Note: This page contains sample records for the topic radioactive soil contamination from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Bioremediation of a soil contaminated with radioactive elements  

Microsoft Academic Search

Some agricultural lands located in the Vromos Bay area, near the Black Sea coast, Southeastern Bulgaria, have been contaminated with radioactive elements (uranium, radium and thorium) and toxic heavy metals (copper, cadmium and lead) as a result of mining and mineral processing of polymetallic ores. Laboratory experiments carried out with soil samples from these lands revealed that an efficient remediation

S. N Groudev; P. S Georgiev; I. I Spasova; K Komnitsas

2001-01-01

2

Sequential extraction evaluation of soil washing for radioactive contamination  

SciTech Connect

This paper describes an experimental plan for evaluating soil washing technology for potential application to radioactively contaminated soils at the Idaho National Engineering Laboratory (INEL). The sequential extraction methodology is based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. A mechanism-specific extractant has the potential for greater removal efficiency than a broad-spectrum extractant, such as acid, while using a less aggressive chemistry and reducing resultant water treatment and dissolved solids handling problems.

Gombert, D.

1992-10-01

3

Sequential extraction evaluation of soil washing for radioactive contamination  

SciTech Connect

This paper describes an experimental plan for evaluating soil washing technology for potential application to radioactively contaminated soils at the Idaho National Engineering Laboratory (INEL). The sequential extraction methodology is based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. A mechanism-specific extractant has the potential for greater removal efficiency than a broad-spectrum extractant, such as acid, while using a less aggressive chemistry and reducing resultant water treatment and dissolved solids handling problems.

Gombert, D.

1992-01-01

4

Radioactive contamination of tropical rainforest soils in Southern Costa Rica  

Microsoft Academic Search

Radionuclide content in soils from four locations in a tropical rainforest near Golfito in Southern Costa Rica was investigated. For comparison, two nearby locations in open grassland were also studied. From each site 5 soil cores down to a depth of 15cm were taken. The median contamination with 137Cs was 584Bqm?2 (reference date 1 January 1996) and the coefficient of

P Bossew; F Strebl

2001-01-01

5

Evaluation of the Parameters of Radioactive Contamination of Soils  

SciTech Connect

After Chornobyl NPP (ChNPP) accident the territory near destroyed Unit 4 (that now with the special confinement has the name the ''Shelter'' object) is contaminated of fuel fallouts. During liquidation of the accident consequences this territory was covered with pure earth, concrete, etc. As a result a contaminated anthropogenic layer of the soil on the depth up to 10 m was formed. Now the problem of contamination estimation and the soils management arose. For this tasks a gamma logging method was modified conformably to ChNPP conditions. The methods for necessary coefficients receiving and log treatment have been suggested.

Panasyuk M.I.; Skorbun A.D.; Klyuchnikov O.O.

2002-02-26

6

In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals  

Microsoft Academic Search

Two experimental plots of an agricultural land contaminated with radioactive elements (uranium, radium thorium) and toxic heavy metals (copper, zinc, cadmium) were treated by two different biotechnological in situ methods. The soil in this land was characterized by a negative net neutralization potential, and the soil pH was in a slightly acidic pH range (from 4 to 5). The contaminants

S. N. Groudev; I. I. Spasova; P. S. Georgiev

2001-01-01

7

Radioactive contamination of tropical rainforest soils in Southern Costa Rica.  

PubMed

Radionuclide content in soils from four locations in a tropical rainforest near Golfito in Southern Costa Rica was investigated. For comparison, two nearby locations in open grassland were also studied. From each site 5 soil cores down to a depth of 15 cm were taken. The median contamination with 137Cs was 584 Bq m-2 (reference date 1 January 1996) and the coefficient of variation (CV) was 50%. This contamination can be attributed to global fallout from atmospheric nuclear weapon tests between 1945 and 1980. The mean contamination is slightly lower than the value expected for the latitude (8 degrees 42': 700 Bq m-2), which may be explained by migration of radiocaesium to subsoil below 15 cm or by uptake into the living biomass. Out of the total variability of 50%, around 20% can be attributed to the sampling and measuring process uncertainties, thus leaving a 45% contribution of spatial variability. A significant difference between forest and meadow sites could be detected: the meadow sites showed lower radiocaesium soil inventories (median: 291 Bq m-2) than the forest sites (643 Bq m-2). This may be explained by the agricultural activities carried out on meadow sites which lead to an increased redistribution of caesium in the soil profile and therefore a larger fraction of the total 137Cs lying below 15 cm. Another reason for higher contamination levels under forest can be attributed to the high interception potential of dense tree canopies for dry deposition. Extrapolating the 137Cs concentration below the sampling horizon, i.e. accounting for the cut-off of the profiles by the sampling technique, results in an estimated mean of 710 Bq m-2 for the forest sites, which is very close to the expected figure. The mainly mineral part of the forest soil profiles was analysed for the 137Cs transport parameters, apparent convection velocity (v = 0.14 +/- 0.09 cm a-1) and apparent diffusion constant (D = 0.79 +/- 0.49 cm2 a-1). The maximum concentration can be found at 5.3 +/- 2.9 cm depth, the half-value depth being 7.4 +/- 1.3 cm. The mean 40K activity concentration was 175 Bq kg-1 dry matter (CV = 69%) and 226Ra and 228Ra concentrations of 9.90 Bq kg-1 (CV = 23%) and 7.93 Bq kg-1 (CV = 20%) have been found, respectively. PMID:11378940

Bossew, P; Strebl, F

2001-01-01

8

Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples  

NASA Astrophysics Data System (ADS)

Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

2014-01-01

9

Lateral migration of Caesium-137 as a heterogeneity factor of soil radioactive contamination within small catchments  

NASA Astrophysics Data System (ADS)

Caesium-137 is long-lived artificial radionuclide with half-life of about 30.17 years. Due to Chernobyl accident in 1986 were received 270-280 PBq of 137Cs. The radioactive material is spread in different directions and then fell to the vast territory on the earth's surface as part of rainfall and under the influence of gravity. The deposition of 137Cs was very heterogeneous due to significant impact of changing weather conditions during the accident. Fixing 137Cs in the soil is because of the high content in the upper layer of fine fractions (especially clay) and organic substances that increase the sorption properties of soil. As a result of small vertical migration down the soil profile, the main migration processes of 137Cs is lateral migration which may occur in soil particles under the deflation but mainly water erosion.The aim of this study was to analyze the main factors of changing the current radioecological situation of small catchments in Chernozem zone of European Russia. The 1st small catchment with total area 1.98 km2 is located in the Kursk Region, where 137Cs soil inventories currently does not exceed 37 kBq/m2. The 2nd small catchment with total area 0.99 km2 is located in the Tula Region called "Plavsk Cs deposition hotspot" was highly contaminated with radioactive fallout with levels up to 600 kBq/m2.For reconstruction of 137Cs initial fallout was defined 4 references sites in Kursk Region and 5 sites in Tula Region. All reference sites were located at the flat interfluve areas in or nearby the study catchment. The analysis of 137Cs inventory within 1st study site references did not show significant differences between them which indicates the absence of the initial fallout heterogeneity. The mean values of 137Cs inventory is 8,7±0,5 kBq/m2 and Cv varies in a range of 13-22%, which are typical for the faraway from Chernobyl territory. Based on 4 references was created the map of initial Chernobyl fallout using the formula of radioactive decay. The next step was creation map of 137Cs contamination of soils using data from slopes and bottoms and its comparison with the map of initial Chernobyl fallout. Subsequently, the 137Cs inventory of soil on slopes and watersheds decreased due to the processes of radioactive decay and removal 137Cs with soil erosion but increased on foot of the slopes and bottoms as a result of accumulation processes. In the bottom of catchment formed zones with 2 times excess of the 137Cs initial fallout which is associated with concentrating runoff of soil material from large areas to the bottom, which occupies about 1 % of the total catchment area.The 137Cs inventory within 2nd study site references varies in a range of 82-211 kBq/m2. There is notable spatial trend on the map of initial fallout have been determined in submeridional direction but no trend in sublatitudinal direction. In 2013 the 137Cs inventories within small catchment bottom also in 1.5-2 times higher than the inventories within watershed. Soil erosion significantly changes composition of 137Cs contaminaition in catchment within no polluted area and no changes within heavily polluted area because of heterogeneous deposition.

Shamshurina, Evgeniya

2014-05-01

10

On-site radioactive soil contamination at the Andreeva Bay shore technical base, Northwest Russia  

Microsoft Academic Search

The radioactive waste (RAW) storage site at Andreeva Bay in the Russian Northwest has experienced radioactive contamination both as a result of activities carried out at the site and due to incidents that have occurred there in the past such as accidental releases of radioactive materials. The site is an interesting case study for decommissioning due to the extremely large

O. Reistad; M. Dowdall; Ø. G. Selnæs; W. J. F. Standring; S. Hustveit; F. Steenhuisen; A. Sørlie

2008-01-01

11

Comparing radiation dose rates in soils and riverine sediment to track the dispersion of radioactive contamination in Fukushima coastal rivers  

NASA Astrophysics Data System (ADS)

The Fukushima Dai-ichi nuclear power plant (FDNPP) accident that occurred in March 2011 led to the formation of a 3000-km² radioactive pollution plume on soils located up to 70 km to the northwest of the damaged site. Forests and paddy fields are the dominant land uses in this mountainous region drained to the Pacific Ocean by several rivers that flow across densely inhabited coastal plains. It is then crucial to track the dispersion of radioactive material conveyed by those rivers to estimate the continental supply of radionuclides to the Ocean and to assess redistribution of radioactive sediment in those catchments. Radiations emitted by this contaminated material may indeed lead to an external exposure threat for local populations. As river discharge and sediment concentration data were not available during the first two years that followed the accident, alternative methods had to be developed to track this dispersion. We therefore organized field campaigns every six months and conducted local ground dose rate measurements to estimate whether fresh sediment drape deposits were more or less contaminated compared to local soils. Overall, our results showed that, in those regions exposed to violent typhoons and spring snowmelt, transfers of sediment are massive and episodic, and that they followed a seasonal cycle in 2011-2012. Then, in May 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. This could have indicated a drying-up of the upstream sources of contamination. However, after the violent typhoons that occurred during summer in 2013, dose rates measured in fresh sediment deposits in November 2013 increased again systematically across the region. We thereby suggest that remobilization of contaminated sediment by typhoons and their storage in reservoirs and in coastal sections of the river channels now represent the most crucial issues to protect the local populations and manage the most contaminated catchments.

Evrard, Olivier; Onda, Yuichi; Lepage, Hugo; Chartin, Caroline; Lefèvre, Irène; Cerdan, Olivier; Bonté, Philippe; Ayrault, Sophie

2014-05-01

12

NCRP soil contamination task group  

SciTech Connect

The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases.

Jacobs, D.G.

1987-01-01

13

EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES  

EPA Science Inventory

A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

14

Effects of low-level radioactive soil contamination and sterilization on the degradation of radiolabeled wheat straw.  

PubMed

After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. PMID:22248931

Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

2012-07-01

15

Evaluating soil contamination  

SciTech Connect

The compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

Beyer, W.

1990-07-01

16

Dynamics of radiostrontium leaching from radioactively contaminated floodplain soils of the Yenisei River  

Microsoft Academic Search

Gleyzation-mediated leaching of radiostrontium from floodplain soils of the Krasnoyarsk Mining and Chemical Combine (MCC)\\u000a activity zone [Atamanovskii Island (front part), Oseredysh Island (front part), and Berezovyi Island (rear part)] is studied\\u000a with model systems. Leaching of radiostrontium from waterlogged soils is analyzed in terms of the model of anaerobic biosolubilization\\u000a of gel films. The leaching of radiostrontium is found

E. K. Legin; Yu. I. Trifonov; M. L. Khokhlov; D. N. Suglobov; E. E. Legina; V. K. Legin

2008-01-01

17

Environmental geochemistry of radioactive contamination.  

SciTech Connect

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Bryan, Charles R.; Siegel, Malcolm Dean

2003-09-01

18

Environmental Geochemistry of Radioactive Contamination  

NASA Astrophysics Data System (ADS)

Psychometric studies of public perception of risk have shown that dangers associated with radioactive contamination are considered the most dreaded and among the least understood hazards (Slovic, 1987). Fear of the risks associated with nuclear power and associated contamination has had important effects on policy and commercial decisions in the last few decades. In the US, no new nuclear power plants were ordered between 1978 and 2002, even though it has been suggested that the use of nuclear power has led to significantly reduced CO2 emissions and may provide some relief from the potential climatic changes associated with fossil fuel use. The costs of the remediation of sites contaminated by radioactive materials and the projected costs of waste disposal of radioactive waste in the US dwarf many other environmental programs. The cost of disposal of spent nuclear fuel at the proposed repository at Yucca Mountain will likely exceed 10 billion. The estimated total life cycle cost for remediation of US Department of Energy (DOE) weapons production sites ranged from 203-247 billion dollars in constant 1999 dollars, making the cleanup the largest environmental project on the planet (US DOE, 2001). Estimates for the cleanup of the Hanford site alone exceeded $85 billion through 2046 in some of the remediation plans.Policy decisions concerning radioactive contamination should be based on an understanding of the potential migration of radionuclides through the geosphere. In many cases, this potential may have been overestimated, leading to decisions to clean up contaminated sites unnecessarily and exposing workers to unnecessary risk. It is important for both the general public and the scientific community to be familiar with information that is well established, to identify the areas of uncertainty and to understand the significance of that uncertainty to the assessment of risk.

Siegel, M. D.; Bryan, C. R.

2003-12-01

19

49 CFR 175.705 - Radioactive contamination.  

Code of Federal Regulations, 2010 CFR

...aircraft operator shall notify the offeror at the earliest practicable moment following any incident in which there has been breakage, spillage, or suspected radioactive contamination involving Class 7 (radioactive) materials...

2010-10-01

20

Status of outdoor radioactive contamination at the Hanford Site  

SciTech Connect

This document summarizes the status of outdoor radioactive contamination near Hanford Site facilities and disposal sites. It defines the nature and areal extend of the radioactively contaminated areas and describes the historical, ongoing, and planned radiological monitoring and control activities. Radioactive waste has been disposed of to the soil column since shortly after the reactors and production facilities began operating. Radioactive liquid wastes were placed directly into the ground via liquid discharges to cribs, ponds, ditches, and reverse wells. Solid wastes were placed in trenches, burial vaults, and caissons. Although the Hanford Site covers 1,450 km{sup 2}, the radioactively contaminated area is only about 36 km{sup 2} or 2.5% of the original site. Over time, contamination has migrated from some of the waste management sites through various vectors (e.g., burrowing animals, deep-rooted vegetation, erosion, containment system failure) or has been deposited to the surface soil via spills and unplanned releases (e.g., line leaks/breaks, tank leaks, and stack discharges) and created areas of outdoor radioactivity both on and below the surface. Currently 26 km{sup 2} are posted as surface contamination and 10 km{sup 2} are posted as underground contamination.

McKinney, S.M.; Markes, B.M.

1994-12-01

21

Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident: the radioactive contamination of soil and plants in 2011.  

PubMed

The accident at the Fukushima Dai-ichi Nuclear Power Plant has resulted in radioactive contamination of environmental media and food in the Far East of Russia, particularly in the Sakhalin Region. To obtain the knowledge about the (134)Cs and (137)Cs spatial distribution in the Sakhalin Region, soil samples were collected at 31 representative grassland sites on Sakhalin, Kunashir and Shikotan islands (43.80°-46.40° N and 142.73°-146.84° E) in the middle of May and around the end of September to early October 2011. In the autumn, vegetation samples (mixed grass/forb crop and bamboo, Sasa sp.) were collected together with soil samples. Maximum measured activity concentrations (on dry weight) of (134)Cs and (137)Cs in soil were 30 Bq kg(-1) and 210 Bq kg(-1), respectively. Within soil profile, (134)Cs activity concentrations declined rapidly with depth. Although for both sampling occasions (in the spring and autumn) the radionuclide was completely retained in the upper 3-4 cm of soil, a deeper penetration of the contaminant into the ground was observed in the autumn. In contrast with (134)Cs, activity concentrations of (137)Cs demonstrated a broad range of the vertical distribution in soil; at most sites, the radionuclide was found down to a depth of 20 cm. This resulted from interfering the aged pre-accidental (137)Cs and the new Fukushima-borne (137)Cs. To calculate contribution of these sources to the inventory of (137)Cs, the (134)Cs:(137)Cs activity ratio of 1:1 in Fukushima fallout (the reference date 15 March 2011) was used. The maximum deposition density of Fukushima-derived (137)Cs was found on Shikotan and Kunashir Islands with average density of 0.124 ± 0.018 kBq m(-2) and 0.086 ± 0.026 kBq m(-2), respectively. Sakhalin Island was less contaminated by Fukushima-derived (137)Cs of 0.021 ± 0.018 kBq m(-2). For the south of Sakhalin Island, the reference inventory of pre-Fukushima (137)Cs was calculated as 1.93 ± 0.25 kBq m(-2) (reference date 15 March 2011). For Shikotan and Kunashir Islands, the pre-Fukushima reference levels of (137)Cs ground contamination appeared to be higher: on average, 2.81 ± 0.35 kBq m(-2). Maximum measured activity concentrations (on wet weight) of (134)Cs and (137)Cs in the vegetation were 5 Bq kg(-1) and 18 Bq kg(-1), respectively. Soil-to-plant aggregated transfer factors, T(ag)s, for (134)Cs were more than an order of magnitude higher than those for (137)Cs. For the above-ground biomass density of 1 kg per m(2) (wet weight), plant contamination may contribute approximately 2% and 0.1% to the ground deposition of Fukushima-derived and pre-accidental (137)Cs, respectively. PMID:23344426

Ramzaev, V; Barkovsky, A; Goncharova, Yu; Gromov, A; Kaduka, M; Romanovich, I

2013-04-01

22

Radioactive contamination incidents involving protective clothing  

Microsoft Academic Search

The study focuses on incidents at Department of Energy facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work, (2) working conditions, (3) type of anti-contamination material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of reports identified

Richard A. Reichelt; Marc E. Clay; A. Jeffery Eichorst

1998-01-01

23

Radioactive contamination incidents involving protective clothing  

Microsoft Academic Search

The study focuses on incidents at Department of Energy (DOE) facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work; (2) working conditions; (3) type of anti-contamination (anti-C) material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of

R. Reichelt; M. Clay; J. Eichorst

1996-01-01

24

Soil contamination standards for protection of personnel  

SciTech Connect

The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. External dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.

Rittmann, P.D.

1998-04-16

25

Natural radioactivity contamination problems. Report no. 2. (final)  

SciTech Connect

Levels of naturally occurring radionuclides associated with the bauxite, columbium-tantalum, phosphate, tin, pumice, and titanium mineral extraction industries are reported. Data is also presented on radioactivity measurements in ground water, in selected geothermal waters, and in oil production brines. Radiation protection guidance is provided for uranium recovery from wet-process phosphate plants, for soil contamination limits, and for radiological exposure in natural caves. Dose pathways from incidental uses of naturally occurring radioactive materials are presented. Model state regulations for protecting public health and safety from use and disposal of naturally occurring radioactive material are outlined.

Not Available

1981-09-01

26

Waste reduction by separation of contaminated soils during environmental restoration  

SciTech Connect

During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill.

Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E. [Sandia National Labs., Albuquerque, NM (United States); Slavin, P. [GRAM, Inc., Albuquerque, NM (United States); Guerin, D. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1998-06-01

27

Leachate tests with sewage sludge contaminated by radioactive cesium.  

PubMed

The sewer systems of eastern Japan have transported radioactive fallout from the Fukushima Dai-ichi nuclear power plant accident to wastewater treatment plants, where the radioisotopes have accumulated. To better understand the potential problems associated with the disposal of contaminated sewage sludge in landfills, leachate tests were conducted with radioactive incinerator ash, cement solidification incinerator ash, and dewatered sludge cake. Radioactivity was undetectable in the eluate from incinerator ash and dewatered sludge cake, but about 30% of the radioactivity initially in cement solidification incinerator ash appeared in the eluate during the leaching experiments. Moreover, modification of test conditions revealed that the presence of Ca(2+) ions and strong alkali in the water that contacted the incinerator ash enhanced leaching of cesium. Lastly, the capacity of pit soil to absorb radioactive cesium was estimated to be at least 3.0 Bq/g (dry). PMID:23947711

Tsushima, Ikuo; Ogoshi, Masashi; Harada, Ichiro

2013-01-01

28

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

SciTech Connect

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. (Oak Ridge National Lab., TN (United States)); Dunbar, N.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)); Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States))

1992-11-01

29

Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL  

SciTech Connect

A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

Spalding, B.P.; Jacobs, G.K.; Naney, M.T. [Oak Ridge National Lab., TN (United States); Dunbar, N.W. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States)

1992-11-01

30

Natural attenuation of contaminated soils.  

PubMed

Natural attenuation is increasing in use as a low cost means of remediating contaminated soil and groundwater. Modelling of contaminant migration plays a key role in evaluating natural attenuation as a remediation option and in ensuring that there will be no adverse impact on humans and the environment. During natural attenuation, the contamination must be characterized thoroughly and monitored through the process. In this paper, attenuation mechanisms for both organic and inorganic contaminants, use of models and protocols, role of monitoring and field case studies will be reviewed. PMID:15031019

Mulligan, Catherine N; Yong, Raymond N

2004-06-01

31

Soils: man-caused radioactivity and radiation forecast  

SciTech Connect

Available in abstract form only. Full text of publication follows: One of the main tasks of the radiation safety guarantee is non-admission of the excess over critical radiation levels. In Russia they are man-caused radiation levels. Meanwhile any radiation measurement represents total radioactivity. That is why it is hard to assess natural and man-caused contributions to total radioactivity. It is shown that soil radioactivity depends on natural factors including radioactivity of rocks and cosmic radiation as well as man-caused factors including nuclear and non-nuclear technologies. Whole totality of these factors includes unpredictable (non-deterministic) factors - nuclear explosions and radiation accidents, and predictable ones (deterministic) - all the rest. Deterministic factors represent background radioactivity whose trends is the base of the radiation forecast. Non-deterministic factors represent man-caused radiation treatment contribution which is to be controlled. This contribution is equal to the difference in measured radioactivity and radiation background. The way of calculation of background radioactivity is proposed. Contemporary soils are complicated technologically influenced systems with multi-leveled spatial and temporary inhomogeneity of radionuclides distribution. Generally analysis area can be characterized by any set of factors of soil radioactivity including natural and man-caused factors. Natural factors are cosmic radiation and radioactivity of rocks. Man-caused factors are shown on Fig. 1. It is obvious that man-caused radioactivity is due to both artificial and natural emitters. Any result of radiation measurement represents total radioactivity i.e. the sum of activities resulting from natural and man-caused emitters. There is no gauge which could separately measure natural and man-caused radioactivity. That is why it is so hard to assess natural and man-caused contributions to soil radioactivity. It would have been possible if human activity had led to contamination of soil only by artificial radionuclides. But we can view a totality of soil radioactivity factors in the following way. (author)

Gablin, Vassily [Scientific-Industrial Association 'Radon', 7th Rostovsky Lane, Moscow 119121 (Russian Federation)

2007-07-01

32

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

SciTech Connect

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27

33

[Examination of radioactive contamination in foods].  

PubMed

Following the Fukushima nuclear plant accident in Mar. 2011, the examination of radioactive contamination in foods is being carried out in Nagoya. During the period between 30 Mar. 2011 and 31 Oct. 2012, a total of 300 food samples were collected and the concentrations of radioactive nuclides were determined by means of ?-ray spectrometry using a high-purity germanium semiconductor detector. The results of analysis indicate that the concentrations of radioactive iodine (I) and cesium (Cs) were below the regulatory limits. Radioactive I ((131)I) was detected in 7 samples which belonged to the categories of green and yellow vegetables and other vegetables. Radioactive Cs ((134)Cs and (137)Cs) was detected in 60 samples which belonged to the categories of rice and its processed products, potatoes and its processed products, nuts and seeds, green and yellow vegetables, other vegetables, fruits, mushrooms, fishes and shellfishes, processed sea foods, meat, milk and dairy products and other beverages. PMID:23676695

Miyazaki, Hitoshi; Tsuchiyama, Tomoyuki; Terada, Hisaya

2013-01-01

34

Testing contaminated soil  

SciTech Connect

Today`s environmental projects involve a variety of complex issues that property owners and environmental professionals have to consider before they embark on a site-remediation program. One of the key things that has to be done during a project is to understand and select the chemical analysis parameters (CAPs) that are needed to characterize the soil. For instance, site investigations to determine if a soil is polluted require engineers to carefully select CAPs that will yield this information. Offsite fusibilities that specialize in waste treatment and disposal, on the other hand, require CAPs that may vary greatly from the CAPs needed for site investigations. However, when offsite treatment and disposal is the preferred remedial option, one can save money and add value to a project by including the CAPs required by a treatment, storage and disposal (TSD) facility to those CAPs selected for the site investigation. To select the right combination of CAPs to cover both site investigations and treatment and disposal requires a clear understanding of the analytical methods underlying the CAPs. The following set of CAPs are typically required by RCRA and non-RCRA TSD facilities: Total petroleum hydrocarbons; EPA method 9045 for corrosivities (pH); Reactivity; Total RCRA-8 metals; EPA Method 8240 for volatile organic compounds; EPA Method 8270 for semi-volatile organic compounds (SVOCs); EPA Method 8080 for polychlorinated biphenyls (PCBs); EPA Method 1010 for ignitability. These are all described.

McKenna, J.; Pickering, E.

1995-11-01

35

Contaminant resorption during soil washing  

SciTech Connect

To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine.

Gombert, D.

1993-10-01

36

Phytoremediation of hydrocarbon contaminated soils  

SciTech Connect

This book presents innovative technology for environmental clean up using in situ treatment. It describes the results of a field study focusing on hydrocarbon contamination, especially polynuclear aromatic hydrocarbons, in surface and near surface soils. The field demonstration used soils contaminated with aged diesel fuels. The random block design enabled the investigators to test the statistical difference in the effects of different vegetated and unvegetated treatments. They tested the degradation of diesel and polynuclear aromatic hydrocarbon components in plots containing three different vegetation treatments, two grasses, and a legume, and a non-vegetated control. Part one of the monograph gives a complete and thorough account of the results of the field study. Part two covers the design and potential costs of a full-scale implementation of the demonstration system as well as the performance and potential application of the new technology.

Banks, M.K.; Govindaraju, R.S.; Schwab, A.P. [Purdue Univ., Lafayette, IN (United States); Kulakow, P. [Kansas State Univ., Manhattan, KS (United States); Finn, J. [Remediation Technologies, Inc. (United States)

1999-11-01

37

Recycling radioactively contaminated materials: Experience and prognosis  

Microsoft Academic Search

In recent years, federal agencies, especially the U.S. Department of Energy (DOE), the U.S. Department of Defense (DOD), the U.S. Environmental Protection Agency, and the U.S. Nuclear Regulatory Commission (NRC), as well as the commercial nuclear enterprise, have begun to consider certain radioactively contaminated materials as resources for beneficial reuse rather than wastes. Most outstanding among these materials is metal

D. E. Large; H. W. Arrowsmith

1993-01-01

38

Radioactive contamination of the Yenisei River  

Microsoft Academic Search

Based on observational data in the period 1971–1993, radioactive contamination of the Yenisei River ecosystem was analysed within 2000 km of the site of discharges from the Krasnoyarsk Mining and Chemical Industrial Complex. Data on the content of 24Na, 32P, 46Sc, 51Cr, 54Mn, 56Mn, 58Co, 60Co, 59Fe, 65Zn, 90Sr, 95Zr, 95Nb, 103Ru, 106Ru, 134Cs, 137Cs, 140Ba, 141Ce, 144Ce and 239Np

E. G. Tertyshnik

1995-01-01

39

Electrokinetic remediation of contaminated soils  

SciTech Connect

Electrokinetic remediation of contaminated soil has been demonstrated for saturated and unsaturated sand in preliminary experiments using a novel transport visualization technique. Large anionic organic dyes were mixed with a portion of soil and the rate of electromigration of the dye in an imposed electric field was monitored photographically. One of the fastest current-normalized electromigration rates was measured in the driest sand, which contained 7% water by weight. This moisture content is typical of the moisture content in the unsaturated zone of subsurface native soils found in New Mexico. The characteristics of the electromigration were similar in both the saturated and unsaturated sand. The leading edge of the dye migration front was diffuse while the trailing edge was sharp and concentrated. This and other observed behavior may indicate a concentration effect, where the electromigration rate of dilute dye is greater than that of concentrated dye. The soil left after the trailing edge passed seemed to contain no residual dye in both the saturated and unsaturated cases. The success of demonstrating electromigration of large molecules in unsaturated soil is encouraging and indicates that it may be feasible to remediate in situ anionic heavy metals such as chromate from unsaturated soil with electrokinetic techniques. 23 refs., 7 figs.

Lindgren, E.R.; Kozak, M.W. (Sandia National Labs., Albuquerque, NM (United States)); Mattson, E.D. (SAT-UNSAT, Inc., Albuquerque, NM (United States))

1991-01-01

40

Procedures for sampling radium-contaminated soils  

SciTech Connect

Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

Fleischhauer, H.L.

1985-10-01

41

Radioactive contamination incidents involving protective clothing  

SciTech Connect

The study focuses on incidents at Department of Energy (DOE) facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work; (2) working conditions; (3) type of anti-contamination (anti-C) material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of reports identified strenuous work activities such as maintenance, construction, or decontamination and decommissioning (D&D) projects. The reports also indicated adverse working conditions that included hot and humid or cramped work environments. The type of anti-C clothing most often identified was cotton or water-resistant, disposable clothing. Most of the reports also indicated contaminants migrating through perspiration-soaked areas, typically in the knees and forearms. On the basis of their survey, the authors recommend the use of improved engineering controls and resilient, breathable, waterproof protective clothing for work in hot, humid, or damp areas where the possibility of prolonged contact with contamination cannot be easily avoided or controlled.

Reichelt, R.; Clay, M.; Eichorst, J.

1996-10-01

42

TNT transport and fate in contaminated soil  

Microsoft Academic Search

Past disposal practices at munitions production plants have contaminated terrestrial and aquatk ecosystems with 2,4,6-trinitrotoluene (TNT). We determined TNT transport, degradation, and long-term sorption characteristics in soil. Transport experiments were conducted with repacked, unsaturated soil columns containing uncontaminated soil or layers of contaminated and uncontaminated soil. Uncontaminated soil columns received multiple pore volumes (22-50) of a TNT-³HâO pulse, containing 70

S. D. Comfort; P. J. Shea; L. S. Hundal; Z. Li; B. L. Woodbury; J. L. Martin; W. L. Powers

1995-01-01

43

Tracer-level radioactive pilot-scale test of in situ vitrification technology for the stabilization of contaminated soil sites at ORNL. Environmental Restoration Program  

SciTech Connect

This plan summarizes the activities to be performed during FY 1990 and FY 1991 for the tracer-level radioactive pilot-scale in situ vitrification (ISV) test. This test is the second step in evaluating ISV as a remedial action for the pits and trenches at Oak Ridge National Laboratory (ORNL). A previous test used nonradioactive tracers for cesium and strontium. This new test will again use a one-half-scale model of trench 7 and the pilot-scale ISV equipment of Pacific Northwest Laboratory (PNL). A small and precisely known amount of waste from a liquid waste disposal pit will be used for the test. An actually contaminated waste site cannot be used for this test because of the necessity to use an exactly known inventory of radionuclides so that a precise measurement of the volatilization of various constituents to the off-gas can be determined.

