Science.gov

Sample records for radioactive waste immobilization

  1. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, W.O.

    1986-06-17

    A method is described for immobilizing radioactive boric acid waste solutions comprising: neutralizing a boric acid waste solution containing radionuclides with calcium hydroxide and forming a precipitate, evaporating the precipitate to near dryness, and firing the dry precipitate to form a calcium borate glass product containing the radionuclides.

  2. FOAMING IN RADIOACTIVE WASTE TREATMENT AND IMMOBILIZATION PROCESSES

    EPA Science Inventory

    The physical mechanisms of the formation of foam in radioactive waste treatment and waste immobilization processes are poorly understood. The objective of this research is to develop a basic understanding of the mechanisms that produce foaming, to identify the key parameters whic...

  3. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  4. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  5. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  6. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  7. Immobilization of radioactive waste by cementation with purified kaolin clay.

    PubMed

    Osmanlioglu, A Erdal

    2002-01-01

    A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%. PMID:12092756

  8. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect

    Wasan, Darsh T.; Nikolov, Alex; Lambert, Dan; Calloway, T. Bond, Jr.

    2003-06-05

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifoams developed for this research will be tested using simulated defense HLW radioactive wastes obtained from the Hanford and Savannah River sites.

  9. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect

    Wasan, Darsh T.

    2002-08-01

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifoams developed for this research will be tested using simulated defense HLW radioactive wastes obtained from the Hanford and Savannah River sites.

  10. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  11. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  12. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Preteatment and Immobilization Processes

    SciTech Connect

    Wasan, Darsh T.; Nikolov, Alex

    2005-06-01

    The objectives of this research effort are to develop a fundamental understanding of the physico-chemical mechanisms that produce foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research will be tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  13. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  14. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  15. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  16. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    SciTech Connect

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  17. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  18. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  19. Immobilization of radioactive and hazardous wastes in a developed sulfur polymer cement (SPC) matrix

    SciTech Connect

    Wagdy, M.; Azim, Abdel; El-Gammal, Belal; Husain, Ahmed

    2007-07-01

    Available in abstract form only. Full text of publication follows: A process has been developed for the immobilization Cs, Sr, Ce, Pb, and Cr in forms that is non-dispersible and could be safely immobilized. The simulated radioactive wastes of Cs, Sr, and Ce, and the hazardous wastes of Cr, and Pb were immobilized in the stable form of sulfur polymer cement (SPC). In this process, the contaminants (in a single form) were added to the sulfur mixture of sulfur and aromatic /or aliphatic hydrocarbons that used as polymerizing agents for sulfur (95% S, and 5% organic polymer by weight). Durability of the fabricated SPC matrices was assessed in terms of their water of immersion, porosity, and compressive strength. The water immersion, and open porosity were found to be less than 2.5% for all the prepared matrices, whereas the compressive strength was in the range between 62.4 and 142.3 Kg.cm{sup -2}, depending on the composition of the prepared matrix. The prepared SPC matrices that characterized by X-ray diffraction (XRD) showed that the different added contaminants were stabilized during the solidification process during their reaction with sulfur and the organic polymer to form the corresponding metal sulfides. Toxicity Characteristic Leaching Procedure (TCLP), and the IAEA standard method have assessed the leachability of the prepared waste matrices. The TCLP results showed that most the concentration of the contaminants released were under their detection limit. The leach index for the investigated metals from the prepared SPC matrices was in the range of 9-11. The order of release of the investigated metals was Sr>Cs>Pb>Cr>Ce for the aliphatic polymer, and Sr>Cr>Pb>Cs>Ce for the aromatic one. The results obtained revealed a high performance for the prepared SPC matrices, as they are of low cost effect, highly available materials, and possessed good mechanical and leaching properties. Key Words: SPC/ Matrices/ Immobilization/ Wastes/ Leachability. (authors)

  20. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). PMID:26465672

  1. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  2. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant

  3. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, T.

    1992-01-01

    This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  4. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  5. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  6. Immobilization of chloride-rich radioactive wastes produced by pyrochemical operations

    SciTech Connect

    McDaniel, E.W.; Terry, J.W.

    1997-08-01

    A a result of its former role as a producer of nuclear weapons components, the Rocky Flats Environmental Technology Site (RFETS), Golden, Colorado accumulated a variety of plutonium-contaminated materials. When the level of contamination exceeded a predetermined level (the economic discard limit), the materials were classified as residues rather than waste and were stored for later recovery of the plutonium. Although large quantities of residues were processed, others, primarily those more difficult to process, remain in storage at the site. It is planned for the residues with lower concentrations of plutonium to be disposed of as wastes at an appropriate disposal facility, probably the Waste Isolation Pilot Plant (WIPP). Because the plutonium concentration is too high or because the physical or chemical form would be difficult to get into a form acceptable to WIPP, it may not be possible to dispose of a portion of the residues at WIPP. The pyrochemical salts are among the residues that are difficult to dispose of. For a large percentage of the pyrochemical salts, safeguards controls are required, but WIPP was not designed to accommodate safeguards controls. A potential solution would be to immobilize the salts. These immobilized salts would contain substantially higher plutonium concentrations than is currently permissible but would be suitable for disposal at WIPP. This document presents the results of a review of three immobilization technologies to determine if mature technologies exist that would be suitable to immobilize pyrochemical salts: cement-based stabilization, low-temperature vitrification, and polymer encapsulation. The authors recommend that flow sheets and life-cycle costs be developed for cement-based and low-temperature glass immobilization.

  7. Barium borosilicate glass a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kaushik, C. P.; Mishra, R. K.; Sengupta, P.; Kumar, Amar; Das, D.; Kale, G. B.; Raj, Kanwar

    2006-11-01

    Borosilicate glass formulations adopted worldwide for immobilization of high-level radioactive liquid waste (HLW) is not suitable for sulphate bearing HLW, because of its low solubility in such glass. A suitable glass matrix based on barium borosilicate has been developed for immobilization of sulphate bearing HLW. Various compositions based on different glass formulations were made to examine compatibility with waste oxide with around 10 wt% sulfate content. The vitrified waste product obtained from barium borosilicate glass matrix was extensively evaluated for its characteristic properties like homogeneity, chemical durability, glass transition temperature, thermal conductivity, impact strength, etc. using appropriate techniques. Process parameters like melt viscosity and pour temperature were also determined. It is found that SB-44 glass composition (SiO 2: 30.5 wt%, B 2O 3: 20.0 wt%, Na 2O: 9.5 wt% and BaO: 19.0 wt%) can be safely loaded with 21 wt% waste oxide without any phase separation. The other product qualities of SB-44 waste glass are also found to be on a par with internationally adopted waste glass matrices. This formulation has been successfully implemented in plant scale.

