Note: This page contains sample records for the topic radioactive salt waste from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Aspects of Underground Disposal of Radioactive Waste in Rock Salt.  

National Technical Information Service (NTIS)

The subject of the thesis concerns disposal of radioactive waste in underground rock-salt formations. Rock salt is one of the few potential host formations for accomodating radioactive waste; it has a relatively high thermal conductivity and is practicall...

W. M. G. T. van den Broek

1989-01-01

2

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25

3

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10

4

Technetium removal column flow testing with alkaline, high salt, radioactive tank waste  

Microsoft Academic Search

This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of

D. L. Jr. Blanchard; D. E. Kurath; G. R. Golcar; S. D. Conradson

1996-01-01

5

In situ tests of salt deformation for validation of a radioactive waste repository predictive technology  

SciTech Connect

To assure the safety of a radioactive waste repository, it is necessary to predict the performance of the repository far into the future. The Waste Isolation Pilot Plant (WIPP) Program is responsible for developing the technology for such performance predictions in bedded salt. An important technology development activity concerns the fielding of very large scale in situ tests to determine the time-dependent deformation of underground openings salt as a basis for validation of the predictive technology. This technology is necessary to predict repository seal performance and final closure times of rooms, and may be of value to the salt and potash mining community, as well. 7 refs., 5 figs.

Munson, D.E. (Sandia National Labs., Albuquerque, NM (United States))

1991-07-01

6

In situ tests of salt deformation for validation of a radioactive waste repository predictive technology  

SciTech Connect

To assure the safety of a radioactive waste repository, it is necessary to predict the performance of the repository far into the future. The Waste Isolation Pilot Plant (WIPP) Program is responsible for developing the technology for such performance predictions in bedded salt. An important technology development activity concerns the fielding of very large scale in situ tests to determine the time-dependent deformation of underground openings salt as a basis for validation of the predictive technology. This technology is necessary to predict repository seal performance and final closure times of rooms, and may be of value to the salt and potash mining community, as well. 7 refs., 4 figs., 4 tabs.

Munson, D.E.

1990-01-01

7

Evaluation of Permain salt deposits in the Texas Panhandle and western Oklahoma for underground storage of radioactive wastes  

Microsoft Academic Search

This report concludes that thick salt deposits of the Palo Duro basin, and, to a lesser extent, those of the Dalhart basin, have many features that would be favorable for underground storage of radioactive waste. The principal parameters used in evaluating these basins for radioactive-waste storage include salt thickness, depth, tectonic and seismic history, lithology, permeability, proximity to aquifers, mineral-resource

Johnson

1976-01-01

8

Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides  

NASA Astrophysics Data System (ADS)

Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

2012-01-01

9

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

Microsoft Academic Search

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which

J. T. Bell; P. A. Haas; J. C. Rudolph

1993-01-01

10

Possible Salt Mine and Brined Cavity Sites for Radioactive Waste Disposal in the Northeastern Southern Peninsula of Michigan.  

National Technical Information Service (NTIS)

A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern s...

K. K. Landes H. L. Bourne

1976-01-01

11

Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.  

PubMed

In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 ?m and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2) day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt. PMID:21288037

Park, Hwan-Seo; Cho, In-Hak; Eun, Hee Chul; Kim, In-Tae; Cho, Yong Zun; Lee, Han-Soo

2011-02-02

12

ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions ({number_sign}3053)  

SciTech Connect

High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency.

Jones, V.D.

1997-11-01

13

ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions ( no. 3053).  

National Technical Information Service (NTIS)

High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a seriou...

V. D. Jones

1997-01-01

14

Principles of geomechanical safety assessment for radioactive waste disposal in salt structures  

Microsoft Academic Search

Today, a large amount of knowledge is available concerning various sites of potential high active waste (HAW) repositories in salt media. Domal Zechstein salt formations have been examined at several sites in Germany. Extensive R&D work was initiated in the former Asse Salt Mine in order to explore the suitability of salt for waste isolation by laboratory tests, theoretical studies

M Langer

1999-01-01

15

Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations  

NASA Astrophysics Data System (ADS)

Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

Nikitin, A. N.; Pocheptsova, O. A.; Matthies, S.

2010-05-01

16

Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations  

SciTech Connect

Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

Nikitin, A. N., E-mail: nikitin@nf.jinr.ru; Pocheptsova, O. A.; Matthies, S. [Joint Institute for Nuclear Research, Frank Laboratory of Nuclear Physics (Russian Federation)

2010-05-15

17

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01

18

Radioactive Waste.  

ERIC Educational Resources Information Center

|Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)|

Blaylock, B. G.

1978-01-01

19

Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems: rheological properties  

Microsoft Academic Search

Rheological properties of salt massif are crucial factors deciding about its tightness. The purpose of this article is the comparison of stationary creep rate of salt-mudstones with salt rock. The object of the research was brown and red salt-mudstone containing 2030% of insoluble parts. It was found that the content of insoluble parts has no significant rheological influence. On the

J. ?lizowski; L. Lankof

2003-01-01

20

Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography  

SciTech Connect

Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

Hull, A.B.; Williams, L.B.

1985-07-01

21

Radioactive Wastes  

NSDL National Science Digital Library

The purposes of this module are to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal.

Smith, David; Moore, Lang

2000-09-02

22

Radioactive Wastes  

NSDL National Science Digital Library

This module develops multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and discusses storage times for wastes to decay to safe levels for disposal.

Smith, David

2000-09-02

23

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOEpatents

A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, Tadafumi (Tokyo, JP)

1994-01-01

24

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect

The ONWI Socioeconomic Program Plan spells out DOE's approach to analyzing the socioeconomic impacts from siting, constructing, and operating radioactive waste repositories and discusses mitigation strategies. The peer review indicated the following modifications should be made to the Plan: encourage active public participation in the decision-making processes leading to repository site selection; clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process; place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; recognize that mitigation mechanisms other than compensation and incentives may be effective; as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-02-01

25

Radioactive wastes  

Microsoft Academic Search

A review is presented of the treatment, storage, fixation and disposal of radioactive wastes. Various methods are described for extracting and separating the radionuclides, for example ¹³⁴Cs, ¹³⁷Cs, ²°⁴Tl and ⁶°Co ions were simultaneously deactivated on natural sorbents by precipitation reactions. For long term storage, wastes should be solidified and immobilized to ensure containment, reduce surveillance, and reduce the need

Straub

1977-01-01

26

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12

27

Radioactive Wastes  

NSDL National Science Digital Library

Created by David Smith for the Connected Curriculum Project, this module develops multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and discusses storage times for wastes to decay to safe levels for disposal. This is one of a much larger set of learning modules hosted by Duke University.

Smith, David

2010-04-29

28

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste.  

National Technical Information Service (NTIS)

This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sod...

T. Koyama

1992-01-01

29

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste  

SciTech Connect

This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

1984-08-01

30

Engineering geological and safety technological aspects for the final disposal of in situ-consolidated radioactive waste in hard rock and salt formations  

Microsoft Academic Search

In connection with its research and development work the Gesellschaft fr Strahlen- und Umweltforschung mbH Mnchen (GSF)\\u000a has successfully developed and tested methods for the final disposal of low and medium radioactive waste in 200 litre containers\\u000a at the Asse salt mine. The low radioactive waste (LLW) was disposed of in chambers using various methods. The medium radioactive\\u000a waste (MLW)

P. Quast; E. Hawickenbrauck; M. W. Schmidt

1986-01-01

31

Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity.  

National Technical Information Service (NTIS)

Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 (degrees)C) at (ge) 900(degrees)C. This process is readily applicable to the mixed waste because acidi...

P. A. Haas J. C. Rudolph J. T. Bell

1994-01-01

32

Radioactive Wastes  

NSDL National Science Digital Library

Created by Lang Moore and David Smith for the Connected Curriculum Project, the purposes of this module are to develop multiple representations for decay of radioactive substances, in the context of environmental policies on a university campus, and to determine storage times for wastes to decay to safe levels for disposal. This is one lesson within a larger set of learning modules hosted by Duke University.

Smith, David; Moore, Lang

2010-07-06

33

Acoustic emission in host-rock material for radioactive waste disposal: comparison between clay and rock salt  

Microsoft Academic Search

. The use of clay masses for radioactive waste disposal requires a comprehensive analysis of fracture processes in clay. Acoustic\\u000a emission (AE) was used to obtain a better insight into damage evolution during uniaxial loading of Boom Clay specimens. A\\u000a comparison of AE in clay and rock salt shows a much lower AE activity in clay. This, together with the

A. Lavrov; A. Vervoort; Y. Filimonov; M. Wevers; J. Mertens

2002-01-01

34

Organic waste processing using molten salt oxidation.  

National Technical Information Service (NTIS)

Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is consid...

M. Adamson

1998-01-01

35

Radioactive waste isolation in salt: peer review of Office of Nuclear Waste Isolation's Socioeconomic Program Plan  

SciTech Connect

The following recommendations have been abstracted from the body of this report. The Office of Nuclear Waste Isolation's Socioeconomic Program Plan for the Establishment of Mined Geologic Repositories to Isolate Nuclear Waste should be modified to: (1) encourage active public participation in the decision-making processes leading to repository site selection; (2) clearly define mechanisms for incorporating the concerns of local residents, state and local governments, and other potentially interested parties into the early stages of the site selection process. In addition, the Office of Nuclear Waste Isolation should carefully review the overall role that these persons and groups, including local pressure groups organized in the face of potential repository development, will play in the siting process; (3) place significantly greater emphasis on using primary socioeconomic data during the site selection process, reversing the current overemphasis on secondary data collection, description of socioeconomic conditions at potential locations, and development of analytical methodologies; (4) include additional approaches to solving socioeconomic problems. For example, a reluctance to acknowledge that solutions to socioeconomic problems need to be found jointly with interested parties is evident in the plan; (5) recognize that mitigation mechanisms other than compensation and incentives may be effective; (6) as soon as potential sites are identified, the US Department of Energy (DOE) should begin discussing impact mitigation agreements with local officials and other interested parties; and (7) comply fully with the pertinent provisions of NWPA.

Winter, R.; Fenster, D.; O'Hare, M.; Zillman, D.; Harrison, W.; Tisue, M.

1984-07-01

36

Progress in validation of structural codes for radioactive waste repository applications in bedded salt  

SciTech Connect

Over the last nine years, coordinated activities in laboratory database generation, constitutive model formulation, and numerical code capability development have led to an improved ability of thermal/structural codes to predict the creep deformation of underground rooms in bedded salt deposits. In the last year, these codes have been undergoing preliminary validation against an extensive database collected from the large scale underground structural in situ tests at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico. This validation exercise has allowed prediction capabilities to be evaluated for accuracy. We present here a summary of the predictive capability and the nature of the in situ database involved in the validation exercise. The WIPP validation exercise has proven to be especially productive. 7 refs., 4 figs., 1 tab.

Munson, D.E. (Sandia National Labs., Albuquerque, NM (USA)); DeVries, K.L. (RE/SPEC, Inc., Rapid City, SD (USA))

1990-08-01

37

Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment  

SciTech Connect

Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.

Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

1983-10-01

38

Suitability of salt-mudstones as a host rock in salt domes for radioactive-waste storage  

Microsoft Academic Search

Analysis of the rock-salt structures and of the conceptual model of SNF and radwaste repositories has shown that in the procedure of site selection, two types of host rocks namely, rock salt and salt-mudstones, should be considered. Laboratory investigations of the mineralogical, chemical, physical and geomechanical properties of salt-mudstones, from the point-of-view of their suitabilities for containing radwaste deposition, are

K. ?lizowski; J. Janeczek; K. Przew?ocki

2003-01-01

39

Composite backfill materials for radioactive waste isolation by deep burial in salt  

SciTech Connect

Bentonite and hectorite were found to sorb Pu(IV) and Am(III) from concentrated brines with distribution coefficients K/sub d/ > 3000 ml/g. The permeability of bentonite to brine was less than 1 microdarcy at a confining pressure of 18 MPa, the expected lithostatic pressure at the 800 m level in a salt repository. Getters for sorption of TcO/sub 4//sup -/ (K/sub d/ approx. 300 ml/g), I/sup -/ (K/sub d/ greater than or equal to 30 ml/g), Cs (K/sub d/ greater than or equal to 30 ml/g) and Sr (K/sub d/ greater than or equal to approx. 100 ml/g) from brines were identified. Their sorption properties are presented. Thermal conductivity results (>0.5 W/mK) and evidence for bentonite stability in brines at hydrothermal conditions are also given. It is shown by calculated estimates that a 3-ft-thick mixture of bentonite with other getter materials could retain Pu, Am, and TcO/sub 4//sup -/ for >10/sup 4/ years and I/sup -/ for > 10/sup 3/ years. Another tailored mixture could retain Cs for approx. 600 years, Sr for approx. 700 years, TcO/sub 4/ for approx. 4000 years and I/sup -/ for approx. 400 years. The backfill can offer a significant contribution to the isolation capability of a waste package system.

Nowak, E.J.

1980-01-01

40

Radioactive waste isolation in salt: rationale and methodology for Argonne-conducted reviews of site characterization programs  

SciTech Connect

Both regulatory and technical concerns must be addressed in Argonne-conducted peer reviews of site characterization programs for individual sites for a high-level radioactive waste repository in salt. This report describes the regulatory framework within which reviews must be conducted and presents background information on the structure and purpose of site characterization programs as found in US Nuclear Regulatory Commission (NRC) Regulatory Guide 4.17 and Title 10, Part 60, of the Code of Federal Regulations. It also presents a methodology to assist reviewers in addressing technical concerns relating to their respective areas of expertise. The methodology concentrates on elements of prime importance to the US Department of Energy's advocacy of a given salt repository system during the NRC licensing process. Instructions are given for reviewing 12 site characterization program elements, starting with performance objectives, performance issues, and levels of performance of repository subsystem components; progressing through performance assessment; and ending with plans for data acquisition and evaluation. The success of a site characterization program in resolving repository performance issues will be determined by judging the likelihood that the proposed data acquisition activities will reduce uncertainties in the performance predictions. 8 refs., 3 figs., 5 tabs.

Harrison, W.; Ditmars, J.D.; Tisue, M.W.; Hambley, D.F.; Fenster, D.F.; Rote, D.M.

1985-07-01

41

Rock salt the mechanical properties of the host rock material for a radioactive waste repository  

Microsoft Academic Search

For the long-term prediction of deformation, stress and permeability of a repository in a salt formation, one needs a reliable extrapolation of the mechanical behaviour of rock salt. This is only possible by means of material laws with a physical basis. A detailed description of the so-called composite model for transient and steady state creep is given, which is based

Udo Hunsche; Andreas Hampel

1999-01-01

42

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03

43

Review of the radioactive and thermal stability of low density polyethylene encapsulated nitrate salt waste.  

National Technical Information Service (NTIS)

Low density polyethylene extrusion is under consideration as a stabilization technique for the treatment of several mixed waste streams produced at the Rocky Flats Plant (RFP). The main focus of this development is the nitrate sat waste stream; Rocky Flat...

A. M. Faucette B. W. Logsdon J. H. Oldham

1992-01-01

44

Salt waste volume reduction by sodium removal  

Microsoft Academic Search

A literature searcha nd preliminary experiments were carried out to ; determine the feasibility of reducing salt waste volumes by the removal of sodium ; and purifying the sodium as metal for reuse or less restricted storage for use in ; the long-term storage of Hanford's radioactive salt waste. Included in the ; experimental part of the study were oxalate

L. L. Burger; J. L. Ryan; J. L. Swanson; L. A. Bray

1973-01-01

45

Radioactive Wastes. Revised.  

ERIC Educational Resources Information Center

|This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are

Fox, Charles H.

46

ORNL radioactive waste operations  

Microsoft Academic Search

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently

J. D. Sease; E. M. King; J. H. Coobs; T. H. Row

1982-01-01

47

Radioactive Waste Management.  

National Technical Information Service (NTIS)

Management of radioactive wastes is necessary to protect public health, public safety, and the environment from radioactive materials resulting from national defense programs, energy research and development, and commercial activities. Access to informati...

1990-01-01

48

Effects of Heat Generation on Nuclear Waste Disposal in Salt  

Microsoft Academic Search

Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt

D. J. Clayton

2008-01-01

49

Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal  

SciTech Connect

This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

1997-01-01

50

Radioactive waste disposal package  

DOEpatents

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01

51

Transport of contaminants in geologic media: Radioactive waste in salt, corrosion of copper, and colloid migration  

Microsoft Academic Search

Analytical and numerical models on mass transfer of radionuclides from a waste package to surrounding rock are analyzed. Based on developed models corresponding computer programs are developed. These models would be used to evaluate possible hazardous radionuclide release rates into the surrounding rock\\/biosphere. Specifically the following fields are studied. (1) Analysis on the possible copper canister pitting corrosion by sulfide

Yong Soo Hwang

2006-01-01

52

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas  

SciTech Connect

Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references.

Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

1984-04-01

53

Incineration of Radioactive Waste.  

National Technical Information Service (NTIS)

In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioacti...

C. Thegerstroem

1980-01-01

54

Long-term safety of radioactive waste disposal: Retention of Pu, Am, Np and Tc in the corrosion of COGEMA glass R7T7 in salt solutions. Final report.  

National Technical Information Service (NTIS)

For performance assessment of high-level radioactive waste disposal in salt formations, corrosion tests were carried out, using high active R7T7-type glass containing reprocessing waste, produced by CEA Marcoule. The objective of this investigation was to...

B. Grambow W. Lutze L. Kahl H. Geckeis E. Bohnert

1996-01-01

55

Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt  

SciTech Connect

This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

1987-01-01

56

Organic waste processing using molten salt oxidation  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

Adamson, M. G., LLNL

1998-03-01

57

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's Geochemical Program Plan  

SciTech Connect

Describe the management program for coordinating subcontractors and their work, and integrating research results. Appropriate flowcharts should be included. Provide more information on the overall scope of the program. For each subcontractor, provide specific workscopes that indicate whether analytical activities are developmental or routine, approximate number of analyses to be made, and something of the adequacy of the analyses to meet program goals. Indicate interfaces with other earth-science disciplines like hydrology and with other groups doing relevant geochemical research and engineering design. Address the priorities for each activity or group of activities. High priority should be given to early development of a geochemical statement of what constitutes suitable salt for a repository. Reference standard procedures for sampling, sample preservation, and sample analysis wherever appropriate or, if not appropriate, indicate that any deviations from standard procedures will be documented. Ensure that appropriate quality assurance procedures will be followed for the procedures listed above. Include specific procedures for the choice, verification, validation, and documentation of computer codes related to the geochemical aspects of repository performance assessment. Include activities addressing regional hydrochemistry and make clear that each principal hydrogeologic unit at each site will be studied geochemically. Indicate that proposed plans for obtaining hydrogeochemical data will be included in each site characterization plan. Describe how site geochemical stability will be handled, especially with respect to dissolution, postemplacement geochemistry, human influences, and climatic variations. Minor recommendations and suggested improvements in the text of the plan are given in Sec. 5.