Jacobs, G.K.; Spalding, B.P.

1991-11-01

44

Tracer-level radioactive pilot-scale test of in situ vitrification technology for the stabilization of contaminated soil sites at ORNL  

SciTech Connect

This plan summarizes the activities to be performed during FY 1990 and FY 1991 for the tracer-level radioactive pilot-scale in situ vitrification (ISV) test. This test is the second step in evaluating ISV as a remedial action for the pits and trenches at Oak Ridge National Laboratory (ORNL). A previous test used nonradioactive tracers for cesium and strontium. This new test will again use a one-half-scale model of trench 7 and the pilot-scale ISV equipment of Pacific Northwest Laboratory (PNL). A small and precisely known amount of waste from a liquid waste disposal pit will be used for the test. An actually contaminated waste site cannot be used for this test because of the necessity to use an exactly known inventory of radionuclides so that a precise measurement of the volatilization of various constituents to the off-gas can be determined.

Jacobs, G.K.; Spalding, B.P.

1991-11-01

45

Bioremediation of HMX-Contaminated Soil Using Soil Slurry Reactors  

Microsoft Academic Search

Soil in some parts of the Iowa Army Ammunition Plant in Burlington, Iowa, was contaminated with cyclotetramethyleneter-anitramine, commonly known as high melting explosive (HMX). A laboratory treat-ability study was conducted to find out the ability of the native soil bacteria present in the contaminated site to degrade HMX. The results indicated that the HMX can be removed effectively from soil

Ramaraj Boopathy

2001-01-01

46

Treatment of NORM contaminated soil from the oilfields.  

PubMed

Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 ?m to higher than 300 ?m. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. PMID:24378731

Abdellah, W M; Al-Masri, M S

2014-03-01

47

Influence of Radioactive Contaminants on Absorbed Dose Estimates for Radiopharmaceuticals.  

National Technical Information Service (NTIS)

Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The imp...

E. E. Watson M. G. Stabin

1985-01-01

48

In situ removal of contamination from soil  

DOEpatents

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

1997-01-01

49

In situ removal of contamination from soil  

DOEpatents

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

Lindgren, E.R.; Brady, P.V.

1997-10-14

50

Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils  

SciTech Connect

The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

Ludowise, J.D.

1994-05-01

51

Issues in recycling and disposal of radioactively contaminated materials  

SciTech Connect

The Department of Energy`s present stock of potentially re-usable and minimally radioactively contaminated materials will increase significantly as the Department`s remediation activities expand. As part of its effort to minimize wastes, the Department is pursuing several approaches to recover valuable materials such as nickel, copper, and steel, and reduce the high disposal costs associated with contaminated materials. Key approaches are recycling radioactively contaminated materials or disposing of them as non-radioactive waste. These approaches are impeded by a combination of potentially conflicting Federal regulations, State actions, and Departmental policies. Actions to promote or implement these approaches at the Federal, State, or Departmental level involve issues which must be addressed and resolved. The paramount issue is the legal status of radioactively contaminated materials and the roles of the Federal and State governments in regulating those materials. Public involvement is crucial in the debate surrounding the fate of radioactively contaminated materials.

Kluk, A.F. [Dept. of Energy, Washington, DC (United States); Hocking, E.K. [Argonne National Lab., Washington, DC (United States); Roberts, R. [Dept. of Energy, San Francisco, CA (United States); Phillips, J.W. [Analytical Services, Inc., Columbia, MD (United States)

1993-10-01

52

SOIL VAPOR EXTRACTION COLUMN EXPERIMENTS ON GASOLINE CONTAMINATED SOIL  

EPA Science Inventory

Soil vapor extraction (SVE) is a technique that is used to remove volatile organic compounds from unsaturated soils. Air is pumped through and from the contaminated zone to remove vapor phase constituents. In the work, laboratory soil column experiments were conducted using a gas...

53

A petroleum contaminated soil bioremediation facility  

SciTech Connect

The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

Lombard, K.; Hazen, T.

1994-06-01

54

The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems  

EPA Science Inventory

The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

55

Evaporation of petroleum products from contaminated soils  

Microsoft Academic Search

Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular

Seon-Hong Kang; Charles S. Oulman

1996-01-01

56

Evaluation of TENORMs field measurement with actual activity concentration in contaminated soil matrices  

Microsoft Academic Search

The occurrence of technologically enhanced naturally occurring radioactive materials (TENORMs) concentrated through anthropogenic processes in contaminated soils at oil and gas facilities represent one of the most challenging issues facing the Canadian and US oil and gas industry today. Natural occurring radioactivity materials (NORMs) field survey techniques are widely used as a rapid and cost-effective method for ascertaining NORMs risks

Roger Saint-Fort; Mirtyll Alboiu; Patrick Hettiaratchi

2007-01-01

57

Radioactive Waste Disposal Implications of Extending Part IIA to cover Radioactively Contaminated Land  

Microsoft Academic Search

A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA to address radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation.

DJ Nancarrow

58

Contaminated soils salinity, a threat for phytoextraction?  

PubMed

Phytoremediation, given the right choice of plant, may be theoretically applicable to multi-contamination. Laboratory and some field trials have proven successful, but this ideal technique is in all cases dependent on plant growth ability on (generally) low-fertility soil or media. While contaminant concentration has often been proposed as an explanation for plant growth limitation, other factors, commonly occurring in industrial soils, such as salinity, should be considered. The present work highlights the fact that besides contaminants (trace elements and PAH), soil salinity may strongly affect germination and growth of the hyperaccumulator Noccaea caerulescens. Elevated concentrations of nitrate proved highly toxic for seed germination. At the growth stage the salt effect (sulfate) seemed less significant and the limited biomass production observed could be attributed mostly to organic contamination. PMID:23245576

Sirguey, Catherine; Ouvrard, Stéphanie

2013-04-01

59

Surfactant screening of diesel-contaminated soil  

SciTech Connect

At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which twenty-one surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site. 18 refs., 16 figs., 1 tab.

Peters, R.W.; Montemagno, C.D.; Shem, L. (Argonne National Lab., IL (USA)); Lewis, B.A. (Northwestern Univ., Evanston, IL (USA). Dept. of Civil Engineering)

1990-01-01

60

RESRAD: A computer code for evaluating radioactively contaminated sites  

SciTech Connect

This document briefly describes the uses of the RESRAD computer code in calculating site-specific residual radioactive material guidelines and radiation dose-risk to an on-site individual (worker or resident) at a radioactively contaminated site. The adoption by the DOE in order 5400.5, pathway analysis methods, computer requirements, data display, the inclusion of chemical contaminants, benchmarking efforts, and supplemental information sources are all described. (GHH)

Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

1993-12-31

61

Some aspects of remediation of contaminated soils  

NASA Astrophysics Data System (ADS)

Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

2014-05-01

62

Bioremediation of glyphosate-contaminated soils.  

PubMed

Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils. PMID:20676632

Ermakova, Inna T; Kiseleva, Nina I; Shushkova, Tatyana; Zharikov, Mikhail; Zharikov, Gennady A; Leontievsky, Alexey A

2010-09-01

63

14. Protective measures for activities in Chernobyl's radioactively contaminated territories.  

PubMed

Owing to internally absorbed radionuclides, radiation levels for individuals living in the contaminated territories of Belarus, Ukraine, and Russia have been increasing steadily since 1994. Special protective measures in connection with agriculture, forestry, hunting, and fishing are necessary to protect the health of people in all the radioactively contaminated territories. Among the measures that have proven to be effective in reducing levels of incorporated radionuclides in meat production are food additives with ferrocyanides, zeolites, and mineral salts. Significant decreases in radionuclide levels in crops are achieved using lime/Ca as an antagonist of Sr-90, K fertilizers as antagonists of Cs-137, and phosphoric fertilizers that form a hard, soluble phosphate with Sr-90. Disk tillage and replowing of hayfields incorporating applications of organic and mineral fertilizers reduces the levels of Cs-137 and Sr-90 three- to fivefold in herbage grown in mineral soils. Among food technologies to reduce radionuclide content are cleaning cereal seeds, processing potatoes into starch, processing carbohydrate-containing products into sugars, and processing milk into cream and butter. There are several simple cooking techniques that decrease radionuclides in foodstuffs. Belarus has effectively used some forestry operations to create "a live partition wall," to regulate the redistribution of radionuclides into ecosystems. All such protective measures will be necessary in many European territories for many generations. PMID:20002058

Nesterenko, Alexey V; Nesterenko, Vassily B

2009-11-01

64

Effect of Pulsating Water Jet Lavage on Radioactive Contaminated Wounds  

Microsoft Academic Search

A radioisotope of zinc was introduced into facial wounds of rats to stimulate natural contamination. The quantitative effects of a bulb syringe, single pulsed water jet, and a multiple pulsed water jet on decontamination of the wounds were determined by counting the radioactivity that remained in the wounds after treatment. The water jet devices were shown statistically to reduce contamination

Marvin F. Grower; Surindar N. Bhaskar

1972-01-01

65

Radioactivity of the Bega sediment-case study of a contaminated canal.  

PubMed

The Bega canal is one among many heavily polluted canals in Vojvodina (the northern province of Serbia and Montenegro). In the framework of the revitalization of this canal, the radionuclide content of the sediment was investigated in order to support the safe deposition after excavation. It was found that, in comparison with the Danube sediment and Vojvodina soil, the Bega sediment is contaminated with (238)U and (137)Cs. The origin of this contamination is discussed. No traces of contamination by nuclear power plants in the region were found, while the presence of technologically enhanced, natural occurring radioactive materials (TENORM) was proved. PMID:15946851

Bikit, I; Varga, E; Conki?, Lj; Slivka, J; Mrda, D; Curci?, S; Ziki?-Todorovi?, N; Veskovi?, M

2005-08-01

66

Assessment of health risk from exposure to contaminated soil  

Microsoft Academic Search

The risk to human health posed by contaminated soil in a residential area depends on the potential extent of exposure to soil and on the toxic properties of the contaminants. A detailed soil exposure analysis is presented for young children, older children, and adults living in a house surrounded by contaminated soil. From this analysis, a lifetime exposure model is

John K. Hawley

1985-01-01

67

Enhanced biodegradation of creosote-contaminated soil  

SciTech Connect

Bioremediation, a viable option for treatment of creosote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1,102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.

Carriere, P.P.E.; Mesania, F.A. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil and Environmental Engineering] [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil and Environmental Engineering

1995-12-31

68

Radioactive contamination of 7LiI(Eu) crystal scintillators  

NASA Astrophysics Data System (ADS)

The radioactive contamination of two 26 g samples of low background lithium iodide crystal scintillators doped by europium and enriched in 7Li to 99.9% (7LiI(Eu)) has been investigated by scintillation method at the sea level, and by ultra-low background HPGe ? spectrometry deep underground. No radioactive contamination was detected. In particular, the contamination of the crystal scintillators by 226Ra and 228Th does not exceed 1 mBq/kg, and the activity of 40K is less than 0.5 Bq/kg.

Belli, P.; Bernabei, R.; Budakovsky, S. V.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d'Angelo, S.; Incicchitti, A.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

2013-03-01

69

Simplified method for detecting tritium contamination in plants and soil  

USGS Publications Warehouse

Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphitebased solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sesse?? & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation-SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation-SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.

Andraski, B. J.; Sandstrom, M. W.; Michel, R. L.; Radyk, J. C.; Stonestrom, D. A.; Johnson, M. J.; Mayers, C. J.

2003-01-01

70

Chelant soil-washing technology for metal-contaminated soil.  

PubMed

We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1). PMID:24701937

Voglar, David; Lestan, Domen

2014-01-01

71

Integrated system for remediation of contaminated soils  

SciTech Connect

A pilot-scale study was conducted to evaluate an integrated system for the remediation of soils contaminated primarily with pentachlorophenol (PCP), a wood preserver. The integrated soil remediation system consisting of three unit processes (1) Soil solvent washing; (2) solvent recovery; and (3) biotreatment of the contaminant residual. Pilot-scale countercurrent solvent washing was carried out using a 95% ethanol solution--a solvent that in an earlier bench-scale study was found to be effective in removing PCP and hydrocarbons (HCs) from soils. Three-stage countercurrent solvent washing of a field-contaminated soil was performed using batches of 7.5 kg of soil and 30 L of solvent. The washed soil was rinsed with water in a single stage after three countercurrent wash stages. Pilot-scale, three-stage countercurrent solvent washing with 95% ethanol reduced the PCP and HC contamination on the soil by 98 and 95%, respectively. The spent solvent and the spent rinse water were combined as the spent wash fluid for further treatment. A pilot-scale distillation unit was used to recover the ethanol from the spent wash fluid. The HC constituents of the spent wash fluid were removed by pH adjustment prior to feeding the spent wash fluid to a distillation unit. Greater than 96% of the ethanol in the spent wash fluid was recovered in the distillate stream, whereas PCP was captured in the bottoms stream. The bottoms stream was treated sequentially in anaerobic and aerobic granular-activated carbon fluidized-bed reactors. Complete mineralization of PCP was achieved using this treatment train.

Khodadoust, A.P.; Sorial, G.A.; Wilson, G.J.; Suidan, M.T.; Griffiths, R.A.; Brenner, R.C.

1999-11-01

72

Evaluation of soil washing for radiologically contaminated soils  

SciTech Connect

Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

Gombert, D. II

1994-03-01

73

Application of the SmartSampling Methodology to the Evaluation of Contaminated Landscape Soils at Brookhaven National Laboratory.  

National Technical Information Service (NTIS)

Portions of the SmartSampling(trademark) analysis methodology have been applied to the evaluation of radioactive contaminated landscape soils at Brookhaven National Laboratory. Specifically, the spatial, volumetric distribution of cesium-137 ((sup 137)Cs)...

C. A. Rautman

2000-01-01

74

SOLVENT WASHING OF AGED PCP CONTAMINATED SOILS  

EPA Science Inventory

This study evaluates the removal of pentachlorophenol (PCP), a wood preserving agent, from soils that have been contaminated over a period of time. reviously, equal proportions of ethanol and water were found to have the highest PCP removal efficiencies for above ground batch ext...

75

Bioremediation of uranium contaminated soils and wastes  

Microsoft Academic Search

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction

1998-01-01

76

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES  

Microsoft Academic Search

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction

1998-01-01

77

REMEDIATION OF RADIUM FROM CONTAMINATED SOIL  

EPA Science Inventory

The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

78

INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL  

EPA Science Inventory

An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

79

INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL  

EPA Science Inventory

An incineration test program was conducted at the US Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. he purp...

80

REMEDIATION OF PCB IN CONTAMINATED SOIL  

EPA Science Inventory

A pilot-scale study will be conducted to evaluate the bioremedial techniques of natural attenuation, sequenced anaerobic/aerobic treatment, and addition of a commercially available microbial amendment product for use in treating PCB contaminated soils at Air Force Base sites. Th...

81

TREATMENT OF HAZARDOUS PETROLEUM CONTAMINATED SOILS BY THERMAL DESORPTION TECHNOLOGIES  

EPA Science Inventory

Spills, leaks, and accidental discharges of petroleum products have contaminated soil at thousands of sites in the United States. ne remedial action technique for treating petroleum contaminated soil is the use of thermal desorption technologies. his paper describes key elements ...

82

Radioactive contamination mapping using optically stimulated luminescent films  

SciTech Connect

A method for in situ measurement of the distribution and activity of radioactive contaminants that have been dispersed throughout an extended area and that have settled on, or have become embedded in surfaces is described. The method involves the use of doped fused quartz phosphor materials that exhibit optically stimulated luminescence. These glass phosphors are ground into a powder and mixed with a clear polymer binder. The glass phosphor/polymer solution is used to make radiation sensing sheets that are capable of detecting radioactive contamination on surfaces using optically stimulated luminescence detection. Alternatively, the glass phosphor/polymer solution is sprayed directly onto surfaces to permit in situ optically stimulated luminescence measurements of the radioactive contamination. (authors)

Huston, A.L.; Justus, B.L. [Naval Research Laboratory, Washington, DC (United States)

2007-07-01

83

Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume  

NASA Astrophysics Data System (ADS)

Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

2013-10-01

84

Radioactive Elements in Soils of Siberia (Russia)  

NASA Astrophysics Data System (ADS)

The Center of State Sanitary and Epidemiological Surveillance Department in Krasnoyarsk Territory, Krasnoyarsk In the course of long-term research a great deal of information on the content of natural and artificial radionuclides in soils of the Siberian regions has been obtained and summarized (Altai and Krasnoyarsk Territories, Altai Republic, Buryatia, Yakutia, Khakassia, Irkutsk, Novosibirsk, Tomsk Oblasts and a number of other Siberian regions). The content level of U(Ra), Th and K in soil of studied areas is within the range of values obtained for soil of other areas of Russia and the world and defined, first of all, by radioactivity of parent rocks. The authors have studied the total level of specific activity for 137Cs most completely in soils of different Siberian regions. The maximum density of such sites with global fallouts (nuclear air explosions in Novaya Zemlya, Lop Nor, Semipalatinsk etc.) is typical for the areas of Altai Territory and Buryatia Republic. Elevated level of radiocesium (to 1000 and more than Bq/kg) is characteristic for the sites adjacent to the area of NFP (Seversk, Zheleznogorsk). Our data obtained in determination of plutonium in soils of different Siberian regions excess remarkably its background accepted for Siberia. Particularly high accumulation levels of Pu in soil were observed in the zones of NFP operation (Seversk, Tomsk Oblast; Zheleznogorsk, Krasnoyarsk Territory, in the sites of accidents fallouts at underground nuclear explosions in Sakha Republic (Yakutia). Abnormally high ratio of 238Pu/239,240Pu in soils of Sakha republic, Aginsk Buryatia Autonomous District, Krasnoyarsk Territory has engaged our attention.

Baranovskaya, N. V.; Rikhvanov, L. P.; Matveenko, I. N.; Strakhovenko, V. D.; Malikova, I. N.; Shcherbakov, B. L.; Sukhorukov, F. V.; Aturova, V. P.

2012-04-01

85

Guide to treatment technology for contaminated soils  

SciTech Connect

This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage.

Tran, H.; Aylward, R.

1992-08-04

86

Determination of 226Ra contamination depth in soil using the multiple photopeaks method.  

PubMed

Radioactive contamination presents a diverse range of challenges in many industries. Determination of radioactive contamination depth plays a vital role in the assessment of contaminated sites, because it can be used to estimate the activity content. It is determined traditionally by measuring the activity distributions along the depth. This approach gives accurate results, but it is time consuming, lengthy and costly. The multiple photopeaks method was developed in this work for (226)Ra contamination depth determination in a NORM contaminated soil using in-situ gamma spectrometry. The developed method bases on linear correlation between the attenuation ratio of different gamma lines emitted by (214)Bi and the (226)Ra contamination depth. Although this method is approximate, but it is much simpler, faster and cheaper than the traditional one. This method can be applied for any case of multiple gamma emitter contaminant. PMID:24292393

Haddad, Kh; Al-Masri, M S; Doubal, A W

2014-02-01

87

Management and disposal of waste from sites contaminated by radioactivity  

NASA Astrophysics Data System (ADS)

Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of choice throughout the D & D process is stressed. The subject is introduced by a survey of the common types of radioactive contamination that must be managed and the more important hazards associated with each type. Comparisons are made among high level, transuranic, low level, and radioactive mixed waste, and technologically-enhanced, naturally-occurring radioactive material (TENORM). The development of appropriate clean-up criteria for each category of contaminated waste is described with the aid of examples drawn from actual practice. This includes a discussion of the application of pathway analysis to the derivation of residual radioactive material guidelines. The choice between interim storage and permanent disposal of radioactive wastes is addressed. Approaches to permanent disposal of each category of radioactive waste are described and illustrated with examples of facilities that have been constructed or are planned for implementation in the near future. Actual experience at older, existing, low-level waste disposal facilities is discussed briefly.

Roberts, Carlyle J.

1998-06-01

88

Method for treatment of soils contaminated with organic pollutants  

DOEpatents

A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

Wickramanayake, Godage B. (Cranbury, NJ)

1993-01-01

89

Modeling the transport of radioactive contaminants in the arctic  

Microsoft Academic Search

A coupled ice-ocean model, designed by the Naval Research Laboratory, composed of the Cox ocean model coupled to the Hibler ice model is used to simulate the dispersion of radioactive contaminants in the Arctic and its marginal seas. Source locations and estimated inventories of disposed radionuclides are based on those documented in a Russian report referred to as the Yablokov

Ruth H Preller; Abe Cheng

1999-01-01

90

Radiological risk assessment of a radioactively contaminated site  

SciTech Connect

A limited-scope preliminary assessment of radiological risk has been conducted at a radioactively contaminated site under current site use conditions and based on the available preliminary radiological characterization data for the site. The assessment provides useful input to the remedial action planning for the site. 8 refs., 1 fig., 2 tabs.

Devgun, J.S.

1990-01-01

91

Fluvial Placement of Radioactive Contaminants a Weldon Spring Case Study  

Microsoft Academic Search

The operation of the Weldon Spring Uranium Feed Materials Plant in St. Charles, MO between 1958 and 1966 resulted in the migration and emplacement of radioactive contaminants into surface water drainage systems. Multiple drainage systems, receiving from a variety of waste discharge points, combined to create unique and unexpected depositional environment. Discovery and investigation of the depositional environments was a

2002-01-01

92

Optimal route for evacuating people from a radioactively contaminated region  

Microsoft Academic Search

One of the main problems of civil defense is evacuation of people by motor transport from regions contaminated with radioactive substances during a serious accident at a nuclear power plant. The solution of this problem reduces to choosing the optimal route where the dose loads are minimal. Besides o~anizational problems, this problem is complicated by the fact that it is

A. P. Elokhin

1999-01-01

93

Radioactive contamination in the Hanford environs, October-December 1957  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period October, November, December, 1957. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radiological Chemical Analysis forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by Radiological

M. W. McConiga; J. M. Selby; J. K. Soldat

1958-01-01

94

Radioactive contamination in the Hanford environs, October-December 1956  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period October, November, and December, 1956. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radiological Chemical Analysis forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by

B. V. Andersen; M. W. McConiga; J. K. Soldat

1957-01-01

95

Radioactive contamination in the Hanford environs, October-December 1953  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination originating from HAPO and from naturally occurring isotopes during the period October, November, and December, 1953. Samples were collected in the liquid, solid, and gaseous states from representative locations on the project and from remote locations in the states of Washington, Oregon, and Idaho. The measurements

Paas

1954-01-01

96

Radioactive contamination in the Hanford environs, January-March 1957  

Microsoft Academic Search

The document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period January, February, and March, 1957. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radiological Chemical Analysis forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by

M. W. McConiga; J. K. Soldat

1957-01-01

97

Radioactive contamination in the Hanford environs, July-September 1957  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period July, August, September, 1957. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radiological Chemical Analysis forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by Radiological

M. W. McConiga; J. M. Selby; J. K. Soldat

1958-01-01

98

Bioremediation of uranium contaminated soils and wastes  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

Francis, A.J.

1998-12-31

99

Heavy metal contamination of agricultural soil and countermeasures in Japan  

Microsoft Academic Search

Many heavy metals exist in minute amounts in natural agricultural soil. However, when their amounts exceed a certain level\\u000a due to pollutants brought from outside, soil contamination occurs and agricultural products become contaminated. There have\\u000a been many cases in Japan of heavy metal contamination originating from old mines and smelters, and soil contamination of agricultural\\u000a land has become a social

Tomohito Arao; Satoru Ishikawa; Masaharu Murakami; Kaoru Abe; Yuji Maejima; Tomoyuki Makino

2010-01-01

100

Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels  

SciTech Connect

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

Miller Julianne J.,Mizell Steve A.,Nikolich George,Campbell Scott A.

2012-02-01

101

The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity  

USGS Publications Warehouse

Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

Hung, H. -W.; Daniel, Sheng, G.; Lin, T. -F.; Su, Y.; Chiou, C. T.

2009-01-01

102

A review of the contamination of soil with lead  

Microsoft Academic Search

Contamination of soil with lead has occurred on a global scale. Exposure to lead may cause adverse effects to human health and the environment. It is therefore desirable to obtain a quantitative estimate of the potential risk of lead contamination. Numerous studies have been conducted collecting lead concentration data from both natural and contaminated soil on a range of scales.

Julie Markus; Alex B. McBratney

2001-01-01

103

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

FRANCIS,A.J.

1998-09-17

104

Sites in the United States contaminated with radioactivity.  

PubMed

Over the century that radioactive materials have been mined, processed, produced, and utilized, many sites across the United States have become contaminated. Such sites include bases and installations of the Department of Defense, weapons production and research facilities of the Department of Energy, properties under the authority of other Federal agencies, privately-owned and governmental facilities that are licensed by the Nuclear Regulatory Commission and its Agreement States, and sites licensed by or the responsibility of states. This review reports on aspects of work by the Environmental Protection Agency, the Department of Defense, the Department of Energy, the Nuclear Regulatory Commission, and others to identify sites contaminated with radioactive materials. It also describes the principal programs that have been instituted to deal with them. PMID:10456495

Wolbarst, A B; Blom, P F; Chan, D; Cherry, R N; Doehnert, M; Fauver, D; Hull, H B; MacKinney, J A; Mauro, J; Richardson, A C; Zaragoza, L

1999-09-01

105

Radioactive contamination in the Hanford environs, April-June 1955  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the HAPO environs for radioactive contamination during the period April, May, and June 1955. Samples were collected by Regional Monitoring forces. These samples were analyzed by the Radio-Analysis Laboratory of the Regional Radiation Measurements Unit. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical

1955-01-01

106

Radioactive contamination in the Hanford environs, April-June 1956  

Microsoft Academic Search

This document summarized the results obtained from monitoring the Hanford environs for radioactive contamination during the period April, May, and June, 1956. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radio-Analysis Laboratory forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by Radio-Analysis

B. V. Andersen; J. K. Soldat

1956-01-01

107

Radioactive contamination in the Hanford environs, July-September 1955  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period July, August, and September, 1955. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radio-Analysis Laboratory forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by Radio-Analysis

B. V. Andersen; J. K. Soldat

1955-01-01

108

Radioactive contamination in the Hanford environs. October-December 1955  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period October, November, and December 1955. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radio-Analysis Laboratory forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, selfabsorption, chemical yield, and collection efficiency by Radio-Analysis

B. V. Andersen; J. K. Soldat

1956-01-01

109

Radioactive contamination in the Hanford environs, January-March 1956  

Microsoft Academic Search

This document summarizes the results obtained from monitoring the Hanford environs for radioactive contamination during the period January, February, and March 1956. Samples were collected by Regional Monitoring forces. These samples were analyzed by Radio-Analysis Laboratory forces. Counting rates obtained from these analyses were corrected for geometry, backscatter, air-window absorption, source size, self-absorption, chemical yield, and collection efficiency by Radio-Analysis

B. V. Andersen; J. K. Soldat

1956-01-01

110

Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012  

SciTech Connect

The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J. Miller, Steve A. Mizell, Greg McCurdy, and Scott A. Campbell

2012-09-01

111

PROSPECTS FOR IN SITU CHEMICAL TREATMENT FOR CONTAMINATED SOIL  

EPA Science Inventory

Treating large volumes of contaminated soil at Superfund sites is costly. he Superfund Amendments and Reauthorization Act (SARA), and the Resource Conservation and Recovery Act (RCRA) have provisions, which regulate the removal treatment, and ultimate disposal of contaminated soi...

112

REVIEW OF SEPARATION TECHNOLOGIES FOR TREATING PESTICIDE-CONTAMINATED SOIL  

EPA Science Inventory

Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process....

113

Extraction of pesticides from contaminated soil using supercritical carbon dioxide.  

National Technical Information Service (NTIS)

The demand for processes to clean up contaminated soils without generating additional contaminants, such as hazardous solvents, is increasing. One approach to minimizing this problem is to use supercritical fluids like light hydrocarbons and CO(sub 2) to ...

G. B. Hunter

1991-01-01

114

Soils as a buffer of contaminants in catchments  

NASA Astrophysics Data System (ADS)

Human activities deliver large quantities of contaminants into the environment through atmospheric emissions or direct releases. As many of those contaminants are particle-reactive, they bind strongly to the finest particles or on their organic matter fraction once they deposit onto soils. Contaminants may subsequently migrate in depth of the soil depending on their physico-chemical characteristics. They may also be redistributed along hillslopes in association with particles during soil erosion events and may be subsequently supplied to rivers, preventing to meet the international environmental targets (e.g. in the framework of the EU Water Framework Directive). In regions where soil erosion rates are low to moderate, a large quantity of particle-reactive contaminants may accumulate in soils that constitute a reservoir of pollutants that may be delivered to rivers during decades or centuries. This session will focus on the specific role played by soils as a reservoir of contaminants at the catchment scale. A better understanding of this role and a quantification of the persistence of contaminants in this reservoir will provide crucial insights to guide the implementation of efficient mitigation measures. Contributions to this session may address any aspect of particle-borne contaminant transfer at the catchment scale, with an emphasis on the role played by soils in their storage and transfer. Field-based or modeling studies may focus either on specific pollutants or on a wider range of substances, e.g. metals, radionuclides, organic contaminants. Key themes may include: • Contaminant budget at the hillslope vs. the catchment scales; • Evaluation of the contribution of the regional vs. local contamination sources; • Evaluation of the contaminant removal from soils by degradation vs. soil erosion; • Quantifying the persistence of contaminants in soils; • Discrimination between the legacy and the contemporary supply of contaminants to soils.

Evrard, Olivier

2014-05-01

115

System for the removal of contaminant soil-gas vapors  

DOEpatents

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

1997-01-01

116

System for the removal of contaminant soil-gas vapors  

DOEpatents

A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

1997-12-16

117

Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils  

EPA Science Inventory

Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

118

BIOREMEDIATION OF MIXED VAPOR PHASE CONTAMINANTS FROM SOILS AND GROUNDWATER  

EPA Science Inventory

Soil vapor phase contaminants commonly include combinations of chlorinated ethenes and petroleum hydrocarbons. Many chlorinated ethenes and petroleum hydrocarbons are readily degradable by a range of aerobic soil microorganisms, making the use of biological systems for degrading ...

119

Strategies for sustainable woodland on contaminated soils.  

