These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Radioactive Waste Radioactive Waste  

E-print Network

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

2

Characteristics of solidified products containing radioactive molten salt waste  

SciTech Connect

For a treatment of molten salt wastes generated from a pyro-processing of oxide spent fuel, we had suggested a stable chemical route, named GRSS (Gel-Route Stabilization and Solidification), and a subsequent consolidation method. By using this method, a series of monolithic wasteforms with different conditions were fabricated, and then their physicochemical properties were investigated. A simulated salt containing 90 wt% LiCl, 6.8 wt% CsCl, and 3.2 wt% SrCl{sub 2} was treated with a gel-forming material system, Si/Al/P=0.4/0.4/0.2 and 0.35/0.35/0.3, and the gel-products were treated at 1100 deg. C after mixing with borosilicate glass powder, where the salt loadings were about 16-20 wt%. The solidified products had a density of 2.3-2.35 g/cm{sup 3}, a micro-hardness of 4.69-4.72 GPa, a glass transition temperature of 528-537 deg. C, and a thermal expansion coefficient of 1.65 X 10{sup -7}-3.38 X 10{sup -5} deg. C. Leaching results by the PCT-A method revealed leached rates, 10{sup -3}-10{sup -2} g/m{sup 2} day and 10{sup -4}-10{sup -3} g/m{sup 2} day for Cs and Sr, respectively. From the long-term ISO leaching test, the 900 day-leached fraction of Cs and Sr predicted by a semi-empirical model were 0.89% and 0.39%. The leaching behaviors indicated that Cs would be immobilized into a Si-rich phase while Sr would be in a P-rich phase. The experimental results revealed that the GRSS method could be an alternative method for a solidification of radioactive molten salt wastes. (authors)

In-Tae Kim; Hwan-Seo Park; Yong-Zun Cho; Kwang-Wook Kim; Seong-Won Park; Eung-Ho Kim [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2007-07-01

3

Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste  

Microsoft Academic Search

Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO, NaOH, NaSO, and NaNO. After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have

Langton

1984-01-01

4

Cement-based waste forms for disposal of Savannah River Plant low-level radioactive salt waste  

Microsoft Academic Search

Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 100 million liters of soluble salts containing primarily NaNO, NaOH, NaNO, NaAl(OH), and NaSO. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach

C. A. Langton; M. D. Dukes; R. V. Simmons

1983-01-01

5

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10

6

Salt splitting of sodium-dominated radioactive waste using ceramic membranes  

SciTech Connect

The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification.

Hollenberg, G.W.; Carlson, C.D. [Pacific Northwest Lab., Richland, WA (United States); Virkar, A. [Univ. of Utah, Salt Lake City, UT (United States); Joshi, A. [Ceramatec, Salt Lake City, UT (United States)

1994-08-01

7

Container materials for isolation of radioactive waste in salt  

SciTech Connect

The workshop reviewed the extensive data on the corrosion resistance of low-carbon steel in simulated salt repository environments, determined whether these data were sufficient to recommend low-carbon steel for fabrication of the container, and assessed the suitability of other materials under consideration in the SRP. The panelists determined the need for testing and research programs, recommended experimental approaches, and recommended materials based on existing technology. On the first day of the workshop, presentations were made on waste package requirements; the expected corrosion environment; degradation processes, including a review of data from corrosion tests on carbon steel; and rationales for container design and materials, modeling studies, and planned future work. The second day was devoted to a panel caucus, presentation of workshop findings, and open discussion. 76 refs., 2 figs., 3 tabs.

Streicher, M.A.; Andrews, A. (eds.)

1987-10-01

8

Cement-based waste forms for disposal of Savannah River Plant low-level radioactive salt waste  

SciTech Connect

Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 100 million liters of soluble salts containing primarily NaNO/sub 3/, NaOH, NaNO/sub 2/, NaAl(OH)/sub 4/, and Na/sub 2/SO/sub 4/. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses, respectively. It has been concluded that the salt leach rate can be limited so that amounts of salt and radionuclides in the groundwater at the perimeter of the 100-acre disposal site will not exceed EPA drinking water standards. 7 references, 4 figures, 6 tables.

Langton, C A; Dukes, M D; Simmons, R V

1983-01-01

9

Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste  

SciTech Connect

Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO/sub 3/, NaOH, Na/sub 2/SO/sub 4/, and NaNO/sub 2/. After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove /sup 137/Cs and /sup 90/Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards.

Langton, C.A.

1984-01-01

10

Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274  

SciTech Connect

Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)] [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01

11

Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.  

PubMed

In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 ?m and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2) day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt. PMID:21288037

Park, Hwan-Seo; Cho, In-Hak; Eun, Hee Chul; Kim, In-Tae; Cho, Yong Zun; Lee, Han-Soo

2011-03-01

12

ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions ({number_sign}3053)  

SciTech Connect

High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency.

Jones, V.D.

1997-11-01

13

Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations  

SciTech Connect

Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

Nikitin, A. N., E-mail: nikitin@nf.jinr.ru; Pocheptsova, O. A.; Matthies, S. [Joint Institute for Nuclear Research, Frank Laboratory of Nuclear Physics (Russian Federation)

2010-05-15

14

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01

15

Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography  

SciTech Connect

Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

Hull, A.B.; Williams, L.B.

1985-07-01

16

Radioactive Waste.  

ERIC Educational Resources Information Center

Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

Blaylock, B. G.

1978-01-01

17

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOEpatents

A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, Tadafumi.

1994-08-23

18

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOEpatents

A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, Tadafumi (Tokyo, JP)

1994-01-01

19

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOEpatents

This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, T.

1992-01-01

20

Radioactive Waste Isolation in Salt: Peer review of documents dealing with geophysical investigations  

SciTech Connect

The Salt Repository Project, a US Department of Energy program to develop a mined repository in salt for high-level radioactive waste, is governed by a complex and sometimes inconsistent array of laws, administrative regulations, guidelines, and position papers. In conducting multidisciplinary peer reviews of contractor documents in support of this project, Argonne National Laboratory has needed to inform its expert reviewers of these governmental mandates, with particular emphasis on the relationship between issues and the technical work undertaken. This report acquaints peer review panelists with the regulatory framework as it affects their reviews of site characterization plans and related documents, including surface-based and underground test plans. Panelists will be asked to consider repository performance objectives and issues as they judge the adequacy of proposed geophysical testing. All site-specific discussions relate to the Deaf Smith County site in Texas, which was approved for site characterization by the President in May 1986. Natural processes active at the Deaf Smith County site and the status of geophysical testing near the site are reviewed briefly. 25 refs., 4 figs., 5 tabs.

McGinnis, L.D.; Bowen, R.H.

1987-03-01

21

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12

22

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste  

SciTech Connect

This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

1984-08-01

23

Radioactive Wastes  

NSDL National Science Digital Library

Created by David Smith for the Connected Curriculum Project, this module develops multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and discusses storage times for wastes to decay to safe levels for disposal. This is one of a much larger set of learning modules hosted by Duke University.

Smith, David

24

Radioactive Wastes  

NSDL National Science Digital Library

Using Mathcad, Maple, Mathmatica, or MatLab, the user should be able to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal.

David Smith

25

Radioactive Wastes  

NSDL National Science Digital Library

Created by Lang Moore and David Smith for the Connected Curriculum Project, the purposes of this module are to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal. This is one lesson within a larger set of learning modules hosted by Duke University.

Moore, Lang

26

Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488  

SciTech Connect

A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

2012-07-01

27

Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program  

SciTech Connect

As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities.

Levy, P.W.

1981-01-01

28

Suitability of Palestine salt dome, Anderson Co. , Texas for disposal of high-level radioactive waste  

SciTech Connect

The suitability of Palestine salt dome, in Anderson County, Texas, is in serious doubt for a repository to isolate high-level nuclear waste because of abandoned salt brining operations. The random geographic and spatial occurrence of 15 collapse sinks over the dome may prevent safe construction of the necessary surface installations for a repository. The dissolution of salt between the caprock and dome, from at least 15 brine wells up to 500 feet deep, may permit increased rates of salt dissolution long into future geologic time. The subsurface dissolution is occurring at a rate difficult, if not impossible, to assess or to calculate. It cannot be shown that this dissolution rate is insignificant to the integrity of a future repository or to ancillary features. The most recent significant collapse was 36 feet in diameter and took place in 1972. The other collapses ranged from 27 to 105 feet in diameter and from 1.5 to more than 15 feet in depth. ONWI recommends that this dome be removed from consideration as a candidate site.

Patchick, P.F.

1980-01-01

29

Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment  

SciTech Connect

Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.

Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

1983-10-01

30

Composite backfill materials for radioactive waste isolation by deep burial in salt  

SciTech Connect

Bentonite and hectorite were found to sorb Pu(IV) and Am(III) from concentrated brines with distribution coefficients K/sub d/ > 3000 ml/g. The permeability of bentonite to brine was less than 1 microdarcy at a confining pressure of 18 MPa, the expected lithostatic pressure at the 800 m level in a salt repository. Getters for sorption of TcO/sub 4//sup -/ (K/sub d/ approx. 300 ml/g), I/sup -/ (K/sub d/ greater than or equal to 30 ml/g), Cs (K/sub d/ greater than or equal to 30 ml/g) and Sr (K/sub d/ greater than or equal to approx. 100 ml/g) from brines were identified. Their sorption properties are presented. Thermal conductivity results (>0.5 W/mK) and evidence for bentonite stability in brines at hydrothermal conditions are also given. It is shown by calculated estimates that a 3-ft-thick mixture of bentonite with other getter materials could retain Pu, Am, and TcO/sub 4//sup -/ for >10/sup 4/ years and I/sup -/ for > 10/sup 3/ years. Another tailored mixture could retain Cs for approx. 600 years, Sr for approx. 700 years, TcO/sub 4/ for approx. 4000 years and I/sup -/ for approx. 400 years. The backfill can offer a significant contribution to the isolation capability of a waste package system.

Nowak, E.J.

1980-01-01

31

Radioactive waste isolation in salt: rationale and methodology for Argonne-conducted reviews of site characterization programs  

SciTech Connect

Both regulatory and technical concerns must be addressed in Argonne-conducted peer reviews of site characterization programs for individual sites for a high-level radioactive waste repository in salt. This report describes the regulatory framework within which reviews must be conducted and presents background information on the structure and purpose of site characterization programs as found in US Nuclear Regulatory Commission (NRC) Regulatory Guide 4.17 and Title 10, Part 60, of the Code of Federal Regulations. It also presents a methodology to assist reviewers in addressing technical concerns relating to their respective areas of expertise. The methodology concentrates on elements of prime importance to the US Department of Energy's advocacy of a given salt repository system during the NRC licensing process. Instructions are given for reviewing 12 site characterization program elements, starting with performance objectives, performance issues, and levels of performance of repository subsystem components; progressing through performance assessment; and ending with plans for data acquisition and evaluation. The success of a site characterization program in resolving repository performance issues will be determined by judging the likelihood that the proposed data acquisition activities will reduce uncertainties in the performance predictions. 8 refs., 3 figs., 5 tabs.

Harrison, W.; Ditmars, J.D.; Tisue, M.W.; Hambley, D.F.; Fenster, D.F.; Rote, D.M.

1985-07-01

32

Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.  

SciTech Connect

It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

Ehst, D.; Nuclear Engineering Division

2010-08-04

33

Radioactive waste management  

Microsoft Academic Search

The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed.

N. Tsoulfanidis; R. G. Cochran

1991-01-01

34

Rock salt the mechanical properties of the host rock material for a radioactive waste repository  

Microsoft Academic Search

For the long-term prediction of deformation, stress and permeability of a repository in a salt formation, one needs a reliable extrapolation of the mechanical behaviour of rock salt. This is only possible by means of material laws with a physical basis. A detailed description of the so-called composite model for transient and steady state creep is given, which is based

Udo Hunsche; Andreas Hampel

1999-01-01

35

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03

36

Radioactive Wastes. Revised.  

ERIC Educational Resources Information Center

This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are

Fox, Charles H.

37

Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal  

SciTech Connect

This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

1997-01-01

38

Radioactive mixed waste disposal  

SciTech Connect

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01

39

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas  

SciTech Connect

Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references.

Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

1984-04-01

40

Radioactive Waste: 1. Radioactive waste from your lab is  

E-print Network

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid disposable gloves. 4. Keep the RSO telephone # handy. 5. Label all radioactive vials. 6. Apply common sense

Jia, Songtao

41

Stabilization of Radioactive Salt-Containing Liquid and Sludge waste on the Ceramic Matrices  

Microsoft Academic Search

Vernadsky Institute of geochemistry and analytical chemistry, Frumkin Institute of physical chemistry and electrochemistry\\u000a Russian Academy of sciences, PA Mayak and Argonne National Laboratory (ANL) has worked since 2003 on a number of waste treatment\\u000a applications for the Ceramicrete technology based on KMgPO4 compound invented and patented at ANL. These include low level inorganic residues at Rocky Flats, and also

Ivan G. Tananaev

42

Radioactive waste disposal package  

DOEpatents

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01

43

Organic waste processing using molten salt oxidation  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

Adamson, M. G., LLNL

1998-03-01

44

Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt  

SciTech Connect

This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

1987-01-01

45

Radioactive waste isolation in salt: peer review of the D'Appolonia report on Schematic Designs for Penetration Seals for a Repository in the Permian Basin, Texas  

SciTech Connect

Argonne made the following recommedations for improving the reviewed reports. The authors of the report should: state the major assumptions of the study in Sec. 1.1 rather than later in the report; consider using salt for the shaft seals in salt horizons; reconsider whether keys are needed for the bulkheads; provide for interface grouting because use of expansive cement will not guarantee that interfaces will be impermeable; discuss the sealing schedule and, where appropriate, consider what needs to be done to ensure that emplaced radioactive waste could be retrieved if necessary; describe in more detail the sealing of the Dockum and Ogallala aquifers; consider an as low as reasonably achievable approach to performance requirements for the initial design phase; address the concerns in the 1983 US Nuclear Regulatory Commission document entitled Draft Technical Position: Borehole and Shaft Sealing of High-Level Nuclear Waste Repositories; cite the requirements for release of radioactivity by referring to specific clauses in the regulations of the US Environmental Protection Agency; and provide further explanation in the outline of future activities about materials development and verification testing. More emphasis on development of accelerated testing programs is also required.

Hambley, D.F.; Stormont, J.C.; Russell, J.E.; Edgar, D.E.; Fenster, D.F.; Harrison, W.; Tisue, M.W.

1984-09-01

46

Method for calcining radioactive wastes  

DOEpatents

This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

Bjorklund, William J. (Richland, WA); McElroy, Jack L. (Richland, WA); Mendel, John E. (Kennewick, WA)

1979-01-01

47

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15

48

Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report  

USGS Publications Warehouse

Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

Hosman, R.L.

1978-01-01

49

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

SciTech Connect

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01

50

Radioactive waste material disposal  

DOEpatents

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01

51

Radioactive waste material disposal  

DOEpatents

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24

52

Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package  

SciTech Connect

This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

1985-10-01

53

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization  

SciTech Connect

At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

1986-12-01

54

Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt - Leaching experiments and thermodynamic simulations  

NASA Astrophysics Data System (ADS)

Low- and intermediate-level radioactive wastes are frequently solidified in a cement matrix. In a potential repository for nuclear wastes, the cementitious matrix is altered upon contact with solution and the resulting secondary phases may provide for significant retention of the radionuclides incorporated in the wastes. In order to assess the secondary phases formed upon corrosion in chloride-rich solutions, which are relevant for nuclear waste disposal in rock salt, leaching experiments were performed. Conventional laboratory batch experiments using powdered hardened cement paste in MgCl2-rich solutions were left to equilibrate for up to three years and full-scale cemented waste products were exposed to NaCl-rich and MgCl2-rich solutions for more than twenty years, respectively. Solid phase analyses revealed that corrosion of hardened cement in MgCl2-rich solutions advanced faster than in NaCl-rich solutions due to the extensive exchange of Mg from solution against Ca from the cementitious solid. Thermodynamic equilibrium simulations compared well to results at the final stages of the respective experiments indicating that close to equilibrium conditions were reached. At high cement product to brine ratios (>0.65 g mL-1), the solution composition in the laboratory-scale experiments was close to that of the full-scale experiments (cement to brine ratio of 2.5 g mL-1) in the MgCl2 systems. The present study demonstrates the applicability of thermodynamic methods used in this approach to adequately describe full-scale long-term experiments with cemented waste simulates.

Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B.

55

(Immobilization of radioactive wastes)  

Microsoft Academic Search

The traveler participated as the co-chairman of the France\\/US Workshop in Cadarache, France, on the immobilization of radioactive wastes in cement-based materials. These meetings and site visits were conducted under the bilateral exchange agreement between the US-DOE and the Commissariate a l'Energie Atomique (CEA-France). Visits in France included the Cadarache, Valduc, Saclay, and Fontenay-aux-Roses Nuclear Research Centers. As a result

Dole

1986-01-01

56

Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design  

SciTech Connect

Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

1987-02-01

57

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on multifactor life testing of waste package materials  

SciTech Connect

Two documents that provide the approaches in designing a test program to investigate uniform corrosion of low-carbon cash steel in a salt repository environment were reviewed. Recommendations are made by the Peer Review Panel for improving the two reports.

McPheeters, C.C.; Harrison, W.; Ditmars, J.D.; Lerman, A.; Rote, D.M.; Edgar, D.E.; Hambley, D.F.

1984-09-01

58

Radioactive waste processing apparatus  

DOEpatents

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01

59

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOEpatents

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01

60

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOEpatents

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A.; Johnson, Terry R.

1993-09-07

61

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-print Network

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

62

Radioactive Waste Management  

NASA Astrophysics Data System (ADS)

Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

Baisden, P. A.; Atkins-Duffin, C. E.

63

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-print Network

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

64

High-Level Radioactive Waste.  

ERIC Educational Resources Information Center

Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and

Hayden, Howard C.

1995-01-01

65

Radioactive waste management and disposal  

Microsoft Academic Search

The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and

R. Simon; S. Orlowski

1980-01-01

66

Radioactive waste processing apparatus  

DOEpatents

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30

67

Polyethylene encapsulation of molten salt oxidation mixed low-level radioactive salt residues  

SciTech Connect

A limited scope treatability study was conducted for polyethylene encapsulation of salt residues generated by a Molten Salt Oxidation (MSO) technology demonstration at the Energy Technology Engineering Center (ETEC), operated by Rockwell International for the US Department of Energy (DOE). During 1992 and 1993, ETEC performed a demonstration with a prototype MSO unit and treated approximately 50 gallons of mixed waste comprised of radioactively contaminated oils produced by hot cell operations. A sample of the mixed waste contaminated spent salt was used during the BNL polyethylene encapsulation treatability study. A nominal waste loading of 50 wt % was successfully processed and waste form test specimens were made for Toxicity Characteristic Leaching Procedure (TCLP) testing. The encapsulated product was compared with base-line TCLP results for total chromium and was found to be well within allowable EPA guidelines.

Lageraaen, P.R.; Kalb, P.D. [Brookhaven National Lab., Upton, NY (United States); Grimmett, D.L.; Gay, R.L.; Newman, C.D. [Energy Technology Engineering Center, Canoga Park, CA (United States)

1995-10-01

68

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41.

Pike, J.A.

2002-07-09

69

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38, and 41.

Jones (contact), R.T.

2003-02-18

70

Radioactive waste disposal and geology  

Microsoft Academic Search

This book is an excellent, well-presented treatise on the nature and types of radioactive wastes, disposal alternatives and strategies, radionuclide release and disposal models, geologic repositories, natural analogues, subsea-bed options, and low-level wastes. The authors provide national and international perspectives on radioactive waste disposal problems. They carefully dissected each issue, treating its pros and cons equally. Moreover, they is careful

K. B. Krauskopf

1988-01-01

71

(Immobilization of radioactive wastes)  

SciTech Connect

The traveler participated as the co-chairman of the France/US Workshop in Cadarache, France, on the immobilization of radioactive wastes in cement-based materials. These meetings and site visits were conducted under the bilateral exchange agreement between the US-DOE and the Commissariate a l'Energie Atomique (CEA-France). Visits in France included the Cadarache, Valduc, Saclay, and Fontenay-aux-Roses Nuclear Research Centers. As a result of these discussions, an exchange of scientists between Saclay and ORNL was proposed. The traveler continued on to the FRG to visit a hazardous waste site remedial action project in Sprendlingen and the nuclear research and production facilities at the Karlsruhe Kernforschungszentrum (KfK) and the Alkem/Nukem/Transnuklear facilities at Hanau. Visits in the FRG were under the bilateral exchange agreement between the US-DOE and the Bundes Ministerium fur Forschung und Technologie (BMFT). The FRG supplied the traveler data on studies of super-compaction volume reduction efficiencies by KfK and Nukem. Also, Transnuklear is considering contributing two of their larger Konrad-certified packages to the MDU studies at ORNL. 1 tab.

Dole, L.R.

1986-12-18

72

Radioactive waste material melter apparatus  

DOEpatents

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01

73

Radioactive waste material melter apparatus  

DOEpatents

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24

74

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's plan to decommission and reclaim exploratory shafts and related facilities  

SciTech Connect

The following recommendations are made for improving the Office of Nuclear Waste Isolation's plan for decommissioning and reclaiming exploratory shafts and other facilities associated with site characterization: (1) Discuss more comprehensively the technical aspects of activities related to decommissioning and reclamation. More detailed information will help convince the staff of the US Nuclear Regulatory Commission and others that the activities as outlined in the plan are properly structured and that the stated goals can be achieved. (2) Address in considerably greater detail how the proposed activities will satisfy specific federal, state, and local laws and regulations. (3) State clearly the precise purpose of the plan, preferably at the beginning and under an appropriate heading. (4) Also under an appropriate heading and immediately after the section on purpose, describe the scope of the plan. The tasks covered by this plan and closely related tasks covered by other appropriate plans should be clearly differentiated. (5) Discuss the possible environmental effects of drilling the exploratory shaft, excavating drifts in salt, and drilling boreholes as part of site characterization. Mitigation activities should be designed to counter specific potential impacts. High priority should be given to minimizing groundwater contamination and restoring the surface to a condition consistent with the proposed land use following completion of characterization activities at sites not chosen for repository construction. (6) Define ambiguous technical terms, either in the text when first introduced or in an appended glossary.

Fenster, D.F.; Schubert, J.P.; Zellmer, S.D.; Harrison, W.; Simpson, D.G.; Busch, J.S.

1984-07-01

75

Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report  

SciTech Connect

A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

Miller, C.M.; Loomis, G.G.; Prewett, S.W.

1997-11-01

76

Leveraging Radioactive Waste Disposal at WIPP for Science  

Microsoft Academic Search

Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments.

N. T. Rempe

2008-01-01

77

Radioactive waste sampling supports processing  

SciTech Connect

This article describes several new sampling and deployment devices for remote sampling of stored radioactive waste. The tools were developed to determine the chemical characteristics of waste material prior to taking steps for waste processing. Topics covered include the following: the challenge of the waste tank environment; tool criteria for the design; innovative sampling and deployment devices. The following devices were discussed individually: bottom suction sampling device, floating waste sampling device, sample scoop device, sludge/solids sampling device, wall scrape sampling device, counterweight boom deployment device, remote deployment vehicle, sampling arm deployment device. 3 figs.

Nance, T.A.

1997-03-01

78

Effects of Heat Generation on Nuclear Waste Disposal in Salt  

NASA Astrophysics Data System (ADS)

Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

Clayton, D. J.

2008-12-01

79

Vitrification of IFR and MSBR halide salt reprocessing wastes  

SciTech Connect

Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

2013-07-01

80

Radioactive waste management  

SciTech Connect

This article examines the technical and legal considerations of nuclear waste management. The first three sections describe the technical aspects of spent-fuel-rod production, reprocessing, and temporary storage. The next two sections discuss permanent disposal of high-level wastes and spent-fuel rods. Finally, legislative and judicial responses to the nuclear-waste crisis.

Flax, S.J.

1981-01-01

81

Radioactive waste isolation in salt:  

SciTech Connect

The approach presumes that measurements are undertaken to support performance predictions. A quantitative performance objective like groundwater travel time is compared with performance predictions. The approach recognizes that such predictions are uncertain because the measurements upon which they are based are uncertain. The effectiveness of measurement activities is quantified by an index, ..beta.., that reflects the number of standard deviations separating the best estimate of performance from the performance objective. Measurements that reduce the uncertainty in predictions lead to increased values of ..beta... Evaluating ..beta.. for a particular measurement scheme requires identifying the measured quantities that significantly affect prediction uncertainty. Sources of uncertainty are spatial variation, noise, estimation error, and measurement bias. Changing the measurement scheme to increase ..beta.. increases the likelihood of a performance objective being achieved or exceeded. The application of the ..beta..-index method to the Richton dome site in Mississippi focuses on uncertainties in hydraulic conductivity data in relation to groundwater travel time predictions. The ..beta.. values for four different measurement schemes for hydraulic conductivity are determined. 44 refs., 14 figs., 15 tabs.

Ditmars, J.D.; Baecher, G.B.; Edgar, D.E.; Dowding, C.H.

1988-03-01

82

Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container  

E-print Network

Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan Prepared of Energy (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

Napp, Nils

83

Radioactive Waste Management in Korea  

Microsoft Academic Search

Nuclear Environment Technology Institute (NETEC) of Korea Hydro and Nuclear Power Company, Ltd. (KHNP) is responsible for the management of radioactive waste generated from nuclear power plants and radioisotope (RI) users in Korea. KHNP\\/NETEC is also in charge of establishing efficient spent fuel storage for nuclear power plants. Among the research and development activities of KHNP\\/NETEC to develop advanced technologies

Myung Jae Song

2004-01-01

84

Radioactive Waste Management in Perspective  

Microsoft Academic Search

This report is clearly written and concise. The report will be of considerable assistance to decision-makers, opinion formers and interested members of the general public. It will form a useful summary for a non-specialist reader who is interested in radioactive waste management practices in the OECD area, and in the current expert consensus on the subject. The explanations of the

Martin A Broderick

1996-01-01

85

RADIOACTIVE WASTE MANAGEMENT POLICY IN ROMANIA  

Microsoft Academic Search

Radioactive waste management is a key issue of the environmental policy of our company. According to the Romanian Nuclear Act (Law 111\\/1996) and the Law of the Environmental Protection (Law 137\\/1996) the owner is responsible for the management of all radioactive wastes streams at the Nuclear Power Plant, including the technical and cost components. For radioactive waste disposal and plant

V. Andrei; F. Glodeanu; D. Popescu; I. Rotaru

2000-01-01

86

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas  

SciTech Connect

This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

1984-08-01

87

Public attitudes about radioactive waste  

SciTech Connect

Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public`s changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impression is misleading, and I`d like to share research findings with you today that give a broader perspective.

Bisconti, A.S. [Council for Energy Awareness, Washington, DC (United States)

1992-12-31

88

Radioactive Waste Management BasisApril 2006  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31

89

Molten salt destruction of energetic waste materials  

Microsoft Academic Search

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt

William A. Brummond; Ravindra S. Upadhye; Cesar O. Pruneda

1995-01-01

90

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31

91

Testing of stripping columns for the removal of benzene from aqueous radioactive salt solution  

SciTech Connect

Radioactive high level wastes (HLW) generated from production of special nuclear materials at the Savannah River Site (SRS) are held in interim storage in 51 underground, million gallon tanks. Radioactive cesium ({sup 137}Cs) is segregated by evaporation of aqueous waste solution for interim storage in a salt matrix comprised of Na and K salts or in concentrated salt solution. The saltcake will be dissolved and {sup 137}Cs will be separated from the nonradioactive salts in solution in the In-Tank Precipitation (ITP) Process. The cesium will be combined with other radioactive species and glass formers to be melted and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). The salt solution remaining after decontamination in the ITP process will be incorporated into grout for disposal at the site`s Saltstone facility. In the ITP facility, sodium tetraphenylborate (STPB) will be added to precipitate the cesium. Potassium in the waste solution also reacts with STPB and precipitates. Due to radiolytic and chemical degradation of the tetraphenylborate (TPB) precipitate, benzene is generated. The benzene dissolves into the decontaminated salt solution (DSS) and into water (WW) used to {open_quotes}wash{close_quotes} the precipitate to lower the soluble salt content of the slurry. Safety and processing requirements for disposal of the DSS and for temporary storage of the WW dictate that the benzene concentration be reduced.

Georgeton, G.K.; Taylor, G.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Gaughan, T.P. [Elf Atochem North America, Inc., King of Prussia, PA (United States)] [and others

1995-06-27

92

Hydrological methods preferentially recover cesium from nuclear waste salt cake  

SciTech Connect

The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs.

Brooke, J.N.; Hamm, L.L.

1997-05-01

93

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31

94

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2010-07-01

95

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2011-07-01

96

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2013-07-01

97

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2014-07-01

98

Rev August 2006 Radiation Safety Manual Section 14 Radioactive Waste  

E-print Network

Rev August 2006 Radiation Safety Manual Section 14 ­ Radioactive Waste Page 14-1 Section 14 Radioactive Waste Contents A. Proper Collection, Disposal, and Packaging and Putrescible Animal Waste.........................14-8 a. Non-Radioactive Animal Waste

Wilcock, William

99

Thermal treatment of organic radioactive waste  

SciTech Connect

The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

1993-12-31

100

Overview of Radioactive Waste Disposal at Sea  

Microsoft Academic Search

For hundreds of years, the seas have been used as a place to dispose of wastes from human activities. Although no high level radioactive waste has been disposed of into the sea, variable amounts of packaged low level radioactive wastes have been dumped at 47 sites in the northern part of the Atlantic and Pacific Oceans. in 1946 the first

Dominique Calmet

1992-01-01

101

Proposed goals for radioactive waste management  

Microsoft Academic Search

Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public

W. P. Bishop; D. H. Frazier; I. R. Hoos; P. E. McGrath; D. S. Metlay; W. C. Stoneman; R. A. Watson

1977-01-01

102

Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002  

SciTech Connect

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

2013-07-01

103

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

SciTech Connect

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10

104

Molten salt processing of mixed wastes with offgas condensation  

SciTech Connect

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. (Lawrence Livermore National Lab., CA (USA)); Gay, R.L.; Stewart, A.; Yosim, S. (Rockwell International Corp., Canoga Park, CA (USA). Energy Systems Group)

1991-05-13

105

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01

106

Oil field waste disposal in salt caverns: An information website  

SciTech Connect

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10

107

Microbiological treatment of radioactive wastes  

SciTech Connect

The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

Francis, A.J.

1992-12-31

108

Canister arrangement for storing radioactive waste  

DOEpatents

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23

109

Canister arrangement for storing radioactive waste  

DOEpatents

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01

110

Radioactive wastes management development in Chile  

SciTech Connect

A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future.

Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

1994-12-31

111

Development of iron phosphate ceramic waste form to immobilize radioactive waste solution  

SciTech Connect

The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

2014-05-09

112

Development of iron phosphate ceramic waste form to immobilize radioactive waste solution  

NASA Astrophysics Data System (ADS)

The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

2014-09-01

113

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Radioactive waste injection wells. 147.3005...Mexico Tribes 147.3005 Radioactive waste injection wells. Notwithstanding...of wells used to dispose of radioactive waste (as defined in 10 CFR...

2012-07-01

114

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Radioactive waste injection wells. 147.3005...Mexico Tribes 147.3005 Radioactive waste injection wells. Notwithstanding...of wells used to dispose of radioactive waste (as defined in 10 CFR...