Harrison, W.; Seitz, M.; Fenster, D.; Lerman, A.; Brookins, D.; Tisue, M.

1984-02-01

58

Process for treating radioactive waste  

Microsoft Academic Search

A process for treating radioactive sludge waste wasted in a nuclear power plant comprises the steps of pulverizing the radioactive sludge waste into dry powder which is combustible, burning the powder into ashes, and pelletizing the ashes. The radioactive sludge waste including granular ion-exchange resins, powder resins, filter sludge, etc. is reduced in volume by subjecting to combustion.

M. Hirano; S. Horiuchi

1985-01-01

59

Fusion reactor radioactive waste management  

Microsoft Academic Search

Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed.

J. D. Kaser; A. K. Postma; D. J. Bradley

1976-01-01

60

Radioactive waste isolation in salt: peer review of the D'Appolonia report on Schematic Designs for Penetration Seals for a Repository in the Permian Basin, Texas  

SciTech Connect

Argonne made the following recommedations for improving the reviewed reports. The authors of the report should: state the major assumptions of the study in Sec. 1.1 rather than later in the report; consider using salt for the shaft seals in salt horizons; reconsider whether keys are needed for the bulkheads; provide for interface grouting because use of expansive cement will not guarantee that interfaces will be impermeable; discuss the sealing schedule and, where appropriate, consider what needs to be done to ensure that emplaced radioactive waste could be retrieved if necessary; describe in more detail the sealing of the Dockum and Ogallala aquifers; consider an as low as reasonably achievable approach to performance requirements for the initial design phase; address the concerns in the 1983 US Nuclear Regulatory Commission document entitled Draft Technical Position: Borehole and Shaft Sealing of High-Level Nuclear Waste Repositories; cite the requirements for release of radioactivity by referring to specific clauses in the regulations of the US Environmental Protection Agency; and provide further explanation in the outline of future activities about materials development and verification testing. More emphasis on development of accelerated testing programs is also required.

Hambley, D.F.; Stormont, J.C.; Russell, J.E.; Edgar, D.E.; Fenster, D.F.; Harrison, W.; Tisue, M.W.

1984-09-01

61

Radioactive waste shredding: Preliminary evaluation.  

National Technical Information Service (NTIS)

The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require ...

N. R. Soelberg G. A. Reimann

1994-01-01

62

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

SciTech Connect

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01

63

Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report  

USGS Publications Warehouse

Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

Hosman, R. L.

1978-01-01

64

Radioactive waste material disposal  

DOEpatents

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01

65

Disposal of NORM waste in salt caverns  

SciTech Connect

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01

66

PROCESSING OF RADIOACTIVE WASTE  

DOEpatents

A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

Johnson, B.M. Jr.; Barton, G.B.

1961-11-14

67

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization  

SciTech Connect

At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

1986-12-01

68

Final disposal of radioactive waste  

NASA Astrophysics Data System (ADS)

In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

Freiesleben, H.

2013-06-01

69

Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt - Leaching experiments and thermodynamic simulations  

NASA Astrophysics Data System (ADS)

Low- and intermediate-level radioactive wastes are frequently solidified in a cement matrix. In a potential repository for nuclear wastes, the cementitious matrix is altered upon contact with solution and the resulting secondary phases may provide for significant retention of the radionuclides incorporated in the wastes. In order to assess the secondary phases formed upon corrosion in chloride-rich solutions, which are relevant for nuclear waste disposal in rock salt, leaching experiments were performed. Conventional laboratory batch experiments using powdered hardened cement paste in MgCl2-rich solutions were left to equilibrate for up to three years and full-scale cemented waste products were exposed to NaCl-rich and MgCl2-rich solutions for more than twenty years, respectively. Solid phase analyses revealed that corrosion of hardened cement in MgCl2-rich solutions advanced faster than in NaCl-rich solutions due to the extensive exchange of Mg from solution against Ca from the cementitious solid. Thermodynamic equilibrium simulations compared well to results at the final stages of the respective experiments indicating that close to equilibrium conditions were reached. At high cement product to brine ratios (>0.65 g mL-1), the solution composition in the laboratory-scale experiments was close to that of the full-scale experiments (cement to brine ratio of 2.5 g mL-1) in the MgCl2 systems. The present study demonstrates the applicability of thermodynamic methods used in this approach to adequately describe full-scale long-term experiments with cemented waste simulates.

Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B.

70

Radioactive Waste: Production, Storage, Disposal.  

National Technical Information Service (NTIS)

Radioactive wastes are the leftovers from the use of nuclear materials for the production of electricity, diagnosis and treatment of disease, and other purposes. The materials are either naturally occurring or man-made. Certain kinds of radioactive materi...

2002-01-01

71

Radioactive waste processing apparatus  

DOEpatents

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01

72

Radioactive Waste Streams: Waste Classification for Disposal.  

National Technical Information Service (NTIS)

Radioactive waste is a byproduct of nuclear weapons production, commercial nuclear power generation, and the naval reactor program. Waste byproducts also result from radioisotopes used for scientific, medical, and industrial purposes. The legislative defi...

A. Andrews

2006-01-01

73

Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design  

SciTech Connect

Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

1987-02-01

74

Radioactive Waste Management  

NASA Astrophysics Data System (ADS)

Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

Baisden, P. A.; Atkins-Duffin, C. E.

75

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on multifactor life testing of waste package materials  

SciTech Connect

Two documents that provide the approaches in designing a test program to investigate uniform corrosion of low-carbon cash steel in a salt repository environment were reviewed. Recommendations are made by the Peer Review Panel for improving the two reports.

McPheeters, C.C.; Harrison, W.; Ditmars, J.D.; Lerman, A.; Rote, D.M.; Edgar, D.E.; Hambley, D.F.

1984-09-01

76

High-Level Radioactive Waste.  

ERIC Educational Resources Information Center

|Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and

Hayden, Howard C.

1995-01-01

77

Radioactive waste processing apparatus  

DOEpatents

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30

78

Radioactive Waste Incineration: Status Report  

Microsoft Academic Search

Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of

A. R. Diederich; M. J. Akins

2008-01-01

79

Crystallization of sodium nitrate from radioactive waste  

SciTech Connect

From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry

1997-07-01

80

PROCESSING OF RADIOACTIVE WASTE  

DOEpatents

A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

Allemann, R.T.; Johnson, B.M. Jr.

1961-10-31

81

Radioactive waste disposal and geology  

Microsoft Academic Search

This book is an excellent, well-presented treatise on the nature and types of radioactive wastes, disposal alternatives and strategies, radionuclide release and disposal models, geologic repositories, natural analogues, subsea-bed options, and low-level wastes. The authors provide national and international perspectives on radioactive waste disposal problems. They carefully dissected each issue, treating its pros and cons equally. Moreover, they is careful

K. B. Krauskopf

1988-01-01

82

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOEpatents

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01

83

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41.

Pike, J.A.

2002-07-09

84

Feed Basis for Processing Relatively Low Radioactivity Waste Tanks  

SciTech Connect

This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38, and 41.

Jones (contact), R.T.

2003-02-18

85

Polyethylene encapsulation of molten salt oxidation mixed low-level radioactive salt residues  

SciTech Connect

A limited scope treatability study was conducted for polyethylene encapsulation of salt residues generated by a Molten Salt Oxidation (MSO) technology demonstration at the Energy Technology Engineering Center (ETEC), operated by Rockwell International for the US Department of Energy (DOE). During 1992 and 1993, ETEC performed a demonstration with a prototype MSO unit and treated approximately 50 gallons of mixed waste comprised of radioactively contaminated oils produced by hot cell operations. A sample of the mixed waste contaminated spent salt was used during the BNL polyethylene encapsulation treatability study. A nominal waste loading of 50 wt % was successfully processed and waste form test specimens were made for Toxicity Characteristic Leaching Procedure (TCLP) testing. The encapsulated product was compared with base-line TCLP results for total chromium and was found to be well within allowable EPA guidelines.

Lageraaen, P.R.; Kalb, P.D. [Brookhaven National Lab., Upton, NY (United States); Grimmett, D.L.; Gay, R.L.; Newman, C.D. [Energy Technology Engineering Center, Canoga Park, CA (United States)

1995-10-01

86

Apparatus for infectious radioactive waste  

SciTech Connect

This patent describes an apparatus for housing solid, radioactively and biologically contaminated waste during steam autoclave treatment thereof. It comprises a container means for housing solid infectious radioactive biological wastes, suitable for use during an autoclaving procedure, having at least one opening therein; a filter means for entrapping radioactive compounds contained in gases exiting the container means during autoclave treatment, the filter means being securely disposed within an opening of the container means such that any gas exiting the container means during autoclave treatment passes through the filter means; and indicator means for establishing that the biologically contaminated waste has been inactivated by exposure to a predetermined autoclaving temperature.

Stinson, M.C.; Galanek, M.S.

1991-11-19

87

Dutch geologic radioactive waste disposal project  

NASA Astrophysics Data System (ADS)

Geologic disposal of radioactive waste is reviewed. The radionuclide release consequences of an accidental flooding of the underground excavations was studied. The results of the quantitative examples made for different effective cross sections of the permeable layer connecting the mine excavations with the boundary of the salt dome are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multilayer disposal configurations were analyzed and compared.

Hamstra, J.; Verkerk, B.

88

Radioactive Waste Processing and Disposal.  

National Technical Information Service (NTIS)

The Technical Information Center, beginning in 1958, periodically issues bibliographies on radioactive wastes. This compilation contains 4144 citations of foreign and domestic research reports, journal articles, patents, conference proceedings, and books....

1980-01-01

89

Radioactive Waste Processing and Disposal.  

National Technical Information Service (NTIS)

The Technical Information Center, beginning in 1958, periodically issues bibliographies on radioactive wastes. This compilation contains 3597 citations of foreign and domestic research reports, journal articles, patents, conference proceedings, and books....

1980-01-01

90

TREATMENT OF RADIOACTIVE WASTE GASES  

Microsoft Academic Search

The disposal of radioactive waste gases from the plant-scale processes ; at the Hanford Atomic Products Operation presents a problem that is of ; coniderable importance in plant operation. Equipment developed for the efficicnt ; removal of the two prinipal contaminants: 1) gaseous radioactive iodine; and 2) ; an aerosol composed of other fission products is described. The program has

A. G. Blasewitz; W. C. Schmidt

1958-01-01

91

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's plan to decommission and reclaim exploratory shafts and related facilities  

SciTech Connect

The following recommendations are made for improving the Office of Nuclear Waste Isolation's plan for decommissioning and reclaiming exploratory shafts and other facilities associated with site characterization: (1) Discuss more comprehensively the technical aspects of activities related to decommissioning and reclamation. More detailed information will help convince the staff of the US Nuclear Regulatory Commission and others that the activities as outlined in the plan are properly structured and that the stated goals can be achieved. (2) Address in considerably greater detail how the proposed activities will satisfy specific federal, state, and local laws and regulations. (3) State clearly the precise purpose of the plan, preferably at the beginning and under an appropriate heading. (4) Also under an appropriate heading and immediately after the section on purpose, describe the scope of the plan. The tasks covered by this plan and closely related tasks covered by other appropriate plans should be clearly differentiated. (5) Discuss the possible environmental effects of drilling the exploratory shaft, excavating drifts in salt, and drilling boreholes as part of site characterization. Mitigation activities should be designed to counter specific potential impacts. High priority should be given to minimizing groundwater contamination and restoring the surface to a condition consistent with the proposed land use following completion of characterization activities at sites not chosen for repository construction. (6) Define ambiguous technical terms, either in the text when first introduced or in an appended glossary.

Fenster, D.F.; Schubert, J.P.; Zellmer, S.D.; Harrison, W.; Simpson, D.G.; Busch, J.S.

1984-07-01

92

Radioactive waste shredding: Preliminary evaluation  

SciTech Connect

The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size.

Soelberg, N.R.; Reimann, G.A.

1994-07-01

93

Leveraging Radioactive Waste Disposal at WIPP for Science  

Microsoft Academic Search

Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments.

N. T. Rempe

2008-01-01

94

Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report  

SciTech Connect

A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

Miller, C.M.; Loomis, G.G.; Prewett, S.W.

1997-11-01

95

Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory.  

National Technical Information Service (NTIS)

The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasi...

S. M. Crosley D. K. Lorenzo J. E. Van Cleve R. L. Gay K. M. Barclay

1993-01-01

96

Radioactive Waste Incineration: Status Report  

SciTech Connect

Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

Diederich, A.R.; Akins, M.J. [WorleyParsons, Reading, PA (United States)

2008-07-01

97

Processing of Radioactive Waste Solutions in a Vacuum Evaporator-Crystallizer.  

National Technical Information Service (NTIS)

Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallize...

J. C. Petrie R. I. Donovan R. E. Van der Cook W. R. Christensen

1975-01-01

98

Impact of High-Level-Radioactive Wastes thermal output on repository design.  

National Technical Information Service (NTIS)

France is now investigating a number of deep geological formations (clay, granite, salt and schist) for disposal of long half-life radioactive waste, notably vitrified high-level waste (HLW) packages which would be stacked in vertical boreholes extending ...

J. L. Girotto L. Chaudon J. M. Hoorelbeke

1992-01-01

99

Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design  

Microsoft Academic Search

Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package\\/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres

D. F. Hambley; J. E. Russell; R. G. Whitfield; L. D. McGinnis; W. Harrison; C. H. Jacoby; T. R. Bump; D. Z. Mraz; J. S. Busch; L. E. Fischer

1987-01-01

100

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

Microsoft Academic Search

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria

1992-01-01

101

Source, Transport and Dumping of Radioactive Waste.  

National Technical Information Service (NTIS)

The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described,...

1980-01-01

102

Radioactive waste disposal in granite  

Microsoft Academic Search

The principal geotechnical problems in selecting a repository site for radioactive waste disposal in granite are to evaluate the suitability of the rock mass in terms of: (1) fracture characteristics, (2) thermomechanical effects, and (3) fracture hydrology. Underground experiments in a mine in Sweden have provided an opportunity to study these problems. The research has demonstrated the importance of hydrogeology

P. A. Witherspoon; D. J. Watkins

1982-01-01

103

Radioactive waste treatment technologies and environment  

Microsoft Academic Search

The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is

Jan HORVATH; Dusan KRASNY

2007-01-01

104

Effects of Heat Generation on Nuclear Waste Disposal in Salt  

NASA Astrophysics Data System (ADS)

Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

Clayton, D. J.

2008-12-01

105

Disposal of NORM waste in salt caverns.  

National Technical Information Service (NTIS)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existi...

J. A. Veil K. P. Smith D. Tomasko D. Elcock D. Blunt

1998-01-01

106

Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's report on the organic geochemistry of deep groundwaters from the Palo Duro Basin, Texas  

NASA Astrophysics Data System (ADS)

The Office of Nuclear Waste Isolation's (ONWI's) final report entitled the organic geochemistry of deep ground waters from the Palo Duro Basin, Texas, dated September 1983, is reviewed. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

Fenster, D. F.; Brookins, D. G.; Harrison, W.; Seitz, M. G.; Lerman, A.; Stamoudis, V. C.

1984-08-01

107

Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas  

SciTech Connect

This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

1984-08-01

108

Determination of a Radioactive Waste Classification System.  

National Technical Information Service (NTIS)

Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for...

J. J. Cohen W. C. King

1978-01-01

109

Disposal of Savannah River Plant waste salt  

Microsoft Academic Search

Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO, NaNO, and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture,

Dukes

1982-01-01

110

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31

111

Testing of stripping columns for the removal of benzene from aqueous radioactive salt solution  

SciTech Connect

Radioactive high level wastes (HLW) generated from production of special nuclear materials at the Savannah River Site (SRS) are held in interim storage in 51 underground, million gallon tanks. Radioactive cesium ({sup 137}Cs) is segregated by evaporation of aqueous waste solution for interim storage in a salt matrix comprised of Na and K salts or in concentrated salt solution. The saltcake will be dissolved and {sup 137}Cs will be separated from the nonradioactive salts in solution in the In-Tank Precipitation (ITP) Process. The cesium will be combined with other radioactive species and glass formers to be melted and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). The salt solution remaining after decontamination in the ITP process will be incorporated into grout for disposal at the site`s Saltstone facility. In the ITP facility, sodium tetraphenylborate (STPB) will be added to precipitate the cesium. Potassium in the waste solution also reacts with STPB and precipitates. Due to radiolytic and chemical degradation of the tetraphenylborate (TPB) precipitate, benzene is generated. The benzene dissolves into the decontaminated salt solution (DSS) and into water (WW) used to {open_quotes}wash{close_quotes} the precipitate to lower the soluble salt content of the slurry. Safety and processing requirements for disposal of the DSS and for temporary storage of the WW dictate that the benzene concentration be reduced.

Georgeton, G.K.; Taylor, G.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Gaughan, T.P. [Elf Atochem North America, Inc., King of Prussia, PA (United States)] [and others

1995-06-27

112

Overview of Radioactive Waste Disposal at Sea  

Microsoft Academic Search

For hundreds of years, the seas have been used as a place to dispose of wastes from human activities. Although no high level radioactive waste has been disposed of into the sea, variable amounts of packaged low level radioactive wastes have been dumped at 47 sites in the northern part of the Atlantic and Pacific Oceans. in 1946 the first

Dominique Calmet

1992-01-01

113

Acid digestion of combustible radioactive wastes  

Microsoft Academic Search

The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic waste treatment, there was no detectable radionuclide carryover into the exhaust off-gas. The plutonium decontamination factor (DF) between the digester and the second off-gas tower

C. R. Allen; R. E. Lerch; M. D. Crippen; R. G. Cowan

1982-01-01

114

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

SciTech Connect

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10

115

Microbiological treatment of radioactive wastes  

SciTech Connect

The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

Francis, A.J.

1992-12-31

116

Liquid radioactive waste subsystem design description  

SciTech Connect

The Liquid Radioactive Waste Subsystem provides a reliable system to safely control liquid waste radiation and to collect, process, and dispose of all radioactive liquid waste without impairing plant operation. Liquid waste is stored in radwaste receiver tanks and is processed through demineralizers and temporarily stored in test tanks prior to sampling and discharge. Radwastes unsuitable for discharge are transferred to the Solid Radwaste System.

NONE

1986-06-01

117

Hydrological methods preferentially recover cesium from nuclear waste salt cake  

SciTech Connect

The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs.

Brooke, J.N.; Hamm, L.L.