PubMed

Extensive in situ reclamation treatment technologies are appropriate for a large proportion of contaminated land in place of total removal or complete containment of soil. In this paper, initial results are presented of site descriptions, tree survival and metal uptake patterns from two field planting trials on a highly industrially contaminated site adjacent to a metal refinery and on old sanitary landfill sites. Survival rate was high in both trials but factors besides heavy metals were particularly significant. Uptake patterns of metals into foliage and woody tissues were variable, with substantial uptake in some species and clones supporting the findings of earlier pot experiments. It is argued that there is sufficient evidence to consider the use of trees in reclamation as part of a realistic, integrated, low-cost, ecologically-sound and sustainable reclamation strategy for contaminated land. This is an opportunity to bring a large number of brownfield sites into productive use, which otherwise would be prohibitively expensive to restore. PMID:10819209

Dickinson, N M

2000-07-01

120

Soil gas surveying at low-level radioactive waste sites.  

National Technical Information Service (NTIS)

Soil gas sampling is a useful screening technique for determining whether volatile organic compounds are present at low-level radioactive waste burial sites. The technique was used at several DOE sites during the DOE Environmental Survey to determine the ...

A. B. Crockett K. S. Moor L. C. Hull

1990-01-01

121

Natural and man-made radioactivity: Chernobyl soils.  

NASA Astrophysics Data System (ADS)

In 1986 a reactor at the Chernobyl Nuclear Plant suffered a large explosion. The result had wide-ranging impacts. 31 severely exposed emergency workers died from acute radiation syndrome and 19 more later died from different causes. The perhaps controversial prediction by some authors is that around 4,000 will eventually die as a result of the increased cancer risk. A 19-mile restriction zone exists around the former reactor, but during the past 25 years radiation levels have fallen and it is now possible to take part in conducted tours of the deserted city of Pripyat, and the Chernobyl reactor site. Soil levels, however, remain highly radioactive, particularly in the restricted area. Kingston University holds:- • Soil profile sets from 3 locations in Belarus, with repeats at same location 1996 and 2000. • Lake sediment core samples. • Soil profiles at forestry sites. • Surface samples in a region suspected to have actinide content at 200km from Chernobyl. In addition to the above the impact of naturally occurring radon on human health around Chernobyl should not be ignored. About 23 per cent of homes in Ukraine are estimated to have radon levels above 100 Bq m-3, whilst concentrations of 10,000 Bq m-3 or more are known to exist in public water supplies. Some researchers have also suggested that mean annual doses of irradiation of the population caused by radon and it's progeny in air in buildings exceeds the doses received now by inhabitants of settlements located in the territories polluted by Chernobyl-derived nuclides in the Mogilev and Gomel regions in Belarus. This project incorporates a temporal comparison of transport results in undisturbed soils variously over a number of years, demonstrating relative measurements using both the original and new samples. This project will also focus on lake sediments from Southern Belarus and is a 'work in progress'. However, what we can say at this stage is that it is notable that the long lived isotopes of Cs-137 and Sr-90 strongly chemically bind into both the sandy and clay soils found in Southern Belarus, consequently have low solubility, and hence the temporal radiation levels from soil contamination change only slowly at near the half-life of these isotopes, with weathering being a minor contribution to reducing the radiation dose rates, in regions with such soil chemistry.

Gillmore, Gavin; Flowers, Alan

2014-05-01

122

The Nature of Soil High Radioactivity in Chinese Province Guangdong  

NASA Astrophysics Data System (ADS)

The article deals with the dates of complex methods analysis of soil in the South-Chinese Province Guangdong. Content of Th in soil amounts 43.6 g/t, but U-9.2 g/t . Particular attention is drawn by its high concentration in the rare earth soil (? TR = 134.5 g/t), particularly Ce and Nd. As a result of research has been stated that highly radioactive soil of China had been formed due to deep chemical weathering of highly radioactive potassium granites. High uranium and thorium contents in them are conditioned by specific conditions of weathering crust formation and subsequent pedogenesis. The elevated concentration of radioactive and rare-earth elements in the studied soil is likely to be characterized as "ionic" ore type occurring in the territory of China.

Baranovskaya, N. V.; Rikhvanov, L. P.; Zlobina, A. N.; Matveenko, I. A.; Wang, N.

2012-04-01

123

Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control  

Microsoft Academic Search

A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects

L. Lagos; J. Varona; A. Zidan; R. Gudavalli; Kuang-His Wu

2006-01-01

124

Influence of Complex on Electrokinetic Remediation of Zinc Contaminated Soil  

Microsoft Academic Search

The efficiency of electrokinetic remediation of zinc contaminated soils and the influence of complex EDTA were researched by means of experiment for the complicated remediation of soil contaminated by typical heavy metal in this paper, and migration and variation characteristics of zinc were analyzed too. The experimental results indicated that the heavy metal pollutant could be enriched and removed in

Hu Hongtao

2010-01-01

125

Chemical methods and phytoremediation of soil contaminated with heavy metals  

Microsoft Academic Search

The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field

H. M Chen; C. R Zheng; C Tu; Z. G Shen

2000-01-01

126

ELECTROCHEMICAL PROCESSES FOR IN-SITU TREATMENT OF CONTAMINATED SOILS  

EPA Science Inventory

This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected from selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic per...

127

Rhizosphere Microbial Characterization in Petroleum-Contaminated Soil  

Microsoft Academic Search

Contamination of soil with petroleum compounds is of concern worldwide. Although there are a variety of physical and chemical technologies available to remediate petroleum waste sites, biological methods are often used due to lower cost and public acceptance. Growth and enhanced activity of microbial communities in contaminated soil is a key factor for the success of bioremediation. Establishing vegetation in

M. Katherine Banks; Hadessa Mallede; Karrie Rathbone

2003-01-01

128

BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST  

EPA Science Inventory

Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

129

Biodegradation and bioremediation of endosulfan contaminated soil.  

PubMed

Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected. PMID:17646098

Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

2008-05-01

130

Operating and life-cycle costs for uranium-contaminated soil treatment technologies  

SciTech Connect

The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

1995-09-01

131

Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident.  

PubMed

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ((137)Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and (137)Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ((137)Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. PMID:24657366

Yoshimura, Mayumi; Yokoduka, Tetsuya

2014-06-01

132

40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?  

Code of Federal Regulations, 2013 CFR

...contaminated equipment, structure, and soils? 267.116 Section 267.116 Protection...contaminated equipment, structure, and soils? You must properly dispose of or decontaminate...contaminated equipment, structures, and soils during the partial and final closure...

2013-07-01

133

Uptake of Organic Contaminants from Soil into Vegetables and Fruits  

Microsoft Academic Search

\\u000a Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or\\u000a air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plant-specific properties\\u000a that determine the importance of these pathways are described in this chapter. A variety of models have been developed, specific\\u000a for crop types

Stefan Trapp; Charlotte N. Legind

134

Urban community gardeners' knowledge and perceptions of soil contaminant risks.  

PubMed

Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether. PMID:24516570

Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

2014-01-01

135

Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter  

Microsoft Academic Search

The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40–200%. Xylanase and invertase

Daniel Wicke; Thorsten Reemtsma

2010-01-01

136

Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities  

Microsoft Academic Search

There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment

Long Cang; Dong-Mei Zhou; Quan-Ying Wang; Dan-Ya Wu

2009-01-01

137

Apparatus for treatment of soils contaminated with organic pollutants  

DOEpatents

An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

Wickramanayake, Godage B. (Columbus, OH)

1993-01-01

138

Micrometeorological methods for measurements of mercury emissions over contaminated soils  

SciTech Connect

As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m{sup {minus}2} h{sup {minus}1}; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude.

Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J. [Oak Ridge National Lab., TN (United States); Myers, T.P. [National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States). Air Resources Lab. Atmospheric Turbulence and Diffusion Div.

1993-12-31

139

Relative bioavailability of arsenic contaminated soils in a mouse model  

EPA Science Inventory

Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

140

Contaminant enrichment and properties of soil adhering to skin  

SciTech Connect

The adhesion of contaminated soil to skin has potentially important health implications, because the contaminants may ultimately be ingested or absorbed through the skin. Previous studies indicated that the adhering soil is enriched in contaminant concentration relative In the original soil because of the selective adhesion of finer particles. This study investigated this enrichment using 11 markedly different soils. Two sandy soils consistently gave very high contaminant enrichment ratios, with a mean enrichment of 10-fold. The other soils all had enrichment ratios above unity. Scanning electron microscopy illustrated the potential for strong adhesion of very fine clay particles. The contaminant enrichment ratios were positively correlated to enrichments in specific surface area, organic matter content, and extractable Fe content. Correlations to soil textural properties and detailed particle-size analysis of the adhering soil indicated that 50 to 100 {mu}m may be a critical particle size: larger grains and aggregates do not adhere readily to skin. Because of this, enrichment ratios will vary positively with the proportion of particles in the whole soil that am greater than 50 {mu}m. A simple model is provided to predict enrichments using information from routine soil particle-size analysis. 44 refs., 4 figs., 4 tabs.

Sheppard, S.C.; Evenden, W.G. [Whiteshell Labs., Pinawa (Canada)

1994-05-01

141

Reducing logistical barriers to radioactive soil remediation after the Fukushima No. 1 nuclear power plant accident  

NASA Astrophysics Data System (ADS)

We present an updated assessment of soil contamination due to the nuclear accident at the Fukushima No. 1 nuclear power plant on 11 March 2011. A safe limit for the spatial dose rate (micro-Sv/h) of gamma rays from 134,137Cs has been established in this work. Based on this value, the highly contaminated region within Fukushima Prefecture that must be decontaminated could be defined. Moreover, a conceptual model for the chemical speciation that occurred during the accident has been delineated. The compound model Cs2CO3 was found to be meaningful and practical (non-radioactive) to simulate contamination in our decontamination experiments. Finally, we explain the mechanism of action of our soil remediation technique, which effectively reduces the total volume of contaminated soil by isolating the highly Cs-adsorptive clay fraction. The adsorption of non-radioactive Cs atoms on clay particles with diameters <25 ?m were analyzed using micro-particle-induced X-ray emission (PIXE).

Ishii, K.; Terakawa, A.; Matsuyama, S.; Kikuchi, Y.; Fujishiro, F.; Ishizaki, A.; Osada, N.; Arai, H.; Sugai, H.; Takahashi, H.; Nagakubo, K.; Sakurada, T.; Yamazaki, H.; Kim, S.

2014-01-01

142

Biological Treatment of Petroleum in Radiologically Contaminated Soil  

SciTech Connect

This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

BERRY, CHRISTOPHER

2005-11-14

143

Bioremediation of gasoline-contaminated soil using poultry litter  

SciTech Connect

Contaminated soil, excavated from around a leaking underground gasoline storage tank, is commonly subjected to thermal degradation to remove the gasoline. Bioremediation as an alternative treatment technology is now becoming popular. The important hydrocarbon-degrading bacteria include Pseudomonas, Arthrobacter, and Flavobacterium. Poultry litter contains a large number of microorganisms, including Pseudomonas, as well as many inorganic nutrients and organic biomass that may assist in biodegrading gasoline in contaminated soil. During bioremediation of contaminated soil, microbial densities are known to increase by 2-3 orders of magnitude. However, bioremediation may result in a increase in the toxic characteristics of the soil due to the production of potentially toxic degradation intermediates. The objective of this research was to study the influence of the addition of poultry litter on the bioremediation of gasoline-contaminated soil by quantifying the changes in the densities of microorganisms and by monitoring the toxicity of the degradation products. 25 refs., 5 figs., 2 tabs.

Gupta, G; Tao, J. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States)

1996-10-01

144

Pleasure boatyard soils are often highly contaminated.  

PubMed

The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (?16 PAHs), and the seven most common polychlorinated biphenyls (?7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ?16 PAHs, and 3.8 mg/kg DW for ?7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ?7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ?7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination. PMID:24563015

Eklund, Britta; Eklund, David

2014-05-01

145

Pleasure Boatyard Soils are Often Highly Contaminated  

NASA Astrophysics Data System (ADS)

The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (?16 PAHs), and the seven most common polychlorinated biphenyls (?7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,480 for ?16 PAHs, and 3.8 mg/kg DW for ?7 PCB; all 10-2,000 higher than the Swedish environmental qualitative guidelines. In addition, the mean of the median values found at the 34 places shows that the lower guidance value for sensitive use of land was exceeded for the ?7 PCBs, carcinogenic PAHs, TBT, Pb, Hg, and Cu by a factor of 380, 6.8, 3.6, 2.9, 2.2 and 1.7, respectively. The even higher guideline value for industrial use was exceeded for the ?7 PCBs and TBT by a factor of 15 and 1.8, respectively. TBT, PAHs, Pb, Cd, and Hg are prioritized substances in the European Water Framework Directive and should be phased out as quickly as possible. Because of the risk of leakage from boatyards, precautions should be taken. The high concentrations measured are considered to be dangerous for the environment and human health and highlight the urgent need for developing and enforcing pleasure boat maintenance guidelines to minimize further soil and nearby water contamination.

Eklund, Britta; Eklund, David

2014-05-01

146

Heavy metal transport in soil contaminated by residual light non-aqueous phase liquids (LNAPLs)  

Microsoft Academic Search

This paper presents an experimental study on mixed soil contamination, more specifically on heavy metal behaviour in soil contaminated by residual non-aqueous phase liquids (NAPLs). Remediation of mixed contaminated sites is a complex technical goal because of the presence of physically and chemically different contaminants and potential interactions between them. Commonly encountered contaminants in mixed contaminated soils include light and

Jean-Sébastien Dubé; Rosa Galvez-Cloutier; Thierry Winiarski

2002-01-01

147

Transport of radioactive ions in soil by electrokinetics  

SciTech Connect

An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

Buehler, M.F.; Surma, J.E.; Virden, J.W.

1994-10-01

148

MERCURY BAKEOFF: TECHNOLOGY COMPARISON FOR THE TREATMENT OF MIXED WASTE MERCURY CONTAMINATED SOILS AT BNL  

Microsoft Academic Search

ABSTRACT Over440 yd,of radioactively contaminated soil containing toxic mercury was generated during a ComprehensiveEnvironmental Response, Compensation and Liability Act (CERCLA) removal action atBrookhaven,National Laboratory (BNL). The U.S. Department of Energy’s (DOE) Office of Scienceand,Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of severaltechnologies that may be used to treat these wastes and similar wastes at BNL and

P. D. KALB; J. W. ADAMS; L. W. MILIAN; G. PENNY; J. BROWER; A. LOCKWOOD

1999-01-01

149

Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils  

PubMed Central

Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [14C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation.

Cheung, Pui-Yi; Kinkle, Brian K.

2001-01-01

150

Electrokinetic remediation of anionic contaminants from unsaturated soils  

SciTech Connect

Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs.

Lindgren, E.R.; Kozak, M.W. (Sandia National Labs., Albuquerque, NM (United States)); Mattson, E.D. (SAT-UNSAT, Inc., Albuquerque, NM (United States))

1992-01-01

151

Electrokinetic remediation of anionic contaminants from unsaturated soils  

SciTech Connect

Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs.

Lindgren, E.R.; Kozak, M.W. [Sandia National Labs., Albuquerque, NM (United States); Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States)

1992-11-01

152

Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan  

Microsoft Academic Search

Radioactivity, natural and man made, is omnipresent in the earth's crust in different amounts. The soil on the earth's crust is a source of continuous exposure to human beings. The amount of radioactivity in soil depends upon the type of soil and its uses. The soil of barren area should show different amount of radioactivity when compared with that of

Nasim Akhtar; M. Tufail; M. Ashraf; M. Mohsin Iqbal

2005-01-01

153

Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil  

Microsoft Academic Search

The use of an indigenous microbial consortium, pollutant-acclimated and attached to soil particles (activated soil), was\\u000a studied as a bioaugmentation method for the aerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil. A 125-l\\u000a completely mixed soil slurry (10% soil) bioreactor was used to produce the activated soil biomass. Results showed that the\\u000a bioreactor was very effective in producing a

C. Barbeau; L. Deschênes; D. Karamanev; Y. Comeau; R. Samson

1997-01-01

154

Effects of soil organic matter and ageing on remediation of diesel-contaminated soil  

Microsoft Academic Search

Bioremediation of diesel-contaminated soil was investigated for the effects of soil organic matter (SOM) and ageing time in two sets of experiments (Batch I and II, respectively). This study examined degradation efficiency in soil artificially contaminated with diesel oil (maximum total petroleum hydrocarbons (TPH) concentration of 9000 mg\\/kg soil). Batch I data showed that the values of the first-order degradation rate,

Pao-Wen Grace Liu; Sih-Yu Wang; Shen-Gzhi Huang; Ming-Zhi Wang

2012-01-01

155

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15

156

Assessment of bermudagrass cultivars for phytoremediation of petroleum contaminated soils.  

PubMed

Phytoremediation is an alternative to other technologies for the clean up of petroleum contaminated soil. Ten vegetatively propagated cultivars of bermudagrass were examined for their potential to reduced oil sludge contaminated in soil and select the most efficient cultivar. Soil was mixed with different rates of oil sludge (0, 10, 20, 30, and 40% (w/w) to obtain 0, 2, 4, 6, and 8% total petroleum hydrocarbons (TPHs). Ten cultivars of bermudagrass were planted in pots filled with respected mixtures of soil and sludge. Shoot and root weights and percent reduction in the contamination level were measured after six months. Shoot weight reduced as contamination level increased. The root weight increased up to 6% TPHs level. As contamination level increased, the percent reduction in contamination increased. Reduction was 37.7, 41.0, 35.0, 34.0, 45.0, 41.3, 34.5, 41.3, 34.5, 41.3, 55.0, and 43.6% under Tifdwarf, Tifgreen, Tifway, ISF1, ISF2, JP1, JP2, and Midlawn, 3200W18-4 and 3200W19-9 at the highest contamination level 3200W18-4 was the most effective cultivar followed by ISF2, 3200W19-9, JPI, and Midlawn, respectively. The results suggested that bermudagrass is an efficient species for phytoremediation of petroleum contaminated soil and the selection for more tolerant and efficient cultivar is possible. PMID:22567691

Razmjoo, Khorshid; Adavi, Zohrab

2012-01-01

157

As Leaching into Fresh Water from Highly Contaminated Hawaiian Soils  

NASA Astrophysics Data System (ADS)

Arsenic contamination of current and former agricultural soils in Hawaii is an unfortunate legacy of plantation era agricultural practices. Here, we report an investigation of As mobility in fresh water from highly contaminated (0.8 % As) A-zone Hawaiian andisols from the Hamakua Coast of the Island of Hawai’i. Aliquots of the same acidic soil (pH= 5.0) were exposed to fresh water for varying lengths of time and analyzed to quantify the fraction of As and other elements leached from the soil relative to concentrations determined by total digestion. A maximum of 0.04% of As and 0.05% of Fe were removed from the soils in initial rinses and multi-day leaches using 18 megaohm Millipore water, in experiments lasting up to 35 days. Arsenic concentrations were highest in initial soil rinses, indicating that a small fraction of the total As in the soil is either loosely bound or present as a fine-grained, soluble As-bearing phase. During subsequent leaching experiments, arsenic and most other inorganic ions that we analyzed for reached equilibrium after 3 days; Fe reached equilibrium concentrations after 10 days. All soil solutions contained As levels that exceeded the EPA acceptable drinking water limit of 0.01 ppm. However, contaminant transport modeling suggests that As contaminated leachates would not migrate substantially from this site, so that local isolation and storage of contaminated soils would likely be an acceptable containment method.

Niklis, N. J.; Rubin, K. H.; El-Kadi, A. I.

2009-12-01

158

IN-SITU TREATMENT OF HAZARDOUS WASTE CONTAMINATED SOILS  

EPA Science Inventory

Techniques were investigated for in-situ treatment of hazardous wastes that could be applied to contaminated soils. Included were chemical treatment methods, biological treatment, photochemical transformations and combination methods. Techniques were developed based on fundamenta...

159

Ecological effects of soil contamination at Aberdeen Proving Ground, Maryland  

SciTech Connect

Assessment of the ecological condition of contaminated soil was conducted in portions of the U.S. Army's Aberdeen Proving Ground, Maryland as part of an ecological risk assessment. This area is covered by open fields, woods and nontidal marshes. Chemicals disposed of in open burning pits included methylphosphonothioic acid, dichlorodiethyl sulfide, and titanium tetrachloride and sulfur trioxide/chlorosulfonic acid. Previous soil analysis showed extensive surface soil contamination with metals, nitrate, PCBs and pesticides. This assessment included characterizing soil biota, biologically-mediated processes in soil and aboveground biomass. Field surveys of the soil invertebrate communities showed significant reductions in the total abundance of animals, reductions in the abundance of several taxonomic and functional groups of soil invertebrates, and changes in the activity of epigeic arthropods in contaminated areas when compared with the local [open quotes]background[close quotes] area. Laboratory toxicity tests also demonstrated that microbial activity and success of egg hatching of ground beetle Harpalus pensylvanicus were reduced in contaminated soils. These results suggest that impacts to soil ecosystems should be explicitly considered in ecological risk assessment.

Kuperman, R.G.; Dunn, C.P. (Argonne National Laboratory, IL (United States))

1994-06-01

160

Public perceptions of a radioactively contaminated site: concerns, remediation preferences, and desired involvement.  

PubMed Central

A public attitudes survey was conducted in neighborhoods adjacent to a radioactively contaminated site whose remediation is now under the auspices of the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP). The survey's purpose was to ascertain levels of actual and desired public involvement in the remediation process; to identify health, environmental, economic, and future land-use concerns associated with the site; and to solicit remediation strategy preferences. Surface water and groundwater contamination, desire for public involvement, and potential health risks were found to be the most highly ranked site concerns. Preferred remediation strategies included treatment of contaminated soil and excavation with off-site disposal. Among on-site remediation strategies, only institutional controls that leave the site undisturbed and do not require additional excavation of materials were viewed favorably. Cost of remediation appeared to influence remediation strategy preference; however, no strategy was viewed as a panacea. Respondents were also concerned with protecting future generations, better assessment of risks to health and the environment, and avoiding generation of additional contaminated materials.

Feldman, D L; Hanahan, R A

1996-01-01

161

Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land  

Microsoft Academic Search

A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of

D. J. Nancarrow; M. M. White

2004-01-01

162

Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site  

SciTech Connect

The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

Seeley, F.G.; Kelmers, A.D.

1985-02-01

163

Contaminant bioavailability in soils, sediments, and aquatic environments  

PubMed Central

The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxicity of their constituent ions. In many cases, Pb-contaminated soils and sediments contain the minerals anglesite (PbSO4), cerussite (PbCO3), and various lead oxides (e.g., litharge, PbO) as well as Pb2+ adsorbed to Fe and Mn (hydr)oxides. Whereas adsorbed Pb can be comparatively inert, the lead oxides, sulfates, and carbonates are all highly soluble in acidic to circumneutral environments, and soil Pb in these forms can pose a significant environmental risk. In contrast, the lead phosphates [e.g., pyromorphite, Pb5(PO4)3Cl] are much less soluble and geochemically stable over a wide pH range. Application of soluble or solid-phase phosphates (i.e., apatites) to contaminated soils and sediments induces the dissolution of the “native” Pb minerals, the desorption of Pb adsorbed by hydrous metal oxides, and the subsequent formation of pyromorphites in situ. This process results in decreases in the chemical lability and bioavailability of the Pb without its removal from the contaminated media. This and analogous approaches may be useful strategies for remediating contaminated soils and sediments.

Traina, Samuel J.; Laperche, Valerie

1999-01-01

164

Multi-Species Ecotoxicity Assessment of Petroleum-Contaminated Soil  

Microsoft Academic Search

In 1992, a study was begun to compare the effect of landfarming vs. natural attenuation on the restoration of soil that had been contaminated with crude oil. Each of three lysimeters was filled with a sandy loam topsoil, and crude oil was applied to two of the lysimeters. One of the contaminated lysimeters was tilled, watered, and received a one-time

Kathleen Duncan; Eleanor Jennings; Paul Buck; Harrington Wells; Ravindra Kolhatkar; Kerry Sublette; William T. Potter; Timothy Todd

2003-01-01

165

Phytoremediation of soil contaminated with heavy metals using Brassica napus  

Microsoft Academic Search

In order to examine the feasibility of utilizing oil extracted from plant seed in the contaminated areas, the phytoremediation applicability of soils contaminated with heavy metals and its follow-up result in the production of biodiesel was investigated. Brassica napus was chosen as the main target plant because it is widely used for phytoremediation and is an advantage of biodiesel production.

Jiyeon Park; Ju-Yong Kim; Kyoung-Woong Kim

2012-01-01

166

Evaluation of nutrient addition to diesel biodegradation in contaminated soils  

Microsoft Academic Search

Increasing public concern towards petroleum pollution demands for new and more environmentally efficient low-cost strategies for cleaning up contaminated sites. Diesel biodegradation by microbial communities was investigated in artificially contaminated soils by supplementing commercial fertilizers under laboratory conditions. The amounts of oil degraded at each sampling day were determined by the Soxhlet extraction method, the quantities of benzene, toluene, ethyl

C. Singh; J. Lin

2009-01-01

167

Bioremediation of soils and sediments contaminated by polychlorinated biphenyls  

Microsoft Academic Search

This review discusses the prospects of using the potential of microorganisms for bioremediation of PCB-contaminated natural\\u000a environments (soil, sediments, and sewage sludge) under anaerobic and aerobic conditions. A detailed analysis of the research\\u000a conditions of original works has shown that the efficiency of bioremediation of PCB-contaminated matrices strongly depends\\u000a on the character and degree of contamination. In the case of

G. K. Vasilyeva; E. R. Strijakova

2007-01-01

168

Subsurface contaminants focus area.  

National Technical Information Service (NTIS)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, includi...

1996-01-01

169

Toxicity testing of trinitrotoluene-contaminated soil composts  

SciTech Connect

The Mutatox{trademark} assay and earthworm acute toxicity test were employed to evaluate the efficacy of composting in reducing the toxicity of TNT-contaminated soils. The Mutatox assay is a proprietary bacterial bioluminescence test that determines the mutagenic potential of sample extracts. The earthworm acute toxicity test was chosen because it exposes the organisms to the unaltered contaminant/solid matrix. Rockeye soil, a TNT-contaminated soil collected from a military installation, was composted using two methods. This yielded five samples, Rockeye, Compost A composting. Soil extracts were prepared for Mutatox using the sonification method. Ten serial dilution samples were tested soils/artificial soil were tested in the earthworm toxicity test. In the Rockeye soil samples, a toxic response was shown in both test methods. Mutatox indicated no toxicity in Composts A and B after composting but did not show a positive mutagenic response in the lower serial dilutions. The LC50s for Compost A and B after composting in the earthworm toxicity test were 35.3% and 100%, respectively. Using Mutatox and the earthworm toxicity test together provides a sensitive means of monitoring the effectiveness of various composting techniques for remediating TNT-contaminated soils.

Honeycutt, M.E. [TNRCC TARA, Austin, TX (United States); McFarland, V.A.; Jarvis, A.S. [USAEWES, Vicksburg, MS (United States)

1997-10-01

170

Arsenic speciation in environmental samples of contaminated soil  

Microsoft Academic Search

A coupled method of high performance liquid chromatography and inductively coupled plasma mass spectrometry was used to determine arsenic compounds, such as arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine in soils. The technique was successfully applied to analyse environmental samples from an arsenic-contaminated soil; arsenate was found to be the major component. Due to microbial activity, transformation from

Richard Pongratz

1998-01-01

171

Acid Extraction Treatment System for Treatment of Metal Contaminated Soils.  

National Technical Information Service (NTIS)

The Acid Extraction Treatment System (AETS) reduces the concentrations and/or leachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiven...

S. Paff B. Bosilovich N. J. Kardos

1994-01-01

172

Remediation technologies for soils contaminated with heavy metals  

Microsoft Academic Search

Heavy metals, such as lead, chromium, zinc, cadmium and cooper may cause hazardous harm to human health and the environment because of their dissolubility and mobility. Selection of the most appropriate soil remediation method depends on site characteristics, concentration, types of pollutants to be removed and the final use of a contaminated medium. This paper reviews soil remediation technologies, such

Audrone Jankaite; Saulius Vasarevi?ius

2005-01-01

173

Extraction of Arsenic from Soils Contaminated with Wood Preservation Chemicals  

Microsoft Academic Search

Three soil samples contaminated by chromated zinc arsenate (CZA) or chromated copper arsenate (CCA) were investigated in a laboratory scale to study As mobilization and to identify a chemical agent that could be used in soil washing to extract arsenic. Besides high As extraction, the cost, occupational health issues and technical aspects were considered when selecting the chemical. Arsenic is

Lea Rastas Amofah; Christian Maurice; Prosun Bhattacharya

2010-01-01

174

Laboratory Studies of Steam Stripping of LNAPL-Contaminated Soils  

Microsoft Academic Search

Bench-scale laboratory experiments were conducted to evaluate the effectiveness of steam injection for in situ remediation of soils contaminated by light nonaqueous-phase liquids (LNAPLs). Several parametric studies were performed with various combinations of soils, LNAPLs, and steam injection conditions. An increase in steam injection pressure produced a significant increase in LNAPL recovery efficiency. An increase in steam injection pressure from

A. Hadim; F. H. Shah; G. P. Korfiatis

1996-01-01

175

Toxicity assessment of contaminated soils from an antitank firing range  

Microsoft Academic Search

Explosives are released into the environment at production and processing facilities, as well as through field use. These compounds may be toxic at relatively low concentrations to a number of ecological receptors. A toxicity assessment was carried out on soils from an explosive-contaminated site at a Canadian Forces Area Training Center. Toxicity studies on soil organisms using endpoints such as

Pierre Yves Robidoux; Ping Gong; Manon Sarrazin; Ghalib Bardai; Louise Paquet; Jalal Hawari; Charles Dubois; Geoffrey I Sunahara

2004-01-01

176

Heavy metal leaching of contaminated soils from a metallurgical plant  

Microsoft Academic Search

Laboratory tests were carried out to determine the primary parameters affecting the efficiency of the process of leaching heavy metals from natural soil collected inside a metallurgical plant in Italy. The soil samples tested consisted primarily of medium density, fine silica sand that had been contaminated with lead and zinc metallurgical wastes by percolating rainwater. Samples were obtained 1–2 m below

Paolo Desogus; Pier Paolo Manca; Giampaolo Orrù

2012-01-01

177

Background in the context of land contaminated with naturally occurring radioactive material.  

