1998-11-02

    Several kinds of radioactive waste exist in mixed forms at DOE sites throughout the United States. These Wastes consist of radionuclides and some usefil bme materials. One purpose of waste treatment technologies is to vitrify the radionuclides into durable, stable glass-like materials to reduce the size of the waste form requiring final disposal. The other purpose is to recycle and reuse most of the usefi.d base materials. Thus, improved techniques for the separation of molten metal and glass are essential. Several high temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. These processes include the plasma hearth process, which is being developed by Science Applications International Corporation (SAIC), and the arc melter vitrification process, which is being developed at Idaho National Engineering Laboratory. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to suppoti these process. A separation method is also needed for the radioactively contaminated scrap metal recycling processe; in order to obtain highly refined recycled metals.

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  3. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  4. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  5. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E. (Kennewick, WA); Partridge, Jerry A. (Richland, WA)

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  6. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the...

  7. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the...

  8. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the...

  9. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the...

  10. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the...

  11. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  12. Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections

    SciTech Connect

    Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

    1994-09-01

    This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging.

  13. [Loss and uncontrolled use of radioactive sources].

    PubMed

    Govaerts, P

    2005-01-01

    In the course of history, exposure to radioactive sources escaping regular control, has been the main cause of fatal accidents, with the exception of the reactor accident at Chernobyl. After the disintegration of the Soviet Union, numerous lost sources have been found, sometimes with serious physical damage. The attacks of September 11, 2001 have focussed the attention on the possibility of nuclear terrorism. Although the risks of fatal consequences are rather limited, the possible uncontrolled exposure to ionizing radiation has an important psycho-social impact on the population. After a brief survey of the types of radioactive sources for medical and industrial applications and a discussion of the risks and exposure routes, possible scenarios are illustrated by well documented case histories. The main conclusions of this analysis are: Radioactive materials are not unique as a potential threat by toxic materials. The most serious consequences for individuals occur as the result of external radiation, mostly with skin contact with medium-active sources which are relatively easily accessible. The collective impact is mostly psycho-social and is more important for a dispersed contamination of the environment. Many sources are detected via medical complaints. The knowledge of the specific symptoms is consequently very important. A dispersion of radioactive contamination has usually considerable economic consequences. Accidents occur particularly, but certainly not exclusively, in relatively unstable countries. Change of owner or final evacuation of the source constitute a critical phase in many scenarios. PMID:16408827

  14. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  15. Life cycle management of radioactive materials packaging.

    SciTech Connect

    Liu, Y.; Bellamy, S.; Shuler, J.; Decision and Information Sciences; SRL; DOE

    2007-01-01

    The objective of life cycle management of radioactive materials packaging is to ensure the safety functions (i.e. containment of radioactivity, protection against radiation, and criticality safety for fissile contents) during the entire life cycle of the packaging in storage, transportation and disposal. A framework has been developed for life cycle management regarding type B radioactive and fissile materials packaging, drawing upon current US Department of Energy (DOE) storage standards and examples from interim storage of Pu bearing materials in model 9975 transportation packagings. Key issues highlighted during long term storage of Pu bearing materials included gas generation and stability of PuO{sub 2+x}; other operation safety issues highlighted for interim storage of model 9975 transportation packagings included the need to consider a facility design basis fire event and the long term behaviour of packaging components such as Celotex and elastomeric O-ring seals. The principles of aging management are described, and the key attributes and examples of effective aging management programmes are provided based on the guidance documents for license renewal of nuclear power plants. The Packaging Certification Program of DOE Environmental Management, Office of Safety Management and Operations, plans to expand its mission into packaging certification for storage and aging management, as well as application of advanced technology, such as radiofrequency identification, for life cycle management of radioactive materials packagings.

  16. The RadioActive Networking Architecture

    Microsoft Academic Search

    Peter T. Kirstein; Piers O'hanlon; Ken Carlberg; Panos Gevros; Kristian Hasler

    2002-01-01

    This paper describes the activities in Application Level Active Networks (ALAN) under the DARPA-funded RADIOACTIVE Project; this is closely related to work carried out under a European Commission project ANDROID. The ALAN infrastructure was developed mainly under other projects; it is summarized here mainly for background. The version used here relies on separate Active Applications driven by policies - with

  17. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  18. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  19. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...background color on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the upper portion. The base of the yellow triangle must be 29 mm ±5 mm (1.1 inches ±0.2 inches) above the placard horizontal...

  20. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...background color on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the upper portion. The base of the yellow triangle must be 29 mm ±5 mm (1.1 inches ±0.2 inches) above the placard horizontal...

  1. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...background color on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the upper portion. The base of the yellow triangle must be 29 mm ±5 mm (1.1 inches ±0.2 inches) above the placard horizontal...

  2. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...background color on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the upper portion. The base of the yellow triangle must be 29 mm ±5 mm (1.1 inches ±0.2 inches) above the placard horizontal...

  3. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...background color on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the upper portion. The base of the yellow triangle must be 29 mm ±5 mm (1.1 inches ±0.2 inches) above the placard horizontal...

  4. The ORNL Radioactive Ion Beam Project

    Microsoft Academic Search

    D. K. Olsen; G. D. Alton; R. L. Auble; C. Baktash; D. T. Dowling; J. D. Garrett; D. L. Haynes; C. M. Jones; R. C. Juras; M. J. Meigs; G. D. Mills; S. W. Mosko; R. L. Robinson; B. A. Tatum; H. Blosser; L. Lee; F. Marti; H. K. Carter; J. Kormicki; P. Mantica; L. Rayburn; C. A. Reed

    1992-01-01

    On June 30, 1992, the Holifield Heavy Ion Research Facility (HHIRF) was shut down as an operating national users' facility for heavy ion physics research and became a construction project to reconfigure the existing accelerator system and develop a first generation radioactive ion beam (RIB) facility. During its 11 years of operation, the HHIRF had over 600 users, of which

  5. The ORNL Radioactive Ion Beam Project

    Microsoft Academic Search

    D. K. Olsen; G. D. Alton; R. L. Auble; C. Baktash; D. T. Dowling; J. D. Garrett; D. L. Haynes; C. M. Jones; R. C. Juras; M. J. Meigs; G. D. Mills; S. W. Mosko; R. L. Robinson; B. A. Tatum; H. Blosser; L. Lee; F. Marti; H. K. Carter; J. Kormicki; P. Mantica; L. Rayburn; C. A. Reed; J. Dellwo; H. Wollnik

    1992-01-01

    On June 30, 1992, the Holifield Heavy Ion Research Facility (HHIRF) was shut down as an operating national users` facility for heavy ion physics research and became a construction project to reconfigure the existing accelerator system and develop a first generation radioactive ion beam (RIB) facility. During its 11 years of operation, the HHIRF had over 600 users, of which

  6. RADIOACTIVE FILTER BANK FIRE DETECTION SYSTEMS

    Microsoft Academic Search

    1961-01-01

    The detection of radioactive air filter fires is discussed. Criteria ;\\u000a requirements for a suitable fire detection system were established. The ;\\u000a applicability of aircraft-type fire detection systems for this use was evaluated. ;\\u000a The operation of a discrete eutectic salt type continuous fire detection tubing ;\\u000a system is outlined. (M.C.G.)

  7. Safety Aspects in Radioactive Waste Management

    Microsoft Academic Search

    Peter W. Brennecke

    Bezpe?nostné aspekty mana?mentu rádioaktívneho odpadu In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short- lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-

  8. Electroflotation Purification of Radioactive Waste Waters

    Microsoft Academic Search

    V. I. Il'in; V. A. Kolesnikov

    2001-01-01

    Methods for purifying radioactive waste waters are reviewed. It is shown that the electrofiltration method with insoluble electrodes is promising at the stage of separation of liquid and solid phases. The arrangement, technical-economic characteristics, and a description of the operation of an electroflotator are given.

  9. 2006 Nature Publishing Group Radioactive 26

    E-print Network

    California at Berkeley, University of

    the Cygnus region suggests that a substantial fraction of Galactic 26 Al could originate in localized star determine a present-day equilibrium mass of 2.8 (60.8) solar masses of 26 Al. We use this to determine was apparently characterized3,4 by an amount of radioactive 26 Al (relative to the stable 27 Al isotope

  10. LAND BURIAL OF SOLID PACKAGED RADIOACTIVE WASTES

    Microsoft Academic Search

    J. M. Jr. Morgan; J. C. Geyer; D. C. Costello

    1962-01-01

    A study was made of practices involved in land burial of solid packaged ; radioactive wastes in the United States. National, regional, and local burial ; grounds are discussed, as are source and character of wastes. Handling ; techniques, containers, transportation practices, and regulations are mentioned. ; Waste shippers and waste quantities are indicated and an estimate is made of

  11. High-Level Radioactive Waste Disposal

    Microsoft Academic Search

    R. C. Liikala; R. W. McKee; W. K. Winegardner

    1974-01-01

    The U.S. Atomic Energy Commission (AEC) is developing additional plans and new methods for managing radioactive wastes generated by past, present and future operations. The objectives of these programs are to; (1) ensure the health and safety of the public, (2) protect our environment and ecology, and (3) use methods acceptable to the public. A brief overview is presented of

  12. The political science of radioactive waste disposal

    Microsoft Academic Search

    Jacobi; L. R. Jr

    1996-01-01

    This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you

  13. Radiation hormesis: Radioactive waste for health

    Microsoft Academic Search

    Luckey

    1995-01-01

    Hormesis is the stimulation of any system by low doses of any agent. The hormesis model is particularly applicable to radioactive waste management. Radiation hormesis encompasses the beneficial effects of low-dose irradiation in both animals and humans. The radiation hormesis model comprises statistically significant (X² test) results that compare total death rates and cancer death rates in exposed and unexposed

  14. Evaluation of Terrorist Interest in Radioactive Wastes

    Microsoft Academic Search

    J. N. McFee; J. M. Langsted; M. E. Young; J. E. Day

    2006-01-01

    Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed

  15. Annual Radioactive Waste Tank Inspection Program - 1997

    SciTech Connect

    McNatt, F.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  16. Annual radioactive waste tank inspection program - 1996

    SciTech Connect

    McNatt, F.G.