  8. PROGRESS REPORT. FOAMING AND ANTIFOAMING IN RADIOACTIVE WASTE PRETREATMENT AND IMMOBILIZATION PROCESSES

    EPA Science Inventory

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifo...

  9. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  10. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  11. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  12. Radioactive wastes

    SciTech Connect

    Devarakonda, M.S.; Hickox, J.A.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

  13. Application of solvlent change techniques to blended cements used to immobilize low-level radioactive liquid waste

    SciTech Connect

    Kruger, A.A.

    1996-07-01

    The microstructures of hardened portland and blended cement pastes, including those being considered for use in immobilizing hazardous wastes, have a complex pore structure that changes with time. In solvent exchange, the pore structure is examined by immersing a saturated sample in a large volume of solvent that is miscible with the pore fluid. This paper reports the results of solvent replacement measurements on several blended cements mixed at a solution:solids ratio of 1.0 with alkaline solutions from the simulation of the off- gas treatment system in a vitrification facility treating low-level radioactive liquid wastes. The results show that these samples have a lower permeability than ordinary portland cement samples mixed at a water:solids ratio of 0.70, despite having a higher volume of porosity. The microstructure is changed by these alkaline solutions, and these changes have important consequences with regard to durability.

  14. Immobilization of low and intermediate level of organic radioactive wastes in cement matrices.

    PubMed

    Eskander, S B; Abdel Aziz, S M; El-Didamony, H; Sayed, M I

    2011-06-15

    The adequacy of cement-clay composite, for solidification/stabilization of organic radioactive spent liquid scintillator wastes and its resistance to frost attack were determined by a freezing/thawing (F/T) test. Frost resistance is assessed for the candidate cement-clay composite after 75 cycles of freezing and thawing by evaluating their mass durability index, compressive strength, apparent porosity, volume of open pores, water absorption, and bulk density. Infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM) were performed for the final waste form (FWF) before and after the F/T treatment to follow the changes that may take place in its microstructure during the hydration regime. The results were obtained indicate that the candidate composite exhibits acceptable resistance to freeze/thaw treatment and has adequate suitability to solidify and stabilize organic radioactive spent liquid scintillator wastes even at very exaggerating conditions (-50°C and +60°C). PMID:21536381

  15. New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste

    NASA Astrophysics Data System (ADS)

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2001-12-01

    A new aluminium-rich alkali-activated slag matrix (M-AAS) with clay absorbents has been developed for immobilization of simulated radioactive Sr or Cs waste by introducing metakaolin, natural zeolite and NaOH-treated attapulgite clay minerals into alkali-activated slag matrix (AAS). The results revealed that the additions of metakaolin and clay absorbents into the cementitious matrixes would greatly enhance the distribution ratio, Rd, of selective adsorption whether the matrix was OPC matrix or AAS matrix. The new immobilizing matrix M-AAS not only exhibited the strongest selective adsorption for both Sr and Cs ions, but also was characterized by lower porosity and small pore diameter so that it exhibited the lowest leaching rate. Hydration product analyses also demonstrated that (Na+Al)-substituted C-S-H(I) and self-generated zeolite were major hydration products in the M-AAS matrix, which provided this new immobilizing matrix with better selective adsorption on Sr and Cs and lower leaching rate.

  16. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-12-31

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy`s Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  17. Immobilization of organic liquid wastes

    SciTech Connect

    Greenhalgh, W.O.

    1985-08-07

    This report describes a portland cement immobilization process for the disposal treatment of radioactive organic liquid wastes which would be generated in a a FFTF fuels reprocessing line. An incineration system already on-hand was determined to be too costly to operate for the 100 to 400 gallons per year organic liquid. Organic test liquids were dispersed into an aqueous phosphate liquid using an emulsifier. A total of 109 gallons of potential and radioactive aqueous immiscible organic liquid wastes from Hanford 300 Area operations were solidified with portland cement and disposed of as solid waste during a 3-month test program with in-drum mixers. Waste packing efficiencies varied from 32 to 40% and included pump oils, mineral spirits, and TBP-NPH type solvents.

  18. Comparison of borosilicate glass and synthetic minerals as media for the immobilization of high-level radioactive waste

    SciTech Connect

    Tempest, P.A.

    1981-03-01

    In this paper, the structure and properties of the different solid forms currently being developed for high-level radioactive waste disposal are compared. Good capacity to accept all the elements in the waste and flexibility of composition range to accommodate variations in the waste, are primarily discussed. 13 refs.

  19. Effect of the Compaction Pressure and Ni Content on the Modified Aluminum-Based Perovskite Synthesis Designed to Immobilize the Radioactive Waste in Combustion Mode

    NASA Astrophysics Data System (ADS)

    Tarasova, E. S.; Dolmatov, O. Yu; Isachenko, D. S.; Permikin, A. A.; Semenov, A. O.

    2016-06-01

    The article deals with the synthesis of perovskite-like ceramics matrix material for immobilization of radioactive waste by SHS method. The dependence of the compaction pressure on the synthesis of the samples was established. Synthesis conditions for the matrix with the desired properties of the composition were determined that is acceptable for reliable isolation of radionuclides throughout the long-term storage of waste. The maximum amount of aluminum perovskite is observed when the initial mixture compaction pressure equal to 30 MPa and 25% wt. Nickel.

  20. High-level-waste immobilization

    SciTech Connect

    Crandall, J L

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form.

  1. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  2. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  3. Radioactive waste shredding: Preliminary evaluation

    SciTech Connect

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size.

  4. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  5. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix). PMID:26310021

  6. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  7. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  8. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  9. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  10. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  11. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  12. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOEpatents

    Schulz, Wallace W.; Dressen, A. Louise

    1977-04-26

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

  13. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  14. A THERMAL MODEL OF THE IMMOBILIZATION OF LOW-LEVEL RADIOACTIVE WASTE AS GROUT IN CONCRETE VAULTS

    SciTech Connect

    Shadday, M

    2008-10-27

    Salt solution will be mixed with cement and flyash/slag to form a grout which will be immobilized in above ground concrete vaults. The curing process is exothermic, and a transient thermal model of the pouring and curing process is herein described. A peak temperature limit of 85 C for the curing grout restricts the rate at which it can be poured into a vault. The model is used to optimize the pouring.

  15. Method for immobilizing radioactive iodine

    DOEpatents

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  16. Characteristics of Cast Stone cementitious waste form for immobilization of secondary wastes from vitrification process

    NASA Astrophysics Data System (ADS)

    Chung, Chul-Woo; Um, Wooyong; Valenta, Michelle M.; Sundaram, S. K.; Chun, Jaehun; Parker, Kent E.; Kimura, Marcia L.; Westsik, Joseph H.