1997-05-01

118

Canister arrangement for storing radioactive waste  

DOEpatents

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01

119

COMPARATIVE COSTS FOR FINAL DISPOSAL OF RADIOACTIVE SOLIDS IN CONCRETE VAULTS, GRANITE, AND SALT FORMATIONS  

Microsoft Academic Search

Costs were estimated for permanent storage of calcined radioactive ; wastes in concrete vaults and in rooms mined out of granite formations. In ; comparison with previously estimated costs for storage in salt mines, costs for ; concrete vaults were five to seven times as much and for storage in granite about ; twice as much. This economic advantage, as

J. J. Perona; R. L. Bradshaw; J. O. Blomeke

1963-01-01

120

Molten salt processing of mixed wastes with offgas condensation  

SciTech Connect

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. (Lawrence Livermore National Lab., CA (USA)); Gay, R.L.; Stewart, A.; Yosim, S. (Rockwell International Corp., Canoga Park, CA (USA). Energy Systems Group)

1991-05-13

121

Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory  

Microsoft Academic Search

The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level

S. M. Crosley; D. K. Lorenzo; J. E. Van Cleve; R. L. Gay; K. M. Barclay; J. C. Newcomb; S. J. Yosim

1993-01-01

122

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01

123

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31

124

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31

125

The safe disposal of radioactive wastes  

PubMed Central

A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive wastereactor wastes and wastes arising from the use of radioisotopes in hospitals and in industryand discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments.

Kenny, A. W.

1956-01-01

126

Repository for radioactive waste-vault backfill  

US Patent & Trademark Office Database

A method of forming a repository for radioactive waste comprises locating the waste in a subterranean vault and backfilling the vault with a filling material which is water permeable and provides a substantial reservoir of available alkalinity such that any ground water permeating through the filling material to the waste has a pH of at least 10.5.

Hooper; Alan James (Gloucester, GB)

1998-04-14

127

EVALUATION OF BITUMENS FOR RADIOACTIVE WASTE IMMOBILIZATION  

Microsoft Academic Search

The Brazilian research center CDTN - Centro de Desenvolvimento da Tecnologia Nuclear - has been carrying out research on the incorporation of radioactive wastes in different types of bitumen, aiming to obtain monolithic, homogeneous, chemically and mechanically stable waste forms. The solidification of waste is mandatory if compliance with the safety standards for transport, storage and disposal are sought. The

Marcia Flavia; Righi Guzella; Tnia Valria da Silva

128

Radioactive Waste: Resources for Environmental Literacy  

NSDL National Science Digital Library

Since World War II, hundreds of thousands of tons of radioactive materials have been produced in the United States. How we will dispose of nuclear waste is a controversial issue with a large technical component. This book provides a useful resource for enhancing student understanding of the physics of radioactivity as well as the storage and disposal of radioactive waste. It encourages students to discuss these complex environmental issues using arguments based on the science behind issues related to radioactivity, technology, risk assessment, and tradeoffs.

Council, Environmental L.; National Science Teachers Association (NSTA)

2007-05-16

129

Evaluation of Terrorist Interest in Radioactive Wastes  

SciTech Connect

Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in a terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the analysis is that environmental management generated radioactive wastes have substantially less impact than radioactive sources if dispersed by terrorist-induced explosion or fire. From a health standpoint, the impact is very small. However, there is no basis to conclude that wastes are totally unattractive for use in a disruptive or economic damage event. Waste managers should be cognizant of this potential and take measures to ensure security of stored waste and waste shipments. (authors)

McFee, J.N.; Langsted, J.M.; Young, M.E. [Shaw Environmental and Infrastructure, Inc., 9201 East Dry Creek Rd. Centennial, CO 80112 (United States); Day, J.E. [Shaw Environmental and Infrastructure, Inc., 1725 Duke St, Suite 400, Alexandria, VA 22314 (United States)

2006-07-01

130

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22

131

Alternative Waste Forms for Electro-Chemical Salt Waste  

SciTech Connect

This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

2009-10-28

132

Low-Level Radioactive Biomedical Wastes.  

National Technical Information Service (NTIS)

A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from usin...

G. W. Casarett

1978-01-01

133

Legal Approach to Radioactive Waste Management.  

National Technical Information Service (NTIS)

The authors of this paper review the major legal problems raised by radioactive waste management. They stress the complexity of such problems by posing three main queries: surveillance or no surveillance; liability or no liability and finally internationa...

B. Derche P. Rocamora A. Salelles

1983-01-01

134

Nuclear waste: our radioactive hot potato  

Microsoft Academic Search

Nuclear industry inevitably produces nuclear waste, whose prudent, prompt and economic disposal is important to the national welfare. Technological problems of containment and isolation have apparently been solved. Underground or geologic disposal sites have the potential form permanent isolation, with salt, basalt, granite, shale, and tuff currently receiving principal attention as repository host rocks. Bedded salt deposits may offer the

Conselman

1984-01-01

135

Simulation of Humidity Transport in Rock Salt in a Temperature Field. Contribution to the Study of Problems Involved in High-Level Radioactive Waste Disposal.  

National Technical Information Service (NTIS)

This contribution studies the humidity transport in rock salt heated up above natural temperature, develops the physical models and suitable computer programs. Two temperature field experiments carried out in the Asse mine - i.e. Temperature Experiment 5 ...

M. Schlich

1986-01-01

136

Quality Assurance Program: Argonne Peer Review Activities for the Salt Host-Rock Portion of the Civilian Radioactive Waste Management Program.  

National Technical Information Service (NTIS)

This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project ...

D. E. Edgar

1986-01-01

137

MIXING MODELING ANALYSIS FOR SRS SALT WASTE DISPOSITION  

SciTech Connect

Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended liquid in the Salt Disposition Integration (SDI) facility. The results will also help validate the anticipated performance of the pump vendor's design.

Lee, S.

2011-01-18

138

Salt caverns for oil field waste disposal.  

SciTech Connect

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01

139

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

140

Hazardous chemical and radioactive wastes at Hanford  

SciTech Connect

The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

Keller, J.F.; Stewart, T.L.

1991-07-01

141

Method for solidification of radioactive and other hazardous waste  

SciTech Connect

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01

142

Radioactive waste management in a hospital.  

PubMed

Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

2010-01-01

143

77 FR 10401 - Low-Level Radioactive Waste Management Issues  

Federal Register 2010, 2011, 2012, 2013

...NRC-2011-0012] Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory...assessment as part of its radioactive waste management decision-making. The DOE...Assessment Directorate, Division of Waste Management and Environmental...

2012-02-22

144

77 FR 26991 - Low-Level Radioactive Waste Management Issues  

Federal Register 2010, 2011, 2012, 2013

...3150-AI92 Low-Level Radioactive Waste Management Issues AGENCY: Nuclear Regulatory...and Low-Level Radioactive Waste Management'' (76 FR 50500; August...Assessment Directorate, Division of Waste Management and Environmental...

2012-05-08

145

Developing and testing electrochemical methods for treating metal salts, cyanides and organic compounds in waste streams  

Microsoft Academic Search

Electrochemical methods to process radioactive and hazardous (mixed) wastes were studied at a bench scale. Cadmium, copper, mercury, and chromium salts, cyanides, and simple organic compounds were used in the tests. Effective conditions were found to process these waste components by electrolysis. The equipment used in the tests included flow-through cells, a membrane cell, and a graphite packed bed cell.

J. Dziewinski; S. Marczak; E. Nuttall; G. Purdy; W. Smith; J. Taylor; C. Zhou

1998-01-01

146

Radioactive-Waste Incineration at Purdue University.  

National Technical Information Service (NTIS)

A study conducted at Purdue University to evaluate the feasibility of using a small (45 kg/h), inexpensive (less than $10K) incinerator for incinerating low-level radioactive waste is described. An oil-fired, dual-chamber pathological waste incinerator wa...

1982-01-01

147

Notes on Incineration of Radioactive Waste.  

National Technical Information Service (NTIS)

The problem of finding commercial sites for the disposal of low-level radioactive waste and temporary storage of residues containing transuranic elements has led to research on using a method to reduce the volume of the waste originating from nuclear inst...

L. M. Martin

1984-01-01

148

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11

149

Reduction of INTEC Analytical Radioactive Liquid Wastes  

SciTech Connect

This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

V. J. Johnson; J. S. Hu; A. G. Chambers

1999-06-01

150

Reduction of INTEC Analytical Radioactive Liquid Waste  

SciTech Connect

This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

1999-06-01

151

Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins  

SciTech Connect

Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

1997-07-07

152

Radiation damage in a rock salt nuclear waste repository  

SciTech Connect

In many countries rock salt formations are candidates to host nuclear waste repositories. One of the aspects that needs careful consideration before such a repository can be put into operation is the formation of radiation damage din the salt. A model has been developed that provides a fundamental understanding of the buildup of radiation damage in NaCl. This model is based on kinetic rate reactions and takes into account the effect of impurities and the colloid nucleation stage on the growth of metallic sodium colloids. With this model, the authors have calculated the amounts of NaCl that can be converted into metallic sodium and molecular Cl[sub 2] for various options for repository design and intermediate storage times. It is shown that the concentrations of these defect aggregates, even very close to the high-level radioactive waste containers with steel walls 5 mm-thick, will be limited to a few mole percent.

Soppe, W.J.; Prij, J. (Netherlands Energy Research Foundation, Petten (Netherlands))

1994-09-01

153

Quality Assurance Program: Argonne peer review activities for the salt host-rock portion of the Civilian Radioactive Waste Management Program  

Microsoft Academic Search

This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project Office's needs and directives. Implementation of the QA procedures described herein establishes an operational framework so that task activities are traceable and the

Edgar

1986-01-01

154

Apparatus and method for radioactive waste screening  

SciTech Connect

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04

155

Solution-mined salt caverns for the disposal of hazardous chemical wastes  

Microsoft Academic Search

The need for storage caverns (oil, gas) and depositories (radioactive waste, toxic chemical waste) is rising world-wide. Rock\\u000a salt (halite) formations are particularly suitable for the construction of cavities for such purposes. Rock salt is practically\\u000a impermeable to gases and liquids. The solution mining method provides the means for the creation of large storage capacities\\u000a at economic costs and, due

M. Langer; M. Wallner

1988-01-01

156

Hazardous and radioactive waste incineration studies  

SciTech Connect

Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

1981-01-01

157

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01

158

Simulation of salt waste evaporation/crystallization  

SciTech Connect

The database of ProChem software has been enhanced to account for the formation of the mineral, Burkite which can form in alkaline tank wastes during evaporation. This mineral was not suspected until recent evaporation/crystallization studies suggested its presence. The enhanced data base will predict its occurrence and realm of existence. If salt cake temperatures drop below 30[degrees]C the Burkite phase is unstable toward hydrated sodium carbonates and sulfates. ProChem will not predict if this phase is more or less rapidly dissolved than its component salts. The enhanced database improves our ability to simulate waste chemistry.

Orebaugh, E.G.

1993-01-22

159

Simulation of salt waste evaporation/crystallization  

SciTech Connect

The database of ProChem software has been enhanced to account for the formation of the mineral, Burkite which can form in alkaline tank wastes during evaporation. This mineral was not suspected until recent evaporation/crystallization studies suggested its presence. The enhanced data base will predict its occurrence and realm of existence. If salt cake temperatures drop below 30{degrees}C the Burkite phase is unstable toward hydrated sodium carbonates and sulfates. ProChem will not predict if this phase is more or less rapidly dissolved than its component salts. The enhanced database improves our ability to simulate waste chemistry.

Orebaugh, E.G.

1993-01-22

160

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30

161

Strain Related Radiation Damage Measurements in Rock Salt for Waste Disposal Applications. Quarterly Report, July 1-September 30, 1979.  

National Technical Information Service (NTIS)

Radiation damage in natural rock salt, synthetic NaCl crystals, and other minerals of interest for radioactive waste disposal application was studied. The following topics were covered: (1) the role of strain applied prior to irradiation on the radiation-...

K. J. Swyler L. J. Teutonico P. W. Levy

1979-01-01

162

Strain Related Radiation Damage Measurements in Rock Salt for Waste Disposal Applications. Quarterly Report, April 1, 1979-June 30, 1979.  

National Technical Information Service (NTIS)

Radiation damage in natural rock salt, synthetic NaCl crystals, and other minerals of interest for radioactive waste disposal application was studied. The following topics were covered: (1) temperature dependence of radiation induced F-center formation in...

K. J. Swyler L. J. Teutonico P. W. Levy

1979-01-01

163

40 CFR 227.30 - High-level radioactive waste.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection... Definitions § 227.30 High-level radioactive waste. High-level radioactive waste means the aqueous waste resulting...

2013-07-01

164

Storing solid radioactive wastes at the Savannah River Plant  

Microsoft Academic Search

The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste

J. H. Horton; J. C. Corey

1976-01-01

165

Hanford Supplemental Waste Processing Technologies - Fiscal Year 2003 Recommendations for Selective Dissolution Studies and Radioactive Waste Preparation  

SciTech Connect

This document describes two tasks that support CH2M Hill Hanford Group's (CHG) Mission Acceleration Initiative (MAI) testing and demonstration/deployment of supplemental technologies, but the tasks are not to be part of the vendor's scope. The vendor's will be provided samples of radioactive waste for their testing. This document describes the preparation of the radioactive waste samples. CHG is responsible to retrieve the saltcake waste from the single-shell tanks and expects to dissolve the waste using water dissolution. When water dissolves the waste the more soluble components of the waste (including cesium) will dissolve first, leaving the lesser soluble components of the waste in the tank. This phenomenon, termed selective dissolution, is expected to provide a partial separation of cesium from the waste. This document also describes a program involving tank dissolution demonstrations, modeling, and laboratory testing to more completely understand how the composition of the retrieved salt cake waste will change during the course of retrieval.

Josephson, Gary B.; Rassat, S R.; Lumetta, Gregg J.; Gauglitz, Phillip A.

2003-06-30

166

Quality Assurance Program: Argonne peer review activities for the salt host-rock portion of the Civilian Radioactive Waste Management Program  

SciTech Connect

This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project Office's needs and directives. Implementation of the QA procedures described herein establishes an operational framework so that task activities are traceable and the activities and decisions that influence the overall quality of the peer review process and results are fully documented. 56 refs., 5 figs., 6 tabs.

Edgar, D.E.

1986-08-12

167

The UK Committee on Radioactive Waste Management.  

PubMed

The UK Committee on Radioactive Waste Management is charged with recommending to Government, by July 2006, options for the long term management of the UK's radioactive waste legacy. These options should inspire public confidence. Now, more than halfway into the time allotted, we, as two former members of the Committee, express our concerns at the wayward approach that has been adopted. The Committee has placed emphasis on gaining public confidence but this has been done at the expense of recruiting the best scientific expertise in the management of radioactive waste, an act which we believe will actually undermine public confidence. Furthermore, given also the immense importance of this decision to public safety, national security and the national interest, we believe urgent steps should be taken to review the Committee's process, its management and its sponsorship. PMID:16286694

Baverstock, Keith; Ball, David J

2005-09-06

168

Packaging radioactive wastes for geologic disposal  

SciTech Connect

The M&O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed.

Benton, H.A.

1996-08-01

169

Radioactive waste management in the former USSR  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

170

Data base for radioactive waste management: waste source options report  

SciTech Connect

This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 2 provides a summary of low level waste volumes and characteristics as projected to the year 2000, in addition to characterizing treatment options for this waste.

Wild, R.E.; Oztunali, O.I.; Clancy, J.J.; Pitt, C.J.; Picazo, E.D.

1981-11-01

171

Molten salt destruction of energetic waste materials  

DOEpatents

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01

172

Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.  

PubMed

Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered. PMID:21726891

Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

2011-07-02

173

Annual radioactive waste tank inspection program - 1992  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

McNatt, F.G.

1992-12-31

174

Annual radioactive waste tank inspection program - 1996  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01

175

Evaluation of Terrorist Interest in Radioactive Wastes  

Microsoft Academic Search

Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed

J. N. McFee; J. M. Langsted; M. E. Young; J. E. Day

2006-01-01

176

Annual Radioactive Waste Tank Inspection Program - 1997  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

McNatt, F.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-05-01

177

Clay barriers in radioactive waste disposal  

Microsoft Academic Search

Deep geological is one of the preferred options for the disposal of high level radioactive waste. In most designs, the canisters placed in drifts or boreholes are surrounded by an engineered barrier usually made of compacted swelling clay. The barrier undergoes severe heating from the canisters and hydration from the host rock. In this situation a number of interacting thermal,

Antonio Gens; Sebasti Olivella

2001-01-01

178

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27

179

Radioactive waste disposal in granite. [Stripa mine  

Microsoft Academic Search

The principal geotechnical problems in selecting a repository site for radioactive waste disposal in granite are to evaluate the suitability of the rock mass in terms of: (1) fracture characteristics, (2) thermomechanical effects, and (3) fracture hydrology. Underground experiments in a mine in Sweden have provided an opportunity to study these problems. The research has demonstrated the importance of hydrogeology

P. A. Witherspoon; D. J. Watkins

1982-01-01

180

RADIOACTIVE WASTE DISPOSAL IN THE RUSSIAN FEDERATION  

Microsoft Academic Search

There are currently few licensed repositories for disposal of radioactive waste within the Russian Federation. This impasse has evolved due to extreme concerns by local and state governments about the safety of such facilities and the lack of coordinated action by the many ministries and agencies that each have some responsibility for the design, siting, licensing and operation of these

Nikolai Laverov; Yuriy Shiyan; Paul Childress

2000-01-01

181

Brine migration in salt and its implications in the geologic disposal of nuclear waste  

SciTech Connect

This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

Jenks, G.H.; Claiborne, H.C.

1981-12-01

182

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Radioactive waste injection wells. 147.3005...Other New Mexico Tribes § 147.3005 Radioactive waste injection wells. Notwithstanding...operators of wells used to dispose of radioactive waste (as defined in 10 CFR part...

2013-07-01

183

Beneficial role of conflict in radioactive waste management programs  

Microsoft Academic Search

Of the technical, political, and social problems associated with radioactive waste management, least is known about the latter two. Lay persons tend to generalize negative attitudes about other nuclear activity to radioactive waste management. Thus, conflict appears inevitable between the general public, citizen action groups, and decision-makers on radioactive waste management. The basis of conflict, we believe, can be found

B. A. Payne; R. G. Williams

1985-01-01

184

Handbook of high-level radioactive waste transportation  

SciTech Connect

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01

185

Radioactive Waste Burial Grounds. Environmental Information Document  

SciTech Connect

This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations. The closure options considered for the Radioactive Waste Burial Grounds are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

Jaegge, W.J.; Kolb, N.L.; Looney, B.B.; Marine, I.W.; Towler, O.A.; Cook, J.R.

