Science.gov

Sample records for radiocarbon 14c determination

  1. DEVELOPMENT & APPLICATION OF RADIOCARBON (14C)/ORGANIC DENUDER METHODS

    EPA Science Inventory

    The radiocarbon (14C) content of a sample measures the fraction of the sample's carbon originating from non-fossil-fuel (biogenic) sources. The most important of these sources are biomass burning (mostly winter, but wildfires can contribute in other seasons as well) and secondar...

  2. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis)

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Robinson, Laura F.; Hönisch, Bärbel

    2015-11-01

    Radiocarbon (14C) measurements are an important tool for determining growth rates of bamboo corals, a cosmopolitan group of calcitic deep-sea corals. Published growth rate estimates for bamboo corals are highly variable, with potential environmental or ecological drivers of this variability poorly constrained. Here we systematically investigate the application of 14C for growth rate determinations in bamboo corals using 55 14C dates on the calcite and organic fractions of six bamboo corals (identified as Keratoisis sp.) from the western North Atlantic Ocean. Calcite 14C measurements on the distal surface of these corals and five previously published bamboo corals exhibit a strong one-to-one relationship with the 14C of dissolved inorganic carbon (DI14C) in ambient seawater (r2=0.98), confirming the use of Keratoisis sp. calcite 14C as a proxy for seawater 14C activity. Radial growth rates determined from 14C age-depth regressions, 14C plateau tuning and bomb 14C reference chronologies range from 12 to 78 μm y-1, in general agreement with previously published radiometric growth rates. We document potential biases to 14C growth rate determinations resulting from water mass variability, bomb radiocarbon, secondary infilling (ontogeny), and growth rate nonlinearity. Radial growth rates for Keratoisis sp. specimens do not correlate with ambient temperature, suggesting that additional biological and/or environmental factors may influence bamboo coral growth rates.

  3. A low cost optical radiocarbon (14C) sensor for greenhouse gas source attribution

    NASA Astrophysics Data System (ADS)

    Long, D.; Fleisher, A. J.; Liu, Q.; Hodges, J. T.

    2015-12-01

    Radiocarbon (14C) provides a convenient means for the attribution of atmospheric greenhouse gases between anthropogenic and biogenic sources. Unfortunately, routine measurements are costly and require extensive sample preparation to meet sensitivity goals only achievable at large accelerator mass spectrometer facilities. We describe an alternate approach in which a laser is used to selectively record the absorption signatures of the 14C isotope of CO2. The designed instrument will allow for bench-top measurements of 14CO2 at and below ambient levels (~1.2 parts-per-trillion). The use of a commercially available mid-infrared quantum cascade laser as the optical source greatly reduces the cost of the instrument over more complicated sources and should allow for routine inline measurements.

  4. Toward Radiocarbon Measurement of Individual Amino Acids in Marine Dissolved Organic Matter (DOM): Δ14C Blank Quantification for an HPLC Purification Method.

    NASA Astrophysics Data System (ADS)

    Bour, A. L.; Broek, T.; Walker, B. D.; Mccarthy, M. D.

    2014-12-01

    The presence of much of the marine dissolved organic nitrogen (DON) pool as uncharacterized, biologically recalcitrant molecules is a central mystery in the marine nitrogen cycle. Radiocarbon14C) isotopic measurements have been perhaps the most important data constraining the cycling of dissolved organic matter (DOM), but little Δ14C data specific to DON is available. Amino acids (AAs) are the major component of DON that can be isolated on a molecular level. Δ14C measurements for the operational "protein-like" fraction of DOM in the deep ocean indicate that this compound class has radiocarbon ages greater than several ocean mixing cycles, suggesting remarkable preservation of labile AAs exported from the surface. However, it is possible that the previously defined operational "protein-like" fraction may also contain non-AA material. Radiocarbon measurement of purified individual AAs would provide a more direct and reliable proxy for DON Δ14C age and cycling rate. We present here Δ14C blank characterization of an AA purification method based on HPLC, with on-line fraction collection. This method allows the recovery of unmodified AAs, but accurate measurement of small AA samples that can be extracted from DOM requires a system with extremely low Δ 14C blanks. Here we assess the impact of HPLC purification on the Δ14C age of known amino acids standards. Individual AA standards with contrasting (modern vs. dead) and well- characterized Δ14C ages were processed in a range of sample sizes. The eluted peaks were collected and dried, and measurement of their post-chromatography Δ14C content allowed for determination of the Δ14C blank by method of additions. The same protocol was applied to a mixture of six AA standards, to evaluate tailing effects in consecutive AA peaks of contrasting Δ14C age. AA standards were selected to include both Δ14C modern and dead AAs that elute both early and late in the chromatographic solvent program. We discuss implications

  5. Radiocarbon ( 14C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    NASA Astrophysics Data System (ADS)

    Klouda, George A.; Connolly, Michael V.

    Atmospheric air samples were collected during the winter of 1989-1990 in Albuquerque, NM, U.S.A., for radiocarbon ( 14C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μl l-1 (volume fraction), 8 h National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time and resources. Radiocarbon measurements of urban CO, " clean-air" CO background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a three-source model to calculate the contribution of wood burning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' Rwc) ranged from 0 to 0.30 of CO concentrations corrected for " clean-air" background. For these same samples, the respective CO concentrations attributed to wood burning range from 0 to 0.90 μmol mol -1 (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol mol -1 A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards.

  6. 14C determination in different bio-based products

    NASA Astrophysics Data System (ADS)

    Santos Arévalo, Francisco-Javier; Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa; García León, Manuel

    2015-10-01

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of 14C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  7. Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge–cyanobacteria associations

    PubMed Central

    Guitart, Carlos; Slattery, Marc; Ankisetty, Sridevi; Radwan, Mohamed; Ross, Samir J.; Letcher, Robert J.; Reddy, Christopher M.

    2016-01-01

    Considerable debate surrounds the sources of oxygenated polybrominated diphenyl ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from anthropogenic industrial activities. Natural radiocarbon (14C) abundance has proven to be a powerful tool to address this problem as recently biosynthesized compounds contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas industrial chemicals, mostly produced from fossil fuels, contain no detectable 14C. However, few compounds isolated from organisms have been analyzed for their radiocarbon content. To provide a baseline, we analyzed the 14C content of four O-PBDEs. These compounds, 6-OH-BDE47, 2′-OHBDE68, 2′,6-diOH-BDE159, and a recently identified compound, 2′-MeO-6-OH-BDE120, were isolated from the tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern radiocarbon content of their chemical structures (i.e. diphenyl ethers, C12H22O) indicates that they are naturally produced. This adds to a growing baseline on, at least, the sources of these unusual compounds. PMID:21276990

  8. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments.

    PubMed

    Tierney, Kieran M; Muir, Graham K P; Cook, Gordon T; MacKinnon, Gillian; Howe, John A; Heymans, Johanna J; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ((14)C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This (14)C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate (14)C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in (14)C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine (14)C-enriched material close to Sellafield. PMID:26555367

  9. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Reeburgh, W. S.; Valentine, D. L.; Kinnaman, F. S.; Peltzer, E. T.; Brewer, P. G.; Southon, J.; Tyler, S. C.

    2008-12-01

    Methane (CH4) in the subsurface ocean is often supersaturated compared to equilibrium with the modern atmosphere. In order to investigate sources of CH4 to the subsurface ocean, isotope surveys (14C-CH4,δ13C-CH4, δ2H-CH4) were conducted at five locations: Skan Bay (SB), Santa Barbara Basin (SBB), Santa Monica Basin (SMB), Cariaco Basin (CB), and the Guaymas Basin (GB). Depth distributions of CH4 concentration and isotopic abundance were determined for both the sediment and water column at the SB, SBB, SMB, and CB sites; CH4 emitted from seeps on the continental shelf adjacent to the SBB as well as seeps and decomposing clathrate hydrates in the GB was also collected, purified, and analyzed. Methane isotope distributions in the sediments were consistent with known methanogenic and methanotrophic activity; seep- and clathrate-hydrate-derived CH4 was found to be depleted in radiocarbon. However, surprising results were obtained in the water column at all sites investigated. In SB the radiocarbon content of the subsurface CH4 concentration maximum was on average 41% less than its suspected sediment CH4 source, suggesting CH4 seepage in the bay. In the SBB, SMB, and CB, the 14C-CH4 contents in the subsurface ocean were 1.2 to 3.6 times greater than modern carbon quantities suggesting a source of 14C from atmospheric nuclear weapons testing, nuclear power plant effluents, or cosmogenic isotope production.

  10. RADIOCARBON 14C MEASUREMENTS ON ATMOSPHERIC SAMPLES OF PARTICULATE MATTER (& VOLATILE ORGANIC COMPOUNDS)

    EPA Science Inventory

    Following a brief history of radiocarbon work at EPA since the 1980's, the presentation focuses on recent non-winter measurements for PM-2.5 in the Southeastern U.S. (Houston, TX; Nashville, TN; and particularly, Tampa, FL) and what the measurements suggest about the importance o...

  11. Radiocarbon

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2003-12-01

    Willard Libby's invention of the radiocarbon dating method revolutionized the fields of archeology and Quaternary geology because it brought into being a means to correlate events that occurred during the past 3.5×104 years on a planet-wide scale (Libby et al., 1949). This contribution was recognized with the award of the Nobel Prize for Chemistry. In addition, radiocarbon measurements have been a boon to the quantification of many processes taking place in the environment, to name a few: the rate of "ventilation" of the deep ocean, the turnover time of humus in soils, the rate of growth of cave deposits, the source of carbon-bearing atmospheric particulates, the rates of gas exchange between the atmosphere and water bodies, the replacement time of carbon atoms in human tissue, and depths of bioturbation in marine sediment. Some of these applications have been greatly aided by the creation of excess 14C atoms as the result of nuclear tests conducted in the atmosphere. Since the 1960s, this so-called bomb radiocarbon has made its way into all of the Earth's active carbon reservoirs. To date, tens of thousands of radiocarbon measurements have been made in laboratories throughout the world.

  12. Year of birth determination using radiocarbon dating of dental enamel

    PubMed Central

    Buchholz, B.A.; Spalding, K.L

    2010-01-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 (14C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, 14C levels in the enamel represent 14C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists. PMID:20976120

  13. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    SciTech Connect

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  14. Year of birth determination using radiocarbon dating of dental enamel.

    PubMed

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists. PMID:20976120

  15. Determination of 14C residue in eggs of laying hens administered orally with [14C] sulfaquinoxaline.

    PubMed

    Shaikh, B; Rummel, N; Smith, D

    2004-06-01

    Ten layer hens were dosed for 5 consecutive days with 6.2 mg kg(-1) [14C] sulfaquinoxaline (SQX). Eggs were collected from the hens during the 5-day dosing period and during a 10-day post-dose withdrawal period. Egg yolk and albumen were separated and assayed for total radioactive residues (TRR) using a combustion oxidizer and liquid scintillation counting techniques. Significant amounts of radioactivity were detected on the second day of dosing (greater than 24h after the initial dose) in both egg yolk and albumen. First eggs were collected about 8 h after dosing; the second-day eggs were collected during 8-h period after the second dose. Radioactive residues reached a maximum on the fifth day of dosing in albumen, whereas on the second day of withdrawal in egg yolk, the peak TRR levels in albumen were about threefold higher than in yolk. Thereafter, the TRR levels declined rapidly in albumen and were detectable up to withdrawal day 6, whereas the TRR levels in egg yolk declined more slowly and were detectable up to withdrawal day 10. High-performance liquid chromatography analysis indicated that the parent drug sulfaquinoxaline was the major component in both the egg albumen and yolk. Additionally, this work suggests that egg yolk is the appropriate matrix for monitoring SQX residues PMID:15204532

  16. New insights into the radiocarbon calibration based on 14C and U-Th dating of corals drilled offshore Tahiti (IODP Expedition #310)

    NASA Astrophysics Data System (ADS)

    Durand, Nicolas; Deschamps, Pierre; Bard, Edouard; Hamelin, Bruno; Camoin, Gilbert; Thomas, Alexander L.; Henderson, Gideon M.; Yokoyama, Yusuke

    2010-05-01

    Beyond the high-precision tree-ring calibration, the fossil corals are the most reliable archive that can be used to calibrate the radiocarbon time scale. In this contribution, we present a new radiocarbon dataset based on paired 14C and U-Th dating of fossil shallow-water tropical corals drilled offshore Tahiti during the IODP Expedition 310 'Tahiti Sea-Level'. Before 14C and U-Th analyses, rigorous screening criteria have been applied in order to select pristine aragonitic coral skeletons and avoid those displaying any post-mortem diagenesis that alters original ages. In particular, we made a significant effort to improve detection and quantification of very small amount of secondary calcite in the aragonitic coral lattice using X-ray diffraction measurements [1]. In addition, we apply a strict screening criterion based on δ234U. However, the new Tahiti dataset allow to refine the previous tolerance ranges previously adopted. More than 60 radiocarbon dates were processed at the Laboratoire de Mesure du Carbone 14 (Saclay, France) with the ARTEMIS AMS facility. This new Tahiti record provides new data to the radiocarbon calibration for two distinct time windows: for the interval between 29,200 and 36,200 years BP and for the last deglaciation period, with especially, a higher resolution (40 data) for the 14,000 - 16,000 years BP time interval. These new data extend the previous Tahiti record beyond 13,900 years BP which was the oldest U-Th age obtained on cores drilled onshore in the modern Tahiti barrier reef [2, 3]. These new results are compared with 14C chronologies from other corals, those of Barbados [4, 5] and those from other Pacific islands (Mururoa, Vanuatu, Marquesas, Christmas), and from the Cariaco Basin sediment [6, 7], the Iberian Margin sediment [8, 9] and the Bahamian speleothem [10] records. The new 14C dataset from the corals drilled offshore Tahiti allows to validate the precision and accuracy of other records either directly dated by U-Th or

  17. Redundant 230Th/ 234U/ 238U, 231Pa/ 235U and 14C dating of fossil corals for accurate radiocarbon age calibration

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Chien; Fairbanks, Richard G.; Mortlock, Richard A.; Cao, Li; Fairbanks, Todd W.; Bloom, Arthur L.

    2006-09-01

    230Th/ 234U/ 238U dating of fossil corals by mass spectrometry is remarkably precise, but some samples exposed to freshwater over thousands of years may gain and/or lose uranium and/or thorium and consequently yield inaccurate ages. Although a δ 234U initial value equivalent to modern seawater and modern corals has been an effective quality control criterion, for samples exposed to freshwater but having δ 234U initial values indistinguishable from modern seawater and modern corals, there remains a need for additional age validation in the most demanding applications such as the 14C calibration (Fairbanks et al., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/ 234U/ 238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16-17), 1781-1796). In this paper we enhance screening criteria for fossil corals older than 30,000 years BP in the Fairbanks0805 radiocarbon calibration data set (Fairbanks et al., 2005) by measuring redundant 230Th/ 234U/ 238U and 231Pa/ 235U dates via multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-MS-ICPMS) using techniques described in Mortlock et al. (2005. 230Th/ 234U/ 238U and 231Pa/ 235U ages from a single fossil coral fragment by multi-collector magnetic-sector inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 69(3), 649-657.). In our present study, we regard paired 231Pa/ 235U and 230Th/ 234U/ 238U ages concordant when the 231Pa/ 235U age (±2 σ) overlaps with the associated 230Th/ 234U/ 238U age (±2 σ). Out of a representative set of 11 Fairbanks0805 (Fairbanks et al., 2005) radiocarbon calibration coral samples re-measured in this study, nine passed this rigorous check on the accuracy of their 230Th/ 234U/ 238U ages. The concordancy observed between 230Th/ 234U/ 238U and 231Pa/ 235U dates provides convincing evidence to support closed system behavior of these fossil corals and validation of their 230Th/ 234U/ 238U

  18. A Process-based Study of Speleothem 14C Variability: Climatic Controls and Prospects for Speleothem-based Radiocarbon Calibration

    NASA Astrophysics Data System (ADS)

    Johnson, K. R.; Magana, A. L.; Hu, C.; Ruan, J.

    2011-12-01

    Recent studies have shown that speleothems may be useful for improving the 14C calibration curve, primarily because: (1) they can be absolutely dated with the U-Th method, (2) they obtain the majority of their carbon directly from the atmosphere, and (3) the "dead carbon fraction" (DCF) obtained from the carbonate bedrock has been shown to be fairly constant over long time periods. In order to assess the stability of DCF, and hence the validity of speleothem based calibration curves, however, it is necessary to conduct detailed studies in modern cave systems and on well-dated stalagmites that overlap with the tree-ring 14C record. We will present results of a study at Heshang Cave, Hubei Province, China (30°27'N, 110°25'E; 294 m), the site of ongoing, extensive modern calibration and paleoclimate reconstruction efforts. We have conducted a detailed study of C cycling in the modern cave system through collection and analysis of the δ13C and Δ14C composition of soil CO2, dripwater DIC, and monthly modern calcite samples to investigate how seasonal environmental changes impact speleothem DCF and δ13C. In addition, we have investigated climatic controls on DCF on longer timescales through high-resolution 14C analysis of an annually laminated, U-Th dated Holocene stalagmite. Modern calcite from a site near the cave entrance shows significant seasonal Δ14C variability, ranging from 30 to 65%, which may reflect seasonal variability in atmospheric Δ14C. This suggests that cave dripwater DIC may sometimes equilibrate with cave air CO2, prior to calcite precipitation. Despite a large range in the Δ14C values of dripwater DIC samples collected from throughout the cave, individual speleothem DCF appears quite constant over the Holocene, at 9.3 ± 1.9%, with an average age offset of 838 ± 187 years. Applying this constant DCF correction over the Holocene yields an excellent correlation with the IntCal09 curve (r2 = 0.99). While minor DCF variability could introduce

  19. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties

    NASA Astrophysics Data System (ADS)

    Roth, Raphael; Joos, Fortunat

    2013-04-01

    Past atmospheric CO2 concentrations reconstructed from polar ice cores [Monnin et al., 2004] combined with its Δ14C signature as conserved in tree-rings [Reimer et al., 2009] provide important information both on the cycling of carbon as well as the production of radiocarbon in the atmosphere. As the 14C production rate (Q) is modulated by changes in the strength of the magnetic field enclosed in solar wind, it serves as a valuable proxy for past changes in solar activity. Using the Bern3D-LPX, a fully featured Earth System Model of Intermediate Complexity (EMIC) with a 3D ocean and a dynamic vegetation model component, we perform transient carbon-cycle simulations spanning the past 21 kyr. By solving the atmospheric 14C budget, the radiocarbon production rate over the Holocene is reconstructed. Applying different deglacial forcings, as well as a control-simulation with constant climate, the sensitivity of Q to carbon-cycle changes is discussed. The error in the terrestrial 14C record is translated into an uncertainty in Q using a Monte-Carlo approach. In addition, uncertainties in the global carbon inventory, GPP and air-sea gas-exchange are taken into account. The estimated modern (1950-2005) production rate of 1.55±0.20 atoms/cm2/s is close to a recent theoretical calculations by Kovaltsov et al. (2012) yielding a modern production rate of 1.64 atoms/cm2/s but considerably lower than the estimated 2 atoms/cm2/s by Masarik and Beer (2009). The newly produced production rate record is then interpreted as a proxy for solar activity changes in the past 10 kyrs. To do so, we use published results from particle simulations [Masarik and Beer, 1999] together with the latest reconstruction of the geomagnetic dipole moment [Knudsen et al., 2008] to calculate the past history of the so-called solar modulation potential (Φ). The 14C based Φ is extended to 2005 A.D. with instrumental data [Usoskin et al., 2011]. In a subsequent step, Φ is translated into past

  20. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties

    NASA Astrophysics Data System (ADS)

    Roth, R.; Joos, F.

    2013-03-01

    Past atmospheric CO2 concentrations reconstructed from polar ice cores combined with its Δ14C signature as conserved in tree-rings provide important information both on the cycling of carbon as well as the production of radiocarbon (Q) in the atmosphere. The latter is modulated by changes in the strength of the magnetic field enclosed in the solar wind and is a proxy for past changes in solar activity. We perform transient carbon-cycle simulations spanning the past 21 kyr using Bern3D-LPX, a fully featured Earth System Model of Intermediate Complexity (EMIC) with a 3-D ocean, sediment and a dynamic vegetation model. Using the latest atmospheric IntCal09/SHCal04 radiocarbon records, we reconstruct the Holocene radiocarbon fluxes and the total production rate. Our carbon-cycle based modern estimate of Q ≈ 1.7 atoms cm-2 s-1 is lower than previously reported by Masarik and Beer (2009) and more in line with Kovaltsov et al. (2012). Q is then translated into the solar modulation potential (Φ) using the latest geomagnetic field reconstruction and linked to a recent reanalysis of early instrumental data. In contrast to earlier reconstructions, our record suggests that periods of high solar activity (>600 MeV) were quite common not only in recent millennia but throughout the Holocene. Solar activity in our decadally-smoothed record is during 28% of the time higher than the modern average of 650 MeV during the past 9 ka. But due to considerable uncertainties in the normalization of Φ to instrumental data, the absolute value of Φ remains weakly constrained. Further, our simulations with a spatially resolved model (taking the interhemispheric Δ14C gradient into account) show that reconstructions that rely on the Northern Hemisphere 14C record only are biased towards low values during the Holocene. Notable deviations on decadal-to-centennial time scales are also found in comparison with earlier reconstructions. In a last step, past total solar irradiance (TSI) is

  1. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    NASA Astrophysics Data System (ADS)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  2. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  3. Accelerator Mass Spectrometric determination of radiocarbon in stratospheric CO2, retrieved from AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Been, Henk A.; Chen, Huilin; Kivi, Rigel; Meijer, Harro A. J.

    2015-04-01

    In this decade, understanding the impact of human activities on climate is one of the key issues of discussion globally. The continuous rise in the concentration of greenhouse gases, e.g., CO2, CH4, etc. in the atmosphere, predominantly due to human activities, is alarming and requires continuous monitoring to understand the dynamics. Radiocarbon is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases like CO2 and CH4. Measurement of 14C (or radiocarbon) in atmospheric CO2 generally requires collection of large air samples (few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined. Currently, Accelerator Mass Spectrometry (AMS) is the most precise, reliable and widely used technique for atmospheric radiocarbon detection. However, the regular collection of air samples from troposphere and stratosphere, for example using aircraft, is prohibitively expensive. AirCore is an innovative atmospheric sampling system, developed by NOAA. It comprises of a long tube descending from a high altitude with one end open and the other closed, and has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ~ 30 km) measurements of CH4and CO2(Karion et al. 2010). In Europe, AirCore measurements are being performed on a regular basis near Sodankylä since September 2013. Here we describe the analysis of two such AirCore samples collected in July 2014, Finland, for determining the 14C concentration in stratospheric CO2. The two AirCore samples were collected on consecutive days. Each stratospheric AirCore sample was divided into six fractions, each containing ~ 35 μg CO2 (~9.5 μg C). Each fraction was separately trapped in 1 /4 inch coiled stainless steel tubing for radiocarbon measurements. The procedure for CO2 extraction from the stratospheric air samples; the sample preparation, with samples containing < 10

  4. Dating ivory by determination of 14C, 90Sr and 228/232Th.

    PubMed

    Schmied, Stefanie A K; Brunnermeier, Matthias J; Schupfner, Robert; Wolfbeis, Otto S

    2012-09-10

    A method is described to determine the time of death of elephants. This is accomplished by analysis of the radionuclides 14C, 90Sr and 228/232Th in known samples of ivory, and in samples of unknown age. The reliability of this method is considerably increased by multi nuclide analysis. PMID:22717552

  5. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C Reservoir age for coastal areas of the Barents and Kara Seas, Russia

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Polyak, Leonid

    Fourteen mollusks, collected alive between 1900 and 1945 from the Russian Barents and Kara seas, were analyzed by AMS 14C dating to evaluate variations in the 14C marine reservoir for arctic coastal sites, which is important for correcting ages in paleoenvironmental time-series and advancing understanding of the exchange of carbon. The 14C ages on the mollusks reveal a range of marine reservoir values (R(t)) from 159 14C yr to 764 14C yr. The oldest R(t) values of 764 to 620 14C yr are for the bivalve Portlandia arctica, which often inhabit cold and low salinity waters and muddy substrates. The depleted 14C content for this bivalve reflects possibly the incorporation of old carbon from freshwater inputs and/or the consumption of old organic matter from the underlying sediments and pore waters. Other mollusks with sessile habitats and pelagic food sources gave significantly lower R(t) values between 159 and 344 14C yr. The youngest R(t) values indicate enrichment in 14C and may partially reflect enhanced transfer of 14C-enriched CO2 from the atmosphere to the ocean surface with wind-generated wave agitation. This study underscores that a variety of processes can lead to variable 14C depletion and enrichment of surface waters yielding a ca. 600 year age span for contemporaneous arctic mollusks. There may be added uncertainty in the 14C reservoir correction for deposit-feeder species such as Portlandia sp. and perhaps for certain benthic foraminifera (e.g. Nonion labradoricum) because these taxa often incorporate old organic matter from the substrate. A reservoir correction of ≥700 years may be more appropriate for infaunal, deposit-eater species, particularly in glacier-dominated environments. Mollusks and foraminifera with sessile habits and pelagic food sources should be selected preferentially for 14C dating, because their shells may more closely reflect the 14C content of the global-ocean mixed layer.

  6. Radiocarbon Dating

    SciTech Connect

    Buchholz, B A

    2007-12-20

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  7. Forensic applications of 14C at CIRCE

    NASA Astrophysics Data System (ADS)

    Marzaioli, F.; Fiumano, V.; Capano, M.; Passariello, I.; Cesare, N. De.; Terrasi, F.

    2011-12-01

    The decreasing trend of the radiocarbon pulse produced during the atmospheric tests of nuclear weapons (bomb-carbon) coupled with high sensitivity accelerator mass spectrometry (AMS) measurements, drastically increased the precision of radiocarbon age determinations since the second part of the sixties, allowing the application of radiocarbon AMS to a wide range of studies previously not directly involving conventional radiocarbon dating (i.e. food authenticity, forensic, biochemistry). In the framework of authenticity evaluation of artworks, high precision radiocarbon ( 14C) AMS measurements (Δ R/ R < 0.3%) reduce the conventional uncertainty of the dating to few decades, allowing precise age estimation of materials containing carbon (C). The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) during its activity on AMS 14C dating achieved high precision measurements opening the opportunity to these kinds of applications. This paper presents the main results obtained from radiocarbon measurements on a set of bone samples analyzed for the determination of the post-mortem interval in the framework of an unsolved case investigated by the Rome prosecutor office. The chronological characterization of the wooden support of the "Acerenza portrait" is also presented with the aim to evaluate its age and to further investigate the possibility to attribute this artwork to Leonardo da Vinci. Bomb- 14C dating on the lipid and collagen fractions of bones allows the evaluation of the year of the death of the individuals by means of ad hoc calibration data sheet with the typical few years precision and difference between collagen apparent age and the year of death appeared in agreement with the age of one individual estimated by dating of tooth collagen. Conventional radiocarbon dating on both wood and wood extracted cellulose leads to an estimation of the portrait wood board age (2σ) of 1459-1524 AD (57% relative probability), 1571-1631 AD interval (42

  8. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W., Jr.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V., Jr.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  9. Radiocarbon dating of terrestrial carbonates

    USGS Publications Warehouse

    Pigati, Jeffrey S.