    2012-01-01

    The high-temperature in vitrification process of radioactive wastes could cause radioactive technetium ( 99Tc) in secondary liquid wastes to become volatile. Solidified cementitious waste forms at low temperature were developed to immobilize radioactive secondary waste. This research focuses on the characterization of a cementitious waste form called Cast Stone. Properties including compressive strength, surface area, phase composition, and technetium leaching were measured. The results indicate that technetium diffusivity is affected by simulant type. Additionally, ettringite and AFm (Al 2O 3-Fe 2O 3-mono) main crystalline phases were formed during hydration. The Cast Stone waste form passed the qualification requirements for a secondary waste form, which are compressive strength of 3.45 MPa and technetium diffusivity of 10 -9 cm 2/s. Cast Stone was found to be a good candidate for immobilizing secondary waste streams.

  17. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  18. Uranium immobilization and nuclear waste

    SciTech Connect

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  19. Waste Handling Practices for the Plutonium Immobilization Plant

    SciTech Connect

    Severynse, T.F.

    2000-08-04

    Solid waste handling operations refers to all activities associated with the segregation, collection, packaging, assay, storage, and removal of solid radioactive waste from radiological facilities. The Plutonium Immobilization Plant (PIP) is expected to generate the following types of radiological waste, as defined in WSRC Manual 1S, ''Waste Acceptance Criteria'': Low level waste; Mixed hazardous waste; TRU waste; and Mixed TRU waste. Historically, waste handling activities have been demanding proportionately larger amounts of labor, time, and space to effectively manage waste in accordance with increasing regulatory requirements. Since the PIP will be designed for an annual throughput of five metric tonnes plutonium, the facility waste handling operations can be expected to have at least twice the impact of such operations at existing facilities.

  20. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  1. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  2. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  3. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  4. Permitting plan for the immobilized low-activity waste project

    SciTech Connect

    Deffenbaugh, M.L.

    1997-09-04

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ``the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.`` It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site`s low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste.

  5. Final disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  6. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  7. Immobilization and geological disposal of nuclear fuel waste.

    PubMed

    Tait, J C

    1984-08-01

    The Canadian Nuclear Fuel Waste Management Program is developing methods for the safe disposal of both used nuclear fuel and fuel recycle waste. The disposal strategy is based on interim storage of the used fuel, immobilization of either used fuel or recycle waste, and disposal, deep in a stable geological formation in the Canadian Shield. The disposal concept proposes a multibarrier system to inhibit the release of the radioactive waste from the disposal vault. The principal components of the multibarrier system are (i) the waste form in which the radionuclides are immobilized, (ii) engineered barriers including high integrity containers, buffers and backfills designed to retard the movement of groundwaters in the disposal vault, and (iii) the natural barrier provided by the massive geological formation itself. The research programs to investigate this concept are discussed briefly. Several different waste forms are being developed for the immobilization of high-level fuel recycle waste, including glass, glass-ceramics and crystalline materials. Dissolution of these materials in groundwater is the only likely scenario that could lead to radionuclide release. The factors that influence the aqueous dissolution behaviour of these materials are reviewed. PMID:6488089

  8. Radioactive Waste Management

    NASA Astrophysics Data System (ADS)

    Baisden, P. A.; Atkins-Duffin, C. E.

    Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

  9. Immobilization of plutonium-containing waste into borobasalt, piroxen and andradite mineral-like compositions

    NASA Astrophysics Data System (ADS)

    Matyunin, Yu. I.; Yudintsev, S. V.; Jardine, L. J.

    2000-07-01

    Immobilization of plutonium-containing waste with obtaining stable and solid compositions is one of the problems that require a solution while managing radioactive waste. At VNIINM work is under way to select and synthesize matrix compositions for the immobilization of various-origin plutonium waste with the use of a cold crucible induction melting technology (CCIM). This paper presents information on the synthesis in a muffle furnace and in the CCIM zerium-, uranium- and plutonium-containing borobasalt, piroxen and andradite materials.

  10. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  11. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOEpatents

    Schulz, W.W.; Dressen, A.L.

    1975-11-21

    A method is described for converting complex radioactive ferrocyanide compounds of /sup 134/Cs and /sup 137/Cs to immobile glass that is resistant to leaching by water. The /sup 134/Cs and /sup 137/Cs are separated from nuclear waste solutions by precipitation from alkaline solutions by the addition of a soluble Ni/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, UO/sub 2//sup 2 +/, or Mn/sup 2 +/ and K/sub 4/Fe(CN)/sub 6/. The dried, finely ground precipitate is mixed with Na/sub 2/CO/sub 3/ and a mixture of (a) basalt and B/sub 2/O/sub 3/ or (b) SiO/sub 2/ and CaO, melted, and allowed to solidify. (BLM)

  12. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  13. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  14. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    SciTech Connect

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  15. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    SciTech Connect

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.

  16. Sorting of solid radioactive wastes

    SciTech Connect

    Marek, J.; Pecival, I.; Hejtman, J.; Wildman, J.; Cechak, T.

    1993-12-31

    In the nuclear power plants solid radioactive wastes are produced during regular operation and during small repairs. It is necessary to sort them into the highly contaminated wastes for which a special procedure for storage is necessary and waste that is not radioactive and can be stored in the environment under specific regulations. The aim of the project was to propose and to construct equipment, which is able to sort the waste with a high degree of reliability and to distinguish highly contaminated wastes from wastes which are less dangerous to the environment. The sensitivity of the detection system was tested by a mathematical model. The radioactive wastes from the primary part of the nuclear power plant can have three composition types. Details of the composition of the radioisotopes mixture are presented.

  17. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  18. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  19. Characterization of a ceramic waste form encapsulating radioactive electrorefiner salt

    SciTech Connect

    Moschetti, T. L.; Sinkler, W.; DiSanto, T.; Noy, M.; Warren, A. R.; Cummings, D. G.; Johnson, S. G.; Goff, K. M.; Bateman, K. J.; Frank, S. M.

    1999-11-11

    Argonne National Laboratory has developed a ceramic waste form to immobilize radioactive waste salt produced during the electrometallurgical treatment of spent fuel. This study presents the first results from electron microscopy and durability testing of a ceramic waste form produced from that radioactive electrorefiner salt. The waste form consists of two primary phases: sodalite and glass. The sodalite phase appears to incorporate most of the alkali and alkaline earth fission products. Other fission products (rare earths and yttrium) tend to form a separate phase and are frequently associated with the actinides, which form mixed oxides. Seven-day leach test results are also presented.