    1997-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  17. DOT's proposed routing for radioactive material shipments

    Microsoft Academic Search

    J. M. Mahathy; D. G. Jacobs

    2009-01-01

    This article reviews proposed amendments to the Code of Federal Regulations, Title 49, which would give the Department of Transportation (DOT) the authority to establish a system of highway routes for vehicular shipments of large-quantity radioactive materials. These amendments would modify existing regulations pertaining to route plans, driver training, and special vehicle placards. The need for a federal routing authority

  18. Safe transport of radioactive materials in Egypt

    NASA Astrophysics Data System (ADS)

    El-Shinawy, Rifaat M. K.

    1994-07-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 to 1991 and their nationalities are also discussed. The protective measures are mentioned.A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes

  19. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  20. Annual radioactive waste tank inspection program - 1999

    SciTech Connect

    Moore, C.J.

    2000-04-14

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  1. Annual radioactive waste tank inspection program - 1992

    SciTech Connect

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  2. Radioactive air emissions 1992 summary. Progress report

    SciTech Connect

    Wahl, L. [comp.

    1993-10-01

    This report summarizes, by radionuclide or product and by emitting facility, the Laboratory`s 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total {sup 41}Ar activity was decreased, total gaseous/mixed activation product (except {sup 41}Ar) activity was increased, total particulate/vapor activation product activity was increased, and total {sup 32}P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted.

  3. Security in the Transport of Radioactive Materials

    Microsoft Academic Search

    Ron Pope; Richard R Rawl

    2010-01-01

    The United States Department of Energy National Nuclear Security Administration's (DOE\\/NNSA)Global Threat Reduction Initiative (GTRI), the International Atomic Energy Agency (IAEA) and active IAEA Donor States are working together to strengthen the security of nuclear and radioactive materials during transport to mitigate the risks of theft, diversion, or sabotage. International activities have included preparing and publishing the new IAEA guidance

  4. Annual Radioactive Waste Tank Inspection Program 1994

    SciTech Connect

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  5. Obtaining and Investigating Unconventional Sources of Radioactivity

    ERIC Educational Resources Information Center

    Lapp, David R.

    2010-01-01

    This paper provides examples of naturally radioactive items that are likely to be found in most communities. Additionally, there is information provided on how to acquire many of these items inexpensively. I have found that the presence of these materials in the classroom is not only useful for teaching about nuclear radiation and debunking the…

  6. Holifield Radioactive Ion Beam Facility Status

    SciTech Connect

    Stracener, Daniel W [ORNL; Beene, James R [ORNL; Dowling, Darryl T [ORNL; Juras, Raymond C [ORNL; Liu, Yuan [ORNL; Meigs, Martha J [ORNL; Mendez, II, Anthony J [ORNL; Mueller, Paul Edward [ORNL; Sinclair, John William [ORNL; Tatum, B Alan [ORNL; Sinclair IV, John W [ORNL

    2009-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) produces high-quality beams of short-lived radioactive isotopes for nuclear science research, and is currently unique worldwide in the ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier. HRIBF is undergoing a multi-phase upgrade. Phase I (completed 2005) was construction of the High Power Target Laboratory to provide the on-going Isotope Separator On-Line (ISOL) development program with a venue for testing new targets, ion sources, and radioactive ion beam (RIB) production techniques with high-power beams. Phase II, which is on schedule for completion in September 2009, is the Injector for Radioactive Ion Species 2 (IRIS2), a second RIB production station that will improve facility reliability and accommodate new ion sources, new RIB production targets, and some innovative RIB purification techniques, including laser applications. The Phase III goal is to substantially improve facility performance by replacing or supplementing the Oak Ridge Isochronous Cyclotron (ORIC) production accelerator with either a high-power 25-50 MeV electron accelerator or a high-current multi-beam commercial cyclotron. Either upgrade is applicable to R&D on isotope production for medical or other applications.

  7. Improved heat transfer from radioactive waste canisters

    Microsoft Academic Search

    G. Jansen; J. D. Kaser

    1974-01-01

    From joint meeting of the American Nuclear Society and the Atomic ; lndustrial Forum and Nuclear Energy Exhibition; San Francisco, California, USA ; (11 Nov 1973). Since the radioisotope content that can be tolerated in a ; canister full of radioactive waste is limited by the amount of heat which can be ; dissipated from the waste to the surroundings,

  8. Indirect estimation of radioactivity in containerized cargo

    Microsoft Academic Search

    Kenneth D. Jarman; Chad Scherrer; L. E. Smith; Lawrence Chilton; K. K. Anderson; Jennifer J. Ressler; Lynn L. Trease

    2011-01-01

    Naturally occurring radioactive material in containerized cargo challenges the state of the art in national and international efforts to detect illicit nuclear and radiological material in transported containers. Current systems are being evaluated and new systems envisioned to provide the high probability of detection necessary to thwart potential threats, combined with extremely low nuisance and false alarm rates necessary to

  9. Optimization of mobile radioactivity monitoring networks

    Microsoft Academic Search

    Gerard B. M. Heuvelink; Z. Jiang; S. De Bruin; C. J. W. Twenhöfel

    2010-01-01

    In case of a nuclear accident, decision makers rely on high resolution and accurate information about the spatial distribution of the radioactivity levels in the surroundings of the acc ident site. Static nuclear monitoring networks are therefore employed in many countries in Europe. However, these networks were designed to cover the whole country and are usually too course to reach

  10. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  11. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low and intermediate level radioactive waste

    Microsoft Academic Search

    M. A Glaus; L. R van Loon; S Achatz; A Chodura; K Fischer

    1999-01-01

    In order to assess the potential role of cellulose degradation products as metal-binding chelates in a repository for radioactive waste, different cellulosic materials (pure cellulose, cotton, tissues and recycling paper) were degraded under the chemical conditions of cement pore water (pH 13.3). The degradation products formed were characterised using different separation techniques (HPIEC, HPAEC, GC-MS, MS\\/MS) and by high resolution

  12. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    SciTech Connect

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines.

  13. rev September 2003 Radiation Safety Manual Section 11 Procurement of Radioactive Material

    E-print Network

    Wilcock, William

    rev September 2003 Radiation Safety Manual Section 11 ­ Procurement of Radioactive Material Page 11-1 Section 11 Procurement of Radioactive Materials Contents A. Authorization to Order Radioactive Materials. Disposal of Packaging Materials ...................................................11-3 E. Radioactive

  14. System for measuring radioactivity of labelled biopolymers

    SciTech Connect

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.

  15. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

  16. Radiation safety of sealed radioactive sources.

    PubMed

    Pryor, Kathryn H

    2015-02-01

    Sealed radioactive sources are used in a wide variety of occupational settings and under differing regulatory/licensing structures. The definition of a sealed radioactive source varies between U.S. regulatory authorities and standard-setting organizations. Potential problems with sealed sources cover a range of risks and impacts. The loss of control of high activity sealed sources can result in very high or even fatal doses to members of the public who come in contact with them. Sources that are not adequately sealed and that fail can cause spread of contamination and potential intake of radioactive material. There is also the possibility that sealed sources may be (or threaten to be) used for terrorist purposes and disruptive opportunities. Until fairly recently, generally licensed sealed sources and devices received little, if any, regulatory oversight and were often forgotten, lost or unaccounted for. Nonetheless, generally licensed devices can contain fairly significant quantities of radioactive material, and there is some potential for exposure if a device is treated in a way for which it was never designed. Industrial radiographers use and handle high activity and/or high dose-rate sealed sources in the field with a high degree of independence and minimal regulatory oversight. Failure to follow operational procedures and properly handle radiography sources can and has resulted in serious injuries and death. Industrial radiographers have experienced a disproportionately large fraction of incidents that have resulted in unintended exposure to radiation. Sources do not have to contain significant quantities of radioactive material to cause problems in the event of their failure. A loss of integrity can cause the spread of contamination and potential exposure to workers and members of the public. The National Council on Radiation Protection and Measurements has previously provided recommendations on select aspects of sealed source programs. Future efforts to provide recommendations for sealed source programs are discussed. PMID:25551499

  17. Light radioactive nuclei capture reactions with phenomenological potential models.

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Light radioactive nuclei capture reactions with phenomenological potential models. V. Guimarães, SP, Brazil Texas A&M University-Commerce, Commerce, Texas 75429, USA. Abstract. Light radioactive neutron and proton capture reactions by these radioactive nuclei at energies of astrophysical interest

  18. SMALL-SCALE DECONTAMINATION OF RADIOACTIVE WATERS BY ION EXCHANGE

    Microsoft Academic Search

    M. B. Sonnen; A. D. Ray

    1963-01-01

    Immediately following nuclear war events, it is anticipated that surface ; waters will be contaminated by radioactive fallout materials and it appears ; desirable to minimize the amounts of ingested radioactive materials for a period ; of time to reduce the radiation doses of the population. Although drinking ; waters free of radioactivity may be provided by prior storage, or

  19. Low-level radioactive waste regulation: Science, politics and fear

    Microsoft Academic Search

    1988-01-01

    An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal

  20. Educational support programs: Office of Civilian Radioactive Waste Management

    Microsoft Academic Search

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) currently sponsors two educationally related programs: the Radioactive Waste Management Fellowship Program and the Radioactive Waste Management Research Program for Historically Black Colleges and Universities (HBCU). The graduate fellowship program was implemented in 1985 to meet the US Department of Energy's (DOE's) expected manpower needs for trained scientists and engineers to assist

  1. Boom and future of radioactive prospecting for oil and gas

    SciTech Connect

    Yuande, Q.; Jinhua, L.; Youqing, Z.; Longchang, W. (Third Dept., Chengdu Geology College, Chengdu City, Sichuan Province (CN))

    1992-01-01

    In this paper, the authors sketch out the general development situation of radioactive oil and gas explorations, the mechanism of radioactive anomaly, the application of radon method to oil and gas explorations, and some examples. It is pointed out that with the advance of science and technology, radioactive method will get consummate and very promising in oil and gas explorations.