2010-07-01

115

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Radioactive waste injection wells. 147.3005...Mexico Tribes 147.3005 Radioactive waste injection wells. Notwithstanding...of wells used to dispose of radioactive waste (as defined in 10 CFR...

2014-07-01

116

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Radioactive waste injection wells. 147.3005...Mexico Tribes 147.3005 Radioactive waste injection wells. Notwithstanding...of wells used to dispose of radioactive waste (as defined in 10 CFR...

2011-07-01

117

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Radioactive waste injection wells. 147.3005...Mexico Tribes 147.3005 Radioactive waste injection wells. Notwithstanding...of wells used to dispose of radioactive waste (as defined in 10 CFR...

2013-07-01

118

Elements of a radioactive waste management course  

Microsoft Academic Search

The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in

Fentiman

1994-01-01

119

Radioactive waste management: 1963-1984  

Microsoft Academic Search

A broad-brush description of radioactive waste management over the past twenty-one years is given. It is set in the context of statutory requirements of the Radioactive Substance Act 1960, which became law in 1983. The Act is looked at critically and an attempt is made to demonstrate that where there were failings in the field of waste management, these were

B R Hookway

1984-01-01

120

Alternative Waste Forms for Electro-Chemical Salt Waste  

SciTech Connect

This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

2009-10-28

121

Geochemical modeling (EQ3\\/6) plan: Office of Civilian Radioactive Waste Management Program  

Microsoft Academic Search

This plan replaces an earlier plan for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It includes activities for all repository projects in the Office of Geologic Repositories: NNWSI, the Basalt Waste Isolation Project, the Salt Repository Project, and the Crystalline Project. Each of these projects is part of the Office of Civilian Radioactive Waste Management (OCRWM) Program. The scope

W. F. McKenzie; T. J. Wolery; J. M. Delany; R. J. Silva; K. J. Jackson; W. L. Bourcier; D. O. Emerson

1986-01-01

122

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31

123

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31

124

Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory  

SciTech Connect

INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

Shaw, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Anderson, B. [General Atomics, San Diego, CA (United States). NRT Div.; Davis, D. [Envitco Inc., Toledo, OH (United States)

1993-07-01

125

MIXING MODELING ANALYSIS FOR SRS SALT WASTE DISPOSITION  

SciTech Connect

Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended liquid in the Salt Disposition Integration (SDI) facility. The results will also help validate the anticipated performance of the pump vendor's design.

Lee, S.

2011-01-18

126

Disposal of Savannah River Plant waste salt  

SciTech Connect

Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO/sub 3/, NaNO/sub 2/, and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system.

Dukes, M D

1982-01-01

127

Sorting and disposal of hazardous laboratory Radioactive waste  

E-print Network

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

128

Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant  

SciTech Connect

Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible.

Rempe, N.T.

1993-12-01

129

Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant  

SciTech Connect

Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600-m-thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope--amounting to about a quarter million years, the time during which its activity will decline to background level--represent only 0.11% of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible.

Rempe, N.T. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1993-12-31

130

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22

131

Developing and testing electrochemical methods for treating metal salts, cyanides and organic compounds in waste streams  

Microsoft Academic Search

Electrochemical methods to process radioactive and hazardous (mixed) wastes were studied at a bench scale. Cadmium, copper, mercury, and chromium salts, cyanides, and simple organic compounds were used in the tests. Effective conditions were found to process these waste components by electrolysis. The equipment used in the tests included flow-through cells, a membrane cell, and a graphite packed bed cell.

J. Dziewinski; S. Marczak; E. Nuttall; G. Purdy; W. Smith; J. Taylor; C. Zhou

1998-01-01

132

Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins  

SciTech Connect

Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

1997-07-07

133

Radioactive Waste: Resources for Environmental Literacy  

NSDL National Science Digital Library

Since World War II, hundreds of thousands of tons of radioactive materials have been produced in the United States. How we will dispose of nuclear waste is a controversial issue with a large technical component. This book provides a useful resource for enhancing student understanding of the physics of radioactivity as well as the storage and disposal of radioactive waste. It encourages students to discuss these complex environmental issues using arguments based on the science behind issues related to radioactivity, technology, risk assessment, and tradeoffs.

Environmental Literacy Council

2007-05-16

134

Demonstration of a performance assessment methodology for high-level radioactive waste disposal in basalt formations  

Microsoft Academic Search

This document describes a performance assessment methodology developed for a high-level radioactive waste repository mined in deep basalt formations. This methodology is an extension of an earlier one applicable to bedded salt. The differences between the two methodologies arise primarily in the modeling of round-water flow and radionuclide transport. Bedded salt was assumed to be a porous medium, whereas basalt

E. J. Bonano; P. A. Davis; L. R. Shipers; K. F. Brinster; W. E. Beyler; C. D. Updegraff; E. R. Shepherd; L. M. Tilton; K. K. Wahi

1989-01-01

135

Current status of radioactive waste disposal  

Microsoft Academic Search

This paper describes the technical issues involved in the development of a feasible solution toward permanent radioactive waste disposal. Recent progress on internationally collaborative research efforts concerning the multibarrier concept, in situ experiments, computer modeling and natural analogues are discussed.

G. R. Choppin; P. J. Wong

1996-01-01

136

Environmental aspects of commercial radioactive waste management  

SciTech Connect

Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

Not Available

1979-05-01

137

Method for solidification of radioactive and other hazardous waste  

DOEpatents

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01

138

RADIOACTIVE WASTES--ORIGIN, HAZARDS AND TREATMENT  

Microsoft Academic Search

When energy is produced by nuclear fission, radioactive wastes also are ; obtained. These are formed in all steps from the mining of uranium ore to the ; operation of reactors. They also arise from the application of radioactive ; nuclides in industry and research. Due to the action of the radiation on the ; different organs in the human

Kinell

1962-01-01

139

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

140

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

141

Radioactive waste management in a hospital.  

PubMed

Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

2010-01-01

142

Radioactive Waste Management in A Hospital  

PubMed Central

Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

2010-01-01

143

77 FR 26991 - Low-Level Radioactive Waste Management Issues  

Federal Register 2010, 2011, 2012, 2013, 2014

...3150-AI92 Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory...and Low-Level Radioactive Waste Management'' (76 FR 50500; August...Assessment Directorate, Division of Waste Management and Environmental...

2012-05-08

144

77 FR 10401 - Low-Level Radioactive Waste Management Issues  

Federal Register 2010, 2011, 2012, 2013, 2014

...NRC-2011-0012] Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory...assessment as part of its radioactive waste management decision-making. The DOE...Assessment Directorate, Division of Waste Management and Environmental...

2012-02-22

145

A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues  

Microsoft Academic Search

High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m³ (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges.

H. Babad; C. DeFigh-Price; J. C. Fulton

1993-01-01

146

Annual Radioactive Waste Tank Inspection Program - 2000  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, W.R.

2001-04-17

147

(Low-level radioactive waste management techniques)  

Microsoft Academic Search

The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale

S. D. Van Hoesen; J. M. Kennerly; L. C. Williams; W. N. Lingle; M. S. Peters; G. R. Darnell; Du Pont de Nemours

1988-01-01

148

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11

149

Safety Aspects in Radioactive Waste Management  

Microsoft Academic Search

Bezpe?nostn aspekty mana?mentu rdioaktvneho odpadu In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short- lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-

Peter W. Brennecke

150

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

SciTech Connect

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27

151

Apparatus and method for radioactive waste screening  

DOEpatents

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04

152

Hazardous and radioactive waste incineration studies  

SciTech Connect

Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

1981-01-01

153

Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.  

PubMed

Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered. PMID:21726891

Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

2011-08-01

154

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01

155

Quality Assurance Program: Argonne peer review activities for the salt host-rock portion of the Civilian Radioactive Waste Management Program  

SciTech Connect

This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project Office's needs and directives. Implementation of the QA procedures described herein establishes an operational framework so that task activities are traceable and the activities and decisions that influence the overall quality of the peer review process and results are fully documented. 56 refs., 5 figs., 6 tabs.

Edgar, D.E.

1986-08-12

156

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30

157

Brine migration in salt and its implications in the geologic disposal of nuclear waste  

SciTech Connect

This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

Jenks, G.H.; Claiborne, H.C.

1981-12-01

158

Radioactive waste disposal in simulated peat bog repositories  

Microsoft Academic Search

The Low Level Radioactive Waste Policy Act of 1980 and the Low Level Radioactive Waste Policy Amendments Act of 1985 have required state governments to be responsible for providing low-level waste (LLW) disposal facilities in their respective areas. Questions are (a) is the technology sufficiently advanced to ensure that radioactive wastes can be stored for 300 to 1000 yr without

W. R. Schell; C. D. Massey

1987-01-01

159

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2011-07-01 true High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2012-07-01

160

Radioactive waste management in developing and newly industrialized countries  

Microsoft Academic Search

Radioactive wastes are mostly produced in countries with military nuclear programmes. However, non-nuclear weapon countries, with solely commercial nuclear industries, also produce radioactive wastes. Moreover, uranium and thorium mining and milling wastes, as well as other kinds of low-level radioactive wastes like those resulting from radiological accidents, can also be found in developing and newly industrialized countries. The paper discusses

A. S. Paschoa; A. Tranjan Filho

1995-01-01

161

Data base for radioactive waste management: waste source options report  

Microsoft Academic Search

This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 2 provides a summary of low level waste volumes and characteristics as projected to the year 2000, in addition

R. E. Wild; O. I. Oztunali; J. J. Clancy; C. J. Pitt; E. D. Picazo

1981-01-01

162

The UK Committee on Radioactive Waste Management.  

PubMed

The UK Committee on Radioactive Waste Management is charged with recommending to Government, by July 2006, options for the long term management of the UK's radioactive waste legacy. These options should inspire public confidence. Now, more than halfway into the time allotted, we, as two former members of the Committee, express our concerns at the wayward approach that has been adopted. The Committee has placed emphasis on gaining public confidence but this has been done at the expense of recruiting the best scientific expertise in the management of radioactive waste, an act which we believe will actually undermine public confidence. Furthermore, given also the immense importance of this decision to public safety, national security and the national interest, we believe urgent steps should be taken to review the Committee's process, its management and its sponsorship. PMID:16286694

Baverstock, Keith; Ball, David J

2005-09-01

163

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01

164

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01

165

Radioactive waste management in the former USSR  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

166

Pump station for radioactive waste water  

DOEpatents

A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

2003-11-18

167

Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics  

SciTech Connect

A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1991-07-01

168

Annual radioactive waste tank inspection program - 1999  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14

169

Risk assessment criteria for radioactive waste disposal  

Microsoft Academic Search

The assessment of radioactive waste disposal options in terms of the annual risk to the critical group can lead to ambiguities, which arise largely in defining what is meant by the critical group. Radically different risk estimates can be obtained, depending on whether statistical averaging is carried out before or after the critical group is located in the time dimension.

James O. Corbett

1988-01-01

170

High-level radioactive wastes. Supplement 1  

SciTech Connect

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.)

1984-09-01

171

Annual radioactive waste tank inspection program: 1995  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt, F.G. Sr.

1996-04-01

172

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27

173

Annual radioactive waste tank inspection program - 1992  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

McNatt, F.G.

1992-12-31

174

Annual Radioactive Waste Tank Inspection Program 1994  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

McNatt, F.G. Sr.

1995-04-01

175

MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008  

E-print Network

k MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008 Safety Services #12;MANAGEMENT OF SOLID for Appendices 4 and 5 22 Appendix 10 Flow chart of waste-streaming 23 #12;1 MANAGEMENT OF SOLID RADIOACTIVE RADIOACTIVE WASTES Page Minimisation 1 Streaming 2 Procedures 2 Keeping track of the activities placed

Davidson, Fordyce A.

176

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-print Network

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

177

An overview of military radioactive waste management in the UK  

Microsoft Academic Search

The present and past activities of Ministry of Defence (MOD) have resulted in the production of radioactive waste, particularly from the naval nuclear propulsion programme and the nuclear weapons programme. The MOD manages radioactive waste in accordance with national policy and regulation, making use of disposal options where available. MOD radioactive waste management practices are subject to independent review and

Frederic Dawson

1997-01-01

178

Delivery system for molten salt oxidation of solid waste  

DOEpatents

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01

179

Chemistry and technology of radioactive waste management the IAEA perspective  

NASA Astrophysics Data System (ADS)

The paper refers the consideration of chemical composition of radioactive waste in selection of particular method and technology for waste treatment and conditioning, importance of physicochemical parameters of waste processing techniques for optimisation of waste processing to produce waste form of appropriate quality. Consideration of waste chemistry is illustrated by several IAEA activities on radioactive waste management and by outlining the scope of some selected technical reports on different waste management subjects. Different components of the IAEA activities on radioactive waste management and on technology transfer are presented and discussed.

Efremenkov, V. M.

2003-01-01

180

Handbook of high-level radioactive waste transportation  

SciTech Connect

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01

181

Radioactive Waste Burial Grounds. Environmental Information Document  

SciTech Connect

This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations. The closure options considered for the Radioactive Waste Burial Grounds are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

Jaegge, W.J.; Kolb, N.L.; Looney, B.B.; Marine, I.W.; Towler, O.A.; Cook, J.R.

1987-03-01

182

Radioactive Waste Management in Central Asia - 12034  

SciTech Connect

After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

2012-07-01

183

Control of radioactive waste-glass melters  

SciTech Connect

Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

Bickford, D.F. (Westinghouse Savannah River Co., Aiken, SC (USA)); Hrma, P. (Case Western Reserve Univ., Cleveland, OH (USA)); Bowan, B.W. II (West Valley Nuclear Services Co., Inc., West Valley, NY (USA))

1990-01-01

184

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

SciTech Connect

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20

185

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01

186

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01

187

Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management  

Microsoft Academic Search

Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence

Usher

2007-01-01

188

Treatment of Difficult Wastes with Molten Salt Oxidation  

SciTech Connect

Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid-1990s, the U.S. Army Defense Ammunition Center (DAC) and the Department of Energy (DOE) have jointly invested in MSO development at the Lawrence Livermore National Laboratory (LLNL). LLNL first demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5-kg/hr bench-scale unit, and then in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. Several MSO systems have been built with sizes up to 10 ft in height and 16 inches in diameter. LLNL in 2001 completed a MSO plant for DAC for the destruction of explosives-contaminated sludge and explosives-contaminated carbon. We will present in this paper our latest demonstration data and our operational experience with MSO.

Hsu, P C; Kwak, S

2003-02-21

189

CHARACTERIZATION OF HIGH PHOSPHATE RADIOACTIVE TANK WASTE AND SIMULANT DEVELOPMENT  

SciTech Connect

A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for engineered-scaled testing of pretreatment processes in a non-radiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from irradiated nuclear fuel. The bismuth phosphate sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium. The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus present in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate species. The bismuth in the sludge solids is best described as bismuth ferrite, BiFeO3. Infrared spectral data, microscopy, and thermal analysis data are presented to support these conclusions. The behavior of phosphorus during caustic leaching of the bismuth phosphate sludge solids is also discussed.

Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.

2009-10-15

190

Combustible radioactive waste treatment by incineration and chemical digestion  

SciTech Connect

A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L.A.; Crippen, M.D.; Allen, C.R.

1980-05-28

191

Combustible radioactive waste treatment by incineration and chemical digestion  

NASA Astrophysics Data System (ADS)

Present and planned combustible radioactive waste treatment systems in the U.S. are reviewed. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L. A.; Allen, C. R.; Crippen, M. D.

1980-05-01

192

Managing radioactively contaminated infectious waste at a large biomedical facility.  