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  10. Accurate lacustrine and wetland sediment accumulation rates determined from 14c activity of bulk sediment fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the absence of identifiable macrofossils in lacustrine sediments, 14C dating must rely on pollen or bulk sediment fractions. Bulk sediment fractions are not generally preferred because they contain an unknown mixture of organic material of variable age, they may contain dead carbon such as ligni...

  11. Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and {sup 14}C-based methodologies

    SciTech Connect

    Muir, G.K.P.; Hayward, S.; Tripney, B.G.; Cook, G.T.; Naysmith, P.; Herbert, B.M.J.; Garnett, M.H; Wilkinson, M.

    2015-01-15

    Highlights: • Compares industry standard and {sup 14}C methods for determining bioenergy content of MSW. • Differences quantified through study at an operational energy from waste plant. • Manual sort and selective dissolution are unreliable measures of feedstock bioenergy. • {sup 14}C methods (esp. AMS) improve precision and reliability of bioenergy determination. • Implications for electricity generators and regulators for award of bio-incentives. - Abstract: {sup 14}C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). {sup 14}C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

  12. Forensic applications of 14C bomb-pulse dating

    NASA Astrophysics Data System (ADS)

    Zoppi, U.; Skopec, Z.; Skopec, J.; Jones, G.; Fink, D.; Hua, Q.; Jacobsen, G.; Tuniz, C.; Williams, A.

    2004-08-01

    After a brief review of the basics of 14C bomb-pulse dating, this paper presents two unique forensic applications. Particular attention is dedicated to the use of the 14C bomb-pulse to establish the time of harvest of illicit drugs such as heroin and opium. Preliminary measurements of 14C concentrations in milligram samples taken from seized drugs are presented. 14C bomb-pulse dating can determine whether drug distribution originates from stockpiles or recent manufacture, and support the action of law enforcement authorities against criminal organisations involved in drug trafficking. In addition, we describe the dating of wine vintages for a number of authenticated single label vintage red wines from the Barossa Valley - South Australia. Our results show that radiocarbon dating can be used to accurately determine wine vintages and therefore reveal the addition of unrelated materials of natural and synthetic origin.

  13. Complexities in the Use of Bomb-Curve Radiocarbon to Determine Time Since Death of Human Skeletal Remains

    SciTech Connect

    Ubelaker, D H; Buchholz, B A

    2005-04-26

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the level of radiocarbon ({sup 14}C) in the atmosphere. From the peak in 1963, the level of {sup 14}CO{sub 2} has decreased exponentially with a mean life of about 16 years, not due to radioactive decay, but due to mixing with large marine and terrestrial carbon reservoirs. Since radiocarbon is incorporated into all living things, the bomb-pulse is an isotopic chronometer of the past half century. The absence of bomb radiocarbon in skeletonized human remains generally indicates a date of death before 1950. Comparison of the radiocarbon values with the post 1950 bomb-curve may also help elucidate when in the post 1950 era, the individual was still alive. Such interpretation however, must consider the age at death of the individual and the type of tissue sampled.

  14. Determination of transfer rate and nature of the residue(s) in milk from {sup 14}C-atrazine cows

    SciTech Connect

    Thalacker, F.W.; Ash, S.G.; Simoneaux, B.J.

    1996-10-01

    In order to determine the rate of transfer and the nature of the atrazine residues present in milk, lactating dairy cattle were treated with atrazine at three concentrations, 0.764 ppm, 0.0747 ppm and 0.0085 ppm (dry weight of food consumed). The concentrations were selected to bridge the gap between the concentration used for EPA metabolism studies (10 ppm) and the potential exposure level of dairy cattle to atrazine and its chlorotriazine metabolites through feed. The cattle were dosed following the morning milking for nine consecutive days with a single capsule bolus of {sup 14}C-atrazine. Milk was collected twice daily and aliquots of each milking and the individual cow`s daily pool of milk were analyzed by liquid scinitllation counting (LSC). The concentrations of {sup 14}C-residues in the milk plateaued on approximately day 3 and the mean {sup 14}C-atrazine levels in milk were 11.2 ppb, 1.13 ppb and 0.152 ppb for the high, middle and low dosed animals, respectively. The transfer of radioactive level of exposure to {sup 14}C-atrazine. The nature of the residues in milk were determined by extracting milk samples and analysis by HPLC, TLC or Aminex chromatography. Diaminchlorotriazine was the only chlorinated metabolite in the milk, constituting approximately 65% to 75% of the total radioactive residues (TRR).

  15. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  16. 14C Analysis via Intracavity Optogalvanic Spectroscopy

    PubMed Central

    Murnick, Daniel; Dogru, Ozgur; Ilkmen, Erhan

    2010-01-01

    A new ultra sensitive laser-based analytical technique, intracavity optogalvanic spectroscopy (ICOGS), allowing extremely high sensitivity for detection of 14C-labeled carbon dioxide has recently been demonstrated. Capable of replacing accelerator mass spectrometers (AMS) for many applications, the technique quantifies zeptomoles of 14C in sub micromole CO2 samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity, and detection via impedance variations, limits of detection near 10−15 14C/12C ratios have been obtained with theoretical limits much lower. Using a 15 W 14CO2 laser, a linear calibration with samples from 5 × 10−15 to >1.5 × 10−12 in 14C/12C ratios, as determined by AMS, was demonstrated. Calibration becomes non linear over larger concentration ranges due to interactions between CO2 and buffer gas, laser saturation effects and changes in equilibration time constants. The instrument is small (table top), low maintenance and can be coupled to GC or LC input. The method can also be applied to detection of other trace entities. Possible applications include microdosing studies in drug development, individualized sub therapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. PMID:20448803

  17. 14C dating with the bomb peak: An application to forensic medicine

    NASA Astrophysics Data System (ADS)

    Wild, E. M.; Arlamovsky, K. A.; Golser, R.; Kutschera, W.; Priller, A.; Puchegger, S.; Rom, W.; Steier, P.; Vycudilik, W.

    2000-10-01

    Samples originating from the time period after 1950 can be radiocarbon dated utilising the 14C bomb peak as a calibration curve. The applicability of "radiocarbon dating" of recent organic human material for the determination of the time of death of humans was tested. The radiocarbon results from hair and lipid samples from individuals with known date of death were compared with the results from two individuals with unknown time of death. An estimate of the year of death for the unknowns could be derived by this way. Due to the long turnover time of collagen in human bones it is not possible to use the radiocarbon content of bone collagen for a reliable estimate. In order to study the time dependence of the collagen turnover we tested "soft" chemical methods for the isolation of collagen from the bone matrix. First radiocarbon results of this investigation are presented.

  18. Changes in the Radiocarbon Reservoir Age in Lake Xingyun, Southwestern China during the Holocene

    PubMed Central

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment. PMID:25815508

  19. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene.

    PubMed

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment. PMID:25815508

  20. 14C/C measurements support Andreev's internode method to determine lichen growth rates in Cladina stygia (Fr.) Ahti

    SciTech Connect

    Holt, E; Bench, G

    2007-12-05

    Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot} yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.

  1. Abundance of {sup 14}C in biomass fractions of wastes and solid recovered fuels

    SciTech Connect

    Fellner, Johann Rechberger, Helmut

    2009-05-15

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO{sub 2} emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes {sup 14}C and {sup 12}C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in {sup 14}C and reflect the {sup 14}CO{sub 2} abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying {sup 14}C content of biogenic matter, depending on the period of growth. In the present paper {sup 14}C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated {sup 14}C content of the materials investigated ranges between 98 and 135 pMC.

  2. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.

    PubMed

    Fellner, Johann; Rechberger, Helmut

    2009-05-01

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC. PMID:19157836

  3. Radiocarbon determinations for estimating groundwater flow velocities in central Florida

    USGS Publications Warehouse

    Hanshaw, B.B.; Back, W.; Rubin, M.

    1965-01-01

    Carbon-14 activity was determined from HCO3- in samples of groundwater obtained from the principal artesian aquifer in Florida. From these data the "age" of water obtained from a series of wells, each progressively farther down gradient on the piezometric surface, was established. Relative carbon-14 ages indicated a velocity of groundwater movement of 23 feet (7 meters) per year for about 85 miles (137 kilometers) of travel. A velocity of 23 feet per year was calculated independently from Darcy's law.

  4. Radiocarbon AMS determination of the biogenic component in CO 2 emitted from waste incineration

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.; D'Elia, M.; Ciceri, G.; Martinotti, V.

    2011-12-01

    The thermal utilization of waste for energy production is gaining importance in European countries. Nevertheless, the combustion of waste leads to significant CO 2 emissions in the atmosphere which, depending on the fraction of biogenic and fossil materials, have to be only partially accounted for the national greenhouse gas inventory. For this reason the development of proper methodologies for the measurement of the biogenic fraction in the combusted waste is an active research field. In fact the determination of the radiocarbon concentration in the carbon dioxide stack emissions allows to have a direct indication of the biogenic component in the burned fuel. We present the results of the AMS radiocarbon analyses carried out on carbon dioxide sampled at the stack of three power plants located in Northern Italy burning natural gas, landfill biogas and SRF (Solid Recovered Fuel) derived from MSW (Municipal Solid Waste). The sampling apparatus and the applied processing protocols are described together with the calculation procedures used to determine, from the measured radiocarbon concentrations, the proportion of biogenic and fossil component in the flue gas and in the combusted fuel. The results confirm the high potentialities of this approach in the analysis of industrial CO 2 emissions.

  5. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  6. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century

    PubMed Central

    Graven, Heather D.

    2015-01-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  7. Determination of the Prebomb Southern (Antartic) Ocean Radiocarbon in Organic Matter

    SciTech Connect

    Guilderson, T P

    2001-02-26

    The Southern Hemisphere is an important and unique region of the world's oceans for water-mass formation and mixing, upwelling, nutrient utilization, and carbon export. In fact, one of the primary interests of the oceanographic community is to decipher the climatic record of these processes in the source or sink terms for Southern Ocean surface waters in the CO{sub 2} balance of the atmosphere. Current coupled ocean-atmosphere modeling efforts to trace the input of CO{sub 2} into the ocean imply a strong sink of anthropogenic CO{sub 2} in the southern ocean. However, because of its relative inaccessibility and the difficulty in directly measuring CO{sub 2} fluxes in the Southern Ocean, these results are controversial at best. An accepted diagnostic of the exchange of CO{sub 2} between the atmosphere and ocean is the prebomb distribution of radiocarbon in the ocean and its time-history since atmospheric nuclear testing. Such histories of {sup 14}C in the surface waters of the Southern Ocean do not currently exist, primarily because there are few continuous biological archives (e.g., in corals) such as those that have been used to monitor the {sup 14}C history of the tropics and subtropics. One of the possible long-term archives is the scallop Adamussium collbecki. Although not independently confirmed, relatively crude growth rate estimates of A. collbecki indicate that it has the potential to provide continuous 100 year time-series. We are exploring the suitability of this potential archive.

  8. Decoloration and solubilization of plant tissue prior to determination of /sup 3/H, /sup 14/C, and /sup 35/S by liquid scintillation

    SciTech Connect

    Smith, I.K.; Lang, A.L.

    1987-08-01

    A method is described for the decoloration and partial solubilization of plant tissue with 2% sodium hypochlorite. Following treatment of the digest with ammonia, the samples are suitable for the determination of /sup 3/H, /sup 14/C, and /sup 35/S by liquid scintillation counting. The color quenching is negligible and counting efficiencies are high: 30-40% for /sup 3/H and 90-95% for /sup 14/C.

  9. Radiocarbon Dating, Memories, and Hopes

    DOE R&D Accomplishments Database

    Libby, W. F.

    1972-10-01

    The history of radiocarbon dating from 1939 to the present is reviewed. The basic principles of radiocarbon dating are that cosmic rays make living things radioactive with {sup 14}C to a certain level fixed by the environment and that at death the intake of food stops so no replenishment of the {sup 14}C steadily lost by the immutable decay occurs. Therefore measurement of the degree of decay gives the time lapse since death, i.e., the radiocarbon age. The equipment developed and experiments performed to measure the specific activity of specimens to be dated are described. The results obtained by world-wide experimenters are discussed. These showed that on simultaneity radiocarbon dating is apparently reliable but that absolute dates may be incorrect by as much as 600 to 700 y. The value of radiocarbon dating to archaeologists, geologists, climatologists, and historians is stressed. (LCL)

  10. Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2002-01-01

    Despite the extensive use of aquatic insects to evaluate freshwater ecosystem health, little is known about the underlying factors that result in sensitivity differences between taxa. Organismal characteristics (respiratory strategy and body size) were used to explore the rates of [3H]H2O and [14)C]chlorpyrifos accumulation in aquatic insects. Ten aquatic insect taxa, including ephemeropteran, trichopteran, dipteran, hemipteran, and coleopteran species, were exposed to [14C]chlorpyrifos (240 ng??L-1) and [3H]H2O for up to 12 h. Because exchange epithelial surfaces on the)integument are permeable to water, [3H]H2O was used as a quantitative surrogate for exposed cellular surface area.) [14C]Chlorpyrifos uptake rates were highly correlated with water permeability in all 10 taxa tested and largely covaried with body size and respiratory strategy. Rates were highest among smaller organisms on a per-weight basis and in taxa with relatively large external cellular surfaces such as gills. Air-breathing taxa were significantly less permeable to both [3)HH20 and [14C)C]chlorpyrifos. A method for labeling exposed epithelial surfaces with a fluorescent dye was developed. This technique allowed discrimination between exchange epithelium and barrier tissue on the integument. Fluorescent dye distributions on the body surface provided a rapid method for estimating exposed epithelium consistent with [3H]H2O and [14)C]chlorpyrifos accumulation.

  11. Age determination of mid-ocean ridge basalts by radiocarbon dating of lithified carbonate crusts

    SciTech Connect

    Kuptsov, V.M.; Bogdanov, Yu.A.; Palkina, A.M.; Lisitsyn, A.P.

    1986-01-01

    The processes that take place in the mid-ocean ridges are the key to their understanding of the evolution of the earth's crust and mantle. Mid-ocean ridge volcanism supplies vast masses of mantle material, forming new oceanic crust. In recent years, comprehensive study has been made of such processes. The problems of geochronology have an important place in these investigations, since only a study of the events in their time sequence will enable them to make a valid estimate of the intensity of these global processes. In 1980, crusts were obtained by the Pikar combined expedition in the Red Sea rift in the 18/sup 0/ study area on the lower tectonic terrace, in the axial zone, and in three deep water basins. Manned deep water submersible, dredges, trawls, bottom samplers, and impact tubes brought up basalts covered with lithified crusts, and also separate lithified crusts, collected from the basalt basement during sampling. The authors have dated the crusts by the radiocarbon method using the benzene technique. Results of the analysis give ages ranging from 2980 to 20,700 years. Results are discussed. The use of lithified carbonate crusts for determining the age of the basalts is effective within the range of the radiocarbon dating method (up to 40,000-45,000 years). This time interval is inaccessible for determinations by other methods of nuclear geochronology, which makes the method especially valuable. 1 reference, 2 figures, 1 table.

  12. Age assessment of ivory by analysis of 14C and 90Sr to determine whether there is an antique on hand.

    PubMed

    Schmied, Stefanie A K; Brunnermeier, Matthias J; Schupfner, Robert; Wolfbeis, Otto S

    2011-04-15

    A method is described to determine whether an elephant has died before 1955 or not. This is accomplished by determination of the radionuclides (14)C and (90)Sr in artifacts made of ivory. The reliability of this method is considerably increased by double nuclide analysis and therefore is applicable for judicial expert opinions. PMID:21371831

  13. Youngest radiocarbon age for Jefferson's ground sloth, Megalonyx jeffersonii (Xenarthra, Megalonychidae)

    NASA Astrophysics Data System (ADS)

    Gregory McDonald, H.; Stafford, Thomas W.; Gnidovec, Dale M.

    2015-03-01

    A partial skeleton of the extinct ground sloth, Megalonyx jeffersonii, recovered from a farm near Millersburg, Ohio in 1890, was radiocarbon dated for the first time. The ungual dated is part of a skeleton mounted for exhibit at the Orton Geological Museum at Ohio State University and was the first mounted skeleton of this animal. From its initial discovery the bones were treated with multiple organic compounds that had the potential to compromise the radiocarbon age and the specimen required special treatments in order to obtain a valid radiocarbon age. The 14C measurement on the ungual from this skeleton (11,235 ± 40 14C yr BP = 13,180-13,034 cal yr BP) is the youngest 14C age presently determined for M. jeffersonii.

  14. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    PubMed

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods. PMID:11741276

  15. Intracavity Optogalvanic Spectroscopy, A New Ultra-sensitive Analytical Technique for 14C Analysis

    PubMed Central

    Murnick, Daniel E.; Dogru, Ozgur; Ilkmen, Erhan

    2009-01-01

    We show a new ultra-sensitive laser based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of 14C labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of 14C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10-15 14C:12C ratios are obtained. Using a 15W 14CO2 laser, a linear calibration with samples from 10-15 to >2 × 10-12 in 14C:12C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized sub-therapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities. PMID:18533685

  16. Radiocarbon in Tree STEM CO2 Efflux

    NASA Astrophysics Data System (ADS)

    Muhr, J.; Czimczik, C. I.; Angert, A.; Trumbore, S.

    2011-12-01

    Carbon dioxide efflux from tree stems can be a significant component of the stand-level carbon balance. Recent studies have demonstrated that tree stem CO2 efflux may reflect more than just in-situ respiration but also transport from other locations and it has been suggested that it may also include C originally respired in roots or even uptake of soil CO2. We report measurements of the radiocarbon signature of carbon emitted from a range of mature tree stems in tropical and temperate forest ecosystems. Comparison of the radiocarbon signature of respired CO2 with the observed rate of decline in atmsopheric 14C-CO2 provides a measure of the time elapsed between C fixation by the plant and its return to the atmosphere as stem CO2 efflux. In all investigated trees, we observed that stem CO2 efflux had higher radiocarbon signatures than the contemporary atmospheric 14C-CO2, and therefore was derived from C fixed one to several years earlier. In tropical forest trees, we found that the 14C signature of CO2 within the stem (~4-5 cm depth) had even higher radiocarbon signatures than the stem CO2 efflux. In one of the investigated tree species, the in-stem CO2 was derived from C sources fixed on average ~20 years previously. These results confirm observations of root-respired CO2 that also have shown contributions of C substrates older than recent photosynthetic products, and the presence of extracable C reserves in wood that reflect the presence of older C sources. Our results imply that stem CO2 efflux is not only derived from respiration of recent photosynthetic products but includes contributions from older, stored C pools. Ongoing investigations will enable us to compare CO2 efflux for trees subjected to experimental drought, and using different life strategies (deciduous versus evergreen oaks) to determine if the use of these older C stores varies with stress.

  17. Insulin and contraction increase nutritive blood flow in rat muscle in vivo determined by microdialysis of l-[14C]glucose

    PubMed Central

    Newman, John M B; Ross, Renee M; Richards, Stephen M; Clark, Michael G; Rattigan, Stephen

    2007-01-01

    In the present study, a mathematical model using the microdialysis outflow: inflow (O/I) ratio of the novel analogue l-[14C]glucose has been developed which allows the calculation of the nutritive (and non-nutritive) flow in muscle as a proportion of total blood flow. Anaesthetized rats had microdialysis probes carrying l-[14C]glucose inserted through a calf muscle group (tibialis/plantaris/gastrocnemius). The nutritive fraction of total blood flow was determined under basal conditions and in response to contraction (electrical field stimulation), insulin (hyperinsulinaemic euglycaemic clamp with 10 mU min−1 kg−1 insulin) or saline control from limb blood flow and the microdialysis O/I ratio of l-[14C]glucose. Both contraction and insulin infusion decreased the O/I ratio of l-[14C]glucose and increased total limb blood flow. Calculations based on mathematical models using l-[14C]glucose O/I and limb blood flow revealed that during basal conditions, the nutritive fraction of total flow was 0.38 ± 0.06, indicating that basal flow was predominantly non-nutritive. Contraction and insulin increased the nutritive fraction to 0.82 ± 0.24 (P < 0.05) and 0.52 ± 0.12 (P < 0.05). Thus the increase in limb blood flow from insulin was fully accommodated by nutritive flow, while contraction increased nutritive flow at the expense of non-nutritive flow. This novel method using microdialysis and the O/I ratio of l-[14C]glucose allows the determination of the nutritive fraction of total flow in muscle as well as the proportion of total flow that may be redistributed in response to contraction and insulin. PMID:17884927

  18. High-temporal resolution radiocarbon analyses of dissolved organic matter in soils from a mountainous and temperate ecosystem

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Graf Pannatier, Elisabeth; McIntyre, Cameron; Hagedorn, Frank; Eglinton, Timothy

    2016-04-01

    A better understanding of the stability and turnover of soil dissolved organic matter (DOM) is key in order to predict the behavior and response of this dynamic carbon pool to climate and land use change. Radiocarbon is increasingly used to determine carbon turnover in carbon cycle studies. However, due to the nature of radiocarbon measurement as well as complexity of in-situ DOM collection, little comprehensive radiocarbon and turnover data is currently available. This project combines a high-resolution temporal DOM sequence for a mountainous (podzol) and temperate (cambisol) forest ecosystem with additional bulk- and fraction-specific soil organic matter analyses. DOM was collected bi-weekly on two sites of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL) at four depths, and measured for radiocarbon content. These initial results indicate bi-weekly variation in radiocarbon signatures over the summer season and a strong soil-type dependent pattern in DO14C trend. Overall, these initial radiocarbon results indicate that DOM dynamics are seasonally variable, and thus could potentially be sensitive to future climate change. Furthermore, the DO14C trend helps to better understand the trends as can be seen in the bulk 14C signature of the soil organic matter. Detailed radiocarbon investigations of soil DOM may yield key insights into the complex carbon transport dynamics in different soil systems and their potential behavior under climate change scenarios.

  19. Radiocarbon dating in groundwater systems: Chapter 4

    USGS Publications Warehouse

    Plummer, L.N.; Glynn, P.D.

    2013-01-01

    The radioactive isotope of carbon, radiocarbon (14C), was first produced artificially in 1940 by Martin Kamen and Sam Ruben, who bombarded graphite in a cyclotron at the Radiation Laboratory at Berkeley, CA, in an attempt to produce a radioactive isotope of carbon that could be used as a tracer in biological systems (Kamen (1963) [101]; Ruben and Kamen (1941) [102]). Carbon-14 of cosmogenic origin was discovered in atmospheric CO2 in 1946 by Willard F. Libby, who determined a half-life of 5568 a. Libby and his co-workers (Anderson et al. (1947) [103]; Libby et al. (1949) [104]) developed radiocarbon dating of organic carbon of biological origin, which revolutionized research in a number of fields, including archaeology and quaternary geology/climatology, by establishing ages and chronologies of events that have occurred over the past approximately 45 ka.

  20. The value of radiocarbon analysis in determining the forensic interest of human skeletal remains found in unusual circumstances.

    PubMed

    Cardoso, Hugo F V; Puentes, Katerina; Soares, António Monge; Santos, Agostinho; Magalhães, Teresa

    2012-02-01

    The case under analysis refers to the remains of a young adult female found in a shallow grave during the construction work of a hospital in Northern Portugal. The forensic interest of the finding could not be ruled out since distinguishing features pointing to an archaeological grave were lacking. For example, absence of archaeological artefacts could not establish its forensic significance with certainty, together with the absence of modern objects, such as remnants of clothing or personal objects. In addition, although the remains were badly preserved, the condition may not have resulted from a long post-depositional period, but instead could be explained by the geology of the site and the presence of plant roots. The radiocarbon analysis of the remains was meant to establish the death of the individual to before or after the mid-1950s, from comparison with bomb-curve content values. A value of 0.9789 ± 0.0044 for F(14)C (pmC = 97.19 ± 0.44% Modern or Δ(14)C = -28.1 ± 4.4‰) was obtained, which placed the death of the individual in the pre-mod-1950s period. This report illustrates the use of radiocarbon analysis in establishing whether the human remains are contemporary or not and describes evidence for what appears to be an historic clandestine grave. PMID:22281219

  1. Application of compound-specific radiocarbon dating for Antarctic margin sediments

    NASA Astrophysics Data System (ADS)

    Ohkouchi, N.; Koizumi, M.; Anderson, J. B.; Eglinton, T. I.; Miura, H.; Yokoyama, Y.

    2008-12-01

    Radiocarbon dating has been extensively applied for the development of chronologies of Antarctic margin sediments deposited during the late Quaternary. However, the problems are 1) the DIC reservoir age in the surface mixed layer is much older than that of the other oceans, 2) Antarctic margin sediments generally lack calcareous foraminifera conventionally used for radiocarbon dating and as stratigraphic tool, and 3) the sediments are subjected to significant "contamination" of relict organic matter eroded from the Antarctic continent, leading to substantially older radiocarbon ages of bulk sedimentary organic matter. Ohkouchi et al. (2003) first applied compound-specific radiocarbon dating to the surface sediments collected from Ross Sea, Antarctica for resolving the problem. They reported that the radiocarbon ages of solvent-extractable, short-chain (C14, C16, and C18) fatty acids are consistent with the modern DIC reservoir age (Pre-bomb: 14C -150, Post-bomb: 14C -100). Furthermore, the radiocarbon ages of these fatty acids at five down-core intervals progressively increase with the core depth. These results clearly show a utility of the compound- specific radiocarbon dating for developing sediment chronologies in Antarctic margin sediments. We also determined radiocarbon ages of the fatty acids from a core recovered in the NW Ross Sea to reconstruct sediment chronologies. Furthermore, we determined hydrogen isotopic compositions of sedimentary biomarkers in the core. Around 6.8, 5.7, 4.1, 2.5, and 1.5 kyr ago, the reconstructed D values of paleo- seawater were -200 or lower, suggesting a large amount of meltwater influx to the Ross Sea. Currently, we are applying the method to more sediment samples collected from wider area of Ross Sea to investigate the timing and pattern of retreat of West Antarctic Ice Sheet in the Holocene. I will present the up-dated results in my talk.