  2. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  3. Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management

    Microsoft Academic Search

    Usher

    2007-01-01

    Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence

  4. Emissions of naturally occurring radioactivity: fireclay mine and refractory plant

    SciTech Connect

    Andrews, V.E.

    1981-02-01

    Atmospheric emissions of naturally occurring radioactivity were measured at a fireclay mine and the associated plant that produces refractory brick products. The only significant radioactive emission from the mine was radon-222. An analysis of the ore radioactivity and surface area of the mine indicated that the radon released is comparable to that from any similar surface area of similar radioactivity. The major particulate radioactivity from the refractory operation was polonium-210, released as the brick was fired. Approximately 26 percent of the polonium-210 in green brick was driven off in the kilns.

  5. Selection of barrier metals for a waste package in tuff

    SciTech Connect

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project under the Civilian Radioactive Waste Management Program is planning a repository at Yucca Mountain at the Nevada Test Site for isolation of high-level nuclear waste. Lawrence Livermore National Laboratory is developing designs for an engineered barrier system containing several barriers such as the waste form, a canister and/or an overpack, packing, and near field host rock. In this paper we address the selection of metal containment barriers. 13 references, 4 tables.

  6. Selection of barrier metals for a waste package in tuff

    SciTech Connect

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-09-01

    The Nevada Nuclear Waste Storage Investigation (NNWSI) project under the Civilian Radioactive Waste Management Program is planning a repository at Yucca Mountain at the Nevada Test Site for isolation of high-level nuclear waste. LLNL is developing designs for an engineered barrier system containing several barriers such as the waste form, a canister and/or an overpack, packing, and near field host rock. The selection of metal containment barriers is addressed. 13 references.

  7. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E. (Rolla, MO)

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  8. Modern metal-on-metal hip implants.

    PubMed

    Bozic, Kevin J; Browne, James; Dangles, Chris J; Manner, Paul A; Yates, Adolph J; Weber, Kristy L; Boyer, Kevin M; Zemaitis, Paul; Woznica, Anne; Turkelson, Charles M; Wies, Janet L

    2012-06-01

    This Technology Overview was prepared using systematic review methodology and summarizes the findings of studies published as of July 15, 2011, on modern metal-on-metal hip implants. Analyses conducted on outcomes by two joint registries indicate that patients who receive metal-on-metal total hip arthroplasty (THA) and hip resurfacing are at greater risk for revision than are patients who receive THA using a different bearing surface combination. Data from these registries also indicate that larger femoral head components have higher revision rates and risk of revision and that older age is associated with increased revision risks of large-head metal-on-metal THA. Several studies noted a correlation between suboptimal hip implant positioning and higher wear rates, local metal debris release, and consequent local tissue reactions to metal debris. In addition, several studies reported elevated serum metal ion concentrations in patients with metal-on-metal hip articulations, although the clinical significance of these elevated ion concentrations remains unknown. PMID:22661570

  9. Honeybees as monitors of low levels of radioactivity

    SciTech Connect

    Simmons, M.A. (Pacific Northwest Lab., Richland, WA (USA)); Bromenshenk, J.J.; Gudatis, J.L. (Montana Univ., Missoula, MT (USA). Dept. of Zoology)

    1990-07-01

    Large-scale environmental monitoring programs rely on sampling many media -- air, water, food, et cetera -- from a large network of sampling stations. For describing the total region possibly impacted by contaminants, the most efficient sampler would be one that covered a large region and simultaneously sampled many different media, such as water, air, soil, and vegetation. Honeybees have been shown to be useful monitors of the environment in this context for detecting both radionuclides and heavy metals. This study sought to determine the effectiveness of honeybees as monitors of low levels of radioactivity in the form of tritium and gamma-emitting radionuclides. For the study, approximately 50 honeybee colonies were placed on the Hanford Site and along the Columbia River in areas downwind of the site. The mini-hive colonies were sampled after 1 month and tested for tritium and for gamma-emitting radionuclides. From this and other studies, it is known that honeybees can be used to detect radionuclides present in the environment. Their mobility and their ability to integrate all exposure pathways could expand and add another level of confidence to the present monitoring program. 6 refs., 1 fig., 2 tabs.

  10. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  11. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  12. USDOE radioactive waste incineration technology: status review

    SciTech Connect

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included.

  13. Radioactivity in bottled waters sold in Mexico.

    PubMed

    Dávila Rangel, J I; López del Rio, H; Mireles García, F; Quirino Torres, L L; Villalba, M L; Colmenero Sujo, L; Montero Cabrera, M E

    2002-06-01

    Measurements of gross alpha and beta activities were made on 21 domestic and international brands of bottled (purified and mineral) water sold in the Mexican market to assess its radiological quality. Alpha and beta activities were determined using a liquid-scintillation detector with pulse-shape analysis feature. All the purified water had values of beta activity lower than the limit for potable drinking water (1.0 Bq/l), while three brands surpassed the limit of alpha activity (0.1 Bq/l). The limit for alpha radioactivity content was exceed by three mineral waters; the results show a correlation between radioactivity content and mineral salts, which are related with the origin and treatment of the waters. PMID:12102353

  14. Mathematical modeling of radioactive waste glass melter

    Microsoft Academic Search

    1990-01-01

    The radioactive waste glass melter used at Savannah River Site (SRS) is a liquid slurry feed joule-heated ceramic melter. The physical nature of a joule-heated meter is complex and involves interactions between electric, thermal, and flow fields. These interactions take place through strongly temperature-dependent glass properties, natural convection, advection, diffusion, and volumetrically distributed joule heating sources. The cold feed on

  15. Transport of Carbon Dioxide and Radioactive Waste

    Microsoft Academic Search

    Darío R. Gómez; Michael Tyacke

    \\u000a A comparative assessment of carbon dioxide (CO2) and radioactive waste transport systems associated with electricity generation was undertaken on the basis of 15 criteria\\u000a grouped under three areas, namely the transport chain, policy aspects and state of the technology. For CO2, we considered exclusively the transport that would take place under a future large-scale capture and storage infrastructure.\\u000a Our study

  16. Development of cryogenic detectors for radioactivity metrology

    Microsoft Academic Search

    E Leblanc; P Cassette; J Bouchard; J Plagnard

    1998-01-01

    Low temperature detectors are expected to improve radioactivity measurements as they offer two major advantages compared to classical semiconductor detectors: excellent energy resolution (10eV for 6keV X-rays) and 100% detection efficiency for low energy X-rays (i.e. 1–10keV). The main difficulties encountered in the development of such detectors are their high sensitivity to electromagnetic noise and acoustic vibrations. These difficulties are

  17. Studies with Exotic Nuclei: Two Proton Radioactivity

    SciTech Connect

    Borcea, C.; Blank, B.; Canchel, G.; Demonchy, C. E.; Giovinazzo, J.; Hay, L.; Huikari, J.; Leblanc, S.; Matea, I.; Pedroza, J.-L.; Pibernat, J.; Serani, L. [Centre d'etudes nucleaires de Bordeaux-Gradignan, Universite Bordeaux 1-UMR 5797 CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Oliveira Santos, F. de; Grevy, S.; Perrot, L.; Stodel, C.; Thomas, J.-C. [Grand Accelerateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France); Dossat, C. [DAPNIA, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2008-01-24

    In the present paper, we present measurements that led to the discovery of two-proton radioactivity. After the first observation of this decay mode for {sup 45}Fe, new measurements evidenced this decay mode also for {sup 54}Zn and most likely {sup 48}Ni. A new detector based on the time-projection chamber principle allowed now to visualize the two protons directly.

  18. Radioactive Decay Law (Rutherford–Soddy)

    Microsoft Academic Search

    Friedel Weinert

    The formulation of the radioactive decay law, in 1902, by Ernest Rutherford (1871–1937) and Frederick Soddy (1877–1956) was\\u000a part of a number of discoveries around the turn of the century, which paved the way to the establishment of quantum mechanics,\\u000a as the physics of the atom. In November 1895, W. Röntgen (1845–1923) discovered ? X-rays; in 1896 A. H. Becquerel

  19. Modelling indoor exposure to natural radioactive nuclides

    Microsoft Academic Search

    W. Hofmann; F. Daschil

    1986-01-01

    Radon enters buildings from several sources, principally building materials and the soil or rock that underlie or surround\\u000a building foundations. The basic processes determining indoor concentrations are radioactive transmutations, attachment to\\u000a aerosol particles, detachment by alpha particle recoil, plate-out on furniture and walls, and exchange with the outdoor air\\u000a by natural or mechanical ventilation.\\u000a \\u000a A multicompartment model has been developed

  20. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  1. A Simple Example of Radioactive Dating

    ERIC Educational Resources Information Center

    Brown, Todd

    2014-01-01

    Although nuclear half-life is vital to physics and physical science, and to sensitive societal issues from nuclear waste to the age of the Earth, a true lab on half-life is almost never done at the college or high school level. Seldom are students able to use radioactivity to actually date when an object came into being, as is done in this…

  2. Radioactive contamination of the Yenisei River

    Microsoft Academic Search

    E. G. Tertyshnik

    1995-01-01

    Based on observational data in the period 1971–1993, radioactive contamination of the Yenisei River ecosystem was analysed within 2000 km of the site of discharges from the Krasnoyarsk Mining and Chemical Industrial Complex. Data on the content of 24Na, 32P, 46Sc, 51Cr, 54Mn, 56Mn, 58Co, 60Co, 59Fe, 65Zn, 90Sr, 95Zr, 95Nb, 103Ru, 106Ru, 134Cs, 137Cs, 140Ba, 141Ce, 144Ce and 239Np