PubMed

Proper management of infectious waste containing radioactive material depends on three program elements. First, screening methods are required to identify medical waste containing radioactive material. Second, a means of managing the volume of waste identified has to be developed. Management includes identifying the radioisotopes, dealing with the physical requirements of the waste (e.g., the need for cold storage), and treating the material as a mixed waste. Finally, methods to limit production of waste at its source must be implemented. This includes educating the radioactive material users, enabling them with the means of reducing waste volume, and giving them feedback on how well they are implementing the waste reduction practices. PMID:8449714

Meth, B M

1993-02-01

193

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01

194

Risk methodology for geologic disposal of radioactive waste  

SciTech Connect

This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. (Sandia National Labs., Albuquerque, NM (USA)); Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

1990-04-01

195

Waste Isolation Pilot Plant Salt Decontamination Testing  

SciTech Connect

On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPPs operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

Rick Demmer; Stephen Reese

2014-09-01

196

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

SciTech Connect

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25

197

System for handling and storing radioactive waste  

DOEpatents

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19

198

System for handling and storing radioactive waste  

DOEpatents

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01

199

Injector nozzle for molten salt destruction of energetic waste materials  

Microsoft Academic Search

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the

William A. Brummond; Ravindra S. Upadhye

1996-01-01

200

Transport of Carbon Dioxide and Radioactive Waste  

Microsoft Academic Search

\\u000a A comparative assessment of carbon dioxide (CO2) and radioactive waste transport systems associated with electricity generation was undertaken on the basis of 15 criteria\\u000a grouped under three areas, namely the transport chain, policy aspects and state of the technology. For CO2, we considered exclusively the transport that would take place under a future large-scale capture and storage infrastructure.\\u000a Our study

Daro R. Gmez; Michael Tyacke

201

Performance assessment of radioactive waste repositories  

Microsoft Academic Search

The current plans for permanent disposal of radioactive waste call for its emplacement in deep underground repositories mined from geologically stable rock formations. The U.S. Nuclear Regulatory Commission and U.S. Environmental Protection Agency have established regulations setting repository performance standards for periods of up to 10,000 years after disposal. Compliance with these regulations will be based on a performance assessment

J. E. Campbell; R. M. Cranwell

1988-01-01

202

Progress of radioactive waste management in Korea  

Microsoft Academic Search

In Korea, sixteen nuclear reactors are in operation and by 2015, there will be a total of twenty-six nuclear reactors. The current generating capacity is 12,990 MWe with a share of 40.7 % of the total production of electricity. This active nuclear program causes an inevitable increase in the build-up of radioactive waste, including spent fuel. Therefore, reliable and effective

Y. S. Hwang; C. H. Kang; S. G. Kim; H. S. Park

2003-01-01

203

Progress of radioactive waste management in Lithuania  

Microsoft Academic Search

The only one nuclear power plant in the Republic of Lithuania Ignalina Nuclear Power Plant contains two RBMK-1500 water-cooled graphite-moderated channel-type power reactors. The first and the second reactors were shut down by the end of 2004 and by the end of 2009, respectively. During operation, the power plant has accumulated large quantities of radioactive waste, including spent nuclear

P. Poskas; J. E. Adomaitis; V. Ragaisis; V. Simonis; A. Smaizys; R. Kilda; D. Grigaliuniene

204

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21

205

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01

206

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21

207

A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues  

SciTech Connect

High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m{sup 3} (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks.

Babad, H.; DeFigh-Price, C.; Fulton, J.C.

1993-02-01

208

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05

209

78 FR 7818 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...License To Export Radioactive Waste Pursuant to 10 CFR...Inc.; Class A radioactive The total Amend to...28, 2012; January waste as slightly quantity...facility, the Class A radioactive secondary waste will waste...

2013-02-04

210

HyponatremiaWhat Is Cerebral Salt Wasting?  

PubMed Central

Background: Hyponatremia is a common electrolyte imbalance in hospitalized patients. It is associated with significant morbidity and mortality, especially if the underlying cause is incorrectly diagnosed and not treated appropriately. Often, the hospitalist is faced with a clinical dilemma when a patient presents with hyponatremia of an unclear etiology and with uncertain volume status. Syndrome of inappropriate antidiuretic hormone (SIADH) is frequently diagnosed in this clinical setting, but cerebral salt wasting (CSW) is an important diagnosis to consider. Objective: We wanted to describe the diagnosis, treatment, and history of CSW to provide clinicians with a better understanding of the differential diagnosis for hyponatremia. Conclusion: CSW is a process of extracellular volume depletion due to a tubular defect in sodium transport. Two postulated mechanisms for CSW are the excess secretion of natriuretic peptides and the loss of sympathetic stimulation to the kidney. Making the distinction between CSW and SIADH is important because the treatment for the two conditions is very different. PMID:20740122

Momi, Jasminder; Tang, Christopher M; Abcar, Antoine C; Kujubu, Dean A; Sim, John J

2010-01-01

211

Annual radioactive waste tank inspection program -- 1993  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

McNatt, F.G. Sr.

1994-05-01

212

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23

213

Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.  

ERIC Educational Resources Information Center

This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and

HAZWRAP, The Hazardous Waste Remedial Actions Program.

214

Risk methodology for geologic disposal of radioactive waste  

Microsoft Academic Search

Steps to be taken in the development of a methodology for the assessment of the long-term risks from radioactive waste disposal in deep, geologic media are outlined. The first phase involves the development of analytical models to represent the processes by which radioactive waste might leave the waste repository, enter the surface environment and eventually reach humans, and the definition

J. E. Campbell; R. T. Dillon; M. S. Tierney; H. T. Davis; P. E. McGrath; F. J. Pearson Jr.; H. R. Shaw; J. C. Helton; F. A. Donath

1978-01-01

215

A model approach to radioactive waste disposal at Sellafield  

E-print Network

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time periods. Britain is currently investigating a potential site for underground burial of waste, near

Haszeldine, Stuart

216

An Agent-based National Radioactive Waste Management Framework design  

Microsoft Academic Search

Radioactive waste management is now a much discussed public concern, especially at the moment with the Taiwanese government's impending announcement of a site for building a final disposal facility before the end of 2008. Despite there being a few software-based waste management systems independently developed within nuclear power plants and off-site interim radioactive waste facilities, much of the systems remain

I.-Hsin Chou; Chin-Feng Fan

2010-01-01

217

Future radioactive liquid waste streams study  

SciTech Connect

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01

218

Modeling of Sulfate Double-salts in Nuclear Wastes  

Microsoft Academic Search

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial

B. Toghiani; J. S. Lindner; C. F. Weber; R. D. Hunt

2000-01-01

219

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01

220

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

West, B; Ruel Waltz, R

2008-06-05

221

Decontamination of a radioactive waste liquid by electrodialysis  

SciTech Connect

An apparatus is described for the removal and recovery of acidic and radioactive components of a liquid waste stream comprising in combination a series of at least two electrodialysis units or stacks. Each stack is comprised of a cathode chamber at one terminal end, and an anode chamber at the opposite terminal end. The chambers contain respectively a cathode and anode electrode. A deacidification stack is the first stack in the series having all of its chambers being separated one from the other by separate anion selective membranes defining between the electrode chambers at least one neutral liquid chamber positioned adjacent to the cathode chamber. A primary desalting stack is the second stack in the series comprising a multi-chamber unit having alternating salt diluting and salt concentrating chambers defined by alternating cation and anion selective membranes, means for introducing a liquid to be treated into the cathode chamber of the deacidification stack with exit means for withdrawal of the liquid, and means for passing the withdrawn liquid into and out of the salt diluting chambers of the primary desalting stack. A means is included for introducing a liquid into and out of the concentrating and electrode chambers of the primary desalting stack and for passing a direct electric current transversely across the membranes and chambers of each stack in the series.

Lundstrom, J.E.

1987-02-24

222

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM)  

E-print Network

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form date) SLAC-I-760-2A08Z-001 (RWM number) Page 1 of 2 RADIOACTIVE MATERIAL DECLARATION FORM For RP use [ ] Radioactive [ ] Toxic [ ] Friable [ ] Non-Friable [ ] None PCB Content: [ ] > 5 ppm [

Wechsler, Risa H.

223

Membrane purification in radioactive waste management: a short review.  

PubMed

Radiation hazards of radionuclides arising from nuclear plant facilities are well known. Separation technologies are used to concentrate the radionuclides and prevent the spread of this hazard to the environment. The present review describes the recent advances made in radioactive waste treatment using membrane separation technology. The first part discusses the membrane methods for collective separation of radionuclides and the second part discusses the membrane methods for selective separation of individual radionuclides. For the collection separation of radionulides, methods include reverse osmosis, precipitation followed by ultrafiltration or microfiltration and membrane distillation. Individual elements have been separated using liquid supported membranes, polymer inclusion membranes, solid polymer based electrolysis, nanofiltration, electrochemical salt-splitting process and other advanced separation methods. PMID:22204752

Ambashta, Ritu D; Sillanp, Mika E T

2012-02-01

224

Radioactive waste disposal via electric propulsion  

NASA Technical Reports Server (NTRS)

It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

Burns, R. E.

1975-01-01

225

Biosphere modelling for radioactive waste disposal  

SciTech Connect

Swiss radiological protection regulations specify dose and risk limits for radioactive waste disposal. Biosphere modelling is used to estimate doses to inhabitants of the potentially affected region. No time limit is specified and for biosphere modelling in the far future a reference biospheres approach is recommended. Predictions of future exposures are not made, but representative scenarios based on present day analogues are used to show that the potential radionuclide releases would not breach regulatory limits under these reference conditions. Probabilistic modelling may form part of the assessment but is not a formal requirement.

Klos, R.A. [Paul Scherrer Institute, Wuerenlingen (Switzerland); Van Dorp, F. [NAGRA, Wettingen (Switzerland)

1996-12-01

226

Electronic Denitration Savannah River Site Radioactive Waste  

SciTech Connect

Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations.

Hobbs, D.T.

1995-04-11

227

Is radioactive mixed waste packaging and transportation really a problem  

SciTech Connect

Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ``low-level radioactive waste`` was in fact ``radioactive mixed waste`` and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations.

McCall, D.L.; Calihan, T.W. III

1992-01-01

228

Developing and testing electrochemical methods for treating metal salts, cyanides and organic compounds in waste streams  

SciTech Connect

Electrochemical methods to process radioactive and hazardous (mixed) wastes were studied at a bench scale. Cadmium, copper, mercury, and chromium salts, cyanides, and simple organic compounds were used in the tests. Effective conditions were found to process these waste components by electrolysis. The equipment used in the tests included flow-through cells, a membrane cell, and a graphite packed bed cell. The tested methods included an open cell electrolysis, use of pulsating current, and mediated electro-oxidation. The experiments demonstrated the feasibility of applying electrochemical systems to treat the studied waste components. The great advantage of electrochemical systems is that the treatment of various wastes, or streams containing selected waste components, can be accomplished in a single treatment unit. Additional advantages of electrochemical systems are their safety, ability to recycle, and the fact that they are inclined to receive a positive public perception. The tested systems are presently used at Los Alamos National Laboratory to process mixed wastes.

Dziewinski, J.; Marczak, S.; Purdy, G.; Smith, W. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States)] [Univ. of New Mexico, Albuquerque, NM (United States); Taylor, J.; Zhou, C. [Faraday Technologies Inc., Dayton, OH (United States)] [Faraday Technologies Inc., Dayton, OH (United States)

1998-12-31

229

Radioactive Waste Management Complex performance assessment: Draft  

SciTech Connect

A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

1990-06-01

230

Standard guide for sampling radioactive tank waste  

E-print Network

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01

231

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

SciTech Connect

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01

232

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

Microsoft Academic Search

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically

Matthew S. Fountain; Dean E. Kurath; Gary J. Sevigny; Adam P. Poloski; J. Pendleton; S. Balagopal; M. Quist; D. Clay

2009-01-01

233

Area 5 Radioactive Waste Management Site Safety Assessment Document  

SciTech Connect

The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization.

Horton, K.K.; Kendall, E.W.; Brown, J.J.

1980-02-01

234

Safeguards for long-term management of radioactive waste  

SciTech Connect

In nuclear material safeguards parlance radioactive wastes are measured discards.'' However, the accumulation of large amounts of fissile materials in wastes over a period of time can be a safeguards concern like waste inventories in the US, which may contain more than 10 Mt of fissile materials. In addition to conventional radioactive waste forms, such as high-level wastes, transuranic wastes, and low-level wastes, spent nuclear fuel from commercial fuel cycles is now considered a radioactive waste form in the US. Spent nuclear fuels, placed in underground repositories, have the potential to become plutonium mines of the future and attractive targets for diversion or theft because of their valuable material content and decreasing radioactivity. In the context of present strategies for the disposal of these radioactive waste forms, this paper identifies some of the domestic and international safeguards issues relevant to the various proposed scenarios for the long-term management and permanent disposal of radioactive wastes in geologic repositories. Present knowledge of inventories is presented to illustrate the enormity of the problem of verifying special nuclear material contents of waste inventories in the US. Good materials management practices during the disposal phase of nuclear wastes should have elements to address issues that are identified here. 12 refs., 2 tabs.

Pillay, K.K.S.

1991-01-01

235

Legislative and regulatory aspects of radioactive waste management in France  

SciTech Connect

The French legislative and regulatory framework for safe management of radioactive waste is presented. Emphasis is put on legislative aspects for the management of high-level waste and on the operation of surface disposal for low-level waste. Other topics such as policy and issues for very low-level waste or dismantling are also briefly developed.

Niel, J.C. [Ministere de l`Industrie des Postes et Telecommunications et du Commerce Exterieur et Ministere de l`Environnement, Paris (France). Direction de la Surete des Installations Nucleaires

1996-08-01

236

Storage and disposal of radioactive waste as glass in canisters  

SciTech Connect

A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

Mendel, J.E.

1978-12-01

237

The political science of radioactive waste disposal  

SciTech Connect

This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need for someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}

Jacobi, L.R. Jr. [Texas Los Level Radioactive Waste Disposal Authority, Austin, TX (United States)

1996-06-01

238

Controlled Containment, Radioactive Waste Management in the Netherlands  

SciTech Connect

All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

Codee, H.

2002-02-26

239

Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275  

SciTech Connect

The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

2012-07-01

240

76 FR 10810 - Public Workshop to Discuss Low-Level Radioactive Waste Management  

Federal Register 2010, 2011, 2012, 2013, 2014

...Discuss Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory...assessment as part of its radioactive waste management decision-making. DOE recently...Order 435.1 (Radioactive Waste Management). The joint public...

2011-02-28

241

77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues  

Federal Register 2010, 2011, 2012, 2013, 2014

...RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues...compliance for a low-level radioactive waste disposal facility, allowing...requirements for land disposal of radioactive waste. DATES: The public...

2012-07-11

242

78 FR 9746 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...License To Export Radioactive Waste Pursuant to 10...Scientific Class A radioactive Up to a maximum...Janurary 10, mixed waste total of 420 conforming...varying combinations radioactive disposition. Amend...imported mixed waste) in to: 1)...

2013-02-11

243

77 FR 52072 - Request To Amend a License to Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...License to Import Radioactive Waste Pursuant to 10 CFR...31, 2012 IW022/ radioactive total of 5,500...reuse 02 11005700. waste including tons or...carcasses, and varying radioactive human-animal combinations. waste that is...

2012-08-28

244

77 FR 20077 - Request for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70...Inc., February 14, 2012, radioactive waste tons of or disposal by a February...XW019, in the form of ash radioactive waste licensed facility...

2012-04-03

245

77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction  

Federal Register 2010, 2011, 2012, 2013, 2014

...NRC-2011-0183] Low-Level Radioactive Waste Management and Volume Reduction...Policy Statement on Low-Level Radioactive Waste (LLRW) Volume Reduction...Blending of Low-Level Radioactive Waste'' (ADAMS Accession No....