  20. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF

  1. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  2. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  3. In situ electrochemical characterization of grouted radioactive waste

    SciTech Connect

    Gu, Jingyan; Shen, Wu-Mian; Tomkiewicz, Micha; Kruger, A.A.

    1993-04-01

    At the Hanford Site, twenty-eight double-shell tanks (DST) and one hundred and forty nine single-shell tanks (SST) are used for storage of radioactive liquid and sludge wastes and sat cake. A fundamental goal of the Westinghouse Hanford Company is to end the current storage practice for liquid wastes and to permanently dispose of the waste. The Hanford Defense Waste Environmental Impact Statement and subsequent record of decision has identified a cement-based waste form for disposal of DST low-level liquid waste. The low level radioactive fractions of these wastes will be immobilized in a cementitious grout at the Hanford Grout Processing Facility and disposed of in concrete vaults of the Grout Disposal Facility. Prior to closing each vault, postcuring verification will show that the final product meets the performance requirements. Any long term disposal system of radioactive waste will require monitoring to warn against structural deterioration and/or leach of the radioactive or hazardous components into the environment. We are investigating the possibility of monitoring the degree of immobilization of the waste by embedding a grid of long-lasting electrodes in grout. This work describes our ongoing attempts to understand the physics and chemistry of charge carriers in the grout under various load conditions.

  4. Radioactive waste management

    SciTech Connect

    Flax, S.J.

    1981-01-01

    This article examines the technical and legal considerations of nuclear waste management. The first three sections describe the technical aspects of spent-fuel-rod production, reprocessing, and temporary storage. The next two sections discuss permanent disposal of high-level wastes and spent-fuel rods. Finally, legislative and judicial responses to the nuclear-waste crisis.

  5. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  6. Vitrification of radioactive wastes

    SciTech Connect

    McIntosh, T.; Bibler, N.; Weber, T.

    1993-12-31

    The United States and Russia are conducting joint technology exchanges on the vitrification of high-level wastes at the Chelyabinsk-65 site in Russia and the Savannah River site in the United States. These activities are part of a larger program of exchanges provided for by a Memorandum of Cooperation (MOC) between the US and the USSR in the fields of Environmental Restoration and Waste Management that was signed in the fall of 1990. An agreement to exchange information in the vitrification area was concluded during a visit by a DOE delegation to Chelyabinsk-65 in the fall of 1991. Samples of simulated high-level waste glass and the leach test procedures used by each country were to be exchanged. The results of studies based on leaching the simulated high-level waste glasses, and potential future work in the area of vitrification, to include advanced concepts, will be discussed.

  7. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  8. Immobilization of IFR salt wastes in mortar

    SciTech Connect

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

  9. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  10. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Watson, David B; Gu, Baohua; Brooks, Scott C; Kelly, Shelly D; Kemner, Kenneth M; Van Nostrand, Joy; Wu, Liyou; Zhou, Jizhong; Luo, Jian; Cardenas, Erick; Fields, Matthew Wayne; Marsh, Terence; Tiedje, James; Green, Stefan; Kostka, Joel; Kitanidis, Peter K.; Jardine, Philip; Criddle, Craig

    2011-01-01

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

  11. Public attitudes about radioactive waste

    SciTech Connect

    Bisconti, A.S.

    1992-12-31

    Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public`s changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impression is misleading, and I`d like to share research findings with you today that give a broader perspective.

  12. Immobilized microbe bioreactors for waste water treatment.

    PubMed

    Portier, R J; Miller, G P

    1991-10-01

    The application of adapted microbial populations immobilized on a porous diatomaceous earth carrier to pre-treat and reduce toxic concentration of volatile organics, pesticides, petroleum aliphatics and aromatics has been demonstrated for several industrial sites. In the pre-treatment of industrial effluents and contaminated groundwaters, these bioreactors have been used to optimize and reduce the cost of conventional treatment systems, i.e. steam stripping, carbon adsorption and traditional biotreatment. Additionally, these systems have been employed as seeding devices for larger biotreatment systems. The cost effective utilization of an immobilized microbe reactor system for water supply regeneration in a microgravity environment is presented. The feasibility of using immobilized biomass reactors as an effluent treatment technology for the biotransformation and biodegradation of phenols, chlorinated halocarbons, residual oils and lubricants was evaluated. Primary biotransformation tests of two benchmark toxicants, phenol and ethylene dichloride at concentrations expected in life support effluents were conducted. Biocatalyst supports were evaluated for colonization potential, surface and structural integrity, and performance in continuous flow bioreactors. The implementation of such approaches in space will be outlined and specific areas for interfacing with other non-biological treatment approaches will be considered for advanced life support, tertiary waste water biotreatment. PMID:11537697

  13. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  14. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    SciTech Connect

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G.; Adamson, Duane J.; Herman, Connie C.; Peeler, David K.

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  15. Radioactive Waste Management BasisApril 2006

    SciTech Connect

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Waste immobilization process development at the Savannah River Plant

    SciTech Connect

    Charlesworth, D L

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

  17. Radioactive waste treatment technologies and environment

    SciTech Connect

    HORVATH, Jan; KRASNY, Dusan

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  18. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGESBeta

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; Edwards, Thomas

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  19. Lanthanide titanates as promising matrices for immobilization of actinide wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.

    2015-02-01

    The samples on the basis of Ln2Ti2O7 and Ln4Ti9O24 lanthanide titanates were obtained by compacting-sintering and melting-crystallization processes. The substances as such are promising as immobilizing matrices for the rare earth-actinide fraction of wastes of the treatment of used nuclear fuel. The content of simulators of the rare earth-actinide fraction in the obtained phases was as high as 50 mass % or more. The phases were characterized by a narrow range of variations of their composition. The admixtures of zirconium and aluminum caused the formation of zirconolite; the excess of titanium resulted in the formation of rutile or rhombic titanate (in the cases of Ln4Ti9O24 and Ln2Ti2O7, respectively). The use of these crystalline matrices for immobilization of long-lived radionuclides should provide a considerable decrease in the volume of solidified radioactive wastes to be disposed in deep-seated storage.

  20. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  1. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  2. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    SciTech Connect

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

  3. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    SciTech Connect

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  4. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  5. Radioactive Waste Management BasisSept 2001

    SciTech Connect

    Goodwin, S S

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  7. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    SciTech Connect

    Marra, S.L.; Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  8. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  9. Method for solidifying radioactive wastes

    SciTech Connect

    Dippel, T.; Loida, A.