  3. Underground Corrosion of Activated Metals in a Dry Vadose Zone Environment

    Microsoft Academic Search

    Ronald Mizia; Carolyn Bishop; Mariana K

    2002-01-01

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor-core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent

  4. Treatment and disposal options for a heavy metals waste containing soluble Technetium99

    Microsoft Academic Search

    W. D. Bostick; J. L. Shoemaker; P. E. Osborne; B. Evans-Brown

    1989-01-01

    Various equipment decontamination and uranium recovery operations at the Portsmouth Gaseous Diffusion Plant generate a so-called ''raffinate'' waste stream characterized by toxic heavy metals, high concentrations of nitric aced, and low levels of radioactive nuclides (²³⁵U and ⁹⁹Tc). Dilution and adjustment of solution pH to a value of 8.2 to 8.5 precipitates the heavy metals that can be hydrolyzed, which

  5. Sources of Radioactive Isotopes for Dirty Bombs

    NASA Astrophysics Data System (ADS)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  6. Radioactive nuclear beams: Present and future

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2014-11-01

    Some results of investigations into a new nuclear-physics field associated with the production of radioactive nuclear beams and physical studies with these beams are presented. The most recent results obtained by studying the structure of nuclei and reaction mechanisms with radioactive nuclear beams are surveyed. Data obtained in Dubna at the DRIBs accelerator complex are presented along with allied results from other research centers. In this connection, existing experimental data on light loosely bound exotic nuclei are discussed. The parameters of DRIBs3, which is a new accelerator complex, are presented, and the physics research program that will be implemented with the aid of new setups, including a high-resolution magnetic analyzer (MAVR) and a 4 ? neutron detector (TETRA), is described. A collaboration in the realms of employing radioactive nuclear beams at the DRIBs complex together with other accelerator complexes [SPIRAL2 (France), RIKEN (Japan), FAIR (Germany), and RIBF (CIIIA)] on the basis of employing new highly efficient experimental facilities has already led to the discovery of new phenomena in nuclear physics and will make it possible to study in the future new regions of nuclear matter in extreme states.

  7. [Working environment measurement of radioactive substances].

    PubMed

    Kunugita, Naoki

    2007-12-01

    The control of the working environment is one of the most important duties in any working place to prevent occupational disease. In Japan, in the case of the controlled area using unsealed radioisotopes, the measurement of the concentration of airborne radioactive substances should be carried out under the regulations of the "Industrial Safety and Health Law" and the "Ordinance on Prevention of Ionizing Radiation Hazards". Many reports showed that the results of regular working environment measurements of radioactive substances were about background levels. Safe working environments are sufficiently guaranteed by a suitable estimation and handling under the strict regulation by the "Laws Concerning the Prevention from Radiation Hazards Due to Radioisotopes and Others". The regulation by "Ordinance on Prevention of Ionizing Radiation Hazards" would be relaxed in the field of education and research, which use very low quantities of radioactive substances, in ways such as estimation by calculation in place of the actual measurement, decrease of the number of monthly measurements, and measurement exemption for low levels of isotopes. PMID:18170964

  8. Radioactive iodine therapy in cats with hyperthyroidism

    SciTech Connect

    Turrel, J.M.; Feldman, E.C.; Hays, M.; Hornof, W.J.

    1984-03-01

    Eleven cats with hyperthyroidism were treated with radioactive iodine (/sup 131/I). Previous unsuccessful treatments for hyperthyroidism included hemithyroidectomy (2 cats) and an antithyroid drug (7 cats). Two cats had no prior treatment. Thyroid scans, using technetium 99m, showed enlargement and increased radionuclide accumulation in 1 thyroid lobe in 5 cats and in both lobes in 6 cats. Serum thyroxine concentrations were high and ranged from 4.7 to 18 micrograms/dl. Radioactive iodine tracer studies were used to determine peak radioactive iodine uptake (RAIU) and effective and biological half-lives. Activity of /sup 131/I administered was calculated from peak RAIU, effective half-life, and estimated thyroid gland weight. Activity of /sup 131/I administered ranged from 1.0 to 5.9 mCi. The treatment goal was to deliver 20,000 rad to hyperactive thyroid tissue. However, retrospective calculations based on peak RAIU and effective half-life obtained during the treatment period showed that radiation doses actually ranged from 7,100 to 64,900 rad. Complete ablation of the hyperfunctioning thyroid tissue and a return to euthyroidism were seen in 7 cats. Partial responses were seen in 2 cats, and 2 cats became hypothyroid. It was concluded that /sup 131/I ablation of thyroid tumors was a reasonable alternative in the treatment of hyperthyroidism in cats. The optimal method of dosimetry remains to be determined.

  9. RESRAD. Site-Specific Residual Radioactivity

    SciTech Connect

    Yu, C. [Argonne National Laboratory, IL (United States)

    1989-06-01

    RESRAD is designed to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil. A guideline is defined as a radionuclide concentration or a level of radiation or radioactivity that is acceptable if a site is to be used without radiological restrictions. Guidelines are expressed as (1) concentrations of residual radionuclides in soil, (2) concentrations of airborne radon decay products, (3) levels of external gamma radiation, (4) levels of radioactivity from surface contamination, and (5) concentrations of residual radionuclides in air and water. Soil is defined as unconsolidated earth material, including rubble and debris that may be present. The controlling principles of all guidelines are (1) the annual radiation dose received by a member of the critical population group from the residual radioactive material - predicted by a realistic but reasonably conservative analysis and averaged over a 50 year period - should not exceed 100 mrem/yr, and (2) doses should be kept as low as reasonably achievable. All significant exposure pathways for the critical population group are considered in deriving soil guidelines. These pathways include direct exposure to external radiation from the contaminated soil material; internal radiation from inhalation of airborne radionuclides; and internal radiation from ingestion of plant foods grown in the contaminated soil, meat and milk from livestock fed with contaminated fodder and water, drinking water from a contaminated well, and fish from a contaminated pond.

  10. Radioactive waste management in the former USSR

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  11. Glass matrices for vitrification of radioactive waste - an Update on R & D Efforts

    NASA Astrophysics Data System (ADS)

    Raj, Kanwar; Kaushik, C. P.

    2009-07-01

    Radioactive waste gets generated at different stages of nuclear fuel cycle like mining/milling, fuel fabrication, reactor operation, reprocessing of spent fuel and the production & application of radioisotopes for various industrial, medical and research purposes. High Level radioactive Waste (HLW) is generated during reprocessing of spent nuclear fuel and it contains most of the radioactivity present in entire fuel cycle. Vitrification of HLW in borosilicate matrix is being practiced using induction heated metallic melters at industrial scale plants at Tarapur and Trombay [1]. The nature of HLW largely depends on off - reactor cooling of spent nuclear fuel, its type and burn - up, and reprocessing flow sheet. In view of varying characteristics, processing of HLW at Tarapur and Trombay has offered a wide spectrum of challenges in terms of development of matrices and characterization to accommodate compositional changes in waste. The present paper summarizes details of extensive R and D efforts made in the Department of Atomic Energy towards development and characterization of glass formulations for immobilization of HLW.

  12. Identification of radioactive mixed wastes in commercial low-level wastes

    SciTech Connect

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-01-01

    A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste, and to help address uncertainties regarding the regulation of such wastes. Of 239 questionnaires sent out to reactor and non-reactor LLW generators, there were 91 responses representing 29% by volume of all low-level wastes disposed of at commercial disposal sites in 1984. The analysis of the survey results indicated that the following waste types generic to commercial LLW may be potential radioactive mixed wastes: Wastes containing oil, disposed of by reactors and industrial facilities, and representing 4.2% of the total LLW volume reported in the survey. Wastes containing organic liquids, disposed of by all types of generators, and representing 2.3% by volume of all wastes reported. Wastes containing lead metal, i.e., discarded shielding and lead containers, representing <0.1% by volume of all wastes reported. Wastes containing chromium, i.e., process wastes from nuclear power plants which use chromates as corrosion inhibitors; these represent 0.6% of the total volume reported in the survey. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well.

  13. Identification of radioactive mixed wastes in commercial low-level wastes

    SciTech Connect

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-01-01

    A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste, and to help address uncertainties regarding the regulation of such wastes. Of 239 questionnaires sent out to reactor and non-reactor LLW generators, there were 91 responses representing 29% by volume of all low-level wastes disposed of at commercial disposal sites in 1984. The analysis of the survey results indicated that three waste streams generic to commercial LLW may be potential radioactive mixed wastes. These are as follows: (1) wastes containing organic liquids, disposed of by all types of generators and representing approx. =2.3% by volume of all wastes reported; (2) wastes containing lead metal, i.e., discarded shielding and lead containers, representing <0.1% by volume of all wastes reported; and (3) wastes containing chromium, i.e., process wastes from nuclear power plants which use chromates as corrosion inhibitors; these represent 0.6% of the total volume reported in the survey. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 4 refs., 5 tabs.

  14. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  15. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  16. Uptake of radioactive and stable Co and Zn isotopes by barley plants under mixed radioactive and chemical contamination of soils

    NASA Astrophysics Data System (ADS)

    Kruglov, S. V.; Lavrent'eva, G. V.; Pivovarova, Yu. A.; Anisimov, V. S.

    2010-03-01

    The effect of Co and Zn on the accumulation of 60Co and 65Zn by plants was studied in experiments with growing barley on a soddy-podzolic soil and a chernozem containing the radionuclide and increasing concentrations (from the background level to a high degree of contamination) of the corresponding metal. The root uptake of 60Co was directly related to the soil contamination with Co and its accumulation in the plants, while an inverse relationship was observed between the activity of 65Zn in the plants and the content of Zn in the soil. It was concluded that the transfer of the radionuclide into the plants under mixed radioactive and chemical contamination depended, on the one hand, on the mobile reserve of the stable nuclide in the soil and the solid phase potential to release its ions into the soil solution and, on the other hand, on the requirement of the plants for this element and the uptake rate of its ions by the roots from the solution.