  2. The synthesis of [(14) C]AZD5122. Incorporation of an IV (14) C-microtracer dose into a first in human study to determine the absolute oral bioavailability of AZD5122.

    PubMed

    Hickey, Michael J; Allen, Paul H; Kingston, Lee P; Wilkinson, David J

    2016-05-30

    AZD5122, N-(2-(2,3-difluorobenzylthio)-6-((2R,3R)-3,4-dihydroxybutan-2-ylamino)pyrimidin-4-yl)azetidine-1-sulfonamide was under investigation as a potential chemokine receptor CXCR2 antagonist for the treatment for inflammatory diseases. To gain a better understanding of the human pharmacokinetic profile, an exploratory phase I IV microtracer study was conducted using carbon-14 radiolabelled AZD5122. [(14) C]AZD5122 was carbon-14 labelled in the pyrimidine ring in five steps in an overall radiochemical yield of 19% from [(14) C]thiourea. The absolute oral bioavailability of AZD5122 was assessed in healthy subjects by an oral administration of AZD5122, followed by a concomitant intravenous [(14) C]AZD5122 microdose. PMID:27169760

  3. Deglacial 14C plateau suites recalibrated by Suigetsu atmospheric 14C record - Revised 14C reservoir ages from three ocean basins corroborate extreme surface water variations

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Balmer, S.; Grootes, P. M.

    2013-12-01

    Radiocarbon (14C) reservoir/ventilation ages (Δ14C) provide unique insights into the dynamics of ocean water masses over LGM and deglacial times. The 14C plateau-tuning technique enables us to derive both an absolute chronology for marine sediment records and a high-resolution record of changing Δ14C values for deglacial surface and deep waters (Sarnthein et al., 2007; AGU Monogr. 173, 175). We designate as 14C plateau a sediment section in the age-depth profile with several almost constant planktic 14C ages - variation less than ×100 to ×300 yr - which form a plateau-shaped scatter band that extends over ~5 to 50 and up to 200 cm in sediment cores with sedimentation rates of >10 cm/ky. Previously, a suite of >15 plateau boundary ages were calibrated to a joint reference record of U/Th-dated 14C time series measured on coral samples, the Cariaco sediment record, and speleothems (Fairbanks et al., 2005, QSR 24; Hughen et al., 2006, QSR 25; Beck et al., 2001, Science 292). We now used the varve-counted atmospheric 14C record of Lake Suigetsu (Ramsey et al., 2012, Science 338, 370) to recalibrate the boundary ages and average ages of 14C plateaus and apply the amended plateau-tuning technique to a dozen Δ14C records from the Atlantic and Indo-Pacific. Main results are: (1) The Suigetsu atmospheric 14C record reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average plateau age by <200 14C yr during the LGM, >700 yr at its end, and <200 yr in the Bølling-Allerød. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus surface water Δ14C may have temporarily dropped to an equivalent of 200 yr in low-latitude stratified waters, such as off northwestern South America, and in turn reached values corresponding to an age difference of >2500 14C yr in stratified subpolar regions and upwelled waters such as in the South China Sea, values that differ significantly from a

  4. Radiocarbon age of waters in the deep Atlantic revisited

    SciTech Connect

    Broecker, W.S.; Virgilio, A. ); Peng, T.H. )

    1991-01-01

    The authors use a simple box model to evaluate the impact of temporal changes of the atmosphere's {sup 14}C/C on ventilation fluxes for the deep Atlantic calculated from radiocarbon measurements. The conclusion is that despite the fact that over the 300 year period from 1650 to 1950 the atmosphere's radiocarbon content declined at the same rate as radiocarbon decays, this temporal change has a relatively small impact (10-15%) on radiocarbon-based estimates of the ventilation rate of the deep Atlantic. The reason is that the radiocarbon content of the source waters for deep Atlantic are reasonably well buffered against changes in atmospheric {sup 14}C/C.

  5. Tracing terrestrial carbon: a novel application of ∆14C in a humic lake

    NASA Astrophysics Data System (ADS)

    Keaveney, Evelyn; Reimer, Paula J.; Foy, Robert H.

    2016-04-01

    Lakes play an important yet underrated role in global carbon cycles. Terrestrial carbon (C) is buried and/or remineralised in significant quantities, and lake function may also be affected by catchment inputs with potential feedbacks for regional and global C cycling. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry, terrestrial C export, and hence lake ecology. Autochthonous production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is 14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. Dissolved organic carbon (DOC) and particulate organic carbon (POC) can contain terrestrial inputs. The terrestrial inputs can be labile or detrital and their age depends to a first order on their depth in catchment soil/peat stocks. We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lower Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton and other biota, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment, collected in 2011. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The same proportion of detrital/labile carbon was found in surface sediment of Upper Lough Erne in 2014, despite the differences in lake type and collection date. The use of ∆14C in conjunction with

  6. Preventing and Removing Contamination in a Natural Radiocarbon Sample Preparation Laboratory

    SciTech Connect

    Zermeno, P; Kurdyla, D K; Buchholz, B A; Heller, S J; Frantz, B R; Brown, T A; Kashgarian, M

    2002-10-25

    The introduction of elevated {sup 14}C contamination into a natural radiocarbon sample preparation laboratory can occur through many different pathways. The most difficult to control is the introduction of contaminated samples from outside labs. Laboratories can remain {sup 14}C contaminated as a result of earlier tracer based research, even if ''hot'' work has not occurred in the laboratories in decades. Prior to accepting samples from outside collaborators, it is recommended that the collaborators test their labs for {sup 14}C contamination. Any surface in a lab that has high use by multiple people has the potential to be contaminated. The standard procedure for determining whether a collaborator's lab is contaminated consists of swiping lab surfaces with small glass fiber filters wetted with alcohol and measuring them for {sup 14}C content using AMS. Volatile {sup 14}C can be detected by using aerosol monitors consisting of fine soot that is depleted in {sup 14}C. These monitors can be set out in the laboratory in question to check for volatile {sup 14}C contamination. In the event that a hot sample is introduced in the natural radiocarbon sample prep laboratory, all sample submission should be stopped until the lab is declared clean. Samples already being processed should be completed along with {sup 14}C depleted material and measured by AMS. This will help determine if the contaminated samples have affected other samples in the laboratory. After a contamination event, the laboratory and associated equipment requires cleaning or disposal. All surfaces and equipment should be wiped down with acetone or ethanol. All chemicals in use should be disposed of in the appropriate waste containers and those waste containers removed from the lab. Once the natural radiocarbon laboratory has been thoroughly ''cleaned'', several background samples consisting of {sup 14}C depleted material should be processed through the lab and measured by AMS before unknown samples are

  7. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  8. Projections of atmospheric radiocarbon content to 2100

    NASA Astrophysics Data System (ADS)

    Graven, Heather

    2014-05-01

    The radiocarbon content of atmospheric CO2 has undergone dramatic changes over the past century. Radiocarbon in CO2 has been diluted by the combustion of 14C-free fossil fuels since the industrial revolution, causing a slow decline in the relative abundance of 14C to total carbon (Δ14C) in the early 1900s. This decline was interrupted by nuclear weapons testing in the 1950s and 60s, which nearly doubled the atmospheric inventory of 14C. Following the extraordinary rise in radiocarbon content, a quasi-exponential decrease was observed as excess radiocarbon was assimilated by carbon reservoirs in the ocean and on land. Recently, fossil fuel emissions have once again become the dominant influence on the long-term trend in Δ14C of CO2. This presentation will investigate the trajectory of atmospheric Δ14C to 2100 in relation to the Representative Concentration Pathways (RCPs) using a simple carbon cycle model. In all scenarios, Δ14C of CO2 is projected to drop below the zero per mil level in the next decade. Simulated atmospheric Δ14C is lower than -200 per mil in 2100 in the scenario with the largest growth in fossil fuel emissions, while the most ambitious emission reductions are projected to sustain Δ14C near zero per mil. The presentation will discuss the implications of these changes in atmospheric composition on isotopic disequilibria and net fluxes of radiocarbon between different reservoirs, including the sensitivity of atmospheric Δ14C to fossil fuel emissions on global and regional scales.

  9. Recent AMS measurements of {sup 14}C in soil organic matter: Understanding controls of carbon storage and turnover in soils

    SciTech Connect

    Trumbore, S.E.; Torn, M.S.; Chadwick, O.A.

    1996-10-01

    Radiocarbon measurements are one of the best tools available for determining the rates of carbon and turnover of in soil organic matter. AMS measurements of radiocarbon are essential they allow measurement of {sup 14}C in archived soils with very low carbon content, in physically or chemically fractionated soil organic matter, in dissolved organic carbon leached from soils, as well as in CO{sub 2} and CH{sub 4} produced during decomposition. We report recent results demonstrating the importance of applying AMS soil radiocarbon measurements to questions of soil C dynamics. We used the increase in {open_quote}bomb{close_quote} {sup 14}C between archived an modem soil profiles sampled along an elevation transect in the Sierra Nevada mountains, California, to determine the role of temperature in determining the rate of turnover of fast-cycling soil organic matter. To study the role of soil mineralogy in determining how carbon is stabilized in {open_quote}passive{close_quote} soil organic matter pools, we compare soil mineralogy and C and {sup 14}C storage in soils along a chronosequence in the Hawaiian islands. Implications for the global C cycle will be discussed.

  10. Utility of radiocarbon-dated stratigraphy in determining late Holocene earthquake recurrence intervals, upper Cook Inlet region, Alaska

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Schmoll, H.R.

    1992-01-01

    During the great 1964 earthquake, parts of coastal southern Alaska subsided tectonically as much as 2 m, and this led to burial of high-intertidal organic-rich marshes by low-intertidal and tidal silt. In the tectonically active parts of upper Cook Inlet, the presence of stratigraphic sections containing numerous prehistoric interbedded layers of peat and silt suggests that such stratigraphy resulted when marshes and forests were similarly inundated and buried by intertidal and tidal sediment as a result of great, prehistoric earthquakes. This study tests the feasibility of using buried, radiocarbon-dated, late Holocene peat layers that are exposed in the intertidal zone of upper Cook Inlet to determine earthquake recurrence intervals. Because of problems associated with conventional radiocarbon dating, the complex stratigraphy of the study area, the tectonic setting, and regional changes in sea level, conclusions from the study do not permit precise identification of the timing and recurrence of paleoseismic events. -from Authors

  11. Extraction of in situ cosmogenic 14C from olivine

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  12. Radiocarbon dating of fossil mollusk shells in the Yucca Mountain region

    SciTech Connect

    Brennan, R.; Quade, J.

    1995-12-01

    Fossil mollusk shells from late Quaternary deposits in Southern Nevada were radiocarbon dated to determine the age of paleogroundwater discharge events and to establish minimum {sup 14}C ages of paleogroundwater. Shells of the terrestrial taxa Vallonia sp. and Succineidae returned {sup 14}C dates consistent with those on organic material in the same stratigraphic position. The aquatic taxa Gyraulus parvus and Gyraulus circumstratus returned the oldest dates within each unit samples. These results show that (1) fossil Vallonia and Succineidae are useful in dating deposits in which no other radiocarbon-datable material is available, and (2) Gyraulus sp. select micro habitats with the most {sup 14}C deficient water, providing minimum ages of groundwater in the area during the last glacial period.

  13. Radiocarbon Dating.

    PubMed

    Van Strydonck, Mark

    2016-04-01

    Although most historians and art historians consider the radiocarbon dating technique not to be very precise by their criteria, the method has gained much importance over the last decades. Radiocarbon dating is increasingly used in the field of textile research and old polychrome statues, but also objects made of ivory, stucco, paper, and parchment are dated with the technique. Especially after the introduction of the AMS technique, a boom of this type of research has been noticed. PMID:27573138

  14. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  15. Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): a reference time series for the coastal waters of southeast Alaska

    SciTech Connect

    Kerr-Ferrey, L A; Andrews, A H; Frantz, B R; Coale, K H; Brown, T A; Cailliet, G M

    2003-10-14

    Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the environment that has provided a useful tracer and chronological marker in oceanic systems and organisms. The bomb-generated {sup 14}C signal retained in fish otoliths can be used as a permanent, time-specific recorder of the 14C present in ambient seawater, making it a useful tool in age validation of fishes. The goal of this study was to determine {sup 14}C levels in otoliths of the age-validated yelloweye rockfish (Sebastes ruberrimus) to establish a reference time series for the coastal waters of southeast Alaska. Radiocarbon values from the first year's growth of 43 yelloweye rockfish otoliths were plotted against estimated birth year to produce a 14C time series for these waters spanning 1940 to 1990. The time series shows the initial rise of bomb 14C occurred in 1958 in coastal southeast Alaskan waters and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values (60-70%) between 1966 and 1971, with a subsequent declining trend through the end of the record in 1990 (-3.2%). In addition, the radiocarbon data, independent of the radiometric study, confirms the longevity of the yelloweye rockfish up to a minimum of 44 years and strongly supports higher age estimates. The yelloweye rockfish record provides a {sup 14}C chronology that will be useful for the interpretation of {sup 14}C accreted in biological samples from these waters and in future rockfish age validation studies.

  16. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  17. 14C dating of small archaeological samples: neolithic to iron age in the central alpine region

    NASA Astrophysics Data System (ADS)

    Bill, J.; Keller, W. A.; Erne, R.; Bonani, G.; Wölfli, W.

    1984-11-01

    Accelerator mass spectrometry (AMS) radiocarbon 14C dating will widen enormously the range and scope of archaeological investigations. This is due mainly to 100- to 1000-fold sample size reduction over conventional dating. In order to determine the size and the quality of samples that can be accepted for AMS 14C dating, we have selected archaeological samples relating to the Neolithic to Iron Age. The basis of our AMS target preparations is the coking (pyrolysis) of organic matter after elimination of impurities by various physical and chemical treatments. The effect of the morphology as well as of the grain size distribution of the charcoal particles was determined in order to achieve optimal conditions for accelerator dating.

  18. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  19. Age validation of quillback rockfish (Sebastes maliger) using bomb radiocarbon

    SciTech Connect

    Kerr, L A; Andrews, A H; Munk, K; Coale, K H; Frantz, B R; Cailliet, G M; Brown, T A

    2005-01-05

    Rockfishes (Sebastes spp.) support one of the most economically important fisheries of the Pacific Northwest and it is essential for sustainable management that age estimation procedures be validated for these species. Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the ocean environment that scientists have identified as a useful tracer and chronological marker in natural systems. In this study, we first demonstrated that fewer samples are necessary for age validation using the bomb-generated {sup 14}C signal by emphasizing the utility of the time-specific marker created by the initial rise of bomb-{sup 14}C. Second, the bomb-generated {sup 14}C signal retained in fish otoliths was used to validate the age and age estimation methodology of the quillback rockfish (Sebastes maliger) in the waters of southeast Alaska. Radiocarbon values from the first year's growth of quillback rockfish otoliths were plotted against estimated birth year producing a {sup 14}C time series spanning 1950 to 1985. The initial rise of bomb-{sup 14}C from pre-bomb levels ({approx} -90 {per_thousand}) occurred in 1959 {+-} 1 year and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values in 1967 (+105.4 {per_thousand}), with a subsequent declining trend through the end of the record in 1985 (+15.4 {per_thousand}). The agreement between the year of initial rise of {sup 14}C levels from the quillback rockfish record and the chronometer determined for the waters of southeast Alaska from yelloweye rockfish (S. ruberrimus) otoliths validated the ageing methodology for the quillback rockfish. The concordance of the entire quillback rockfish {sup 14}C record with the yelloweye rockfish time series demonstrated the effectiveness of this age validation technique, confirmed the longevity of the quillback rockfish up to a minimum of 43 years, and strongly supports higher age estimates of up to 90 years.

  20. Disposition of [14C]ruboxistaurin in humans.

    PubMed

    Burkey, Jennifer L; Campanale, Kristina M; Barbuch, Robert; O'Bannon, Douglas; Rash, James; Benson, Charles; Small, David

    2006-11-01

    Ruboxistaurin is a potent and specific inhibitor of the beta isoforms of protein kinase C (PKC) that is being developed for the treatment of diabetic microvascular complications. The disposition of [(14)C]ruboxistaurin was determined in six healthy male subjects who received a single oral dose of 64 mg of [(14)C]ruboxistaurin in solution. There were no clinically significant adverse events during the study. Whole blood, urine, and feces were collected at frequent intervals after dosing. Metabolites were profiled by high performance liquid chromatography with radiometric detection. The total mean recovery of the radioactive dose was approximately 87%, with the majority of the radioactivity (82.6 +/- 1.1%) recovered in the feces. Urine was a minor pathway of elimination (4.1 +/- 0.3%). The major route of ruboxistaurin metabolism was to the N-desmethyl ruboxistaurin metabolite (LY338522), which has been shown to be active and equipotent to ruboxistaurin in the inhibition of PKC(beta). In addition, multiple hydroxylated metabolites were identified by liquid chromatography-mass spectrometry in all matrices. Pharmacokinetics were conducted for both ruboxistaurin and LY338522 (N-desmethyl ruboxistaurin, 1). These moieties together accounted for approximately 52% of the radiocarbon measured in the plasma. The excreted radioactivity was profiled using radiochromatography, and approximately 31% was structurally characterized as ruboxistaurin or N-desmethyl ruboxistaurin. These data demonstrate that ruboxistaurin is metabolized primarily to N-desmethyl ruboxistaurin (1) and multiple other oxidation products, and is excreted primarily in the feces. PMID:16896067

  1. Radiocarbon variability in modern deep-sea bamboo coral skeletons from the North Atlantic

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Robinson, L. F.

    2013-12-01

    Geochemical records from modern and recent deep-sea corals can provide new opportunities for understanding how changes in intermediate to deep ocean chemistry and circulation relate to climatic changes during the Common Era. Of critical importance for such comparisons are well-constrained coral growth rates (and hence chronology). Bamboo coral specimens of the genus Keratoisis are widely distributed in the modern oceans, but their calcitic skeletons exhibit open system U-Th behavior and many specimens show obscure growth banding, limiting available techniques for growth rate determinations. We measured radial transects of radiocarbon across the skeletons of six Keratoisis specimens that were live-collected in the northwestern North Atlantic Ocean between 1879 and 2005. Initial results show that Δ14C from the outer surface of three modern corals is within error of seawater Δ14C estimates at the site of coral collection from GLODAP. Most specimens show increasing 14C age toward the coral center, implying near-linear growth rates of 40 to 60 μm/14C year that are consistent with growth rates for North Atlantic Keratoisis specimens established by skeletal 210Pb and organic (gorgonian) 14C measurements. However, other specimens show radiocarbon variability that precludes accurate growth rate determinations for parts of the skeleton. In particular, multiple specimens exhibit systematic radiocarbon age reversals within 1-3 mm of the central growth axis, which is assumed to be the ontogenetically oldest part of the skeleton. This observation is consistent with previously published records of elevated unsupported 210Pb around the central growth axis of some North Atlantic Keratoisis specimens. We discuss potential physical and biological causes for the observed radiocarbon variability and implications for accurate growth rate determinations for bamboo coral skeletons.

  2. Measurement of fecal /sup 14/C excretion

    SciTech Connect

    Kumaran, K.A.; Wiener, N.S.; Katz, J.B.

    1982-11-01

    Simultaneous measurements of fecal /sup 14/C and expired /sup 14/CO/sub 2/ in the breath are necessary to evaluate patients with various ileal abnormalities and bile salt malabsorption. Following the oral ingestion of the labeled bile acid, glycine-(I-/sup 14/C)cholic acid, detection of increased fecal /sup 14/C without abnormal expiration of /sup 14/CO/sub 2/ identifies patients with ileal resection. This contrasts with the normal fecal /sup 14/C content and abnormal expired /sup 14/CO/sub 2/ found in patients with bacterial overgrowth. Fecal /sup 14/C content was determined by utilizing Van Slyke combustion of the specimen and trapping the liberated /sup 14/CO/sub 2/ with Scintisorb C. The method is simple, rapid, and accurate, and expands the diagnostic usefulness of the bile salt absorption test.

  3. Grass material as process standard for compound-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, Malu; Xu, Xiaomei; Bryant, Charlotte; Pearson, Emma; Dungait, Jennifer

    2015-04-01

    Compound-specific radiocarbon analysis (CSRA) is a powerful tool to study the carbon cycle and/or as a dating technique in paleoclimate reconstructions. The radiocarbon value of individual compounds can provide insight into turnover times, organic matter sources and in specific cases can be used to establish chronologies when traditional dating materials (e.g. macrofossils, pollen, charcoal) are not available. The isolation of compounds (or group of compounds) from parent material (e.g. soil, plant) for radiocarbon analysis can, however, introduce carbon contamination through chemical separation steps and preparative capillary gas chromatography (PCGC). In addition, the compounds of interest are often in low abundance which amplifies the contamination effect. The extraneous carbon can be of modern 14C age and/or 14C -free and its amount and 14C value must be determined for a given system/isolation procedure in order to report accurate 14C values. This can be achieved by using adequate standard materials but, by contrast with traditional radiocarbon dating, there are not established reference standards for CSRA work, in part because the type of standard material depends on the compounds of interest and the isolation procedure. Here we evaluate the use of n-alkanes extracted from single-year growth grass as modern process standard material for CSRA using PCGC isolation. The grass material has a known 14C value of 1.224 ± 0.006 fraction modern (FM) and the individual n-alkanes are expected to have a similar 14C value. In order to correct for the addition of extraneous carbon during PCGC isolation of the n-alkanes, we used commercially available compounds of modern 14C content and 14C -free (adipic acid, FM= 0.0015 ± 0.0001 and docosane, FM=1.059 ± 0.003) to evaluate our PCGC procedure. The corrected 14C values of the isolated n-alkanes extracted from the modern grass are within one sigma of the grass bulk 14C value for n-C29 and within two sigma for n-C23-C27, C31

  4. Comparison of bone collagen and osteocalcin for determination of radiocarbon ages and paleodietary reconstruction

    NASA Astrophysics Data System (ADS)

    Ajie, Henry O.; Hauschka, Peter V.; Kaplan, Isaac R.; Sobel, Harry

    1991-11-01

    Osteocalcin, a gamma-carboxyglutamic acid containing bone protein, is tightly bound to the hydroxyapatite matrix of bone, and as a consequence it is relatively more stable than the dominant protein, collagen. Its distribution in nature is limited to vertebrates. Osteocalcin and collagen have been isolated from modern and fossil bone samples of different organisms in different depositional environments for analysis of their δ 13C , δ 15N and 14C content. Whereas collagen is susceptible t aqueous weathering, hydrolysis, solubilization and removal, as well as contamination by soil amino acids or peptides, osteocalcin is more strongly bonded to the apatite matrix of the bone and hence less prone to loss or replacement by contaminants. We present evidence suggesting that osteocalcin may be a more suitable protein fraction for obtaining accurate 14C age estimates and/or δ 13C and δ 15N for paleodietary reconstruction from bone samples.

  5. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  6. Extraneous carbon assessment in ultra-microscale radiocarbon analysis using benzene polycarboxylic acids (BPCA)

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; McIntyre, Cameron P.; Schmidt, Michael W. I.; Wacker, Lukas; Eglinton, Timothy I.

    2016-04-01

    Measurements of the natural abundance of radiocarbon (14C) concentrations in inorganic and organic carbon-containing materials can be used to investigate their date of origin. Particularly, the biogeochemical cycling of specific compounds in the environment may be investigated applying molecular marker analyses. However, the isolation of specific molecules from environmental matrices requires a complex processing procedure resulting in small sample sizes that often contain less than 30 μg C. Such small samples are sensitive to extraneous carbon (Cex) that is introduced during the purification of the compounds (Shah and Pearson, 2007). We present a thorough radiocarbon blank assessment for benzene polycarboxylic acids (BPCA), a proxy for combustion products that are formed during the oxidative degradation of condensed polyaromatic structures (Wiedemeier et al, in press). The extraneous carbon assessment includes reference material for (1) chemical extraction, (2) preparative liquid chromatography (3) wet chemical oxidation which are subsequently measured with gas ion source AMS (Accelerator Mass Spectrometer, 5-100 μg C). We always use pairs of reference materials, radiocarbon depleted (14Cfossil) and modern (14Cmodern) to determine the fraction modern (F14C) of Cex.Our results include detailed information about the quantification of Cex in radiocarbon molecular marker analysis using BPCA. Error propagation calculations indicate that ultra-microscale samples (20-30 μg) are feasible with uncertainties of less than 10 %. Calculations of the constant contamination reveal important information about the source (F14C) and mass (μg) of Cex (Wacker and Christl, 2011) for each sub procedure. An external correction of compound specific radiocarbon data is essential for robust results that allow for a high degree of confidence in the 14C results. References Shah and Pearson, 2007. Ultra-microscale (5-25μg C) analysis of individual lipids by 14C AMS: Assessment and

  7. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Rau, Greg H.; Duffy, Philip B.

    Prior to changes introduced by man, production of radiocarbon (14C) in the stratosphere nearly balanced the flux of 14C from the atmosphere to the ocean and land biosphere, which in turn nearly balanced radioactive decay in these 14C reservoirs. This balance has been altered by land-use changes, fossil-fuel burning, and atmospheric nuclear detonations. Here, we use a model of the global carbon cycle to quantify these radiocarbon fluxes and make predictions about their magnitude in the future. Atmospheric nuclear detonations increased atmospheric 14C content by about 80% by the mid-1960's. Since that time, the 14C content of the atmosphere has been diminishing as this bomb radiocarbon has been entering the oceans and terrestrial biosphere. However, we predict that atmospheric 14C content will reach a minimum and start to increase within the next few years if fossil-fuel burning continues according to a “business-as-usual” scenario, even though fossil fuels are devoid of 14C. This will happen because fossil-fuel carbon diminishes the net flux of 14C from the atmosphere to the oceans and land biosphere, forcing 14C to accumulate in the atmosphere. Furthermore, the net flux of both bomb and natural 14C into the ocean are predicted to continue to slow and then, in the middle of the next century, to reverse, so that there will be a net flux of 14C from the ocean to the atmosphere. The predicted reversal of net 14C fluxes into the ocean is a further example of human impacts on the global carbon cycle.

  8. Anomalous elevated radiocarbon measurements of PM2.5

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Fallon, Stewart J.; Zermeño, Paula; Bench, Graham; Schichtel, Bret A.

    2013-01-01

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 (14C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of 14C approximately 1.2 × 10-1214C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer 14C can skew the 14C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where 14C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare (∼10%) for PM sampling sites.

  9. Construction of reliable radiocarbon-based chronologies for speleothems

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska; Fohlmeister, Jens; McIntyre, Cameron; Baldini, Lisa M.; Jamieson, Robert A.; Hercman, Helena; Gasiorowski, Michal; Pawlak, Jacek; Stefaniak, Krzysztof; Socha, Pawel; Eglinton, Timothy I.; Baldini, James U. L.