2012-05-01

246

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01

247

An analysis of the technical status of high level radioactive waste and spent fuel management systems  

NASA Technical Reports Server (NTRS)

The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

1977-01-01

248

Early age behaviour of concrete supercontainers for radioactive waste disposal  

Microsoft Academic Search

Various types of radioactive waste were and are produced in Belgium. This waste originates from different producers: nuclear power plants, medical applications, industry, research centre, etc. During the past 25 years several preliminary repository designs were proposed. Today, the cylindrical supercontainer is considered to be the most promising Belgian design on the matter of enclosing the vitrified high level radioactive

Bart Craeye; Geert De Schutter; Hughes Van Humbeeck; Alain Van Cotthem

2009-01-01

249

Assessment of public perception of radioactive waste management in Korea  

Microsoft Academic Search

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards

Janis R. Trone; SeongKyung Cho; Jooho Whang; Moo Yul Lee

2011-01-01

250

OPINION: The UK Committee on Radioactive Waste Management  

Microsoft Academic Search

The UK Committee on Radioactive Waste Management is charged with recommending to Government, by July 2006, options for the long term management of the UK's radioactive waste legacy. These options should inspire public confidence. Now, more than halfway into the time allotted, we, as two former members of the Committee, express our concerns at the wayward approach that has been

Keith Baverstock; David J. Ball

2005-01-01

251

Regulatory control of the German radioactive waste management system  

Microsoft Academic Search

In Germany, all radioactive materials are controlled from their origin to their final disposal or release. This is in accordance with the IAEA draft Convention on the Safety of Radioactive Waste Management. A Waste Control System has been developed and is now available. Although the IAEA and EU regulations allow disposal outside the country of origin this philosophy is not

Arnulf Matting

1997-01-01

252

Current status of the radioactive waste management programme in Spain  

Microsoft Academic Search

Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as 'master plan' of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the

Jorge Lang-Lenton Leon; Emilio Garcia Neri

2007-01-01

253

Regulatory framework for the safety of radioactive waste management  

Microsoft Academic Search

The safety of radioactive waste management is the most important aspect for each country, which has not described the practical implementation of the general safety concepts. Establishing a regulatory framework is the basic issue in radioactive waste management. At the beginning of the regulatory progress, several factors should be taken into account; for example, safety standards according to the technical

A. E. Osmanlioglu

2006-01-01

254

Use plan for demonstration radioactive-waste incinerator  

Microsoft Academic Search

The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans

L. R. Cooley; M. R. McCampbell; J. D. Thompson

1982-01-01

255

Radioactive waste and ocean dumping : The role of the IAEA  

Microsoft Academic Search

Like other wastes produced by human and industrial activities, radioactive wastes have been disposed of into the ocean as an alternative to land disposal. Following the recommendation of the first United Nations Conference on the Law of the Sea, the International Atomic Energy Agency has since 1956 assisted States to control the discharge or release of radioactive materials into the

D. P. Calmet; J. M. Bewers

1991-01-01

256

High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.  

ERIC Educational Resources Information Center

Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

Dukert, Joseph M.

257

USDOE activities in low-level radioactive waste treatment  

NASA Astrophysics Data System (ADS)

Current research, development and demonstration programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment are described. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas were selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting.

Vath, J. E.

258

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

SciTech Connect

One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for complete, verifiable and irreversible dismantlement, or CVID. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

Jooho, W.; Baldwin, G. T.

2005-04-01

259

s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 1 Geological disposal of radioactive  

E-print Network

s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 1 Geological disposal of radioactive_and_Copeland.html #12;Nuclear power s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6, 7 Sept 2012 2 First civil nuclear #12;Keeping hot fuel on the surface for 50-150 years s.haszeldine@ed.ac.uk Radioactive waste Cumbria 6

260

Radioactive waste management complex low-level waste radiological composite analysis  

Microsoft Academic Search

The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based

J. M. McCarthy; B. H. Becker; S. O. Magnuson; K. N. Keck; T. K. Honeycutt

1998-01-01

261

Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 for further details  

E-print Network

1-24-03 Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 PART I. Radioactive Waste A. Dry Waste 1. Labs must request a box from the Radioactive Waste program, and use only this box for accumulating their waste. 2. Place only radioactive material contaminated

262

Hydrothermal processing of radioactive combustible waste  

SciTech Connect

Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

1998-09-01

263

A process for treating radioactive water-reactive wastes  

SciTech Connect

Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category.

Dziewinski, J.; Lussiez, G. [Los Alamos National Lab., NM (United States); Munger, D. [Santa Fe Engineering, Ltd. (United States)

1995-02-01

264

Molten salt treatment to minimize and optimize waste  

SciTech Connect

A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability.

Gat, U.; Crosley, S.M. [Oak Ridge National Lab., TN (United States); Gay, R.L. [Rockwell International Corp., Canoga Park, CA (United States)

1993-07-01

265

Leveraging Radioactive Waste Disposal at WIPP for Science  

NASA Astrophysics Data System (ADS)

Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental space (100m x 10m x 6m) is the North Experimental Area (NExA). There, Enriched Xenon Observatory (EXO) collaborators have since mid-2007 been assembling and outfitting six modules and associated structures that were pre-assembled at Stanford University, then dismantled, and shipped to WIPP. Transporting the modules underground presented several interesting challenges, all of which were overcome. Access through increasingly cleaner joined modules leads to the class-100 clean room detector module. Inside, a time projection chamber (TPC) contains 200kg liquid Xe- 136 (the largest non-defense related stockpile of an enriched isotope ever assembled for research). After the experiment starts in early 2009, it is expected to run for 3-5 years. University of Pennsylvania researchers recently sampled WIPP salt to attempt measuring stable Ne-22, resulting from the interaction of cosmogenic muons with Na-23 and preserved in the halite lattice, to determine variations in the cosmic-radiation flux. They in turn could reveal the history of nearby supernovae. University of Chicago/Fermilab researchers evaluate whether to install a superheated-fluid bubble-chamber to search for weakly interacting massive particles (WIMPs). A helium-filled solar neutrino TPC, dark matter and neutron detectors, and proton-decay and supernova-neutrino detectors are other projects that were and are under discussion. Rounding out the spectrum of possibilities are experiments to investigate the effects of long-term ultra-low-dose radiation on cell cultures and laboratory animals to verify or falsify the linear, no- threshold hypothesis. WIPP welcomes additional proposals and projects.

Rempe, N. T.

2008-12-01

266

Disposition of salt-waste from pyrochemical nuclear fuel processing  

SciTech Connect

Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

Vance, E.R. [Institute of Materials Science and Engineering, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

2007-07-01

267

RADIOACTIVE WASTE MANAGEMENT AT OAK RIDGE NATIONAL LABORATORY  

Microsoft Academic Search

The collection, treatment, disposal, and monitoring of radioactive ; wastes (solid, liquid, and gaseous) at Oak Ridge National Laboratory are ; described in detail, Illustrations of facilities, maps, and tables of data on ; waste volumes and radionuelides discharged to the enviromnent are included. The ; philosophy and history of waste management are discussed. The report constitutes ; an evaluation

Browder; F. N. comp

1959-01-01

268

Assessment of public perception of radioactive waste management in Korea.  

SciTech Connect

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

Trone, Janis R.; Cho, SeongKyung (Myongji University, Korea); Whang, Jooho (Kyung Hee University, Korea); Lee, Moo Yul

2011-11-01

269

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

SciTech Connect

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21

270

Fusion reactor radioactive materials and national waste management regulations  

NASA Astrophysics Data System (ADS)

National regulations on waste management do not seem adequate to cope with the fusion case. The paper shows the relevance of this problem, showing some aspects of application of national radioactive waste management practices and regulations to fusion. In particular, the case of Italian waste management regulations is considered. The waste management strategy proposed in the SEAFP and PPCS studies, based upon recycling and clearance techniques, is compared to Italian national regulations. If those regulations were applied to fusion, a relevant part of the fusion radioactive materials should be classified in the Italian High Level Waste category. Also in the case of other national regulations, fusion waste would be rated mostly in the local `high-level' category. An evolution of those regulations in the future, in order to take into account the special characteristics of fusion radioactive materials, is recommended.

Zucchetti, Massimo; Ciampichetti, Andrea

2004-08-01

271

Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility  

SciTech Connect

Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

1998-06-01

272

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551  

SciTech Connect

This paper presents the results of research activities aimed at creation of a principally new LRW distilling treatment method. The new process is based on the instantaneous evaporation method widely used in distillation units. The main difference of the proposed process is that the vapor condensation is conducted without using heat exchangers in practically ideal mode by way of direct contacting in a vapor-liquid system. This process is conducted in a specially designed ejector unit in supersonic mode. Further recuperation of excess heat of vaporization is carried out in a standard heat exchanger. Such an arrangement of the process, together with use of the barometric height principle, allows to carry out LRW evaporation under low temperatures, which enables to use excess heat from NPS for heating initial LRW. Thermal calculations and model experiments have revealed that, in this case, the expenditure of energy for LRW treatment by distilling will not exceed 3 kilowatt-hour/m{sup 3}, which is comparable with the reverse-osmosis desalination method. Besides, the proposed devices are 4 to 5 times less metal-intensive than standard evaporation units. These devices are also characterized by versatility. Experiments have revealed that the new method can be used for evaporation of practically any types of LRW, including those containing a considerable amount of oil products. Owing to arrangement of the evaporation process at low temperatures, the new devices are not sensitive to 'scale formation'. This is why, they can be used for concentrating brines of up to 500-600 g/l. New types of such evaporating devices can be required both for LRW treatment processes at nuclear-power plants under design and for treating 'non-standard' LRW with complex physicochemical and radionuclide composition resulting from the disaster at the Fukushima I Nuclear Power Plant.) As a result of accidents at nuclear energy objects, as it has recently happened at NPP 'Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those containing hardness salts, resulted in generation of LRW concentrate 300-600 g/l. The method is based o

Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

2012-07-01

273

GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE  

SciTech Connect

In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deep disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are proud on our work and we like to show that. Our work is necessary and useful for society. We will not hide our activities but show them and make it worth looking at them.

Codee, Hans D.K.

2003-02-27

274

Journey to the Nevada Test Site Radioactive Waste Management Complex  

ScienceCinema

Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

None

2014-10-28

275

Defense Waste Processing Facility Radioactive Operations - Year Two  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first high-level radioactive waste vitrification facility. This waste (130 million liters) which has been stored in carbon steel underground tanks and is now being pretreated, melted into a highly durable borosilicate glass and poured into stainless steel canisters for eventual disposal in a geologic repository. Following a ten-year construction period and nearly three-year nonradioactive test program, the DWPF began radioactive operations in March 1996. The first nine months of radioactive operations have been reported previously. As with any complex technical facility, difficulties were encountered during the transition to radioactive operations. Results of the second year of radioactive operations are presented in this paper. The discussion includes: feed preparation and glass melting, resolution of the melter pouring issues, improvements in processing attainment and throughput, and planned improvements in laboratory attainment and throughput.

Occhipinti, J.E.; Carter, J.T.; Edwards, R.E.; Beck, R.S.; Iverson, D.C.

1998-03-01

276

The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms  

SciTech Connect

A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

Butcher, B.M.; Novak, C.F. (Sandia National Labs., Albuquerque, NM (United States)); Jercinovic, M. (New Mexico Univ., Albuquerque, NM (United States))

1991-04-01

277

Radioactive Waste Management in Non-Nuclear Countries - 13070  

SciTech Connect

This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

Kubelka, Dragan; Trifunovic, Dejan [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)] [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)

2013-07-01

278

Commentary: Radioactive Wastes and Damage to Marine Communities  

ERIC Educational Resources Information Center

Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

Wallace, Bruce

1974-01-01

279

Natural diatomite process for removal of radioactivity from liquid waste.  

PubMed

Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite. PMID:17049259

Osmanlioglu, Ahmet Erdal

2007-01-01

280

ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE  

EPA Science Inventory

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

281

Radioactive waste management and decommissioning of accelerator facilities.  

PubMed

During the operation of high-energy accelerators, the interaction of radiation with matter can lead to the activation of the machine components and of the surrounding infrastructures. As a result of maintenance operation and during decommissioning of the installation, considerable amounts of radioactive waste are evacuated and shall be managed according to the radiation-protection legislation. This paper gives an overview of the current practices in radioactive waste management and decommissioning of accelerators. PMID:19783840

Ulrici, Luisa; Magistris, Matteo

2009-11-01

282

s.haszeldine@ed.ac.uk Radioactive waste Cumbria: Maryport, Silloth 21, 22 Nov 2012 1 Geological disposal of radioactive  

E-print Network

s.haszeldine@ed.ac.uk Radioactive waste Cumbria: Maryport, Silloth 21, 22 Nov 2012 1 Geological disposal of radioactive waste in Cumbria http://www.geos.ed.ac.uk/homes/rsh/MRWS_2012.html Stuart/rsh/ Allerdale_and_Copeland.html #12;Nuclear power s.haszeldine@ed.ac.uk Radioactive waste Cumbria: Maryport

283

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

2010-01-01

284

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2011 CFR

...for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

2011-01-01

285

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2013 CFR

...for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

2013-01-01

286

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2014 CFR

...for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

2014-01-01

287

10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...  

Code of Federal Regulations, 2012 CFR

...for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED...

2012-01-01

288

Process for Removing Radioactive Wastes from Liquid Streams  

Microsoft Academic Search

The process is under development at Mound Laboratory to remove radioactive waste (principally plutonium-238) from process water prior to discharge of the water to the Miami river. The contaminated water, as normally received, is at a pH between 6 and 90. Under these conditions, plutonium in all its oxidation states is hydrolyzed; however, the level of the radioactive solids varies

H. W. Kirby; D. E. Blane; R. I. Smolin

1972-01-01

289

Issues in radioactive-waste management for fusion power  

Microsoft Academic Search

Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected.

R. C. Maninger; D. W. Dorn

1082-01-01

290

Issues in radioactive waste management for fusion power  

Microsoft Academic Search

Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of magnitude of the kinds and amounts of radioactivity to be

R. C. Maninger; D. W. Dorn

1983-01-01

291

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

Microsoft Academic Search

One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

W. Jooho; G. T. Baldwin

2005-01-01

292

Dismantlement and radioactive waste management of North Korean nuclear facilities  

Microsoft Academic Search

One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive

Jooho Whang; George Thomas Baldwin

2004-01-01

293

Treatment of Difficult Wastes with Molten Salt Oxidation  

Microsoft Academic Search

Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid-1990s, the U.S. Army Defense Ammunition Center (DAC) and the Department of Energy (DOE) have jointly invested in MSO development at the Lawrence Livermore National Laboratory

P C Hsu; S Kwak

2003-01-01

294

Radioactive Liquid Waste Treatment Facility: Environmental Information Document  

SciTech Connect

At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

1993-11-01

295

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

NONE

1990-12-01

296

Natural analogues: a way to increase confidence in predictions of long-term performance of radioactive waste disposal  

Microsoft Academic Search

No exact analogue to a radioactive waste disposal system exists but by studying natural analogues of the most important components or subsystems of a waste repository, confidence in long-term predictions can be increased. The US Nuclear Regulatory Commission (NRC) is supporting research on igneous intrusions into proposed repository-type host rock (basalt, tuff, crystalline hard-rock, and salt), on uranium ore body

G. F. Birchard; D. H. Alexander

1983-01-01

297

76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management  

Federal Register 2010, 2011, 2012, 2013, 2014

...and Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory...and Low-Level Radioactive Waste Management that updates the 1981 Policy...Management Programs, Division of Waste Management and Environmental...

2011-09-21

298

Annual Report - FY 2000, Radioactive Waste Shipments to and from the Nevada Test Site, March 2001  

SciTech Connect

This document reports the low-level radioactive waste, mixed low-level radioactive waste, and Polychlorinated Biphenyl contaminated low-level waste transported to or from the Nevada Test Site during fiscal year 2000.