    1985-08-13

    A process is claimed for solidifying radioactive wastes by producing compact blocks which are to be disposed in transporting or permanent storage containers. The compact blocks are produced from prefabricated ceramic tablets which contain radioactive substances and a matrix which continuously surrounds these ceramic tablets and is solid in its final state. Glass powder or a mixture of oxidic non-clay minerals or a mixture of both is used as the matrix material. The ceramic tablets and the matrix material are filled into the container and are compressed. The resulting compressed mixture is heated to a temperature in the range from 1423/sup 0/ K. to 1623/sup 0/ K., is held at this temperate range for one to three hours, and is finally gradually cooled to room temperature.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Ramsey, W.G.; Cicero-Herman, C.A.; Bickford, D.F.

    1999-09-28

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140 C to about 210 C for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  12. Radioactive liquid waste treatment facility

    SciTech Connect

    Black, R.L.

    1984-07-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) at Argonne National Laboratory-West (ANL-W) in Idaho provides improved treatment for low-level aqueous waste compared to conventional systems. A unique, patented evaporated system is used in the RLWTF. SHADE (shielded hot air drum evaporator, US Patent No. 4,305,780) is a low-cost disposable unit constructed from standard components and is self-shielded. The results of testing and recent operations indicate that evaporation rates of 2 to 6 gph (8 to 23 L/h) can be achieved with a single unit housed in a standard 30-gal (114-L) drum container. The operating experience has confirmed the design evaporation rate of 60,000 gal (227,000 L) per year, using six SHADE's. 2 references, 2 figures, 2 tables.

  13. Microbiological treatment of radioactive wastes

    SciTech Connect

    Francis, A.J.

    1992-12-31

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

  14. Alternatives generation and analysis report for immobilized low-level waste interim storage architecture

    SciTech Connect

    Burbank, D.A., Westinghouse Hanford

    1996-09-01

    The Immobilized Low-Level Waste Interim Storage subproject will provide storage capacity for immobilized low-level waste product sold to the U.S. Department of Energy by the privatization contractor. This report describes alternative Immobilized Low-Level Waste storage system architectures, evaluation criteria, and evaluation results to support the Immobilized Low-Level Waste storage system architecture selection decision process.

  15. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  16. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    SciTech Connect

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-07-07

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

  17. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  18. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  19. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  20. Technology applications for radioactive waste minimization

    SciTech Connect

    Devgun, J.S.

    1994-07-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry.

  1. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    SciTech Connect

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  2. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  3. Portland cement: A solidification agent for low-level radioactive waste

    SciTech Connect

    McConnell, J.W. Jr.

    1991-10-01

    This bulletin discusses the solidification of waste streams using portland-type cement to provide the structural stability required by 10 CFR 61. Portland cement has been used in this role since early in the commercial nuclear program as a simple and inexpensive solidification medium for immobilization of radioactive wastes. Through the use of additives, most waste streams can be satisfactorily immobilized with portland cement. However, some problem waste streams can not be solidified with portland cement at this time, and those are discussed in this document.

  4. Confinement matrices for low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

    2012-02-01

    Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow

  5. Phosphate bonded solidification of radioactive incinerator wastes

    SciTech Connect

    Walker, B. W.; Langton, C. A.; Singh, D.

    1999-12-03

    The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

  6. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  7. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  8. Radioactive waste processing: Vitrification. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations concerning the processing of radioactive wastes by vitrification (the formation of a glassy material to immobilize radioactive nuclides). In-situ vitrification; proposed glass compositions; glass properties including degradation, leachability, and physical strength; and vitrification processes are discussed. Full-scale vitrification plants and international waste vitrification programs are described. Solidification of radioactive waste with borosilicate glass and synthetic rock or cement and asphalt is discussed in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Radioactive waste processing: Vitrification. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the processing of radioactive wastes by vitrification (the formation of a glassy material to immobilize radioactive nuclides). In-situ vitrification; proposed glass compositions; glass properties including degradation, leachability, and physical strength; and vitrification processes are discussed. Full-scale vitrification plants and international waste vitrification programs are described. Solidification of radioactive waste with borosilicate glass and synthetic rock or cement and asphalt is discussed in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Evaluation of Terrorist Interest in Radioactive Wastes

    SciTech Connect

    McFee, J.N.; Langsted, J.M.; Young, M.E.; Day, J.E.

    2006-07-01

    Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in a terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the

  11. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    SciTech Connect

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  12. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  13. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  14. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  15. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  16. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  17. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    SciTech Connect

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as /sup 14/CO/sub 2/, /sup 14/CH/sub 4/, HT, and CH/sub 3/T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables.

  18. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  19. Immobilization of radioactive iodine in silver aluminophosphate glasses.

    PubMed

    Lemesle, Thomas; Méar, François O; Campayo, Lionel; Pinet, Olivier; Revel, Bertrand; Montagne, Lionel

    2014-01-15

    Silver aluminophosphate glasses have been investigated as matrices for the immobilization of radioactive iodine. In this study, up to 28mol% AgI have been incorporated without volatilization thanks to a low temperature synthesis protocol. Alumina was added in the composition in order to increase the glass transition temperature for a better thermal stability in a repository conditions. Two series of glasses have been investigated, based on AgPO3 and Ag5P3O10 compositions, and with 0-5mol% Al2O3. We report (31)P, (27)Al and (109)Ag NMR study of these glasses, including advanced measurement of the connectivities through {(27)Al}-(31)P cross-polarization and (31)P-(31)P double-quantum correlation. We confirm that AgI is inserted in the aluminophosphate glasses and does not form clusters. AgI does not induce any modification of the glass polymerization but only an expansion of the network. Despite no evidence for crystallization could be obtained from XRD, NMR revealed that the introduction of AgI induces an exclusion of alumina from the network, leading to the crystallization of aluminophosphate phases such as Al(PO3)3 or AlPO4. As a consequence, despite NMR gives evidence for the presence of aluminophosphate bonds, only a limited effect of alumina addition on thermal properties is observed. PMID:24295764

  20. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  1. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  2. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  3. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  4. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  5. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    SciTech Connect

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  7. Nondestructive assay of boxed radioactive waste

    SciTech Connect

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  8. Apparatus and method for radioactive waste screening

    DOEpatents

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  9. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  10. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  11. 75 FR 81250 - Pulse Jet Mixing at the Waste Treatment and Immobilization Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SAFETY BOARD Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Defense Nuclear... the use of pulse jet mixing at the Waste Treatment and Immobilization Plant located in Washington... to the Secretary of Energy Pulse Jet Mixing at the Waste Treatment and Immobilization Plant...

  12. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  13. Hazardous and radioactive waste incineration studies

    NASA Astrophysics Data System (ADS)

    Vavruska, J. S.; Stretz, L. A.; Borduin, L. C.

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood.

  14. Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste

    SciTech Connect

    Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.; Wood, D.J.