1987-03-01

186

Chemistry and technology of radioactive waste management the IAEA perspective  

NASA Astrophysics Data System (ADS)

The paper refers the consideration of chemical composition of radioactive waste in selection of particular method and technology for waste treatment and conditioning, importance of physicochemical parameters of waste processing techniques for optimisation of waste processing to produce waste form of appropriate quality. Consideration of waste chemistry is illustrated by several IAEA activities on radioactive waste management and by outlining the scope of some selected technical reports on different waste management subjects. Different components of the IAEA activities on radioactive waste management and on technology transfer are presented and discussed.

Efremenkov, V. M.

2003-01-01

187

Soluble pig for radioactive waste transfer lines  

SciTech Connect

Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) materials research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs.

Ohl, P.C., Westinghouse Hanford

1996-12-02

188

Greater confinement disposal of radioactive wastes  

SciTech Connect

Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics.

Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

1985-01-01

189

Control of radioactive waste-glass melters  

SciTech Connect

Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

Bickford, D.F. (Westinghouse Savannah River Co., Aiken, SC (USA)); Hrma, P. (Case Western Reserve Univ., Cleveland, OH (USA)); Bowan, B.W. II (West Valley Nuclear Services Co., Inc., West Valley, NY (USA))

1990-01-01

190

Simulation of salt waste evaporation\\/crystallization  

Microsoft Academic Search

The database of ProChem software has been enhanced to account for the formation of the mineral, Burkite which can form in alkaline tank wastes during evaporation. This mineral was not suspected until recent evaporation\\/crystallization studies suggested its presence. The enhanced data base will predict its occurrence and realm of existence. If salt cake temperatures drop below 30°C the Burkite phase

Orebaugh

1993-01-01

191

Simulation of salt waste evaporation\\/crystallization  

Microsoft Academic Search

The database of ProChem software has been enhanced to account for the formation of the mineral, Burkite which can form in alkaline tank wastes during evaporation. This mineral was not suspected until recent evaporation\\/crystallization studies suggested its presence. The enhanced data base will predict its occurrence and realm of existence. If salt cake temperatures drop below 30[degrees]C the Burkite phase

Orebaugh

1993-01-01

192

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01

193

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01

194

Geologic disposal of radioactive waste: program plan for field testing  

SciTech Connect

A series of program plans is being developed to address the field testing needs for various candidate repository host rocks: salt, granitic rocks, tuff, and basalt. This document, NWTS-80(1), is the first plan of the series, and is intended to provide the framework on which subsequent, rock-specific program plans will be based. The series of Field Testing Program Plans (the NWTS-80 series) is as follows: NWTS-80(1) - Geologic Disposal of Radioactive Waste: Program Plan for Field Testing; NWTS-80(2) - Program Plan for Field Tests in Salt; NWTS-80(3) - Program Plan for Field Tests in Granitic Rock; NWTS-80(4) - Program Plan for Field Tests in Basalt at Hanford; and NWTS-80(5) - Program Plan for Field Tests in Tuff at Nevada Test Site. These plans will be revised on a regular basis as issues are resolved or new ones identified, to reflect the evolution of the Field Testing Program.

NONE

1981-04-01

195

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01

196

Combustible radioactive waste treatment by incineration and chemical digestion  

NASA Astrophysics Data System (ADS)

Present and planned combustible radioactive waste treatment systems in the U.S. are reviewed. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L. A.; Allen, C. R.; Crippen, M. D.

1980-05-01

197

Combustible radioactive waste treatment by incineration and chemical digestion  

SciTech Connect

A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

Stretz, L.A.; Crippen, M.D.; Allen, C.R.

1980-05-28

198

Waste package reference conceptual designs for a repository in salt  

SciTech Connect

This report provides the reference conceptual waste package designs for the Office of Nuclear Waste Isolation to baseline these designs, thereby establishing the configuration and interface controls necessary, within the Civilian Radioactive Waste Management Program, formerly the National Waste Terminal Storage Program, to proceed in an orderly manner with preliminary design. Included are designs for the current reference defense high-level waste form from the Savannah River Plant, an optimized commercial high-level waste form, and spent fuel which has been disassembled and compacted into a circular bundle containing either 12 pressurized-water reactor or 30 boiling-water reactor assemblies. For compacted spent fuel, it appears economically attractive to standardize the waste package diameter for all fuel types. The reference waste packages consist of the containerized waste form, a low carbon steel overpack, and, after emplacement, a cover of salt. The overpack is a hollow cylinder with a flat head welded to each end. Its design thickness is the sum of the structural thickness required to resist the 15.4-MPa lithostatic pressure plus the corrosion allowance necessary to assure the required structural thickness will exist through the 1000-year containment period. Based on available data and completed analyses, the reference concepts described in this report satisfy all requirements of the US Department of Energy and the US Nuclear Regulatory Commission with reasonable assurance. In addition, sufficient design maturity exists to form a basis for preliminary design; these concepts can be brought under configuration control to serve as reference package designs. Development programs are identified that will be required to support these designs during the licensing process. 19 refs., 37 figs., 31 tabs.

Not Available

1986-02-01

199

CHARACTERIZATION OF HIGH PHOSPHATE RADIOACTIVE TANK WASTE AND SIMULANT DEVELOPMENT  

SciTech Connect

A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for engineered-scaled testing of pretreatment processes in a non-radiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from irradiated nuclear fuel. The bismuth phosphate sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium. The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus present in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate species. The bismuth in the sludge solids is best described as bismuth ferrite, BiFeO3. Infrared spectral data, microscopy, and thermal analysis data are presented to support these conclusions. The behavior of phosphorus during caustic leaching of the bismuth phosphate sludge solids is also discussed.

Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.

2009-10-15

200

Geochemical Aspects of Radioactive Waste Disposal  

NASA Astrophysics Data System (ADS)

The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, Radioactive Waste Management, is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.

Moody, Judith B.

1984-04-01

201

System for handling and storing radioactive waste  

DOEpatents

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19

202

Delivery system for molten salt oxidation of solid waste  

Microsoft Academic Search

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a

William A. Brummond; Dwight V. Squire; Jeffrey A. Robinson; Palmer A. House

2002-01-01

203

THE CURRENT RADIOACTIVE WASTE MANAGEMENT IN ROMANIA  

Microsoft Academic Search

In 1957, Romania commissioned a Russian-designed VVR-S research reactor used for scientific activities and radioisotope production. This reactor is now planned for decommissioning. An American TRIGA -type research reactor has been in use since 1978. The first Canadian CANDU-6 type power reactor was commissioned in December 1996 and is in commercial operation. The radioactive waste management in Romania followed decentralized

V. Andrei; F. Glodeanu; I. Rotaru; T. Chirica

2000-01-01

204

Progress of radioactive waste management in Lithuania  

Microsoft Academic Search

The only one nuclear power plant in the Republic of Lithuania Ignalina Nuclear Power Plant contains two RBMK-1500 water-cooled graphite-moderated channel-type power reactors. The first and the second reactors were shut down by the end of 2004 and by the end of 2009, respectively. During operation, the power plant has accumulated large quantities of radioactive waste, including spent nuclear

P. Poskas; J. E. Adomaitis; V. Ragaisis; V. Simonis; A. Smaizys; R. Kilda; D. Grigaliuniene

205

Performance assessment of radioactive waste repositories  

Microsoft Academic Search

The current plans for permanent disposal of radioactive waste call for its emplacement in deep underground repositories mined from geologically stable rock formations. The U.S. Nuclear Regulatory Commission and U.S. Environmental Protection Agency have established regulations setting repository performance standards for periods of up to 10,000 years after disposal. Compliance with these regulations will be based on a performance assessment

J. E. Campbell; R. M. Cranwell

1988-01-01

206

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21

207

Cation segregation in simulated radioactive-waste zeolite-A mixtures.  

National Technical Information Service (NTIS)

Segregation of cations based on size is observed in samples of zeolite-A loaded with simulated radioactive-waste ((approximately)5 wt.% Li, K, Cs and Ba, 1 wt.% Sr and Y, <1 wt.% Na) prepared from chloride salts. In contrast to traditional Na zeolite-A, f...

J. W. Richardson M. A. Lewis B. R. McCart

1994-01-01

208

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

SciTech Connect

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25

209

Waste form dissolution in bedded salt  

SciTech Connect

A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon/sub 0/) K/sub D//epsilon/sub 0/) (years) epsilon/sub 0/ is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO/sub 2/. Steady state rates between 5 x 10/sup -5/ and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10/sup -7/ and 5 x 10/sup -3/ (g/year) with an overpack having porosity of 10/sup -2/.

Kaufman, A.M.

1980-09-16

210

Stirring system for radioactive waste water storage tank  

Microsoft Academic Search

A stirring system for 100-m[sup 3] radioactive liquid waste tanks was constructed to unify radioactive concentrations in the tank. The stirring system is effective in certifying that the radioactive concentrations in the tanks are less than the legal limits before they are drained away as waste liquid. This system is composed of discharge units, pipe lines, and a controller. The

Yoshimune Ogata; Kunihide Nishizawa

1999-01-01

211

Delivery system for molten salt oxidation of solid waste  

DOEpatents

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01

212

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

SciTech Connect

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20

213

Risk-informed radioactive waste classification and reclassification.  

PubMed

Radioactive waste classification systems have been developed to allow wastes having similar hazards to be grouped for purposes of storage, treatment, packaging, transportation, and/or disposal. As recommended in the National Council on Radiation Protection and Measurements' Report No. 139, Risk-Based Classification of Radioactive and Hazardous Chemical Wastes, a preferred classification system would be based primarily on the health risks to the public that arise from waste disposal and secondarily on other attributes such as the near-term practicalities of managing a waste, i.e., the waste classification system would be risk informed. The current U.S. radioactive waste classification system is not risk informed because key definitions--especially that of high-level waste--are based on the source of the waste instead of its inherent characteristics related to risk. A second important reason for concluding the existing U.S. radioactive waste classification system is not risk informed is there are no general principles or provisions for exempting materials from being classified as radioactive waste which would then allow management without regard to its radioactivity. This paper elaborates the current system for classifying and reclassifying radioactive wastes in the United States, analyzes the extent to which the system is risk informed and the ramifications of its not being so, and provides observations on potential future direction of efforts to address shortcomings in the U.S. radioactive waste classification system as of 2004. PMID:17033455

Croff, Allen G

2006-11-01

214

Summary of radioactive solid waste received in the 200 Areas  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office. These facilities include radioactive sold waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; McCann, D.C.; Poremba, B.E.

1992-06-01

215

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23

216

Treatment of Difficult Wastes with Molten Salt Oxidation  

SciTech Connect

Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid-1990s, the U.S. Army Defense Ammunition Center (DAC) and the Department of Energy (DOE) have jointly invested in MSO development at the Lawrence Livermore National Laboratory (LLNL). LLNL first demonstrated the MSO process for the effective destruction of explosives, explosives-contaminated materials, and other wastes on a 1.5-kg/hr bench-scale unit, and then in an integrated MSO facility capable of treating 8 kg/hr of low-level radioactive mixed wastes. Several MSO systems have been built with sizes up to 10 ft in height and 16 inches in diameter. LLNL in 2001 completed a MSO plant for DAC for the destruction of explosives-contaminated sludge and explosives-contaminated carbon. We will present in this paper our latest demonstration data and our operational experience with MSO.

Hsu, P C; Kwak, S

2003-02-21

217

Radioactive Waste Disposal Implications of Extending Part IIA to cover Radioactively Contaminated Land  

Microsoft Academic Search

A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA to address radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation.

DJ Nancarrow

218

Radioactive waste vitrification offgas analysis proposal  

SciTech Connect

Further validation of the Hanford Waste Vitrification Plant (HWVP) feed simulants will be performed by analyzing offgases during crucible melting of actual waste glasses and simulants. The existing method of vitrifying radioactive laboratory-scale samples will be modified to allow offgas analysis during preparation of glass for product testing. The analysis equipment will include two gas chromatographs (GC) with thermal conductivity detectors (TCD) and one NO/NO{sub x} analyzer. This equipment is part of the radioactive formating offgas system. The system will provide real-time analysis of H{sub 2}, O{sub 2}, N{sub 2}, NO, N{sub 2}O, NO{sub 2}, CO, CO{sub 2}, H{sub 2}O, and SO{sub 2}. As with the prior melting method, the product glass will be compatible with durability testing, i.e., Product Consistency Test (PCT) and Material Characterization Center (MCC-1), and crystallinity analysis. Procedures have been included to ensure glass homogeneity and quenching. The radioactive glass will be adaptable to Fe{sup +2}/{Sigma}Fe measurement procedures because the atmosphere above the melt can be controlled. The 325 A-hot cell facility is being established as the permanent location for radioactive offgas analysis during formating, and can be easily adapted to crucible melt tests. The total costs necessary to set up and perform offgas measurements on the first radioactive core sample is estimated at $115K. Costs for repeating the test on each additional core sample are estimated to be $60K. The schedule allows for performing the test on the next available core sample.

Nelson, C.W.; Morrey, E.V.

1993-11-01

219

High level radioactive waste: Doing something about it  

Microsoft Academic Search

In addition to a growing inventory of spent power reactor fuel, there are approximately 100 million gallons of high-level radioactive waste (HLW) containing more than one billion curies of radioactivity stored in the United States today. This waste has been generated mainly from the production of plutonium and tritium and is primarily located on three federal sites. The waste is

G. G. Wicks; D. F. Bickford

1989-01-01

220

Risk methodology for geologic disposal of radioactive waste  

Microsoft Academic Search

Steps to be taken in the development of a methodology for the assessment of the long-term risks from radioactive waste disposal in deep, geologic media are outlined. The first phase involves the development of analytical models to represent the processes by which radioactive waste might leave the waste repository, enter the surface environment and eventually reach humans, and the definition

J. E. Campbell; R. T. Dillon; M. S. Tierney; H. T. Davis; P. E. McGrath; F. J. Pearson Jr.; H. R. Shaw; J. C. Helton; F. A. Donath

1978-01-01

221

Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.  

ERIC Educational Resources Information Center

|This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and

HAZWRAP, The Hazardous Waste Remedial Actions Program.

222

Environmental impact of radioactive waste management in the nuclear industry  

Microsoft Academic Search

Radioactive wastes from the nuclear industry are classified into low, intermediate and high activity levels, and problems of their storage and release examined in detail. Current means of storage are considered with reference to processing of low and intermediate level liquid waste, processing of high level waste, processing of airborne waste, and ground disposal and processing of solid waste. Release

Colin R. Phillips; H. Lin Pai

1977-01-01

223

Radioactive Waste Management Criteria in Fusion Reactor Materials Selection.  

National Technical Information Service (NTIS)

Fusion reactors will have to meet both quantitative and qualitative criteria for the disposal and/or reuse of radioactive materials. The most important quantitative criteria presently govern the near-surface disposal of radioactive wastes in the United St...

J. S. Herring S. Fetter

1987-01-01

224

Measurement of unsaturated hydraulic properties of salt cake simulant relevant to hanford and SRS high-level waste tanks using a pilot-scale setup  

Microsoft Academic Search

Closure of the remaining tanks and final disposition of the radioactive waste is a high priority task at both Savannah River Site (SRS) and Hanford. The radioactive waste in the tanks are generally found in layers: supernate (on top) containing soluble fission products, and salt-cake and sludge (on the bottom of the tank) containing insoluble actinides. One strategy for minimizing

G. Tachiev; G. Yaari; S. Long; R. Srivastava; D. Roelant

2007-01-01

225

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

West, B; Ruel Waltz, R

2008-06-05

226

Development of a New Thermal HF Plasma Reactor for the Destruction of Radioactive Organic Halogen Liquid Wastes  

Microsoft Academic Search

A newly patented process employing thermal plasma for destruction of radioactive organic halogen liquid wastes is proposed. This studied safe system can destroy a great variety of wastes, even mixed together, using plasma torch as high temperature source. At the exit of the process, only non-toxic products are formed as atmospheric gases, liquid water and halogen sodium salt. The process

B. Bournonville; E. Meillot; C. Girold

2006-01-01

227

Significance of radiation effects in solid radioactive waste  

SciTech Connect

Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10/sup 12/ rads, by alpha radiation up to 10/sup 19/ particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established.

Permar, P H; McDonell, W R

1980-01-01

228

Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory  

SciTech Connect

The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J. [Rockwell International Corp., Canoga Park, CA (United States)

1993-03-01

229

Electronic Denitration Savannah River Site Radioactive Waste  

SciTech Connect

Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations.

Hobbs, D.T.

1995-04-11

230

Radioactive Waste Control and Controversy: The History of Radioactive Waste Regulation in the UK  

Microsoft Academic Search

A hundred years on from the discovery of radioactivity, we have the first book describing the history of the regulation in the UK of the waste arising from its many uses. The first book? Believe it or not, yes. There have been others which provide commentaries on the development (or hapless evolution?) of policy per se and it would be

J H Jackson

1999-01-01

231

Salt tectonics  

SciTech Connect

Salt deposits have economic significance because of their importance as oil and gas traps and their potential as radioactive waste disposal sites. This article reviews the formation of salt domes, beginning with a description of the formation of salt deposits as evaporites and a discussion of early attempts to model the development of salt domes. Current work on tectonics of salt dome formation and related tectonics is then discussed in detail.

Talbot, C.J.; Jackson, M.P.A.

1988-01-01

232

Hydrometallurgical treatment of plutonium. Bearing salt baths waste.  

National Technical Information Service (NTIS)

The salt flux issuing from the electrorefining of plutonium metal alloy in salt baths (KCl + NaCl) poses a difficult problem of the back-end alpha waste management. An alternative to the salt process promoted by Los Alamos Laboratory is to develop a hydro...

P. Bros J. P. Gozlan M. Lecomte J. Bourges

1993-01-01

233

Radioactive Waste Management Complex performance assessment: Draft  

SciTech Connect

A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

1990-06-01

234

Is radioactive mixed waste packaging and transportation really a problem  

SciTech Connect

Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ``low-level radioactive waste`` was in fact ``radioactive mixed waste`` and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations.

McCall, D.L.; Calihan, T.W. III

1992-01-01

235

Techniques for the Evaluation of Radioactive Waste Forms.  

National Technical Information Service (NTIS)

Before disposal of the radioactive waste packages, waste forms must meet some requirements to facilitate handling and to provide protection and safety of personnel during transportation, storage and disposal. And they must have the structural stability un...

H. H. Park J. H. Kim H. Y. Kim Y. C. Seo K. J. Jung

1987-01-01

236

HANDBOOK: VITRIFICATION TECHNOLOGIES FOR TREATMENT OF HAZARDOUS AND RADIOACTIVE WASTE  

EPA Science Inventory

The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. everal subgroups of vitrifications technologies exist. iscussions of glass structure, applicable waste types, off gas treatment, testing and evaluation proce...

237

Regulatory criteria for the disposal of radioactive wastes.  