  17. High-temperature metallizing

    Microsoft Academic Search

    M. E. Twentyman; P. Popper

    1975-01-01

    Metal-ceramic seals have been prepared with six debased aluminas using molybdenum metallizing paints and with one alumina using tungsten paints. The metallized layers in strong seals (ASTM tensile strength >55 MN m-2) consisted of a dense metal\\/glass composite layer which was formed by glass migrating from the alumina into the metallizing layer. Observations on the glass migration agree with the

  18. Amorphous metal composites

    DOEpatents

    Byrne, Martin A. (Troy, NY); Lupinski, John H. (Scotia, NY)

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  19. Design of high-power ISOL targets for radioactive ion beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Alton, G. D.

    2004-03-01

    In this report, we provide lists of refractory oxides, carbides and refractory metals suitable for use as targets for producing short-lived, proton-rich isotopes of elements (He through Pu) and neutron-rich isotopes of elements (As through Dy) for potential use at high-energy, ISOL-based radioactive ion beam facilities. Complex structure, highly permeable C matrices are described for coating with optimum thicknesses of any type of refractory target material (metal, carbide or oxide). Prescriptions are given for the design and fabrication of custom-engineered targets with diffusion lengths compatible with the release of isotopes of interest within their lifetimes. Computationally derived thermal analysis information is presented for selected low-density, fibrous, highly permeable targets, subjected to direct irradiation with 1 GeV, 100-400 kW proton beams. From these studies, internal thermal radiation is reconfirmed as an important heat transfer (cooling) mechanism within low-density, fibrous and composite targets. By utilization of the radiation cooling effect and beam manipulation techniques, in combination with placement of additional heat shielding on the exit end of targets, beam power depositional densities can be controlled and temperatures homogenized to acceptable levels within fast diffusion release, fast effusive-flow ISOL targets subjected to irradiation with 400 kW proton beams, as required at next-generation radioactive ion beam facilities.

  20. Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas.

    PubMed

    Pozolotina, Vera N; Antonova, Elena V; Bezel, Victor S

    2012-10-01

    We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F (1)-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F (1)-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to 'habitual' and 'new' factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas. PMID:22661315

  1. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    SciTech Connect

    Gilliam, T.M.; Spence, R.D.

    1997-12-31

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options.

  2. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; No, Hyo J.

    1995-08-01

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  3. Letter Report on the Issue of Noble Metals in the DWPF Melter

    SciTech Connect

    Hutson, N.D.

    2001-09-05

    This report presents some historical data from the radioactive operation of the DWPF melter. Some of the data seem to indication that the melter is displaying symptoms that may be linked to accumulation of noble metal or other conductive material on the melter floor. The complex and often competing effects of waste composition, glass pool temperatures, and operating conditions must also be considered.

  4. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  5. Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan

    SciTech Connect

    Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

    2007-07-01

    Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

  6. Estimation of monosaccharide radioactivity in biological samples through osazone derivatization

    SciTech Connect

    Garcia, F.J.; Pons, A.; Alemany, M.; Palou, A.

    1982-03-01

    A method for the quantitative estimation of radioactivity in the glucose (monosaccharide) fraction of biological samples is presented. Radioactive samples are added with cold glucose, and 1 aliquot receives a known amount of radioactive glucose as internal standard. After controlled osazone formation and three washings of the yellow precipitate, the osazones are dissolved, decolored, and their radioactivity determined through scintillation counting. The overall efficiency of recovery is 23-24% of the initial readioactivity. Each sample is corrected by the recovery of its own internal standard. There is a very close linear relationship between radioactivity present in the samples and radioactivity found, despite the use of different biological samples (rat plasma, hen egg yolk and albumen).

  7. The Physics of Metals

    NASA Astrophysics Data System (ADS)

    Ziman, J. M.

    2011-04-01

    Preface; Sir Nevill Mott; Publications of Professor N. F. Mott; 1. Electronic structure of metals Volker Heine; 2. Electronic structure: the experimental results D. Shoenberg; 3. Metallic electrons in a magnetic field A. B. Pippard; 4. Transport properties: surface and size effects R. G. Chambers; 5. The ordinary transport properties of metals J. M. Ziman; 6. Electronic transport properties of liquid metals T. E. Faber; 7. Experimental studies of the structures of metals and alloys P. J. Brown and W. H. Taylor; 8. Transition metals. Electronic structure of the d-band. Its role in the crystalline and magnetic structures J. Friedel; Author index and bibliography; Subject index.

  8. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  9. Greater-than-Class C low-level waste characterization. Appendix F: Greater-than-Class C low-level radioactive waste light water reactor projections

    SciTech Connect

    Tuite, P.; Tuite, K.; Levin, A.; O`Kelley, M.

    1991-08-01

    This study characterizes potential greater-than-Class C low-level radioactive waste streams, estimates the amounts of waste generated, and estimates their radionuclide content and distribution. Several types of low-level radioactive wastes produced by light water reactors were identified in an earlier study as being potential greater-than-Class C low-level waste, including specific activated metal components and certain process wastes in the form of cartridge filters and decontamination resins. Light water reactor operating parameters and current management practices at operating plants were reviewed and used to estimate the amounts of potential greater-than-Class C low-level waste generated per fuel cycle. The amounts of routinely generated activated metal components and process waste were estimated as a function of fuel cycle. Component-specific radionuclide content and distribution was calculated for activated metals components. Empirical data from actual low-level radioactive waste streams were used to estimate radionuclide content and distribution for process wastes. The greater-than-Class C low-level waste volumes that could be generated through plant closure were also estimated, along with volumes and activities for potential greater-than-Class C activated metals generated at decommissioning.

  10. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect

    NONE

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  11. Hydrogen gettering the overpressure gas from highly radioactive liquids

    Microsoft Academic Search

    D. L. Riley; J. C. McCoy; J. R. Schicker

    1996-01-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to

  12. Defining a metal-based waste form for IFR pyroprocessing wastes

    SciTech Connect

    McDeavitt, S.M.; Park, J.Y.; Ackerman, J.P.

    1994-01-01

    Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include a mineral-based waste form that will contain fission products removed from an electrolyte salt and a metal-based waste form that will contain metallic fission products and the fuel cladding and process materials. Two concepts for the metal-based waste form are being investigated: (1) encapsulating the metal constituents in a Cu-Al alloy and (2) alloying the metal constituents into a uniform stainless steel-based waste form. Results are given from our recent studies of these two concepts.

  13. Particle beam generator using a radioactive source

    DOEpatents

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  14. Radioactive heat sources in the lunar interior.

    NASA Technical Reports Server (NTRS)

    Hays, J. F.

    1972-01-01

    Published models for the moon's thermal history typically imply present day central temperatures far too high to be consistent with the recently proposed lunar temperature profile of Sonett et al. (1971). Furthermore, chemical data on Apollo samples show that the moon is depleted relative to chondrites in volatile elements, and possibly enriched relative to chondrites in refractory elements. Additional thermal models have therefore been investigated in order to set upper limits on lunar radioactivity consistent with the proposed temperature distribution. For an initially cold, uniform moon, devoid of potassium, a maximum uranium content of 23 parts per billion is inferred.

  15. Silicon photomultipliers for radioactive waste online monitoring

    NASA Astrophysics Data System (ADS)

    Finocchiaro, P.; Barbagallo, M.; Cosentino, L.; Greco, G.; Guardo, G.; Pappalardo, A.; Scirè, C.; Scirè, S.

    2011-10-01

    A prototype demonstrator for the online monitoring of short-medium term radioactive waste repositories is currently under development at INFN-LNS. Such a system is planned to be distributed, fine-grained, robust, reliable, and based on low-cost components. With the main purpose of counting gamma radiation, we implemented a new kind of mini-detector based on silicon photomultipliers and scintillating fibers that behaves like a cheap scintillating Geiger-Muller counter and is suitable to be deployed in the shape of a grid around waste drums.

  16. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  17. Low radioactivity at the Modane Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Loaiza, Pia

    2005-09-01

    The Modane Underground Laboratory, with an overburden of 4800 m.w.e, offers an excellent site for experiments requiring a low-background environment. The laboratory is currently hosting experiments in particle and astroparticle physics and low-level germanium gamma-ray spectrometry activities. This paper sketchs the main characteristics, scientific activities and facilities of the laboratory as well as its insertion in the European program ILIAS. Special emphasis is given to the description of the low radioactivity measurements and Germanium detectors.

  18. Low radioactivity at the Modane Underground Laboratory

    SciTech Connect

    Loaiza, Pia [Laboratoire Souterrain de Modane, 90 rue Polset, 73500 Modane (France)

    2005-09-08

    The Modane Underground Laboratory, with an overburden of 4800 m.w.e, offers an excellent site for experiments requiring a low-background environment. The laboratory is currently hosting experiments in particle and astroparticle physics and low-level germanium gamma-ray spectrometry activities. This paper sketches the main characteristics, scientific activities and facilities of the laboratory as well as its insertion in the European program ILIAS. Special emphasis is given to the description of the low radioactivity measurements and Germanium detectors.

  19. Fallout Radioactivity in Cattle and Its Effects.

    PubMed

    Van Dilla, M A; Farmer, G R; Bohman, V R

    1961-04-01

    The levels of strontium-90 and cesium-137 in cattle grazed on the Nevada Test Site and elsewhere in Nevada are similar to those in cattle from other parts of the country. Gastrointestinal absorption of the relatively large amounts of radioactive cerium-praseodymium, ruthenium-rhodium, and zirconium-niobium present in the rumina is very small. Zinc-65 made its first appearance in samples of muscle and liver in November 1958 and has persisted in later samplings. There has been no evidence of biological damage to date, either histologically or grossly. PMID:17742773

  20. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  1. Astrophysics experiments with radioactive beams at ATLAS

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E.; Savard, G.