    1999-06-01

    The presence of long-lived radionuclides presents a challenge to the management of radioactive wastes. Immobilization of these radionuclides must be accomplished prior to long-term, permanent disposal. Separation of the radionuclides from the waste solutions has the potential of significantly decreasing the costs associated with the immobilization and disposal of the radioactive waste by minimizing waste volumes. Several solvent extraction processes have been developed and demonstrated at the Idaho National Engineering and Environmental Laboratory for the separation of transuranic element (TRUs), {sup 90}Sr, and/or {sup 137}Cs from acidic radioactive waste solutions. The Transuranic Extraction (TRUEX) and phosphine oxide (POR) processes for the separation of TRUs, the Strontium Extraction (SREX) process for the separation of {sup 90}Sr, the chlorinated cobalt dicarbollide (ChCoDiC) process for the separation of {sup 137}Cs and {sup 90}Sr, and a universal solvent extraction process for the simultaneous separation of TRUs, {sup 90}Sr, and {sup 137}Cs have all been demonstrated in centrifugal contactors using actual radioactive waste solutions. This article summarizes the most recent results of each of the flowsheet demonstrations and allows for comparison of the technologies. The successful demonstration of these solvent extraction processes indicates that they are all viable for the treatment of acidic radioactive waste solutions.

  15. Geohazards due to technologically enhanced natural radioactive wastes

    NASA Astrophysics Data System (ADS)

    Steinhäusler, Friedrich

    2010-10-01

    Human activities can modify naturally occurring radioactive material (NORM) into technologically enhanced naturally occurring radioactive material (TENORM) as a result of industrial activities. Most of these industries do not intend to work with radioactive material a priori. However, whenever a uranium- or thorium-bearing mineral is exploited, NORM-containing by-products and TENORM-contaminated wastes are created. The industrial use of NORM can result in non-negligible radiation exposure of workers and members of the public, exceeding by far the radiation exposure from nuclear technologies. For decades, millions of tons of NORM have been released into the environment without adequate control or even with the lack of any control. Various technologies have been developed for the control of NORM wastes. The paper discusses the merits and limitations of different NORM-waste management techniques, such as Containment, Immobilization, Dilution/Dispersion, Natural Attenuation, Separation, and - as an alternative - Cleaner Technologies. Each of these methods requires a comprehensive risk-benefit-cost analysis.

  16. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  17. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  18. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  19. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from...

  20. Utilization of immobilized urease for waste water treatment

    NASA Technical Reports Server (NTRS)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  1. Ion removal from waste water using immobilized adsorbents

    SciTech Connect

    Isaacson, A.E.; Jeffers, T.H.

    1995-12-31

    This paper summarizes experiments investigating the removal of various anions from dilute aqueous streams using mixtures of ferric hydroxide and peat moss immobilized in porous polymer beads. Cyclic load-strip tests were conducted at aqueous-to-bead radios of 20, 10, and 5 for loading, stripping, and conditioning, respectively. Beads were stripped with a sodium hydroxide solution and regenerated with a dilute acid. Waste waters containing arsenic, chromium, molybdenum, selenium, tungsten, and vanadium were tested. The maximum waste loading on the beads was determined for each waste water; experimental isotherms are presented.

  2. Immobilized low-level waste disposal options configuration study

    SciTech Connect

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  3. Phase 1 immobilized low-activity waste operational source term

    SciTech Connect

    Burbank, D.A.

    1998-03-06

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

  4. Public involvement in radioactive waste management decisions

    SciTech Connect

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  5. Design and installation of a laboratory-scale system for radioactive waste treatment

    SciTech Connect

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter.

  6. Improvement to low-level radioactive-waste vitrification processes. Master's thesis

    SciTech Connect

    Horton, W.S.

    1986-05-01

    Low-level radioactive waste vitrification (LLWV) is a technically feasible and cost-competitive alternative to the traditional immobilization options, i.e., cementation or bituminization. This thesis analyzes cementation, bituminization and vitrification, reviews the impact of the low-level Waste-stream composition on the vitrification process, then proposes and discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV). The techniques that control the volatile radionuclides include chemical precipitation, electrodialysis, and ion exchange. Ion exchange is preferred. A comparison of the technical specifications, of the regulatory compliance, and of the cost considerations shows the PILLWV to be the superior LLW immobilization option.

  7. Geochemical aspects of radioactive waste disposal

    SciTech Connect

    Brookins, D.G.

    1984-01-01

    The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

  8. Radioactive waste management in the former USSR

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  9. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  10. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    SciTech Connect

    Dziewinska, K.M.

    1998-09-28

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

  11. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar. PMID:15212272

  12. Annual Summary of Immobilized Low Activity Tank Waste (ILAW) Performance Assessment

    SciTech Connect

    MANN, F M

    2000-05-01

    As required by the Department of Energy (DOE) order on radioactive waste management (DOE 1999a) as implemented by the Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (Mann 2000a), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) must be submitted to DOE headquarters each year that a performance assessment is not submitted. Considering the results of data collection and analysis, the conclusions of the 1998 version of the ILAW PA (Mann 1998) as conditionally approved (DOE 1999b) remain valid, but new information indicates more conservatism in the results than previously estimated. A white paper (Mann 2000b) is attached as Appendix A to justify this statement. Recent ILAW performance estimates used on the waste form and geochemical data have resulted in increased confidence that the disposal of ILAW will meet performance objectives. The ILAW performance assessment program will continue to interact with science and technology activities, disposal facility design staff, and operations, as well as to continue to collect new waste form and disposal system data to further increase the understanding of the impacts of the disposal of ILAW. The next full performance assessment should be issued in the spring of 2001.

  13. Curing time effect on the fraction of {sup 137}Cs from immobilized radioactive evaporator sludge by cement

    SciTech Connect

    Dimovic, Slavko; Plecas, Ilija

    2007-07-01

    Available in abstract form only. Full text of publication follows: Traditional methods of processing evaporator concentrates from NPP are evaporation and cementation. These methods allow to transform a liquid radioactive waste into the rather inert form, suitable for a final disposal. To assess the safety for disposal of radioactive mortar-waste composition, the leaching of {sup 137}Cs from immobilized radioactive evaporator concentrate into a surrounding fluid has been studied. Leaching tests were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates Rn(cm/d) of {sup 137}Cs from evaporator concentrates after 180 days were measured. The results presented in this paper are examples of results obtained in a 20-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing center. (authors)

  14. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  15. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  16. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  17. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  18. Annual radioactive waste tank inspection program - 1992

    SciTech Connect

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  19. Annual Radioactive Waste Tank Inspection Program 1994

    SciTech Connect

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  20. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  1. Annual Radioactive Waste Tank Inspection Program - 1997

    SciTech Connect

    McNatt, F.G.