National Technical Information Service (NTIS)

Radiological protection criteria have been proposed by the Atomic Energy Control Board for judging the potential long-term impacts of radioactive waste disposal options in which the wastes are contained and isolated from the human environment. This paper ...

K. P. Wagstaff

1986-01-01

238

'WISP' A Simple Radioactive Waste Management Computer Program.  

National Technical Information Service (NTIS)

The report describes the radioactive waste management program WISP. WISP was developed for rapid comparative assessment of different nuclear scenarios and fuel reprocessing strategies. It provides tables and graphs of low, intermediate and high level wast...

G. Beavan

1987-01-01

239

Radioactive Waste Packaging of Conditioned Waste at Kozloduy NPP Site  

SciTech Connect

An important part of Safety Management of conditioned low and intermediate level Radioactive Waste (RAW) is their packaging and containers for transport, storage and final disposal. A reinforced concrete container (RCC) has been developed to take cemented super compacted dry waste and cement solidified liquid waste at Kozloduy Nuclear Power Plant (KNPP). The container is to be used as a packaging of transportation, storage and final disposal of RAW conditioned by cementation KNPP specialists constructed and performed tests on the container. These tests were possible thanks to a review of European Community States experience, USA experience and IAEA documents. The container was tested by a team of specialists from KNPP, project specialists, fabricator of the containers and from Bulgarian Regulatory Body under IAEA Safety Standards, Safety Series, TECDOC, TRS and Bulgarian Standards. An expert from IAEA was a member of the testing group for RCC examinations. (authors)

Genchev, G.; Dimov, D. [RW Treatment Plant, Kozloduy NPP 3321 (Bulgaria); Russev, K. ['VIT' Ferro-Concrete Elements Production PLC, Bulgarian Aviation Street No 1, 5800 Town of Pleven (Bulgaria)

2006-07-01

240

Membrane purification in radioactive waste management: a short review.  

PubMed

Radiation hazards of radionuclides arising from nuclear plant facilities are well known. Separation technologies are used to concentrate the radionuclides and prevent the spread of this hazard to the environment. The present review describes the recent advances made in radioactive waste treatment using membrane separation technology. The first part discusses the membrane methods for collective separation of radionuclides and the second part discusses the membrane methods for selective separation of individual radionuclides. For the collection separation of radionulides, methods include reverse osmosis, precipitation followed by ultrafiltration or microfiltration and membrane distillation. Individual elements have been separated using liquid supported membranes, polymer inclusion membranes, solid polymer based electrolysis, nanofiltration, electrochemical salt-splitting process and other advanced separation methods. PMID:22204752

Ambashta, Ritu D; Sillanp, Mika E T

2011-12-27

241

Plasma separation process: Disposal of PSP radioactive wastes  

SciTech Connect

Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs.

Not Available

1989-07-01

242

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01

243

The political science of radioactive waste disposal  

SciTech Connect

This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need for someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}

Jacobi, L.R. Jr. [Texas Los Level Radioactive Waste Disposal Authority, Austin, TX (United States)

1996-06-01

244

Hyponatremia--What Is Cerebral Salt Wasting?  

PubMed Central

Background: Hyponatremia is a common electrolyte imbalance in hospitalized patients. It is associated with significant morbidity and mortality, especially if the underlying cause is incorrectly diagnosed and not treated appropriately. Often, the hospitalist is faced with a clinical dilemma when a patient presents with hyponatremia of an unclear etiology and with uncertain volume status. Syndrome of inappropriate antidiuretic hormone (SIADH) is frequently diagnosed in this clinical setting, but cerebral salt wasting (CSW) is an important diagnosis to consider. Objective: We wanted to describe the diagnosis, treatment, and history of CSW to provide clinicians with a better understanding of the differential diagnosis for hyponatremia. Conclusion: CSW is a process of extracellular volume depletion due to a tubular defect in sodium transport. Two postulated mechanisms for CSW are the excess secretion of natriuretic peptides and the loss of sympathetic stimulation to the kidney. Making the distinction between CSW and SIADH is important because the treatment for the two conditions is very different.

Momi, Jasminder; Tang, Christopher M; Abcar, Antoine C; Kujubu, Dean A; Sim, John J

2010-01-01

245

Molten salt processing of mixed wastes with offgas condensation  

Microsoft Academic Search

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000°C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the

J. F. Cooper; W. Brummond; J. Celeste; J. Farmer; C. Hoenig; O. H. Krikorian; R. Upadhye; R. L. Gay; A. Stewart; S. Yosim

1991-01-01

246

Controlled Containment, Radioactive Waste Management in the Netherlands  

SciTech Connect

All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

Codee, H.

2002-02-26

247

77 FR 20077 - Request for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110...Inc., February 14, 2012, radioactive waste tons of or disposal by...XW019, in the form of ash radioactive waste licensed facility...

2012-04-03

248

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01

249

Cross flow filtration of aqueous radioactive tank wastes  

Microsoft Academic Search

The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction

D. J. McCabe; B. A. Reynolds; T. A. Todd; J. H. Wilson

1997-01-01

250

Nuclear Waste Isolation Means Zero Release of Radioactivity  

Microsoft Academic Search

New understandings of our planet require redefinition of our assumptions about nuclear waste. Isolation of radioactive waste from the biosphere and zero release of radioactivity is discussed in the context of a critique of current radiation standard-setting practices. Zero release requires the end of the nuclear fuel chain. Recommendations toward this goal are offered. Isolation The term \\

Mary Olson

251

High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.  

ERIC Educational Resources Information Center

|Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)|

Dukert, Joseph M.

252

Microbially mediated redox processes in natural analogues for radioactive waste  

Microsoft Academic Search

Natural analogues allow scientists to investigate biogeochemical processes relevant to radioactive waste disposal that occur on time scales longer than those that may be studied by time-limited laboratory experiments. The Palmottu UTh deposit in Finland and the Bangomb natural nuclear reactor in Gabon involve the study of natural uranium, and are both considered natural analogues for subsurface radioactive waste disposal.

Shelley A Haveman; Karsten Pedersen

2002-01-01

253

Electrochemical treatment of mixed (hazardous and radioactive) wastes  

Microsoft Academic Search

Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed

J. Dziewinski; C. Zawodzinski; W. H. Smith

1995-01-01

254

Early age behaviour of concrete supercontainers for radioactive waste disposal  

Microsoft Academic Search

Various types of radioactive waste were and are produced in Belgium. This waste originates from different producers: nuclear power plants, medical applications, industry, research centre, etc. During the past 25 years several preliminary repository designs were proposed. Today, the cylindrical supercontainer is considered to be the most promising Belgian design on the matter of enclosing the vitrified high level radioactive

Bart Craeye; Geert De Schutter; Hughes Van Humbeeck; Alain Van Cotthem

2009-01-01

255

Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities  

SciTech Connect

One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for complete, verifiable and irreversible dismantlement, or CVID. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

Jooho, W.; Baldwin, G. T.

2005-04-01

256

Modeling of Sulfate Double-salts in Nuclear Wastes  

Microsoft Academic Search

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial

B. Toghiani; J. S. Lindner; C. F. Weber; R. D. Hunt

2000-01-01

257

Defense Waste Processing Facility radioactive operations -- Part 2, Glass making  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling.

Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

1996-12-31

258

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01

259

Hydrothermal processing of radioactive combustible waste  

SciTech Connect

Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

1998-09-01

260

Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products  

DOEpatents

A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

Barney, Gary S. (Richland, WA); Brownell, Lloyd E. (Richland, WA)

1977-01-01

261

Emerging Answers in the Management and Disposal of Radioactive Wastes  

Microsoft Academic Search

The National Policy of the United States is safe, permanent, surface or subsurface disposal of non-high-level radioactive waste from the nuclear fuel cycle to ensure long-term containment and isolation from the environment. That policy is contained in the fundamental U.S. laws governing nuclear fuel cycle wastes-the Atomic Energy Act, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and the

L. W. Camper; J. E. Kennedy

2006-01-01

262

Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines  

SciTech Connect

Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

Martynov, B.V.

1995-10-01

263

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Microsoft Academic Search

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management

Lisa Harvego; Brion Bennett

2011-01-01

264

Identification of radioactive mixed wastes in commercial low-level wastes  

Microsoft Academic Search

A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste,

B. S. Bowerman; C. R. Kempf; D. R. MacKenzie; B. Siskind; P. L. Piciulo

1986-01-01

265

Identification of radioactive mixed wastes in commercial low-level wastes  

Microsoft Academic Search

A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste,

B. S. Bowerman; C. R. Kempf; D. R. MacKenzie; B. Siskind; P. L. Piciulo

1985-01-01

266

Reduction of radioactive secondary waste with steam reforming in treatment of waste TBP\\/dodecane  

Microsoft Academic Search

Waste tributyl phosphate (TBP) and normal dodecane generated from R and D activities on recycle of nuclear fuel has been stored in Japan Atomic Energy Agency (JAEA). If it is incinerated, a large quantity of contaminated phosphorous compounds will be generated as radioactive secondary wastes. The objective of this study is to reduce the generation of the radioactive secondary wastes

Tomoyuki Sone; Toshiki Sasaki; Hiromi Yamaguchi

2007-01-01

267

Evaluating detonation possibilities in a Hanford radioactive waste tank  

Microsoft Academic Search

Since the early 1940s, radioactive wastes generated from the defense operations at the Hanford Site have been stored in underground waste storage tanks. During the intervening years, the waste products in some of these tanks have transformed into a potentially hazardous mixture of gases and solids as a result of radiolytic and thermal chemical reactions. One tank in particular, Tank

J. R. Travis; R. K. Fujita; M. C. Ross; J. N. Edwards; J. E. Shepherd

1994-01-01

268

Evaluating detonation possibilities in a Hanford radioactive waste tank  

Microsoft Academic Search

Since the early 1940s, radioactive wastes generated from the defense operations at the Hanford site have been stored in underground waste storage tanks. During the intervening years, the waste products in some of these tanks have transformed into a potentially hazardous mixture of gases and solids as a result of radiolytic and thermal chemical reactions. One tank in particular, tank

J. R. Travis; R. K. Fujita; M. C. Ross; J. N. Edwards; J. E. Shepherd

1994-01-01

269

Evaluation of platinum alloy melters for vitrification of radioactive wastes  

Microsoft Academic Search

A bushing melter constructed of platinum-rhodium is being evaluated for vitrification of special high gamma radioactive wastes for long-term recoverable storage. The basic design parallels that used in the fiberglass industry. Nonradioactive chemical surrogate wastes have been used in the process work. The simulant wastes and glass frit are fed separately to the melter and mixed within the liquefied mass.

1997-01-01

270

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01

271

Salt caverns show promise for nonhazardous oil field waste disposal  

SciTech Connect

Salt caverns show promise for the disposal of non-hazardous oil field wastes, and there are no apparent regulatory barriers to this application. Solution-mined salt caverns have been used for many years for storing hydrocarbon products. Argonne National laboratory has reviewed the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicates that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied (Kansas, Louisiana, Michigan, Mississippi, New Mexico, New York, North Dakota, Ohio, Oklahoma, Pennsylvania, and Texas). The paper discusses the two types of salt deposits in the US, regulatory concerns, wastes, cavern design, disposal operations, closure and remediation, and results of the feasibility study.

Veil, J.A. [Argonne National Lab., Washington, DC (United States)

1996-11-18

272

Leveraging Radioactive Waste Disposal at WIPP for Science  

NASA Astrophysics Data System (ADS)

Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental space (100m x 10m x 6m) is the North Experimental Area (NExA). There, Enriched Xenon Observatory (EXO) collaborators have since mid-2007 been assembling and outfitting six modules and associated structures that were pre-assembled at Stanford University, then dismantled, and shipped to WIPP. Transporting the modules underground presented several interesting challenges, all of which were overcome. Access through increasingly cleaner joined modules leads to the class-100 clean room detector module. Inside, a time projection chamber (TPC) contains 200kg liquid Xe- 136 (the largest non-defense related stockpile of an enriched isotope ever assembled for research). After the experiment starts in early 2009, it is expected to run for 3-5 years. University of Pennsylvania researchers recently sampled WIPP salt to attempt measuring stable Ne-22, resulting from the interaction of cosmogenic muons with Na-23 and preserved in the halite lattice, to determine variations in the cosmic-radiation flux. They in turn could reveal the history of nearby supernovae. University of Chicago/Fermilab researchers evaluate whether to install a superheated-fluid bubble-chamber to search for weakly interacting massive particles (WIMPs). A helium-filled solar neutrino TPC, dark matter and neutron detectors, and proton-decay and supernova-neutrino detectors are other projects that were and are under discussion. Rounding out the spectrum of possibilities are experiments to investigate the effects of long-term ultra-low-dose radiation on cell cultures and laboratory animals to verify or falsify the linear, no- threshold hypothesis. WIPP welcomes additional proposals and projects.

Rempe, N. T.

2008-12-01

273

Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility  

SciTech Connect

This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

Gates, R.; Glukhov, A.; Markowski, F.

1996-06-01

274

Assessment of public perception of radioactive waste management in Korea.  

SciTech Connect

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

Trone, Janis R.; Cho, SeongKyung (Myongji University, Korea); Whang, Jooho (Kyung Hee University, Korea); Lee, Moo Yul

2011-11-01

275

Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility  

SciTech Connect

Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

1998-06-01

276

Defense Waste Processing Facility Radioactive Operations - Year Two  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first high-level radioactive waste vitrification facility. This waste (130 million liters) which has been stored in carbon steel underground tanks and is now being pretreated, melted into a highly durable borosilicate glass and poured into stainless steel canisters for eventual disposal in a geologic repository. Following a ten-year construction period and nearly three-year nonradioactive test program, the DWPF began radioactive operations in March 1996. The first nine months of radioactive operations have been reported previously. As with any complex technical facility, difficulties were encountered during the transition to radioactive operations. Results of the second year of radioactive operations are presented in this paper. The discussion includes: feed preparation and glass melting, resolution of the melter pouring issues, improvements in processing attainment and throughput, and planned improvements in laboratory attainment and throughput.

Occhipinti, J.E.; Carter, J.T.; Edwards, R.E.; Beck, R.S.; Iverson, D.C.

1998-03-01

277

Molten salt processing of mixed wastes with offgas condensation.  

National Technical Information Service (NTIS)

We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000(degrees)C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for ...

J. F. Cooper W. Brummond J. Celeste J. Farmer C. Hoenig

1991-01-01

278

Treatment of Difficult Wastes with Molten Salt Oxidation.  

National Technical Information Service (NTIS)

Molten salt oxidation (MSO) is a good alternative to incineration for the treatment of a variety of organic wastes such as explosives, low-level mixed waste streams, PCB contaminated oils, spent resins and carbon. Since mid- 1990s, the U.S. Army Defense A...

P. C. Hsu S. Kwak

2003-01-01

279

Hanford Site radioactive mixed waste thermal treatment initiative.  

National Technical Information Service (NTIS)

This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engin...

B. G. Place J. G. Riddelle

1993-01-01

280

Commentary: Radioactive Wastes and Damage to Marine Communities  

ERIC Educational Resources Information Center

|Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)|

Wallace, Bruce

1974-01-01

281

Commentary: Radioactive Wastes and Damage to Marine Communities  

ERIC Educational Resources Information Center

Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

Wallace, Bruce

1974-01-01

282

Erosion and Safety of the Underground Disposal of Radioactive Wastes.  

National Technical Information Service (NTIS)

In this report the problem concerning the evaluation of long-term geomorphic stability is discussed, with regard to the influence of possible morphologic modification of topographic surface on the containment of radioactive wastes in deep geological forma...

S. Grauso C. Polizzano

1986-01-01

283

Rock Opening Design and Analyses for Radioactive Waste Repositories.  

National Technical Information Service (NTIS)

The report assesses the uniqueness of the radioactive waste disposal when viewed from the standpoint of design, construction, and operation of underground cavities dedicated for that use. Underground excavations design and construction for mining and civi...

W. C. Lyons K. I. Oravecz B. J. Gallaher D. Buddecke

1978-01-01

284

High-level radioactive waste in Canada. Background paper.  

National Technical Information Service (NTIS)

The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such ...

R. Fawcett

1993-01-01

285

Solidification of Radioactive Wastes with Cement (A Literature Study).  

National Technical Information Service (NTIS)

The present study is structured according to thematic points of view. Emphasis was laid on a precise description of the behaviour of cement used for the solidification of radioactive waste. By utilizing different additives, processing as well as propertie...

K. Rietmann S. Huwyler C. Caflisch A. Della Casa

1984-01-01

286

Natural diatomite process for removal of radioactivity from liquid waste.  

PubMed

Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite. PMID:17049259

Osmanlioglu, Ahmet Erdal

2006-10-16

287

40 CFR 147.3005 - Radioactive waste injection wells.  

Code of Federal Regulations, 2012 CFR

...CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection wells. Notwithstanding §§...

2012-07-01

288

Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities.  

National Technical Information Service (NTIS)

This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineeri...

K. J. Galloway J. G. Jolley

1994-01-01

289

Evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant.  

National Technical Information Service (NTIS)

Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements an...

W. T. Bartlett

1993-01-01

290

76 FR 53980 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70...GE Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling...Cobalt-60 sources. or storage and radioactive Combined total disposition....

2011-08-30

291

Disposal of oil field wastes and NORM wastes into salt caverns  

Microsoft Academic Search

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility

Veil

1999-01-01

292

Disposal of oil field wastes and NORM wastes into salt caverns.  

National Technical Information Service (NTIS)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes....

J. A. Veil

1999-01-01

293

GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE  

SciTech Connect

In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deep disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are proud on our work and we like to show that. Our work is necessary and useful for society. We will not hide our activities but show them and make it worth looking at them.

Codee, Hans D.K.

2003-02-27

294

Radioactive waste management criteria in fusion reactor materials selection  

Microsoft Academic Search

Fusion reactors will have to meet both quantitative and qualitative criteria for the disposal and\\/or reuse of radioactive materials. The most important quantitative criteria presently govern the near-surface disposal of radioactive wastes in the United States. This paper discusses the elemental concentration limits for first wall materials if they are to be acceptable as low-level waste. Qualitative comparisons readily understood

J. S. Herring; S. Fetter

1987-01-01

295

Molten salt treatment to minimize and optimize waste  

SciTech Connect

A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability.

Gat, U.; Crosley, S.M. [Oak Ridge National Lab., TN (United States); Gay, R.L. [Rockwell International Corp., Canoga Park, CA (United States)

1993-07-01

296

Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk  

SciTech Connect

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01

297

Radioactive Liquid Waste Treatment Facility: Environmental Information Document  

SciTech Connect

At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

1993-11-01

298

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

NONE

1990-12-01

299

Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities  

Microsoft Academic Search

This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two

K. J. Galloway; J. G. Jolley

1994-01-01

300

Low-level radioactive waste disposal technologies used outside the United States  

Microsoft Academic Search

Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material

K. J. Templeton; S. J. Mitchell; P. M. Molton; I. W. Leigh

1994-01-01

301

76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management  

Federal Register 2010, 2011, 2012, 2013

...and Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory...and Low-Level Radioactive Waste Management that updates the 1981 Policy...Management Programs, Division of Waste Management and Environmental...