    2016-04-01

    Speleothems have become one of the most widely applied archives for paleoclimate research. One of their key advantages is their amenability for U-series dating, often producing excellent high precision chronologies. However, stalagmites with high detrital Th or very low U concentrations are problematic to date using U-series, and sometimes need to be discarded from further paleoclimate analysis. Radiocarbon chronologies could present an alternative for stalagmites that cannot be dated using U-series, if offsets from the "dead carbon fraction" (DCF) can be resolved. The DCF is a variable reservoir effect introduced by the addition of 14C-dead carbon from host rock dissolution and soil organic matter. We present a novel age modeling technique that provides accurate 14C-based chronologies for stalagmites. As this technique focuses on the long-term decay pattern of 14C, it is only applicable on stalagmites that show no secular variability in their 14C-depth profiles, but is independent of short-term DCF variations. In order to determine whether a stalagmite is suitable for this method without direct knowledge of long-term trends in the DCF, we highlight how other geochemical proxies (δ13C, Mg/Ca) can provide additional information on changes in karst hydrology, soil conditions, and climate that would affect DCF. We apply our model on a previously published U-Th dated stalagmite 14C dataset from Heshang Cave, China with excellent results, followed by a previously 'undateable' stalagmite from southern Poland.

  10. 14C-carbaryl residues in hazelnut.

    PubMed

    Yücel, Ulkü; Ilim, Murat; Aslan, Nazife

    2006-01-01

    A hazelnut ocak (shrub growing form) in the field in Black Sea region of Turkey was treated with commercial carbaryl insecticide spiked with 14C-carbaryl. Three months later, the harvested hazelnuts were separated into husk, shell, and kernel components, then homogenized and analyzed. The total and unextractable (bound) 14C-residues were determined by combustion and the extractable 14C-residues were obtained by extracting the samples with methanol. Concentrated extracts were first analyzed by thin layer chromatography (TLC). The extracts were also subjected to a series of liquid-liquid extraction procedures for clean-up and the final extracts were analyzed by high performance liquid chromatography (HPLC). Crude hazelnut oil was also extracted with hexane and analyzed for total 14C-residue. A total of 1.3% of applied radioactivity was recovered from the total nut harvested, with 0.04%, 0.06%, and 1.2% present in shell, kernel, and husk, respectively. The results show that the inedible husk and shell contained 95.7% 14C, whereas the edible kernel contained 4.3% of the total 14C recovered. The terminal 14C-residue in hazelnut kernel and oil did not contain carbaryl and/or its metabolite naphthol. PMID:16785168

  11. A simplified In Situ cosmogenic 14C extraction system

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    We describe the design, construction, and testing of a new, simplified in situ radiocarbon extraction system at the University of Arizona. Blank levels for the new system are low ((234 ?? 11) ?? 103 atoms (1 ??; n = 7)) and stable. The precision of a given measurement depends on the concentration of 14C, but is typically <5% for concentrations of 100 ?? 103 atoms g-1 or more. The new system is relatively small and easy to construct, costs significantly less than the original in situ 14C extraction system at Arizona, and lends itself to future automation. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  12. New Radiocarbon Dates on Upper Mid-West Proboscideans: Determining Date Robustness

    NASA Astrophysics Data System (ADS)

    Hodgins, G.; Widga, C.; Lengyel, S. N.; Saunders, J.; Walker, J. D.

    2013-12-01

    With the objective of refining the picture of Megafaunal extinction patterns in the upper Midwest in the terminal Pleistocene, we have assembled for radiocarbon dating specimens from more than 80 distinct Mammut and Mammuthus remains from potentially late sites. So far, we have measurements for 65 bones, tusks and teeth, nearly double the extant number of published dates . These new specimens were all from museums rather than excavation sites, and 60% were known to be coated with a consolidant. The predominant consolidant was Butvar B-76, however shellac, Elmer's Glue, Glyptol were also noted in the conservation records, or deduced from knowledge of a particular museum's practices. Given the objective of the project is to identify extinction patterns, coupled with the wide prevalence of consolidants amongst the specimen set, it was imperative that testing be carried out to confirm that radiocarbon laboratory protocols removed the consolidants, so that ultimately the dates can be considered robust. To this end, key specimens were dated three times using different sample preparation protocols. These were 1) a solvent extraction followed by a modified Longin-plus -Base continuous flow collagen extraction method used in the NSF-Arizona AMS facility, 2) the solvent/modified Longin method plus ultrafiltration, and 3) solvent/modified Longin method plus hydroxyproline single amino acid dating. Among the specimens subjected to triplicate testing were some of the youngest late Wisconsin proboscidean specimens from the Upper Midwest Region. The data reveal general agreement between the different protocols, and suggested either limited penetration of consolidants into the specimens, or that the standard laboratory cleaning protocols were sufficient to remove traces from deep within bone, tooth or tusk tissue. The preservation of each specimen, recorded in terms of collagen content, C/N ratio and stable isotope values, indicated that most were actually well preserved, implying

  13. Slip rate determination along the Southern Dead Sea fault: optically stimulated luminescence, 10Be cosmogenic radionuclide, and 14C ages brought face to face

    NASA Astrophysics Data System (ADS)

    Le Beon, Maryline; Jaiswal, Manoj; Kunz, Alexander; Al-Qaryouti, Mahmoud; Burr, George; Klinger, Yann; Moumani, Khaled; Chen, Yue-Gau; Abdelghafoor, Mohammed; Suppe, John

    2014-05-01

    Active tectonics studies are often limited by difficulties in accurately and precisely dating Late Quaternary alluvial deposits that commonly lack organic matter or date beyond the 14C dating limit. This is illustrated at a site called Fidan, in arid southern Jordan, where a series of alluvial fans are laterally offset by the southern Dead Sea fault. Geodetic, geomorphic and geologic studies converge to a fault slip rate of 5 ± 2 mm/a. Yet, Late Pleistocene slip rate at Fidan cover a wide range due to the dispersion of 10Be cosmogenic radionuclide (CRN) ages. The maximum slip rate since ~100 ka is up to a value of 11 mm/a, possibly suggesting significant variations in fault activity with time. In order to reduce the uncertainty on the Late Pleistocene slip rate and draw further conclusions regarding the fault seismic behavior, we implement complementary dating using optically stimulated luminescence (OSL) techniques on both quartz and K-feldspar minerals and using 14C when possible. OSL measurements include a newly developed technique called post-infra-red infra-red stimulated luminescence at 290°C (pIR290). We extensively sampled surface levels F2 and F4, digging ~50-cm deep pits into the geomorphic surfaces. Annual dose rates were determined in the laboratory from both geochemical analysis of the sediment and gamma-ray spectrometry. Due to sediment heterogeneity, we consider gamma-ray spectrometry as more reliable because it is based on a larger volume of sediment. Quartz OSL ages and preliminary pIR290 results on K-feldspars give consistent Early Holocene ages of 9-14 ka for F2, also in agreement with a 14C age of 13 ka from a landsnail shell. 10Be CRN exposure ages on F2 were significantly older, with 37 ± 4 ka, probably due to inheritance. On F4, 10Be CRN exposure ages showed a scattered distribution, from ~50 ka to ~120 ka, with most samples comprised in the mean interval of 87 ± 26 ka. Quartz OSL ages from 5 locations on F4 are comprised between 32 ± 3

  14. 14C dating of bone using (gamma) Carboxyglutamic Acid and Carboxyglycine (Aminomalonate)

    SciTech Connect

    Southon, J R; Burky, R T; Kirner, D L; Taylor, R E; Hare, P E

    1999-04-27

    Radiocarbon determinations have been obtained on {gamma}-carboxyglutamic acid [Gla] and {alpha}-carboxyglycine (aminomalonate) [Am] as well as acid- and base-hydrolyzed total amino acids isolated from a series of fossil bones. As far as they are aware, Am has not been reported previously in fossil bone and neither Gla nor Am {sup 14}C values have been measured previously. Interest in Gla, an amino acid found in the non-collagen proteins osteocalcin and matrix Gla-protein (MGP), proceeds from the suggestion that it may be preferentially retained and more resistant to diagenetic contamination affecting {sup 14}C values in bones exhibiting low and trace amounts of collagen. The data do not support these suggestions. The suite of bones examined showed a general tendency for total amino acid and Gla concentrations to decrease in concert. Even for bones retaining significant amounts of collagen, Gla (and Am extracts) can yield {sup 14}C values discordant with their expected age and with {sup 14}C values obtained on total amino-acid fractions isolated from the same bone sample.

  15. Test of AMS 14C dating of pollen concentrates using tephrochronology

    NASA Astrophysics Data System (ADS)

    Newnham, Rewi M.; Vandergoes, Marcus J.; Garnett, Mark H.; Lowe, David J.; Prior, Christine; Almond, Peter C.

    2007-01-01

    Previous attempts to radiocarbon date sediments >10 kyr from the high rainfall region of Westland, New Zealand, a critical location for investigation of interhemispheric patterns of climate change, have been problematic. This study, building on recent work by Vandergoes and Prior ([2003]), shows that AMS 14C dating of pollen concentrates has potential to provide more reliable ages than other sediment constituents, including plant macrofossils. The method was applied to sediments from three sites containing the 22.6k 14C yr Kawakawa Tephra, which provided an independent test of the 14C ages. Although some minor laboratory contamination was detected in tests on background standards, the modelled relationship between sample mass and measured 14C content permitted an appropriate correction to be determined. Improved pollen concentrations derived by density separation between 1.4 and 1.2 specific gravity and sieving in the range 10-50 m provided either older ages than other fractions of the same sample or, where in situ contamination was not evident, equivalent ages. Differences in degree of in situ contamination between depositional environments indicated that, in Westland, lake sites may be less susceptible to contamination by younger carbon than peat sites, where this process may be facilitated by root penetration into underlying sediments. Copyright

  16. Blade-order-dependent radiocarbon variability in brown seaweed (Undaria pinnatifida) reflected a cold Oyashio water intrusion event in an embayment of the Sanriku coast, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Satoh, N.; Fukuda, H.; Miyairi, Y.; Yokoyama, Y.; Nagata, T.

    2015-12-01

    Radiocarbon in dissolved inorganic carbon (DIC) in seawater varies greatly, both geographically and with depth. This "reservoir effect" is thought to be reflected in the radiocarbon content (∆14C) of marine organisms, via DIC fixation by primary producers and subsequent trophic transfer. The ∆14C of marine organismal soft tissues might thus provide unique information about their habitats, diets, migration and other environmental histories. However, the effectiveness of this approach has yet to be extensively explored, with data on ∆14C variability in soft tissues of marine organisms being markedly limited. Here we examined whether ∆14C values of individual pinnate blades (leaf-like structures) of brown seaweed (Undaria pinnatifida) reflect the ∆14C of DIC in the water current prevailing at the time of blade formation. The study was conducted in Otsuchi Bay located in the Sanriku coastal region, northeastern Japan, where 14C-depleted cold Oyashio current and warm Tsugaru current (high ∆14C) converge, affecting the physiology and growth of marine organisms growing there. U. pinnatifida individuals cultured in the bay (length of saprophytes, 140-215 cm) were harvested in April 2014 and ∆14C of blades were determined by accelerator mass spectrometry. Younger blades formed after the Oyashio water intrusion had significantly lower ∆14C values compared to older blades formed before the event. The ∆14C values of younger and older blades were generally consistent with the ∆14C of DIC in Oyashio (-60.5 ‰) and Tsugaru (24.9 ‰) waters, respectively. Thus, despite possible turnover of organic carbon in seaweed soft tissues, blade-order-dependent ∆14C variability appeared to strongly reflect the Oyashio intrusion event (radiocarbon shift) in the bay.

  17. Radiocarbon dating of VIRI bone samples using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Yamazaki, Kana; Omori, Takayuki; Nakamura, Toshio

    2013-01-01

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate 14C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on 14C age, we analyzed the C/N ratio, δ13CPDB and δ15NAIR values, and 14C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, δ13CPDB and δ15NAIR values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin™ 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older 14C ages than did those filtered for shorter durations. The results in this study indicate that 14C ages of unfiltered gelatin extracted from well-preserved bones can be sufficiently accurate, and that care should be taken not to

  18. Bioconversion of alpha-[14C]zearalenol and beta-[14C]zearalenol into [14C]zearalenone by Fusarium roseum 'Gibbosum'.

    PubMed Central

    Richardson, K E; Hagler, W M; Hamilton, P B

    1984-01-01

    Cultures of Fusarium roseium 'Gibbosum' on rice were treated with [14C]zearalenone, alpha[14C]zearalenol, or beta-[14C]zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the beta-[14C]zearalenol was converted to zearalenone, and no residual beta-[14C]zearalenol was detectable. Most of the alpha-[14C]zearalenol added was also converted into zearalenone with 14 days. In cultures treated with [14C]zearalenone, no radioactivity was noted in any other components. PMID:6742839

  19. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  20. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  1. Intermediate water radiocarbon off west Sumatra during the last 45,000 years

    NASA Astrophysics Data System (ADS)

    De Pol-Holz, R.; Mohtadi, M.; Southon, J.

    2012-04-01

    Radiocarbon content of intermediate waters originating from the Southern Ocean is held as the likely smoking gun of the events that triggered the atmospheric CO2 rise and its radiocarbon content decline during the last glacial-interglacial transition. Extremely depleted radiocarbon has been found off the coast of Baja California, the Galapagos and the Arabian Sea, but not unequivocally elsewhere. Knowing the route of the old water is therefore central for the mechanistic linkage of Southern Ocean processes and the atmospheric response. Here, we present high-resolution radiocarbon content of intermediate depth waters off west Sumatra in the attempt to trace the hypothetical route of old water emanating near Antarctica. Sediment core SO189-39KL (0°47'S, 99°55'E, 517 m) resulted in a 1350 cm hemipelagic sedimentary sequence that spans the last 45,000 years and it was sampled for planktonic and benthic foraminifera radiocarbon determinations at a centennial time resolution. Besides the planktonic radiocarbon age control points, we attempted an independent stratigraphy based on the Mg/Ca sea surface temperature evolution and its apparent similarity with Antarctic Ice core records. This allowed us to infer surface reservoir ages as well as the D14C of the intermediate waters. Our results show that throughout the LGM and the entire deglaciation, radiocarbon content at 500 m depth off west Sumatra remained in equilibrium with the contemporaneous atmosphere, discarding this area as a probable route for the spreading of the old water along its way to northern latitudes. These results add up to increasing evidence that the radiocarbon content of intermediate waters originating from the Southern Ocean was not influenced by the upwelling of a large abyssal old water reservoir, as it has been hypothesized in order to explain the atmospheric deglacial records.

  2. A Brief Review of the Application of 14C in Terrestrial Carbon Cycle Studies

    SciTech Connect

    Guilderson, T; Mcfarlane, K

    2009-10-22

    An over-arching goal of the DOE TCP program is to understand the mechanistic controls over the fate, transport, and residence time of carbon in the terrestrial biosphere. Many of the modern process and modeling studies focus on seasonal to interannual variability. However, much of the carbon on the landscape and in soils is in separate reservoirs with turnover times that are multi-decadal to millennial. It is the controls on these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs and climate change and uncertainties of the terrestrial biosphere as a future global sink or source of atmospheric CO{sub 2} [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005; Thompson et al., 2004]. Radiocarbon measurements, in combination with other data, can provide insight into, and constraints on, terrestrial carbon cycling. Radiocarbon (t{sub 1/2} 5730yrs) is produced naturally in the stratosphere when secondary neutrons generated by cosmic rays collide with {sup 14}N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, {sup 14}C is rapidly oxidized to CO and then to CO{sub 2}, and is incorporated into the carbon cycle. Due to anthropogenic activities, the amount of {sup 14}C in the atmosphere doubled in the mid/late 1950s and early 1960s from its preindustrial value of {sup 14}C/{sup 12}C ratio of 1.18 x 10{sup -12} [eg., Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the {sup 14}C/{sup 12}C ratio, has decreased due to the net isotopic exchange between the ocean and terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the burning of {sup 14}C-free fossil fuel carbon, the 'Suess Effect' [Suess, 1955]. In the carbon cycle literature, radiocarbon measurements are generally reported as {Delta}{sup 14}C, which includes a correction for mass dependent fractionation [Stuiver and Polach, 1977]. In the context of carbon cycle studies radiocarbon measurements can be used to

  3. Carbonates in leaching reactions in context of 14C dating

    NASA Astrophysics Data System (ADS)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  4. Determination of the Tissue Distribution and Excretion by Accelerator Mass Spectrometry of the Nonadecapeptide 14C-Moli1901 in Beagle dogs after Intratracheal Instillation

    SciTech Connect

    Rickert, D E; Dingley, K H; Ubick, E; Dix, K J; Molina, L

    2004-07-02

    Administration of {sup 14}C-Moli1901 (duramycin, 2622U90), a 19 amino acid polycyclic peptide by intratracheal instillation (approximately 100 {micro}g) into the left cranial lobe of the lung of beagle dogs resulted in retention of 64% of the dose in the left cranial lobe for up to 28 days. In this study, we used accelerator mass spectrometry (AMS) to quantify Moli901 following administration of only 0.045 {micro}Ci of {sup 14}C-Moli901 per dog. Limits of quantitation of AMS were 0.03 (urine) to 0.3 (feces) ng equiv. Moli1901/g. Whole blood and plasma concentrations of {sup 14}C were <5ng/ml at all times after the dose. Concentrations of {sup 14}C in whole blood and plasma declined over the first day after the dose and rose thereafter, with the rise in plasma concentrations lagging behind those in whole blood. During the first 3 days after the dose, plasma accounted for the majority of {sup 14}C in whole blood, but after that time, plasma accounted for only 25-30% of the {sup 14}C in whole blood. Tissue (left and right caudal lung lobe, liver, kidney, spleen, brain) and bile concentrations were low, always less than 0.25% the concentrations found in the left cranial lung lobe. Approximately 13% of the dose was eliminated in urine and feces in 28 days, with fecal elimination accounting for about 10% of the dose. The data presented here are consistent with that obtained in other species. Moli1901 is slowly absorbed and excreted from the lung, and it does not accumulate in other tissues. Moli1901 is currently in the clinic and has proven to be safe in single dose studies in human volunteers and cystic fibrosis patients by the inhalation route. No information on the disposition of the compound in humans is available. This study in dogs demonstrates the feasibility of obtaining that information using {sup 14}C-Moli1901 and AMS.

  5. Excursions in the 14C record at A.D. 774-775 in tree rings from Russia and America

    NASA Astrophysics Data System (ADS)

    Jull, A. J. Timothy; Panyushkina, Irina P.; Lange, Todd E.; Kukarskih, Vladimir V.; Myglan, Vladimir S.; Clark, Kelley J.; Salzer, Matthew W.; Burr, George S.; Leavitt, Steven W.

    2014-04-01

    The calibration of radiocarbon dates by means of a master calibration curve has been invaluable to Earth, environmental and archeological sciences, but the fundamental reason for calibration is that atmospheric radiocarbon content varies because of changes in upper atmosphere production and global carbon cycling. Improved instrumentation has contributed to high-resolution (interannual) radiocarbon activity measurements, which have revealed sudden and anomalous activity shifts previously not observed at the common resolution of 5-10 years of most of the calibration scale. One such spike has been recently reported from tree rings from Japan and then again in Europe at A.D. 774-775, for which we report here our efforts to both replicate its existence and determine its spatial extent using tree rings from larch at high latitude (northern Siberia) and bristlecone pine from lower latitude (the White Mountains of California). Our results confirm an abrupt ~ 15‰ 14C activity increase from A.D. 774 to 776, the size and now the hemispheric extent of which suggest that an extraterrestrial influence on radiocarbon production is most likely responsible.

  6. Rapid, high-resolution 14C chronology of ooids

    NASA Astrophysics Data System (ADS)

    Beaupré, Steven R.; Roberts, Mark L.; Burton, Joshua R.; Summons, Roger E.

    2015-06-01

    Ooids are small, spherical to ellipsoidal grains composed of concentric layers of CaCO3 that could potentially serve as biogeochemical records of the environments in which they grew. Such records, however, must be placed in the proper temporal context. Therefore, we developed a novel acidification system and employed an accelerator mass spectrometer (AMS) with a gas accepting ion source to obtain radiocarbon (14C) chronologies extending radially through ooids within one 8-h workday. The method was applied to ooids from Highborne Cay, Bahamas and Shark Bay, Australia, yielding reproducible 14C chronologies, as well as constraints on the rates and durations of ooid growth and independent estimates of local 14C reservoir ages.

  7. Determination of shell deposition rates of Arctica islandica from the New York Bight using natural /sup 228/Ra and /sup 228/Th and bomb-produced /sup 14/C

    SciTech Connect

    Turekian, K.K.; Cochran, J.K.; Nozaki, Y.; Thompson, I.; Jones, D.S.

    1982-01-01

    Shell deposition rates of specimens of Arctica islandica (Mollusca: Bivalvia) from the New York Bight were determined using natural /sup 228/Ra and /sup 228/Th and bomb /sup 14/C. The specimens from deep (>55 m) offshore waters show annual growth banding. A shell obtained from the inner bight at <30-m depth seems to be younger than indicated by band counting.

  8. Astronomical evidence relating to the observed 14C increases in A.D. 774-5 and 993-4 as determined from tree rings

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    2015-03-01

    A detailed study is made of celestial observations recorded in East Asian and European history around A.D. 774-5 and 993-4. These include reports of supernovae, comets, sunspots and aurorae. The aim is to attempt to provide astronomical evidence in support of the measured 14C increases in tree rings at these dates. However, the results prove to be far from convincing, leaving the physical cause of the increases still in doubt.

  9. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by {sup 19}F nuclear magnetic resonance spectroscopy and {sup 14}C radiolabelling analysis

    SciTech Connect

    Green, N.A.; Meharg, A.A.; Till, C.; Troke, J.; Nicholson, J.K.

    1999-09-01

    The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using {sup 19}F nuclear magnetic resonance (NMR) spectroscopy in combination with {sup 14}C radioisotope-detected high-performance liquid chromatography ({sup 14}C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. {sup 14}C-HPLC profiles indicated that there were four major biotransformation products, whereas {sup 19}F NMR showed that there were six major fluorine-containing products. The authors confirmed that 4-fluorobiphen-4{prime}-ol and 4-fluorobiphen-3{prime}-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of their knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

  10. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and 14C-labeled plant residues as determined by enzyme activities

    NASA Astrophysics Data System (ADS)

    Mahmoud Awad, Yasser; Ok, Young Sik; Kuzyakov, Yakov

    2014-05-01

    Application of polymers for the improvement of aggregate structure and reduction of soil erosion may alter the availability and decomposition of plant residues. In this study, we assessed the effects of anionic polyacrylamide (PAM), synthesized biopolymer (BP), and biochar (BC) on the decomposition of 14C-labeled maize residue in sandy and sandy loam soils. Specifically, PAM and BP with or without 14C-labeled plant residue were applied at 400 kg ha-1, whereas BC was applied at 5000 kg ha-1, after which the soils were incubated for 80 days at 22 oC. Initially, plant residue decomposition was much higher in untreated sandy loam soil than in sandy soil. Nevertheless, the stimulating effects of BP and BC on the decomposition of plant residue were more pronounced in sandy soil, where it accounted for 13.4% and 23.4% of 14C input, respectively, whereas in sandy loam soil, the acceleration of plant residue decomposition by BP and BC did not exceed 2.6% and 14.1%, respectively, compared to untreated soil with plant residue. The stimulating effects of BP and BC on the decomposition of plant residue were confirmed based on activities of β-cellobiohydrolase, β-glucosidase, and chitinase in both soils. In contrast to BC and BP, PAM did not increase the decomposition of native or added C in both soils.

  11. Limitations in the use of /sup 14/C-glycocholate breath and stool bile acid determinations in patients with chronic diarrhea

    SciTech Connect

    Ferguson, J.; Walker, K.; Thomson, A.B.

    1986-06-01

    Analysis of a modified /sup 14/C-glycocholate breath test on 165 consecutive in-patients being investigated for chronic diarrhea showed that the measurement of /sup 14/CO/sub 2/ between 3 and 6 h after oral dosing of 5 microCi of /sup 14/C-glycocholic acid was of only limited use to distinguish between patients with Crohn's disease (CD), idiopathic bile salt wastage (IBW), or ileal resection (IR) from those with the irritable bowel syndrome (IBS). Continuing /sup 14/CO/sub 2/ collections for up to 24 h was of little more help in establishing the presence of bacterial overgrowth syndrome (BOS) and in distinguishing between BOS and CD. Stool bile acid measurements were of use in differentiating between IBW and IBS, but did not distinguish between CD and BOS or between CD and IR. Since the range of normal values was defined by measurements in the IBS group, a positive test was specific for an organic cause of chronic diarrhea. Even so, the sensitivity of the test was relatively low: CD, 53%; IR, 23%; IBW, /sup 14/%; and BOS, 10%. We believe that the 24-h /sup 14/C-glycocholic breath test combined with the measurement of stool bile acids represents a screening test of only limited use for the identification of organic causes of chronic diarrhea.

  12. Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon

    NASA Astrophysics Data System (ADS)

    Grammer, G. L.; Fallon, S. J.; Izzo, C.; Wood, R.; Gillanders, B. M.

    2015-08-01

    To explore the transport of carbon into water masses from the surface ocean to depths of ∼ 1000 m in the southwest Pacific Ocean, we generated time series of radiocarbon14C) from fish otoliths. Otoliths (carbonate earstones) from long-lived fish provide an indirect method to examine the "bomb pulse" of radiocarbon that originated in the 1950s and 1960s, allowing identification of changes to distributions of 14C that has entered and mixed within the ocean. We micro-sampled ocean perch (Helicolenus barathri) otoliths, collected at ∼ 400- 500 m in the Tasman Sea, to obtain measurements of Δ14C for those depths. We compared our ocean perch Δ14C series to published otolith-based marine surface water Δ14C values (Australasian snapper (Chrysophrys auratus) and nannygai (Centroberyx affinis)) and to published deep-water values (800-1000 m; orange roughy (Hoplostethus atlanticus)) from the southwest Pacific to establish a mid-water Δ14C series. The otolith bomb 14C results from these different depths were consistent with previous water mass results in the upper 1500 m of the southwest Pacific Ocean (e.g. World Ocean Circulation Experiment and Geochemical Ocean Sections Study). A comparison between the initial Δ14C bomb pulse rise at 400-500 m suggested a ventilation lag of 5 to 10 yr, whereas a comparison of the surface and depths of 800-1000 m detailed a 10 to 20 yr lag in the time history of radiocarbon invasion at this depth. Pre-bomb reservoir ages derived from otolith 14C located in Tasman Sea thermocline waters were ∼ 530 yr, while reservoir ages estimated for Tasman Antarctic intermediate water were ∼ 730 yr.