    2014-04-01

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  2. Hazardous and radioactive waste incineration studies

    SciTech Connect

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

  3. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  4. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  5. Preparation and characterization of radioactive castanospermine

    SciTech Connect

    Keenan, R.W.; Pan, Y.T.; Elbein, A.D.

    1987-06-01

    A procedure for the preparation of tritiated castanospermine is described. The tritiated alkaloid was shown to be chromatographically identical to the native material and exhibited the same inhibitory properties. Radiolabeled castanospermine tightly bound to purified intestinal sucrase. Following gel chromatography, each mole of enzyme was shown to have bound 1 mol of the radioactive alkaloid. Cultured MDCK cells were also shown to take up the labeled castanospermine. This compound should be a useful tool in the investigation of enzymes that are responsible for the processing of glycoprotein oligosaccharides.

  6. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Microsoft Academic Search

    D. K. Fischer; M. Gitt; G. A. Williams; S. Branch; M. D. Otis; M. A. McKenzie-Carter; D. L. Schurman

    1991-01-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This

  7. Radioactive Waste Control and Controversy: The History of Radioactive Waste Regulation in the UK

    Microsoft Academic Search

    J H Jackson

    1999-01-01

    A hundred years on from the discovery of radioactivity, we have the first book describing the history of the regulation in the UK of the waste arising from its many uses. The first book? Believe it or not, yes. There have been others which provide commentaries on the development (or hapless evolution?) of policy per se and it would be

  8. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  9. "Radio-Active" Learning: Visual Representation of Radioactive Decay Using Dice

    ERIC Educational Resources Information Center

    Klein, Lynda; Kagan, David

    2010-01-01

    The idea of using a dice game to simulate radioactive decay is not new. However, modern pedagogy encourages, if not requires, us to provide multiple representations and visualizations for our students. The advantage of interactive engagement methods also has been made clear. Here we describe a highly visual and interactive use of dice to develop…

  10. THERMAL CONDUCTIVITIES OF GASES, METALS, LIQUID METALS

    Microsoft Academic Search

    W. M. Przybycien; D. W. Linde

    1957-01-01

    Graphs on the thermal conductivities of gases (air, Ar, COâ, CO, ; He, Hâ, Kr, Ne, NO, Nâ, Oâ, and Xe), metals (Al Be, Inconel X, ; Types 304, 347, and 446 stainless steel, Ti, U-- Zr alloy, and Zircaloy-2), and ; liquid metals (Na and Na--K alloy) are shown. Densities of liquid Na and Na-K ; are included. (J.E.D.)

  11. Biosorption of precious metals.

    PubMed

    Mack, C; Wilhelmi, B; Duncan, J R; Burgess, J E

    2007-01-01

    Biosorption has emerged as a low-cost and often low-tech option for removal or recovery of base metals from aqueous wastes. The conditions under which precious metals such as gold, platinum and palladium are sorbed by biomass are often very different to those under which base metals are sorbed. This, coupled with the increasingly high demand for precious metals, drives the increase in research into efficient recovery of precious metal ions from all waste material, especially refining wastewaters. Common biosorbents for precious metal ions include various derivatives of chitosan, as well as other compounds with relatively high surface amine functional group content. This is generally due to the ability of the positively charged amine groups to attract anionic precious metal ions at low pH. Recent research regarding the biosorption of some precious metals is reviewed here, with emphasis on the effects of the biosorption environment and the biosorption mechanisms identified. PMID:17293076

  12. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  13. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  14. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-print Network

    Powell, Gary Botts

    2013-06-05

    ’ work to modern-day metal culture, Powell draw parallels to between Bakhtin’s carnivalesque theory and metal culture with two different, exemplary “humorous” metal performances, GWAR and Anal Cunt. Powell chooses “humorous” metal groups because...

  15. National debate on the handling of radioactive wastes from nuclear power plants

    Microsoft Academic Search

    T. R. Lash; J. E. Bryson; R. Cotton

    1974-01-01

    The following aspects of radioactive wastes from nuclear power plants ; are discussed: generation of radioactive wastes and the health hazards posed by ; radioactivity; radioactive waste management programs, plans, and alternatives, U. ; S. experience with radioactive waste management, and citizen action. (LK)

  16. SN IA light curves and radioactive decay

    NASA Astrophysics Data System (ADS)

    Cappellaro, E.; Mazzali, P. A.; Benetti, S.; Danziger, I. J.; Turatto, M.; della Valle, M.; Patat, F.

    1997-12-01

    The absolute V light curves of 5 SNe Ia, selected to represent the known range of absolute luminosities at maximum for this class of objects, are presented. Comparison of the long term luminosity evolution shows that the differences seen at maximum persist, and actually increase with time, reinforcing the notion that intrinsic differences do exist among SNe Ia. Since such differences are not accounted for in the standard progenitor scenario, it becomes important to derive constraints for the models directly from the observations. In order to investigate the influence of the two most important parameters, that is the masses of the synthesized radioactive material and of the ejecta, a simple MC light curve model was used to simulate the luminosity evolution from the explosion to very late epochs ( ~ 1000 days). It was found that the observations require a range of a factor 10 in the masses of the radioactive material synthesized in the explosion (M_Ni = 0.1-1.1 M_sun,) and a factor 2 in the total mass of the ejecta (M_ej = 0.7-1.4 M_sun). Differences of a factor 2 in M_Ni seem to be present even among `normal' SNe Ia. Some evidence was also found that the deposition of the positrons from Co decay varies from object to object, and with time. In particular, the latest HST observations of SN 1992A seem to imply complete trapping of the positrons. Based on ESO observations collected at ESO-La Silla (Chile)

  17. Radioactive materials in biosolids : dose modeling.

    SciTech Connect

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  18. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  19. Marie Curie and the Science of Radioactivity

    NSDL National Science Digital Library

    2006-12-07

    This digital exhibit explores the life and accomplishments of Marie Curie, the Nobel-Prize winning physicist who discovered the radioactive elements polonium and radium. The exhibit integrates primary source lab notes, diary and journal entries, and historic photos to give a poignant view of Curie's struggles: growing up in the Russian-controlled Poland of the late 19th Century, being the target of repeated discrimination during her higher education in Paris, working with radioactive materials in substandard lab conditions, dealing with the consuming grief of her husband, Pierre's, accidental death in 1906, and overcoming challenges to win two Nobel Prizes. Editor's Note: It can be difficult for students to appreciate science as a human endeavor. This resource was designed to help learners grasp the hardships and obstacles often faced by pioneering scientists, especially women and minorities. Just as important, it gives them a glimpse at the joys of discovery. For a simulation on the same topic, see Related Materials: PhET Alpha Decay, which contains a very good accompanying lesson plan for high school teachers.

  20. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect

    Li, Yan; Kang, Jun; Li, Jingbo, E-mail: jbli@semi.ac.cn [State Key Laboratory of Superlattice and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Tongay, Sefaattin; Wu, Junqiao [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Yue, Qu [College of Science, National University of Defense Technology, Changsha 410073 (China)

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13?Å and ?7?Å for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  1. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

  2. Radioactivity in municipal sewage and sludge.

    PubMed Central

    Martin, J E; Fenner, F D

    1997-01-01

    OBJECTIVE: To determine the environmental consequences of discharges of radioactivity from a large medical research facility into municipal sewage, specifically 131I activity in sewage sludge, and the radiation exposures to workers and the public when sludges are incinerated. METHODS: The authors measured radioactivity levels in the sludge at the Ann Arbor, Michigan, Waste Water Treatment Plant following radioiodine treatments of two patients at the University of Michigan hospital complex and performed a series of calculations to estimate potential radiation doses due to releases of 131I from incineration of sewage sludge. RESULTS: Approximately 1.1% of the radioactive 131I administered therapeutically to patients was measured in the primary sludge. Radiation doses from incineration of sludge were calculated to be 0.048 millirem (mrem) for a worker during a period in which the incinerator filtration system failed, a condition that could be considered to represent maximum exposure conditions, for two nine-hour days. Calculated results for a more typically exposed worker (with the filtration system in operation and a 22-week period of incineration) yielded a committed effective dose equivalent of 0.066 mrem. If a worker were exposed to both conditions during the period of incineration, the dose was calculated to be 0.11 mrem. For a member of the public, the committed effective dose equivalent was calculated as 0.003 mrem for a 22-week incineration period. Exposures to both workers and the public were a very small fraction of a typical annual dose (about 100 mrem excluding radon, or 300 mrem with radon) due to natural background radiation. Transport time to the treatment plant for radioiodine was found to be much longer than that of a normal sewage, possibly due to absorption of iodine by organic material in the sewer lines. The residence time of radioiodine in the sewer also appears to be longer than expected. CONCLUSION: 131I in land-applied sludge presents few health concerns because sufficient decay occurs before it can reach the public however, incineration, which is done in winter months, directly releases the 131I from sewage sludge to the atmosphere, and even though exposures to both workers and the public were found to be considerably lower than 1% of natural background, incineration of sludge in a pathway for public exposure. Although 131I was readily measurable in sewage sludge, only about 1% of the radioione administered to patients was found in the sludge. The fate of the remaining radioactivity has not been established; some may be in secondary and tertiary residuals, but it is quite likely that most passed through the plant and was discharged in dilute concentrations in plant emissions. The behavior of radioiodine and other radioactive materials released into municipal seweage systems, such as those from large medical facilities, is not yet well understood. PMID:9258296

  3. 77 FR 36017 - Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ...Packages of Radioactive Material.'' The...Compliance with Packaging Requirements...Receipt of Radioactive Material'' which...Compliance with Packaging Requirements...Receipt of Radioactive Material.''...