2011-09-21

302

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2010 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation § 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2010-04-01

303

25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?  

Code of Federal Regulations, 2010 CFR

...notifies tribes of the transport of radioactive waste? 170.903 Section 170...Provisions Hazardous and Nuclear Waste Transportation § 170.903...notifies tribes of the transport of radioactive waste? The Department of...

2009-04-01

304

Rock opening design and analyses for radioactive waste repositories  

Microsoft Academic Search

The report assesses the uniqueness of the radioactive waste disposal when viewed from the standpoint of design, construction, and operation of underground cavities dedicated for that use. Underground excavations design and construction for mining and civil engineering projects are reviewed and their application to the waste repository problem are considered. The particular subjects addressed in some detail are underground layouts,

W. C. Lyons; K. I. Oravecz; B. J. Gallaher; D. Buddecke

1978-01-01

305

High-level radioactive waste from light-water reactors  

Microsoft Academic Search

The production of radioactive nuclei during the operation of a light-water reactor is traced, and their decay history is followed. The potential environmental impacts of this waste are calculated and shown to be comparable to those of other materials we produce. Assuming deep burial, it is shown that there are important time delays which prevent the waste from reaching the

Bernard Cohen

1977-01-01

306

TREATMENT OF LOW-LEVEL AQUEOUS RADIOACTIVE WASTES  

Microsoft Academic Search

S>A review is given on various methods for the treatment of low-level ; aqueous radioactive wastes, and the waste disposal system at Latina, Italy, is ; described. The plant is designed to treat fuel element cooling pond water ; together with other low-active streams arising on the site, producing clean water ; that can be used again on the site,

Cartwright

1962-01-01

307

Strategy for Radioactive Waste Disposal in Crystalline Rocks  

Microsoft Academic Search

A strategy for waste disposal is proposed in which the repository would be situated in a crystalline rock mass beneath a blanket of sedimentary rocks whose ground-water flow characteristics are well understood. Such an approach exemplifies the concept of multiple barriers to the isolation of radioactive wastes from the biosphere. This strategy has the advantages that (i) ground-water flow within

John D. Bredehoeft; Tidu Maini

1981-01-01

308

ADSORPTION OF RADIOACTIVE WASTES BY SAVANNAH RIVER PLANT SOIL  

Microsoft Academic Search

The adsorption of radioisotopes on soil was investigated in the ; laboratory to determine the behavior of lowlevel radioactive waste solutions ; discharged to the ground. Strontium, cesium, and plutonium distributions between ; soil and waste solution were studied. The effects of cation concentration and ; acidity were determined. The results of the distribution experiments, and ; material balance considerations,

W. E. PROUT

1958-01-01

309

FOAMING IN RADIOACTIVE WASTE TREATMENT AND IMMOBILIZATION PROCESSES  

EPA Science Inventory

The physical mechanisms of the formation of foam in radioactive waste treatment and waste immobilization processes are poorly understood. The objective of this research is to develop a basic understanding of the mechanisms that produce foaming, to identify the key parameters whic...

310

Process for immobilizing radioactive boric acid liquid wastes  

SciTech Connect

A method is described for immobilizing radioactive boric acid waste solutions comprising: neutralizing a boric acid waste solution containing radionuclides with calcium hydroxide and forming a precipitate, evaporating the precipitate to near dryness, and firing the dry precipitate to form a calcium borate glass product containing the radionuclides.

Greenhalgh, W.O.

1986-06-17

311

Radioactive Waste Storage Materials: Their alpha Recoil Aging  

Microsoft Academic Search

Ion implantation experiments suggest that the accumulation of alpha -recoil damage in radioactive waste storage materials, which behave like solid-state track detectors, plays a drastic role in their long-term degradation. The understanding of alpha -recoil ``aging,'' overlooked in earlier studies, offers new guidelines for improving waste storage conditions.

J. C. Dran; M. Maurette; J. C. Petit

1980-01-01

312

Cross flow filtration of aqueous radioactive tank wastes  

SciTech Connect

The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic.

McCabe, D.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Reynolds, B.A. [Battelle Pacific Northwest Lab., Richland, WA (United States); Todd, T.A. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Wilson, J.H. [Oak Ridge National Lab., TN (United States)

1997-02-01

313

Disposal of NORM-contaminated oil field wastes in Salt Caverns.  

SciTech Connect

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Veil, J. A.; Smith, K. P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G. P.

1998-08-28

314

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

SciTech Connect

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21

315

Natural analogues: a way to increase confidence in predictions of long-term performance of radioactive waste disposal  

Microsoft Academic Search

No exact analogue to a radioactive waste disposal system exists but by studying natural analogues of the most important components or subsystems of a waste repository, confidence in long-term predictions can be increased. The US Nuclear Regulatory Commission (NRC) is supporting research on igneous intrusions into proposed repository-type host rock (basalt, tuff, crystalline hard-rock, and salt), on uranium ore body

G. F. Birchard; D. H. Alexander

1983-01-01

316

Discussions about safety criteria and guidelines for radioactive waste management.  

PubMed

In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes. PMID:21531746

Yamamoto, Masafumi

2011-04-29

317

Monte Carlo simulations of radioactive waste embedded into polymer  

NASA Astrophysics Data System (ADS)

Radioactive waste is generated from the nuclear applications and it should properly be managed according to the regulations set by the regulatory authority. Poly(carbonate urethane) and poly(bisphenol a-co-epichlorohydrin) are radiation-resistant polymers and they are possible candidate materials that can be used in the radioactive waste management. In this study, maximum allowable waste activity that can be embedded into these polymers and dose rate distribution of the waste drum (containing waste and the polymer matrix) were found via Monte Carlo simulations. The change of mechanical properties of above-mentioned polymers was simulated and their variations within the waste drum were determined for 15, 30 and 300 years after embedding.

zdemir, Tongu; Usanmaz, Ali

2009-09-01

318

Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes  

SciTech Connect

This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

Broderick, T. E.; Grondin, R.

2003-02-24

319

Emerging Answers in the Management and Disposal of Radioactive Wastes  

SciTech Connect

The National Policy of the United States is safe, permanent, surface or subsurface disposal of non-high-level radioactive waste from the nuclear fuel cycle to ensure long-term containment and isolation from the environment. That policy is contained in the fundamental U.S. laws governing nuclear fuel cycle wastes-the Atomic Energy Act, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and the recently passed National Defense Authorization Act for Fiscal Year 2005 (NDAA), among others. The U.S. has been largely successful in implementing this policy to date and most of the low-level radioactive waste (LLRW) generated by NRC licensees has been safely disposed, rather than stored. Only greater-than-class C (GTCC) LLRW has been without a disposal option. At the same time, the U.S. program for radioactive waste disposal can be improved in a number of ways to enhance safety, to better utilize risk information in decision-making, to improve the efficiency and effectiveness of the overall program, and to enhance openness. This paper will address four 'emerging answers' that aid in moving the country towards the goal of safe, permanent disposal for all types of non-high level radioactive waste generated in the nuclear fuel cycle. (authors)

Camper, L.W.; Kennedy, J.E. [U.S. Nuclear Regulatory Commission Mail Stop T-7-J-8, Washington DC 20555 (United States)

2006-07-01

320

System for chemically digesting low level radioactive, solid waste material  

DOEpatents

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01

321

Data base for radioactive waste management: impacts analyses methodology report  

SciTech Connect

This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 3 provides a methodology for analyzing the impacts of handling and disposing of low level waste based upon consideration of alternative waste forms, disposal facility design and operating practices, disposal facility environmental characteristics, and institutional control considerations.

Oztunali, O.I.; Re, G.C.; Moskowitz, P.M.; Picazo, E.D.; Pitt, C.J.

1981-11-01

322

Managing low-level radioactive waste in Massachusetts. Final report  

Microsoft Academic Search

As one of the country's largest generators of low-level radioactive waste, Massachusetts has begun independently seeking solutions to the questions surrounding low-level waste management issues. The Massachusetts Department of Public Health, Radiation Control Program, obtained funding from the U.S. Department ofEnergy through EG and G, Idaho, Inc. to develop a low-level waste management strategy for the Commonwealth. The Working Group

S. R. Bander; M. E. Goldstein

1983-01-01

323

Commercial low-level radioactive waste disposal in the US  

SciTech Connect

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01

324

Siting a radioactive waste facility; A pathways analysis case study  

Microsoft Academic Search

A radioactive waste disposal facility was proposed to be sited in Oregon. The waste being considered contained 250 pCi\\/g of uranium consisting of U-234, U-235, U-236 and U-238 isotopes. No Ra-226 or Th-230 were specified to be present in the waste. As part of the siting effort, the proposed facility had to be qualified with regard to meeting requirements for

G. A. Holton; K. R. Meyer; H. R. Meyer

1987-01-01

325

Greater-confinement disposal of low-level radioactive wastes  

Microsoft Academic Search

Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different

L. E. Trevorrow; T. L. Gilbert; C. Luner; P. A. Merry-Libby; N. K. Meshkov; C. Yu

1985-01-01

326

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

SciTech Connect

The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01

327

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOEpatents

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14

328

Radioactive waste management information for 1993 and record-to-date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1993. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

Taylor, K.A.

1994-07-01

329

Radioactive waste management information for 1996 and record-to-date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and status of radioactive waste for calendar year 1996. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Radioactive Waste Management Information System.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1997-07-01

330

Containment of solidified liquid hazardous waste in domal salt  

SciTech Connect

In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets.

Domenico, P.A. (Texas A and M Univ., College Station, TX (United States). Geology Dept.); Lerman, A. (Northwestern Univ., Evanston, IL (United States). Dept. Geological Sciences)

1992-01-01

331

A methodology for evaluating the toxicity of radioactive waste and its application to the radioactive waste generated in Pennsylvania  

SciTech Connect

Communicating with the public on the risks of low-level radioactive waste disposal is difficult due to the lack of comparisons that are understandable to the public. This paper presents a methodology for analyzing the intrinsic toxicity of radionuclides in waste and comparing it to that for soil or other wastes that may contain naturally-occurring radionuclides. The intrinsic toxicity of each radionuclide is normalized by dividing its specific activity in the waste by an appropriate ingestion risk standard, such as the U.S. EPA proposed drinking water limits. To illustrate the usefulness of this method, it was used to analyze Pennsylvania`s commercial low-level radioactive waste inventory. The results are presented along with an indication of the usefulness of this method for screening purposes to analyze and identify problematic constituents in various waste streams. 15 refs., 11 figs.

Dornsife, W.P. [Pennsylvania Bureau of Radiation Protection, Harrisburg, PA (United States)

1995-08-01

332

Validation of Stress Corrosion Cracking Model for High Level Radioactive-Waste Packages  

SciTech Connect

A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking resulting from the presence of three factors: metallurgical susceptibility, critical environment, and tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into 'initiation' and 'propagation' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulae for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, it can be used by the performance assessment (not in the scope of this paper) to determine the time to through-wall penetration for the waste package. This paper presents the development and validation of the SDFR crack growth rate model based on technical information in the literature as well as experimentally determined crack growth rates developed specifically for Alloy UNS- N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository.

Lu, S; Gordon, G; Andresen, P

2004-04-22

333

Laboratory simulation of salt dissolution during waste removal  

SciTech Connect

Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended.

Wiersma, B.J.; Parish, W.R.

1997-01-01

334

Preconceptual design of a salt splitting process using ceramic membranes.  

National Technical Information Service (NTIS)

Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt sol...

D. E. Kurath K. P. Brooks G. W. Hollenberg R. Clemmer S. Balagopal

1997-01-01

335

Remote ignitability analysis of high-level radioactive waste  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846.

Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

1992-09-01

336

Radioactive waste disposal in simulated peat bog repositories  

SciTech Connect

The Low Level Radioactive Waste Policy Act of 1980 and the Low Level Radioactive Waste Policy Amendments Act of 1985 have required state governments to be responsible for providing low-level waste (LLW) disposal facilities in their respective areas. Questions are (a) is the technology sufficiently advanced to ensure that radioactive wastes can be stored for 300 to 1000 yr without entering into any uncontrolled area. (b) since actual experience does not exist for nuclear waste disposal over this time period, can the mathematical models developed be tested and verified using unequivocal data. (c) how can the public perception of the problem be addressed and the potential risk assessment of the hazards be communicated. To address the technical problems of nuclear waste disposal in the acid precipitation regions of the Northern Hemisphere, a project was initiated in 1984 to evaluate an alternative method of nuclear waste disposal that may not rely completely on engineered barriers to protect the public. Certain natural biogeochemical systems have been retaining deposited materials since the last Ice Age (12,000 to 15,000 yr). It is the authors belief that the biogeochemical system of wetlands and peat bogs may provide an example of an analogue for a nuclear waste repository system that can be tested and verified over a sufficient time period, at least for the LLW disposal problem.

Schell, W.R.; Massey, C.D.

1987-01-01

337

Science and technology for disposal of radioactive tank wastes  

SciTech Connect

One of the legacies of the Cold War is a huge stockpile of radioactive wastes generated by over 40 years of nuclear weapons production. Safe treatment and disposal of these wastes, together with the associated problems of facility decommissioning and site clean-up, represents one of the largest and most complex environmental challenges of the present-day. Amongst these nuclear wastes is a wide variety of radioactive liquids, sludges and slurries created as waste by-products from the processing of spent nuclear fuel to extract enriched uranium and plutonium for bomb manufacture. Their liquid state, high level of radioactivity and the fact that they generally are stored in underground tanks (hence the term tank wastes), many of which are known to be leaking, makes their treatment and disposal all the more urgent. Despite its name, the book does not really discuss in any detail the final disposal of tank wastes. Of all the papers, only a few explicitly mention disposal of the wastes to a geological repository. The vast majority of the papers actually discuss pre-disposal treatment and solidification issues. What happens to the waste after they have been processed, minimized and solidified is an equally important issue and one that the book sadly fails to address.

Schulz, W.W.; Lombardo, N.J. [eds.

1998-07-01

338

Computer-based supervisory control and data acquisition system for the radioactive waste evaporator  

SciTech Connect

The evaporator process at TA-55 reduces the amount of transuranic liquid radioactive waste by separating radioactive salts from relatively low-level radioactive nitric acid solution. A computer-based supervisory control and data acquisition (SCADA) system has been installed on the process that allows the operators to easily interface with process equipment. Individual single-loop controllers in the SCADA system allow more precise process operation with less human intervention. With this system, process data can be archieved in computer files for later analysis. Data are distributed throughout the TA-55 site through a local area network so that real-time process conditions can be monitored at multiple locations. The entire system has been built using commercially available hardware and software components.

Pope, N.G.; Schreiber, S.B.; Yarbro, S.L.; Gomez, B.G.; Nekimken, H.L.; Sanchez, D.E.; Bibeau, R.A.; Macdonald, J.M.

1994-12-01

339

Radioactive material inventory control at a waste characterization facility  

SciTech Connect

Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility`s nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the {open_quotes}Radioactive Material Inventory System{close_quotes} (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded.

Yong, L.K.; Chapman, J.A.; Schultz, F.J. [Oak Ridge National Laboratory, TN (United States)

1996-06-01

340

Radiation safety requirements for radioactive waste management in the framework of a quality management system  

Microsoft Academic Search

The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated,

M. M. Salgado; J. C. Benitez; R. Pernas; N. Gonzalez

2007-01-01

341

Field survey of the shallow land low-level radioactive waste burial site near Beatty, Nevada  

Microsoft Academic Search

High resolution gamma-ray spectrometry was used to determine radioactivity levels in surface soil at the site as part of an effort to confirm the boundaries of existing waste burial trenches, locate any additional radioactive wastes beyond the established burial area, characterize the distribution of radionuclides around the waste burial site, and determine whether movement of radioactivity from unearthed waste drums

H. L. Nielson; N. A. Wogman; L. J. Kirby

1981-01-01

342

Site selection for low and intermediate level radioactive waste disposal facility in Korea  

Microsoft Academic Search

The radioactive waste can be classified into low and intermediate level waste (LILW), spent fuel (SF) and high level waste according to the level of the emitted radioactivity in Korea.Currently radioactive waste is temporarily stored in the four nuclear power plant sites, where the LILW and SF are expected to be saturated from 2008 and 2016, respectively. Therefore the construction

Si-Tae Yun

2008-01-01

343

SOLID RADIOACTIVE WASTE TREATMENT INITIATIVES FOR NUCLEAR SUBMARINE DECOMMISSIONING WASTES UNDER THE AMEC PROGRAM  

Microsoft Academic Search

The volume of solid radioactive waste (SRW) generated from decommissioning Russia's nuclear submarines far exceeds existing SRW management capabilities of the Russian Northern Fleet. Inadequate management of this waste poses a substantial threat for pollution of the fragile Arctic environment. The Arctic Military Environmental Cooperation (AMEC) Project 1.3 has assessed waste treatment options, selected technologies, and is now designing and

Andrew Griffith

2001-01-01

344

Radioactive liquid waste generation goals at the ICPP  

SciTech Connect

Processes at ICPP generating hazardous radioactive liquid wastes (which are sent to the tank farm) include NWCF, PEW evaporator, LET&D, tank farm, fuel storage operations, etc. In May 1994, the INEL Radioactive Liquid Waste Management Plan was issued but not implemented. Waste generation goals have been reviewed and updated in this report (details are given in appendix). A meeting was held to determine the new waste generation goals and best approach to reaching them. Waste streams were individually analyzed in this meeting and several adjustments made both during the meeting and following the meeting. The information was adjusted and modeling completed to determine the waste reduction achieved (spreadsheets are included in appendix). Results of this update indicate that there has been a significant reduction in the waste generation goals from 2 years ago. If the updated baseline goals are met, a 35% waste reduction will be achieved; this coupled with increased calcination rate, will enable the waste in the tank farm to be processed by 2012; however a program is needed to ensure these waste goals are met. A monitoring and reporting function in conjunction with company level incentives will fill this need; a logic diagram of this monitoring program is given.

Tripp, J.L.