  13. Holocene sea-level determination relative to the Australian continent: U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands

    NASA Astrophysics Data System (ADS)

    Eisenhauer, A.; Wasserburg, G. J.; Chen, J. H.; Bonani, G.; Collins, L. B.; Zhu, Z. R.; Wyrwoll, K. H.

    1993-02-01

    U/Th (TIMS) and 14C (AMS) measurements are presented from two coral cores from the Easter group of the Houtman Abrolhos Islands between 28°S and 29°S on the western continental margin of Australia. The U/Th measurements on the Morley core from Morley Island cover a depth interval from 0.2 m above present sea level to 24.4 m below present sea level and comprise eleven samples. The ages vary between 6320 ± 50 a, at 0.2 m above sea level, and 9809 ± 95 a, at 24.4 m below sea level (all errors are 2σ). The mean growth rate is 7.1 ± 0.9 m/ka. The 14C dates of selected Morley core corals show that the 14C ages are ˜ 1000 a younger than their corresponding U/Th ages, which agrees with previous results. The main purpose of our 14C measurements is to be able to compare them precisely with other coral cores where no U/Th measurements are available. The U/Th measurements of the Suomi core from Suomi Island cover a depth interval from 0.05 m to 14.2 m below present sea level and consist of four samples. The ages vary between 4671 ± 40 a, at 0.05 m below sea level, and 7102 ± 82 a, at 14.2 m below sea level, with a mean growth rate of 5.8 ± 0.2 m/ka. The growth history of both cores is explained by a simple model in which the growth rates of the Morley core can be interpreted as reflecting local rates of sea level rise, whereas the Suomi core is interpreted as reflecting lateral growth during the past ˜ 6000 a. Our results indicate that sea level relative to the western margins of the Australian continent was about 24 m lower than present at about 9800 a B.P. ( 14C gives a date of 8500 a B.P.). Sea level then rose and reached a highstand, slightly higher than the present position at about 6300 a B.P ( 14C date: 5500 a). This highstand declined but was still higher than present at 4600 a B.P. This is in agreement with previous observations along the Australian coastal margins and with observations from the Huon peninsula (Papua New Guinea). Our results are very

  14. Constraint on radiocarbon age correction in Lake Biwa environment from the middle to late Holocene

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Minami, M.; Onbe, S.; Sakamoto, M.; Nakamura, T.; Imamura, M.

    2013-01-01

    Using data from previous studies and newly collected data, we compared the measured radiocarbon ages of molluscan shells, common reed (Phragmites australis) and pine needles (Pinus thunbergii) collected in 1966, 1970, 1990 and 2008 at Lake Biwa in Japan, and of archaeological samples, to examine radiocarbon reservoir effects at Lake Biwa. We also tested for differences in the radiocarbon reservoir effect between species and locations in the lake. The effects of nuclear bomb tests conducted in the 1950s and 1960s are clear, the offset between atmospheric 14C and the Lake Biwa freshwater 14C is larger for this period because the atmospheric 14C is so high. The semiclosed Lake Biwa system is in dynamic equilibrium with the atmosphere, resulting in the 14C content of the water following the changes in atmospheric 14C caused by nuclear testing. The shells collected after 1990 had radiocarbon ages that were 330-450 14C years older than those of the coeval atmosphere. The apparent differences in radiocarbon age (about 300 14C years) between shell fossils and wood samples excavated from the same layer of the submerged Awazu shell midden at Lake Biwa suggest that the radiocarbon reservoir effect also existed in the middle Holocene (the Middle Jomon period, about 5000 years ago). Because the present-day average residence time of Lake Biwa water is 3-6 years, its direct influence on the radiocarbon reservoir effect is small, which suggests that old carbon has been supplied into Lake Biwa.

  15. Radiocarbon ages of pre-bomb clams and the hard-water effect in Lakes Michigan and Huron

    USGS Publications Warehouse

    Rea, David K.; Colman, Steven M.

    1995-01-01

    Five radiocarbon ages, all determined by accelerator mass spectrometry, have been obtained for two pre-bomb bivalves from Lake Michigan and one from Lake Huron. After correcting those ages for the fractionation of14C in calcite and for the radioactively inert CO2 in the atmosphere, we find residual ages, caused by the hard water effect, of about 250 years for Lake Michigan and 440 years for Lake Huron.

  16. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  17. Pyrolysis-combustion 14C dating of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Hackley, Keith C.; Panno, Samuel V.; Coleman, Dennis D.; Liu, Jack Chao-li; Brown, Johnie

    2003-11-01

    Radiocarbon ( 14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (δ 13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and δ 13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and δ 13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent.

  18. Microscale radiocarbon dating of paintings

    NASA Astrophysics Data System (ADS)

    Hendriks, Laura; Hajdas, Irka; McIntyre, Cameron; Küffner, Markus; Scherrer, Nadim C.; Ferreira, Ester S. B.

    2016-03-01

    In this paper, radiocarbon dating of paintings using minimal sample sizes has been investigated, in an effort to address the problem of limited access to sample material in paintings. 14C analyses were conducted on signed and dated paintings from two Swiss artists of the twentieth century. The selected paintings dated from the 1930s and 1960s, provided the opportunity to evaluate the dating accuracy on paintings realized before and after 1950 AD when the 14C bomb peak was created, as a result of the nuclear tests conducted in the 1950/1960s. The work focused on the one hand on minimizing the size of the canvas sample required for accelerator mass spectrometer radiocarbon measurement on the gas ion source of the MICADAS and, on the other hand, on testing the possibility of dating the organic binder of the paint. Following careful characterization of the paint composition by X-ray fluorescence spectroscopy, Fourier transformed infrared spectroscopy, and Raman spectroscopy, paints containing no other carbon source than the natural organic binder were identified and dated.

  19. Comment on "Radiocarbon Calibration Curve Spanning 0 to 50,000 Years B.P. Based on Paired 230Th/234U/238U and 14C Dates on Pristine Corals" by R.G. Fairbanks, R. A. Mortlock, T.-C. Chiu, L. Cao, A. Kaplan, T. P. Guilderson, T. W. Fairbanks, A. L. Bloom, P

    SciTech Connect

    Reimer, P J; Baillie, M L; Bard, E; Beck, J W; Blackwell, P G; Buck, C E; Burr, G S; Edwards, R L; Friedrich, M; Guilderson, T P; Hogg, A G; Hughen, K A; Kromer, B; McCormac, G; Manning, S; Reimer, R W; Southon, J R; Stuiver, M; der Plicht, J v; Weyhenmeyer, C E

    2005-10-02

    Radiocarbon calibration curves are essential for converting radiocarbon dated chronologies to the calendar timescale. Prior to the 1980's numerous differently derived calibration curves based on radiocarbon ages of known age material were in use, resulting in ''apples and oranges'' comparisons between various records (Klein et al., 1982), further complicated by until then unappreciated inter-laboratory variations (International Study Group, 1982). The solution was to produce an internationally-agreed calibration curve based on carefully screened data with updates at 4-6 year intervals (Klein et al., 1982; Stuiver and Reimer, 1986; Stuiver and Reimer, 1993; Stuiver et al., 1998). The IntCal working group has continued this tradition with the active participation of researchers who produced the records that were considered for incorporation into the current, internationally-ratified calibration curves, IntCal04, SHCal04, and Marine04, for Northern Hemisphere terrestrial, Southern Hemisphere terrestrial, and marine samples, respectively (Reimer et al., 2004; Hughen et al., 2004; McCormac et al., 2004). Fairbanks et al. (2005), accompanied by a more technical paper, Chiu et al. (2005), and an introductory comment, Adkins (2005), recently published a ''calibration curve spanning 0-50,000 years''. Fairbanks et al. (2005) and Chiu et al. (2005) have made a significant contribution to the database on which the IntCal04 and Marine04 calibration curves are based. These authors have now taken the further step to derive their own radiocarbon calibration extending to 50,000 cal BP, which they claim is superior to that generated by the IntCal working group. In their papers, these authors are strongly critical of the IntCal calibration efforts for what they claim to be inadequate screening and sample pretreatment methods. While these criticisms may ultimately be helpful in identifying a better set of protocols, we feel that there are also several erroneous and misleading

  20. Differential extraction of radiocarbon associated with soil biomass and humus

    SciTech Connect

    Tsao, C.W.; Bartha, R. . Cook Coll.)

    1999-04-01

    To detect the humification of organic compounds in soil that bypasses biomass incorporation, selective extraction procedures for radiocarbon from soil biomass and humus were evaluated. Following the incubation of [sup 14]C-glucose and [sup 14]C-benzoate in soil, fumigation--0.5 M K[sub 2]SO[sub 4] extraction and 0.15 M Na[sub 4]P[sub 2]O[sub 7] extraction selectively removed biomass-associated and humus-associated radiocarbon, respectively. Applying the recovery correction of 3.4[times] to biomass and 3.5[times] to humus, radiocarbon balances of 95 to 107% were obtained during a time window following the degradation of these substrates. Negligible overlap between the extractions renders the technique suitable for investigating the fate of organics that, through cometabolism, attain unusual radiocarbon distributions in soil.

  1. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon (13C/12C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon (14C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14C activities in large particle-size sediment fractions in contrast to older LOP 14C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14C sources.

  2. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  3. Establishing chronologies for loess records within 40 ka by AMS 14C-dating of small mollusc shells

    NASA Astrophysics Data System (ADS)

    Ujvari, Gabor; Molnar, Mihaly; Novothny, Agnes; Kovacs, Janos

    2014-05-01

    The key objective of the INTIMATE project is to determine whether abrupt climatic changes during the period of 60 to 8 ka, as reflected in a range of proxy records, were regionally synchronous or whether there were significant 'leads' and 'lags' between the atmospheric, marine, terrestrial and cryospheric realms. Such goals require precisely dated records of paleoenvironmental change for this period. Although wind-blown loess deposits are regarded as key terrestrial archives of millennial or even centennial scale environmental changes, these records are mostly poorly dated and/or their age-depth models have uncertainties of millennial magnitude. This prevents us from addressing issues like synchroneity of abrupt climatic/environmental events on millennial time scales. Two different means of dating are commonly applied for loess sequences: luminescence and radiocarbon dating. Major problems are low precision of luminescence ages and the general lack of organic macrofossils (e.g. charcoal) in loess that can reliably be dated using 14C. Other datable phases in loess are mollusc shells, rhizoliths and organic matter. While organic matter 14C ages are often seriously compromised by rejuvenation in loess sequences, rhizolites consistently yield very young ages as first demonstrated in German loess profiles. Indeed, hypocatings (rhizolites) gave Holocene ages from three different depths (4.00 m: 9744-10156 2σ age range in cal yr BP, 5.00 m: 8013-8167 cal yr BP and 6.00 m: 9534-9686 cal yr BP) in the Dunaszekcső loess record we investigated. Mollusc shells are the only remaining phases for dating, but these are usually regarded as unreliable material for 14C-dating, as they may incorporate 14C-deficient (or dead) carbon from the local carbonate-rich substrate during shell formation, thereby producing anomalously old ages by up to 3000 years. Recent studies, however, indicated that reliable ages can be obtained by radiocarbon dating of molluscs having comparatively small (

  4. A Column Experiment To Determine Black Shale Degradation And Colonization By Means of δ13C and 14C Analysis Of Phospholipid Fatty Acids And DNA Extraction

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Gleixner, G.

    2008-12-01

    We investigated the degradation of black shale organic matter by microbial communities. We inoculated two columns respectively, with the fungi Schizophyllum commune, the gram-positive bacterium Pseudomonas putida and the gram-negative bacteria Streptomyces griseus and Streptomyces chartreusis. These microorganisms are known to degrade a wide variety of organic macromolecules. Additionally, we had two sets of control columns. To one set the same nutrient solution was added as to the inoculated columns and to the other set only sterile deionised water was supplied. All columns contained 1.5 kg of freshly crushed not autoclaved black shale material with a particle size of 0.63-2 mm. The columns were incubated at 28° C and 60% humidity in the dark. The aim was to investigate, which microorganisms live on black shales and if these microorganisms are able to degrade ancient organic matter. We used compound specific stable isotope measurement techniques and compound specific 14C-dating methods. After 183 days PLFAs were extracted from the columns to investigate the microbial community, furthermore we extracted on one hand total-DNA of column material and on the other hand DNA from pure cultures isolates which grew on Kinks-agar B, Starch-casein-nitrate-agar (SCN) and on complete-yeast-medium-agar (CYM). According to the PLFA analysis bacteria dominated in the columns, whereas in pure cultures more fungi were isolated. A principal component analysis revealed differences between the columns in accordance with the inoculation, but it seems that the inoculated microorganisms were replaced by the natural population. For AMS measurements palmitic acid (C 16:0) was re-isolated from total-PLFA-extract with a preparative fraction collector (PFC). Preliminary results of the study revealed that microorganisms are able to degrade black shale material and that PLFA analysis are useful methods to be combined with analysis of stable isotope and 14C measurements to study microbial

  5. Atmospheric 14C variations derived from tree rings during the early Younger Dryas

    NASA Astrophysics Data System (ADS)

    Hua, Quan; Barbetti, Mike; Fink, David; Kaiser, Klaus Felix; Friedrich, Michael; Kromer, Bernd; Levchenko, Vladimir A.; Zoppi, Ugo; Smith, Andrew M.; Bertuch, Fiona

    2009-12-01

    Atmospheric radiocarbon variations over the Younger Dryas interval, from ˜13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ 14C associated with the Younger Dryas onset occurs at ˜12,760 cal yr BP, ˜240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of ˜40‰ followed by several centennial Δ 14C variations of 20-25‰. Comparing the tree-ring Δ 14C to marine-derived Δ 14C and modelled Δ 14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ 14C variations for the remainder of the Younger Dryas.

  6. Understanding the production and retention of in situ cosmogenic 14C in polar firn

    NASA Astrophysics Data System (ADS)

    Hmiel, B.; Petrenko, V. V.; Smith, A.; Buizert, C.; Harth, C. M.; Beaudette, R.; Place, P., Jr.; Hua, Q.; Yang, B.; Vimont, I.; Weiss, R. F.; Severinghaus, J. P.; Brook, E.; White, J. W. C.

    2014-12-01

    Radiocarbon in CO2, CO and CH4 trapped in polar ice is of interest for dating of ice cores, studies of past solar activity and cosmic ray flux, as well as studies of the paleoatmospheric CH4 budget. The major difficulty with interpreting 14C measurements in ice cores stems from the fact that the measured 14C represents a combination of trapped paleoatmospheric 14C and 14C that is cosmogenically produced within the ice matrix. This in situ cosmogenic 14C component in ice is at present poorly understood. Prior ice core 14C studies show conflicting results with regard to the retention of cosmogenic 14C in polar firn and partitioning of this 14C among CO2, CO and CH4. Our new study aims to comprehensively characterize the 14C of CO2, CO, and CH4 in both the air and the ice matrix throughout the firn column at Summit, Greenland. We will present new measurements of 14C in Summit firn air (the first phase of this study) and discuss the implications for in situ cosmogenic 14C production and retention.

  7. Dermal penetration of 14C-labeled diisopropyl methylphosphonate in swine. Toxicological study

    SciTech Connect

    Snodgrass, H.L.; Metker, L.W.

    1991-10-01

    DIMP is a water contaminant resulting from the manufacture of the chemical warfare agent GB. To determine its potential contribution to human exposure, its dermal penetration was assessed in swine. Pigs received a single dermal application of 14C-labeled DIMP at one of three exposure levels, i.e., 400, 40, or 4 micro g/cm2 of skin. Absorption was quantitated by measuring radiocarbon in the urine or feces through 7 days and in tissues collected at necropsy. It was concluded that DIMP is a minimal skin penetrant to pigs and absorption by man would be expected to be less than 10% of a dermal exposure. Absorbed dose would be rapidly metabolized in the body, primarily to isopropyl methyl phosphonic acid, and excreted in the urine within 24 to 48 hours. No bioaccumulation would be anticipated. Significant evaporation from the skin surface would predictably occur within 1 to 3 hours.

  8. The metabolism of [14C]nicotine in the cat

    PubMed Central

    Turner, D. M.

    1969-01-01

    The metabolism of [2′-14C]nicotine given as an intravenous injection in small doses to anaesthetized and unanaesthetized cats has been studied. A method is described for the quantitative determination of [14C]nicotine and [14C]cotinine in tissues and body fluids. Nanogram amounts of these compounds have been detected. After a single dose of 40μg. of [14C]nicotine/kg., 55% of the injected radioactivity was excreted in the urine within 24hr., but only 1% of this radioactivity was unchanged nicotine. [14C]Nicotine is metabolized extremely rapidly, [14C]cotinine appearing in the blood within 2·5min. of intravenous injection. [14C]Nicotine accumulates rapidly in the brain and 15min. after injection 90% of the radioactivity still represents [14C]nicotine. Metabolites of [14C]nicotine have been identified in liver and urine extracts. [14C]Nicotine-1′-oxide has been detected in both liver and urine. PMID:5360723

  9. Stalagmite Based Reconstruction of Atmospheric Radiocarbon Levels during Deglaciation: Implications for Radiocarbon Calibration

    NASA Astrophysics Data System (ADS)

    Glynn, S.; Southon, J.; Sinha, A.

    2006-12-01

    Radiocarbon measurements on dendrochronologically dated tree rings provide the most definitive record of atmospheric changes in radiocarbon concentration (14C). However, the tree ring portion of the current radiocarbon calibration curve (INTCAL04) only extends to 12.4 thousand years Before Present (kyr BP). Efforts to extend radiocarbon calibration timescale beyond 12.4 kyr BP have focused on using 14C measurements in marine varves, lake sediments, corals, and a floating tree ring sequence, but significant disagreements exist among these marine and terrestrial 14C data sets. Speleothems (e.g., stalagmites), which are secondary calcite deposits, form by slow degassing of CO2 enriched cave waters, and can be used to generate records of past atmospheric 14C concentration. Furthermore, stalagmites can be precisely dated by U-Th, and the stable isotopic composition of carbon and oxygen in stalagmites offer an opportunity to assess the atmospheric 14C variations in terms of regional climate change. However, a necessary pre-requisite in using stalagmites for radiocarbon calibration purposes is to quantify the dead carbon fraction or DCF. The DCF is the fraction of `old'14C-free carbon derived from host limestone rocks that is incorporated in a given stalagmite, and must be corrected for in order to extract a true atmospheric 14C record. Here, we present results of Accelerator Mass Spectrometry (AMS) 14C measurements in a stalagmite recovered from Timta cave in the western Himalayas in India. The absolute ages of this stalagmite are constrained by 24 230Th dates, which show that it grew from 14.5 to 11.5 kyr BP. The comparison between stalagmite 14C ages with the atmospheric 14C values from the tree ring portion of INTCAL 04 curve (11.5 to 12.4 kyr B.P.) suggest a small but variable DCF that ranges from 2% to 6%. We observe a surprisingly strong inverse correlation between δ13C, a proxy for vegetation changes overlying the cave, and the DCF, perhaps due to pH changes in

  10. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    SciTech Connect

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  11. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  12. Synthesis of [(14) C]omarigliptin.

    PubMed

    Ren, Sumei; Gauthier, Donald; Marques, Rosemary; Helmy, Roy; Hesk, David

    2016-08-01

    An efficient synthesis for [(14) C]Omarigliptin (MK-3102) is described. The initial synthesis of a key (14) C-pyrazole moiety did not work due to the lack of stability of (14) C-DMF-DMA reagent. Thus, a new radiolabeled synthon, (14) C-biphenylmethylformate, was synthesized from (14) C-sodium formate in one step in 92% yield and successfully used in construction of the key (14) C-pyrazole moiety. Regioselective N-sulfonation of the pyrazole moiety was achieved through a dehydration-sulfonation-isomerization sequence. [(14) C]MK 3102 was synthesized in five steps from (14) C-biphenylmethylformate with 25% overall yield. PMID:27334864

  13. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    NASA Astrophysics Data System (ADS)

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-07-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts.

  14. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology.

    PubMed

    Uno, Kevin T; Quade, Jay; Fisher, Daniel C; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E

    2013-07-16

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon ((14)C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric (14)C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. (14)C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. (14)C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve (14)C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts. PMID:23818577

  15. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    PubMed Central

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-01-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3–1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts. PMID:23818577

  16. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    SciTech Connect

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  17. May 14C be used to date contemporary art?

    NASA Astrophysics Data System (ADS)

    Fedi, M. E.; Caforio, L.; Mandò, P. A.; Petrucci, F.; Taccetti, F.

    2013-01-01

    The use of radiocarbon in forensics is by now widespread, thanks to the so-called bomb peak, which makes it possible to perform high-precision dating. Since 1955, 14C concentration in the atmosphere had strongly increased due to nuclear explosions, reaching its maximum value in 1963-1965. After the Nuclear Test Ban Treaty, 14C started to decrease as a consequence of the exchanges between atmosphere and the other natural carbon reservoirs. Nowadays, it is still slightly above the pre-bomb value. The work presented in this paper is based on the idea of exploiting the bomb peak to “precisely” date works of contemporary art, with the aim at identifying possible fakes. We analysed two kinds of materials from the 20th century: newspapers and painting canvases. Newspaper samples were taken because they might in principle be considered to represent dated samples (considering the date on the issues). Our data (28 samples) show a trend similar to atmospheric data in the literature, although with some differences; the paper peak is flatter and shifted towards more recent years (about five years) with respect to the atmospheric data. This can be explained by taking paper manufacturing processes into account. As to the canvas samples, the measured 14C concentrations were generally reasonably consistent with the expected concentrations (based on the year on the paintings). However, this does not indicate that the interpretation of the results is simpler and more straightforward. Obviously, we only measure the 14C concentration of the fibre used for the canvas, which does not necessarily measure the date the painting was manufactured. In this paper, sample preparation and experimental results will be discussed, in order to show the potential as well as the limitations of radiocarbon to date contemporary art.

  18. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by (14C)iodoantipyrine autoradiography following middle cerebral artery occlusion

    SciTech Connect

    Tamura, A.; Graham, D.I.; McCulloch, J.; Teasdale, G.M.

    1981-01-01

    Local cerebral blood flow has been measured by quantitative autoradiography, employing (14C)iodoantipyrine as tracer, in rats killed half an hour after occlusion of the middle cerebral artery. The results were compared with pattern of local cerebral blood flow (CBF) in sham-operated rats and with neuropathological findings. In every animal there was a profound reduction (to 13% of control levels)in blood flow in the neocortex previously by the occluded artery. The level of blood flow in the areas in which ischaemic brain damage occurred was 0.24 +/- 0.03 ml g-1 min-1 (mean +/- SEM). this level of CBF is considerably greater than that reported following a similar surgical procedure in cats and primates. Moderate reductions in blood flow were also seen outside the territory of the occluded artery and in parts of the opposite hemisphere. Absolute increases in blood flow (hyperaemia) were seen only in the substantia nigra and globus pallidus ipsilateral to the occlusion. It is of the middle cerebral artery are reflections of alterations in neuronal function and metabolic activity secondary to the ischaemic lesion.

  19. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    PubMed

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. PMID:24997252

  20. Calibration of the radiocarbon time scale at 37ka BP

    SciTech Connect

    Southon, J.R.; Deino, A.L.; Orsi, G.

    1995-12-01

    Results from radiocarbon and U-Th measurements on corals have provided a radiocarbon calibration beyond the range covered by tree ring series, but the uncertainties in the measurements beyond 20ka BP are very large. We have obtained new calibration data from radiocarbon dates on material associated with the catastrophic Campanian Ignimbrite eruption from the Phlegrean Fields near Naples. The eruption has been well dated by {sup 40}Ar/{sup 39}Ar to 37ka BP. Radiocarbon measurements were carried out on charcoal from a carbonized branch exposed within the ignimbrite tuff on the wall of an active quarry. The sample was split and analyzed at both the Naples and Lawrence Livermore AMS facilities. The offset between the Ar-Ar data and the radiocarbon results (recalculated using the true 5730-year half life for {sup 14}C) is consistent with predictions from paleomagnetic data and carbon cycle modeling.

  1. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    SciTech Connect

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  2. Enzymatic method for the synthesis of (/sup 14/C)pyridoxal 5-phosphate from (/sup 14/C)pyridoxine

    SciTech Connect

    Yagi, T.; Takasugi, M.; Yamamoto, S.; Nozaki, M.

    1986-10-01

    A new enzymatic method for the synthesis of (/sup 14/C)pyridoxal 5-phosphate is presented. (/sup 14/C)Pyridoxal 5'-phosphate was synthesized from (/sup 14/C)pyriodoxine through the successive actions of pyridoxal kinase and pyrdoxamine 5'-phosphate oxidase in a reaction mixture containing ATP, (/sup 14/C)pyridoxine, and both enzymes. (/sup 14/C)Pyridoxal 5'-phosphate was isolated by omega-aminohexyl-Sepharose 6B column chromatography. The overall yield of the product was more than 60%, starting from 550 nmol of (/sup 14/C)pyridoxine. The radiochemical purity of the products, as determined by thin-layer and ion-exchange chromatography, was greater than 98%.

  3. Chlorophyll a-specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-11-01

    Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; -217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  4. The direct absorption method of 14C assay—historical perspective and future potential

    NASA Astrophysics Data System (ADS)

    Vita-Finzi, Claudio; Leaney, Fred

    2006-05-01

    Radiocarbon dating by liquid scintillation counting of 14CO 2 absorbed into an alkaline liquid was first developed for groundwater research. In the 1980s it was applied to molluscs, barnacles, corals and other carbonates, and yielded dependable results within a few hours, with standard errors of ˜10% for ages <14 000 yr, at about 1/200 the price of commercial 14C dates. Although its cost has risen fivefold, the first-order approach remains useful in coastal neotectonics, where numerous low-precision determinations are often more useful than a few high-precision dates. Direct absorption (DA) 14C dating has now been improved and extended to include wood and charcoal samples, and provides ages in a variety of environments with standard errors similar to those reported by conventional radiometric laboratories and for ages spanning the last 30 000 years. The unit cost for a 'state of the art' DA determination is close to 50% of that by benzene synthesis, but the method is favoured in many hydrological and archaeological applications because it is robust and rapid.

  5. Radiocarbon in dissolved organic carbon of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R. M.; Griffin, S.; Coppola, A. I.; Walker, B. D.