U.S. Department of Energy, Nevada Operations Office

2001-03-01

299

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2011 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2011-04-01

300

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2014 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2014-04-01

301

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2012 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2012-04-01

302

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2013 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2013-04-01

303

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2010 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2010-04-01

304

Final repository for Denmark's low- and intermediate level radioactive waste  

NASA Astrophysics Data System (ADS)

Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), ster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Ris should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Ris, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

2012-12-01

305

Injector nozzle for molten salt destruction of energetic waste materials  

DOEpatents

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

Brummond, W.A.; Upadhye, R.S.

1996-02-13

306

Injector nozzle for molten salt destruction of energetic waste materials  

DOEpatents

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01

307

Toxicity reduction of Ontario hydro radioactive liquid waste  

Microsoft Academic Search

The radioactive liquid waste (RLW) system in Ontario Hydro's pressurised heavy water reactors collects drainage from a variety of sources ranging from floor drains to laundry waste. RLW effluent was intermittently toxic to rainbow trout andDaphnia magna during the first phase of Ontario's Municipal Industrial Strategy for Abatement (MISA) Program, apparently as a result of the interaction of a variety

D. W. Rodgers; D. W. Evans; L. Vereecken Sheehan

1996-01-01

308

Actinide-aluminate Speciation in Alkaline Radioactive Waste  

Microsoft Academic Search

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline

David C. Clark; Nikolai N. Krot

2000-01-01

309

FOAMING IN RADIOACTIVE WASTE TREATMENT AND IMMOBILIZATION PROCESSES  

EPA Science Inventory

The physical mechanisms of the formation of foam in radioactive waste treatment and waste immobilization processes are poorly understood. The objective of this research is to develop a basic understanding of the mechanisms that produce foaming, to identify the key parameters whic...

310

Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation  

Microsoft Academic Search

A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an

K. H. Kim; Y. G. Ryue; K. K. Kwak; K. P. Hong; D. H. Kim

2007-01-01

311

Radioactive waste disposal fees-Methodology for calculation  

NASA Astrophysics Data System (ADS)

This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

Bem, Jlius; Krlk, Tom; Kuban?k, Jn; Va?ek, Ji?; Star, Old?ich

2014-11-01

312

Strategy for Radioactive Waste Disposal in Crystalline Rocks  

Microsoft Academic Search

A strategy for waste disposal is proposed in which the repository would be situated in a crystalline rock mass beneath a blanket of sedimentary rocks whose ground-water flow characteristics are well understood. Such an approach exemplifies the concept of multiple barriers to the isolation of radioactive wastes from the biosphere. This strategy has the advantages that (i) ground-water flow within

John D. Bredehoeft; Tidu Maini

1981-01-01

313

ADSORPTION OF RADIOACTIVE WASTES BY SAVANNAH RIVER PLANT SOIL  

Microsoft Academic Search

The adsorption of radioisotopes on soil was investigated in the ; laboratory to determine the behavior of lowlevel radioactive waste solutions ; discharged to the ground. Strontium, cesium, and plutonium distributions between ; soil and waste solution were studied. The effects of cation concentration and ; acidity were determined. The results of the distribution experiments, and ; material balance considerations,

W. E. PROUT

1958-01-01

314

High-level radioactive waste from light-water reactors  

Microsoft Academic Search

The production of radioactive nuclei during the operation of a light-water reactor is traced, and their decay history is followed. The potential environmental impacts of this waste are calculated and shown to be comparable to those of other materials we produce. Assuming deep burial, it is shown that there are important time delays which prevent the waste from reaching the

Bernard Cohen

1977-01-01

315

Hazard analysis for a liquid radioactive waste management facility  

Microsoft Academic Search

The hazard analysis represents the initial process in the development of the accident analysis, which is an essential part of the safety analysis report (SAR) for an operating nuclear waste management facility. This paper describes the application of a methodology for the liquid radioactive waste handling facility (LRWHF).

M. J. Ades; S. J. Nathan; G. A. Bevirt

1995-01-01

316

Radiation-Chemical Aspects of Radioactive Waste Management  

Microsoft Academic Search

Studies of radiation-chemical processes in model liquid radioactive waste are summarized. These processes are radiolytic transformations of various substances present in the waste (actinide ions (primarily, neptunium and plutonium ions), inorganic matter (for example, nitrate ions), and organic compounds (acetic acid, EDTA, etc.)) and radiolytic gas evolution. Attention was focused on the latter process. The volumes and compositions of gases

A. K. Pikaev; G. N. Pirogova; I. M. Kosareva; A. V. Gogolev; V. P. Shilov

2003-01-01

317

Nuclear microprobe applications to radioactive waste management basic research  

Microsoft Academic Search

Radioactive waste management is one of the major technical and scientific challenge to be solved by industrialized countries near the beginning of the 21st century. Relevant questions arise about the extrapolation of the long term-behavior of materials from waste package, engineered barriers and near field repository. Whatever the strategical option might be, wet atmosphere or water intrusion through the different

P. Trocellier; V Badillo; N Barr; L Bois; C Cachoir; J. P Gallien; S Guilbert; F Mercier; C Tiffreau

1999-01-01

318

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01

319

Discussions about safety criteria and guidelines for radioactive waste management.  

PubMed

In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes. PMID:21531746

Yamamoto, Masafumi

2011-07-01

320

Monte Carlo simulations of radioactive waste embedded into polymer  

NASA Astrophysics Data System (ADS)

Radioactive waste is generated from the nuclear applications and it should properly be managed according to the regulations set by the regulatory authority. Poly(carbonate urethane) and poly(bisphenol a- co-epichlorohydrin) are radiation-resistant polymers and they are possible candidate materials that can be used in the radioactive waste management. In this study, maximum allowable waste activity that can be embedded into these polymers and dose rate distribution of the waste drum (containing waste and the polymer matrix) were found via Monte Carlo simulations. The change of mechanical properties of above-mentioned polymers was simulated and their variations within the waste drum were determined for 15, 30 and 300 years after embedding.

zdemir, Tongu; Usanmaz, Ali

2009-09-01

321

Review of geochemical measurement techniques for a nuclear waste repository in bedded salt  

SciTech Connect

A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed.

Knauss, K.G.; Steinborn, T.L.

1980-05-22

322

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOEpatents

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14

323

Vitrification advances for low level radioactive and mixed wastes  

SciTech Connect

The EnviroGlase vitrification technology has been developed by VECTRA Technologies for the purpose of stabilizing Low Level Radioactive (LLRW) and Mixed Wastes (LLMW) in a glass matrix for disposal. Applicable wastes include ion exchange resins, sodium tetraborate, soil, antifreeze, oils, chemical cleaning and decontamination solutions, inorganic sludges and slurries, medical and mixed wastes, and Dry Active Wastes (DAW), such as: paper, plastic, wood and debris. The Modular EnviroGlass{reg_sign} system is described, including design criteria and functions of the major vitrification system components: waste feed, gasifier/melter, off-gas control, and auxiliary systems.

Mason, J.B. [VECTRA Technologies, Inc., Richland, WA (United States)

1995-11-01

324

Vitrification advances for low level radioactive and mixed wastes  

SciTech Connect

The EnviroGlass{reg_sign} vitrification technology has been developed by VECTRA Technologies for the purpose of stabilizing Low Level Radioactive (LLRW) and Mixed Wastes (LLMW) in a glass matrix for disposal. Applicable wastes include ion exchange resins, sodium tetraborate, soil, antifreeze, oils, chemical cleaning and decontamination solutions, inorganic sludges and slurries, medical and mixed wastes, and Dry Active Wastes (DAW), such as: paper, plastic, wood and debris. The Modular EnviroGlass{reg_sign} system is described, including designed criteria and functions of the major vitrification system components: waste feed, gasifier/melter, off-gas control, and auxiliary systems.

Mason, J.B. [VECTRA Technologies, Inc., Richland, WA (United States)

1995-11-01

325

System for chemically digesting low level radioactive, solid waste material  

DOEpatents

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01

326

Flowsheets and source terms for radioactive waste projections  

SciTech Connect

Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

Forsberg, C.W. (comp.)

1985-03-01

327

Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes  

SciTech Connect

Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

2005-03-12

328

Removal of radioactive and other hazardous material from fluid waste  

DOEpatents

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03

329

Commercial low-level radioactive waste disposal in the US  

SciTech Connect

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01

330

Waste Form Strategies for Mo-rich Radioactive Waste  

Microsoft Academic Search

This paper describes a small scoping study examining potential multiphase ceramic waste forms for wastes deriving from U-Mo research reactor fuel reprocessing. These fuels are being developed as replacements for silicide and aluminium fuels. The aim was to identify plausible phases that can be used in combination to achieve waste form monoliths with high waste loadings. These waste streams have

M. W. A. Stewart; E. R. Vance

2006-01-01

331

Low-level radioactive waste disposal facility closure  

SciTech Connect

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01

332

Radioactive waste management information for 1996 and record-to-date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and status of radioactive waste for calendar year 1996. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Radioactive Waste Management Information System.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1997-07-01

333

Method for aqueous radioactive waste treatment  

DOEpatents

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

Bray, L.A.; Burger, L.L.

1994-03-29

334

Method for aqueous radioactive waste treatment  

DOEpatents

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

1994-01-01

335

Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass  

SciTech Connect

This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

2013-04-01

336

Salt-occluded zeolite waste forms: Crystal structures and transformability  

SciTech Connect

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 {angstrom} diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Richardson, J.W. Jr. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source Div.

1996-12-31

337

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-print Network

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste" Subsequent regarding "high-level liquid radioactive waste". As stated in the body of the letter the solid wastes defining High Level Waste: For the purpose of this statement of policy, "high-level liquid radioactive

338

Modeling of transport and reaction in an engineered barrier for radioactive waste confinement  

E-print Network

Modeling of transport and reaction in an engineered barrier for radioactive waste confinement G bentonite; Radioactive waste; Modelling; KIRMAT code; Chemical transformations; Mass transport 0169;1. Introduction A particular radioactive waste disposal design proposes to store waste in deep geological layers

Montes-Hernandez, German

339

Biogeochemical changes at early stage after the closure of radioactive waste geological repository in South Korea  

E-print Network

Biogeochemical changes at early stage after the closure of radioactive waste geological repository e Korea Radioactive Waste Agency (KORAD), 111, Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon 305 Organic waste a b s t r a c t Permanent disposal of low- and intermediate-level radioactive wastes

Ohta, Shigemi

340

ANALYSES AND PRELIMINARY RESULTS OF AN UPDATED ITER RADIOACTIVE WASTE ASSESSMENT  

E-print Network

ANALYSES AND PRELIMINARY RESULTS OF AN UPDATED ITER RADIOACTIVE WASTE ASSESSMENT S. ZHENG,a * R aimed at updating the ITER radioactive inventory assessment and assisting the waste manage- ment operations, and waste management processes and services. KEYWORDS: ITER, radioactive waste management

341

Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation  

SciTech Connect

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

Morgan, Dane; Eapen, Jacob

2013-10-01

342

Radioactive liquid waste generation goals at the ICPP  

SciTech Connect

Processes at ICPP generating hazardous radioactive liquid wastes (which are sent to the tank farm) include NWCF, PEW evaporator, LET&D, tank farm, fuel storage operations, etc. In May 1994, the INEL Radioactive Liquid Waste Management Plan was issued but not implemented. Waste generation goals have been reviewed and updated in this report (details are given in appendix). A meeting was held to determine the new waste generation goals and best approach to reaching them. Waste streams were individually analyzed in this meeting and several adjustments made both during the meeting and following the meeting. The information was adjusted and modeling completed to determine the waste reduction achieved (spreadsheets are included in appendix). Results of this update indicate that there has been a significant reduction in the waste generation goals from 2 years ago. If the updated baseline goals are met, a 35% waste reduction will be achieved; this coupled with increased calcination rate, will enable the waste in the tank farm to be processed by 2012; however a program is needed to ensure these waste goals are met. A monitoring and reporting function in conjunction with company level incentives will fill this need; a logic diagram of this monitoring program is given.

Tripp, J.L.

1996-07-01

343

Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels  

SciTech Connect

Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF. When used energy of exothermic reactions in waste thermochemical treatment processing, the problems concerned with heating method choice, appropriate heating equipment operation, and maintenance of this equipment reliability are excluded. Generally, the PMF consists of combustible powder metal, oxygen containing component, and some additives (pore-forming materials, stabilizers, surface-active substances, and other) with a predominance of metal powder. A thermodynamic simulation is applied widely at the designing of the PMF.

Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

2003-02-25

344

The basics in transportation of low-level radioactive waste  

SciTech Connect

This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

Allred, W.E.

1998-06-01

345

[Problems of safety regulation under radioactive waste management in Russia].  

PubMed

Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated. PMID:23210184

Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

2012-01-01

346

Electrochemical treatment of mixed (hazardous and radioactive) wastes  

SciTech Connect

Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed wastes with an organic component can be treated by oxidizing the organic compound to carbon dioxide and then recovering the radioactive component. The oxidation can be done directly at the anode or indirectly using an electron transfer mediator. This work describes the destruction of isopropanol, acetone and acetic acid at greater than 90% current efficiency using cobalt +3 or silver +2 as the electron transfer mediator. Also described is the destruction of cellulose based cheesecloth rags with electrochemically generated cobalt +3, at an overall efficiency of approximately 20%.

Dziewinski, J.; Zawodzinski, C.; Smith, W.H.

1995-02-01

347

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2011 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2011-01-01

348

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2012 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2012-01-01

349

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2013 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2013-01-01

350

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2010-01-01

351

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2014 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2014-01-01

352

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02

353

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

354

Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum  

Microsoft Academic Search

The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive

D. E. Evenson; T. A. Prickett; P. A. Showalter

1979-01-01

355

Geohydrologic aspects for siting and design of low-level radioactive-waste disposal  

Microsoft Academic Search

The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by groundwater. Low-level radioactive waste may need to

Bedinger

1991-01-01

356

FINAL REPORT. POLYOXOMETALATES FOR RADIOACTIVE WASTE TREATMENT  

EPA Science Inventory

The research was directed primarily towards the use of polyoxometalate complexes for separation of lanthanide, actinide, and technetium species from aqueous waste solutions, such as the Hanford Tank Wastes. Selective binding of these species responsible for much of the high level...

357

10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.  

Code of Federal Regulations, 2010 CFR

...Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61...Environmental reportland disposal of radioactive waste licensed under 10 CFR part 61...license for land disposal of radioactive waste pursuant to part 61 of...

2010-01-01

358

10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.  

Code of Federal Regulations, 2011 CFR

...Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61...Environmental reportland disposal of radioactive waste licensed under 10 CFR part 61...license for land disposal of radioactive waste pursuant to part 61 of...

2011-01-01

359

10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.  

Code of Federal Regulations, 2012 CFR

...Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61...Environmental reportland disposal of radioactive waste licensed under 10 CFR part 61...license for land disposal of radioactive waste pursuant to part 61 of...

2012-01-01

360

10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.  

Code of Federal Regulations, 2014 CFR

...Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61...Environmental reportland disposal of radioactive waste licensed under 10 CFR part 61...license for land disposal of radioactive waste pursuant to part 61 of...

2014-01-01

361

10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.  

Code of Federal Regulations, 2013 CFR

...Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61...Environmental reportland disposal of radioactive waste licensed under 10 CFR part 61...license for land disposal of radioactive waste pursuant to part 61 of...

2013-01-01

362

Review of the radioactive waste management system in Nigeria.  

PubMed

The management of radioactive waste in Nigeria from early 1960 to date is reviewed. As in many developing countries, waste management in Nigeria has been shown to be ineffective. The factors that are responsible for this ineffectiveness are identified and discussed. The steps being taken by and the opportunities available to the newly established Nigerian Nuclear Regulatory Authority towards addressing this problem of ineffectiveness are discussed. The efforts of this newly set up body towards managing the resultant radioactive wastes that will be generated during the use of a reactor and an accelerator that will soon be commissioned in Nigeria are also mentioned. Likely ways of further addressing the problems militating against waste management in developing countries are suggested. PMID:12729418

Ogundare, F O

2003-03-01

363

LLNL radioactive waste management plan as per DOE Order 5820. 2  

SciTech Connect

The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis).