PubMed

The financial implications of choosing a particular threshold for clearance of radioactively contaminated land are substantial, particularly when one considers the volume of naturally occurring radioactive material (NORM) created each year by the production and combustion of fossil fuels and the exploitation of industrial minerals. Inevitably, a compromise needs to be reached between the level of environmental protection sought and the finite resources available for remediation. In the case of natural series radionuclides, any anthropogenic input is always superimposed on the inventory already present in the soil; this 'background' inventory is conventionally disregarded when assessing remediation targets. Unfortunately, the term is not well defined and the concept of 'background dose' is open to alternative interpretations. In this paper, we address the issue of natural background from a geochemical rather than from a solely radiological perspective, illustrating this with an example from the china clay industry. We propose a simple procedure for decision making based on activity concentrations of primordial radionuclides and their progeny. Subsequent calculations of dose need to take into account the mineralogical and chemical characteristics of the contamination, which in the case of NORM are invariably reflected in uranium series disequilibrium. PMID:23519083

Read, D; Read, G D; Thorne, M C

2013-06-01

178

Solvent washing of aged PCP-contaminated soils  

SciTech Connect

The study evaluates the removal of pentachlorophenol (PCP), a wood preserving agent, from soils that have been contaminated over a period of time. Previously, equal proportions of ethanol and water were found to have the highest PCP removal efficiencies for above ground batch extractions at various soil:solvent ratios. In addition, the 50% and 75% ethanol solutions achieved higher removal efficiencies at low solvent throughputs in in-situ soil flushing experiments.

Khodadoust, A.P.; Wagner, J.A.; Suidan, M.T.; Safferman, S.I.

1993-01-01

179

Toxicity tests of soil contaminated by recycling of scrap plastics  

SciTech Connect

The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

Wong, M.H.; Chui, V.W. (Hong Kong Baptist College, Kowloon (Hong Kong))

1990-03-01

180

Bioremediation Techniques of Oil Contaminated Soils in Ohio  

SciTech Connect

The objective of this project is to develop environmentally sound and cost-effective remediation techniques for crude oil contaminated soils. By providing a guidance manual to oil and gas operators, the Ohio Division of Oil and Gas regulatory authority hopes to reduce remediation costs while improving voluntary compliance with soil clean-up requirements. This shall be accomplished by conducting a series of field tests to define the optimum range for nutrient and organic enhancement to biologically remediate soils contaminated with brines and crude oil having a wide rage of viscosity.

Hodges, David

1996-10-03

181

40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.  

Code of Federal Regulations, 2013 CFR

...LDR treatment standards for contaminated soil. 268.49 Section 268.49 Protection...LDR treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic...

2013-07-01

182

Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils.  

PubMed

Chemical oxidation of hexachlorocyclohexanes (HCHs) was evaluated in (i) artificially spiked sand with HCH isomers (?, ?, ? and ?) and (ii) contaminated soil sampled from a former gravel pit backfilled with wastes of lindane (?-HCH). Following oxidation treatments were employed: hydrogen peroxide alone (HP), hydrogen peroxide with soluble Fe(II) (Fenton-F), sodium persulfate alone (PS), Fe(II) activated persulfate (AP) and permanganate (PM). GC-MS results revealed a significant degradation of all isomers in spiked soil in the order: F>PS>AP>HP>PM. Soluble Fe(II) enhanced the efficiency of H2O2 but decreased the reactivity of persulfate. Similar trend was observed in contaminated soil, but with less degradation probably caused by scavenging effect of organic matter and soil minerals and/or pollutant unavailability. No significant increase in oxidation efficiency was observed after using availability-enhancement agents in contaminated soil. Other limitation factors (oxidant dose, pH, catalyst type etc.) were also addressed. Among all the isomers tested, ?-HCH was the most recalcitrant one which could be explained by higher metabolic and chemical stability. No by-products were observed by GC-MS regardless of the oxidant used. For being the premier study reporting chemical oxidation of HCH isomers in contaminated soils, it will serve as a base for in-situ treatments of sites contaminated by HCH isomers and other persistent organic pollutants. PMID:24486498

Usman, M; Tascone, O; Faure, P; Hanna, K

2014-04-01

183

Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana.  

PubMed

The research utilized Bidens maximowicziana along with pyrene-degrading bacteria to evaluate their potential in cleaning up pyrene contamination. The removal of pyrene from the planted soil was obviously higher than that from the unplanted soils. After 50 d of B. maximowicziana growth, the average removal ratio of pyrene in planted soil was 79%, which was 28% higher than that of pyrene in unplanted soil. In contrast to other plants, both roots and shoots of B. maximowicziana could accumulate a large amount of pyrene from the soil and pyrene uptake increased with the soil pyrene concentration. Through analysis of pathways of pyrene removal, this enhanced removal of pyrene by plant-microbial association might be mainly the result of B. maximowicziana-promoted microbial degradation. Both the catalase and polyphenol oxidase activities in soil were higher in planted soil than those in unplanted soil. And the bacteria populations in soil, especially in rhizosphere, were also inspired by the growth of B. maximowicziana. These could be explained by the rhizosphere effect. Therefore, bio-removal of pyrene in the contaminated soils was feasible using B. maximowicziana. PMID:20832842

Lu, Sijin; Teng, Yanguo; Wang, Jinsheng; Sun, Zongjian

2010-10-01

184

Clean-up criteria for remediation of contaminated soils  

SciTech Connect

{open_quotes}How clean is clean?{close_quotes} is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects.

Nguyen, H.D.; Wilson, J.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Sato, Chikashi [Idaho State Univ., Pocatello, ID (United States). College of Engineering

1997-08-01

185

The activation energy of stabilised/solidified contaminated soils.  

PubMed

Developing an understanding of the time-related performance of cement-treated materials is essential in understanding their durability and long-term effectiveness. A number of models have been developed to predict this time-related performance. One such model is the maturity concept which involves use of the 'global' activation energy which derives from the Arrhenius equation. The accurate assessment of the activation energy is essential in the realistic modelling of the accelerated ageing of cement-treated soils. Experimentally, this model is applied to a series of tests performed at different elevated temperatures. Experimental work, related to the results of a time-related performance on a contaminated site in the UK treated with in situ stabilisation/solidification was carried out. Three different cement-based grouts were used on two model site soils which were both contaminated with a number of heavy metals and a hydrocarbon. Uncontaminated soils were also tested. Elevated temperatures up to 60 degrees C and curing periods up to 90 days were used. The resulting global activation energies for the uncontaminated and contaminated soils were compared. Lower values were obtained for the contaminated soils reflecting the effect of the contaminants. The resulting equivalent ages for the uncontaminated and contaminated mixes tested were 5.1-7.4 and 0.8-4.1 years, respectively. This work shows how a specific set of contaminants affect the E(a) values for particular cementitious systems and how the maturity concept can be applied to cement-treated contaminated soils. PMID:16839664

Chitambira, B; Al-Tabbaa, A; Perera, A S R; Yu, X D

2007-03-15

186

Thermal Remediation of Tar-Contaminated Soil and Oil-Contaminated Gravel  

Microsoft Academic Search

Pilot plant studies were carried out to evaluate the feasibility of remediation of coal tar- contaminated soil and oil-contaminated gravel by incineration with environmentally acceptable performance. In addition to adequate decontamination and emission control, effort was devoted to treating the special feedstocks with difficult handling properties by use of conventional combustion and feeding systems. Analysis of the results showed that

Edward J. Anthony; Jinsheng Wang; Dave Martin

187

REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING  

EPA Science Inventory

Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. his technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, a...

188

REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING  

EPA Science Inventory

Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

189

Inorganic Soil Contamination from Cemetery Leachate  

Microsoft Academic Search

The increasing number of cemeteries has caused concern about the possibility of releasing hazardous chemicals and metals into the surroundings. Moreover, many studies use cemeteries for 'background' sampling. This study attempts to identify whether cemeteries are indeed good 'background' areas, or whether they themselves are sources of contamination. Possible contaminants include poisonous chemicals, such as arsenic and mercury, which were

Alison L. Spongberg; Paul M. Becks

2000-01-01

190

Cadmium and zinc in plants and soil solutions from contaminated soils  

Microsoft Academic Search

In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites

S. E. Lorenz; R. E. Hamon; P. E. Holm; H. C. Domingues; E. M. Sequeira; T. H. Christensen; S. P. McGrath

1997-01-01

191

SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES  

EPA Science Inventory

Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

192

Toxic effects of heavy metals in three worm species exposed in artificially contaminated soil substrates and contaminated field soils  

Microsoft Academic Search

The toxicity of chemicals is often determined in standardised laboratory\\u000aexperiments. OECD artificial soil (artisoil) is often used to determine\\u000achemical toxicity for soil organisms. This report presents exposure and\\u000aeffect assessments of metals for three worm species (Eisenia andrei,\\u000aEnchytraeus crypticus and Enchytraeus albidus) in metal contaminated\\u000afield soils. The species differ with respect to metal sensitivity and\\u000aecological

Posthuma L; Notenboom J

2007-01-01

193

Solubility measurement of uranium in uranium-contaminated soils  

SciTech Connect

A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

Lee, S.Y.; Elless, M.; Hoffman, F.

1993-08-01

194

The remediation of lead contaminated soils using solvent extraction chelation techniques. Final report  

SciTech Connect

This report describes preliminary work leading to the development of an innovative technology for treating a mixed waste problem at Los Alamos National Laboratory (LANL). The specific problem being addressed by this research is the result of research activity at the Meson Physics Facility (LAMPH). The LAMPH facility conducts high energy neutron research. Lead BB`s were placed in containers and used as shielding during experiments.This lead was stored in piles on the ground when it was not in use, and it sometimes sat for extended periods of time, perhaps as long as 20 years. The lead was mobilized overtime, and contaminated the underlying soil. Because of the neutron bombardment, a portion of the lead {sup 207}Pb became radioactive {sup 210}Pb, and the lead became both a listed waste and radioactive, which classified it as a mixed waste. The contaminated soil has been removed from the site and placed in drums for storage until a suitable treatment technology can be identified. The contents of the barrels consists of a mixture of lead contaminated soil and lead BB`s.

Price, M.; Hanson, A.T.; Rudd, B.; Pickins, D.; Krause, K. [New Mexico State Univ., Las Cruces, NM (United States)

1998-08-01

195

In situ vitrification: Providing a comprehensive solution for remediation of contaminated soils  

SciTech Connect

In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a leach-resistant, vitreous and crystalline monolith. The process is applicable to a wide range of soil types and conditions that include virtually any combination of radioactive, hazardous, and mixed waste contaminants. The process is currently applicable to sites that are less than 5-m deep and that do not contain sealed containers. The range of capabilities and limitations of the process is discussed in the paper. Also discussed are the results of two recent demonstrations, one a pilot-scale test on a model radioactive site at Oak Ridge, TN, the other a full-scale test on a mixed waste disposal crib at Hanford, WA. These and other successful tests have led to preparation for three near-term future demonstrations at these sites; a discussion of the plans and expectations for the demonstrations is also included in the paper.

Tixier, J.S.; Thompson, L.E.

1993-09-01

196

The existence state in the soil of radioactive cesium from the Fukushima Dai-ichi nuclear power plant accident by imaging plate photograph  

NASA Astrophysics Data System (ADS)

In the accident of the Fukushima Daiichi nuclear power plant, the wide area in east Japan was polluted seriously with radioactive cesium. But, unlike Chernobyl, reactor core explosion did not occur in Fukushima. Therefore, it is thought that many radioactive nuclides emitted into the atmosphere were in the gas state and aerosol. However, when the imaging plate photographs of the surface soils in Fukushima was observed, many granular radionuclides existed. Then, in order to confirm a radioactive cesium of particle state, the treatment for the soils contaminated with radioactive cesium by using chemical operation was tried. Three type soils, that is, paddy soil, river sediment, and sea sand, were made applicable to research. The contaminated soil samples were collected in Fukushima and Ibaraki prefecture. Radioactivity concentrations of 137Cs and 134Cs were measured by using gamma-ray spectrometry with a high pure germanium (HPGe) detector. After the radioactively measurement, soils had been burned in oven for five hours in 500 degree Celsius. Concentrated hydrochloric acid was added to soil samples, and they were heated for three hours. These samples were divided into residue and elution by centrifugal separation, and then radioactivity of cesium contained in residue was measured. After chemical operations, 70% and 85% of radioactive cesium from river sediment and sea sand were extracted approximately into elution, respectively. In contrast, in the soil of the paddy field, only 30% of radioactive cesium was approximately eluted. When radiation image photograph of the residues of all three types of soils were taken and observed, the granular radioactive nuclides remained clearly in paddy soil and river sediment. In contrast, all the granular radioactive nuclides in sea sand disappeared after treatment. The results of above things that desorption of radioactive cesium depend on the kind of soil. Furthermore, it was suggested that there was radioactive cesium of particle state in paddy soil and river sediment. It is a possibility that the substances on which radioactive cesium are concentrated depends on the kind of soil. The necessity of clarifying adsorption objects and particle state in the actual condition was suggested to elucidate Fukushima accident in more detail.

Satou, Yukihiko; Sueki, Keisuke

2013-04-01

197

RESULTS OF TREATMENT EVALUATIONS OF CONTAMINATED SOILS  

EPA Science Inventory

Soil and debris from Superfund sites must be treated to minimize their threat to human health and the environment as part of remedial actions at such sites. Studies were conducted on the effectiveness with which five treatment processes removed or immobilized synthetic soils cont...

198

Biochar: an effective amendment for remediating contaminated soil.  

PubMed

Biochar is a carbon-rich material derived from incomplete combustion of biomass.Applying biochar as an amendment to treat contaminated soils is receiving increasing attention, and is a promising way to improve soil quality. Heavy metals are persistent and are not environmentally biodegradable. However, they can be stabilized in soil by adding biochar. Moreover, biochar is considered to be a predominant sorptive agent for organic pollutants, having a removal efficiency of about 1 order of magnitude higher than does soil/sediment organic matter or their precursor substances alone.When trying to stabilize organic and inorganic pollutants in soil, several features of biochar' s sorption capacity should be considered, viz., the nature of the pollutants to be remediated, how the biochar is prepared, and the complexity of the soil systemin which biochar may be used. In addition, a significant portion of the biochar or some of its components that are used to remediate soils do change over time through abiotic oxidation and microbial decomposition. This change process is commonly referred to as "aging:" Biochar "aging" in nature is inevitable, and aged biochar exhibits an effect that is totally different than non-aged biochar on stabilizing heavy metals and organic contaminants in soils.Studies that have been performed to date on the use of biochar to remediate contaminated soil are insufficient to allow its use for wide-scale field application.Therefore, considerable new data are necessary to expand both our understanding of how biochar performs in the field, and where it can be best used in the future for soil remediation. For example, how biochar and soil biota (microbial and faunal communities)interact in soils is still poorly understood. Moreover, studies are needed on how to best remove new species of heavy metals, and on how biochar aging affects sorption capacity are also needed. PMID:24162093

Kong, Lu-Lu; Liu, Wei-Tao; Zhou, Qi-Xing

2014-01-01

199

Environmental projects. Volume 14: Removal of contaminated soil and debris  

NASA Technical Reports Server (NTRS)

Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

Kushner, Len

1992-01-01

200

Environmental projects. Volume 14: Removal of contaminated soil and debris  

SciTech Connect

Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

Kushner, L.

1992-03-01

201

Levels and trends of radioactive contaminants in the Greenland environment.  

PubMed

Levels of radioactive contaminants in various Greenland environments have been assessed during 1999-2001. The source of 137Cs, 90Sr and (239,240)Pu in terrestrial and fresh water environments is mainly global fallout. In addition, the Chernobyl accident gave a small contribution of 137Cs. Reindeer and lamb contain the largest observed 137Cs concentrations in the terrestrial environment--up to 80 Bq kg(-1) fresh weight have been observed in reindeer. Due to special environmental conditions, 137Cs is transferred to landlocked Arctic char with extremely high efficiency in South Greenland leading to concentrations up to 100 Bq kg(-1) fresh weight. In these cases very long ecological half-lives are seen. Concentrations of 99Tc, 137Cs and 90Sr in seawater and in marine biota decrease in the order North-East Greenland and the coastal East Greenland current > South-West Greenland > Central West Greenland and North-West Greenland > Irmiger Sea-Faroe Islands. The general large-scale oceanic circulation combined with European coastal discharges and previous contamination of the Arctic Ocean causes this. As the same tendency is seen for the persistent organic pollutants (POPs) DDT and PCB in marine biota, it is suggested that long-distance oceanic transport by coastal currents is a significant pathway also for POPs in the Greenland marine environment. The peak 99Tc discharge from Sellafield 1994-1995 has only been slightly visible in the present survey year 2000. The concentrations are expected to increase in the future, especially in East Greenland. The Bylot Sound at the Thule Airbase (Pituffik) in North-West Greenland was contaminated with plutonium and enriched uranium in a weapons accident in 1968. Biological activity has mixed accident plutonium efficiently into the new sediments resulting in continued high surface sediment concentrations three decades after the accident. Transfer of plutonium to benthic biota is low--and lower than observed in the Irish Sea. This is supposed to be caused by the physico-chemical form of the accident plutonium. A recent study indicates that 'hot particles' hold considerably more plutonium than previously anticipated and that the Bylot Sound sediments may account for the major part of the un-recovered plutonium after the accident, i.e. approximately 3 kg. PMID:15325141

Dahlgaard, Henning; Eriksson, Mats; Nielsen, Sven P; Joensen, Hans Pauli

2004-09-20

202

Radioactive contamination of SrI2(Eu) crystal scintillator  

NASA Astrophysics Data System (ADS)

A strontium iodide crystal doped by europium (SrI2(Eu)) was produced by using the Stockbarger growth technique. The crystal was subjected to a characterization that includes relative photoelectron output and energy resolution for ? quanta. The intrinsic radioactivity of the SrI2(Eu) crystal scintillator was tested both by using it as scintillator at sea level and by ultra-low background HPGe ? spectrometry deep underground. The response of the SrI2(Eu) detector to ? particles (?/? ratio and pulse shape) was estimated by analysing the 226Ra internal trace contamination of the crystal. We have measured: ?/?=0.55 at E?=7.7 MeV, and no difference in the time decay of the scintillation pulses induced by ? particles and ? quanta. The application of the obtained results in the search for the double electron capture and electron capture with positron emission in 84Sr has been investigated at a level of sensitivity: T˜1015-1016 yr. The results of these studies demonstrate the potentiality of this material for a variety of scintillation applications, including low-level counting experiments.

Belli, P.; Bernabei, R.; Cerulli, R.; Danevich, F. A.; Galenin, E.; Gektin, A.; Incicchitti, A.; Isaienko, V.; Kobychev, V. V.; Laubenstein, M.; Nagorny, S. S.; Podviyanuk, R. B.; Tkachenko, S.; Tretyak, V. I.

2012-04-01

203

Heavy metals, organics and radioactivity in soil of western Serbia.  

PubMed

Western Serbia is a region well-known for potato production. Concentrations of selected metals, polycyclic aromatic hydrocarbons (PAHs) and radioactivity were measured in the soil in order to evaluate the quality and characteristics. The examined soils (Luvisol and Pseudogley) showed unsuitable agrochemical characteristics (acid reaction, low content of organic matter and potassium). Some samples contained Ni, Mn and Cr above the maximal permissible concentration (MPC). The average concentration of total PAHs was 1.92 mg/kg, which is larger than the maximal permissible concentration in Serbia but below the threshold values in the European Union for food production. The average radioactivity of (238)U, (226)Ra, (232)Th, (40)K and the fission product (137)Cs were 60.4+/-26.2, 33.2+/-13.4, 49.1+/-18.5, 379+/-108 and 36.4+/-23.3 Bq/kg. Enhanced radioactivity in the soils was found. The total absorbed dose rate in air above the soil at 1m height calculated for western Serbia was 73.4 nGy/h and the annual effective dose was 90 microSv, which are similar to earlier reports for the study region. PMID:20060645

Dugalic, Goran; Krstic, Dragana; Jelic, Miodrag; Nikezic, Dragoslav; Milenkovic, Biljana; Pucarevic, Mira; Zeremski-Skoric, Tijana

2010-05-15

204

DEVELOPMENTS IN CHEMICAL TREATMENT OF CONTAMINATED SOIL  

EPA Science Inventory

The U.S. Environmental Protection Agency's Office of Research and Development (ORD) is examining processes for remedial action at Superfund sites, and corrective action at operating disposal sites. ecent legislation emphasizes destruction and detoxification of contaminants, rathe...

205

Soil contamination with 90Sr in the near zone of the Chernobyl accident.  

PubMed

Representative large-scale soil sampling on a regular grid of step width about 1 km was carried out for the first time in the near zone of the Chernobyl accident (radius 36 km). An integrated map of terrestrial 90Sr contamination density in the 30 km exclusion zone (scale 1:200,000) has been created from the analysed samples. Maps of the main agrochemical characteristics of the soils, which determine the fuel particle dissolution rates and the contamination of vegetation, were produced. The total contents of 90Sr on the ground surface of the 30 km zone in Ukraine (without the reactor site and the radioactive waste storages) was about 810 TBq (8.1 x 10(+14) Bq) in 1997, which corresponds to 0.4-0.5% of the Chernobyl reactor inventory at the time of the accident. This assessment is 3-4 times lower than previous estimates. PMID:11468820

Kashparov, V A; Lundin, S M; Khomutinin, Y V; Kaminsky, S P; Levchuk, S E; Protsak, V P; Kadygrib, A M; Zvarich, S I; Yoschenko, V I; Tschiersch, J

2001-01-01

206

Radioactivities vs. depth in Apollo 16 and 17 soil  

NASA Technical Reports Server (NTRS)

The radioactivities of Ar-37, Ar-39, and H-3 measured at a number of depths for Apollo 16 and 17 soil are reported. The Ar-37 activities vs depth in the Apollo 16 drill string increased with depth and reached a broad maximum in the neighborhood of 50 g per sq cm before decreasing. The Ar-39 activities in Apollo 17 soil were higher than in Apollo 16 soil, probably owing to the higher Fe and Ti contents. The H-3 activities in Apollo 16 and 17 soil were quite similar and indicate that the 4 August 1972 flare produced very little H-3 compared to the amount produced by solar flares during the previous 50 years.

Fireman, E. L.; D'Amico, J.; Defelice, J.

1973-01-01

207

Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control  

SciTech Connect

A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His [Florida International University, Miami, FL 33199 (United States)

2006-07-01

208

The effect of oil contamination on the geotechnical properties of fine-grained soils  

Microsoft Academic Search

Every day, petrochemical activities, oil spills and pipeline or reservoir leakage contaminate the ground. In addition to environmental concerns, such as groundwater pollution, the alteration of geotechnical properties of the contaminated soil is also cause for worry. Contamination has been proven to alter the geotechnical properties of soil, and researchers have extensively studied the properties of contaminated granular soils. However,

Mohammad Kermani; Taghi Ebadi

2012-01-01

209

Patterns and inventories of radioactive contamination of island sites of the Yenisey River, Russia  

Microsoft Academic Search

The distribution of radioactive contamination at three island sites downstream from the Krasnoyarsk Mining and Chemical Combine (KMCC) was studied with the objectives of mapping contamination levels, interpreting radionuclide distributions through consideration of alluvial processes and determining radionuclide inventories. Contamination was measured using in situ gamma spectrometry and landforms characterised using topographic surveying methods. Maximum 137Cs contamination densities (700kBqm?2) were

V. G. Linnik; J. E. Brown; M. Dowdall; V. N. Potapov; A. V. Nosov; V. V. Surkov; A. V. Sokolov; S. M. Wright; S. Borghuis

2006-01-01

210

The relationship between soil contaminated with volatile organic compounds and indoor air pollution  

Microsoft Academic Search

The relationship between soil contaminated with volatile organic compounds and indoor air quality was examined. Measurements in the soil and indoor air were taken in 77 houses built on different types of contaminated soil. In seven houses, the influence of soil contamination on indoor air quality was detected. Repeated measurements showed that the contribution to indoor air pollution was consistent,

J. Kliest; T. Fast; J. S. M. Boleij; H. van de Wiel; H. Bloemen

1989-01-01

211

Coupling Sorption to Soil Weathering during Reactive Transport: Impacts of Mineral Transformation and Sorbate Aging on Contaminant Speciation and Mobility  

SciTech Connect

The Hanford subsurface has become contaminated with highly alkaline, radioactive waste generated as a result of weapons production. The radioactive brine was stored in underground storage tanks, a number of which developed leaks and contaminated the surrounding subsurface. The high pH and ionic strength of these wastes has been predicted to accelerate the degree of soil weathering to produce new mineral phases--cancrinite and sodalite among the most abundant. Previous work has demonstrated that Cs and Sr, which along with I represent the most radioactive components in the waste, are sequestered by these neo-formed solids. The present work is aimed at assessing the stability of these neo-formed solids, with special emphasis on the degree of Cs, Sr and I release under ambient (neutral pH, low ionic strength) conditions expected to return to the Hanford area after the caustic radioactive brine waste is removed.

Carl I. Steefel; Aaron Thompson; Jon Chorover

2006-06-01

212

Immobilization of uranium in contaminated soil by natural apatite addition  

SciTech Connect

Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana [Institute for Technology of Nuclear and other Mineral Raw Materials, Franche d' Epere 86, Belgrade (Serbia)

2007-07-01

213

Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil.  

PubMed

A diesel fuel spill at a concentration of 1 L m(-2) soil was simulated on a 12 m(2) plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. PMID:17555854

Serrano, Antonio; Gallego, Mercedes; González, Jose Luis; Tejada, Manuel

2008-02-01

214

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Microsoft Academic Search

Goal, Scope and Background  During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative\\u000a to the in-situ natural uranium present. After the military activities, most of kinetic DU penetrators or their fragments remained\\u000a buried in the ground in certain geomorphological and geochemical environments exposed to local weathering conditions. The\\u000a contamination distribution, mobility

Mirjana B. Radenkovi?; Svjetlana A. Cupa?; Jasminka D. Joksi?; Dragana J. Todorovi?

2008-01-01

215

Extraction of pesticides from contaminated soil using supercritical carbon dioxide  

SciTech Connect

The demand for processes to clean up contaminated soils without generating additional contaminants, such as hazardous solvents, is increasing. One approach to minimizing this problem is to use supercritical fluids like light hydrocarbons and CO[sub 2] to extract contaminants from soils. Gases exhibit unique properties under supercritical conditions. They retain the ability to diffuse through the interstitial spaces of solid materials, plus they have the solvating power of liquids. Some examples of extractions using SCFs are caffeine from coffee, cholesterol from eggs, drugs from plants, and nicotine from tobacco. Supercritical CO[sub 2] is an attractive, alternative extraction medium for removal of pesticides from soils. Carbon dioxide is readily available, relatively inexpensive, and if recycled, nonpolluting. Contaminants may be easily recovered by evaporating the CO[sub 2] into an expansion vessel. Supercritical fluid extraction technology is discussed and results are given for the extraction of atrazine, bentazon, alachlor, and permethrin from contaminated soil prepared in the laboratory. Initial studies show >95% removal for these pesticides.

Hunter, G.B.

1991-01-01

216

Extraction of pesticides from contaminated soil using supercritical carbon dioxide  

SciTech Connect

The demand for processes to clean up contaminated soils without generating additional contaminants, such as hazardous solvents, is increasing. One approach to minimizing this problem is to use supercritical fluids like light hydrocarbons and CO{sub 2} to extract contaminants from soils. Gases exhibit unique properties under supercritical conditions. They retain the ability to diffuse through the interstitial spaces of solid materials, plus they have the solvating power of liquids. Some examples of extractions using SCFs are caffeine from coffee, cholesterol from eggs, drugs from plants, and nicotine from tobacco. Supercritical CO{sub 2} is an attractive, alternative extraction medium for removal of pesticides from soils. Carbon dioxide is readily available, relatively inexpensive, and if recycled, nonpolluting. Contaminants may be easily recovered by evaporating the CO{sub 2} into an expansion vessel. Supercritical fluid extraction technology is discussed and results are given for the extraction of atrazine, bentazon, alachlor, and permethrin from contaminated soil prepared in the laboratory. Initial studies show >95% removal for these pesticides.

Hunter, G.B.

1991-12-31

217

Phenanthrene and pyrene oxidation in contaminated soils using Fenton's reagent.  

PubMed

Fenton's reagent has shown its applicability to oxidizing these biorefractory organic contaminants. The purpose of this contribution was to investigate the influence of operating parameters on the process efficiency for soil highly contaminated by PAHs. Five variables were selected: pH, reaction time, UV irradiation, hydrogen peroxide concentration and Fe (II) amendment. Their effects on the oxidation of (i) phenanthrene and on (ii) phenanthrene and pyrene present in freshly contaminated soil samples were studied through batch reactor experiments following factorial designs. For phenanthrene oxidation run with a soil contaminated at 700 mg kg(-1), one set of variables enabled us to reach a residual concentration lower than 40 mg kg(-1) (Dutch legislation threshold). The most important factor was the reaction time, followed at a certain distance by UV irradiation, Fe (II), H(2)O(2) concentration and pH, this last variable being the least significant. The possibility of operating without pH adjustment is of importance in the treatment at the field scale. This shows the feasibility of photo-Fenton-like oxidation for the treatment of soil highly contaminated with PAH and the relative importance of the process variables. PMID:18524479

Silva, Paula Tereza de Souza E; Silva, Valdinete Lins da; Neto, Benício de Barros; Simonnot, Marie-Odile

2009-01-30

218

Soil immobilization: New concept for biotreatment of soil contaminants  

SciTech Connect

A new concept for the development of microbial consortia for the degradation of persistent soil pollutants and for pollutant treatment is proposed. The concept defined as soil immobilization is based on the entrapment of soil particles, showing microbial activity in degrading the target pollutant, into a solid membrane with a large pore size distribution. The particular hydrodynamic and mass transfer properties of this system result in a very efficient process. A new type of bioreactor is proposed for carrying out the immobilized soil process. The performance of the system was tested by developing a microbial system for the mineralization of pentachlorophenol (PCP). The results show that the volumetric efficiency of the process for PCP mineralization in the immobilized soil bioreactor is 1--3 orders of magnitude higher than reported literature values. Chlorine and carbon atoms of PCP are both nearly completely (99%) mineralized.

Karamanev, D.G.; Chavarie, C.; Samson, R. [Ecole Polytechnique, Montreal, Quebec (Canada)] [Ecole Polytechnique, Montreal, Quebec (Canada)

1998-02-20

219

External gamma dose responses from residual radioactive materials in soil  

Microsoft Academic Search

External gamma dose responses from radioactive soils have previously been calculated as air-absorbed doses in a point receptor above the ground. Such responses, however, are not accurate measures for estimating the effective dose equivalent (H{sub E}) for assessing radiological risks to humans, as defined by the International Commission on Radiological Protection (ICRP). The ambient dose equivalent H*(10), as defined by

S. Y. Chen; Y. C. Yuan

1989-01-01

220

Laboratory studies of steam stripping of LNAPL?contaminated soils  

Microsoft Academic Search

Bench?scale laboratory experiments were conducted to evaluate the effectiveness of steam injection for in situ remediation of soils contaminated by light nonaqueous?phase liquids (LNAPLs). Several parametric studies were performed with various combinations of soils, LNAPLs, and steam injection conditions.An increase in steam injection pressure produced a significant increase in LNAPL recovery efficiency. An increase in steam injection pressure from 12.4

A. Hadim; F. H. Shah; G. P. Korfiatis

1993-01-01

221

Potential for phytoextraction of PCBs from contaminated soils using weeds  

Microsoft Academic Search

A comprehensive investigation of the potential of twenty-seven different species of weeds to phytoextract polychlorinated biphenyls (PCBs) from contaminated soil was conducted at two field sites (Etobicoke and Lindsay) in southern Ontario, Canada. Soil concentrations were 31?g\\/g and 4.7?g\\/g at each site respectively. All species accumulated PCBs in their root and shoot tissues. Mean shoot concentrations at the two sites

Sarah A. Ficko; Allison Rutter; Barbara A. Zeeb

2010-01-01

222

Predicting the Phytoextraction Duration to Remediate Heavy Metal Contaminated Soils  

Microsoft Academic Search

The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the\\u000a duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on\\u000a plant uptake has to be considered in order to obtain a reliable estimate of the phytoextraction duration. To simulate the\\u000a decrease in the HM

G. F. Koopmans; P. F. A. M. Römkens; J. Song; E. J. M. Temminghoff; J. Japenga

2007-01-01

223

Assessment of combined electro-nanoremediation of molinate contaminated soil.  