    1998-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  2. Annual radioactive waste tank inspection program - 1999

    SciTech Connect

    Moore, C.J.

    2000-04-14

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  3. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  4. Annual radioactive waste tank inspection program - 1996

    SciTech Connect

    McNatt, F.G.

    1997-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  5. Annual radioactive waste tank inspection program: 1995

    SciTech Connect

    McNatt, F.G. Sr.

    1996-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  6. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    SciTech Connect

    N /A

    2003-04-11

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

  7. Method of treating radioactively contaminated solvent waste

    SciTech Connect

    Jablonski, W.; Mallek, H.; Plum, W.

    1981-07-07

    A method of and apparatus for treating radioactively contaminated solvent waste are claimed. The solvent waste is supplied to material such as peat, vermiculite, diaton, etc. This material effects the distribution or dispersion of the solvent and absorbs the foreign substances found in the solvent waste. Air or an inert gas flows through the material in order to pick up the solvent portions which are volatile as a consequence of their vapor pressure. The thus formed gas mixture, which includes air or inert gas and solvent portions, is purified in a known manner by thermal, electrical, or catalytic combustion of the solvent portions.

  8. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so

  9. Radioactive Waste Burial Grounds. Environmental Information Document

    SciTech Connect

    Jaegge, W.J.; Kolb, N.L.; Looney, B.B.; Marine, I.W.; Towler, O.A.; Cook, J.R.

    1987-03-01

    This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations. The closure options considered for the Radioactive Waste Burial Grounds are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  10. Soluble pig for radioactive waste transfer lines

    SciTech Connect

    Ohl, P.C., Westinghouse Hanford

    1996-12-02

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) materials research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs.

  11. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  12. Greater confinement disposal of radioactive wastes

    SciTech Connect

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics.

  13. Ceramic process and plant design for high-level nuclear waste immobilization

    SciTech Connect

    Grantham, L.F.; McKisson, R.L.; De Wames, R.E.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    In the last 3 years, significant advances in ceramic technology for high-level nuclear waste solidification have been made. Product quality in terms of leach-resistance, compositional uniformity, structural integrity, and thermal stability promises to be superior to borosilicate glass. This paper addresses the process effectiveness and preliminary designs for glass and ceramic immobilization plants. The reference two-step ceramic process utilizes fluid-bed calcination (FBC) and hot isostatic press (HIP) consolidation. Full-scale demonstration of these well-developed processing steps has been established at DOE and/or commercial facilities for processing radioactive materials. Based on Savannah River-type waste, our model predicts that the capital and operating cost for the solidification of high-level nuclear waste is about the same for the ceramic and glass options. However, when repository costs are included, the ceramic option potentially offers significantly better economics due to its high waste loading and volume reduction. Volume reduction impacts several figures of merit in addition to cost such as system logistics, storage, transportation, and risk. The study concludes that the ceramic product/process has many potential advantages, and rapid deployment of the technology could be realized due to full-scale demonstrations of FBC and HIP technology in radioactive environments. Based on our finding and those of others, the ceramic innovation not only offers a viable backup to the glass reference process but promises to be a viable future option for new high-level nuclear waste management opportunities.

  14. Control of radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F. ); Hrma, P. ); Bowan, B.W. II )

    1990-01-01

    Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

  15. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  16. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    SciTech Connect

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Rodriguez, Carmen P.; Hrma, Pavel R.; Kim, Dong-Sang; Lukens, Wayne W.; Kruger, Albert A.

    2012-10-26

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between their ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  18. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. ); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. )

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  19. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    SciTech Connect

    Kim, K.H.; Ammons, J.T. . Dept. of Plant and Soil Science); Lee, S.Y. )

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for {sup 90}Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of {sup 90}Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially {sup 85}Sr-contaminated acid soil as well as {sup 90}Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl{sub 2} solution. Most of the {sup 85}Sr coprecipitated with the metal phosphate compounds. Immobilization of {sup 85}Sr and {sup 90}Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected {sup 85}Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for {sup 90}Sr-contaminated sites. 15 refs., 3 figs., 1 tab.

  20. Hanford immobilized low-activity tank waste performance assessment

    SciTech Connect

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  1. Geological problems in radioactive waste isolation

    SciTech Connect

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  2. Incorporation of radioactive wastes into styrenated polyester

    SciTech Connect

    Ikladious, N.E.; Ghattas, N.K.; Eskander, S.B.

    1986-01-01

    Styrenated polyester (poly(oxydiethylene maleate)) is examined as a medium for immobilization of simulated spent-ion exchange resin used at Inshas Reactor (Egypt). Compressive strength and hardness values illustrated the stability of the final products towards radiation. TG, DTG, and DTA diagrams showed the thermal instability of the final waste form at about 375/sup 0/C. Leaching experiment on incorporated blocks of active resin labelled with /sup 137/Cs, /sup 144/Ce, and /sup 106/Ru showed that the cumulative leaching rate for Ce is lower than those for Ru and Cs.

  3. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  5. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  6. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater

  7. IRON-PHOSPHATE GLASS FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect

    KRUGER AA; HRMA PR; XU K; CHOI J; UM W; HEO J

    2012-03-19

    Technetium-99 (Tc-99) can bring a serious environmental threat because of its high fission yield, long half-life, and high solubility and mobility in the ground water. The present work investigated the immobilization of Tc-99 (surrogated by Re) by heat-treating mixtures of an iron-phosphate glass with 1.5 to 6 wt.% KReO{sub 4} at {approx}1000 C. The Re retention in the glass was as high as {approx}1.2 wt. % while the loss of Re by evaporation during melting was {approx}50%. Re was uniformly distributed within the glass. The normalized Re release by the 7-day Product Consistency Test was {approx}0.39 g/m{sup 2}, comparable with that in phosphate-bonded ceramics and borosilicate glasses. These results suggest that iron-phosphate glass can provide a good matrix for immobilizing Tc-99.

  8. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  9. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  10. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    SciTech Connect

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased.

  11. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    SciTech Connect

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.; Strachan, Denis M.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides are chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.

  12. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense

  13. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  14. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  15. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  17. Glass Formulations for Immobilizing Hanford Low-Activity Wastes

    SciTech Connect

    Kim, Dong-Sang; Elliott, Michael L.; Smith, Harry D.; Bagaasen, Larry M.; Hrma, Pavel R.