Not Available

1984-12-10

364

Disposal of soluble salt waste from coal gasification  

SciTech Connect

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01

365

Spanish methodological approach for biosphere assessment of radioactive waste disposal  

Microsoft Academic Search

The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here,

A. Agero; P. Pinedo; D. Cancio; I. Simn; M. Moraleda; D. Prez-Snchez; C. Trueba

2007-01-01

366

Risk analysis of radioactive waste management systems in Germany  

Microsoft Academic Search

Within the scope of a system study, ''Radioactive wastes in the Federal Republic of Germany,'' performed from 1974 through 1976, the questions of risk assessment were investigated. A risk analysis of a high-level waste (HLW) management system was performed. The results of the HLW tank storage are that the risk expectation value is 700 nJ\\/kg x RBE (7 x 10⁻⁵

Wingender

1978-01-01

367

Solid low-level radioactive waste radiation stability studies  

E-print Network

for this method of pmcessing. A wide choice of materials can be used for ion-exchange waste water treatment, organic, inorganic, natural and synthetic, which differ in their sorption pmperties and cost (Dlouhy 1982). The demineralizers consist of steel tanks... used to deionize reactor water systems are subject to low chemical concentration of impurities and concentrate large quantities of radioactivity. The efficiency of ion-exchange treatment of waste streams depends on the type and composition...

Williams, Arnold Andre?

1989-01-01

368

Management of low-level radioactive waste in Israel  

SciTech Connect

Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import and distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.

Shabtai, B.; Brenner, S.; Ne`eman, E.; Butenko, V. [Tel-Aviv Univ., Ramat-Aviv (Israel)

1995-12-31

369

77 FR 20078 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc.,...

2012-04-03

370

The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088  

SciTech Connect

The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

2013-07-01

371

77 FR 73054 - Application for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public...Canada. 2012, October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately original form...

2012-12-07

372

76 FR 56490 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b...Services, Inc., August Class A radioactive Radionuclide For recycle and Canada. 17, 2011, August 18, 2011, waste in the form reallocation:...

2011-09-13

373

78 FR 45578 - Application For a License to Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...Storage or Canada. June 4, 2013, June 5, 2013, radioactive waste authorized for disposal by the XW021,...

2013-07-29

374

78 FR 9747 - Request To Amend A License To Import; Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...To Amend A License To Import; Radioactive Waste Pursuant to 10 CFR 110.70 (b...Diversified Scientific Class A radioactive Up to 378,000 Volume reduction...Services, Inc.; January 10, mixed waste kilograms. Amend to: (1)...

2013-02-11

375

75 FR 68840 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada...

2010-11-09

376

76 FR 56489 - Request for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b...Services, Inc., August Class A radioactive Radionuclide Non-conforming Canada. 17, 2011, August 18, 2011, waste in the form reallocation:...

2011-09-13

377

75 FR 74107 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice...EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010,...

2010-11-30

378

75 FR 74104 - Request for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013, 2014

...REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...EnergySolutions, August 27, Radioactive waste Not to exceed Return to two Germany. 2010,...

2010-11-30

379

UK-Nuclear decommissioning authority and US Salt-stone waste management issues  

SciTech Connect

Available in abstract form only. Full text of publication follows: We update two case studies of stakeholder issues in the UK and US. Earlier versions were reported at Waste Management 2006 and 2007 and at ICEM 2005. UK: The UK nuclear industry has begun to consult stakeholders more widely in recent years. Historically, methods of engagement within the industry have varied, however, recent discussions have generally been carried out with the explicit understanding that engagement with stakeholders will be 'dialogue based' and will 'inform' the final decision made by the decision maker. Engagement is currently being carried out at several levels within the industry; at the national level (via the Nuclear Decommissioning Authority's (NDA) National Stakeholder Group (NSG)); at a local site level (via Site Stakeholder Groups) and at a project level (usually via the Best Practicable Environmental Option process (BPEO)). This paper updates earlier results by the co-author with findings from a second questionnaire issued to the NSG in Phase 2 of the engagement process. An assessment is made regarding the development of stakeholder perceptions since Phase 1 towards the NDA process. US: The US case study reviews the resolution of issues on salt-stone by Department of Energy's (DOE) Savannah River Site (SRS) Citizens Advisory Board (CAB), in Aiken, SC. Recently, SRS-CAB encouraged DOE and South Carolina's regulatory Department of Health and Environmental Control (SC-DHEC) to resolve a conflict preventing SC-DHEC from releasing a draft permit to allow SRS to restart salt-stone operations. It arose with a letter sent from DOE blaming the Governor of South Carolina for delay in restarting salt processing. In reply, the Governor blamed DOE for failing to assure that Salt Waste Processing Facility (SWPF) would be built. SWPF is designed to remove most of the radioactivity from HLW prior to vitrification, the remaining fraction destined for salt-stone. (authors)

Lawless, William [Paine College, 1235 Fifteenth Street, Augusta, GA 30901 (United States); Whitton, John [Nexia Solutions Ltd, The British Technology Centre, Sellafield, Seascale, CA20 1PG (United Kingdom)

2007-07-01

380

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01

381

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21

382

Summary of radioactive solid waste received in the 200 Areas during calendar year 1995  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995.

Hladek, K.L.

1996-06-06

383

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01

384

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01

385

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01

386

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

L. Harvego; Brion Bennett

2011-11-01

387

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01

388

Ion-exchange material and method of storing radioactive wastes  

DOEpatents

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31

389

Mathematical modeling of a radioactive waste disposal system  

Microsoft Academic Search

In order to establish the safety of a disposl system for high-level radioactive waste, the system must be shown to satisfy radiological safety criteria imposed by regulatory agencies. In Canada, for example, the regulatory policy includes a quantitative limit on radiological risk to an individual for a period of 10,000 years following disposal. Mathematical modeling of the performance of the

K. W. Dormuth

1992-01-01

390

Method of storing radioactive wastes using modified tobermorite  

DOEpatents

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, Sridhar (State College, PA); Roy, Della M. (State College, PA)

1985-01-01

391

Disposal of Radioactive Waste at Hanford Creates Problems  

ERIC Educational Resources Information Center

Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

Chemical and Engineering News, 1978

1978-01-01

392

Geologic storage of radioactive waste: field studies in Sweden  

Microsoft Academic Search

Access to a gran itic rock mass in an iron ore mine in Sweden provided a unique opportunity for underground experiments related to the geologic disposal of radioactive waste. These field tests demonstrated the importance of hydrogeology and the difficulties in predicting in the thermomechanical behavior of fractured granitic rocks. To characterize a site fully, measurements made from the surface

P. A. Witherspoon; N. G. W. Cook; J. E. Gale

1981-01-01

393

Biotransformation of uranium and other actinides in radioactive wastes  

Microsoft Academic Search

Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th,

A. J. Francis

1998-01-01

394

Radioactive Waste...The Problem and Some Possible Solutions  

ERIC Educational Resources Information Center

Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

Olivier, Jean-Pierre

1977-01-01

395

Mitigation of plant penetration into radioactive waste utilizing herbicides  

SciTech Connect

This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective herbicides, which control all vegetation; and slow-release forms of these herbicides to prolong effectiveness.

Cox, G.R.

1982-01-01

396

Risk methodology for geologic disposal of radioactive waste: interim report  

Microsoft Academic Search

The Fuel Cycle Risk Analysis Division of Sandia Laboratories is funded by the Nuclear Regulatory Commission (NRC) to develop a methodology for assessment of the long-term risks from radioactive waste disposal in deep, geologic media. The first phase of this work, which is documented in this report, involves the following: (1) development of analytical models to represent the processes by

J. E. Campbell; R. T. Dillon; M. S. Tierney; H. T. Davis; P. E. McGrath; F. J. Jr. Pearson; H. R. Shaw; J. C. Helton; F. A. Donath

1978-01-01

397

RWMC (Radioactive Waste Management Complex) vadose zone basalt characterization  

Microsoft Academic Search

The purpose of this study is to provide geologic data that can be used to construct a three-dimensional subsurface model of the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The type of modelling effort that is envisioned is the development of hybrid stochastic simulation. A hybrid model is necessary because of the requirements to treat both discrete parameters,

C. F. Knutson; K. A. McCormick; R. P. Smith; W. R. Hackett; J. P. OBrien; J. C. Crocker

1990-01-01

398

Microcomputer spreadsheets for radioactive waste management and shielding analysis  

Microsoft Academic Search

The report describes several desktop computer applications for use in radioactive waste management and radiation engineering analyses. TMI-2 engineers identified eight calculational tasks that could be facilitated by use of microcomputer spreadsheet software. For each case, appropriate calculations and frequently used data on isotopes and materials were built into the six spreadsheet templates for calculating and thirty-one data sets. The

C. A. Negin; G. Worku; C. S. Urland; C. P. Deltete

1986-01-01

399

Development of an automatic handling system for radioactive waste  

Microsoft Academic Search

This paper presents the development of Radioactive Waste Automatic Handling System (RWAHS). It is developed to minimise the human exposure to radiation during handling process. The development consists of conceptual simulation, control design, handling mechanism, storage and retrieval system and storage structure. The conceptual design was done using CATIA design and modelling to analyse the suitable mechanism. The control system

D Rosli; S M Shalina; A R Anwar; H Mohd Zaid; K Mohd Ashhar

2011-01-01

400

International Surveillance Mechanism for Sea Dumping of Radioactive Waste  

ERIC Educational Resources Information Center

The OECD consultation and surveillance mechanism is discussed in detail in this article. Four phases are identified and examined: (1) Notification, (2) Consultation, (3) Supervision, (4) Post-operation. This system is designed to provide the safest possible conditions for sea dumping of radioactive wastes. (MA)

OECD Observer, 1977

1977-01-01

401

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment  

SciTech Connect

This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

2012-11-01

402

ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE  

EPA Science Inventory

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

403

PART61. Low-Level Radioactive Waste Impacts Analysis System  

SciTech Connect

The system of codes and data files implement an expansion of the impacts analysis methodology used during the development of the 10 CFR Part 61 rule to allow improved consideration of the costs and impacts of treatment and disposal of low-level radioactive waste that is close to or exceeds Class C concentrations.

Oztunali, O.I.; Pon, W.D.; Eng, R. [Envirosphere Co., New York, NY (United States)

1987-04-01

404

Driving Forces and Priorities in the Hungarian Radioactive Waste Management  

SciTech Connect

Hungary, being a candidate state to the European Union, pays particular attention to the measures that are typically considered as good practice within the EU when developing and implementing its national program for the safe management of spent fuel and radioactive waste. The Public Agency for Radioactive Waste Management (PURAM) has been designated to carry out the multilevel tasks in the field of radioactive waste management. In accordance with changes in infrastructure, Hungary is about to make significant strategic and technical decisions. There are several technical priorities for the coming years, such as improving the existing L/ILW repository, construction of a new repository for L/ILW, extension of the interim storage facility for spent fuel and setting up a revised back-end policy. Preparations for decommissioning of the nuclear facilities have to be developed as well. The paper outlines the main problem areas as well as the approach to managing radioactive wastes. It will be concluded that priorities can be set, but key dates and deadlines will always contain an element of uncertainty due to public and political acceptance problems.

Takats, F.; Ormai, P.

2002-02-26

405

Moisture measurement for radioactive wastes using neutron activation of copper  

Microsoft Academic Search

Laboratory tests have demonstrated the use of neutron activation of copper to measure the moisture in radioactive wastes. Neutrons from a source scatter and return to activate the copper in the probe, the amount of activation varying with moisture content. A low-background spectrometer counts the gamma rays from activated 64Cu. The calibration of count rate vs moisture was measured with

P. L. Reeder; D. C. Stromswold; R. L. Brodzinski; J. H. Reeves; W. E. Wilson

1997-01-01

406

R3T : RADIOACTIVE-RETARDATION-REACTION-TRANSPORT- PROGRAM FOR THE SIMULATION OF RADIOACTIVE WASTE DISPOSALS  

Microsoft Academic Search

We present a software-tool for the simulation of a transport and reaction model for a potential waste scenarios of a radioactive waste-disposals. We introduce the complex model for the transport-, reaction- and sorption-processes. The model is based on systems of linear convection-diffusion- dispersion-reaction equations with equilibrium sorption. The discretisation is done with finite volume discretisation and a reconstruction with higher

URGEN GEISER

407

Integrated approach to hazardous and radioactive waste remediation  

SciTech Connect

The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

Hyde, R.A.; Reece, W.J.

1994-11-01

408

Locating a Radioactive Waste Repository in the Ring of Fire  

NASA Astrophysics Data System (ADS)

The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection. The Nuclear Waste Management Organization of Japan (NUMO) began looking for a high-level waste repository site (HLW, vitrified residue from reprocessing power reactor fuel) 2 years ago. Over the next 10-20 years, NUMO hopes to find a site to dispose of ~20,000 tons of HLW in a robustly engineered repository constructed at a depth of several hundred meters.

Apted, Mick; Berryman, Kelvin; Chapman, Neil; Cloos, Mark; Connor, Chuck; Kitayama, Kazumi; Sparks, Steve; Tsuchi, Hiroyuki

2004-11-01

409

Radioactive waste incineration studies at the Los Alamos Scientific Laboratory  

SciTech Connect

Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A controlled-air incinerator, based upon commercially available equipment and technology, was modified for radioactive service and was successfully tested and demonstrated with contaminated waste. Demonstration of the production-scale unit was completed in May 1980 with the incineration of 272 kg of waste with an average TRU content of about 20 nCi/g. Weight and volume reduction factors for the demonstration run were 40:1 and 120:1, respectively.

Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.

1980-01-01

410

Stress Corrosion Cracking Model for High Level Radioactive-Waste Packages  

SciTech Connect

A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain repository. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022 (Alloy 22), the environment is represented by aqueous brine films present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the tensile stress is principally from weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding); or that develop from corrosion processes such as pitting or dissolution of inclusions. To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulae for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, it can be used by the performance assessment to determine the time to through-wall penetration for the waste package. This paper presents the development of the SDFR crack growth rate model based on technical information in the literature as well as experimentally determined crack growth rates developed specifically for Alloy UNS-N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository. In addition, a seismic damage related SCC crack opening area density model is briefly described.