    2016-05-01

    Marine dissolved organic carbon (DOC) is produced in the surface ocean though its radiocarbon (14C) age in the deep ocean is thousands of years old. Here we show that ≥10% of the DOC in the deep North Atlantic is of postbomb origin and that the 14C age of the prebomb DOC is ≥4900 14C year, ~900 14C year older than previous estimates. We report 14C ages of DOC in the deep South Atlantic that are intermediate between values in the North Atlantic and the Southern Ocean. Finally, we conclude that prebomb DOC 14C ages are older and a portion of deep DOC is more dynamic than previously reported.

  6. Sea Water Radiocarbon Evolution in the Gulf of Alaska: 2002 Observations

    SciTech Connect

    Guilderson, T P; Roark, E B; Quay, P D; Flood-Page, S R; Moy, C

    2005-04-08

    Oceanic uptake and transport of bomb radiocarbon as {sup 14}CO{sub 2} created by atmospheric nuclear weapons testing in the 1950s and 1960s has been a useful diagnostic to determine the carbon transfer between the ocean and atmosphere. In addition, the distribution of radiocarbon in the ocean can be used as a tracer of oceanic circulation. Results obtained from samples collected in the Gulf of Alaska in the summer of 2002 provide a direct comparison with results in the 1970s during GEOSECS and in the early 1990s during WOCE. The open gyre values are 20-40{per_thousand} more negative than those documented in 1991 and 1993 (WOCE) although the general trends as a function of latitude are reproduced. Surface values are still significantly higher than pre-bomb levels ({approx}-105{per_thousand} or lower). In the central gyre, we observe {Delta}{sup 14}C-values that are lower in comparison to GEOSECS (stn 218) and WOCE P16/P17 to a density of {approx}26.8{sigma}t. This observation is consistent with the overall decrease in surface {Delta}{sup 14}C values, and reflects the erosion of the bomb-{sup 14}C transient. We propose that erosion of the bomb-{sup 14}C transient is accomplished by entrainment of low {sup 14}C water via vertical exchange within the Gulf of Alaska and replenishment of surface and sub-thermocline waters with waters derived from the far northwest Pacific.

  7. Observation of 23 Supernovae that Exploded <300 pc from Earth During the Past 300 kyr in the Radiocarbon and 10Be Cosmogenic Isotope Record

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.

    2014-12-01

    The global excess radiocarbon abundance record for the past 50 kyr can be entirely explained by the explosion of four supernovae 44, 37, 32, and 22 kyr ago less than 250 pc from Earth. Each supernova left a nearly identical signature beginning with a sudden increase at the time of the explosion, followed by a hiatus of 1500 years, and continuing with a sustained, 2000 year increase in radiocarbon from gamma rays produced by diffusive shock in the supernova remnant. For the past 18 kyr excess radiocarbon from SN22kyrBP, identified as the Vela supernova, has decayed with the 5700 year half-life of 14C. The absolute scale for radiocarbon abundance has been determined from the decay curve as Δ14C=5±2% in 1950. Small oscillations in the decay curve are shown to coincide with variations in Earth's Virtual Axial Dipole Moment (VADM). SN44kyrBP exploded approximately 110 pc from Earth doubling the radiocarbon abundance. These supernovae are confirmed in the 10Be, 26Al, 36Cl and nitrate geological records. An additional 19 supernovae are observed 50-300 kyr ago in the 10Be record. Using the Earth as a calorimeter I have determined that approximated 2×1049 ergs were released at the time of each supernova explosion and 1049-50 ergs afterwards, consistent with theoretical predictions. The background rate of radiocarbon productions from more distant sources was determined as 1.61 atoms/cm2s at the top of the atmosphere. Although little danger to life on Earth is expected from these supernovae, each of the recent events were shown to correlate with concurrent global warming of 3-4°C.

  8. RADIOCARBON MEASUREMENTS ON PM-2.5 AMBIENT AEROSOL

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements can p...

  9. VOC RADIOCARBON MEASUREMENTS DURING SCOS97 AND EMISSIONS INVENTORY VALIDATION

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...

  10. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin

    PubMed Central

    K, Alkass; BA, Buchholz; H, Druid; KL, Spalding

    2011-01-01

    The identification of human bodies in situations when there are no clues as to the person’s identity from circumstantial data, poses a difficult problem to investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 (14C) incorporated in the enamel of teeth from individuals from different geographical locations. The ‘bomb pulse’ refers to a significant increase in 14C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing 14C levels in enamel with 14C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric 14C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of 14C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope 13C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the 14C method along the bomb spike. For teeth formed before 1955 (N = 17), all but one tooth showed negative Δ14C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N = 12) and after the peak (>1963, N = 66) resulted in an average absolute date of birth estimation error of 1.9 ±1.4 and 1.3 ± 1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of 13C was also performed. Scandinavian teeth showed a substantially greater depression in average δ13C

  11. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin.

    PubMed

    Alkass, K; Buchholz, B A; Druid, H; Spalding, K L

    2011-06-15

    The identification of human bodies in situations when there are no clues as to the person's identity from circumstantial data, poses a difficult problem to the investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 ((14)C) incorporated in the enamel of teeth from individuals from different geographical locations. The 'bomb pulse' refers to a significant increase in (14)C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing (14)C levels in enamel with (14)C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric (14)C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of (14)C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope (13)C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the (14)C method along the bomb spike. For teeth formed before 1955 (N=17), all but one tooth showed negative Δ(14)C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N=12) and after the peak (>1963, N=66) resulted in an average absolute date of birth estimation error of 1.9±1.4 and 1.3±1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of (13)C was also performed. Scandinavian teeth showed a substantially greater depression in

  12. Chlorophyll a specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-07-01

    We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). The samples were collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, pure aquatic primary producer (Cladophora sp.) and terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Mayfly larva, Epeorus latifolium), suggesting that periphyton δ13C values do not faithfully trace carbon transfer between primary producers and primary consumers. Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October), but were close to the Δ14C value for dissolved inorganic carbon (DIC) (-217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = -1000 ‰) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  13. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Xu, S.; Dougans, A.

    2013-01-01

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such 14C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed 13C and 16O by improvising an additional Wien filter on our SSAMS deck. Also, 14C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the 14N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  14. Fate of (/sup 14/C)xanthotoxin (8-methoxypsoralen) in a goat and in bovine ruminal fluid

    SciTech Connect

    Ivie, G.W.; Beier, R.C.; Bull, D.L.; Oertli, E.H.

    1986-04-01

    A lactating Nubian goat was treated with (/sup 14/C)xanthotoxin, a photosensitizing psoralen that occurs naturally in some phototoxic range plants, as a single oral dose equivalent to 10.0 mg of xanthotoxin/kg of body weight. The radiochemical was rapidly absorbed, metabolized, and excreted. Although expired air was not monitored for the presence of volatile radiocarbon, the data indicated that greater than 50% of the administered (/sup 14/C)xanthotoxin was metabolized by cleavage of the O-(/sup 14/C)methyl moiety, with subsequent loss of the label as, presumably, (/sup 14/C)CO/sub 2/. Studies with bovine ruminal fluid in vitro indicated that cleavage of the O-methyl moiety of xanthotoxin could occur rapidly in the rumen. In the goat, nonmetabolized xanthotoxin was not excreted in urine, and of several metabolites in urine extracts, 3 were identified as resulting from opening of the furan or lactone ring. Only about 2% of the dose was recovered in the feces, and this consisted mainly of unmetabolized xanthotoxin. Although appreciable amounts of radiocarbon were secreted into milk, this radiocarbon was not in the form of xanthotoxin or any identifiable metabolites. The radiocarbon in milk likely resulted from the biosynthetic incorporation of (/sup 14/C)CO/sub 2/ into normal milk components.

  15. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.

  16. Calibration of radiocarbon dates: tables based on the consensus data of the workshop on calibrating the radiocarbon time scale

    SciTech Connect

    Klein, J.; Lerman, J.C.; Damon, P.E.; Ralph, E.K.

    1982-01-01

    A calibration is presented for conventional radiocarbon ages ranging from 10 to 7240 years BP and thus covering a calendric range of 8000 years from 6050 BC to AD 1950. Distinctive features of this calibration include: (1) an improved data set consisting of 1154 radiocarbon measurements on samples of known age, (2) an extended range over which radiocarbon ages may be calibrated (an additional 530 years), (3) separate 95% confidence intervals (in tubular form) for six different radiocarbon uncertainties (20, 50, 100, 150, 200, 300 years), and (4) an estimate of the non-Poisson errors related to radiocarbon determinations, including an estimate of the systematic errors between laboratories.

  17. Radiocarbon Content of Intermediate Waters off West Sumatra During the Last 45,000 Years

    NASA Astrophysics Data System (ADS)

    De Pol-Holz, R.; Mohtadi, M.; Southon, J. R.

    2014-12-01

    Radiocarbon content of intermediate waters originating from the Southern Ocean is held as a likely smoking gun of the events that triggered the atmospheric CO2 rise and its radiocarbon decline during the last glacial-interglacial transition. Late Glacial depleted radiocarbon water masses have been found at intermediate depths off the coast of Baja California, the Galapagos, the Arabian Sea, but not unequivocally elsewhere. Knowing the route of the old water is therefore central for the required mechanistic linkage of Southern Ocean processes and the atmospheric response. A common approach to search for the old water reservoir is the radiocarbon difference between planktonic and benthic foraminifera or 'apparent ventilation age'. Caveats of this approach are due to the fact that it relies strongly on the knowledge of the surface water reservoir age. In this study, we present a high-resolution radiocarbon difference between surface and intermediate depth waters off west Sumatra in the attempt to elucidate a possible route of the old water from its hypothetical source in the high latitudes near Antarctica on its way to the lower latitude sites where it has been observed. Samples come from core SO189-39KL (0°47'S, 99°55'E, 517 m), a 1350 cm hemipelagic sedimentary sequence that spans the last 45,000 years. Radiocarbon determinations were made at centennial time resolution on both planktonic and benthic species. Calibration of the planktonic radiocarbon as age control points allowed us to infer the Δ14C of the intermediate waters. Our results show that throughout the LGM and the entire deglaciation, radiocarbon content of intermediate depths in the area remained with an almost constant age difference with the contemporaneous atmosphere. Unless we have grossly underestimated the local planktonic reservoir age, our results discard this area as a probable route for the spreading of the old water along its way to northern latitudes. In light of recent evidence from the

  18. Simple determination of the CO sub 2 /O sub 2 specificity of Ribulose-1,5-bisphosphate carboxylase/oxygenase by the specific radioactivity of ( sup 14 C) glycerate 3-phosphate

    SciTech Connect

    Genhai Zhu; Jensen, R.G.; Hallick, R.B.; Wildner, G.F. )

    1992-02-01

    A new method is presented for measurement of the CO{sub 2}/O{sub 2} specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The ({sup 14}C)3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. {sup 14}CO{sub 2} fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO{sub 2} in O{sub 2}-saturated water and carboxylase only with 160 micromolar CO{sub 2} under N{sub 2}. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the ({sup 14}C)PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 {plus minus} 4), from the green alga Chlamydomonas reinhardtii (66 {plus minus} 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods.

  19. An update on in situ cosmogenic 14C analysis at ETH Zürich

    NASA Astrophysics Data System (ADS)

    Hippe, K.; Kober, F.; Wacker, L.; Fahrni, S. M.; Ivy-Ochs, S.; Akçar, N.; Schlüchter, C.; Wieler, R.

    2013-01-01

    We present the improved performance of the modified in situ cosmogenic 14C extraction system at ETH Zürich. Samples are now processed faster (2 days in total) and are measured with a high analytical precision of usually <2% using the gas ion source of the MICADAS AMS facility. Measurements of the PP-4 standard sample show a good reproducibility and consistency with published values. Procedural blanks are very low at currently ∼4.0 × 10414C atoms. Analyses of samples from a ∼300 year old rock avalanche prove that we can successfully apply in situ14C exposure dating to very young surfaces. Additionally, we present a modified calculation scheme for in situ14C concentrations which differs from that used for conventional radiocarbon dating. This new approach explicitly accounts for the characteristics of in situ14C production.

  20. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  1. No evidence for a deglacial intermediate water Δ 14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, Rachel N.; Lund, David C.

    2011-10-01

    The last deglaciation was characterized by an increase in atmospheric pCO 2 and decrease in atmospheric radiocarbon activity. One hypothesis is that these changes were due to out-gassing of 14C-depleted carbon from the abyssal ocean. Reconstructions of foraminiferal Δ 14C from the eastern tropical Pacific, Arabian Sea, and high latitude North Atlantic show that severe depletions in 14C occurred at intermediate water depths during the last deglaciation. It has been suggested that 14C-depleted water from the abyss upwelled in the Southern Ocean and was then carried by Antarctic Intermediate Water (AAIW) to these sites. However, locations in the South Pacific in the direct path of modern-day AAIW do not exhibit the Δ 14C excursion and therefore cast doubt upon the AAIW mechanism ( De Pol-Holz et al., 2010; Rose et al., 2010). Here we evaluate whether or not a deglacial 14C anomaly occurred at intermediate depths in the Southwest Atlantic. We find that the deglacial benthic Δ 14C trend at our site is similar to the atmospheric Δ 14C trend. Our results are also largely consistent with results from U/Th-dated corals at shallower water depths on the Brazil Margin (Mangini et al., 2010). We find no evidence in the southwestern Atlantic of a ~ 300‰ decrease in intermediate water Δ 14C from 18 to 14 kyr BP like that observed in the eastern tropical Pacific ( Marchitto et al., 2007). When our results are paired with those from the South Pacific, it appears AAIW did not carry a highly 14C-depleted signal during the deglaciation. Another source of carbon is apparently required to explain the intermediate-depth Δ 14C anomalies in the North Atlantic, Indian, and Pacific Oceans.

  2. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82

    NASA Astrophysics Data System (ADS)

    Southon, John; Noronha, Alexandra L.; Cheng, Hai; Edwards, R. Lawrence; Wang, Yongjin

    2012-02-01

    The development of a calibration of atmospheric radiocarbon (∆14C) is a significant scientific goal because it provides the means to link the numerous 14C dated paleoclimate records to a common timescale with absolutely dated records, and thereby improve our understanding the relationships between the carbon cycle and climate change. Currently, few calibration datasets that directly sample the atmospheric 14C reservoir are available beyond the end of the dendro-dated Holocene tree ring record at 12.6 kyr BP (Before 1950 AD). In the absence of suitable true atmospheric records, 14C calibrations beyond this age limit are based largely on marine data, that are complicated by the marine reservoir effect, which may have varied over the glacial cycle. In this paper, we present a high-resolution record of U-Th series and 14C measurements from Hulu Cave speleothem H82, spanning 10.6-26.8 kyr BP. Corrections for detrital 230Th are negligible, and the contribution of 14C-free geologic carbon to the speleothem calcite is small (5-6%) and is stable across major climate shifts. The time series provides a 16 kyr record of atmospheric ∆14C as well as an updated age model for the existing Hulu Cave δ18O record. The 14C data are in good overall agreement with existing marine and terrestrial 14C records, but comparisons with the Cariaco Basin marine ∆14C record through the deglacial interval reveal that the Cariaco reservoir age appears to have varied during parts of the Younger Dryas and Heinrich Stadial 1 cold events. This highlights the importance of developing extended high-resolution marine and terrestrial 14C records as a means of detecting changes in ocean circulation over the glacial cycle.

  3. Bringing AMS radiocarbon into the Anthropocene: Potential and drawbacks in the determination of the bio-fraction in industrial emissions and in carbon-based products

    NASA Astrophysics Data System (ADS)

    Quarta, Gianluca; Ciceri, Giovanni; Martinotti, Valter; D'Elia, Marisa; Calcagnile, Lucio

    2015-10-01

    In the frame of the general efforts to reduce atmospheric CO2 emissions different efforts are being carried out to stimulate the use of non-fossil energy sources and raw materials. Among these a significant role is played by the use of waste in Waste to Energy (WTE) plants. In this case a relevant problem is related to the determination of the proportion between the bio and the fossil derived fraction in CO2 atmospheric emissions since only the share of energy derived from the bio-fraction combustion can be labelled as "renewable". We discuss the potential of radiocarbon in this field by presenting the results of different campaigns carried out by analysing CO2 sampled at the stack of different power plants in Italy with different expected bio-content of the released carbon dioxide. The still open issues related to the calculation procedures and the achievable precision and accuracy levels are discussed.

  4. The 14C Record in Bristlecone Pine Wood of the past 8000 Years Based on the Dendrochronology of the Late C. W. Ferguson

    NASA Astrophysics Data System (ADS)

    Suess, H. E.; Linick, T. W.

    1990-04-01

    When, in 1950, Willard Libby and his coworkers obtained their first radiocarbon (14C) dates, C. W. Ferguson at the University of Arizona Tree Ring Laboratory was working on establishing a continuous tree ring series for the newly discovered bristlecone pine Pinus aristata. Before his untimely death in 1986, he had extended the series nearly 8000 years into the past. From the Ferguson series I obtained for 14C determinations wood samples grown at various times. Also, two other laboratories obtained such samples. For B.C. times in particular, our measured 14C-values that deviated consistently from those calculated from tree rings, and the deviations increased with age. This general trend was observed by other laboratories, but the presence of deviations from these trends, of the so-called `wiggles', was questioned by other workers. To me these wiggles indicated the existence of a most interesting geophysical parameter valid for the whole terrestrial atmosphere. Fourier spectra obtained at my request by Kruse in 1972, and by Neftel, demonstrated the consistency of the results, and supported my contention that the secular variations of 14C in atmospheric CO2 are related to variations of solar activity.

  5. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  6. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  7. Analysis and Characterization of Organic Carbon in Early Holocene Wetland Paleosols using Ramped Pyrolysis 14C and Biomarkers

    NASA Astrophysics Data System (ADS)

    Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.

    2014-12-01

    Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.

  8. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon.

    PubMed

    Fernandez, Alvaro; Santos, Guaciara M; Williams, Elizabeth K; Pendergraft, Matthew A; Vetter, Lael; Rosenheim, Brad E

    2014-12-16

    Ramped pyrolysis (RP) targets distinct components of soil and sedimentary organic carbon based on their thermochemical stabilities and allows the determination of the full spectrum of radiocarbon ((14)C) ages present in a soil or sediment sample. Extending the method into realms where more precise ages are needed or where smaller samples need to be measured involves better understanding of the blank contamination associated with the method. Here, we use a compiled data set of RP measurements of samples of known age to evaluate the mass of the carbon blank and its associated (14)C signature, and to assess the performance of the RP system. We estimate blank contamination during RP using two methods, the modern-dead and the isotope dilution method. Our results indicate that during one complete RP run samples are contaminated by 8.8 ± 4.4 μg (time-dependent) of modern carbon (MC, fM ∼ 1) and 4.1 ± 5.5 μg (time-independent) of dead carbon (DC, fM ∼ 0). We find that the modern-dead method provides more accurate estimates of uncertainties in blank contamination; therefore, the isotope dilution method should be used with caution when the variability of the blank is high. Additionally, we show that RP can routinely produce accurate (14)C dates with precisions ∼100 (14)C years for materials deposited in the last 10,000 years and ∼300 (14)C years for carbon with (14)C ages of up to 20,000 years. PMID:25375178

  9. The Distribution Coefficients and Gasification Ratios of [1,2-{sup 14}C] Sodium Acetate for Various Paddy Soils in Japan

    SciTech Connect

    Ishii, N.; Takeda, H.; Uchida, S.

    2008-07-01

    For appropriate safety assessment of the disposal of TRU waste, distribution coefficients (K{sub d}) and gasification ratios of {sup 14}C labeled [1, 2-{sup 14}C] sodium acetate ({sup 14}C-NaOAc) were determined by batch sorption tests for 85 Japanese paddy soil samples. The soil studied were from four soil types: Andsol; Gley; Gray lowland; and Yellow. The range of K{sub d} values for all soil samples was from 7.5 to 295.2 mL g{sup -1}, and the mean value was 105.6 mL g{sup -1}. This mean value was higher than that of previous study (1). The high K{sub d} values of the present study could be a result of the properties of the paddy soils. The comparison of K{sub d} values by each soil type revealed statistically significant difference between Andsol and Gray lowland soils (P < 0.05). The soil type was one of the factors affecting partitioning of {sup 14}C-NaOAc. Gasification ratios ranged from 29.1% to 83.3%, and its mean value was 66.4% of the total {sup 14}C-NaOAc added. These results suggest that most of the radiocarbon in {sup 14}C-NaOAc will be released from soil into the air as gases. The gasification ratio between soil types was also compared, but no statistically significant difference was found. Gas production may be controlled by other than physicochemical properties of soil, for example by factors such as bacterial community. In addition, both the K{sub d} values and the gasification ratios for Gley soil were decreased according to the increase in pH although the underlaying mechanisms for this observation are not clear. (authors)

  10. Pre to Post-Bomb Seawater 14C History in the Gulf of Alaska Inferred From a Deep Sea Coral: Isididae sp.

    NASA Astrophysics Data System (ADS)

    Roark, B.; Guilderson, T. P.; Fallon, S.; Dunbar, R. B.; McCulloch, M.

    2006-12-01

    Deep-sea corals are an important archive of intermediate and deep-water variability, and provide the means to explore decadal to century-scale ocean dynamics in regions and time periods heretofore unexplored. We present a reconstruction of pre to post-bomb surface and interior water Δ14C based on analysis of deep-sea Isididae (bamboo) corals collected live at ~700 meters in June 2002 at Warwick Seamount, Gulf of Alaska. Concurrent isotope analyses of polyp/tissue and outermost portion of the hard horny proteinaceous gorgonin nodes compared with in situ dissolved inorganic carbon indicates that the gorgonin portion is derived exclusively from recently fixed/exported particulate organic carbon and thus a record of the surface water 14C/12C history. This is in contrast to the carbonate internode portion which is primarily derived from in situ dissolved inorganic carbon, and thus a record of the in situ 14C/12C. Radiocarbon analysis of gorgonin nodal sections captures the surface water D14C evolution. Pre-bomb values are -105‰ reaching a maximum of 100‰ before decreasing to collection values of 20‰. We anticipate that the post-bomb maximum will be in the early 1970s consistent with other mid to high latitude records and that the pre/post bomb transition initiates near 1956. If we utilize the gorgonin pre/post bomb transition as a tie-point and assume a linear growth rate the Isididae used in this study are 75- 125 years old. Carbonate Δ14C shows a 25‰ increase from -215 to -190‰ reflecting the penetration of bomb-14C in the sub-polar North Pacific. To place the carbonate time-series on a fixed timescale we determined the minor element chemistry and tested the inter-species reproducibility. The distribution of Sr is quite homogenous whereas Mg is not with higher Mg concentrations associated with centers of calcification. Age estimates using what appear to be annual Sr/Ca cycles, which we hypothesize are related to biomineralization cycles associated with a

  11. RADIOCARBON MEASUREMENT OF THE BIOGENIC CONTRIBUTION TO SUMMERTIME PM 2.5 AMBIENT AEROSOL IN NASHVILLE, TN

    EPA Science Inventory

    Radiocarbon (14C) measurements performed on PM-2.5 samples collected near Nashville, TN from June 21 to July 13, 1999, showed high levels of modern carbon, ranging from 56 to 80% of the total carbon in the samples. Radiocarbon measurements performed on dichloromethane extracts of...

  12. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    100 years in larch CWD. Consequently, the decay of Picea abies and Larix decidua is very low. Several uncertainties, however, remain: 14C dating of CWD from decay classes 4 and 5 and having a pre-bomb age is often difficult (large age range due to methodological constraints) and fall rates of both European larch and Norway spruce are missing.

  13. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  14. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  15. Radiocarbon dating of open systems with bomb effect

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Long, A.; Friedmann, E. I.

    1986-01-01

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3 percent for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  16. Radiocarbon dating of open systems with bomb effect

    SciTech Connect

    McKay, C.P.; Long, A.; Friedmann, E.I.

    1986-03-10

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3% for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  17. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  18. Radiocarbon-based assessments of the role of fungal species in decomposition

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Lansing, J. L.; Choi, N.

    2004-12-01

    We used natural radiocarbon signatures to determine if species of decomposer fungi specialize on different pools of organic matter in the soil. Specifically, we examined natural radiocarbon signatures of mushrooms to estimate the average integrated age of C compounds metabolized by individual species. This method takes advantage of rapid changes in atmospheric radiocarbon signatures of carbon dioxide since the early 1960s, when several years of above-ground weapons testing produced a spike in atmospheric Δ 14C. This signature has been rapidly declining since then. Therefore, we can measure radiocarbon signatures of tissues and determine the time at which their component C was originally photosynthesized. We conducted our study in a fire chronosequence in boreal forests near Delta Junction, Alaska. The chronosequence includes sites burned in severe fires during the summers of 1999, 1987, and 1956. A "control" site was established in a neighboring 80 yr old black spruce forest. In 2002, we collected mushrooms each week from six 50 m long transects in each site. Mushrooms were weighed and assigned to species based on morphological and molecular analyses (i.e. typing by restriction fragment length polymorphism). Saprotrophic species could be distinguished from ectomycorrhizal species based on 15N and 13C signatures. Specifically, saprotrophic mushrooms had δ 15N values less than 4.66\\permil and δ 13C values greater than -23.1\\permil. We then measured the Δ 14C values of mushrooms from 20 of the most abundant saprotrophic species. Radiocarbon signatures varied widely among species, implying that species take up C from compounds that range in turnover time. For example, fungi of the Polyporaceae often grow on woody debris in our sites, and their Δ 14C signatures (-65.1 to 15.0\\permil) indicate the use of several decades-old, recalcitrant C. These fungi are known to possess the necessary enzymes for lignin degradation, so lignocellulose is a likely C source. In

  19. 14-C-NAPHTHYL, 14-C-METHYL AND 14-C-CARBONYL CARBARYL DISTRIBUTION IN THE PREGNANT MOUSE AND RAT

    EPA Science Inventory

    The distribution of carbaryl labeled with 14C in the ring, methyl or carbonyl groups was determined in pregnant mice and rats. Three identical concurrent experiments were performed using each of the three radiolabeled compounds in each of the species so that the different moietie...

  20. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Adolphi, F.; Beer, J.; Bleicher, N.; Boswijk, G.; Christl, M.; Hogg, A.; Palmer, J.; Vockenhuber, C.; Wacker, L.; Wunder, J.

    2015-02-01

    In 2012, Miyake et al. reported a sudden and strong increase of the atmospheric radiocarbon (14C) content in Japanese cedar trees of 1.2% between AD 774 and 775. While their findings were quickly confirmed by a German oak chronology for the Northern Hemisphere (NH), the question remained if the effect was seen in both hemispheres. Here we present the first annually resolved Southern Hemisphere (SH) 14C record spanning the interval AD 760-787, using New Zealand kauri (Agathis australis) chronology wood. An almost identical distinct increase compared to Northern Hemisphere data was observed, suggesting a cosmic event with globally uniform impact as a potential cause for the increase. Deploying a carbon cycle box model a worldwide averaged net 14C production of 2.2 ×108 14C atoms cm-2 was estimated, which is 3.7 times higher than the average annual 14C production. The immediate appearance of the event in tree rings on both hemispheres suggests a short duration event of significantly less than 1 yr.