1996-07-01

345

An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant  

SciTech Connect

Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years'' the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

Bartlett, W.T. (Environmental Evaluation Group, Carlsbad, NM (United States) Environmental Evaluation Group, Albuquerque, NM (United States))

1993-02-01

346

An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant  

SciTech Connect

Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years`` the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

Bartlett, W.T. [Environmental Evaluation Group, Carlsbad, NM (United States)]|[Environmental Evaluation Group, Albuquerque, NM (United States)

1993-02-01

347

Model calculations of the thermomechanical effects in the near field of a high-level radioactive waste repository  

SciTech Connect

The final disposal of high-level radioactive waste in a salt dome affects the thermomechanical behavior of the surrounding rock salt due to the temperature rise caused by the heat generation of the radioactive waste. The near-field thermomechanical phenomena around several in situ temperature tests and a 300-m-deep conceptual borehole were studied numerically. Thermally induced closure of the boreholes and the strain stress field distribution in the rock salt following the pressure load on the measuring probe surface and on the waste containers were determined. The calculations were performed with the commercial finite element program ADINA, taking into account the nonlinear and time-dependent behavior of the rock salt. The purpose of these investigations was a validation of the numerical methods, of the thermomechanical material parameters of rock salt, and of the model boundary conditions. The agreement between the results of the calculations and the measured values has shown that a relatively good prediction can be made of the thermomechanical effects in the near field of a waste disposal area with the numerical methods and the material laws used.

Pudewills, A.; Korthaus, E.; Koster, R.H.

1988-07-01

348

Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels  

SciTech Connect

Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF. When used energy of exothermic reactions in waste thermochemical treatment processing, the problems concerned with heating method choice, appropriate heating equipment operation, and maintenance of this equipment reliability are excluded. Generally, the PMF consists of combustible powder metal, oxygen containing component, and some additives (pore-forming materials, stabilizers, surface-active substances, and other) with a predominance of metal powder. A thermodynamic simulation is applied widely at the designing of the PMF.

Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

2003-02-25

349

Stirring system for radioactive waste water storage tank  

SciTech Connect

A stirring system for 100-m[sup 3] radioactive liquid waste tanks was constructed to unify radioactive concentrations in the tank. The stirring system is effective in certifying that the radioactive concentrations in the tanks are less than the legal limits before they are drained away as waste liquid. This system is composed of discharge units, pipe lines, and a controller. The performance of the system was assessed by comparing the calculated red ink and [sup 32]P concentrations with those monitored at six locations in the tanks. The concentration reached equilibrium after stirring 60 o 120 min with discharge units equipped with six fixed openings configured in differing directions. Residual chlorine in city water used for dilution occasionally bleached the red ink and reduced its concentration. The adsorption of [sup 32]P by slime on the walls of the tanks storing actual waste water lowered the equilibrium concentration.

Ogata, Yoshimune; Nishizawa, Kunihide (Nagoya Univ. (Japan). Radioisotope Research Center)

1999-07-01

350

Commission operation. National Low-Level Radioactive Waste Management Program  

NASA Astrophysics Data System (ADS)

Since Congress enacted the Low-Level Radioactive Waste Policy Act, the states have prepared to meet their responsibilities for management of low-level radioactive waste by entering into regional compacts. This option document is intended to provide a framework for the operation of a compact commission formed as the governing body of a low-level radioactive waste compact. The document is designed to be easily modified to meet the needs of various regional compacts. The ideas and format presented were taken in general from the Federal Administrative procedures Act, various state administrative procedures, and the state regulatory agencies' rules of procedure. Requirements of filing, time frames, and standard language are written from a legal perspective.

1984-09-01

351

[Problems of safety regulation under radioactive waste management in Russia].  

PubMed

Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated. PMID:23210184

Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

2012-01-01

352

Proceedings: Radioactive Low Level Waste Management Workshop  

SciTech Connect

This report presents the proceedings of an EPRI workshop on low level waste management. The workshop was the fifth in a series to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of low level waste management as they relate to nuclear plant decommissioning. Workshop information will help utilities assess benefits of waste management, select technologies for their individual projects, and reduce decommissioning costs.

None

2000-05-01

353

Advanced radioactive waste compaction techniques: Final report  

SciTech Connect

The purpose of this test program is to provide definitive information on the volume reduction capabilities of conventional compactors used in the nuclear industry for the treatment of dry active waste and the effects of preshredding on compaction. The test program presents comprehensive data on compacted densities of dry active waste collected at five facilities generating this waste and using conventional compactors. Waste materials presently classified as ''non-compactable'' which would lend themselves to preshredding and compaction are identified. An ALARA evaluation of shredding operations and an economic evaluation of preshredding prior to compaction are also presented. 32 figs., 72 tabs.

Volodzko, M.; McGrath, R.N.; Kinsman, J.F.; Palo, W.J.

1988-08-01

354

Incineration in molten salts of alpha-contaminated solid waste  

Microsoft Academic Search

Incineration by the molten salt process is found to be suitable for the safe destruction of alpha-contaminated waste without pollution but with the possibility of plutonium recovery. A detailed description of the processes involved in the incineration process is given covering: combustion, acid dissolution, recovery of U and\\/or Pu by electrolytic means, separation of ash, and recycling of the eutectic

G. Brambilla; E. Quercioli; L. Beaulardi; R. Gritti

2008-01-01

355

Expected Environment for Waste Packages in a Salt Repository.  

National Technical Information Service (NTIS)

This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design f...

L. R. Pederson D. E. Clark F. N. Hodges G. L. McVay D. Rai

1983-01-01

356

Treatment of solid wastes with molten salt oxidation  

Microsoft Academic Search

Molten salt oxidation (MSO) is a robust thermal treatment process that can be used to oxidatively and efficiently destroy the organic constituents of mixed and hazardous wastes, and energetic materials [17]. An integrated pilot-scale MSO demonstration facility has been installed and operated at Lawrence Livermore National Laboratory (LLNL). This facility, which has been operational since December 1997, was built to

Peter C. Hsu; Kenneth G. Foster; Timothy D. Ford; P. Henrik Wallman; Bruce E. Watkins; Csar O. Pruneda; Martyn G. Adamson

2000-01-01

357

Release of salts from municipal solid waste combustion residues  

Microsoft Academic Search

Residues from fluidized bed combustion of municipal solid waste were investigated with respect to their leaching behavior and possible extraction of salts. The total water extractable amounts of Na, K, Ca, Cl?, Br?, F? and SO42? along with the total dissolved solids of bottom, hopper, cyclone and bag house filter ashes were determined. A simple multistage washing process (using water

Zareen Abbas; Azadeh Partovi Moghaddam; Britt-Marie Steenari

2003-01-01

358

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01

359

Review of geochemical measurement techniques for a nuclear waste repository in bedded salt  

SciTech Connect

A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed.

Knauss, K.G.; Steinborn, T.L.

1980-05-22

360

Injector nozzle for molten salt destruction of energetic waste materials  

DOEpatents

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01

361

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

... Spent fuel, high-level radioactive waste, or reactor-related greater...NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER... Spent fuel, high-level radioactive waste, or reactor-related...

2009-01-01

362

[The investigation of the composition of liquid radioactive waste].  

PubMed

In investigation the process of composition sediment of liquid unorganic radioactive waste, that are forming in cistern-selectors at PNPI RAS, it was discovered apart from great quantity of ions of different metals and radionuclides considerable maintenance of organic material (to 30% and more from volume of sediment) unknown origin. A supposition was made about its microbiological origin. Investigation shows, that the main microorganisms, setting this sediment, are the bacterious of Pseudomonas kind, capable of effectively bind in process of grow the radionuclide 90Sr, that confirms the potential posibility of using this microorganisms for bioremediation of liquid low radioactive wastes (LRW). PMID:18825999

Suslov, A V; Suslova, I N; Bagiian, A; Leonov, V V; Kapustin, V K

363

FINAL REPORT. POLYOXOMETALATES FOR RADIOACTIVE WASTE TREATMENT  

EPA Science Inventory

The research was directed primarily towards the use of polyoxometalate complexes for separation of lanthanide, actinide, and technetium species from aqueous waste solutions, such as the Hanford Tank Wastes. Selective binding of these species responsible for much of the high level...

364

Uncertainty associated with radioactive waste chacteristics  

Microsoft Academic Search

To clarify uncertainty in predictions of the quantity, radionuclide inventory and activity of waste from the Krsko nuclear power plant, and to illuminate its role in related policy-making, we made a scenario analysis in order to find out the variation in waste characteristics if the plant operates five years shorter or longer than anticipated, or if it uses fuel of

Branko Kontic; Matjaz Ravnik; Peter Stegnar; Burton C. Kross

2000-01-01

365

Distillation and condensation of LiClKCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process  

Microsoft Academic Search

Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiClKCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than

Hee Chul Eun; Hee Chul Yang; Han Soo Lee; In Tae Kim

2009-01-01

366

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables.  

National Technical Information Service (NTIS)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, a...

B. Bennett L. Harvego

2011-01-01

367

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables.  

National Technical Information Service (NTIS)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, a...

B. Bennett L. Harvego

2011-01-01

368

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables.  

National Technical Information Service (NTIS)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and ac...

2011-01-01

369

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables.  

National Technical Information Service (NTIS)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and ac...

B. Bennett L. Harvego

2011-01-01

370

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables.  

National Technical Information Service (NTIS)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and ac...

2011-01-01

371

The Defense Waste Processing Facility: Two Years of Radioactive Operation  

SciTech Connect

The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

1998-05-01

372

Review of the radioactive waste management system in Nigeria.  

PubMed

The management of radioactive waste in Nigeria from early 1960 to date is reviewed. As in many developing countries, waste management in Nigeria has been shown to be ineffective. The factors that are responsible for this ineffectiveness are identified and discussed. The steps being taken by and the opportunities available to the newly established Nigerian Nuclear Regulatory Authority towards addressing this problem of ineffectiveness are discussed. The efforts of this newly set up body towards managing the resultant radioactive wastes that will be generated during the use of a reactor and an accelerator that will soon be commissioned in Nigeria are also mentioned. Likely ways of further addressing the problems militating against waste management in developing countries are suggested. PMID:12729418

Ogundare, F O

2003-03-01

373

Salt Repository Project waste emplacement mode decision paper: Revison 1  

SciTech Connect

This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab.

Not Available

1987-08-01

374

Polyethylene encapsulation of molten salt oxidation mixed low-level radioactive salt residues.  

National Technical Information Service (NTIS)

A limited scope treatability study was conducted for polyethylene encapsulation of salt residues generated by a Molten Salt Oxidation (MSO) technology demonstration at the Energy Technology Engineering Center (ETEC), operated by Rockwell International for...

P. R. Lageraaen P. D. Kalb D. L. Grimmett R. L. Gay C. D. Newman

1995-01-01

375

Simulation of salt waste evaporation/crystallization.  

National Technical Information Service (NTIS)

The database of ProChem software has been enhanced to account for the formation of the mineral, Burkite which can form in alkaline tank wastes during evaporation. This mineral was not suspected until recent evaporation/crystallization studies suggested it...

E. G. Orebaugh

1993-01-01

376

Nuclear safety in handling radioactive wastes containing fissile materials  

Microsoft Academic Search

Nuclear safety in disposal and reprocessing of solid and liquid radioactive wastes produced during the production of nuclear\\u000a reactor fuel elements was investigated. The results of this work made it possible to determine the parameters which must be\\u000a limited in handling wastes in order to avoid the occurrence of a self-maintaining fission chain reaction. The numerical values\\u000a of these parameters

V. S. Vnukov; O. V. Sichkaruk; L. I. Chkuaseli

2000-01-01

377

Method of encapsulating solid radioactive waste material for storage  

DOEpatents

High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

Bunnell, Lee Roy (Kennewick, WA); Bates, J. Lambert (Richland, WA)

1976-01-01

378

Modeling of radioactive transport for decommissioned nuclear reactor waste  

Microsoft Academic Search

Technological advances have safeguarded the quality of our lives, but many of these developments have led to improper management and uncontrolled disposal of hazardous and radioactive wastes. The introduction of these waste by-products into our complex and interconnected natural environment has resulted in the migration of contaminants into life-sustaining resources: air, water, and land. The U.S. Department of Energy (DOE)

W. J. Martin; G. Whelan

1994-01-01

379

Risk analysis of radioactive waste management systems in Germany  

Microsoft Academic Search

Within the scope of a system study, ''Radioactive wastes in the Federal Republic of Germany,'' performed from 1974 through 1976, the questions of risk assessment were investigated. A risk analysis of a high-level waste (HLW) management system was performed. The results of the HLW tank storage are that the risk expectation value is 700 nJ\\/kg x RBE (7 x 10⁻⁵

Wingender

1978-01-01

380

Control of high level radioactive waste-glass melters  

Microsoft Academic Search

A necessary step in Defense Waste Processing Facility (DWPF) melter feed preparation for the immobilization of High Level Radioactive Waste (HLW) is reduction of Hg(II) to Hg(0), permitting steam stripping of the Hg. Denitrition and associated NOx evolution is a secondary effect of the use of formic acid as the mercury-reducing agent. Under certain conditions the presence of transition or

D. F. Bickford; C. J. Coleman; C. L. W. Hsu; R. E. Eibling

1990-01-01

381

Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes  

DOEpatents

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

1999-10-07

382

LLNL radioactive waste management plan as per DOE Order 5820. 2  

SciTech Connect

The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis).

Not Available

1984-12-10

383

CONCEPTUAL DATA MODELING OF THE INTEGRATED DATABASE FOR THE RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect

A study of a database system that can manage radioactive waste collectively on a network has been carried out. A conceptual data modeling that is based on the theory of information engineering (IE), which is the first step of the whole database development, has been studied to manage effectively information and data related to radioactive waste. In order to establish the scope of the database, user requirements and system configuration for radioactive waste management were analyzed. The major information extracted from user requirements are solid waste, liquid waste, gaseous waste, and waste related to spent fuel. The radioactive waste management system is planning to share information with associated companies.

Park, H.S; Shon, J.S; Kim, K.J; Park, J.H; Hong, K.P; Park, S.H

2003-02-27

384

Review of Corrosion Inhibition in High Level Radioactive Waste Tanks in the DOE Complex  

SciTech Connect

Radioactive waste is stored in underground storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). The waste tanks store supernatant liquid salts, consisting primarily of sodium nitrate, sodium nitrite, sodium hydroxide, and sludge. An assessment of the potential degradation mechanisms of the high level waste (HLW) tanks determined that nitrate- induced pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Controls on the solution chemistry (minimum nitrite and hydroxide concentrations) are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in the tanks. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented.

Subramanian, K.H.

2004-03-08

385

Results of field testing of radioactive waste forms using lysimeters  

SciTech Connect

The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed.

McConnell, J.W., Jr.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Jastrow, J.D. [Argonne National Lab., IL (United States); Wickliff, D.S. [Oak Ridge National Lab., TN (United States)

1992-08-01

386

Results of field testing of radioactive waste forms using lysimeters  

SciTech Connect

The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed.

McConnell, J.W., Jr.; Rogers, R.D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Jastrow, J.D. (Argonne National Lab., IL (United States)); Wickliff, D.S. (Oak Ridge National Lab., TN (United States))

1992-01-01

387

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01

388

75 FR 74104 - Request for a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...EnergySolutions, August 27, Radioactive waste Not to exceed Return to two Germany. 2010,...

2010-11-30

389

75 FR 74107 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice...EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010,...

2010-11-30

390

77 FR 20078 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc.,...

2012-04-03

391

75 FR 68840 - Request for a License To Import Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice...Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada...

2010-11-09

392

Study on the Policy for the Radioactive Waste Treatment and Disposal.  

National Technical Information Service (NTIS)

In this report, the establishment of the policy for the safe long-term isolation of radioactive wastes from human environment is studied in three scopes: radioactive waste management in the radioisotope application industries; foundation plan for the Radi...

H. H. Park I. S. Suh H. Y. Kim Y. H. Cho P. I. Juhn

1985-01-01

393

Remote automated material handling of radioactive waste containers  

SciTech Connect

To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

Greager, T.M.

1994-09-01

394

Natural Safety Storage of Radioactive Waste  

Microsoft Academic Search

The public acceptance of an increase program of nuclear energy requires an openly and straight forward discussion, in an understandable\\u000a way of the main issues against nuclear energy as: nuclear accidents, proliferation of nuclear weapons and safety storage of\\u000a nuclear waste. Regarding this last issue, there are doubts concerning stability of geological sites to storage nuclear waste\\u000a as well as

Miguel Balczar-Garca; Jess Hernn Flores-Ruiz; Pablo Pea; Arturo Lpez

395

Fusion fuel cycle solid radioactive wastes  

Microsoft Academic Search

Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for

B. F. Gore; J. D. Kaser; T. J. Kabele

1978-01-01

396

78 FR 9746 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70...Diversified Scientific Class A radioactive Up to a maximum Return of non- Canada...Class A appropriate varying combinations radioactive disposition. Amend which was...

2013-02-11

397

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21

398

Summary of radioactive solid waste received in the 200 Areas during calendar year 1995  

SciTech Connect

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995.

Hladek, K.L.

1996-06-06

399

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01

400

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01

401

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01

402

High level radioactive waste management facility design criteria  

Microsoft Academic Search

This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform

N. A. Sheikh; S. R. Salaymeh

1993-01-01

403

Proceedings of the specialists' meeting on radioactive wastes management.  

National Technical Information Service (NTIS)

The specialist research meeting on radioactive waste management was held in the Research Reactor Institute, Kyoto University, on November 13 and 14, 1990. This meeting has been held annually in the last several years. The meeting has taken up the topics r...

K. Higashi K. Shimoura

1991-01-01

404

Proceedings: EPRI International Decommissioning and Radioactive Waste Workshop at Dounreay  

SciTech Connect

This report presents the proceedings of an EPRI international workshop on decommissioning and radioactive waste management. EPRI initiated this continuing workshop series to aid utility personnel in assessing the technologies utilized in the decommissioning of nuclear power plants and facilities. The information presented will help individual utilities assess the benefits of the various programs, including their potential to reduce decommissioning costs.