P. Andresen; G. Gordon; S. Lu

2004-10-05

411

Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts  

DOEpatents

The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

Wingfield, Jr., Robert C. (Southfield, MI); Braslaw, Jacob (Southfield, MI); Gealer, Roy L. (West Bloomfield, MI)

1985-01-01

412

Modelling Sequential BIOsphere Systems under CLIMate Change for Radioactive Waste Disposal. Project BIOCLIM  

Microsoft Academic Search

The BIOCLIM project (Modelling Sequential BIOsphere systems under CLIMate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three -year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that

D. Texier; P. Degnan; M. F. Loutre; G. Lematre; M. Thorne

413

MONTE CARLO SIMULATION OF RADIONUCLIDE MIGRATION IN FRACTURED ROCK FOR THE PERFORMANCE ASSESSMENT OF RADIOACTIVE WASTE  

E-print Network

OF RADIOACTIVE WASTE REPOSITORIES F. Cadini1 , J. De Sanctis1 , I. Bertoli1 , E. Zio1,2 1 Dipartimento di Energia is a fundamental task in any performance assessment aimed at verifying the protection offered by radioactive waste for chemical or low-level radioactive wastes, or the Performance Assessment (PA) of geological repositories

Paris-Sud XI, Université de

414

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4  

E-print Network

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 Radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 s the UK radioactive waste legacy comprises difficult material which is complex, of mixed origin

415

Modelling of long-term diffusionreaction in a bentonite barrier for radioactive waste confinement  

E-print Network

Modelling of long-term diffusion­reaction in a bentonite barrier for radioactive waste confinement in geological disposal facilities for radioactive waste. This material is expected to fill up by swelling transformations; Solute diffusion 1. Introduction The radioactive waste confinement in deep geolo- gical laye

Montes-Hernandez, German

416

AHIGHLY INSTRUMENTED UNDERGROUND RESEARCH GALLERY AS A MONITORING CONCEPT FOR RADIOACTIVE WASTE CELLS -DATA  

E-print Network

AHIGHLY INSTRUMENTED UNDERGROUND RESEARCH GALLERY AS A MONITORING CONCEPT FOR RADIOACTIVE WASTE, sensors, underground, tunnel. INTRODUCTION The French National Radioactive Waste Management Agency (Andra) is in charge of the long-term management of the radioactive wastes produced in France. The industrial deep

Boyer, Edmond

417

Radioactive Waste Management Information for 1991 and Record-to-Date  

Microsoft Academic Search

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1991. It also summarizes the radiative waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

D. L. Litteer; C. N. Peterson; A. M. Sims

1993-01-01

418

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01

419

Applications Where Snap is BPM for Radioactive Waste Assay  

SciTech Connect

Historically, the Atomic Weapons Establishment (AWE) at Aldermaston in the United Kingdom (UK), has used a variety of assay techniques to measure the radioactive content of a diverse range of waste packages from decommissioning, operational and legacy sources. The regulator, the Environment Agency in the UK, places conditions and limits on AWE through an authorisation within the Radioactive Substances Act (RSA93). The conditions and limits require Best Practical Means (BPM) measurements to be used to demonstrate compliance with the authorisation. Hence, the assay technique employed needs to achieve a balance between risk of exposure, environmental considerations, technological considerations, health and safety considerations and cost effectiveness, without being grossly disproportionate in terms of money, time or trouble. Recently published work has concluded that the Spectral Non-destructive Assay Platform (SNAP) assay system is BPM for Depleted Uranium (DU) waste assay at AWE (1) and low level plutonium in soft drummed waste, HEPA filters and soils (2-4). The purpose of this paper is to highlight other applications where SNAP represents BPM for radioactive waste assay. This has been done by intercomparison studies of SNAP with other assay techniques, such as Segmented Gamma Scanner (SGS) and Passive Neutron Coincidence Counter (PNCC). It has been concluded that, for a large range of waste packages encountered at AWE, SNAP is BPM. (author)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire (United Kingdom)

2008-07-01

420

Radioactive waste management treatments: A selection for the Italian scenario  

SciTech Connect

The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool - Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Sardini, M. [Politecnico di Milano, Dept. of Energy, Via Lambruschini 4, Milano (Italy)

2012-07-01

421

Ceramic waste form for residues from molten salt oxidation of mixed wastes  

SciTech Connect

A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A. [and others

1995-11-01

422

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01

423

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01

424

RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS  

SciTech Connect

High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

Fox, K.

2010-09-07

425

Radioactive waste reality as revealed by neutron measurements  

SciTech Connect

To comprehend certain aspects of the contents of a radioactive waste container is not a trivial matter, especially if one is not allowed to open the container and peer inside. One of the suite of tools available to a practioner in the art of nondestructive assay is based upon neutron measurements. Neutrons, both naturally occuring and induced, are penertrating radiations that can be detected external to the waste container. The practioner should be skilled in applying the proper technique(s) to selected waste types. Available techniques include active and passive neutron measurements, each with their own strengths and weaknesses. The waste material itself can compromise the assay results by occluding a portion of the mass of fissile material present, or by multiplying the number of neutrons produced by a spontaneously fissioning mass. This paper will discuss the difficult, but albeit necessary marriage, between radiioactive waste types and alternative neutron measurement techniques.

Schultz, F.J. [Oak Ridge National Lab., TN (United States)

1995-12-31

426

Disposal of radioactive waste from nuclear research facilities  

E-print Network

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01

427

Radioactive waste disposal in the marine environment  

Microsoft Academic Search

In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean

D. R. Anderson

1981-01-01

428

ISOLATION OF RADIOACTIVE METALS FROM LIQUID WASTES  

EPA Science Inventory

Metals are present in many waste streams, and pose challenges with regard to their disposal. Release of metals into the environment presents both human health and ecological concerns. As a result, efforts are directed at reducing their toxicity, bioavailability, and environment...

429

Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction  

SciTech Connect

The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative `incineration` was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material.

Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

1995-03-01

430

Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.  

PubMed

The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined. PMID:18524482

Guerrero, A; Goi, S; Allegro, V R

2009-01-30

431

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01

432

Properties of radioactive wastes and waste containers. [Marlex CL-100  

SciTech Connect

Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables.

Arora, H.S.; Dayal, R.

1984-01-01

433

Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.  

PubMed

Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach. PMID:17033466

Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

2006-11-01

434

Gas generation phenomena in radioactive waste transportation packaging  

SciTech Connect

The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible formation of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the buildup of gases during the storage of wastes, radiolysis and thermal decomposition appear to be the main contributors during waste transport operations. In this paper, the authors provide a review of applicable gas generation data resulting from the degradation of various waste forms under conditions typical for transport. The effects of radiolytic and thermal degradation mechanisms will be discussed in the context of transportation safety.

Nigrey, P.J.

1997-11-01

435

Nuclear waste repositories in salt mines: a new approach to safety assessment.  

PubMed

The long-term safety of radioactive waste repositories in rock-salt mines in the deep underground benefits significantly from the barrier effect of overlying rocks. The concentrations of radioactive substances released from the repository and migrating in the aquifer up to the biosphere are greatly reduced during passage through these rocks. In former safety analyses of waste repositories this transport has generally been modelled as a combination of the involved phenomena, e.g. convection, dispersion, adsorption, etc. The data required for a numerical evaluation of the overall effect are obtained either as (conservative) estimates based on experience or are empirical, based mainly on laboratory experiments. The approach presented here is much simpler and entirely empirical, and therefore more transparent. It makes use of the fact that the groundwater in the overlying rocks always contains dissolved salt from the salt formation and carries it continuously into the receiving channels or the drainage system. The relation between the total amount of dissolved solids present in a certain subsurface catchment area and their steady-state concentration in the receiving channels is assumed to be equivalent to the relation between the given amount of radionuclides released from the repository and their concentration in the receiving channels, the latter leading to a certain radiation exposure of the population. Two versions of this approach are discussed: version (a) assumes a continuous stream of radionuclides released from the repository, and version (b) assumes a pulse release of radionuclides from the repository. A simple calculation using data from the Gorleben exploration leads to the inequality [equation: see text] where Cmax is the maximum radionuclide concentration (with respect to time) in the receiving channels and W (Bq) is the amount of radionuclides released from the respository in a very short time. Cmax obtained from (1), is supposed to be an upper limit of the radionuclide concentration in the receiving channel and, therefore, a conservative estimate. In some catchment areas the salt concentration in a small region near the surface is higher by a factor of < 2 to 3 than the concentration in the receiving channel. In order to be conservative, this empirical factor may be used to calculate the concentration of radioactive substances. Surprisingly, the values of radiation exposure resulting from both versions of the new approach are far below those calculated by applying elaborated models of the transport processes. The respective factors are 10-100 in case (a) and as much as 1000 in case (b). The reasons for these significant differences are discussed. PMID:8880965

Memmert, G

1996-08-01

436

Anaerobic microbial transformations of radioactive wastes in subsurface environments  

SciTech Connect

Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as /sup 14/CO/sub 2/, /sup 14/CH/sub 4/, HT, and CH/sub 3/T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables.

Francis, A.J.

1984-01-01

437

Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste  

Microsoft Academic Search

The presence of long-lived radionuclides presents a challenge to the management of radioactive wastes. Immobilization of these radionuclides must be accomplished prior to long-term, permanent disposal. Separation of the radionuclides from the waste solutions has the potential of significantly decreasing the costs associated with the immobilization and disposal of the radioactive waste by minimizing waste volumes. Several solvent extraction processes

J. D. Law; K. N. Brewer; R. S. Herbst; T. A. Todd; D. J. Wood

1999-01-01

438

Geological problems in radioactive waste isolation - second worldwide review  

SciTech Connect

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01

439

Determination of Iodine-129 in Low Level Radioactive Wastes - 13334  

SciTech Connect

For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.63.8%, and 86.41.6% for the anionic exchange separation method. (authors)

Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

2013-07-01

440

Confinement matrices for low- and intermediate-level radioactive waste  

NASA Astrophysics Data System (ADS)

Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow-seated repositories in various geological media, and the use of inexpensive borosilicate glass.

Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

2012-02-01

441

FINAL REPORT. FOAMING AND ANTIFOAMING IN RADIOACTIVE WASTE PRETREATMENT AND IMMOBILIZATION  

EPA Science Inventory

Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the obj...

442

Radioactive waste management plan for the PBMR (Pty) Ltd fuel plant  

Microsoft Academic Search

The Pebble Bed Modular Reactor (Pty) Ltd Fuel Plant (PFP) radioactive waste management plan caters for waste from generation, processing through storage and possible disposal. Generally, the amount of waste that will be generated from the PFP is Low and Intermediate Level Waste. The waste management plan outlines all waste streams and the management options for each stream. It also

Mosidi E. Makgae

2009-01-01

443

Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005  

SciTech Connect

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

McDowell, Kip; Forrester, Tim [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States); Saunders, Mark [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)] [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)

2013-07-01

444

Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization  

SciTech Connect

The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification.

Dominick, J L

2001-12-18

445

Radioactive waste management approaches for developed countries  

SciTech Connect

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the Achilles Heel of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, ALSEP, EXAM, or LUCA are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

2013-07-01

446

Radioactive iodine separations and waste forms development.  

SciTech Connect

Reprocessing nuclear fuel releases gaseous radio-iodine containing compounds which must be captured and stored for prolonged periods. Ag-loaded mordenites are the leading candidate for scavenging both organic and inorganic radioiodine containing compounds directly from reprocessing off gases. Alternately, the principal off-gas contaminant, I2, and I-containing acids HI, HIO3, etc. may be scavenged using caustic soda solutions, which are then treated with bismuth to put the iodine into an insoluble form. Our program is focused on using state-of-the-art materials science technologies to develop materials with high loadings of iodine, plus high long-term mechanical and thermal stability. In particular, we present results from research into two materials areas: (1) zeolite-based separations and glass encapsulation, and (2) in-situ precipitation of Bi-I-O waste forms. Ag-loaded mordenite is either commercially available or can be prepared via a simple Ag+ ion exchange process. Research using an Ag+-loaded Mordenite zeolite (MOR, LZM-5 supplied by UOP Corp.) has revealed that I2 is scavenged in one of three forms, as micron-sized AgI particles, as molecular (AgI)x clusters in the zeolite pores and as elemental I2 vapor. It was found that only a portion of the sorbed iodine is retained after heating at 95o C for three months. Furthermore, we show that even when the Ag-MOR is saturated with I2 vapor only roughly half of the silver reacted to form stable AgI compounds. However, the Iodine can be further retained if the AgI-MOR is then encapsulated into a low temperature glass binder. Follow-on studies are now focused on the sorption and waste form development of Iodine from more complex streams including organo-iodine compounds (CH3I). Bismuth-Iodate layered phases have been prepared from caustic waste stream simulant solutions. They serve as a low cost alternative to ceramics waste forms. Novel compounds have been synthesized and solubility studies have been completed using competing groundwater anions (HCO3-, Cl- and SO42-). Distinct variations in solubility were found that related to the structures of the materials.

Krumhansl, James Lee; Nenoff, Tina Maria; Garino, Terry J.; Rademacher, David

2010-04-01

447

Safeguards and security recommendations for the OCRWM (Office of Civilian Radioactive Waste Management) Federal Waste Management System  

Microsoft Academic Search

The systems and procedures that will be part of the Federal Waste Management System (FWMS) -- managed by the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) -- will be subject to the requirements of nuclear materials safeguards. The FWMS will include the acceptance of spent nuclear fuel (SNF) and high-level radioactive wastes (HLW) at the

B. W. Moran; L. G. Fishbone; J. H. Saling; E. R. Johnson; E. F. Wonder; Johnson; VA Fairfax

1989-01-01

448

Radioactive Waste Management information for 1994 and record-to-date  

SciTech Connect

This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1995-07-01

449

Transportation functions of the Civilian Radioactive Waste Management System  

SciTech Connect

Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

Shappert, L.B. [ed.; Attaway, C.R.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Best, R.E.; Danese, F.L. [Science Applications International Corp., Oak Ridge, TN (United States); Dixon, L.D. [Dixon (L.D.), Martinez, GA (United States); Jones, R.H. [Jones (R.H.), Los Gatos, CA (United States); Klimas, M.J. [USDOE Chicago Operations Office, Argonne, IL (United States); Peterson, R.W. [Bentz (E.J.) and Associates, Inc., Alexandria, VA (United States)

1992-03-01

450

Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility  

SciTech Connect

The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

Freer, J.; Freer, E.; Bond, A. [and others

1996-07-01

451

No Time Wasted. 25 years COVRA: Radioactive Waste Management in the Netherlands  

SciTech Connect

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. December 2007 was a time to commemorate, as the national waste management organisation of the Netherlands, COVRA, celebrated its 12. anniversary. During this period of 25 years a stable policy has been formulated and implemented. For the situation in the Netherlands, it was obvious that a period of long term storage was needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. A historical overview of the activities of COVRA is presented and lessons learned over a period of 25 years are given. (authors)

Codee, H.D.K.; Verhoef, E.V. [COVRA N.V., Vlissingen (Netherlands)

2008-07-01

452

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01

453

Processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12

454

Processing of solid mixed waste containing radioactive and hazardous materials  

DOEpatents

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12

455

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1990-11-01

456

Spent Fuel and High-Level Radioactive Waste Transportation Report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1992-03-01

457

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

Not Available

1989-11-01

458

DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES  

SciTech Connect

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

Jantzen, C.

2010-03-18

459

Fludrocortisone treatment in a child with severe cerebral salt wasting.  

PubMed

Hyponatremia is a common complication of intracranial disease or surgery. An evaluation should be undertaken to determine whether cerebral salt wasting (CSW) or inappropriate secretion of antidiuretic hormone is present as a cause. Since the treatment principles are completely different in the two pathological states, differential diagnosis is very important. CSW is defined as the renal loss of sodium leading to hyponatremia and decreased extracellular fluid volume. In the literature, it has been noted that mineralocorticoid administration can be useful in CSW cases. We herein present an 11-year-old boy who developed hyponatremic seizures after intracranial tumor resection. He was diagnosed with CSW on the basis of high urinary sodium excretion and increased urine output, together with signs and symptoms of dehydration. Despite intensive fluid and salt therapy, we were unable to decrease the urinary output. Therefore, fludrocortisone therapy was administered and his urinary output and sodium excretion were decreased and his serum sodium level was normalized. In conclusion, in addition to fluid and salt replacement, mineralocorticoid supplementation also seems to be a safe and effective treatment for CSW. PMID:11694800

Kinik, S T; Kandemir, N; Baykan, A; Akalan, N; Yordam, N

2001-10-01

460

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This sixth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal year 1988. An epilogue chapter reports significant events from the end of the fiscal year on September 30, 1988 through March 1989. The Nuclear Waste Policy Amendments Act (NWPA) of 1987 made significant changes to the NWPA relating to repository siting and monitored retrievable storage and added new provisions for the establishment of several institutional entities with which OCRWM will interact. Therefore, a dominant theme throughout this report is the implementation of the policy focus and specific provisions of the Amendments Act. 50 refs., 8 figs., 4 tabs.

NONE

1989-12-01