  4. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  5. Significance of radiation effects in solid radioactive waste

    SciTech Connect

    Permar, P H; McDonell, W R

    1980-01-01

    Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10/sup 12/ rads, by alpha radiation up to 10/sup 19/ particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established.

  6. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal complex, thereby enhancing the stability (Figure 1).

  7. Simple Route to Gradient Concentric Metal and Metal Oxide Rings

    E-print Network

    Lin, Zhiqun

    Simple Route to Gradient Concentric Metal and Metal Oxide Rings Suck Won Hong, Supratim Giri on metal and metal oxide have been reported. The rings organized in a concentric mode many offer systems.13 Herein, we report on a simple route to concentric rings of metals or metal oxide. The gradient

  8. Optimisation of a multiphase intermetallic metal metal composite material

    E-print Network

    Cambridge, University of

    Optimisation of a multiphase intermetallic metal ± metal composite material J. D. Robson, N to as metal ± metal composites (MeMeCs). In these materials the strong but brittle b and b9 phases act. Duvauchelle, A. Lugan, J. Street, and H. K. D. H. Bhadeshia Metal ± metal composites (MeMeCs) manufactured

  9. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

    SciTech Connect

    PAL, UDAY B.

    1999-08-01

    Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

  10. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

  11. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  12. Transition Metal Compounds

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel I.

    2014-10-01

    1. Localised and itinerant electrons in solids; 2. Isolated transition metal ions; 3. Transition metal ions in crystals; 4. Mott–Hubbard vc charge-transfer insulators; 5. Exchange interaction and magnetic structures; 6. Cooperative Jahn–Teller effect and orbital ordering; 7. Charge ordering in transition metal compounds; 8. Ferroelectrics, magnetoelectrics and multiferroics; 9. Doping of correlated systems and correlated metals; 10. Metal-insulator transitions; 11. Kondoeffect, mixed valence and heavy fermions; Appendix A. Some historical notes; Appendix B. A layman's guide to second quantization; Appendix C. Phase transitions and free energy expansion: Landau theory in a nutshell.

  13. Issues in radioactive-waste management for fusion power

    Microsoft Academic Search

    R. C. Maninger; D. W. Dorn

    1082-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected.

  14. Issues in radioactive waste management for fusion power

    Microsoft Academic Search

    R. C. Maninger; D. W. Dorn

    1983-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of magnitude of the kinds and amounts of radioactivity to be

  15. Artificial Radioactivity of Dysprosium and other Rare Earth Elements

    Microsoft Academic Search

    G. Hevesy; Hilde Levi

    1935-01-01

    IN their pioneer work on artificial radioactivity through neutron bombardment, Fermi and his collaborators announced the discovery of the activity of some of the rare earth elements, namely, of lanthanum, praseodymium, neodymium, samarium and gadolinium. Recently, Sugden1 found that terbium shows an appreciable, and europium a very strong, radioactivity after bombardment with neutrons. We find that dysprosium shows an unusually

  16. Naturally Occurring Radioactive Materials in Cargo at US Borders

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

    2006-01-01

    In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

  17. RESRAD, a computer model for deriving residual radioactive material guidelines

    Microsoft Academic Search

    C. Yu; T. L. Gilbert; U. C. Yuan; A. Zielen; A. Wallo

    1989-01-01

    The U.S. Department of Energy has established radiological protection guidelines for the cleanup of residual radioactive material at sites administered under its Formerly Utilized Sites Remedial Action Program (FUSRAP) and Surplus Facilities Management Program. The guidelines establish radionuclide concentrations or radioactivity levels that are acceptable if the site is to be used without radiological restrictions. Guidelines can be categorized as

  18. Ris-R-1549(EN) Thule-2003 -Investigation of Radioactive

    E-print Network

    contamination of surface soil at Narssarssuk could constitute a small risk to humans visiting the locationRisø-R-1549(EN) Thule-2003 - Investigation of Radioactive Contamination Sven P. Nielsen and Per: Thule-2003 ­ Investigation of Radioactive Contamination Department: Radiation Research Risø-R-1549(EN

  19. Ocean dumping of low-level radioactive waste

    Microsoft Academic Search

    Hunsaker

    1984-01-01

    Ocean dumping of low-level radioactive waste in the US is regulated by EPA, as authorized by the MPRSA. Other US laws and regulations applicable to ocean dumping of radioactive waste include the Hazardous Materials Transportation Act, The National Environmental Policy Act, The Atomic Energy Act, and the Energy Reorganization Act, along with internal orders for executive departments such as the

  20. The Study of Radioactive Drugs in Human Subjects

    Cancer.gov

    Basic research for the purpose of advancing scientific knowledge The research is intended to obtain basic information regarding the metabolism of radioactive drugs including kinetics, distribution, dosimetry, and localization OR Obtain basic information regarding human physiology, pathophysiology, and biochemistry of radioactive drugs.

  1. Dismantlement and radioactive waste management of North Korean nuclear facilities

    Microsoft Academic Search

    Jooho Whang; George Thomas Baldwin

    2004-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

  2. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Microsoft Academic Search

    W. Jooho; G. T. Baldwin

    2005-01-01

    One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

  3. Studies of radioactive nuclei and their role in the cosmos

    Microsoft Academic Search

    Jeff Blackmon

    2006-01-01

    Producing and accelerating radioactive nuclei in the laboratory provides a unique tool for the study of nuclear reactions involving these isotopes in the energy regime of interest for astrophysics. We briefly review some recent developments with accelerated radioactive ion beams and their impact for astrophysics.

  4. Use plan for demonstration radioactive-waste incinerator

    Microsoft Academic Search

    L. R. Cooley; M. R. McCampbell; J. D. Thompson

    1982-01-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans

  5. Institutional radioactive wastes. Final summary report. [Nuclear medicine; isotope applications

    Microsoft Academic Search

    R. L. Andersen; L. R. Cooley; T. J. Beck; C. S. Strauss

    1978-01-01

    In 1975, a survey of 686 hospitals, medical schools, and universities was made to determine the physical form, radionuclide content, and volume of radioactive waste shipped from these institutions to commercial land burial sites. The institutions shipped 6,862 M3 of radioactive waste. This volume is increasing by 14% per year, with the largest portion of this volume (62%) and the

  6. Legislator's guide to low-level radioactive waste management

    Microsoft Academic Search

    J. M. Jordan; L. G. Melson

    1981-01-01

    The purpose of the guide is to provide state legislators and their staff with information on low-level radioactive waste management, issues of special concern to the states, and policy options. During 1979, producers of low-level radioactive wastes (LLW) faced a crisis. Two of the three commercial disposal sites were temporarily closed and some LLW producers were running short on storage

  7. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  8. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  9. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  10. Environmental radioactivity from natural, industrial, and military sources

    Microsoft Academic Search

    Eisenbud

    1987-01-01

    This document is the third edition of a book generally considered a standard in the field of radioactive materials in the environment. Topics include radiation protection standards, transport mechanisms, terrestrial and aquatic pathways, reprocessing of nuclear fuels, radioactive waste management, the fallout from nuclear explosions, nuclear accidents, and risk assessment. (TEM)

  11. Proteomics of field samples in radioactive Chernobyl area.

    PubMed

    Klubicová, Katarína; Rashydov, Namik M; Hajduch, Martin

    2014-01-01

    Two serious nuclear accidents during the past quarter of a century contaminated large agricultural areas with radioactivity. The remediation and possible recovery of radio-contaminated areas for agricultural purposes require comprehensive characterization of plants grown in such places. Here we describe the quantitative proteomics method that we use to analyze proteins isolated from seeds of plants grown in radioactive Chernobyl zone. PMID:24136546

  12. Radioactive effluents, Portsmouth Gaseous Diffusion Plant, calendar year 1982

    SciTech Connect

    Acox, T.A.; Hary, L.F.; Klein, L.S.

    1983-03-01

    Radioactive discharges from the Portsmouth Gaseous Diffusion Plant are discussed and tabulated. Tables indicate both the location of the discharge and the nuclides discharged. All discharges for 1982 are well below the Radioactive Concentration Guide limits specified in DOE Order 5480.1, Chapter XI. 1 figure.

  13. Present situation of the clinical utilization of radioactive tracers

    NASA Astrophysics Data System (ADS)

    Masi, R.

    1983-10-01

    The utilization of radioactive tracers in Italy with a clinical scope is examined. Geographic distribution of clinical centers, legislation, disposal of radioactive wastes, personnel, equipment available, operation mode and prospectives are discussed. Deficiencies in equipment, personnel and choice of diagnosis methods are shown.

  14. Radioactive satellites: Intact reentry and breakup by debris impact

    Microsoft Academic Search

    P. D. Anz-Meador; A. E. Potter

    1991-01-01

    There is a substantial mass of radioactive material in nuclear reactors or radioisotope thermal generators (RTGs) in orbit about the earth. This paper examines the reentry of intact nuclear fuel cores and RTGs and the fragmentation and subsequent radioactive debris cloud deposition and evolution resulting from the impact of orbital debris upon an orbiting reactor, fuel core, or RTG. To

  15. Characterization of plutonium in Maxey Flats radioactive trench leachates

    Microsoft Academic Search

    J. M. Cleveland; T. F. Rees

    1981-01-01

    Plutonium in trench leachates at the Maxey Flats radioactive waste disposal site exists as dissolved species, primarily complexes of the tetravalent ion with strong organic ligands such as ethylenediaminetetraacetic acid. The complexes are not sorbed well by sediment and are only partly precipitated by ferric hydroxide. These results indicate the importance of isolating radioactive waste from organic matter. 3 tables.

  16. Radioactive Waste Information for 1998 and Record-To-Date

    SciTech Connect

    D. L. French; R. E. Tallman; K. A. Taylor

    1999-07-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity; isotopic identity, origin, and status of radioactive waste for calendar year 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Integrated Waste Information System.