None

2003-01-01

405

Method of storing radioactive wastes using modified tobermorite  

DOEpatents

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, Sridhar (State College, PA); Roy, Della M. (State College, PA)

1985-01-01

406

Radioactive Waste...The Problem and Some Possible Solutions  

ERIC Educational Resources Information Center

|Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)|

Olivier, Jean-Pierre

1977-01-01

407

Mathematical modeling of a radioactive waste disposal system  

Microsoft Academic Search

In order to establish the safety of a disposl system for high-level radioactive waste, the system must be shown to satisfy radiological safety criteria imposed by regulatory agencies. In Canada, for example, the regulatory policy includes a quantitative limit on radiological risk to an individual for a period of 10,000 years following disposal. Mathematical modeling of the performance of the

K. W. Dormuth

1992-01-01

408

Disposal of Radioactive Waste at Hanford Creates Problems  

ERIC Educational Resources Information Center

Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

Chemical and Engineering News, 1978

1978-01-01

409

Quantitative Assessment Personnel Training Efficiency in Management of Radioactive Waste  

SciTech Connect

This paper describes quantitative parameters of training efficiency for the personnel working in the area of radioactive waste management. We formulate the basis for the independent parameters of an integrated training process. It is shown that training efficiency can be described by a characteristic numerical figure, which is the generalized mark of the training efficiency. (authors)

Batyukhnova, O.G.; Dmitriev, S.A.; Puzanov, Y.V.; Semenova, I.V. [SUE SIA 'Radon', The 7-th Rostovsky Lane 2/14, Moscow, 119121 (Russian Federation); Ojovan, M.I. [Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, S1 3JD (United Kingdom)

2006-07-01

410

Biotransformation of uranium and other actinides in radioactive wastes  

Microsoft Academic Search

Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th,

A. J. Francis

1998-01-01

411

Geologic storage of radioactive waste: field studies in Sweden  

Microsoft Academic Search

Access to a gran itic rock mass in an iron ore mine in Sweden provided a unique opportunity for underground experiments related to the geologic disposal of radioactive waste. These field tests demonstrated the importance of hydrogeology and the difficulties in predicting in the thermomechanical behavior of fractured granitic rocks. To characterize a site fully, measurements made from the surface

P. A. Witherspoon; N. G. W. Cook; J. E. Gale

1981-01-01

412

International Surveillance Mechanism for Sea Dumping of Radioactive Waste  

ERIC Educational Resources Information Center

|The OECD consultation and surveillance mechanism is discussed in detail in this article. Four phases are identified and examined: (1) Notification, (2) Consultation, (3) Supervision, (4) Post-operation. This system is designed to provide the safest possible conditions for sea dumping of radioactive wastes. (MA)|

OECD Observer, 1977

1977-01-01

413

Disposal of Radioactive Waste at Hanford Creates Problems  

ERIC Educational Resources Information Center

|Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)|

Chemical and Engineering News, 1978

1978-01-01

414

Particulate collection in a low level radioactive waste incinerator  

Microsoft Academic Search

As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Bench-scale apparatus was used to evaluate asbestos floats and diatomaceous earth as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration

S. N. Rudnick; D. Leith; M. W. First

1976-01-01

415

Update on Radioactive Waste Management in the UK.  

National Technical Information Service (NTIS)

This paper provides a brief background to the current position in the United Kingdom (UK) and provides an update on the various developments and initiatives within the field of radioactive waste management that have been taking place during 2002/03. These...

J. Dalton A. McCall

2003-01-01

416

ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE  

EPA Science Inventory

Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

417

Ion-exchange material and method of storing radioactive wastes  

DOEpatents

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31

418

Radioactive wastes from uranium mining enterprises and their environmental effects  

Microsoft Academic Search

content in the ore and the activity of the geochemical processes occurring in the deposit prior to mining, particularly natural leaching resulting from the shift in the equilibrium of uranium with regard to its decay products [i]. The level of radioactivity of the wastes from the exploitation of known uranium deposits is usually low, especially if it is compared with

V. N. Mosinets

1991-01-01

419

Give The Public Something, Something More Interesting Radioactive Waste.  

National Technical Information Service (NTIS)

In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all wa...

H. D. K. Codee

2003-01-01

420

Mitigation of plant penetration into radioactive waste utilizing herbicides  

SciTech Connect

This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective herbicides, which control all vegetation; and slow-release forms of these herbicides to prolong effectiveness.

Cox, G.R.

1982-01-01

421

303-K Radioactive mixed-waste storage facility closure plan.  

National Technical Information Service (NTIS)

The Hanford Site, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radi...

1990-01-01

422

Mobiliteit van Zoutkoepels (Mobility of Salt Domes).  

National Technical Information Service (NTIS)

The mobility of salt domes in the northeast Netherlands was studied using LANDSAT Thematic Mapper and SPOT satellite pictures with a view to the underground storage of chemical and radioactive wastes. The detection of salt diapirism is important because i...

J. H. A. Bosch

1992-01-01

423

Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations  

SciTech Connect

Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

MacKenzie, D.R.; Kempf, C.R.

1986-01-01

424

Salt-occluded zeolite waste forms: Crystal structures and transformability  

SciTech Connect

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 {angstrom} diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Richardson, J.W. Jr. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source Div.

1996-12-31

425

Locating a Radioactive Waste Repository in the Ring of Fire  

NASA Astrophysics Data System (ADS)

The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection. The Nuclear Waste Management Organization of Japan (NUMO) began looking for a high-level waste repository site (HLW, vitrified residue from reprocessing power reactor fuel) 2 years ago. Over the next 10-20 years, NUMO hopes to find a site to dispose of ~20,000 tons of HLW in a robustly engineered repository constructed at a depth of several hundred meters.

Apted, Mick; Berryman, Kelvin; Chapman, Neil; Cloos, Mark; Connor, Chuck; Kitayama, Kazumi; Sparks, Steve; Tsuchi, Hiroyuki

2004-11-01

426

Stability of radioactive waste glasses assessed from hydration thermodynamics  

SciTech Connect

Assessment of the geologic performance of radioactive waste glasses requires extrapolation of finite tests to very long times. Hydration thermodynamics provides a means to compare the stability of waste glasses to natural analogues and to ancient synthetic glasses. The glass composition is separated into structural components of known free energy of hydration. These are then summed to provide a discrete measure of the stability of a given glass to aqueous attack. Hydration thermodynamics can be used to extend the results of laboratory tests of Savannah River waste glass to the repository environment. 15 references, 3 figures, 1 table.

Plodinec, M J; Jantzen, C M; Wicks, G G

1983-01-01

427

77 FR 52073 - Request To Amend a License To Export Radioactive Waste  

Federal Register 2010, 2011, 2012, 2013

...Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70...27, 2012, July 31, 2012, XW012/ radioactive total of 5,500 materials and/or...11005699. waste including tons or about radioactive various 1,000 tons waste that is...

2012-08-28

428

Dewatering of liwuid radioactive wastes in thin-film rotary evaporators  

Microsoft Academic Search

A sizable amount of liquid radioactive waste of different levels of radioactivity is formed during the operation of an atomic power plant and during reprocessing of spent nuclear fuel. Current concepts for handling such wastes require reliable isolation of them from the biosphere. At present, bituminization and cementation for medium- and low-level liquid radioactive waste and vitrification for high- and

A. S. Nikiforov; V. I. Vlasov; V. I. Davydov; P. G. Dobrygin; A. I. Kachurin; O. A. Krivyakov; D. A. Kukiev; A. S. Polyakov; V. F. Savelev; S. N. Filippov

1989-01-01

429

Radioactive Waste Management Information for 1991 and Record-to-Date  

SciTech Connect

This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1991. It also summarizes the radiative waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

Litteer, D.L.; Peterson, C.N.; Sims, A.M.

1993-04-01

430

Nuclear power and radioactive waste: a sub-seabed disposal option  

Microsoft Academic Search

The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or

Deese

1978-01-01

431

Modelling Sequential BIOsphere Systems under CLIMate Change for Radioactive Waste Disposal. Project BIOCLIM  

Microsoft Academic Search

The BIOCLIM project (Modelling Sequential BIOsphere systems under CLIMate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three -year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that

D. Texier; P. Degnan; M. F. Loutre; G. Lematre; M. Thorne

432

Radioactive waste acceptance team and generator interface yields successful implementation of waste acceptance criteria  

SciTech Connect

The Fernald Environmental Management Project has developed a successful Low Level Waste Shipping Program in compliance with the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325, Revision 1. This shipping program is responsible for the successful disposal of more than 4 million cubic feet of Low Level Waste over the past decade. The success of the Fernald Low Level Waste Shipping Program is due to the generator program staff working closely with the DOE-NV Radioactive Waste Acceptance Program Team to achieve win/win situations. The teamwork is the direct result of dedicated, proactive professionals working together toward a common objective: the safe disposition of low level radioactive waste. The growth and development of this program has many lessons learned to share with the low level waste generating community. The recognition of reciprocal interests enables consistently high annual volumes of Fernald waste disposal at the Nevada Test Site without incident. The large volumes successfully disposed serve testimony to the success of the program which is equally important to all Nevada Test Site and Fernald stakeholders. The Fernald approach to success is currently being shared with other low-level waste generators through DOE-NV sponsored outreach programs. This paper introduces examples of Fernald Environmental Restoration Management Corporation contributions to the DOE-NV Radioactive Waste Acceptance Program outreach initiatives. These practices are applicable to other low level waste disposal programs whether federal, commercial, domestic or international.

Rowe, J.G. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Griffin, W.A.; Rast, D.M. [USDOE, Washington, DC (United States)

1996-02-01

433

Advanced radioactive waste-glass melters  

SciTech Connect

During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

Bickford, D.F.

1990-01-01

434

Advanced radioactive waste-glass melters  

SciTech Connect

During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

Bickford, D.F.

1990-12-31

435

Basic chemistry for radioactive waste management. Studies on the chemical behaviors of radioactive elements.  

National Technical Information Service (NTIS)

The goal of this study is to obtain the information about the chemical behavior of radionuclides in groundwater for the safety of radioactive waste management. The effect of o-phenanthroline and 2,2'-bipyridine on the adsorption of metal(II) (Mn, Fe, Co, ...

T. Y. Eom K. K. Park W. H. Kim K. Y. Jee J. K. Kim

1992-01-01

436

Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes  

Microsoft Academic Search

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide,

Valeriy Nicholiavich Romanovskiy; Lgor V. Smirnov; Vasiliy A. Babain; Terry A. Todd; Ken N. Brewer

1999-01-01

437

Stress Corrosion Cracking Model for High Level Radioactive-Waste Packages  

SciTech Connect

A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain repository. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is the highly corrosion-resistant Alloy UNS-N06022 (Alloy 22), the environment is represented by aqueous brine films present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the tensile stress is principally from weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding); or that develop from corrosion processes such as pitting or dissolution of inclusions. To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulae for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, it can be used by the performance assessment to determine the time to through-wall penetration for the waste package. This paper presents the development of the SDFR crack growth rate model based on technical information in the literature as well as experimentally determined crack growth rates developed specifically for Alloy UNS-N06022 in environments relevant to high level radioactive-waste packages of the proposed Yucca Mountain radioactive-waste repository. In addition, a seismic damage related SCC crack opening area density model is briefly described.

P. Andresen; G. Gordon; S. Lu

2004-10-05

438

Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

1997-06-01

439

Radiation chemistry of polymeric components of radioactive waste  

SciTech Connect

The presentation covers fragments of research on the role of radiation chemistry in radioactive waste management. Radioactive waste often contains polymeric materials contaminated with actinides, which exhibit a activity for thousands of years. Rules of safety of transportation and environmental security of permanent storage demand the understanding of radiation chemistry of typical waste matrices. Due to a slow decay and a short range of penetration of a emitters, the experiments with actinides are not easy. 'Therefore, accelerated experiments have been performed using 10 MeV electrons of high intensity. That way chemical effects proceeding over thousands of years could be reduced to minutes in the laboratory. Simulation of the effect of a-radiolysis on polymers by low LET radiation is justified, because low LET radiation produces multi-ionization spurs resulting in the same chemistry as high LET radiation.

Dziewinski, J. J. (Jacek J.); Zagorski, Z. (Zbigniew)

2002-01-01

440

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01

441

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02

442

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01

443

RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS  

SciTech Connect

High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

Fox, K.

2010-09-07

444

ISOLATION OF RADIOACTIVE METALS FROM LIQUID WASTES  

EPA Science Inventory

Metals are present in many waste streams, and pose challenges with regard to their disposal. Release of metals into the environment presents both human health and ecological concerns. As a result, efforts are directed at reducing their toxicity, bioavailability, and environment...

445

Radioactive waste disposal in the marine environment  

Microsoft Academic Search

In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean

D. R. Anderson

1981-01-01

446

1978 radioactive waste tank inspection program  

Microsoft Academic Search

The 1978 tank inspection program was completed with inspections through all 158 accessible annulus risers on the double-wall tanks using at least one photographic technique at each riser. No unusual conditions were noted. Inspections were begun on tanks 25 to 28 which are in the late stages of construction; they will be completed during 1979. Eleven waste tank interior inspections

R. L. Boyleston; M. A. Knowles; J. A. Baldwin; F. G. McNatt

1979-01-01

447

Hydrothermal oxidation of radioactive combustible waste  

Microsoft Academic Search

A hydrothermal processing system was designed, built and tested for treatment of transuranic combustible material. The operation is performed in a plutonium glovebox. Presented in this paper are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. The use of thermal liquefaction, via pyrolysis, to prepare solid materials for hydrothermal processing was tested and

L. A Worl; S. J Buelow; D. M Harradine; R Lanning; D. D Padilla; J. H Roberts; X Shao

2000-01-01

448

Radioactive waste management and the nuclear fuel cycle. Volume 4, No. 3, waste management organizations  

Microsoft Academic Search

This special issue of the Journal: Radioactive Waste Management and the Nuclear Fuel Cycle, is a collection of papers describing the management organizations and nuclear waste programs in six European countries, the United States, and the IAEA. European countries included are Switzerland, Sweden, France, Belgium, Italy, and the United Kingdom. Collectively,the papers present a comprehensive background, with history of the

1984-01-01

449

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation...HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

2009-01-01

450

10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...  

Code of Federal Regulations, 2010 CFR

...fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation...HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

2010-01-01

451

Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management  

SciTech Connect

Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social and ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and Holistic assessments, coupled with an overarching deliberative approach. How this was managed and delivered to programme demonstrates how important effective integration of different issues, interests and world views can be achieved, and the paper looks forward to how the continued integration of both natural and social sciences is essential if public confidence is to be maintained through implementation stages. This paper will be particularly relevant to governments, waste owners and implementing bodies who are responsible for developing and implementing policy. (author)

Usher, Sam [AMEC Nuclear NNC (United Kingdom)

2007-07-01

452

Molten salt oxidation for treating low-level mixed wastes  

Microsoft Academic Search

MS0 is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility (please see the photo attached) in which an integrated pilot-scale MS0 treatment system is being tested and demonstrated. The system consists of a MS0 vessel with a dedicated off-gas treatment system, a salt recycle system,

M G Adamson; T D Ford; Kenneth G. Foster; D L Hipple; R W Hopper; P C Hsu

1998-01-01

453

Gas generation phenomena in radioactive waste transportation packaging  

SciTech Connect

The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible formation of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the buildup of gases during the storage of wastes, radiolysis and thermal decomposition appear to be the main contributors during waste transport operations. In this paper, the authors provide a review of applicable gas generation data resulting from the degradation of various waste forms under conditions typical for transport. The effects of radiolytic and thermal degradation mechanisms will be discussed in the context of transportation safety.

Nigrey, P.J.

1997-11-01

454

Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.  

PubMed

The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined. PMID:18524482

Guerrero, A; Goi, S; Allegro, V R

2008-04-29

455

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

SciTech Connect

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15

456

Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.  

PubMed

Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach. PMID:17033466

Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

2006-11-01

457

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

Microsoft Academic Search

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting

Robert A. Pierce; James R. Smith; William G. Ramsey; Connie A. Cicero-Herman; Dennis F. Bickford

1999-01-01

458

Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste  

Microsoft Academic Search

The presence of long-lived radionuclides presents a challenge to the management of radioactive wastes. Immobilization of these radionuclides must be accomplished prior to long-term, permanent disposal. Separation of the radionuclides from the waste solutions has the potential of significantly decreasing the costs associated with the immobilization and disposal of the radioactive waste by minimizing waste volumes. Several solvent extraction processes

J. D. Law; K. N. Brewer; R. S. Herbst; T. A. Todd; D. J. Wood

1999-01-01

459

Integrating Modeling and Monitoring for the Radioactive Waste Management Complex  

SciTech Connect

United States Department of Energy Order 435.1, Radioactive Waste Management, includes requirements for assessing the long-term performance of radioactive waste disposal facilities and also for environmental monitoring of the performance of those facilities throughout the time of institutional control. It is also specified that performance assessment and composite analysis modeling should be integrated with environmental monitoring in order to provide a means to assess the adequacy of the assumptions that were made for the modeling. This paper describes the development of action levels, which are expected concentrations at different locations in the subsurface based on modeling conducted for the performance assessment and composite analysis for the low-level waste disposal facility at the Radioactive Waste Management Complex at the Idaho National Engineering and Environmental Laboratory. First year comparisons of measured concentrations with the action level have shown that migration appears to be occurring at a much lower rate than predicted by the models. This supports the conclusion that the modeling is conservative and conclusions based on the modeling are likewise conservative.

Seitz, Roger Ray; Mccarthy, James Michael; Keck, Karen Nina

2002-08-01

460

A robotic inspector for low-level radioactive waste  

SciTech Connect

The Department of Energy has low-level radioactive waste stored in warehouses at several facilities. Weekly visual inspections are required. A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed to survey and inspect the stored drums. The robot will travel through the three- foot wide aisles of drums stacked four high and perform a visual inspection, normally performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. This mobile robot system will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure.

Byrd, J.S.; Pettus, R.O. [South Carolina Univ., Columbia, SC (United States). Dept. of Electrical and Computer Engineering

1996-06-01

461

Porous Matrixes for Immobilization of Radioactive Wastes  

SciTech Connect

The process was studied and the technology developed to obtain a highly porous coke based material with the solid dispersed filler (zirconium dioxide); properties and technological characteristics of the material were investigated. Technological process was developed for the fabrication of products out of the highly porous high melting compound (zirconium carbide). Technology for the fabrication of products out of the highly porous high melting compound bypassing the necessity of obtaining the dry radioactive feed powders and allows producing the material with a wide range of compositions and properties. In this paper we describe a technological process for the fabrication of materials, assuming the impregnation of a porous zirconium carbide form by the liquid highly concentrated solution of actinides followed by the decomposition of the obtained product during the thermal treatment to form stable oxides. We are investigating the properties of the final form as a possible target in a nuclear reactors to use neutrons to burn up the actinides. (authors)

Ershov, B.G.; Minaev, A.A.; Afonin, M.M.; Kuznetsov, D.G. [Institute of Physical Chemistry and Electrochemisrty, Russian Academy of Sciences, Moscow (Russian Federation)

2007-07-01

462

Disposal of soluble salt waste from coal gasification  

SciTech Connect

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01

463

Analysis of plutonium and uranium volatilities from mixed wastes in the molten salt processor  

Microsoft Academic Search

Rockwell International has conductd a series of bench-scale molten salt processor tests on oxidation of simulated laboratory mixed waste materials to evaluate the retention of radionuclides such as Pu, U, I, Ru, Eu, Sr, and Cs in the molten salt bath of processor, and to obtain process information for designing a large-scale molten salt processor for mixed wastes. It is

Krikorian

1991-01-01

464

FINAL REPORT. FOAMING AND ANTIFOAMING IN RADIOACTIVE WASTE PRETREATMENT AND IMMOBILIZATION  

EPA Science Inventory

Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the obj...