PubMed

Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. PMID:24946031

Gomes, Helena I; Fan, Guangping; Mateus, Eduardo P; Dias-Ferreira, Celia; Ribeiro, Alexandra B

2014-09-15

224

Radioactive contamination in liquid wastes discharged to ground at the separations facilities through December, 1965.  

National Technical Information Service (NTIS)

This document summarizes the amounts of radioactive contamination discharged to ground from chemical separations and laboratory facilities through December 1965. Detailed data for individual disposal sites are presented on a month-to-month basis for the p...

B. J. McMurray

1966-01-01

225

TREATMENT OF CONTAMINATED SOILS WITH AQUEOUS SURFACTANTS  

EPA Science Inventory

The overall objective of the project was to develop a technical base for decisions on the use of chemical countermeasures at releases of hazardous substances. Work included a literature search to determine the nature and quantities of contaminants at Superfund sites and the appli...

226

Aromatic plant production on metal contaminated soils  

Microsoft Academic Search

Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn–Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances

Valtcho D. Zheljazkov; Lyle E. Craker; Baoshan Xing; Niels E. Nielsen; Andrew Wilcox

2008-01-01

227

Sorption of radioactive contaminants by sediment from the Kara Sea  

SciTech Connect

The purpose of this study is to quantify some of the parameters needed to perform near-field modeling of sites in the Kara Sea that were impacted by the disposal of radioactive waste. The parameters of interest are: the distribution coefficients (K{sub d}) for several important radionuclides, the mineralogy of the sediment, and the relationship of K{sub d} to liquid to solid ratio. Sediment from the Kara Sea (location: 73{degrees} 00` N, 58{degrees} 00` E) was sampled from a depth of 287 meters on August 23/24, 1992, during a joint Russian/Norwegian scientific cruise. Analysis of the material included mineralogy, grain size and total organic carbon. Uptake kinetics were determined for {sup 85}Sr, {sup 99}Tc, {sup 125}I, {sup 137}Cs, {sup 210}Pb, {sup 232}U, and {sup 241}Am and distribution coefficients (K{sub d}) were determined for these radionuclides using batch type experiments. Sorption isotherms were developed for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs to examine the effect that varying the concentration of a tracer has on the quantity of that tracer taken up by the solid. The effect of liquid to solid ratio on the uptake of contaminants was determined for {sup 99}Tc and {sup 137}Cs. In another set of experiments, the sediment was separated into four size fractions and uptake was determined for each fraction for {sup 85}Sr, {sup 99}Tc, and {sup 137}Cs. In addition, the sediment was analyzed to determine if it contains observable concentrations of anthropogenic radionuclides.

Fuhrmann, M.; Zhou, H. [Brookhaven National Lab., Upton, NY (United States); Neiheisel, J.; Dyer, R.

1995-02-01

228

Application of Ultrasonic for Decontamination of Contaminated Soil - 13142  

SciTech Connect

The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ?200 and for soil from RSC'KI' ?30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

Vasilyev, A.P. [JRC 'NIKIET', Moscow (Russian Federation)] [JRC 'NIKIET', Moscow (Russian Federation); Lebedev, N.M. [LLC 'Aleksandra-Plus', Vologda (Russian Federation)] [LLC 'Aleksandra-Plus', Vologda (Russian Federation); Savkin, A.E. [SUE SIA 'Radon', Moscow (Russian Federation)] [SUE SIA 'Radon', Moscow (Russian Federation)

2013-07-01

229

Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report  

SciTech Connect

The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared.

Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

1996-05-20

230

DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL  

EPA Science Inventory

Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

231

Assessment of Soil-Gas and Soil Contamination at the Old Metal Workshop Hog Farm Area, Fort Gordon, Georgia, 2009-2010.  

National Technical Information Service (NTIS)

Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants ...

A. W. Caldwell J. B. Wellborn J. E. Landmeyer W. B. Guimaraes W. F. Falls W. H. Ratliff

2011-01-01

232

Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*  

PubMed Central

Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

2007-01-01

233

Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants  

Microsoft Academic Search

Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in

Jianwei W. Huang; Michael J. Blaylock; Yoram Kapulnik; Burt D. Ensley

1998-01-01

234

Process for two phase vacuum extraction of soil contaminants  

SciTech Connect

This patent describes a process for two phase removal of contaminants from a contaminated area of the ground, wherein the contaminated area has a subsurface water table and a vadose zone above the water table, contaminants being present in the vadose zone and below the water table. It comprises providing a borehole in a selected portion of the contaminated area; placing in the borehole a perforated riser pipe, wherein at least some of the perforations of the riser pipe are disposed below the water table; applying a vacuum to the riser pipe so as to draw soil gases and entrained liquid into the riser pipe and transport both the gases and the liquid to the surface as a common stream; forming from the common stream a stream which is primarily liquid and a stream which is primarily gaseous; and separately treating the separated liquid and gas streams.

Hess, R.E.; Hooper, A.A.; Morrow, S.R.; Walker, D.J.; Zimmerman, E.

1991-09-24

235

Technical basis for EPA`s proposed regulation on the cleanup of sites contaminated with radioactivity  

SciTech Connect

The US Environmental Protection Agency is proposing a regulation for the protection of the public and radioactive contamination at sites that are to be cleaned up and released for public use. The rule will apply to sites under the control of Federal agencies, and will impose limits on radiation doses to individuals living or working on a site following cleanup; it will thereby provide site owners and managers with uniform, consistent cleanup criteria for planning and carrying out remediation. This paper presents an overview of EPA`s approach to assessing some of the beneficial and adverse effects associated with various possible values for the annual dose limit. In particular, it discusses the method developed to determine how the choice of cleanup criterion affects (1) the time-integrated potential numbers of non-fatal and fatal radiogenic cancers averted among future populations, (2) the occurrence of radiogenic cancers among remediation workers and the public caused by the cleanup process itself, and (3) the volumes of contaminated soil that may require remediation. The analytic methods described here were used to provide input data and assumptions for the Regulatory Impact Analysis (RIA) that supports the proposed regulation; the RIA also considered non-radiological benefits and costs (i.e., public health, economic, and ecological) of the standards. 56 refs., 4 figs., 6 tabs.

Wolbarst, A.B.; Clark, M.E.; Doehnert, M. [Environmental Protection Agency, Washington, DC (United States)] [and others

1996-11-01

236

Natural radioactivity in soil in the Baluchistan province of Pakistan.  

PubMed

The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Baluchistan province of Pakistan have been carried out using HPGe detector. The soil gas radon activities in these areas have also been measured using lucas cell technique. The measured activities of (226)Ra, (232)Th and (40)K were found in the range of 15-27, 20-37 and 328-648 Bq kg(-1), respectively. The calculated absorbed dose rate in air and the annual effective dose were in the range of 35-59 nGy h(-1) and 0.17-0.29 mSv, respectively. Radon activity in the soil gas was found in the range of 357-2476 Bq m(-3). PMID:20406741

Mujahid, S A; Hussain, S

2010-08-01

237

Impact of radioactive waste heat on soil temperatures  

SciTech Connect

Consideration of the impact of radioactive waste heat is necessary for many aspects of potential repository design. Waste heat will alter the mineralogy of the host rock, and may change the character of the zeolitic units below the potential repository that are likely to be the primary natural barriers to radionuclide migration. The impact of waste heat on the near-surface temperature within the soil zone is the focus of the present study. Since 1990, the Nuclear Waste Technical Review Board (NWTRB) has raised the issue of potential impacts on the aboveground ecosystem from increases in soil temperatures. This study is a first step toward understanding the relevant heat transfer processes that controls the near-surface thermal regime and to place bounds on the expected timing and magnitude of the temperature rise. Two-dimensional, site scale thermohydrologic calculations will be used to simulate the large-scale thermohydrologic processes that will feed heat to the soil zone. The potential influence of this heat on soil-zone temperatures will then be examined in a series of simplified one-dimensional model calculations. In future efforts the measured soil-zone temperature variations in the air will be used to calibrate the model, which will tighten the bounds on the possible temperature rise. This study is a precursor to more detailed, three-dimensional simulations with a calibrated model. If it is determined that direct coupling of the site scale and soil zones would be beneficial, this will be done as well.

Robinson, B.A.; Gable, C.W.; Lowman, J.P.

1999-01-04

238

HANDBOOK ON IN SITU TREATMENT OF HAZARDOUS WASTE- CONTAMINATED SOILS  

EPA Science Inventory

This handbook comprises an update of Volume1 of the 1984 USEPA document entitled "Review of In-Place Treatment Techniques for Contaminated Surface Soils." The purpose of this handbook is the same as that of the original document - to provide state-of-the-art information on in sit...

239

Animal Waste-Enhanced Degradation of Hydrocarbon-Contaminated Soil  

Microsoft Academic Search

Land previously used for petroleum production is being converted to commercial, industrial, or residential uses and requires remediation to remove petroleum hydrocarbons (HC). Concurrently, large quantities of animal wastes are produced annually, creating waste-handling and disposal problems. A laboratory study was conducted to determine whether amending contaminated soil with animal manure and inorganic fertilizer affected the degradation rate and amount

Daniel E. Wellman; April L. Ulery; Matthew P. Barcellona; Sonja Duerr-Auster

2001-01-01

240

MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION  

EPA Science Inventory

Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

241

Stabilisation\\/solidification of soils contaminated by chlorinated pesticides  

Microsoft Academic Search

This article describes laboratory tests carried out to identify an effective stabilisation\\/solidification method for soils contaminated by chlorinated pesticides at a disused industrial site. The effectiveness of the treatment was evaluated using leach tests. Powdered activated carbon (PAC) was used as the primary amending agent, thanks to the strong affinity for organic molecules and high sorption capacity. For some areas

Francesco Mazzieri; Andrea del Frate; Giovanna Monti

2011-01-01

242

SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL  

EPA Science Inventory

The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

243

Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils  

Microsoft Academic Search

The reliability and efficiency of the pressurised liquid extraction technique (PLE) for extracting polycyclic aromatic hydrocarbons (PAHs) from contaminated soil has been investigated. Experimental design was used to study the influence of seven extraction variables (sample load, solvents used, solvent ratios, pressure, temperature, extraction time, and rinse volume). The results show that large sample loads in combination with small solvent

Staffan Lundstedt; Bert van Bavel; Peter Haglund; Mats Tysklind; Lars Öberg

2000-01-01

244

SUPERFUND ENGINEERING ISSUE: TREATMENT OF LEAD-CONTAMINATED SOILS  

EPA Science Inventory

This document summarizes the contents of a seminar on treatment of lead-contaminated soils presented on August 28, 1990, to Region V Superfund and RCRA personnel by members of EPA's Engineering and Treatment Technology Support Center located in the Risk Reduction Engineering Labo...

245

LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS  

EPA Science Inventory

This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

246

APPLICATION, PERFORMANCE, AND COSTS OF BIOTREATMENT TECHNOLOGIES FOR CONTAMINATED SOILS  

EPA Science Inventory

A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated b...

247

Chemical methods and phytoremediation of soil contaminated with heavy metals.  

PubMed

The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants. PMID:10819205

Chen, H M; Zheng, C R; Tu, C; Shen, Z G

2000-07-01

248

USING PLANTS TO REMEDIATE PETROLEUM-CONTAMINATED SOIL: PROJECT CONTINUATION  

EPA Science Inventory

Crude oil contamination of soil often occurs adjacent to wellheads and storage facilities. Phytoremediation is a promising tool that can be used to remediate such sites and uses plants and agronomic techniques to enhance biodegradation of hydrocarbons. This project has conduct...

249

Surfactant-enhanced remediation of contaminated soil: a review  

Microsoft Academic Search

Extracting aqueous solutions with or without additives are employed to solubilize contaminants in soil. Since water solubility is the controlling removing mechanism, additives are used to enhance efficiencies. These additives can reduce the time to treat a site compared to the use of water alone. Additives must be of low toxicity and biodegradable. The research in this area has focussed

C. N Mulligan; R. N Yong; B. F Gibbs

2001-01-01

250

Chemical Extraction of Arsenic from Contaminated Soil  

Microsoft Academic Search

A series of batch extraction experiments were conducted using a fortified soil with different extracting solutions such as inorganic acids (hydrochloric acid (HCl), sulfuric acid (H2SO4), phosphoric acid (H3PO4), perchloric acid (HClO4), or nitric acid (HNO3)), organic acids (acetic acid (C2H4O2), citric acid (C6H8O7)) and alkaline agent (NaOH). Various concentrations were used to investigate the removal efficiency and to optimise

M. G. M. ALAM; S. TOKUNAGA

2006-01-01

251

Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater  

SciTech Connect

Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds and radioactive compounds in soil or water. Our research includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. A greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known ``hyperaccumulator`` species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.

Negri, M.C.; Hinchman, R.R. [Argonne National Lab., IL (United States); Gatliff, E.G. [Applied Natural Sciences, Inc., Hamilton, OH (United States)

1996-07-01

252

Mineralization of soil and legume nitrogen in soils treated with metal-contaminated sewage sludge  

Microsoft Academic Search

Eighty percent of urban sewage sludge in southeastern Australia is destined to be reused on agricultural land to improve soil fertility. However, this sludge is usually contaminated with industrial pollutants, in particular with heavy metals. As heavy metals are known to be toxic to microorganisms, concern has been raised that treating soils with these sludges may adversely affect the mineralization

K. J Munn; J Evans; P. M Chalk

2000-01-01

253

EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS  

EPA Science Inventory

Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

254

Phytoremediation of Metal-Contaminated Soil for Improving Food Safety  

NASA Astrophysics Data System (ADS)

The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

Shilev, Stefan; Benlloch, Manuel; Dios-Palomares, R.; Sancho, Enrique D.

255

The DOE`s radioactively contaminated metal recycling: The policy and its implementation  

Microsoft Academic Search

Millions of tons of potentially recoverable materials have accumulated over the years at U.S. DOE sites and facilities now undergrowing environmental restoration. These materials include thousands of tones of scrap metals, both radioactively contaminated and not. This article discusses the DOE`s policy on contaminated metal recycling and its implementation in the following topic areas: the recycling policy concept; an innovative

S. Warren; E. Rizkalla

1997-01-01

256

Application of Steam Injection/Vacuum Extraction Treatment Systems to Contaminated Soils.  

National Technical Information Service (NTIS)

Steam Injection/Vacuum Extraction (SIVE) is a method to enable vacuum extraction to treat soils contaminated with semivolatile organic compounds (SVOCs) and to speed the cleanup of soils contaminated with volatile organic compounds (VOCs). The steam injec...

P. R. de Percin

1993-01-01

257

Assessing the bioavailability and risk from metal-contaminated soils and dusts  

EPA Science Inventory

Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

258

Identifying root exudates in field contaminated soil systems  

NASA Astrophysics Data System (ADS)

Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil surface was covered by CO2 impermeable sheets to ensure that all 13C in the soil results from photoassimilated C released by roots and not soil-atmosphere gas exchange. Ambient CO2 was drawn down in the system until the CO2 concentration within the tent was less than 50 ppm, after which the labeled 13CO2 was introduced, returning the CO2 concentration to the ambient level (~375 ppm). The CO2 pulse lasted for 60 minutes to allow enough time for 13C assimilation within the plants. In order to determine the ideal sampling time, soil pore water samples were extracted every 1-2 hours following the 13C pulse application, over the course of 24 hours. Samples were analyzed for delta 13C as well as %C, and results indicate that the greatest plant-derived dissolved organic C is present at about 6 hours following the 13C pulse. A second experiment will also be conducted using a combination of NMR and mass spectrometry methods to obtain detailed information regarding chemical structures within exudate samples.

Rosenfeld, C.; Martinez, C. E.

2012-12-01

259

Electrokinetic treatment of firing ranges containing tungsten-contaminated soils.  

PubMed

Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu. PMID:17686582

Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

2007-11-19

260

Particulate copper in soils and surface runoff from contaminated sandy soils under citrus production.  

PubMed

Soil contamination by copper (Cu) is a worldwide concern. Laboratory incubation and soil Cu characterization were conducted to examine the effects of external Cu loading and liming on Cu speciation in both bulk soil and particulates of an Alfisol and Spodosol under citrus production. Also, drainage water from the sites was evaluated for dissolved and particulate forms of Cu. Soil available Cu estimated by CaCl2, NH4OAc, or Mehlich-3 extraction significantly increased with external Cu loads and decreased with soil pH. Most increases in soil Cu occurred in the exchangeable and oxide-bound fractions. Organically bound Cu was the dominant fraction in both bulk soil and particulates, but more in particulates than bulk soil (P ? 0.001). Organically bound Cu was highly correlated with total recoverable Cu (P ? 0.01), increased significantly with external Cu loads (P ? 0.001), and decreased with soil pH (P ? 0.05). Lime addition converted part of Cu from available pools to more stable forms. Organically bound Cu complexes were found to dominate in soil solution or surface runoff. These results indicate that most Cu accumulated in the contaminated soils is highly mobile, and thus may impact citrus production and the environment. PMID:23740300

Bakshi, Santanu; He, Zhenli L; Harris, Willie G

2013-12-01

261

Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination  

SciTech Connect

Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

Xu, George; Zhang, Xi-Cheng

2000-06-01

262

Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination  

SciTech Connect

Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

Xu, George; Zhang, Xi-Cheng

1999-06-01

263

Testing amendments for remediation of military range contaminated soil.  

PubMed

Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study. PMID:22609964

Siebielec, Grzegorz; Chaney, Rufus L

2012-10-15

264

Subchronic exposure of mice to Love Canal soil contaminants  

SciTech Connect

The health hazard potential of soil collected from the surface of the Love Canal chemical dump site in Niagara Falls, New York, was assessed in 90-day exposure studies. Female CD-1 mice were exposed to two concentrations of the volatile components of 1 kg of soil with and without direct soil contact. Control mice were identically housed but without soil. The soil was replaced weekly and 87 compounds were detected in the air in the cages above fresh and 7-day-old soil as analyzed by gas chromatography/mass spectrometry. The concentration of many of these compounds decreased during the 7-day exposure cycle. Histopathologic, hematologic, and serum enzyme studies followed necropsy of all mice. There was no mortality of mice exposed for up to 90 days under any condition. Thymus and spleen weights relative to body weight were increased after 4 weeks of exposure by inhalation but not after 8 or 12 weeks of exposure. alpha-, beta-, and delta- Benzenehexachlorides , pentachlorobenzene, and hexachlorobenzene were detected in liver tissue from these animals. Mice exposed to 5- to 10-fold elevated concentration of volatiles had increased body and relative kidney weights. There was no chemically induced lesion in any animal exposed only to the volatile soil contaminants. Mice exposed by direct contact with the soil without elevated volatile exposure had increased body (10%) and relative liver weights (169%). Centrolobular hepatocyte hypertrophy, which involved 40 to 70% of the lobules, was observed in all mice in this group.

Silkworth, J.B.; McMartin, D.N.; Rej, R.; Narang, R.S.; Stein, V.B.; Briggs, R.G.; Kaminsky, L.S.

1984-04-01

265

Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report  

SciTech Connect

The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States); Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Civil Engineering

1993-04-01

266

Pilot study to determine levels of contamination in indoor dust resulting from contamination of soils  

Microsoft Academic Search

In order to develop more realistic risk assessments, an experimental program was conducted to characterize indoor, residential environments and the relationship between the indoor environment and contaminants that originated from the outdoor environment. Parameters measured included concentration of uranium in soils, mass loading of dust on indoor surfaces, and concentrations of uranium in indoor dust. Samples of indoor dust were

Eugene Rutz; John Valentine; Roy Eckart; An Yu

1997-01-01

267

Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties  

NASA Astrophysics Data System (ADS)

Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The subsequent analysis of soils (after 6 and 8 months months) is expected to better demonstrate the influence of soil properties on human bioaccessibility of Pb in contaminated soils. Furthermore, the geochemical forms of Pb will be correlated with bioaccessible Pb to identify those soil-Pb species with higher solubility in the human gastrointestinal system. Key words: Lead, Geochemical species, Bioaccessibility, In-vitro model, Health risk

Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

2006-05-01

268

Contamination of soil with parasite eggs in Surabaya, Indonesia.  

PubMed

Soil was examined for contamination by parasite eggs in Surabaya Indonesia. Surveys were carried out on three occassion; July, 1993 (dry season), March, 1994 (rainy season), and August, 1994 (dry season). Throughout the study, five species of nematode eggs (Ascaris lumbricoides, Toxocara cati, Trichuris trichiura, Physaloptera sp, Capillaria sp), two species of cestode eggs (Hymenolepis diminuta, Spirometra erinacei), and one species of protozoa oocyst (Isospora felis) were detected. The contamination rate and number of species found from the soil were significantly different in the dry and rainy seasons. In the dry season, the prevalence was 8-20%, with two to four species detected. During the rainy season, this rate was 83% with eight species, suggesting parasite infection to possibly occur mainly in this season. The reason for this seasonal difference may be that, in spite of constant temperature around 27 to 29 degrees C throughout the year, rainfall in the dry season in only a few percent of that of the rainy season. We concluded that parasite eggs die during the dry season owing to dryness of the soil. Contamination of soil with parasite eggs and the number of species found were greater in alley-ways and at communal water supply sites around residential areas than in open-air parks or sandy beaches. The method used in the present study proved extremely effective for ascertaining the actual dynamics of parasite infection in a certain region. PMID:9139385

Uga, S; Ono, K; Kataoka, N; Safriah, A; Tantular, I S; Dachlan, Y P; Ranuh, I G

1995-12-01

269

Migration of contaminated soil and airborne particulates to indoor dust.  

PubMed

We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, were used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase-out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust. PMID:19924944

Layton, David W; Beamer, Paloma I

2009-11-01

270

Migration of Contaminated Soil and Airborne Particulates to Indoor Dust  

PubMed Central

We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, was used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust.

Layton, David W.; Beamer, Paloma I.

2009-01-01

271

Effect Of Soil Properties On The Geochemical Speciation Of Arsenic In Contaminated Soils: A Greenhouse Study  

NASA Astrophysics Data System (ADS)

Land-applied arsenical pesticides have contributed elevated soil arsenic (As) levels. Many baseline risk assessments As-contaminated sites assume that all As present in the soil is bioavailable, thereby potentially overestimating the actual health risk. However, risk from As exposure is associated only with those forms of As that are potentially extractable by the human gastrointestinal juices. It has been demonstrated that As may exist in several geochemical forms depending on soil chemical properties, which may or may not be bioavailable. The current study aims at addressing the issue of soil variability on As bioavailability as a function of soil physico-chemical properties in a greenhouse setting involving dynamic interactions between soil, water and plants. Four different soils were chosen based on their potential differences with respect to As reactivity: Immokalee, an acid sand with low extractable Fe/Al, having minimal arsenic retention capacity; Millhopper, an acid sandy loam with high extractable Fe/Al oxides; Pahokee Muck soil with 85% soil organic matter (SOM) as well as high Fe/Al content; and Orelia soil with high clay and Fe/Al content. Soils were amended with sodium arsenate (675 and 1500 mg/Kg). Rice (Oryza sativa) was used as the test crop. A sequential extraction scheme was employed to identify the geochemical forms of As in soils (soluble, exchangeable, organic, Fe/Al-bound, Ca/Mg-bound, residual) immediately after spiking; after 3 mo; and after 6 mo of equilibration time. Concentrations of these As forms were correlated with the in-vitro bioavailable As fractions to identify those As fractions that are most likely to be bioavailable. Results from this study showed that there was little to no plant growth in the contaminated soils. Sequential extractions of the soil indicated that arsenic is strongly adsorbed onto soil amorphous iron/aluminum oxides, and the degree of arsenic retention is a direct function of equilibration time.

Sharma, S.; Sarkar, D.; Datta, R.

2005-05-01

272

Kinetics of zinc and cadmium release in freshly contaminated soils.  

PubMed

The kinetics of metal release from the solid phase to solution was measured on two sets of 14 freshly contaminated soils with diverse properties. From measurements of metal concentrations in extracted soil pore water, the amount accumulated from the soil by diffusive gradients in thin-film (DGT) devices, and the distribution coefficient for labile metal, Kdl, estimated by isotopic exchange, we calculated the response time, Tc, of the soil-solution system to the removal of metal by DGT and the rate constant for release from the solid phase, k(-1). Resupply was so fast for Zn that Tc (and k(-1)) could be measured only in three of the soils, with either a silty or a sandy loam texture and low to intermediate pH (4.84-5.66). In only six clay soils was resupply of Cd too fast to measure. The generally slower release rates of Cd compared to Zn may reflect the 100-fold lower concentration of Cd, which allowed a greater proportion of it to occupy stronger binding sites with slower release rates. The rate constants derived indicate that supply from the solid phase to solution will not limit uptake of Cd or Zn by plants in clay soils, but it could be a factor in sandy or silty soils with a low pH. These findings suggest that risk assessment of clay soils could be undertaken using measurements of metals in soil solution. However, devices such as DGT, which respond to the kinetics of supply, are necessary to assess available metal in low pH, sandy, and silty soils. PMID:16566150

Zhang, Hao; Davison, William; Tye, Andy M; Crout, Neil M J; Young, Scott D

2006-03-01

273

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect

Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO{sub 2}). No uranium was detected in association with phyllosilicates in the soil.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-02-01

274

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOEpatents

An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

Lindgren, E.R.; Mattson, E.D.

1995-07-25

275

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOEpatents

There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Albuquerque, NM)

1995-01-01

276

Metal Transport and Bioavailability in Soil Contaminated with CCA-Treated Wood Leachates  

Microsoft Academic Search

A laboratory study was conducted to investigate metal transport and accumulation within soils contaminated with As, Cr, and Cu from CCA-treated wood leachates. New blocks of CCA-treated wood were leached using synthetic rainwater. Soil columns were constructed and filled with three different soils, including a sandy soil, an organic soil and a clay soil. The leachate was applied intermittently until

Roi Dagan; Gabriel Bitton; Timothy G. Townsend

2006-01-01

277

LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS  

EPA Science Inventory

The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

278

LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS  

EPA Science Inventory

The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

279

Characterization and remediation of soils contaminated with uranium.  

PubMed

Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time. PMID:18771850

Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

2009-04-30

280

Release of antimony from contaminated soil induced by redox changes.  

PubMed

Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05 V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging. PMID:24862348

Hockmann, Kerstin; Lenz, Markus; Tandy, Susan; Nachtegaal, Maarten; Janousch, Markus; Schulin, Rainer

2014-06-30

281

Remediation of PCB contaminated soils using iron nano-particles.  

PubMed

In this study, iron nano-particles were used to remediate PCB contaminated soil and an attempt was made to maximize PCB destruction in each treatment step. The results show that nano-particles do aid in the dechlorination process and high PCB destruction efficiencies can be achieved. The destruction efficiency during the preliminary treatment (mixing of soil and iron nano-particles in water) can be increased by increasing the water temperature. The maximum thermal destruction (pyrolysis/combustion of soil after preliminary treatment) of soil-bound PCBs occurs at 300 degrees C in air. A minimum total PCB destruction efficiency of 95% can be achieved by this process. The effect of changing treatment parameters such as type of mixing, time of mixing and mixing conditions and application of other catalysts like iron oxide and V(2)O(5)/TiO(2) was also investigated. It was found that at 300 degrees C in air, iron oxide and V(2)O(5)/TiO(2) are also good catalysts for remediating PCB contaminated soils. PMID:16962632

Varanasi, Patanjali; Fullana, Andres; Sidhu, Sukh

2007-01-01

282

Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil?  

PubMed

(137)Cs and (90)Sr are the main radionuclides responsible for contamination of agricultural soils due to core melts in nuclear power plants such as Chernobyl or Fukushima. The present study focused on effects of Chernobyl-like contaminations on the bacterial and fungal community structure, the fungal biomass and the formation of soil organic matter in native and in sterilized and reinoculated soils. 2% wheat straw [m/m] was applied to a typical agricultural soil, artificially contaminated with (137)Cs and (90)Sr, and it was then incubated in microcosms for three months at 20 °C and 50% of the water-holding capacity. The development of the microbial communities was monitored with 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The quantification of the ergosterol content was used as a proxy for changes in the fungal biomass. Changes in the soil organic matter were determined using the (13)C cross polarization/magic angle spinning nuclear magnet resonance technique ((13)C-CP/MAS NMR). Slight but significant population shifts in the DGGE gel patterns could be related to the applied radionuclides. However, radiation-induced impacts could not be seen in either the chemical composition of the soil organic matter or in the development of the fungal biomass. Impacts caused by sterilization and reinoculation prevailed in the microcosms of the present study. Contaminations with (137)Cs or (90)Sr up to 50-fold that of the hotspots occurring in Chernobyl led to minor changes in soil microbial functions suggesting a strong resilience of natural soils with respect to radioactive contamination. PMID:23231995

Niedrée, Bastian; Berns, Anne E; Vereecken, Harry; Burauel, Peter

2013-04-01

283

Status of Activities on Rehabilitation of Radioactively Contaminated Facilities and the Stie of Russian Research Center 'Kurchatov Institute.'  

National Technical Information Service (NTIS)

This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center 'Kurchatov Institute'...

V. G. Volkov N. N. Ponomarev-Stepnoi E. S. Melkov E. P. Ryazantsev V. S. Dikarev

2003-01-01

284

Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba.  