    2006-02-28

    Researchers at Pacific Northwest National Laboratory (PNNL) are developing and testing glasses for immobilizing low-activity wastes (LAW) for the full Hanford mission. PNNL is performing testing for low-activity waste glasses for both the Hanford Waste Treatment Plant (WTP) and the Bulk Vitrification Plant. The objective of this work is to increase the waste content of the glasses and ultimately increase the waste throughput of the LAW vitrification plants. This paper focuses on PNNL’s development and testing of glasses for the Bulk Vitrification process. Bulk Vitrification was selected as a potential supplemental treatment to accelerate the cleanup of LAW at Hanford. Also known as In-Container Vitrification™ (ICV™), the Bulk Vitrification process combines soil, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a batch process in a refractory lined box. The process was developed by AMEC Earth and Environmental, Inc. (AMEC). Working with AMEC, PNNL developed a glass formulation that could incorporate a broad range of Hanford LAW. The initial glass development involved a “nominal” waste composition, and a baseline glass was formulated and tested at crucible, engineering, and full scales. The performance of the baseline glass was then verified using a battery of laboratory tests as well as engineering-scale and full-scale ICV™ tests. Future testing is planned for optimizing the glass waste loading and qualifying a broader range of waste streams for treatment in the Bulk Vitrification process. This paper reviews the glass development and qualification process completed to date. This includes several series of crucible studies as well as confirmation testing at engineering-scale and full-scale. This formulation paper complements information presented by AMEC in an ICV™ processing paper.

  18. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Radioactive waste injection wells....

  19. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Radioactive waste injection wells....

  20. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Radioactive waste injection wells....

  1. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells....

  2. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high level and transuranic waste and spent nuclear fuel covered by 40 CFR part 191) shall comply with the... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Radioactive waste injection wells....

  3. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  4. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  5. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  6. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

  7. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    SciTech Connect

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

  9. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  10. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  11. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  12. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  13. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  14. Radioactive Waste Packaging of Conditioned Waste at Kozloduy NPP Site

    SciTech Connect

    Genchev, G.; Dimov, D.; Russev, K.

    2006-07-01

    An important part of Safety Management of conditioned low and intermediate level Radioactive Waste (RAW) is their packaging and containers for transport, storage and final disposal. A reinforced concrete container (RCC) has been developed to take cemented super compacted dry waste and cement solidified liquid waste at Kozloduy Nuclear Power Plant (KNPP). The container is to be used as a packaging of transportation, storage and final disposal of RAW conditioned by cementation KNPP specialists constructed and performed tests on the container. These tests were possible thanks to a review of European Community States experience, USA experience and IAEA documents. The container was tested by a team of specialists from KNPP, project specialists, fabricator of the containers and from Bulgarian Regulatory Body under IAEA Safety Standards, Safety Series, TECDOC, TRS and Bulgarian Standards. An expert from IAEA was a member of the testing group for RCC examinations. (authors)

  15. Issue briefs on low-level radioactive wastes

    SciTech Connect

    Not Available

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

  16. HANDBOOK: VITRIFICATION TECHNOLOGIES FOR TREATMENT OF HAZARDOUS AND RADIOACTIVE WASTE

    EPA Science Inventory

    The applications and limitations of vitrification technologies for treating hazardous and radioactive waste are presented. everal subgroups of vitrifications technologies exist. iscussions of glass structure, applicable waste types, off gas treatment, testing and evaluation proce...

  17. Closing Radioactive Waste Tanks in South Carolina

    SciTech Connect

    Newman, J.L.

    2000-08-29

    The Savannah River Site (SRS) is owned by the US Department of Energy (DOE) and is operated by the Westinghouse Savannah River Company (WSRC). Since the early 1950s, the primary mission of the site has been to produce nuclear materials for national defense. The chemical separations processes used to recover uranium and plutonium from production reactor fuel and target assemblies in the chemical separations area at SRS generated liquid high-level radioactive waste. This waste, which now amounts to approximately 34 million gallons, is stored in underground tanks in the F- and H-Areas near the center of the site. DOE is closing the High Level Waste (HLW) tank systems, which are permitted by SCDHEC under authority of the South Carolina Pollution Control Act (SCPCA) as wastewater treatment facilities, in accordance with South Carolina Regulation R.61-82, ''Proper Closeout of Wastewater Treatment Facilities''. To date, two HLW tank systems have been closed in place. Closure of these tanks is the first of its kind in the US. This paper describes the waste tank closure methodologies, standards and regulatory background.

  18. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  19. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  20. The political science of radioactive waste disposal

    SciTech Connect

    Jacobi, L.R. Jr.

    1996-06-01

    This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need for someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}

  1. Area 5 Radioactive Waste Management Site Safety Assessment Document

    SciTech Connect

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization.

  2. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    NASA Astrophysics Data System (ADS)

    Kim, Miae; Heo, Jong

    2015-12-01

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca2Nd8-xCex(SiO4)6O2] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca-silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca-silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10-6 g m-2 for Ce ion and 2.19·10-6 g m-2 for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing.

  3. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  4. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  5. Legislative and regulatory aspects of radioactive waste management in France

    SciTech Connect

    Niel, J.C.

    1996-08-01

    The French legislative and regulatory framework for safe management of radioactive waste is presented. Emphasis is put on legislative aspects for the management of high-level waste and on the operation of surface disposal for low-level waste. Other topics such as policy and issues for very low-level waste or dismantling are also briefly developed.

  6. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    SciTech Connect

    CALMUS, R.B.

    1999-05-18

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward.

  7. Controlled Containment, Radioactive Waste Management in the Netherlands

    SciTech Connect

    Codee, H.

    2002-02-26

    All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

  8. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  9. Impact of technology applications to the management of low-level radioactive wastes

    SciTech Connect

    Devgun, J.S. )

    1989-01-01

    Low-level radioactive wastes are generated from reactor sources (nuclear power reactors) as well as from nonreactor sources (academic, medical, governmental, and industrial). In recent years, about 50,000 m{sup 3} per year of such wastes have been generated in the United States and about 10,000 m{sup 3} per year in Canada. Direct disposal of these wastes in shallow ground has been a favored method in both countries in the past. In the United States, three operating commercial sites at Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington, receive most of the commercial low-level waste generated. However, with recent advances in waste management, technologies are being applied to achieve optimum goals in terms of protection of human health and safety and the environment, as well as cost-effectiveness. These technologies must be applied from the generation sources through waste minimization and optimum segregation -- followed by waste processing, conditioning, storage, and disposal. A number of technologies that are available and can be applied as appropriate -- given the physical, chemical, and radiological characteristics of the waste -- include shredding, baling, compaction, supercompaction, decontamination, incineration, chemical treatment/conditioning, immobilization, and packaging. Interim and retrievable storage can be accomplished in a wide variety of storage structures, and several types of engineered disposal facility designs are now available. By applying an integrated approach to radioactive waste management, potential adverse impacts on human health and safety and the environment can be minimized. 15 refs., 1 fig., 1 tab.

  10. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)