  17. INEEL Radioactive Liquid Waste Reduction Program

    SciTech Connect

    Tripp, Julia Lynn; Archibald, Kip Ernest; Argyle, Mark Don; Demmer, Ricky Lynn; Miller, Rose Anna; Lauerhass, Lance

    1999-03-01

    Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy–Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

  18. 77 FR 24746 - Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ...Airborne Radioactive Materials to the Environment for Licensees Other Than Power Reactors...Airborne Radioactive Materials to the Environment for Licensees other than Power Reactors...emissions of radioactive material to the environment. ADDRESSES: Please refer to...

  19. 10 CFR Appendix A to Part 37 - Category 1 and Category 2 Radioactive Materials

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Category 2 Radioactive Materials A Appendix A to Part 37 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL...CATEGORY 2 QUANTITIES OF RADIOACTIVE MATERIAL Pt. 37, App. A Appendix A to Part 37—Category 1 and Category 2 Radioactive...

  20. Effect of reduction of strategic Columbium addition in 718 Alloy on the structure and properties

    NASA Technical Reports Server (NTRS)

    Ziegler, K. R.; Wallace, J. F.

    1985-01-01

    A series of alloys was developed having a base composition similar to Inconel 718, with reduced Cb levels of 3.00 and 1.10 wt% Cb. Substitutions of 3.0% W, 3.0W + 0.9V or Mo increased from 3.0% to 5.8% were made for the Cb in these alloys. Two additional alloys, one containing 3.49% Cb and 1.10% Ti and another containing 3.89% Cb and 1.29% Ti were also studied. Tensile properties at rooom and elevated temperatures, stress-rupture tests, and an analysis of extracted phases were carried out for each of the alloys. Additions of solid solution elements to a reduced Cb alloy had no significant effect on the properties of the alloys under either process condition. The solution and age alloys with substitutions of 1.27% i at 3.89% Cb had tensile properties similar top hose of the original alloy and stress-rupture properties superior to the original alloy. The improved stress-rupture properties were the result of significant precipitation of Ni3Ti-gamma prime in the alloy, which is more stable than gamma' at the elevated temperatures. At lower temperatures, the new alloy benefits from gamma' strengthening. With more precise control and proper processing, the reduced Cb direct-age alloy could substitute for Alloy 718 in high strength applications.

  1. ELEVATED-TEMPERATURE CREEP AND TENSILE PROPERTIES OF THREE COLUMBIUM-BASE ALLOYS

    Microsoft Academic Search

    J. A. DeMastry; F. R. Shober; R. F. Dickerson

    1963-01-01

    In work to develop materials for elevated temperature applications, ; binary niobium alloys containing either 2.37 wt% chromium, 3.34 wt% zirconium, or ; 5.21 wt% vanadrum were fabricated to sheet by forging at 550 deg C and rolling at ; room temperature. All three alloys were completely recrystallized after 90% cold ; work (reduction in thickness) and a one hour

  2. Recrystallization of deep drawing columbium (Nb)-treated interstitial-free sheet steels

    Microsoft Academic Search

    R. E. Hook; H. Nyo

    1975-01-01

    The softening response after isochronal annealing of cold-rolled, Cb-treated, vacuum decarburized-deoxidized, interstitial-free\\u000a steels was investigated by hardness measurements, tension tests, and optical and transmission electron microscopy. Softening\\u000a after annealing, following cold reduction, occurs by recovery-recrystallization and a reduction in precipitation hardening\\u000a due to the coarsening of CbC precipitates. The recrystallization start temperature increases markedly with increasing amounts\\u000a of Cb in

  3. Metals and breast cancer.

    PubMed

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2013-03-01

    Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-?. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer. PMID:23338949

  4. Electroflotation for groundwater decontamination

    Microsoft Academic Search

    Calvin P. C. Poon

    1997-01-01

    An electroflotation device was built using a platinum-clad columbium screen as anode, and a stainless steel screen as cathode. A rock salt solution was used as the electrolyte, generating hypochlorite to oxidize cyanide, and hydroxides to form metal hydroxide precipitates which were carried to the top of the electroflotation device by the rising gas bubbles. The device was used successfully

  5. Leachate tests with sewage sludge contaminated by radioactive cesium.

    PubMed

    Tsushima, Ikuo; Ogoshi, Masashi; Harada, Ichiro

    2013-01-01

    The sewer systems of eastern Japan have transported radioactive fallout from the Fukushima Dai-ichi nuclear power plant accident to wastewater treatment plants, where the radioisotopes have accumulated. To better understand the potential problems associated with the disposal of contaminated sewage sludge in landfills, leachate tests were conducted with radioactive incinerator ash, cement solidification incinerator ash, and dewatered sludge cake. Radioactivity was undetectable in the eluate from incinerator ash and dewatered sludge cake, but about 30% of the radioactivity initially in cement solidification incinerator ash appeared in the eluate during the leaching experiments. Moreover, modification of test conditions revealed that the presence of Ca(2+) ions and strong alkali in the water that contacted the incinerator ash enhanced leaching of cesium. Lastly, the capacity of pit soil to absorb radioactive cesium was estimated to be at least 3.0 Bq/g (dry). PMID:23947711

  6. Conversion of radioactive waste materials into solid form

    SciTech Connect

    Bustard, T.S.; Pohl, C.S.

    1980-10-28

    Radioactive waste materials are converted into solid form by mixing the radioactive waste with a novel polymeric formulation which, when solidified, forms a solid, substantially rigid matrix that contains and entraps the radioactive waste. The polymeric formulation comprises, in certain significant proportions by weight, urea-formaldehyde; methylated urea-formaldehyde; urea and a plasticizer. A defoaming agent may also be incorporated into the polymeric composition. In the practice of the invention, radioactive waste, in the form of a liquid or slurry, is mixed with the polymeric formulation, with this mixture then being treated with an acidic catalyzing agent, such as sulfuric acid. This mixture is then preferably passed to a disposable container so that, upon solidification, the radioactive waste, entrapped within the matrix formed by the polymeric formulation, may be safely and effectively stored or disposed of.

  7. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  8. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  9. Characteristics of Low-Level Radioactive Waste

    SciTech Connect

    Morcos, N.; McConnell, J.W. Jr.; Akers, D.W. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-06-01

    The objective of the Low-Level Radioactive Waste -- Decontamination Waste Program (FIN A6359), funded by the United States Nuclear Regulatory Commission (NRC), is to provide baseline data on the physical stability and leachability of solidified waste streams generated in the decontamination process of primary coolant systems in operating nuclear power stations. In addition, program work includes characterizing the chemical composition of these waste steams. This report lists the tasks associated with the program, and summarizes the work accomplished and the current status of each task. Also, findings are presented from the analysis of waste samples taken from Peach Bottom, Nine Mile Point, and Oyster Creek, respectively. Section 5 presents the status of the bulged Millstone liner.

  10. RADIOACTIVE IRON AND ITS METABOLISM IN ANEMIA

    PubMed Central

    Hahn, P. F.; Bale, W. F.; Lawrence, E. O.; Whipple, G. H.

    1939-01-01

    Artificially produced radioactive iron is an extremely sensitive agent for use in following iron in the course of its changes in body metabolism, lending itself to studies of absorption, transport, exchange, mobilization, and excretion. The need of the body for iron in some manner determines the absorption of this element. In the normal dog when there is no need for the element, it is absorbed in negligible amounts. In the anemic animal iron is quite promptly assimilated. The plasma is clearly the means of transport of iron from the gastrointestinal tract to its point of mobilization for fabrication into hemoglobin. The speed of absorption and transfer of iron to the red cell is spectacular. The importance of the liver and bone marrow in iron metabolism is confirmed. PMID:19870874

  11. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  12. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  13. Submersible purification system for radioactive water

    SciTech Connect

    Abbot, M.L.; Lewis, D.R.

    1989-05-09

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  14. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  15. Natural radioactivity levels in lake sediment samples.

    PubMed

    Ero?lu, Hakan; Kabadayi, Önder

    2013-09-01

    The radioactivity concentrations of nuclides (238)U, (232)Th and (40)K in lake sediments collected from 15 different stations at Alt?nkaya dam lake and 12 different stations at Derbent dam lake in Turkey were measured using high-resolution gamma-ray spectrometry. The measurement was done using a coaxial HPGe detector system coupled to the Ortec-Dspect jr digital MCA system. The average measured activity concentrations of the nuclides (238)U, (232)Th and (40)K were found to be 19.5, 27.7 and 460 Bq kg(-1) in Alt?nkaya dam, whereas the activity concentrations were 18.8, 25.5 and 365 Bq kg(-1) in Derbent dam, respectively. The measured activity concentrations in the present study have been compared with similar measurements from different locations in the world. PMID:23528330

  16. Measurements with radioactive beams at ATLAS.

    SciTech Connect

    Rehm, K. E.

    1998-08-06

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F (T{sub 1/2} = 110 min) and {sup 56}Ni (T{sub 1/2} = 6.1d) were produced and the reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed.

  17. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  18. Radioactive sample effects on EDXRF spectra

    SciTech Connect

    Worley, Christopher G [Los Alamos National Laboratory

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (a heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.

  19. Determining radioactive aerosol concentrations using a surface radioactive contamination measurement device.

    PubMed

    Cerny, R; Johnova, K; Kozlovska, M; Otahal, P; Vosahlikova, I

    2015-06-01

    For experiments with dispersed radioactive aerosols in a radon-aerosol chamber (RAC), it is desirable to know the activity of the radioactive aerosols applied in the RAC. A COLIBRI TTC survey metre with an SABG-15+ probe (Canberra, USA) was purchased for this purpose. The probe is designed for surface contamination measurements, and it is intended to measure the activity of aerosols deposited on the filters during experiments in the RAC. Since the probe is calibrated in a different geometry, its response in the authors' experimental geometry was simulated by a Monte Carlo method. The authors present a Monte Carlo model using MCNPX and an experimental verification of this probe model. PMID:25979746

  20. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.