  1. Detection of radiocarbon in the cyclotrino

    SciTech Connect

    Bertsche, K.J.; Karadi, C.A.; Muller, R.A.; Paulson, G.C.

    1990-04-01

    A small low energy cyclotron (the cyclotrino''), which was proposed for direct detection of radiocarbon in 1980, has now detected radiocarbon at natural abundance. This device combines the suppression of background through the use of negative ions with the high intrinsic mass resolution of a cyclotron. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-gated output. Data is presented showing resolution of radiocarbon at natural abundance. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes are discussed. 16 refs., 7 figs.

  2. Development of a nanofiltration method for bone collagen 14C AMS dating

    NASA Astrophysics Data System (ADS)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  3. 14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years

    NASA Astrophysics Data System (ADS)

    Hughen, K.; Lehman, S.; Southon, J.; Overpeck, J.; Marchal, O.; Herring, C.; Turnbull, J.

    2004-01-01

    A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.

  4. Changes in Atmospheric 14C Between 55 and 42 ky BP Recorded in a Stalagmite From Socotra Island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, C. E.; Burns, S. J.; Fleitmann, D.; Kramers, J. D.; Matter, A.; Waber, H. N.; Reimer, P. J.

    2003-12-01

    A record of atmospheric radiocarbon (14C) variations for a part of the last glacial period was obtained from a 1.7 m long stalagmite, M1-2, from Socotra Island in the Indian Ocean. The stalagmite radiocarbon values were corrected for 14C-free carbon added by water-rock interaction (dead carbon fraction), by using del 13C values of the calcite as a constraint. An age-depth model was developed from 25 high-precision U/Th measurements. The base of the stalagmite dates to 54.7 ky BP and it stopped growing around 42.2 ky BP. The difference between U/Th and 14C ages shows a smooth, steady increase from about 5,000 years at the base of the stalagmite to about 8,000 years at its top. Correspondingly, Delta 14C values increase from 500 per mil to about 1300 per mil, which indicates that concentrations of atmospheric 14C steadily increased between 55 and 42 yr BP. The record from Socotra Island does not show the large and rapid D14C changes previously recorded in a stalagmite from the Bahamas (Beck et al, Science 2001). The D14C values estimated from M1-2 are significantly higher than those estimated from a marine 14C record (foraminifera) from Cariaco Basin for the same time period (Hughen et al. in prep). In the latter, D14C values decrease to near 0 at about 44 ky BP. The most likely reason for this discrepancy are the two different time scales used; the Cariaco Basin is matched to the GISP2 timescale, which is approximately 5000 years younger than indicated by the stalagmite U/Th chronology (Burns et al, Science 2003). When the Cariaco basin record is adjusted to the M1-2 timescale, the D14C values for both datasets are similar.

  5. Impact of the Bohunice Nuclear Power Plant on atmospheric radiocarbon.

    PubMed

    Povinec, P P; Sivo, A; Simon, J; Holý, K; Chudý, M; Richtáriková, M; Morávek, J

    2008-11-01

    Radiocarbon variations in the atmospheric CO(2) have been observed at two localities in Slovakia (Bratislava and Zlkovce). Zlkovce is situated about 60 km NE from Bratislava, and only 5 km from the Bohunice Nuclear Power Plant (NPP). The observed Delta(14)C levels provide a unique evidence of the long-term impact of the Bohunice NPP on the Bratislava region, as well as on the decreased fossil fuel CO(2) emissions. The radiation doses estimated to the local public have been around 3 microSv/year, 20% of the dose from global fallout (14)C present in the environment. PMID:18534859

  6. Centuries of marine radiocarbon reservoir age variation within archaeological Mesodesma Donacium shells from Southern Peru

    USGS Publications Warehouse

    Jones, K.B.; Hodgins, G.W.L.; Etayo-Cadavid, M. F.; Andrus, C.F.T.; Sandweiss, D.H.

    2010-01-01

    Mollusk shells provide brief (<5 yr per shell) records of past marine conditions, including marine radiocarbon reservoir age (R) and upwelling. We report 21 14C ages and R calculations on small (~2 mg) samples from 2 Mesodesma donacium (surf clam) shells. These shells were excavated from a semi-subterranean house floor stratum 14C dated to 7625 ?? 35 BP at site QJ-280, Quebrada Jaguay, southern Peru. The ranges in marine 14C ages (and thus R) from the 2 shells are 530 and 170 14C yr; R from individual aragonite samples spans 130 ?? 60 to 730 ?? 170 14C yr. This intrashell 14C variability suggests that 14C dating of small (time-slice much less than 1 yr) marine samples from a variable-R (i.e. variable-upwelling) environment may introduce centuries of chronometric uncertainty. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  7. The radiocarbon budget for Mono Lake: an unsolved mystery

    USGS Publications Warehouse

    Broecker, W.S.; Wanninkhof, R.; Mathieu, G.; Peng, T.-H.; Stine, S.; Robinson, S.; Herczeg, A.; Stuiver, M.

    1988-01-01

    Since 1957 the 14C C ratio of the dissolved inorganic carbon in Mono Lake has risen by about 60???. The magnitude of this increase is about four times larger than that expected from the invasion of bomb-produced 14C from the atmosphere. We have eliminated the following explanations: (1) measurement error, (2) an unusually high physical exchange rate for non-reactive gases, (3) inorganic enhancement of the CO2 exchange rate, and (4) biological enhancement of the CO2 exchange rate. Clandestine disposal of waste radiocarbon remains a dark-horse explanation. In the course of our investigations we have uncovered evidence for at least one episodic input of radiocarbon-free carbon to the lake over the last 1000 years. We speculate that this injection was related to a hydrothermal event resulting from sublacustrine volcanic activity. ?? 1988.

  8. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  9. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  10. Very long solar periods and the radiocarbon record

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1984-01-01

    It is pointed out that radiocarbon is produced in the earth's atmosphere by the nuclear reaction N-14(n,p)C-14. The photosynthesis by trees of carbon in the form of CO2 provides an estimate of the C-14/C-12 ratio and, therefore, the atmospheric inventory of C-14 at the time of take-up. The existence of periodicities in the radiocarbon record has been considered by Suess (1965, 1971, 1980). The present investigation is concerned with these periodicities. Periodicities in the radiocarbon record are related to variability in the modulation of the galactic component of the incoming cosmic ray flux, mediated by the oceanic and atmospheric reservoirs. The long periods observed are an indicator of corresponding changes in the hydromagnetic output of the sun, which might be caused by changes in the intensity of the magnetic field escaping from the solar atmosphere.

  11. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  12. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  13. Uptake and distribution of 14C during and following exposure to [14C]methyl isocyanate.

    PubMed

    Ferguson, J S; Kennedy, A L; Stock, M F; Brown, W E; Alarie, Y

    1988-06-15

    Guinea pigs were exposed to [14C]methyl isocyanate (14CH3-NCO, 14C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of 14C. Clearance of 14C was then gradual over a period of 3 days. Similarly 14C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced 14C uptake in blood indicating that most of the 14C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs 14C was distributed to all examined tissues. In pregnant female mice similarly exposed to 14C MIC, 14C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of 14C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators. PMID:3376108

  14. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Walthert, Lorenz; Schleppi, Patrick; Feng, Xiaojuan; Eglinton, Timothy Ian

    2016-06-01

    Soil organic matter (SOM) forms the largest terrestrial pool of carbon outside of sedimentary rocks. Radiocarbon is a powerful tool for assessing soil organic matter dynamics. However, due to the nature of the measurement, extensive 14C studies of soil systems remain relatively rare. In particular, information on the extent of spatial and temporal variability in 14C contents of soils is limited, yet this information is crucial for establishing the range of baseline properties and for detecting potential modifications to the SOM pool. This study describes a comprehensive approach to explore heterogeneity in bulk SOM 14C in Swiss forest soils that encompass diverse landscapes and climates. We examine spatial variability in soil organic carbon (SOC) 14C, SOC content and C : N ratios over both regional climatic and geologic gradients, on the watershed- and plot-scale and within soil profiles. Results reveal (1) a relatively uniform radiocarbon signal across climatic and geologic gradients in Swiss forest topsoils (0-5 cm, Δ14C = 130 ± 28.6, n = 12 sites), (2) similar radiocarbon trends with soil depth despite dissimilar environmental conditions, and (3) micro-topography dependent, plot-scale variability that is similar in magnitude to regional-scale variability (e.g., Gleysol, 0-5 cm, Δ14C 126 ± 35.2, n = 8 adjacent plots of 10 × 10 m). Statistical analyses have additionally shown that Δ14C signature in the topsoil is not significantly correlated to climatic parameters (precipitation, elevation, primary production) except mean annual temperature at 0-5 cm. These observations have important consequences for SOM carbon stability modelling assumptions, as well as for the understanding of controls on past and current soil carbon dynamics.

  15. Measuring the 14C content in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Barabanov, I. R.; Bezrukov, L. B.; Gangapshev, A. M.; Gavrilyuk, Y. M.; Grishina, V. Yu; Gurentsov, V. I.; Hissa, J.; Joutsenvaara, J.; Kazalov, V. V.; Krokhaleva, S.; Kutuniva, J.; Kuusiniemi, P.; Kuzminov, V. V.; Kurlovich, A. S.; Loo, K.; Lubsandorzhiev, B. K.; Lubsandorzhiev, S.; Morgalyuk, V. P.; Novikova, G. Y.; Pshukov, A. M.; Sinev, V. V.; Słupecki, M.; Trzaska, W. H.; Umerov, Sh I.; Veresnikova, A. V.; Virkajärvi, A.; Yanovich, Y. A.; Zavarzina, V. P.

    2016-05-01

    We are going to perform a series of measurements where the 14C/12 C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10-18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyhäsalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyhäsalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C content in the liquid is extremely low. In the Borexino CTF detector at Gran Sasso, Italy the 14C/12C ratio of 2 × 10-18 has been achieved being the lowest 14C concentration ever measured. In principle, the older the oil or gas source that the liquid scintillator is derived of and the deeper it situates, the smaller the 14C/12C ratio is supposed to be. This, however, is not generally the case, and the ratio is probably determined by the U and Th content of the local environment.

  16. Large Variations of Atmospheric 14C Associated With Dansgaard-Oeschger Cycles 10- 13

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, C. E.; Burns, S. J.; Fleitmann, D.; Mangini, A.; Matter, A.; Guilderson, T.; Reimer, P. J.

    2006-12-01

    A 1.7 m long stalagmite from Moomi Cave, Socotra Island in the Indian Ocean provides a continuous, high- resolution record of climate change between 53 and 41 kyr BP. In the northern high-latitude regions, this time period is characterized by several rapid climate change events, corresponding to Dansgaard-Oeschger (D/O) cycles 10-13. It has been suggested that these D/O cycles may be global events but high-resolution data from the low-latitude regions are scarce. As a result, the driving and feedback mechanisms of these rapid changes remain poorly understood. The presented stalagmite data of U/Th, stable isotopes (del 18O, del 13C) and radiocarbon (14C) provide unique information regarding the nature and timing of rapid climate changes in the tropics. A depth-age model for the Moomi Cave stalagmite was developed from 25 high-precision U/Th measurements, providing a solid chronology for this record. Oxygen isotope measurements of the stalagmite calcite reveal several large variations that are believed to reflect changes in the amount of precipitation, rather than temperature. A comparison to the Greenland Ice Core records shows a remarkable similarity to D/O cycles 10- 13 with warmer periods in the high-latitude regions being associated with increased precipitation in the tropics and vice versa. The stalagmite radiocarbon (14C) values from over 100 individual measurements reveal an almost identical cyclic pattern, tracing all four D/O cycles. Assuming no changes in the carbonate chemistry of the precipitating fluid, the radiocarbon values of the stalagmite calcite directly reflect changes in global atmospheric 14C concentrations. There are three possible explanations for these cyclic variations of 14C values: 1) changes in the carbonate chemistry of the drip water resulting in changes of the dead carbon fraction (DCF); 2) changes in the solar activity and/or Earth's magnetic field resulting in direct variations of atmospheric 14C concentrations; and 3) changes in

  17. Surface water processes in the Indonesian Throughflow as documented by a high-resolution coral (Delta)14C record

    SciTech Connect

    Fallon, S J; Guilderson, T P

    2008-04-23

    To explore the seasonal to decadal variability in surface water masses that contribute to the Indonesian Throughflow we have generated a 115-year bi-monthly coral-based radiocarbon time-series from a coral in the Makassar Straits. In the pre-bomb (pre-1955) era from 1890 to 1954, the radiocarbon time series occasionally displays a small seasonal signal (10-15{per_thousand}). After 1954 the radiocarbon record increases rapidly, in response to the increased atmospheric {sup 14}C content caused by nuclear weapons testing. From 1957 to 1986 the record displays clear seasonal variability from 15 to 60{per_thousand} and the post-bomb peak (163 per mil) occurred in 1974. The seasonal cycle of radiocarbon can be attributed to variations of surface waters passing through South Makassar Strait. Southern Makassar is under the influence of the Northwest Monsoon, which is responsible for the high Austral summer radiocarbon (North Pacific waters) and the Southeast Monsoon that flushes back a mixture of low (South Pacific and upwelling altered) radiocarbon water from the Banda Sea. The coral record also shows a significant {sup 14}C peak in 1955 due to bomb {sup 14}C water advected into this region in the form of CaCO{sub 3} particles (this implies that the particles were advected intact and then become entrapped in the coral skeleton--is this what we really mean? Wouldn't even fine particles settle out over the inferred transit time from Bikini to MAK?) or water particles with dissolved labeled CO{sub 2} produced during fallout from the Castle tests in 1954.

  18. Radiocarbon to calendar date conversion: Calendrical band widths as a function of radiocarbon precision

    SciTech Connect

    McCormac, F.G.; Baillie, M.G.L. )

    1993-01-01

    Accurate high-precision [sup 14]C dating (i.e., [plus minus] 20 yr precision or less on the [sup 14]C date) provides the narrowest calendrical band width and, hence, the best age range determination possible. However, because of the structure in the [sup 14]C calibration curve, the calendar age range for a given [sup 14]C precision is not constant throughout the calibration range. In this study, they quantify the calendar band widths for a range of [sup 14]C precisions throughout the calibration range. They show that an estimate of the likely calendar band width in years can be obtained from the expression: Band width (yr) = 2.12 x [sup 14]C precision (1 [sigma]) + 54.6. They also show that calendar band widths are widest around 4000 Bp at the start of the Bronze Age, and become narrow through the later Bronze Age and Iron Age and back into the Neolithic.

  19. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, Jason A.; Pigati, Jeffrey S.; Lehmann, Sophie B.; McGimpsey, Chelsea N.; Grimley, David A.; Nekola, Jeffrey C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating.

  20. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, J.A.; Pigati, J.S.; Lehmann, S.B.; McGimpsey, C.N.; Grimley, D.A.; Nekola, J.C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating. ?? 2011 by the Arizona Board of Regents on behalf of the University of Arizona.

  1. Radiocarbon in the Weddell Sea as observed in a deep-sea coral and in krill

    SciTech Connect

    Michel, R.L.; Druffel, E.M.

    1983-03-01

    Radiocarbon mesurements were performed on krill and coral samples collected from the Weddell Sea during IWSOE '80. These are the first radiocarbon measurements available from this area since 1973. These data reveal carbon-14 levels for Weddell surface water and southern Weddell Shelf water. These data indicate that the radiocarbon levels in surface waters in 1980 were the same or slightly lower than those present in 1973. In addition, an unusually low ..delta../sup 14/C value for shelf water (from coral) at 500 m is evidence that Warm Deep Water (WDW) may penetrate much further and more frequently onto the shelf region than had previously been expected.

  2. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    NASA Astrophysics Data System (ADS)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  3. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  4. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed

    NASA Astrophysics Data System (ADS)

    Hesshaimer, Vago; Heimann, Martin; Levin, Ingeborg

    1994-07-01

    RADIOCARBON produced naturally in the upper atmosphere or arti-ficially during nuclear weapons testing is the main tracer used to validate models of oceanic carbon cycling, in particular the exchange of carbon dioxide with the atmosphere1-3 and the mixing parameters within the ocean itself4-7. Here we test the overall consistency of exchange fluxes between all relevant compartments in a simple model of the global carbon cycle, using measurements of the long-term tropospheric CO2 concentration8 and radiocarbon composition9-12, the bomb 14C inventory in the stratosphere13,14 and a compilation of bomb detonation dates and strengths15. We find that to balance the budget, we must invoke an extra source to account for 25% of the generally accepted uptake of bomb 14C by the oceans3. The strength of this source decreases from 1970 onwards, with a characteristic timescale similar to that of the ocean uptake. Significant radiocarbon transport from the remote high stratosphere and significantly reduced uptake of bomb 14C by the biosphere can both be ruled out by observational constraints. We therefore conclude that the global oceanic bomb 14C inventory should be revised downwards. A smaller oceanic bomb 14C inventory also implies a smaller oceanic radiocarbon penetration depth16, which in turn implies that the oceans take up 25% less anthropogenic CO2 than had previously been believed.

  5. Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ 14C during the last 50 kyr

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Kissel, Catherine; Mazaud, Alain; Michel, Elisabeth; Muscheler, Raimund; Beer, Juerg

    2002-06-01

    We present simulated records of past changes in the atmospheric Δ 14C for the last 50 kyr due to changes in geomagnetic field intensity and in the strength of the North Atlantic Deep Water (NADW). A new geomagnetic record was used, largely based on the NAPIS-75 record [Laj et al., Phil. Trans. R. Soc. London A 358 (2000) 1009-1025] which has been extended for the 0-20 kyr interval using archeomagnetic and volcanic data. Past changes of the NADW were derived from a mineral magnetic study of the cores used in the construction of NAPIS-75. Two box models of different complexity (4 and 17 boxes) were used to simulate the carbon cycle. Calculated records of Δ 14C are consistent with experimental determinations for the last 24 kyr. For older ages, the records calculated with variable oceanic circulation conditions reach values as high as 600‰ (with an average of 500‰) between 20 and 40 kyr with maxima around 21, 30 and 38 kyr (GISP2 age model), while low values are observed prior to 42 kyr. Although large inconsistencies in experimental data preclude precise comparison, the average record simulated with the 17-box model is overall consistent with the Icelandic Sea record [Voelker et al., Radiocarbon 40 (1998) 517-534; 42 (2000) 437-452], except for the extremely high peak observed in this record at 40.5 kyr. On the other hand, the results recently reported from a stalagmite recovered from a submerged cave in the Bahamas [Beck et al., Science 292 (2001) 2453-2458] are inconsistent with all our model simulations. In the 20-45 kyr interval, the improved geomagnetic record combined with the new NADW profile allows us to give a modeled evaluation of the relative contribution of these factors to changes in atmospheric Δ 14C. The average simulation provides a first order modeled correction for conventional radiocarbon ages older than 25 kyr for which no calibration curve is available as yet.

  6. A procedure for batch separation of sup 14 C-hexose from sup 14 C-sucrose

    SciTech Connect

    Tarpley, L.; Vietor, D.M. )

    1991-05-01

    This presentation describes a method for separating {sup 14}C-hexose from {sup 14}C-sucrose in extracts of plant tissue. Portions of ethanol extracts are treated with activated charcoal in microcentrifuge tubes. Aliquots are removed, ethanol evaporated and replaced with reaction mixture that phosphorylates hexose (HEPPS, K{sub 2}HPO{sub 4}, Mg(C{sub 2}H{sub 3}O{sub 2}){sub 2}, ovalbumen, Na{sub 2}ATP, yeast hexokinase). After a time course, the hexokinase reaction is stopped (slowed considerably) to minimize effects of contamination enzyme activities. The stopping agent used is lyxose, a nonphosphorylable analogue of glucose. The strong anionic charge of phosphate introduced through the hexokinase action results in binding (> 95%) of hexose-phosphate to anion-exchange resin. Sucrose remains unbound (> 95%) in solution. This batch ion-exchange is performed in microcentrifuge tubes to allow many samples to be processed simultaneously. Recovery of radiolabel in extracts is complete (99%), and determinations are repeatable (cv = 23%). This method for routinely separating and quantifying {sup 14}C-hexose and {sup 14}C-sucrose in plant tissue extracts can contribute to the economy and feasibility of studies of {sup 14}C-photoassimilate partitioning to soluble sugars within and among plant tissues.

  7. Linking high resolution 14C records to ice core time scales by means of Bayesian wiggle-matching

    NASA Astrophysics Data System (ADS)

    Adolphi, F.; Muscheler, R.; Friedrich, M.; Güttler, D.; Wacker, L.; Kromer, B.

    2014-12-01

    Radiocarbon dating is the key method for obtaining chronological information of paleoclimate records covering the last ~45,000 years. The wealth of paleoclimatic information reconstructed from Greenland and Antarctic ice cores are often used as blue-prints to place these radiocarbon dated records into a wider context. However, while layer counted ice core time scales from Greenland provide high precision on the duration of events, the absolute age uncertainty increases back in time. This poses limitations on the possible detail and robustness of comparisons between radiocarbon dated, and ice core records. Cosmogenic radionuclide records, i.e. based on 14C and 10Be, provide a unique tool for synchronizing different time scales from various archives. They carry the common production rate signal which is modulated by variations in the strength of the helio- and geo- magnetic fields, which are climate-independent processes and global. We will present a method for synchronizing radiocarbon and Greenland ice core time scales back to 16,000 years ago based on Bayesian wiggle matching of cosmogenic radionuclide records. The method utilizes the strength of the high relative precision of ice core time scales as well as the small absolute age uncertainty from tree-ring chronologies and U/Th dated speleothems. The method provides combined error estimates and allows testing i) the accuracy of ice core time scales, ii) the quality of 14C records underlying the radiocarbon calibration curve as well as iii) assumptions of synchronicity of rapid climate changes. Furthermore, we will illustrate how this method can be used for high-precision radiocarbon wiggle-match dating of floating tree ring chronologies beyond 14,000 years ago, and potentially improve the radiocarbon calibration curve.

  8. Efficient Collection of Methane from Extremely Large Volumes of Water for Natural Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, K. J.; Kessler, J. D.

    2014-12-01

    Collecting sufficient amounts of natural methane sample for a high precision radiocarbon (14C-CH4) analysis was previously unfeasible when sampling from low methane concentration waters like the open ocean. A new method incorporating dissolved gas extraction technology (Liqui-Cel® membrane contactors) has been developed to circumvent the challenges that natural 14C-CH4 sampling presents. With this method, adequate amounts of methane-carbon for a traditional 14C-accelerator mass spectrometry (AMS) analysis can be cleanly and efficiently extracted from 1000s L water in a few hours. This technique is currently being improved to enable sampling from > 11,000 L water in less than 1 hr. For transport from the field to the laboratory, each extracted gas sample is compressed into a small (1.68 L) high-pressure aluminum cylinder using an oil-free compressor pump. Due to the small size and portability of the sample cylinders, high resolution sampling plans composed of 30+ samples are possible even in remote locations. The laboratory preparation of these methane samples for 14C-AMS analyses is carried out on a new flow-through vacuum line. While the bulk water vapor and carbon dioxide (CO2) are removed before the sample is compressed in the field, the residual trace amounts of these constituents are cryogenically removed from the sample in the initial phase of the vacuum line. Carbon monoxide in the sample is quantitatively oxidized at 290°C to CO2 and cryogenically removed. Finally, the sample methane is quantitatively oxidized at 950°C to products CO2 and water and then cryogenically isolated. The new vacuum line technique achieves low blanks and purifies and oxidizes the methane contained in the extracted gas sample with high efficiency. At an AMS facility, an aliquot of the methane-produced CO2 is graphitized and analyzed for radiocarbon content using traditional 14C-AMS. Supporting dual-inlet isotope ratio mass spectrometry measurements are conducted to determine both

  9. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    PubMed

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. PMID:26704325

  10. IntCal04: A New Consensus Radiocarbon Calibration Dataset from 0-26 ka BP

    NASA Astrophysics Data System (ADS)

    Reimer, P. J.; Baillie, M. G.; Bard, E.; Beck, J. W.; Buck, C. E.; Blackwell, P. G.; Burr, G. S.; Cutler, K. B.; Damon, P. E.; Edwards, R. L.; Fairbanks, R. G.; Friedrich, M.; Guilderson, T. P.; Hogg, A. G.; Hughen, K. A.; Kromer, B.; McCormac, G.; Ramsey, C. B.; Reimer, R. W.; Remmele, S.; Southon, J. R.; Stuiver, M.; Taylor, F. W.; van der Plicht, J.; Weyhenmeyer, C. E.

    2003-12-01

    Because atmosphere 14C levels have not been constant through time, it is necessary to calibrate radiocarbon dates with known age radiocarbon datasets in order to compare paleorecords based on 14C ages and those based on other timescales. The need for a consensus calibration dataset was acknowledged by the radiocarbon community as a way of preventing confusion and the subjective use of selected datasets (1). Since then, radiocarbon calibration datasets have been developed by international collaborations and presented for ratification at the International Radiocarbon Conference (2-4). The IntCal04 Radiocarbon Calibration/Comparison Working Group has put together a dataset which incorporates existing and new measurements of tree-ring records, foraminifera from varved sediments, and corals that meet a strict set of acceptance criteria (5). Uncertainties for both the calendar time scale and the radiocarbon ages have been quantified and included in the dataset combination using a statistical technique based on the ideas of Christen and Nicholls (6) and Gomez Portugal Aguilar (7). The IntCal04 dataset, which covers the range of 0 to 26 ka BP, was presented for ratification at the 19th International Radiocarbon Conference in Wellington, New Zealand, in September, 2003. This paper will highlight the differences between IntCal98 and the new IntCal04 dataset and give an example showing the effect on the calibrated age for a Younger Dryas age sample. 1. J. Klein, J. C. Lerman, P. E. Damon, E. K. Ralph, Radiocarbon 24, 103-150 (1982). 2. M. Stuiver, Radiocarbon 28, R2-R2 (1986). 3. M. Stuiver et al., Radiocarbon 40, 1041-1083 (1998). 4. M. Stuiver, P. J. Reimer, Radiocarbon 35, 215-230 (1993). 5. P. J. Reimer et al., Radiocarbon 44, 653-661. (2002). 6. J. A. Christen, G. Nicholls, "Random-walk radiocarbon calibration." (Mathematics Department, University of Auckland, 2000). 7.D. G. P. Aguilar, C. D. Litton, A. O'Hagan, Radiocarbon 44, 195-212 (2002).