PubMed

Pollution caused by petroleum is one of the most serious problems worldwide. To better understand the toxic effects of petroleum-contaminated soil on the microflora and phytocommunity, we conducted a comprehensive field study on toxic effects of petroleum contaminated soil collected from the city of Daqing, an oil producing region of China. Urease, protease, invertase, and dehydrogenase activity were significantly reduced in microflora exposed to contaminated soils compared to the controls, whereas polyphenol oxidase activity was significantly increased (P < 0.05). Soil pH, electrical conductivity, and organic matter content were correlated with total petroleum hydrocarbons (TPHs) and a correlation (P < 0.01) existed between the C/N ratio and TPHs. Protease, invertase and catalase were correlated with TPHs. The Vicia faba micronucleus (MN) test, chromosome aberrant (CA) analyses, and the mitotic index (MI) were used to detect genotoxicity of water extracts of the soil. Petroleum-contaminated samples indicated serious genotoxicity to plants, including decreased index level of MI, increased frequency of MN and CA. The combination of enzyme activities and genotoxicity test via Vicia faba can be used as an important indicator for assessing the impact of TPH on soil ecosystem. PMID:24510466

Ma, Jun; Shen, Jinglong; Liu, Qingxing; Fang, Fang; Cai, Hongsheng; Guo, Changhong

2014-05-01

285

Diagnostic Screening of Urban Soil Contaminants Using Diffuse Reflectance Spectroscopy  

Microsoft Academic Search

\\u000a There is increasing demand for cheap and rapid screening tests for soil contaminants in environmental consultancies. Diffuse\\u000a infrared reflectance spectroscopy in the visible–near-infrared (vis–NIR) and mid-infrared (MIR) has the potential to meet\\u000a this demand. The aims of this chapter are to develop diagnostic screening tests for heavy metals and polycyclic aromatic hydrocarbons\\u000a (PAHs) in soil using vis–NIR and MIR diffuse

J. G. Bray; R. A. Viscarra Rossel; A. B. McBratney

286

Evaluation of Sequestering Agents for Cadmium Contaminated Soils  

SciTech Connect

A goal of in situ remediation is environmental risk reduction through control of the fraction of toxic elements that are potentially mobile or bioavailable. This study evaluated the efficacy of various sequestering agents in reducing Cd availability in contaminated soil. Sequestering agents reduced metal mobility by decreasing the mobile fraction of Cd and increasing its value in the stable fractions. The effectiveness of applied sequestering agents was also evaluated by the availability indices such as bioavailability factor (BF), recalcitrant factor (RF), and the transfer factor (TF). Results from this study indicated that sequestering agent application to metal contaminated soil resulted in decreased values for BF and TF. Such improvements suggest promising remediation techniques and the application of availability indices to risk assessment and monitoring.

Knox, A.S.

2002-11-26

287

Reductive dissolution approaches to removal of uranium from contaminated soils  

SciTech Connect

Traditional approaches to uranium recovery from ores have employed oxidation of U(IV) minerals to form the uranyl cation which is subsequently complexed by carbonate or maintained in solution by strong acids. Reductive approaches for uranium decontamination have been limited to removing soluble uranium from solutions by formation of U{sup 4+} which readily hydrolyses and precipitates. As part of the Uranium in Soils Integrated Demonstration, we have developed a reductive approach to solubilization of uranium from contaminated soils which employs reduction to destabilize U(VI) solid and sorbed species, and strong chelators for U(IV) to prevent hydrolysis and solubilize the reduced from. This strategy has particular application to sites where the uranium is present primarily as intractable U(VI) phases and where high fractions of the contamination must be removed to meet regulatory requirements.

Brainard, J.R.; Iams, H.D.; Strietelmeier, B.A.; Del-Rio Garcia, M.

1994-06-01

288

Bioremediation of soil and ground water impacted with organic contaminants  

Microsoft Academic Search

Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total

1991-01-01

289

Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities  

Microsoft Academic Search

Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect\\u000a of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities\\u000a of wheat (Triticum aestivum), lettuce (Lactuca sativa var. Tango), zucchini (Cucurbita pepo spp. pepo var. Black Beauty), and pumpkin (C. pepo spp. pepo var. Howden)

Olga Pritchina; Cairn Ely; Barth F. Smets

290

The potential of Thlaspi caerulescens for phytoremediation of contaminated soils  

Microsoft Academic Search

Uptake of Cd, Zn, Pb and Mn by the hyperaccumulator Thlaspi caerulescens was studied by pot trials in plant growth units and in populations of wild plants growing over Pb\\/Zn base-metal mine wastes at Les Malines in the south of France. The pot trials utilised metal-contaminated soils from Auby in the Lille area. Zinc and Cd concentrations in wild plants

Brett H. Robinson; Marc Leblanc; Daniel Petit; Robert R. Brooks; John H. Kirkman; Paul E. H. Gregg

1998-01-01

291

Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.  

PubMed

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data. PMID:15551790

Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

2004-11-01

292

Bacterial Adhesion to Soil Contaminants in the Presence of Surfactants  

PubMed Central

It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source.

Stelmack, Patricia L.; Gray, Murray R.; Pickard, Michael A.

1999-01-01

293

Bacterial adhesion to soil contaminants in the presence of surfactants  

PubMed

It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source. PMID:9872775

Stelmack; Gray; Pickard

1999-01-01

294

Effect of clays and cement on the solidification/stabilization of phenol-contaminated soils  

SciTech Connect

Solidification/stabilization of phenol-contaminated soil was investigated by studying the interaction between soil, phenol and cement. The soil (with 20% kaolinite or bentonite clay) was contaminated with phenol up to 2,000 mg/kg. Type I Portland cement was used as the binder (20% by weight of contaminated soil) in the solidification/stabilization (S/S) treatment. In the phenol-cement interaction studies, the effect of various phenol concentrations on cement setting time, strength and pore fluid composition was studied. Phenol increased the initial and final setting time of cement and reduced the compressive strength. More than 85% of the phenol was desorped from the contaminated soils. The compressive strength of treated, contaminated soil decreased with higher phenol content but increased with curing time. Leachability of phenol from the solidified cement and treated, contaminated soil cured up to 180 days, was evaluated using the US EPA recommended Toxicity Characteristic Leaching Procedure (TCLP) and the American Nuclear Society`s ANS 16.1 leaching test. The percentage of phenol leached from the solidified contaminated soil was independent of the initial concentration of phenol in the contaminated soil. While the TCLP tests on treated soils showed that over 70% of phenol in the contaminated soil was leached out, the ANS 16.1 tests showed less than 35% phenol in the leachate. A simple model has been proposed to quantify the phenol leached from the cement-solidified, contaminated soil during both leaching tests.

Vipulanandan, C. [Univ. of Houston, TX (United States)] [Univ. of Houston, TX (United States)

1995-12-31

295

Responses of bioaugmented ryegrass to PAH soil contamination.  

PubMed

The physiological and biochemical responses of ryegrass (Lolium multiflorum) to PAH induced stress in soils contaminated with phenanthrene and pyene were investigated, in the presence of PAH-degrading bacteria (Acinetobacteria junii) or arbuscular mycorrhizal fungi (AM fungi, Glomus mossae). The parameters monitored included chlorophyll content, chlorophyll a/b ratio, soluble-carbohydrate content, soluble-protein, malondialdehyde and electrolyte leakage, and superoxide dismutase (SOD) and peroxidase (POD) activities. Ryegrass showed good resistance and acclimation to PAH stress in soil, however, PAH contamination resulted in adverse effects such as damage of photosynthetic function and acceleration of shoot senescence. At PAH level of 100 mg kg(-1), chlorophyll contents were 14% lower than control (no PAH). Activities of SOD and POD were more sensitive indicators of PAH stress as compared to other parameters. However, all parameters showed trends based on either the bioaugmentation of the plants or PAH treatment level. It was concluded that the inoculation of AMF and PAH-degrading bacteria, especially the former, have a positive effect on alleviation of PAH toxicity to ryegrass plants. Furthermore, the inoculation of AMF increased the shoot and biomass of ryegrass by 11-19% and 18-78%, respectively. Bioaugmented ryegrass plants show promise as a host plants in the phytoremediation of PAH contaminated soils. PMID:21598775

Li, J H; Yu, X Z; Wu, S C; Wang, X R; Wang, S H; Tam, N F Y; Wong, M H

2011-01-01

296

Fibre crops as alternative land use for radioactively contaminated arable land  

Microsoft Academic Search

The transfer of radiocaesium, one of the most important and widespread contaminants following a nuclear accident, to the fibre crops hemp (Cannabis sativa L.) and flax (Linum usitatissimum L.) as well as the distribution of radiocaesium during crop conversion were studied for sandy soil under greenhouse and lysimeters conditions.Soil parameters did not unequivoqually explain the transfer factors (TF) observed.TFs to

H. Vandenhove; M. Van Hees

2005-01-01

297

[The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].  

PubMed

Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production. PMID:19947524

Evseeva, T I; Ma?strenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

2009-01-01

298

In-Situ Containment and Extraction of Volatile Soil Contaminants  

DOEpatents

The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

Varvel, Mark Darrell

2005-12-27

299

RADIOACTIVE CONTAMINANT REMOVAL FROM WASTE WATER: EVALUATION OF PERFORMANCE  

Microsoft Academic Search

The design and operation of a plant at the Oak Ridge National Lab. for ; the collection, treatment, and disposal of large volume (0.5 to 0.7 mgd). low ; level radioactive liquid waste is described. The performance of the lime-soda ; softening process treatment plant for the removal of Sr and other materials is ; described. (auth);

K. E. Cowser; R. J. Morton

1959-01-01

300

RADIOACTIVE CONTAMINANT REMOVAL FROM WASTE WATER: ENGINEERING DESIGN FEATURES  

Microsoft Academic Search

The design and operation of a plant at Oak Ridge National Lab. on thc ; collection, treatment, and disposal of large volume (0.5 to 0.7 mgd), low-level ; radioactive liquid waste are described. The design of the lime-soda softening ; process treatment plant for the removal of Sr and the total rare earths from the ; process waste water is

Culbreath

1959-01-01

301

Analysis of disposition alternatives for radioactively contaminated scrap metal  

Microsoft Academic Search

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling

L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

1997-01-01

302

Analysis of disposition alternatives for radioactively contaminated scrap metal  

Microsoft Academic Search

Millions of tons of slightly radioactive scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are either to develop a regulatory process for decontamination and recycling

L. A. Nieves; S. Y. Chen; E. J. Kohout; B. Nabelssi; R. W. Tilbrook; S. E. Wilson

1998-01-01

303

Management and disposal of waste from sites contaminated by radioactivity  

Microsoft Academic Search

Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of

C. J. Roberts

1998-01-01

304

Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators.  

PubMed

The efficiency of a remediation strategy was evaluated in a mine soil highly contaminated with trace elements (TEs) by microbiological, ecotoxicological and physicochemical parameters of the soil and soil solution (extracted in situ), as a novel and integrative methodology for assessing recovery of soil health. A 2.5-year field phytostabilisation experiment was carried out using olive mill-waste compost, pig slurry and hydrated lime as amendments, and a native halophytic shrub (Atriplex halimus L.). Comparing with non-treated soil, the addition of the amendments increased soil pH and reduced TEs availability, favoured the development of a sustainable vegetation cover (especially the organic materials), stimulated soil microorganisms (increasing microbial biomass, activity and functional diversity, and reducing stress) and reduced direct and indirect soil toxicity (i.e., its potential associated risks). Therefore, under semi-arid conditions, the use of compost and pig slurry with A. halimus is an effective phytostabilisation strategy to improve soil health of nutrient-poor soils with high TEs concentrations, by improving the habitat function of the soil ecosystem, the reactivation of the biogeochemical cycles of essential nutrients, and the reduction of TEs dissemination and their environmental impact. PMID:24468528

Pardo, T; Clemente, R; Epelde, L; Garbisu, C; Bernal, M P

2014-03-15

305

Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area  

Microsoft Academic Search

Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37mgkg?1), and weakly contaminated with Cu (256.36mgkg?1)

Zhang Jun-hui; Min Hang

2009-01-01

306

Electrokinetic removal of uranium from contaminated, unsaturated soils  

SciTech Connect

Electrokinetic remediation of uranium-contaminated soil was studied in a series of laboratory-scale experiments in test cells with identical geometry using quartz sand at approximately 10 percent moisture content. Uranium, when present in the soil system as an anionic complex, could be migrated through unsaturated soil using electrokinetics. The distance that the uranium migrated in the test cell was dependent upon the initial molar ratio of citrate to uranium used. Over 50 percent of the uranium was recovered from the test cells using the citrate and carbonate complexing agents over of period of 15 days. Soil analyses showed that the uranium remaining in the test cells had been mobilized and ultimately would have been extracted. Uranium extraction exceeded 90 percent in an experiment that was operated for 37 days. Over 70 percent of the uranium was removed from a Hanford waste sample over a 55 day operating period. Citrate and carbonate ligand utilization ratios required for removing 50 percent of the uranium from the uranium-contaminated sand systems were approximately 230 moles ligand per mole uranium and 1320 moles ligand per mole uranium for the waste. Modifying the operating conditions to increasing the residence time of the complexants is expected to improved the utilization efficiency of the complexing agent.

Booher, W.F. [IT Corp., Albuquerque, NM (United States); Lindgren, E.R.; Brady, P.V. [Sandia National Laboratories, Albuquerque, NM (United States)

1997-01-01

307

Development of Fungal Inocula for Bioaugmentation of Contaminated Soils  

PubMed Central

This report describes novel fungal inocula for bioaugmentation of soils contaminated with hazardous organic compounds. The inocula are in the form of pelleted solid substrates coated with a sodium alginate suspension of fungal spores or mycelial fragments and incubated until overgrown with the mycelium of selected lignin-degrading fungi. The organisms evaluated were Phanerochaete chrysosporium (BKM F-1767, ATCC 42725), P. sordida (HHB-8922-Sp), Irpex lacteus (Mad-517, ATCC 11245), Bjerkandera adusta (FP-135160-Sp, ATCC 62023), and Trametes versicolor (MD-277). The pelleted fungal inocula resisted competition and proliferation from indigenous soil microbes, were lower in moisture content than current fungal inocula, and had sufficient mechanical strength to allow handling and introduction into the soil without a change in the mechanical consistency of the pellets. Inoculated at a rate of 3% in artificially contaminated nonsterile soil, I. lacteus, B. adusta, and T. versicolor removed 86, 82, and 90%, respectively, of the pentachlorophenol in 4 weeks. A mathematical model was developed to explain moisture distribution in a hydrogel-coated pelleted substrate.

Lestan, D.; Lamar, R. T.

1996-01-01

308

The red mud accident in ajka (hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil.  

PubMed

The red mud accident of October 4, 2010, in Ajka (Hungary) contaminated a vast area with caustic, saline red mud (pH 12) that contains several toxic trace metals above soil limits. Red mud was characterized and its toxicity for plants was measured to evaluate the soil contamination risks. Red mud radioactivity (e.g., (238)U) is about 10-fold above soil background and previous assessments revealed that radiation risk is limited to indoor radon. The plant toxicity and trace metal availability was tested with mixtures of this red mud and a local noncontaminated soil up to a 16% dry weight fraction. Increasing red mud applications increased soil pH to maximally 8.3 and soil solution EC to 12 dS m(-1). Shoot yield of barley seedlings was affected by 25% at 5% red mud in soil and above. Red mud increased shoot Cu, Cr, Fe, and Ni concentrations; however, none of these exceed toxic limits reported elsewhere. Moreover, NaOH amended reference treatments showed similar yield reductions and similar changes in shoot composition. Foliar diagnostics suggest that Na (>1% in affected plants) is the prime cause of growth effects in red mud and in corresponding NaOH amended soils. Shoot Cd and Pb concentrations decreased by increasing applications or were unaffected. Leaching amended soils (3 pore volumes) did not completely remove the Na injury, likely because soil structure was deteriorated. The foliar composition and the NaOH reference experiment allow concluding that the Na salinity, not the trace metal contamination, is the main concern for this red mud in soil. PMID:21204523

Ruyters, Stefan; Mertens, Jelle; Vassilieva, Elvira; Dehandschutter, Boris; Poffijn, André; Smolders, Erik

2011-02-15

309

Plume-Scale Testing of a Simplified Method for Detecting Tritium Contamination in Plants and Soil  

NASA Astrophysics Data System (ADS)

Research at the Amargosa Desert Research Site near Beatty, Nevada indicates that tritium movement from a closed low-level radioactive waste facility occurs primarily in the gas phase with preferential transport through coarse-textured sediment layers. However, models for movement of tritiated water vapor at the site fail to predict the extent of transport indicated by field measurements. In order to develop a better understanding of the spatial distribution of tritium contamination in the near-surface environment adjacent to the waste facility, a recently published tritium contamination-detection method was tested for collection and analysis of plume-scale data. The method entails solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid-phase-extraction column prior to direct-scintillation counting. Samples were collected from 103 plants (creosote bush; Larrea tridentata) within a 72-ha area adjacent to the waste facility. Plant data showed elevated tritium concentrations up to 300 m from the waste facility. For a small ( ˜ 8 ha) area where high-density soil-water vapor data were already available, plant-based and soil-based concentration contours compared favorably. Plant data for previously unmeasured areas identified "hot spots" that were later verified by direct soil measurements. Regression analysis of tritium concentrations from collocated plant- and soil-sampling sites showed that empirical relations could be developed to predict soil concentrations (y) from the more simply determined plant concentrations (x): e.g., the equation for root-zone soil concentrations (Bq/L) was y = 1.156 x + 55.17 (r2 = 0.9521; SEE = 250). Results of this work have improved knowledge of the extent of tritium contamination in the near-surface environment. The pattern of the tritium concentrations indicated that the observed contamination originates from two sources--the waste-burial trenches and surface spills inside the waste facility. A study is now underway to estimate the flux of tritium from the subsurface to the atmosphere. The approach includes a combination of (i) periodic measurement of tritium concentrations in soil, plants, and air at selected sites, (ii) mapped tritium distributions, and (iii) continuous measurement of evapotranspiration.

Andraski, B. J.; Halford, K. J.; Johnson, M. J.; Michel, R. L.; Radyk, J. C.

2003-12-01

310

Cleaning Polychlorinated Biphenyl (PCB) Contaminated Garden Soil by Phytoremediation  

PubMed Central

A poplar planted system resulted in the complete removal of at least 19 of the 29 potential polychlorinated biphenyl (PCB) congeners detected in trace amounts (37.9 ng g-1 in total) in a commercial garden soil, while the unplanted soil only had 2 congeners completely removed after 96 days. In addition, the most recalcitrant congener, PCB 52, only decreased by 0.1% in the unplanted reactors while declining by 22.3% in the planted system. There was also greater removal of a PCB 77 spike in the planted system when compared to the unplanted system, 17.2% in the planted system versus 2.8% in the unplanted system. The results suggest that phytoremediation may be an effective tool in cleaning commercially available garden soils that are lightly contaminated with PCBs.

Schnoor, Jerald L.

2013-01-01

311

Fixation of soil surface contamination using natural polysaccharides  

SciTech Connect

Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations.

Sackschewsky, M.R.

1993-09-01

312

Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons  

PubMed Central

Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.

Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefevre, Irene; Ayrault, Sophie

2014-01-01

313

Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons  

NASA Astrophysics Data System (ADS)

Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.

Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie

2014-04-01

314

Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons.  

PubMed

Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years. PMID:24694549

Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie

2014-01-01

315

Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.  

PubMed

Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics. PMID:24743980

Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

2014-07-01

316

X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide  

SciTech Connect

Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H{sub 2}O{sub 2}) solutions to treat trichloroethylene (TCE)-contaminated soil.

Gates, D.D.; Siegrist, R.L.

1993-09-01

317

A method to estimate the concentration of elements in smoke from burning vegetation growing in contaminated soil  

SciTech Connect

The Savannah River Site has areas where soil is contaminated with metals and/or radionuclides. Many of these areas are surrounded by native vegetation which is growing adjacent to the area and where the roots have penetrated into the contaminated soil of the area. In some cases vegetation has actually invaded the contaminated area. Even though the volume of contaminated vegetation is small, there are problems associated with its disposal. Vegetation decomposes quickly after burial and the volume of buried vegetation can decrease. The voids left can lead to subsidence and possible failure of the clay cap constructed over hazardous and/or radioactive waste burial grounds. An alternative to burying the wood is to burn it and bury the ash. However, burning will introduce the contamination in the vegetation into the air where there is potential for inhalation of the contaminants. A procedure is described to assess the hazard associated with inhalation of contamination from burning of vegetation growing in contaminated soil. The procedure is applied to evaluation of the consequence of burning vegetation grown adjacent to and in the SRL Seepage Basins. The results indicate that burning the vegetation during the day could introduce a level of contaminants to the atmosphere that could cause an exposure greater than the 1 mrem recommended as negligible by the National Council on Radiation Protection and Measurements but lower than the US Department of Energy 100 mrem release guide. A scenario is also investigated where the largest volume of wood, associated with the least contaminated area, is burned. The air concentrations are significantly decreased by this strategy although the total dose commitment due to all radionuclides is still above the 1 mrem dose guide.

Murphy, C.E. Jr.

1991-03-04

318

[The radioecological problems of Eurasia and the sources of radioactive environmental contamination in the former USSR].  

PubMed

There is three major sites of radioactive environmental contamination in the former USSR: the Chelyabinsk region in the Urals, Chernobyl NPP in Ukraine and Novaya Zemlya in the Arctic Ocean. The first mentioned is the most important with regard to local (potential) contamination, the last one dominates the global contamination. A number of sites and sources are less well known with regard to environmental contamination. This is thus the case for the plutonium production factories at Tomsk and Dodonovo. More information on nuclear reactors in lost or dumped submarines is also needed. From a global point of view reliable assessment of the radioactive run-off from land and deposits of nuclear waste in the Arctic Ocean are in particular pertinent. PMID:8469738

Polikarpov, G G; Aarkrog, A

1993-01-01

319

Field Demonstration of a Surfactant-Enhanced Soil Slurry Bioreactor Technology for the Remediation of Explosives-Contaminated Soil.  

National Technical Information Service (NTIS)

Biological treatment of explosives- contaminated soil is currently of interest to the U.S. Department of Defense. Composting is a fully implemented technology capable of removing explosives from soil cost- effectively. The biological and chemical reaction...

M. L. Hampton W. E. Sisk

1996-01-01

320

Potential pathways of radioactive contaminants to surface waters  

Microsoft Academic Search

From the 1940s to the end of the Cold War, the U.S. Department of Energy maintained production facilities for manufacturing nuclear weapons along the Columbia River north of Richland, Wash. Known as the Hanford Site, the Rhode Island-sized area contains more than 53 million gallons of radioactive waste and is the location of a massive environmental cleanup. Of particular concern

Mohi Kumar

2011-01-01

321

REMEDIATION OF SOILS CONTAMINATED WITH WOOD-TREATMENT CHEMICALS (PCP AND CREOSOTE)  

EPA Science Inventory

PCP and creosote PAHs are found in most of the contaminated soils at wood-treatment sites. The treatment methods currently being used for such soils include soil washing, incineration, and biotreatment. Soil washing involves removal of the hazardous chemicals from soils ...

322

Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils  

Microsoft Academic Search

Heavy metal contamination can inhibit soil functions but it is often difficult to determine the degree of pollution or when soil reclamation is complete. Enzyme assays offer potential as indicators of biological functioning of soils. However, antecedent water content of soil samples may affect the outcome of biological measurements. In Mediterranean regions, for much of the year ‘field moist’ surface

M. Belén Hinojosa; José A. Carreira; Roberto García-Ruíz; Richard P. Dick

2004-01-01

323

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is located within the Valley and Ridge Physiographic Province of eastern Tennessee (USA). Wildlife populations have access to some radioactively contaminated sites at ORNL. Contaminated animals or animal nests within the Laboratory's boundaries have been found to contain {sup 90}Sr or {sup 137}Cs on the order of 10{sup -2}-10{sup 4} Bqg{sup -1} and trace amounts of other radionuclides (including transuranic elements). Animals that are capable of flight and animals with behavior patterns or developmental life stages involving contact with sediments in radioactive ponds, like benthic invertebrates, present the greatest potential for dispersal of radioactivity. The emigration of frogs and turtles from waste ponds also presents a potential for dispersal of radioactivity but over distances < 5 km. Mud-dauber wasps (Hymenoptera) and swallows (Hirundinidae) may transport radioactive mud for nest building, but also over relatively short distances (0.2-1 km). Movement by small mammals is limited by several factors, including physical barriers and smaller home ranges. Larger animals, like white-tailed deer (Odocoileus virginianus), are potential vectors of radioactivity due to their greater body size, longer life expectancy, and larger home range. Larger animals contain greater amounts of total radioactivity than smaller animals, but tissue concentrations of {sup 137}Cs generally decline with body size.

Garten Jr, Charles T [ORNL

1995-12-01

324

Development and Performance Assessment of Soil Washing Equipment for Soil Contaminated with Radionuclide  

SciTech Connect

The purpose of this study is to develop a soil washing system and to define the most suitable experimental conditions for the individual elemental equipment in a soil washing system for decontaminating the radioactive soil from around a TRIGA (Training, Research, Isotope, General Atomic) reactor in Korea. Analysis results have shown that the main radionuclides were Cs{sup 137} and Co{sup 60}, the soil particle size ranges from 0.063 mm to 1.0 mm and the radioactive concentration was the strongest in a soil particle smaller than 0.063 mm as predicted. Meanwhile, an oxalic acid was found to be the most efficient chemical agent for washing, especially of cobalt. The scrubbing time of four hours was an optimum time to obtain a removal efficiency of more than 75% for {sup 137}Cs and {sup 60}Co. A mixing ratio of the soil weight to the volume of the oxalic acid solution, 1:10, was observed to be the best for a washing and it was estimated to be reasonable for 2 cycles of a scrubbing with 1.0 M of oxalic acid to avoid a generation of an excessive waste-solution. (authors)

Gye-Nam Kim; Jei-Kwon Moon; Chong-Hun Jung [Korea Atomic Energy Research Institute (Korea, Republic of)

2007-07-01

325

Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy  

Microsoft Academic Search

Background, aim, and scope  Diffuse soil contamination has often been neglected in scientific literature, as most studies focus on contaminants from point-sources\\u000a (either of industrial or agricultural origin). However, soil pollution from diffuse sources is recognized as one of the major\\u000a soil threats by the EU Soil Thematic Strategy. In fact, some pollutants are nowadays ubiquitarious in the soil system, and

Gabriele Fabietti; Mattia Biasioli; Renzo Barberis; Franco Ajmone-Marsan

2010-01-01

326

Final report: survey and removal of radioactive surface contamination at environmental restoration sites, Sandia National Laboratories/New Mexico. Volume 1  

SciTech Connect

This report describes the survey and removal of radioactive surface contamination at Sandia`s Environmental Restoration (ER) sites. Radiological characterization was performed as a prerequisite to beginning the Resource Conservation and Recovery Act (RCRA) corrective action process. The removal of radioactive surface contamination was performed in order to reduce potential impacts to human health and the environment. The predominant radiological contaminant of concern was depleted uranium (DU). Between October 1993 and November 1996 scanning surface radiation surveys, using gamma scintillometers, were conducted at 65 sites covering approximately 908 acres. A total of 9,518 radiation anomalies were detected at 38 sites. Cleanup activities were conducted between October 1994 and November 1996. A total of 9,122 anomalies were removed and 2,072 waste drums were generated. The majority of anomalies not removed were associated with a site that has subsurface contamination beyond the scope of this project. Verification soil samples (1,008 total samples) were collected from anomalies during cleanup activities and confirm that the soil concentration achieved in the field were far below the target cleanup level of 230 pCi/g of U-238 (the primary constituent of DU) in the soil. Cleanup was completed at 21 sites and no further radiological action is required. Seventeen sites were not completed since cleanup activities wee precluded by ongoing site activity or were beyond the original project scope.

Lambert, K.A.; Mitchell, M.M. [Brown and Root Environmental, Albuquerque, NM (United States); Jean, D. [MDM/Lamb, Inc., Albuquerque, NM (United States); Brown, C. [Environmental Dimensions, Inc., Albuquerque, NM 87109 (United States); Byrd, C.S. [Sandia National Labs., Albuquerque, NM (United States)

1997-09-01

327

Ecotoxicity of cyanide complexes in industrially contaminated soils.  

PubMed

This study deals with acute and chronic ecotoxicity of leachates from industrially contaminated soils. Analyses focused on cyanides (complex and free forms) to study their possible involvement in leachates toxicity. No acute toxicity on the Microtox and 48 h-Daphnia magna tests was found in leachates collected over 18 months, but a high chronic toxicity was recorded on the reproduction of Ceriodaphnia dubia (EC50-7d=0.31±0.07%) and on the algal growth of Pseudokirchneriella subcapitata (EC50-72 h=0.27±0.09%). Ceriodaphnids were as sensitive to free cyanide as to complex forms (EC50-7d as CN(-)=98 ?g/L, 194 ?g/L and 216 ?g/L for KCN, Fe(CN)(6)K(3) and Fe(CN)(6)K(4), respectively). The EC50-72 h of KCN to P. subcapitata (116 ?g/L) as CN(-) was also of the same level as the EC50-72 h of potassium ferricyanide (127 ?g/L) and ferrocyanide (267 ?g/L). Complex cyanides explained a major part of the toxicity of leachates of the soil. On the other hand, cyanide complexes had no effect on survival of the earthworm Eisenia fetida up to 131 mg CN(-)/kg, while potassium cyanide was highly toxic [EC50-14 d as CN(-)=74 ?g/kg soil]. Thermodesorption treatment eliminated a majority of cyanides from the soil and generated much less toxic leachates. Complex cyanides must be integrated into environmental studies to assess the impact of multi-contaminated soils. PMID:22018867

Manar, Rachid; Bonnard, Marc; Rast, Claudine; Veber, Anne-Marie; Vasseur, Paule

2011-12-15

328

Groundwater contamination due to cattle slurry: modelling infiltration on the basis of soil column experiments  

Microsoft Academic Search

Infiltration into soil of contaminants present in cattle slurry was studied. Column experiments were performed in order to characterize the release of contaminants at the slurry-soil interface after surface application of slurry, with subsequent rainfall or irrigation. A gradual decrease of contaminant concentrations was observed at this interface. The shape of the release curves suggests that the release of substances

E. López Periago; A. Núñez Delgado; F Diaz-Fierros

2000-01-01

329

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment  

Microsoft Academic Search

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the

Jing-Jy Cheng; Bassel Kassas; Charley Yu; John Arnish; Dave LePoire; Shih-Yew Chen; W. A. Williams; A. Wallo; H. Peterson

2004-01-01

330

Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site  

SciTech Connect

The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

Seeley, F.G.; Kelmers, A.D.

1985-01-01

331

Spectroscopy as a diagnostic tool for urban soil contaminants  

NASA Astrophysics Data System (ADS)

Urbanization has become one of the major forces of change around the globe. Land use transformation, especially urbanization has the most profound influences of human activities because it affects so many of the planet's physical and biological systems. Land use changes directly impact the ability of the earth to continue to provide ecological services to human society and the other occupants of the ecosystems. The urban process gradually degrades and transforms agricultural and natural ecosystems into built environments. The urban environment includes cities, suburbs, peri-urban areas and towns. Urban ecosystems are highly heterogeneous due to the variety of land covers and land purposes. Thus, the choices on managing the extent and arranging the land cover patches (e.g., lawns) assist to shape the emergent structure and function of the urban ecosystems. As a result of ecological conditions and current management status the urban soils show substantial spatial heterogeneity. Whereas, adverse effects of pollutants on ecosystems have been demonstrated, one important need for environmental impact assessment have been defined as maintenance of long-term monitoring systems, which can enable to improve monitoring, modelling and assessment of various stressors in agriculture environment. Diffuse reflectance spectroscopy and diffuse reflectance Fourier-transform infrared (FTIR) spectroscopy across visible-near- short- mid- and long- wave infrared (0.4-14?m) has the potential to meet this demand. Relationships between spectral reflectance and soil properties, such as grain size distribution, moisture, iron oxides, carbonate content, and organic matter, have already been established in many studies (Krishnan et al. 1980, Ben-Dor and Banin 1995, Jarmer et al. 2008, Richter et al. 2009). The aims of this study are to develop diagnostic tool for heavy metals, polycyclic aromatic hydrocarbons, asbestos and other anthropogenic contaminants in urban soil using spectroscopy across 0.4-14?m spectral range. To examine the potential of the above-mentioned technique on contaminated and uncontaminated urban areas in Northern Israel, we propose to use both portable field spectrometers across 0.4-2.5?m and laboratory FTIR system across 3-14?m testing selected bare soil samples and integrate the obtained knowledge into the expert prototype system. The significances and contributions of the proposed work are expected in: 1) estimate morphological and biochemical characteristics of urban soils, 2) examine the possibility to detect early soil response to stress before damage occurs, 3) study the concentration of pollution on urban soils, 4) design and develop the methodology for a near real-time expert monitoring system. The present research will focus on spectral identification and characterization of urban soils toward quality assessment of the urban ecosystem.

Brook, Anna; Kopel, Daniella

2014-05-01

332

Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.  

PubMed

The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. PMID:24950211

Madejón, P; Xiong, J; Cabrera, F; Madejón, E

2014-11-01

333

RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM  

EPA Science Inventory

Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

334

Dermal absorption of environmental contaminants from soil and sediment: a critical review  

Microsoft Academic Search

Risk assessment of hazardous wastes sites may require characterization of the dermal availability of chemical contaminants in soil and\\/or sediment. Current U.S. Environmental Protection Agency guidance for assessment of dermal exposures to contaminants in water and soil was finalized in 2004 as a supplement (Part E) to the Risk Assessment Guidance for Superfund (RAGS). The soil protocol presented in RAGS

Elizabeth W Spalt; John C Kissel; Jeffry H Shirai; Annette L Bunge

2009-01-01

335

Effect of heavy metal contaminated sewage sludge on soil microbiological properties and growth of Indian mustard  

Microsoft Academic Search

A laboratory incubation and pot experiment were carried out to study the effect of amendment of uncontaminated and metal contaminated sewage sludge on soil microbial biomass carbon (C), soil enzyme activities and growth of Indian mustard in a sandy loam soil. The application of metal contaminated sewage sludge containing chromium (Cr) (2400 mg kg), nickel (Ni) (400 mg kg) and lead (Pb)

Meenu Walia; Sneh Goyal

2010-01-01

336

Contamination levels of non-agricultural and industrial soils in the Vojvodina Province  

Microsoft Academic Search

Human actions within the framework of the general civilizational progress lead, regretfully, to soil contamination with harmful and hazardous substances coming from various sources such as industry, traffic, etc. Additionally, various accidents that cause global pollution also cause direct negative effects on the soil. To assess the local status of soil contamination, a research project has been launched by Secretariat

Jovica Vasin; Darinka Bogdanovi?

337

Biomineralization of Metallic Copper and Copper Sulfide Nanomaterials in a Flooded Soil: Impact on Contaminant Mobility  

Microsoft Academic Search

Colloidal nanomaterials may enhance the mobility of strongly sorbing contaminants that are otherwise immobile in soils and sediments. We investigated the formation of biogenic nanomaterials in a contaminated wetland soil upon flooding and microbially-mediated soil reduction using microcosm experiments. Combining electron microscopy and X-ray absorption spectroscopy, we characterized the newly formed nanomaterials and evaluated their effect on the mobility of

F. Weber; A. Voegelin; R. Kaegi; R. Kretzschmar

2007-01-01

338

Assessing the bioavailability and risk from metal contaminated soils and dusts#  

EPA Science Inventory

Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

339

ON-SITE ENGINEERING REPORT FOR THE LOW-TEMPERATURE THERMAL DESORPTION PILOT-SCALE TEST ON CONTAMINATED SOIL  

EPA Science Inventory

Performance of the thermal desorption process for removal of organic contaminants, mostly polynuclear aromatic hydrocarbons (PAHs), from soils was evaluated. The Superfund Site soil tested was a fine sandy soil contaminated with creosote. An optimum operating temperature of 550 C...

340

ON-SITE ENGINEERING REPORT FOR THE LOW-TEMPERATURE THERMAL DESORPTION PILOT-SCALE TEST ON CONTAMINATED SOIL  

EPA Science Inventory

Performance of the thermal desorption process for removal of organic contaminants, mostly polynuclear aromatic hydrocarbons (PAHs), from soils was evaluated. he Superfund Site soil tested was a fine sandy soil contaminated with creosote. n optimum operating temperature of 550 deg...

341

Land contamination and soil evolution in abandoned mine areas (Italy)  

NASA Astrophysics Data System (ADS)

In Italy ore research and exploitation are nearly exhausted since the end of the last century, leaving on the land a huge amount of mine waste, therefore provoking evident environmental damage including landscape, vegetation and the food chain, and a potential threat to human health. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Italy, exploited for at least a millennium, and closed in the '60s of the last century. Biogeochemical analyses carried out on 50 soil profiles (mostly Entisols and Inceptisols) and vegetation in the proximal and distal areas of ore exploitation show metal concentrations overcoming legislation limits on average (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). Ni, Cr and Mn concentrations, instead, are generally below the reference levels. Metal concentrations in native vegetation of the examined areas are moderately to highly elevated. Significant amounts of Cu, Pb, Zn in roots of Plantago major and Silene dioica, in leaves of Taraxacum officinale, and Salix spp, have been recorded. Essential elements, in particular, present Translocation Coefficients (TC) >1, with Mn>Zn>Cu>Fe. Toxic elements (Cd, Cr, Pb), instead, present TC<1, suggesting a synergic/antagonist effect to occur among metals and plants, according to their role in mineral nutrition. The results obtained suggest the abandoned mine sites to represent actual natural aboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, the examined plants are genetically adapted to naturally metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution of natural parks in these areas could enhance their educational and scientific value, contributing in the meantime to general population amusement and recreation. Finally, it is the occasion for soil scientists to submit to the scientific community new classification proposals of this new kind of soils. Key-words: mine waste, heavy metals, accumulator plants, phytoremediation, soil genesis, soil classification

Bini, Claudio; Wahsha, Mohammad; Spiandorello, Massimo

2014-05-01

342

Coupling Sorption to Soil Weathering during Reactive Transport. Impacts of Mineral Transformation and Sorbate Aging on Contaminant Speciation and Mobility.  

National Technical Information Service (NTIS)

The Hanford subsurface has become contaminated with highly alkaline, radioactive waste generated as a result of weapons production. The radioactive brine was stored in underground storage tanks, a number of which developed leaks and contaminated the surro...

A. Thompson C. I. Steefel J. Chorover

2006-01-01

343

Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils  

Microsoft Academic Search

It is not clear whether plant species coexistence can offset the impacts of heavy metal lead (Pb) on soil microbes and soil enzyme activities. We conducted a factorial experiment to investigate the effects of three plant species combinations (1, 2 and 4 species) on soil microbial and soil enzyme properties under three Pb concentrations (0, 300 and 600mgkg?1 soil). Microbial

Ruyi Yang; Jianjun Tang; Xin Chen; Shuijin Hu

2007-01-01

344

Recommendations of treatment technologies for radioactively contaminated lead at the Idaho National Engineering Laboratory  

Microsoft Academic Search

Approximately one million pounds of radioactively contaminated lead are currently stored at the Idaho National Engineering Laboratory (INEL) and must be treated according to the Resource Conservation and Recovery Act. This excess lead exists in various forms, including brick, sheet, shot, wool, blankets, steel-jacketed casks, scrap, and miscellaneous solids. Several lead treatment technologies were evaluated based on effectiveness, applicability, feasibility,

R. M. Neupauer; J. F. Zukauskas

1992-01-01

345

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

EPA Science Inventory

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. Current practice to identify hazardous asbe...

346

FINAL REPORT: REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

EPA Science Inventory

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying ha...

347

Radon emanation from NORM-contaminated pipe scale and soil at petroleum industry sites.  

PubMed

Radon-222 emanation fractions were determined for barite scale deposits associated with petroleum production tubing and soil contaminated with naturally occurring radioactive material (NORM). Samples were analyzed for 226Ra concentration, the results of which were used to calculate the 222Rn emanation fraction for the sample. An important parameter determining the overall Rn activity flux from a solid medium, 222Rn emanation fraction represents the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. The primary objective of the study was to determine whether 222Rn emanation fractions from pipe scale and soil from petroleum production sites are similar to those of uranium mill tailings. Pipe scale samples were collected at four sites representing a wide geographical area, and consisted primarily of barite scale where Ra atoms have replaced a fraction of the Ba within the crystal lattice of the scale. Soil samples were collected at five sites, from areas exhibiting elevated surface gamma exposure rates indicating the presence of NORM. For comparison, 226Ra concentrations and 222Rn emanation fraction were also determined for uranium mill tailings samples provided from a site in Utah. Although 2226Ra concentrations from pipe scale samples were similar to those found in uranium mill tailings, 222Rn emanation fractions from scale were generally lower. Emanation fractions from each data set were statistically different from those of mill tailings (p < or = 0.01). The differences are probably due to physical differences between the two media and to the method by which the Ra is deposited in the material. Radon emanation from soils was extremely variable owing not only to differences in physical and chemical soil properties, but also to the means by which NORM has entered the soil. Although additional emanation measurements from other sites are needed, the data collected at these sites indicate that regulations intended to protect human health from 222Rn inhalation should consider the type and properties of the medium in which the NORM is contained, rather than relying strictly on concentrations of the parent 226Ra. PMID:11381946

White, G J; Rood, A S

2001-01-01

348

Phosphate sources and their suitability for remediation of contaminated soils.  

PubMed

Phosphate minerals and specifically apatite show promise for environmental cleanup because they can form stable compounds with a wide range of cationic contaminants. However, phosphate minerals naturally accumulate some heavy metals that may cause additional contamination of the environment if used improperly. Nine commercially available phosphate materials were evaluated for remediation of contaminated soil based on solubility, concentration of metal/metalloid impurities, and leachability of impurity metal/metalloids. The phosphate materials consisted of three groups: processed (i.e., fertilizers), mined (rock phosphates from different formations), and biogenic (ground fish bone). Processed and mined rock phosphates contained relatively high total concentrations of As, Co, Cr, and Cu but did not exceed the RCRA toxicity characteristic leaching procedure (TCLP) limits. Biogenic apatite contained much lower metal concentrations than processed and mined rock phosphate and was appreciably more soluble. By combining biogenic and mined phosphate it is possible to obtain a wide range of phosphate release rates, permitting rapid immobilization of contaminants while providing a slow release of phosphate for continued long-term treatment. PMID:16150478

Knox, A S; Kaplan, D I; Paller, M H

2006-03-15

349

[Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].  

PubMed

Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research. PMID:15709784

Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

2004-09-01

350

Mercury mobility and bioavailability in soil from contaminated area  

NASA Astrophysics Data System (ADS)

The mobility and bioavailability of mercury in the soil from the area near a plant using elemental mercury for manufacturing thermometers, areometers, glass energy switches and other articles made of technical glass has been evaluated. Mercury has been determined by sequential extraction method and with additional thermo desorption stage to determine elemental mercury. The procedure of sequential extraction involves five subsequent stages performed with the solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH and aqua regia. The mean concentration of total mercury in soil was 147 ± 107 ?g g-1 dry mass (range 62-393), and the fractionation revealed that mercury was mainly bound to sulfides 56 ± 8% (range 45-66), one of the most biounavailable and immobile species of mercury in the environment. The fractions that brought lower contribution to the total mercury content were semi-mobile humic matter 22 ± 9% (range 11-34) and elemental mercury 17 ± 5% (range 8-23). The contributions brought by the highly mobile and toxic organomercury compounds were still lower 2.3 ± 2.7% (range 0.01-6.5). The lowest contributions brought the acid-soluble mercury 1.5 ± 1.3% (range 0.1-3.5) and water-soluble mercury 1.0 ± 0.3% (range 0.6-1.7). The surface layer of soil (0-20 cm) was characterized by higher mercury concentrations than that of the subsurface soil (60-80 cm), but the fractional contributions were comparable. The comparison of mercury fractionation results obtained in this study for highly polluted soils with results of fractionation of uncontaminated or moderately contaminated samples of soil and sediments had not shown significant statistical differences; however, in the last samples elemental mercury is usually present at very low concentrations. On the basis of obtained correlation coefficients it seems that elemental mercury soils from “Areometer” plant are contaminated; the main transformation is its vaporization to atmosphere and oxidation to divalent mercury, probably mainly mediated by organic matter, and next bound to humic matter and sulfides.

Boszke, Leonard; Kowalski, Artur; Astel, Aleksander; Bara?ski, Andrzej; Gworek, Barbara; Siepak, Jerzy

2008-09-01

351

Roadside dusts and soils contamination in Cincinnati, Ohio, USA  

NASA Astrophysics Data System (ADS)

Roadside dusts and soils were collected from various nonindustrial districts in Cincinnati, Ohio, USA, and analyzed for lead and copper contents. Results showed that the recent lead phase-down action has reduced the level of lead, but the concentrations of both metals are still higher than the background levels for normal soil. Elevated concentrations of copper in heavily traveled highways were noted, suggesting that much of the copper pollutants is probably of automotive origin. The concentration of lead was found to vary with housing age, and higher levels of contamination in the older neighborhoods were observed. This result is probably ascribable to the accumulation of residues from leaded gasoline and lead-based paint in the past and the use of coal fire for space heating in older houses.

Tong, Susanna T. Y.

1990-01-01

352

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect

Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-04-01

353

In situ treatment of metals in contaminated soils with phytate.  

PubMed

Batch experiments were conducted to evaluate the ability of various forms of phytate, the hexaphosphoric form of myo-inositol (IP6), to immobilize U, Ni, and other inorganic contaminants in soils and sediments. A Ca-phytate precipitate (Ca(n)-IP6), dodeca sodium-phytate (Na12-IP6), and hydroxyapatite (HA) were added to contaminated soil at rates of 0, 10, 25, and 50 g kg(-1) and equilibrated in 0.001 M CaCl2. The samples were then centrifuged, the solution pH was measured, and the supernatants were filtered prior to analysis for dissolved organic carbon (DOC), U, Ni, P, and other inorganic contaminants, such as As, Cr, Se, and Pb. The residual sediments were air-dried prior to characterization by analytical electron microscopy and extraction with the Toxicity Characteristic Leaching Procedure (TCLP). The solubility of several metals (e.g., U, Pb, Cu) increased with increasing Na12-IP6 when compared with the nonamended control. In some cases immobilization was observed at the lowest Na12-IP6 application rate (10 g kg(-1)) with an increase in solubility observed at the higher rates, demonstrating the importance of metal to ligand ratio. In contrast, Ca(n)-IP6 and HA decreased the solubility of U, Ni, Al, Pb, Ba, Co, Mn, and Zn. For example, soluble U decreased from 2242 to 76 microg kg(-1) and Ni from 58 to 9.6 mg kg with the Ca(n)-IP6 addition, similar to the results observed for HA. Arsenic and Se solubility increased for HA and both forms of IP6, but to a much greater degree for Na12-IP6, suggesting that the increase in pH observed for HA and Na12-IP6, combined with added competition from PO4 and IP6 for sorption sites, resulted in the release of sorbed oxyanion contaminants. The analytical electron microscopy results indicated that metals such as U and Ni were closely associated with secondary Al-rich precipitates in the HA-treated soils, rather than unreacted HA. The analytical electron microscopy results were less definitive for the Ca(n)-IP6-treated soil, although the residual P-containing material was enriched in Al, with lesser amounts of U and Ni. PMID:12549554

Seaman, John C; Hutchison, Jessica M; Jackson, Brian P; Vulava, Vijay M

2003-01-01

354

Vertical characterization of soil contamination using multi-way modeling--a case study.  

PubMed

This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region. PMID:18044006

Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

2008-11-01

355

Analysis of disposition alternatives for radioactively contaminated scrap metal  

SciTech Connect

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1997-01-01

356

Research Spotlight: Potential pathways of radioactive contaminants to surface waters  

NASA Astrophysics Data System (ADS)

From the 1940s to the end of the Cold War, the U.S. Department of Energy maintained production facilities for manufacturing nuclear weapons along the Columbia River north of Richland, Wash. Known as the Hanford Site, the Rhode Island-sized area contains more than 53 million gallons of radioactive waste and is the location of a massive environmental cleanup. Of particular concern is that when the facility was active, fluids containing 33-59 tons of uranium were discharged into the shallow subsurface aquifer underneath Hanford. Studies suggest that this pollution is pervasively moving with the groundwater in the direction of the Columbia River. (Water Resources Research, doi:10.1029/2010WR009110, 2010)

Kumar, Mohi

2011-02-01

357

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is located within the Ridge and Valley physiographic province of eastern Tennessee (USA). This area is characterized by deciduous forests dominated by hardwood and mixed mesophytic tree species. Wildlife populations have access to some radioactively contaminated sites at ORNL, and contaminated animals or animal nests within the Laboratory's boundaries have been found to contain on the order of 10{sup {minus}12} to 10{sup {minus}6} Ci/g of {sup 90}Sr or {sup 137}Cs, and trace amounts of other radionuclides (including transuranic elements). Theoretical calculations indicate that nanocurie levels of {sup 90}Sr in bone can arise from relatively small amounts (1%) of contaminated browse vegetation in a deer's diet. Measures that have been undertaken at ORNL to curtail the dispersal of radioactivity by animals are briefly reviewed.

Garten, C.T. Jr.

1992-03-27

358

Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is located within the Ridge and Valley physiographic province of eastern Tennessee (USA). This area is characterized by deciduous forests dominated by hardwood and mixed mesophytic tree species. Wildlife populations have access to some radioactively contaminated sites at ORNL, and contaminated animals or animal nests within the Laboratory`s boundaries have been found to contain on the order of 10{sup {minus}12} to 10{sup {minus}6} Ci/g of {sup 90}Sr or {sup 137}Cs, and trace amounts of other radionuclides (including transuranic elements). Theoretical calculations indicate that nanocurie levels of {sup 90}Sr in bone can arise from relatively small amounts (1%) of contaminated browse vegetation in a deer`s diet. Measures that have been undertaken at ORNL to curtail the dispersal of radioactivity by animals are briefly reviewed.

Garten, C.T. Jr.

1992-03-27

359

Contribution from the Yenisei River to the total radioactive contamination of the Kara Sea  

SciTech Connect

An attempt is made to estimate the contribution from the Yenisei River and, therefore, the Krasnoyarsk Mining and Chemical Plant (MCP), which discharged wastewaters to the Yenisei, to the total contamination of the Kara Sea using results from a study of the radioactive contamination of the Yenisei River, Yenisei Bay, Yenisei Gulf, and the Kara Sea itself. Radionuclides generated from using river water in cooling circuits of production reactors make the largest contribution to the total activity. The radioactive contamination of the river decreased by more than 20 times after two of the three operating reactors were shut down. Only several wetlands are actually affected by MCP hundreds of kilometers from the discharge point.

Kuznetsov, Yu.V.; Revenko, Yu.A.; Legin, V.K. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)] [and others

1995-07-01

360

Physical properties of soils contaminated by oil lakes, Kuwait  

SciTech Connect

In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

Mohammad, A.S. [Kuwait Univ., Safat (Kuwait); Wahba, S.A.; Al-Khatieb, S.O. [Arabian Gulf Univ. (Bahrain)

1996-08-01

361

Non-Ligninolytic TNT Mineralization in Contaminated Soil by Phanerochaete chrysosporium  

Microsoft Academic Search

The explosive 2,4,6-trinitrotoluene (TNT) is widely used and results in widespread soil contamination. The white-rot fungus Phanerochaete chrysosporium has been shown to degrade TNT, using the peroxidase enzyme. In this study, we report peroxidase-independent degradation of TNT by non-ligninolytic P. chrysosporium. Significant disappearance of TNT from highly contaminated soil using P. chrysosporium has been observed. Soil highly contaminated with TNT

Sisir K. Dutta; Michelle M. Jackson; Li Hua Hou; David Powell; Henry E. Tatem

1998-01-01

362

Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus  

Microsoft Academic Search

Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which\\u000a poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and\\u000a a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with

O. P. Abioye; P. Agamuthu; A. R. Abdul Aziz

363

Assessment of concentration in contaminated soil by potentially toxic elements using electrical properties  

Microsoft Academic Search

Soils contaminated by potentially toxic elements (PTEs) which affect human health, such as zinc, lead, mercury, cadmium, and\\u000a arsenic, were applied. The aims of this study are to judge contamination of soil and also to evaluate concentration of contaminated\\u000a soil using electrical properties such as electrical resistivity and permittivity. The frequency was applied in the experiment\\u000a ranged from 100 Hz to

Younghwan Son

2011-01-01

364

Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil  

Microsoft Academic Search

Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation,\\u000a may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that\\u000a tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in

Aleksandra Sas-Nowosielska; Regina Galimska-Stypa; Rafa? Kucharski; Urszula Zielonka; Eugeniusz Ma?kowski; Laymon Gray

2008-01-01

365

New Land disposal restrictions for contaminated soil and debris, and newly identified toxicity characteristic organic wastes  

SciTech Connect

The applicability of the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR) program to radioactive mixed wastes (RMW) has been clarified through US Environmental Protection Agency (EPA) and US Department of Energy (DOE) rulemakings and notices. However, a number of waste management concerns involving RMW and RMW-contaminated soil and debris continue to exist with respect to achieving compliance with LDR provisions and treatment standards. Consequently, DOE has become increasingly proactive in its participation in the LDR rulemaking process and in the identification of LDR compliance issues associated with its RMW inventories. Both data and recommendations from across the DOE complex have been collected and transmitted to EPA in response to proposed requirements that would implement LDR for contaminated soil and debris, and certain newly identified toxicity characteristic (TC) organic wastes. Much of this information focused on concerns related to the application of proposed regulatory approaches to RMW streams. Some highlights from the information included in these DOE responses are presented.

Not Available

1992-05-01

366

Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium  

NASA Astrophysics Data System (ADS)

The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation of two thermonuclear bombs accidentally dropped in 1966. While performing radiometric measurements in the field, the possible presence of 237Np was observed through its 29 keV gamma emission. To accomplish a detailed characterization of the source term in the contaminated area using the isotopic ratios Pu-Am-Np, the radiochemical isolation and quantification by alpha spectrometry of 237Np was initiated. The selected radiochemical procedure involves separation of Np from Am, U and Pu with ionic resins, given that in soil samples from Palomares 239+240Pu levels are several orders of magnitude higher than 237Np. Then neptunium is isolated using TEVA organic resins. After electrodeposition, quantification is performed by alpha spectrometry. Different tests were done with blank solutions spiked with 236Pu and 237Np, solutions resulting from the total dissolution of radioactive particles and soil samples. Results indicate that the optimal sequential radionuclide separation order is Pu-Np, with decontamination percentages obtained with the ionic resins ranging from 98% to 100%. Also, the addition of NaNO2 has proved to be necessary, acting as a stabilizer of Pu-Np valences.

Antón, M. P.; Espinosa, A.; Aragón, A.

2006-01-01

367

Application of PIXE analysis to investigation of plants cultivated with contaminated soil of Fukushima  

NASA Astrophysics Data System (ADS)

We present a method to research low radioactive cesium contaminated plants by the use of PIXE analysis. Highly contaminated regions still remain in the Fukushima prefecture. We collected wild plants growing in this area, that is, Butterbur, Welsh onion, Alpine leek and White clover and measured their specific activities of 137Cs and 40K. We also measured 137Cs and 40K specific activities of soil under these plants. Soil-to-plant transfer factors of 137Cs were ?0.02 for 4 wild plants and those of 40K were ?0.5 except for White clover. Using PIXE analysis, we measured the concentration of mineral elements in these plants. Among mineral elements, we noted the concentrations of additional alkali metal elements such as Na, K and Rb. The experimental results showed that the concentration of Rb was proportional to the specific activities of 137Cs except for Welsh onion and other elements had no strong correlation with 137Cs. These results indicate that there may be correlations between the adsorption of Cs and Rb.

Ishii, K.; Terakawa, A.; Matsuyama, S.; Ishizaki, A.; Arai, H.; Osada, N.; Sugai, H.; Takahashi, H.; Sera, K.; Sasaki, H.; Sasaki, K.; Sawamura, T.

2014-08-01

368

Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils  

EPA Science Inventory

Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

369

Temporary Storage of Fuel-Contaminated Soil at McMurdo Station, Antarctica  

NSF Publications Database

... the fuel from contaminated soils through treatment. Such methods are now under investigation by the ... soils are retrograded to the United States. A shortage of 208-liter drums may hinder fuel spill ...

370

Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.  

PubMed

The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation). PMID:15620743

Trindade, P V O; Sobral, L G; Rizzo, A C L; Leite, S G F; Soriano, A U

2005-01-01

371

Stabilization and solidification of chromium-contaminated soil  

SciTech Connect

Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01

372

Offshore passive soil vapor survey at a contaminated coastal site  

SciTech Connect

A high-resolution passive soil vapor survey was recently conducted at a coastal military base in southern California where a chlorinated and aromatic hydrocarbon plume threatens San Diego Bay. An existing sampling grid was extended offshore the entire length of the contaminated site. PETREX sampling tubes were emplaced conventionally onshore and were emplaced offshore in sandy bay-bottom sediments by divers working in 3 to 17 m (10 to 55 ft) of water. Results of mass spectrometric analysis of passive vapor samples were consistent with submarine ground water discharge measurements made previously with seepage meters, yet also produced one unexpected result: evidence of in situ degradation. Tetrachloroethene (PCE), widespread onshore, was not detected offshore. Trichloroethene (TCE), the primary contaminant onshore, was detected in only three points offshore. Dichloroethene (DCE), present only at trace levels onshore, was the dominant constituent measured in the offshore plume. Results were confirmed by laboratory analyses of sediment samples. The study demonstrated the utility of extending the passive soil vapor technique offshore in up to 17 m (55 ft) of sea water in a heavily trafficked waterway with a strong tidal current.

Anderson, M. [Jacobs Engineering Group Inc., Pasadena, CA (United States); Church, G. [Transglobal Environmental Geochemistry, Burbank, CA (United States)

1998-06-01

373

Toxicity of naturally-contaminated manganese soil to selected crops.  

PubMed

The impact of manganese excess using naturally contaminated soil (Mn-soil, pseudototal Mn 6494 vs 675 ?g g(-1) DW in control soil) in the shoots of four crops was studied. Mn content decreased in the order Brassica napus > Hordeum vulgare > Zea mays > Triticum aestivum. Growth was strongly depressed just in Brassica (containing 13?696 ?g Mn g(-1) DW). Some essential metals (Zn, Fe) increased in Mn-cultured Brassica and Zea, while macronutrients (K, Ca, Mg) decreased in almost all species. Toxic metals (Ni and Cd) were rather elevated in Mn-soil. Microscopy of ROS, NO, lipid peroxidation, and thiols revealed stimulation in all Mn-cultured crops, but changes were less visible in Triticum, a species with low shoot Mn (2363 ?g g(-1) DW). Antioxidative enzyme activities were typically enhanced in Mn-cultured plants. Soluble phenols increased in Brassica only while proteins rather decreased in response to Mn excess. Inorganic anions (chloride, sulfate, and phosphate) were less accumulated in almost all Mn-cultured crops, while the nitrate level rather increased. Organic anions (malate, citrate, oxalate, acetate, and formate) decreased or remained unaffected in response to Mn-soil culture in Brassica, Hordeum, and Triticum but not in Zea. However, the role of organic acids in Mn uptake in these species is not assumed. Because control and Mn-soil differed in pH (6.5 and 3.7), we further studied its impact on Mn uptake in solution culture (using Mn concentration ?5 mM deducted from water-soluble fraction of Mn-soil). Shoot Mn contents in Mn-treated plants were similar to those observed in soil culture (high in Brassica and low in Triticum) and pH had negligible impact. Fluorescence indicator of "general ROS" revealed no extensive or pH-dependent impact either in control or Mn-cultured roots. Observed toxicity of Mn excess to common crops urges for selection of cultivars with higher tolerance. PMID:24965550

Ková?ik, Jozef; St?rbová, Dagmar; Babula, Petr; Svec, Pavel; Hedbavny, Josef

2014-07-23

374

Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans  

SciTech Connect

In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of {sup 90}r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States); Spalding, B.P.; Jacobs, G.K. [Oak Ridge National Lab., TN (United States)

1993-02-01

375

Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans  

SciTech Connect

In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of [sup 90]r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States)); Spalding, B.P.; Jacobs, G.K. (Oak Ridge National Lab., TN (United States))

1993-02-01

376

Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants: A field study  

Microsoft Academic Search

The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2–66.8 kg per 10

S. Dudka; M. Piotrowska; H. Terelak

1996-01-01

377

Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study  

Microsoft Academic Search

The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing

P. V. O. Trindade; L. G. Sobral; A. C. L. Rizzo; S. G. F. Leite; A. U. Soriano

2005-01-01

378

Source Apportionment of Lead Contamination in Residential, Undisturbed, and Roadside Soil (Part II)  

Microsoft Academic Search

Lead (Pb) and antimony (Sb) concentrations in bulk soils and results of individual particle analysis were used to obtain apportionment estimates of identifiable sources of anthropogenic Pb contamination in residential and undisturbed soils. Soil was analyzed from residential and undisturbed wooded areas, an adjacent automobile battery manufacturing facility, and a roadside 2.4 km from the site. Sb in bulk soil

Steven D. Machemer; Theresa J. Hosick; Robin L. Ingamells

2007-01-01

379

Hydrocarbon-degradation potential in reference soils and soils contaminated with jet fuel  

SciTech Connect

A series of test wells were drilled adjacent to a fuel farm and a JP-5 jet fuel pump station located at a naval air station in Maryland. At least 5 hectares of subsurface soil (to an average depth of 4m) above a local aquifer were found to contain high concentrations of petroleum compounds, including such volatile aromatics as benzene, toluene, ethylbenzene, and xylenes. Horizontal transport has resulted in slow seepage from banks into streams of the affected area. The source of the petroleum is due to various spills over the past 10 years and possible continuous leakage from the tanks. There is a large body of literature describing the microbial metabolism of polycyclic aromatic hydrocarbons in aerobic solid-water system. Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. The authors determined the degradation rates of 14C-labeled hydrocarbons added to soils collected from a contaminated surface site (Site D), contaminated subsurface sites (Wells A and B), and a clean reference site (Well C).

Lee, R.F.; Hoeppel, R.

1990-01-01

380

Desorption and Degradation of Organic Contaminants in Soil by Microwave Radiation  

NASA Astrophysics Data System (ADS)

Many military bases located in the down towns of South Korea are asked to move outside of the urban areas due to the growth of the cities. During the past 60 years, many military bases of South Korea have been operated and according to that, parts of the soil have been polluted with organic contaminants such as total petroleum hydrocarbons (TPH), solvents, etc. In the case of South Korea, rapid remediation of the contaminated soil is required for efficient development of land. Thermal desorption is one of the most efficient and rapid remediation methods for polluted soil to clean up, but the fact is it consumes a lot of energy. In this study, desorption and degradation of organic contaminants in soil using microwave radiation is investigated in order to energy efficient and rapid remediation technique development. Polluted soil collected from a military base was remediated in the laboratory using a home made microwave reactor. In order to study uncontaminated soil was also intentionally contaminated with diesel, TCE, and phenanthrene, respectively, for a month and used for experiments. Contaminated soil places within stainless steel reactor and microwave radiates with nitrogen gas. Emitted gas from the reactor was collected with methanol or acetonitrile solution every 3 minute for 15 minutes, and analyzed with GC, HPLC, GC/MS, respectively. The TPH contaminated soil from military base desorbed initially light hydrocarbon (retention time < 12 minutes) but, after 9 minutes of the microwave radiation discharged heavy hydrocarbon mostly. The desorption properties of the TPH contaminated soil from the military base will be compared to those of intentionally contaminated soil in the laboratory for a month. Based on the results of the collected gas analysis, degradation by products of the TCE and phenanthrene were not observed after 15 minute microwave radiation on the contaminated soil. In order to enhance microwave reaction, iron powder, graphite will be added to the contaminated soil and desorption and degradation properties of this soil during microwave radiation will be studied.

Jeong, S.; Kim, H.

2011-12-01

381

Bacterial acquisition of hexachlorobenzene-derived carbon in contaminated soil.  

PubMed

Pesticides are a class of xenobiotics intentionally released into the environment. Hexachlorobenzene (HCB) was used as a fungicide from 1945, leaving behind many contaminated sites. Very few studies have examined the biodegradation of HCB or the fate of HCB-derived carbon. Here we report that certain bacterial populations are capable of deriving carbon from HCB in contaminated soil under aerobic conditions. These populations are primarily Proteobacteria, including Methylobacterium and Pseudomonas, which predominated as detected by stable isotope probing (SIP) and 16S rRNA gene amplicon pyrosequencing. Due to the nature of SIP, which can be used as a functional method solely for assimilatory processes, it is not possible to elucidate whether these populations metabolized directly HCB or intermediates of its metabolism produced by different populations. The possibility exists that HCB is degraded via the formation of pentachlorophenol (PCP), which is further mineralized. With this in mind, we designed primers to amplify PCP 4-monooxygenase-coding sequences based on the available pcpB gene sequence from Methylobacterium radiotolerans JCM 2831. Based on 16S rRNA gene analysis, organisms closely related to this strain were detected in (13)C-labeled DNA. Using the designed primers, we were able to amplify pcpB genes in both total community DNA and (13)C-DNA. This indicates that HCB might be transformed into PCP before it gets assimilated. In summary, this study is the first report on which bacterial populations benefit from carbon originating in the pesticide HCB in a contaminated soil. PMID:25065801

Uhlik, Ondrej; Strejcek, Michal; Vondracek, Jan; Musilova, Lucie; Ridl, Jakub; Lovecka, Petra; Macek, Tomas

2014-10-01

382

Radioactive artifacts: historical sources of modern radium contamination  

SciTech Connect

Radium has been distributed in a wide variety of devices during the early part of this century. Antique objects containing significant amounts of radium turn up at flea markets, antique shows, and antique dealers, in a variety of locations. These objects include radium in devices which were used by legitimate medical practitioners for legitimate medical purposes such as therapy, as well as a wide variety of quack cures. These devices may contain anywhere from a few nanocuries to as much as several hundred microcuries of radium. In addition to medical sources, a large variety of scientific instruments utilize radium in luminous dials. These instruments include compasses, azimuth indicators, and virtually any object which might require some form of calibration. In addition, the consumer market utilized a large amount of radium in the production of wrist watches, pocket watches, and clocks with luminous dials. Some of these watches contained as much as 4.5 microCi of radium, and between 1913 and 1920 about 70 gm was produced for the manufacture of luminous compounds. In addition to the large amount of radium produced for scientific and consumer utilization, there were a number of materials produced which were claimed to contain radium but in fact did not, further adding to the confusion in this area. The wide availability of radium is a result of the public's great fascination with radioactivity during the early part of this century and a belief in its curative properties. A number of objects were produced in order to trap the emanations of radium in water for persons to drink in order to benefit from their healing effects. Since the late 20s and early 30s the public's attitude towards radiation has shifted 180 degrees and it is now considered an extremely dangerous and harmful material.

Blaufox, M.D.

1988-01-01

383

Aerobic biomineralization of alpha-hexachlorocyclohexane in contaminated soil  

SciTech Connect

The factors identified to be important for the aerobic biodegradation of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry are temperature, auxiliary carbon source, substrate concentration, and soil inhomogeneities. Temperatures in the range of 20 to 30/sup 0/C were determined to be most favorable for biodegradation of alpha-HCH. No alpha-HCH biodegradation was detected at temperatures below 4/sup 0/C and above 40/sup 0/C. The addition of auxiliary organic carbon compounds showed repressive effects on alpha-HCH biomineralization. Increased oxygen partial pressures reduced the repressive effects of added auxiliary organic carbon compounds. A linear relationship between alpha-HCH concentration and its conversion rate was found in a Lineweaver-Burk plot. Inhomogeneities such as clumping of alpha-HCH significantly affected its biodegradation. Inhomogeneity as an influence on biodegradation has not drawn sufficient attention in the past, even though it certainly has affected both laboratory studies and the application of biotechnological methods to clean up contaminated sites. On the basis of metabolites detected during degradation experiments, the initial steps of aerobic alpha-HCH bioconversion in a soil slurry are proposed.

Bachmann, A.; de Bruin, W.; Jumelet, J.C.; Rijnaarts, H.H.; Zehnder, A.J.

1988-02-01

384

Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility  

SciTech Connect

The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

Lombard, K.H.

1994-08-01

385

Physicochemical and mineralogical characterization of transuranic contaminated soils for uranium soil integrated demonstration  

SciTech Connect

DOE has initiated the Uranium Soils Integrated Demonstration (USID) project. The objective of the USID project is to develop a remediation strategy that can be adopted for use at other DOE sites requiring remediation. Four major task groups within the USID project were formed, namely the Characterization Task Group (CTG), the Treatability Task Group (TTG), the Secondary Waste Treatment and Disposal Task Group (SWTDTG), and the Risk and Performance Assessment Task Group (RPATG). The CTG is responsible for determining the nature of the uranium contamination in both untreated and treated soil. The TTG is responsible for the selective removal of uranium from these soils in such a manner that the leaching does not seriously degrade the soil`s physicochemical characteristics or generate a secondary waste form that is difficult to manage and/or dispose. The SWTDTG is responsible for developing strategies for the removal of uranium from all wastewaters generated by the TTGs. Finally the RPATG is responsible for developing the human health and environmental risk assessment of the untreated and treated soils. Because of the enormity of the work required to successfully remediate uranium-contaminated soils, an integrated approach was designed to avoid needless repetition of activities among the various participants in the USID project. Researchers from Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Argonne National Laboratory (ANL), and Idaho National Engineering Laboratory (INEL) were assigned characterization and/or treatability duties in their areas of specialization. All tasks groups are involved in the integrated approach; however, the thrust of this report concentrates on the utility of the integrated approach among the various members of the CTG. This report illustrates the use of the integrated approach for the overall CTG and to provide the results generated specifically by the CTG or ORNL from FY1993 to the present.

Elless, M.P. [Oak Ridge Inst. for Science and Education, TN (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States)

1994-10-01

386

An approach to detecting delayed effects of radioactive contamination on industrial-urban-area dwellers  

SciTech Connect

Detecting changes in humans that result from radioactive contamination of the area of residence many years after an incident (i.e., when the radiation has substantially decayed) presents a difficult epidemiological problem. Problems of this kind are even more complicated in areas where the population is continually exposed to other harmful man-made factors. The city of Kamensk-Uralsky (Sverdlovsk region, Russia) is a good case in point. In 1957, part of Kamensk-Uralsky was contaminated as the result of an accident at the Kyshtym nuclear plant. In addition, the population of the contaminated area is being exposed to atmospheric emissions from several industrial enterprises. Two comparable groups of residents were formed: one in the contaminated area and another in a control area within the same city characterized by similar levels of chemical pollution but substantially lower radioactive contamination. The groups were composed of only those people who had been living in these areas continually since time of the accident and who were under 15 years of age at the time of the accident. The groups were matched by sex, age, and socio-occupational characteristics. For each subject, data were gathered on more than 50 parameters including hematological, immunological, and biochemical indices of the health status. All these data were obtained from blood tests taken in the fall of 1992. Data processing was carried out with the help of a computerized mathematical pattern recognition methodology, which ensured reliable discrimination between the generalized health status in the areas under study. We found that the health status of inhabitants of the area more contaminated with radioactive fallouts were adversely affected by radiation.

Privalova, L.I.; Katsnelson, B.A. (Medical Research Centre for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg (Russian Federation)); Polzik, E.V.; Kazantsev, V.S. (Ecological Safety Engineering Research Center, Ekaterinburg (Russian Federation)); Lipatov, G.Ya. (Ekaterinburg Medical Institute (Russian Federation)); Beikin, Y.B. (City Center for Laboratory Diagnosis of Diseases in Mothers and Babies, Ekaterinburg (Russian Federation))

1994-05-01

387

Radiological impacts of natural radioactivity from soil in Montenegro.  

PubMed

Soil samples from Montenegro were analysed by the HPGe detector with 40 % of relative efficiency, for radioactivity due to (226)Ra, (232)Th and (40)K. The average activity concentrations have been found to be 39.9, 43.5 and 437.6 Bq kg(-1), respectively, i.e. in accordance with those in the other South European countries. In order to evaluate the health hazard, radium equivalent activity, absorbed dose rate, annual effective dose rate, external hazard index, annual gonadal dose equivalent and excess lifetime cancer risk (CR) have been calculated. The excess lifetime CR (× 10(-3)) had a range from 0.12 to 0.79, with an arithmetic mean of 0.27, which is in accordance with the global average. Mean gonadal dose equivalent was higher than the world average, and one location was found with the radium equivalent activity >370 Bq kg(-1), i.e. with the external hazard index higher than unity, which means the radiation hazard is not negligible. PMID:21498861

Antovic, N M; Svrkota, N; Antovic, I

2012-02-01

388

Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons  

NASA Astrophysics Data System (ADS)

The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

2013-02-01

389

Straw Compost and Bioremediated Soil as Inocula for the Bioremediation of Chlorophenol-Contaminated Soil  

PubMed Central

We evaluated the use of straw compost and remediated soil as inocula for bioremediation of chlorophenol-contaminated soil. The in situ biotransformation of pentachlorophenol (PCP) and mineralization of radiolabeled [U-(sup14)C]PCP by straw compost and remediated soil were studied under field-simulating conditions before and after 3 months of adaptation with PCP in a percolator. After PCP adaptation, the straw compost mineralized up to 56% of the [(sup14)C]PCP. No partial dechlorination of PCP was found. The native straw compost did not mineralize PCP, but partial dechlorination of PCP occurred (i) at pH 8 under near-thermophilic conditions (45(deg)C) and (ii) at pH 7 under aerobic and mesophilic conditions. No biotransformation reactions occurred at room temperature (25(deg)C) at pH 8. Enrichment in the percolator enhanced the mineralization rate of remediated soil to 56% compared with that of the native remediated soil, which mineralized 24% of [(sup14)C]PCP added. Trace amounts of chloroanisoles as the only biotransformation products were detected in PCP-adapted remediated soil. Both inoculants studied here showed effective mineralization of PCP when they were adapted to PCP in the percolator. No harmful side reactions, such as extensive methylation, were observed.

Laine, M. M.; Jorgensen, K. S.

1996-01-01

390

Soil contamination and infections by soil-transmitted helminths in an endemic village in southern Thailand.  

PubMed

The aim of this study was to test the association between soil contamination and infection of the household members by soil-transmitted helminths in dry and rainy seasons. A lake-side community in southern Thailand with a population of 2,340 was studied twice, in the dry season and rainy season of 1995. Fifty households were randomly selected. Soil samples near the latrine, in the yard, at the foot-washing area and under the trees were taken and analysed for presence of helminthic eggs. All members of the selected household were interviewed and stool samples obtained. Age-adjusted odds ratios of presence of Ascaris and Trichuris eggs in the household soil for ascariasis and trichuriasis were 10.5 (95% CI 1.5-77.1) and 5.5 (95% CI 2.4-12.7) in dry season and 10.4 (95% CI 2.5-43.8) and 8.3 (95% CI 3.4-20.0) in rainy season. The levels of hookworm eggs detected in the soil were too low to test the association. Soil analysis for eggs of Ascaris and Trichuris may be used to predict infections among the household members but not that for hookworm. PMID:10695791

Chongsuvivatwong, V; Uga, S; Nagnaen, W

1999-03-01

391

Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology.  

PubMed

The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137Cs floodplain inventory of 33.7 GBq. PMID:15740772

Linnik, V G; Brown, J E; Dowdall, M; Potapov, V N; Surkov, V V; Korobova, E M; Volosov, A G; Vakulovsky, S M; Tertyshnik, E G

2005-03-01

392

Microorganisms Associated with Feathers of Barn Swallows in Radioactively Contaminated Areas Around Chernobyl  

Microsoft Academic Search

The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level,\\u000a environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation\\u000a on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms.\\u000a We examined abundance patterns of total cultivable bacteria and fungi and

Gábor Árpád Czirják; Anders Pape Møller; Timothy A. Mousseau; Philipp Heeb

2010-01-01

393

Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils  

SciTech Connect

Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study.

Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

1994-12-01

394

Bioremediation of Poly-Aromatic Hydrocarbon (PAH)Contaminated Soil by Composting  

Microsoft Academic Search

This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil

Nadine Loick; Phil J. Hobbs; Mike D. C. Hale; Davey L. Jones

2009-01-01

395

Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology  

Microsoft Academic Search

Increased soil pollution with heavy metals due to various human and natural activities has led to a growing need to address environmental contamination. Some remediation technologies have been developed to treat contaminated soil, but a biology-based technology, phytoremediation, is emerging. Phytoremediation includes phytovolatilization, phytostabilization, and phytoextraction using hyperaccumulator species or a chelate-enhancement strategy. To enhance phytoremediation as a viable strategy,

Ana P. G. C. Marques; António O. S. S. Rangel; Paula M. L. Castro

2009-01-01

396

A comparison of methods to relate grass reflectance to soil metal contamination  

Microsoft Academic Search

Grass-dominated vegetation covers large areas of the Dutch river floodplains. Remotely sensed data on the conditions under which this vegetation grows may yield information about the degree of soil contamination. This paper explores the relationship between grassland canopy reflectance and zinc (Zn) contamination in the soil under semi-field conditions. A field radiometer was used to record reflectance spectra of perennial

L. Kooistra; R. S. E. W. Leuven; R. Wehrens; P. H. Nienhuis; L. M. C. Buydens

2003-01-01

397

Removal of volatile and semivolatile organic contamination from soil by air and steam flushing  

Microsoft Academic Search

A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal

Brent E. Sleep; Paul D. McClure

2001-01-01

398

Heavy metal contamination of soil around Pali Industrial Area, Rajasthan, India  

Microsoft Academic Search

Due to rapid industrialization, urbanization and intensive agriculture in India increasing contamination of heavy metals in soil has become a major concern. An environmental geochemical investigation was carried out in and around the Pali industrial development area of Rajasthan to determine the effect of contamination in the study area. Soil samples collected near the Pali industrial area were analyzed for

A. K. Krishna; P. K. Govil

2004-01-01

399

PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS  

EPA Science Inventory

Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...

400

Shear strength characteristics and chemical characteristics of leachate-contaminated lateritic soil  

Microsoft Academic Search

Leachate is a hazardous liquid and is a major cause of concern in landfills. Numerous environmental problems such as soil and groundwater contamination occur in unlined landfills due to free flow of leachate. Large quantities of leachate-contaminated soils result from open dumping in the study area. These dump yards receive large quantities of municipal solid waste which includes chemical and

B. M. Sunil; S. Shrihari; Sitaram Nayak

2009-01-01

401

REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT  

Microsoft Academic Search

Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process.

V. Y. E. KHRAPUNOV; R. A. ISAKOVA; B. L. LEVINTOV; P. D. KALB; I. M. KAMBEROV; A. TREBUKHOV

2004-01-01

402

ENGINEERING APPLICATION OF BIOOXIDATION PROCESSES FOR TREATING PETROLEUM-CONTAMINATED SOIL  

EPA Science Inventory

Throughout the U.S., the need for effective treatment of petroleum contaminated soil has escalated due to the increase in the number of underground storage tank (UST) systems being upgraded in response to EPA regulations. ptions for excavated contaminated soil have in the past be...

403

Efficiency of non-ionic surfactants - EDTA for treating TPH and heavy metals from contaminated soil  

PubMed Central

Introduction of fuel hydrocarbons and inorganic compounds (heavy metals) into the soil, resulting in a change of the soil quality, which is likely to affect use of the soil or endangering public health and ground water. This study aimed to determine a series of parameters to remediation of TPH and heavy metals contaminated soil by non-ionic surfactants- chelating agents washing process. In this experimental study, the effects of soil washing time, agitation speed, concentration of surfactant, chelating agent and pH on the removal efficiency were studied. The results showed that TPH removal by nonionic surfactants (Tween 80, Brij 35) in optimal condition were 70–80% and 60–65%, respectively. Addition of chelating agent (EDTA) significantly increases Cd and Pb removal. The washing of soil by non- ionic surfactants and EDTA was effective in remediation of TPH and heavy metals from contaminated soil, thus it can be recommended for remediation of contaminated soil.

2013-01-01

404

Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation.  

PubMed

Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5-6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. PMID:23500046

Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

2013-06-01

405

Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil  

NASA Astrophysics Data System (ADS)

Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix interference. It was determined through finite element modeling that 250 years after the 1951 release, the soil concentration of the three contaminant of U-238, Sr-90 and Cs-137 will be less than their respective soil clearance level values and therefore will not pose a long term environmental hazard. The fastest nuclide to reach the water table, at a depth of 45 m below the surface, at Suffield Site 27 was calculated to be Sr-90 after a period of 15,000 years. Therefore, it is not necessary to remove the subsurface soil at Site 27 for site decontamination but it is recommended that a "no-digging" policy, except for scientific research, be enforced at this site.

Sims, D. J.

406

Remediation of metal-contaminated urban soil using flotation technique.  

PubMed

A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (<20 microm) caused a flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. PMID:19959208

Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

2010-02-01

407

International policies and strategies for the remediation of land contaminated by radioactive material residues.  

PubMed

The paper addresses the international policies and strategies for the remediation of land contaminated by radioactive material residue, its main aim being to describe the misunderstandings, evolution and status of the international paradigms in this area. Thus, the denotation and connotation of the 'remediation' and 'contamination' concepts are explored, including the ambiguity they produce in understanding of the issues by a sceptical public. Then, the international radiation protection approaches for remediation are portrayed. They derive from the recommendations of the International Commission on Radiological Protection (ICRP), which are described including their basic principles and characterization of exposure situations. Prolonged exposure situations, which are typical in cases of contaminated land, are analysed with particular detail. The newer ICRP general recommendations, as well as recent ICRP recommendations for excluding and exempting exposure situations from regulatory control and for living in long-term contaminated territories after a nuclear accident or a radiation emergency, are examined. Remediation vis-à-vis environmental protection is discussed and the non-technical factors usually involved in decision-making on remediation are examined. Finally, the international safety standards on remediation, which are being established under the aegis of the International Atomic Energy Agency (IAEA), are explored. These include the well established International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, or BSS, as well as the specific international safety requirements for remediation; a brief overview of the current process of revising the BSS is also included. In its outcome the paper suggests that the time is ripe for a simple and clear international agreement on the levels of radioactivity in territorial contamination with radioactive material that may be considered unambiguously safe. PMID:20880618

González, Abel J

2013-05-01

408

Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic  

Microsoft Academic Search

Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with 73AsV. Removal of As from the 21 soils by three sequential crops of

Paula A. Shelmerdine; Colin R. Black; Steve P. McGrath; Scott D. Young

2009-01-01

409

Surface Runoff Contamination by Soil Chemicals: Simulations for Equilibrium and First-Order Kinetics  

Microsoft Academic Search

A model was developed to predict the potential contamination of overland flow by chemicals removed from soil water by rainfall on sloping soil. The model accounts for transient water infiltration and convective-dispersive solute transport in the soil and also considers rate-limited mass transfer through a laminar boundary layer at the soil surface\\/runoff water interface. Sorption-desorption interactions between soil and chemicals

Rony Wallach; Rina Shabtai

1992-01-01

410

Helium leak testing of a radioactive contaminated vessel under high pressure in a contaminated environment  

SciTech Connect

At ANL-W, with the shutdown of EBR-II, R&D has evolved from advanced reactor design to the safe handling, processing, packaging, and transporting spent nuclear fuel and nuclear waste. New methods of processing spent fuel rods and transforming contaminated material into acceptable waste forms are now in development. Storage of nuclear waste is a high interest item. ANL-W is participating in research of safe storage of nuclear waste, with the WIPP (Waste Isolation Pilot Plant) site in New Mexico the repository. The vessel under test simulates gas generated by contaminated materials stored underground at the WIPP site. The test vessel is 90% filled with a mixture of contaminated material and salt brine (from WIPP site) and pressurized with N2-1% He at 2500 psia. Test acceptance criteria is leakage < 10{sup -7} cc/seconds at 2500 psia. The bell jar method is used to determine leakage rate using a mass spectrometer leak detector (MSLD). The efficient MSLD and an Al bell jar replaced a costly, time consuming pressure decay test setup. Misinterpretation of test criterion data caused lengthy delays, resulting in the development of a unique procedure. Reevaluation of the initial intent of the test criteria resulted in leak tolerances being corrected and test efficiency improved.

Winter, M.E.

1996-10-01

411

Cadmium contaminated soil affects retinogenesis in lizard embryos.  

PubMed

Lizards are soil surface animals that represent an important link between invertebrates and higher predators. Being part of wild fauna, they can be affected by contamination from anthropic activities and in particular, pesticides and chemical substances of various nature that reach the soil surface directly or through fall out. Among these substances, heavy metals such as cadmium may exert particularly marked toxic effect on both adult and embryos. In lizards, recent studies show that cadmium may cause developmental defects, including alteration of eye development, with appearance of unilateral microphthalmia and retinal folding. In the present study, the effects of cadmium incubation on retinal development were investigated demonstrating that cadmium interferes with cell cycle regulation by increasing proliferation. An increased expression of Otx2 and Pax6 genes, markers of retinal differentiation, was also found. However, the cellular localization of Pax6 and Otx2 transcripts did not change in treated embryos: in the early stages of retinogenesis, the two genes were expressed in all retinal cells; in the differentiated retina, Otx2 remained in the cellular bodies of retinal cells forming the nuclear and the ganglion layers, whereas Pax6 was expressed only in the cells of the inner nuclear and the ganglion layers. Data suggest that the increased expression of Pax6 and Otx2 could be ascribed to the hyperproliferation of retinal cells rather than to an effective gene overexpression. PMID:24482418

Simoniello, Palma; Trinchella, Francesca; Filosa, Silvana; Scudiero, Rosaria; Magnani, Dario; Theil, Thomas; Motta, Chiara Maria

2014-04-01

412

Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L  

Microsoft Academic Search

Background, aim, and scope  In the soil environment, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are of great environmental and human\\u000a health concerns due to their widespread occurrence, persistence, and carcinogenic properties. Bioremediation of contaminated\\u000a soil is a cost-effective, environmentally friendly, and publicly acceptable approach to address the removal of environmental\\u000a contaminants. However, bioremediation of contaminants depends on plant–microbe interactions

Sardar Khan; Abd El-Latif Hesham; Gu Qing; Liu Shuang; Jizheng He

2009-01-01

413

Investigation on soil contamination at recently inundated and non-inundated sites  

Microsoft Academic Search

Purpose  This study was carried out to determine hazards of particle-bound contaminants in rivers to retention areas close to public\\u000a well fields in the context of flood events. The focus was on the assessment of soil contamination at a planned retention area.\\u000a Soil core samples were chemically and biologically analyzed. Samples were fractionated to identify and compare contaminant\\u000a loads and biological

Jan Wölz; Tobias Schulze; Urte Lübcke-von Varel; Michael Fleig; Georg Reifferscheid; Werner Brack; Dirk Kühlers; Thomas Braunbeck; Henner Hollert

2011-01-01

414

Using the Landfarming Technique to Remediate Soils Contaminated with Hexachlorocyclohexane Isomers  

Microsoft Academic Search

Landfarming is a bioremediation technology in which contaminated soil is mixed with nutrients and amendments, and the material is periodically\\u000a tilled for aeration. Contaminants are degraded, transformed and immobilised by means of biotic and abiotic reactions. In this\\u000a study, a soil heavily contaminated (>5000 mg kg?1) with hexachlorocyclohexane (HCH) isomers derived from lindane production was treated using this technique. The combination

David A. Rubinos; Rafael Villasuso; Soledad Muniategui; María Teresa Barral; Francisco Díaz-Fierros

2007-01-01

415

Bench-scale studies with mercury contaminated SRS soil  

SciTech Connect

Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

Cicero, C.A.

1995-12-31

416

AN IN VITRO GASTROINTESTINAL METHOD TO ESTIMATE BIOAVAILABLE ARSENIC IN CONTAMINATED SOILS AND SOLID MEDIA. (R825410)  

EPA Science Inventory

A method was developed to simulate the human gastrointestinal environment and to estimate bioavailability of arsenic in contaminated soil and solid media. In this in vitro gastrointestinal (IVG) method, arsenic is sequentially extracted from contaminated soil with ...

417

Evaluating the Applicability of Regulatory Leaching Tests for Assessing Lead Leachability in Contaminated Shooting Range Soils  

Microsoft Academic Search

The toxicity characteristic leaching procedure (TCLP) is the current US-EPA standard protocol to evaluate metal leachability\\u000a in wastes and contaminated soils. However, application of TCLP to assess lead (Pb) leachability from contaminated shooting\\u000a range soils may be questionable. This study determined Pb leachability in the range soils using TCLP and another US-EPA regulatory\\u000a leaching method, synthetic precipitation leaching procedure (SPLP).

Xinde Cao; Dimitris Dermatas

2008-01-01

418

In situ Remediation\\/Reclamation\\/Restoration of Metals Contaminated Soils using Tailor-Made Biosolids Mixtures  

Microsoft Academic Search

Mining and smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, all plants are killed and ecosystems are devastated. Research has shown that Zn phytotoxicity, Pb-induced phosphate deficiency, erosion-induced P-deficiency, Cd risk through uptake by rice or tobacco, and Pb risk

Rufus L. Chaney; Sally L. Brown; J. Scott Angle; Tomasz I. Stuczynski; W. Lee Daniels; Charles L. Henry; Grzegorz Siebielec; Yin-Ming Li; Minnie Malik; James A. Ryan; Harry Compton

419

Investigation of Polychlorinated Biphenyl Removal from Contaminated Soil Using Microwave-Generated Steam  

Microsoft Academic Search

A feasibility study of polychlorinated biphenyl (PCB) removal from contaminated soils using microwave-generated steam (MGS) was performed. Initial experimental results show that MGS effectively removed PCBs from contaminated soil with an overall removal efficiency of greater than 98% at a steam-to-soil mass ratio of 3:1. Removal efficiency was found to be dependent upon the amount of steam employed, expressed as

Pingkuan Di; Daniel P. Y. Chang

2001-01-01

420

Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut  

Microsoft Academic Search

The bioremediation potential of three hydrocarbon-contaminated soil samples with diverse soil physical\\/chemical characteristics from Eureka, Ellesmere Island, Nunavut, was assessed. Microbial enumeration by viable plate counts and MPN analyses combined with molecular analysis (PCR and colony hybridization) for hydrocarbon catabolic genes (alkB+, xylE+, ndoB+) demonstrated the presence of significant numbers of aerobic cold-adapted hydrocarbon-degrading organisms in the three contaminated soils.

L. G. Whyte; B. Goalen; J. Hawari; D. Labbé; C. W. Greer; M. Nahir

2001-01-01

421

Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils  

Microsoft Academic Search

Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal monitoring. This paper reviews the theoretical basis whereby proximal spectral sensing of soil and vegetation could be used to monitor phytoremediation of metal-contaminated soils,

Paresh H. Rathod; David G. Rossiter; Marleen F. Noomen; Freek D. van der Meer

2012-01-01

422

Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi  

PubMed Central

High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5–4.5.

Zhao, Yuechun; Yi, Xiaoyun

2010-01-01

423

Radioactive contaminant characterization and measurements of residual radioactivity in the TMI-2 auxiliary and fuel handling buildings and reactor building  

SciTech Connect

One consequence of the Three Mile Island Unit 2 (TMI-2) accident was the widespread radioactive contamination of the auxiliary and fuel-handling buildings (AFHB) and the reactor building (RB). These areas required extraordinary decontamination efforts to achieve the cleanup program objectives. On completion of cleanup activities (including decontamination) in a given area or cubicle, the area was isolated to minimize uncontrolled access. Deactivated systems traversing the area or cubicle were drained, vented, and isolated. The area was, at that point, configured for long-term monitored storage and available for final radiological assessment. This assessment was performed utilizing general-area dose rates, smear/wipe surveys, and air-activity surveys. This radiological data was used as a basis for determining whether the established goals of the decontamination programs were achieved as well as to document the radiological conditions that existed upon entering long-term storage, known as postdefueling monitored storage (PDMS).

Lodde, G.M.; Paynter, A.F.; Brosey, B.A.

1994-12-31

424

Assessment of Soil-Gas and Soil Contamination at the Former Military Police Range, Fort Gordon, Georgia, 2009-2010  

USGS Publications Warehouse

Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.

Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

2011-01-01

425

Treatment of Aroclor 1016 contaminated soil by hydrogen peroxide: laboratory column study  

Microsoft Academic Search

The potential and feasibility of treating soil contaminated with electrical insulating oil, Aroclor 1016, containing polychlorinated biphenyls (PCBs) with stabilized hydrogen peroxide were evaluated using columns packed with soils of two different matrixes. The column experiments showed that PCBs degraded by the stabilized hydrogen peroxide treatment in both soil matrixes, although the efficacy of the treatment depended strongly on the

Marika Viisimaa; Jelena Veressinina; Anna Goi

2012-01-01

426