  11. Tips and traps in the 14C Bio-AMS preparation laboratory (WSam 7)

    SciTech Connect

    Buchholz, B A; Haack, K W; Stewart, P H; Vogel, J S

    1999-10-12

    Maintaining a contamination free sample preparation lab for biological 14 C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14 C ratios of 1pMC. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil, or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14 C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipetters.

  12. Coral radiocarbon constraints on the source of the Indonesian throughflow

    SciTech Connect

    Moore, M.D.; Schrag, D.P.; Kashgarian, M.

    1997-06-01

    Radiocarbon variability in {ital Porites} spp. corals from Guam and the Makassar Strait (Indonesian Seaway) was used to identify the source waters contributing to the Indonesian throughflow. Time series with bimonthly resolution were constructed using accelerator mass spectrometry. The seasonal variability ranges from 15 to 60{per_thousand}, with large interannual variability. {Delta}{sup 14}C values from Indonesia and Guam have a nearly identical range. Annual mean {Delta}{sup 14}C values from Indonesia are 50 to 60{per_thousand} higher than in corals from Canton in the South Equatorial Current [{ital Druffel}, 1987]. These observations support a year-round North Pacific source for the Indonesian throughflow and imply negligible contribution by South Equatorial Current water. The large seasonality in {Delta}{sup 14}C values from both sites emphasizes the dynamic behavior of radiocarbon in the surface ocean and suggests that {Delta}{sup 14}C time series of similar resolution can help constrain seasonal and interannual changes in ocean circulation in the Pacific over the last several decades.{copyright} 1997 American Geophysical Union

  13. Radiocarbon Dating the Anthropocene

    NASA Astrophysics Data System (ADS)

    Chaput, M. A.; Gajewski, K. J.

    2015-12-01

    The Anthropocene has no agreed start date since current suggestions for its beginning range from Pre-Industrial times to the Industrial Revolution, and from the mid-twentieth century to the future. To set the boundary of the Anthropocene in geological time, we must first understand when, how and to what extent humans began altering the Earth system. One aspect of this involves reconstructing the effects of prehistoric human activity on the physical landscape. However, for global reconstructions of land use and land cover change to be more accurately interpreted in the context of human interaction with the landscape, large-scale spatio-temporal demographic changes in prehistoric populations must be known. Estimates of the relative number of prehistoric humans in different regions of the world and at different moments in time are needed. To this end, we analyze a dataset of radiocarbon dates from the Canadian Archaeological Radiocarbon Database (CARD), the Palaeolithic Database of Europe and the AustArch Database of Australia, as well as published dates from South America. This is the first time such a large quantity of dates (approximately 60,000) has been mapped and studied at a global scale. Initial results from the analysis of temporal frequency distributions of calibrated radiocarbon dates, assumed to be proportional to population density, will be discussed. The utility of radiocarbon dates in studies of the Anthropocene will be evaluated and potential links between population density and changes in atmospheric greenhouse gas concentrations, climate, migration patterning and fire frequency coincidence will be considered.

  14. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    USGS Publications Warehouse

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  15. Investigating the Impact of Past and Future CO2 Emissions on the Distribution of Radiocarbon in the Ocean

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Payne, S.; Graven, H. D.; Heimbach, P.

    2015-12-01

    The ocean is a significant sink for carbon dioxide from fossil fuel burning, absorbing roughly a third of human CO2 emitted over the industrial period. This has implications not only for climate but also for the chemical and isotopic composition of the ocean. Human activities have increased the ocean radiocarbon content through nuclear bomb tests in the 1950s-60s, which released a large amount of radiocarbon (14C) into the atmosphere, but fossil fuel emissions are decreasing the radiocarbon content through the release of 14C-depleted CO2. Here, we use the ECCO-v4 ocean state estimate to examine the changing nature of the air-sea flux of radiocarbon and its spatial distribution in the ocean in response to past and future CO2 emissions, the latter taken from the the Representative Concentration Pathway (RCP) database used in IPCC simulations. In line with previous studies we find that the large air-sea gradient of 14C induced by nuclear bomb testing led to rapid accumulation of radiocarbon in the surface ocean. Surface fluxes of 14C have considerably weakened over the past several decades and in some areas 14C is being returned to the atmosphere. As fossil fuel emissions continue to reduce the atmospheric 14C/C ratio (∆14C), in most RCP scenarios the total ocean 14C inventory starts decreasing by 2030. With strong emissions, the Δ14C of surface waters is driven to increasingly negative values and in RCP 8.5 by 2100 much of the surface ocean has apparent radiocarbon ages in excess of 2000 years, with subtropical gyres more depleted in 14C than the Southern Ocean. Surface waters become significantly more negative in Δ14C than underlying waters. As a result, turning conventional tracer oceanography on its head, recently ventilated waters are characterized by more negative Δ14C values. Similar patterns can be expected for CFCs in the ocean as atmospheric concentrations decrease over the next several decades. Our results have a number of implications, notably for

  16. Coral Radiocarbon Records of Indian Ocean Water Mass Mixing and Wind-Induced Upwelling Along the Coast of Sumatra, Indonesia

    SciTech Connect

    Guilderson, T P; Grumet, N S; Abram, N J; Beck, J W; Dunbar, R B; Gagan, M K; Hantoro, W S; Suwargadi, B W

    2004-02-06

    Radiocarbon ({sup 14}C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess {sup 14}C in the atmosphere has increased the contrast between surface and deep ocean {sup 14}C concentrations. We present accelerator mass spectrometric (AMS) measurements of radiocarbon isotope ({Delta}{sup 14}C) in Porites corals from the Mentawai Islands, Sumatra (0 S, 98 E) and Watamu, Kenya (3 S, 39 E) to document the temporal and spatial evolution of the {sup 14}C gradient in the tropical Indian Ocean. The rise in {Delta}{sup 14}C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral {Delta}{sup 14}C from the coast of Kenya. Kenya coral {Delta}{sup 14}C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains {sup 14}C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-laden {sup 14}C by the surface-ocean. Bimonthly AMS {Delta}{sup 14}C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. The interannual signal may be a response to changes in the Walker circulation, the development of easterly wind anomalies, shoaling of the eastern thermocline, and upwelling of {sup 14}C-depleted water along the coast of Sumatra. Singular spectrum analysis of the Sumatra coral {Delta}{sup 14}C record reveals a significant 3-year periodicity. The results lend support to the concept that ocean atmosphere interactions between the Pacific and Indian Oceans operate in concert with the El Ni{tilde n}o-Southern Oscillation (ENSO).

  17. Pre- and post-bomb radiocarbon in fish otoliths

    NASA Astrophysics Data System (ADS)

    Kalish, John M.

    1993-02-01

    Measurements of radiocarbon in seawater dissolved inorganic carbon (DIC), or suitable proxies such as hermatypic corals, are a valuable source of information on carbon flux and ocean circulation. However, knowledge of the global distribution of both pre- and post-bomb radiocarbon is limited due to the sources of these data. Suitable hermatypic corals are restricted to shallow tropical and subtropical waters and oceanographic collections of seawater are prohibitively expensive. What is needed is a proxy for ocean radiocarbon that can be collected at most latitudes and depths, and which can be reliably aged. Here I report accelerator mass spectrometry analyses of radiocarbon from selected regions of fish otoliths and show that such measurements are suitable for determining both pre- and post-bomb radiocarbon in all oceans and at most depths. Radiocarbon data obtained from otoliths can extend our knowledge of carbon flux in the oceans and atmosphere and help to develop further understanding of the fate of atmospheric CO 2 and ocean circulation. The data presented here represent the first pre- and post-bomb time series of radiocarbon levels from temperate waters. Furthermore, I demonstrate that the dramatic increase in radiocarbon in the atmosphere and oceans, attributable to the atmospheric testing of thermonuclear bombs during the 1950's and 1960's, provides a chemical mark on fish otoliths that is suitable for the validation of age in fishes.

  18. Observation-based global biospheric excess radiocarbon inventory 1963-2005

    NASA Astrophysics Data System (ADS)

    Naegler, Tobias; Levin, Ingeborg

    2009-09-01

    For the very first time, we present an observation-based estimate of the temporal development of the biospheric excess radiocarbon (14C) inventory IB14,E, i.e., the change in the biospheric 14C inventory relative to prebomb times (1940s). IB14,E was calculated for the period 1963-2005 with a simple budget approach as the difference between the accumulated excess 14C production by atmospheric nuclear bomb tests and the nuclear industry and observation-based reconstructions of the excess 14C inventories in the atmosphere and the ocean. IB14,E increased from the late 1950s onward to maximum values between 126 and 177 × 1026 atoms 14C between 1981 and 1985. In the early 1980s, the biosphere turned from a sink to a source of excess 14C. Consequently, IB14,E decreased to values of 108-167 × 1026 atoms 14C in 2005. The uncertainty of IB14,E is dominated by uncertainties in the total bomb 14C production and the oceanic excess 14C inventory. Unfortunately, atmospheric Δ14CO2 from the early 1980s lack the necessary precision to reveal the expected small change in the amplitude and phase of atmospheric Δ14C seasonal cycle due to the sign flip in the biospheric net 14C flux during that time.

  19. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  20. Biological Removal of Radiocarbon-14 from Irradiated Graphite

    SciTech Connect

    Molokwane, P.E.; Chirwa, E.M.N.

    2008-07-01

    This paper reports on the preliminary study on the bioseparation of radiocarbon-14 (C-14) using a mixed-culture of microorganisms. The bioseparation principle is critically analyzed and is benchmarked against existing C-14 separation methods using physical chemical processes. The preliminary study indicated probable bio-separate of C-14 from solution prepared from a nuclear graphite mixture, even though the findings need to be verified. The current experiment consisted of a growth vessel and a bio-filter operated in a closed loop. The bio-filter was not installed for the purpose of treatment but rather as a method of isolation of microorganisms for further processing. Significant amounts of C-14 were detected in the trapped cells in the bio-filter, significantly higher than in controls taken before adding carbon sources containing C-14. The microorganisms were grown under micro-aerobic conditions with graphite carbon and commercially purchased powdered carbon as the predominant supplied carbon sources. Small amounts of sucrose (500 mg/L) were added at 48 hour intervals to maintain culture balance. A proof of concept study is underway to determine the C-14 mass balance, characterize the microorganisms in the reactor, and establish the presence or absence of processes that might have affected the preliminary observations. This research represents an exploration into a new field using a new philosophy for treatment of C-14 in low-level waste. (authors)

  1. Radiocarbon dates on bones of extinct birds from Hawaii

    SciTech Connect

    James, H.F.; Stafford, T.W. Jr.; Steadman, D.W.; Olson, S.L.; Martin, P.S.; Jull, A.J.; McCoy, P.C.

    1987-04-01

    Bones from a stratified sedimentary deposit in the Puu Naio Cave site on Maui, Hawaiian Islands, reveal the late Holocene extinction of 19 species of birds. The age of the sediment and associated fauna was determined by direct radiocarbon dating (tandem particle accelerator-mass spectrometer; TAMS) of amino acids extracted from bones weighing as little as 450 mg. The /sup 14/C dates indicate that sediment has been accumulating in the lava tube for at least the last 7750 years, a suitable time frame for testing the hypothesis that Holocene extinction on islands began after human colonization. Despite growing evidence that a worldwide wave of extinctions coincided with human colonization of oceanic islands, little radiometric data have been available to date the extinction of most small fossil vertebrates on islands. The TAMS technique of dating purified collagen from the bones of small vertebrates could lead to vastly improved chronologies of extinction for oceanic islands where catastrophic mid- to late-Holocene extinction is expected or known to have occurred. Chronologies derived from nonarcheological sites that show continuous sedimentation, such as the Puu Naio Cave deposit, may also yield key evidence on the timing of earliest human settlement of Oceania.

  2. 14C AMS measurements of the bomb pulse in N- and S-hemisphere tropical trees

    NASA Astrophysics Data System (ADS)

    Murphy, J. O.; Lawson, E. M.; Fink, D.; Hotchkis, M. A. C.; Hua, Q.; Jacobsen, G. E.; Smith, A. M.; Tuniz, C.

    1997-03-01

    The 14C bomb-pulse signature has been measured by AMS on cross-dateable teak samples from N- and S-hemisphere locations in the tropics. Excellent agreement is found with the atmospheric 14C content in the period 1955 to 1980 for the respective hemispheres. These results demonstrate that 14C measurements can be used to facilitate growth rate determinations in tropical trees.

  3. A new 14C calibration data set for the last deglaciation based on marine varves

    SciTech Connect

    Hughen, K A; Kashgarian, M; Lehman, S J; Overpeck, J T; Peterson, L C; Southon, J R

    1999-02-22

    Varved sediments of the tropical Cariaco basin provide a new {sup 14}C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10-14.5 cal ka BP). Independent evaluations of the Cariasco Basin calendar and {sup 14}C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to {sup 14}C age agreement with terrestrial {sup 14}C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin {sup 14}C reservoir age remained stable throughout the Younger Dryas and late Alleroed climatic events and that the varve and {sup 14}C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of {sup 14}C change not seen in the coral records. {sup 14}C plateaus can be identified at 9.6, 11.4, and 11.7 {sup 14}C ka BP, in addition to a large, sloping plateau during the Younger Dryas ({approximately}10 to 11 {sup 14}C ka BP). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.

  4. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  5. Application of 14C analyses to source apportionment of carbonaceous PM 2.5 in the UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Naysmith, Philip; Cook, Gordon T.; Xu, Sheng; Duran, Teresa Raventós; Harrison, Roy M.

    2011-05-01

    Determination of the radiocarbon ( 14C) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM 2.5 were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of 14C in both the total carbon, and in the organic and elemental carbon fractions, determined by two-stage combustion to CO 2, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM 2.5 samples was 0.50 (range 0.27-0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM 2.5 samples was derived: 27% fossil EC; 20% fossil OC; 2% biomass EC; 10% biomass OC; and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM 2.5 at this location estimated to derive from BVOC-derived secondary organic aerosol was 9-29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol.

  6. 14C in cropland soil of a long-term field trial - experimental variability and implications for estimating carbon turnover

    NASA Astrophysics Data System (ADS)

    Leifeld, J.; Mayer, J.

    2015-07-01

    Because of their controlled nature, the presence of independent replicates, and their known management history, long-term field experiments are key to the understanding of factors controlling soil carbon. Together with isotope measurements, they provide profound insight into soil carbon dynamics. For soil radiocarbon, an important tracer for understanding these dynamics, experimental variability across replicates is usually not accounted for; hence, a relevant source of uncertainty for quantifying turnover rates is missing. Here, for the first time, radiocarbon measurements of five independent field replicates, and for different layers, of soil from the 66-year-old controlled field experiment ZOFE in Zurich, Switzerland, are used to address this issue. 14C variability was the same across three different treatments and for three different soil layers between the surface and 90 cm depths. On average, experimental variability in 14C content was 12 times the analytical error but still, on a relative basis, smaller than variability in soil carbon concentration. Despite a relative homogeneous variability across the field and along the soil profile, the curved nature of the relationship between radiocarbon content and modelled carbon mean residence time implies that the absolute error of calculated soil carbon turnover time increases with soil depth. In our field experiment findings on topsoil carbon turnover variability would, if applied to subsoil, tend to underweight turnover variability even if experimental variability in the subsoil isotope concentration is the same. Together, experimental variability in radiocarbon is an important component in an overall uncertainty assessment of soil carbon turnover.

  7. Vulcanism and Radiocarbon Dates

    DOE R&D Accomplishments Database

    Libby, L. M.; Libby, W. F.

    1972-10-01

    We consider whether the long term perturbation of radiocarbon dates, which is known to be approximately a sin function of period about 8000 years and amplitude of about 8% peak-to-peak, could have been caused in any major part by vulcanism. We conclude that this is not the case. On the contrary, present day volcanoes are a far less important source of inert CO{sub 2} (about 100 fold less) than is man's burning of fossil fuels which has caused the Suess dilution of about 2%. (auth)

  8. Temporal and spatial variations in bomb-produced radiocarbon along BEAGLE2003 lines—Revisits of WHP P06, A10, and I03/I04 in the Southern Hemisphere Oceans

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yuichiro; Murata, Akihiko; Watanabe, Shuichi; Fukasawa, Masao

    2011-04-01

    Radiocarbon ( 14C) in dissolved inorganic carbon was measured during revisit cruises along World Ocean Circulation Experiment-Hydrographic Programme (WHP) lines A10 in the South Atlantic, I03/I04 in the Indian, and P06 in the South Pacific Oceans from August 2003 to January 2004, during the Blue Earth Global Expedition 2003 (BEAGLE2003). Zonal means of the water-column inventory of bomb-produced 14C in 2003/2004 in the South Atlantic, Indian, and South Pacific Oceans were about 180, 128, and 159 × 10 12 atoms m -2, respectively. The smallest zonal inventory along the I03 line among the three lines was primarily due to a sampling bias, because the I03 line in the Indian Ocean was along 20°S, which is more equatorward than the other two lines along approximately 30°S in the South Atlantic and South Pacific Oceans. The I03 line in the Indian Ocean had the smallest zonal inventory of bomb-produced 14C and the largest of bomb-produced 137Cs, suggesting that the distribution of bomb 14C in the Indian Ocean is determined primarily by the thermocline ventilation within the Indian Ocean. The history of bomb 14C over time suggests that the bomb 14C inventory in the southern subtropical regions increased steadily up to the early 1990s. The rate of increase then slowed between the early 1990s and 2003/2004 because of a decrease in the bomb 14C influx from the atmosphere to the surface ocean. The highest bomb 14C inventory among the southern subtropical regions was in the subtropical Indian Ocean. However, the contribution of the Indonesian throughflow from the North Pacific and Indian Oceans to this large inventory in the Indian Ocean is not clear. The 14C data along the BEAGLE2003 lines in 2003/2004 were compared with those obtained during WHP in the 1990s and during the South Atlantic Ventilation Experiment in the late 1980s. The zonal averages of the decadal changes in 14C revealed that bomb 14C continued to increase between the late 1980s/1990s and 2003/2004 in the

  9. Comparison of Radiocarbon Ages for Multiproxy Paleoclimate Reconstruction of the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.; Eglinton, T. I.

    2008-12-01

    Multiproxy paleoclimate reconstructions from high sedimentation-rate systems offer promising opportunities to deconvolve multiple aspects climate system response to past forcing. However, the time-equivalence of proxies must be established before such reconstructions can be usefully interpreted. Differences in source ages, transport pathways, and surface residence times for substrates may lead to differences in lag times between proxy formation and deposition, compromising comparative analysis of data from multiple proxies. We used multi-substrate radiocarbon dating to investigate the potential for multi-proxy reconstruction of Holocene changes in the volume of the Great Salt Lake (GSL), Utah, based on the stable isotope composition of organic and inorganic substrates in lake sediment cores. Among potential substrates for this work are normal alkanes of vascular higher plant and algal origin, fossil cysts of lake-dwelling brine shrimp (Artemia), and micritic aragonite. Radiocarbon ages for all organic substrates (alkanes, cysts) sampled at any given core depth are concordant within analytical uncertainty and are similar to ages determined on land-plant debris and filamentous algae isolated from the sediment. Inorganic carbonate, in contrast, is depleted in 14C compare to the organic proxies, giving ages that were apparently 2000 to 3000 years older, likely due to winnowing and re-deposition of carbonate at the core site. These results suggest that the maximum temporal resolution achievable through analysis of mineral substrates is on the order of several millennia. Although the limited precision of the radiocarbon analysis precludes precise determination of the maximum potential resolution of organic-proxy based climate reconstructions, the relatively high sedimentation rates (50--150 cm/kyr) and age-equivalence of the substrates analyzed implies that sub- centennial scale resolution should be achievable throughout much of the Holocene portion of the GSL

  10. Urinary metabolites of 14C-labeled thyroxine in man

    PubMed Central

    Pittman, Constance S.; Buck, Melvin W.; Chambers, Joseph B.

    1972-01-01

    Studies were carried out to determine the chemical structures of thyroxine metabolites after total deiodination. Normal subjects were given thyroxine labeled with 14C on the nonphenolic ring and the alanine side chain, 8-11 μg/day for 10 days. By paper chromatography of fresh urine, six or more 14C-labeled compounds were separated. The 14C-labeled metabolites were concentrated by passing the urine through a nonionic polymeric adsorbent. Two major thyroxine metabolites were identified. The identification was made by three different methods: (a) chromatography, (b) synthesis of derivatives, and (c) recrystallization to constant specific activity. One 14C-labeled metabolite was identified as thyroacetic acid or 4-phenoxy-(4′-hydroxy) phenyl-acetic acid. Another one was identified as thyronine. Of the total urinary 14C radioactivity, 43.7% was recovered as thyroacetic acid and 19.8% was recovered as thyronine. Approximately one-fifth of each of these metabolites was present in the urine in bound form which released the free metabolites during acid hydrolysis. The average daily excretion of thyroacetic acid was 13.7% of the renal disposal rate of thyroxine, or approximately 7.5 μg/day. The average daily excretion of thyronine was 6.5% of the renal disposal rate of thyroxine or approximately 3.9 μg/day while the urinary iodide made up 64.7% of the renal disposal rate of thyroxine. Our findings provide the needed proof that the major metabolic pathways of thyroxine remove the iodine atoms by substituting hydrogen for iodine and leave the diphenyl ether nucleus intact. PMID:5032524

  11. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

    NASA Astrophysics Data System (ADS)

    Currie, L. A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

  12. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, L. Niel; Aggarwal, Pradeep

    2012-01-01

    A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.

  13. Microflora distributions in paleosols: a method for calculating the validity of radiocarbon-dated surfaces

    SciTech Connect

    Mahaney, W.C.; Boyer, M.G.

    1986-08-01

    Microflora (bacteria and fungi) distributions in several paleosols from Mount Kenya, East Africa, provide important information about contamination of buried soil horizons dated by radiocarbon. High counts of bacteria and fungi in buried soils provide evidence for contamination by plant root effects or ground water movement. Profiles with decreasing counts versus depth appear to produce internally consistent and accurate radiocarbon dates. Profiles with disjunct or bimodal distributions of microflora at various depths produce internally inconsistent chronological sequences of radiocarbon-dated buried surfaces. Preliminary results suggest that numbers up to 5 x 10/sup 2/ g/sup -1/ for bacteria in buried A horizons do not appear to affect the validity of /sup 14/C dates. Beyond this threshold value, contamination appears to produce younger dates, the difference between true age and /sup 14/C age increasing with the amount of microflora contamination.

  14. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    NASA Astrophysics Data System (ADS)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  15. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

    SciTech Connect

    Sherwood, O A; Scott, D B; Risk, M J; Guilderson, T P

    2005-04-05

    The deep-sea gorgonian octocoral Primnoa resedaeformis is distributed throughout the Atlantic and Pacific Oceans at depths of 65-3200 m. It has a two-part skeleton of calcite and gorgonin. Towards the inside of the axial skeleton gorgonin and calcite are deposited in concentric growth rings, similar to tree rings. Colonies were collected from the Northeast Channel (northwest Atlantic Ocean, southwest of Nova Scotia, Canada) from depths of 250-475 m. Radiocarbon was measured in individual rings isolated from sections of each colony, after dissolution of calcite. Each {Delta}{sup 14}C measurement was paired with a ring age determined by three amateur ring counters. The precision of ring counts averaged better than {+-} 2 years. Accurate reconstruction of 20th century bomb-radiocarbon shows that (1) the growth rings are formed annually, (2) the gorgonin is derived from surface particulate organic matter (POM) and (3) useful environmental data are recorded in the organic endoskeletons of deep-sea octocorals. These results support the use of Primnoa resedaeformis as a long-term, high resolution monitor of surface ocean conditions, particularly in temperate and boreal environments where proxy data are lacking.

  16. Fossil and biogenic CO{sub 2} from waste incineration based on a yearlong radiocarbon study

    SciTech Connect

    Mohn, J.; Szidat, S.; Zeyer, K.; Emmenegger, L.

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Yearlong radiocarbon study on the share of biogenic CO{sub 2} from waste incineration. Black-Right-Pointing-Pointer Direct approach combining temporal integrating gas sampling and {sup 14}CO{sub 2} analysis by AMS. Black-Right-Pointing-Pointer Significant differences between incinerators with 43% and 54%Fos C. Black-Right-Pointing-Pointer No annual cycle of fossil CO{sub 2} for all, except one, of the included incinerators. - Abstract: We describe the first long-term implementation of the radiocarbon ({sup 14}C) method to study the share of biogenic (%Bio C) and fossil (%Fos C) carbon in combustion CO{sub 2}. At five Swiss incinerators, a total of 24 three-week measurement campaigns were performed over 1 year. Temporally averaged bag samples were analyzed for {sup 14}CO{sub 2} by accelerator mass spectrometry. Significant differences between the plants in the share of fossil CO{sub 2} were observed, with annual mean values from 43.4 {+-} 3.9% to 54.5 {+-} 3.1%. Variations can be explained by the waste composition of the respective plant. Based on our dataset, an average value of 48 {+-} 4%Fos C was determined for waste incineration in Switzerland. No clear annual trend in %Fos C was observed for four of the monitored incinerators, while one incinerator showed considerable variations, which are likely due to the separation and temporary storage of bulky goods.

  17. Characterization of hemoglobin adduct formation in mice and rats after administration of ( sup 14 C)butadiene or ( sup 14 C)isoprene

    SciTech Connect

    Sun, J.D.; Dahl, A.R.; Bond, J.A.; Birnbaum, L.S.; Henderson, R.F. )

    1989-08-01

    Occupational exposures to 1,3-butadiene or isoprene occur through their use in the manufacture of rubber and other related polymer products. The purpose of this study was to determine if butadiene or isoprene administration would result in the formation of adducts with blood hemoglobin (Hb), and if such adducts can be used as a measure of previous exposure(s). Male B6C3F1 mice and male Sprague-Dawley rats were injected intraperitoneally with 1, 10, 100, or 1000 mumol (14C)butadiene or 0.3, 3.0, 300, 1000, or 3000 mumol (14C)isoprene per kilogram body weight. Animals were killed 24 hr later. Globin was isolated from blood samples and was analyzed for 14C by liquid scintillation spectroscopy. Hb adduct formation was linearly related to administered doses up to 100 mumol (14C)butadiene or 500 mumol (14C)isoprene per kilogram body weight for mice and rats, respectively. For (14C)butadiene, the efficiency of Hb adduct formation in mice and rats within the linear response range was 0.177 +/- 0.003 and 0.407 +/- 0.019 (pmol of 14C-adducts/mg globin)/(mumol of retained (14C)butadiene/kg body wt), respectively (mean +/- SE; n = 18). For (14C)isoprene, these values for mice and rats were 0.158 +/- 0.035 and 0.079 +/- 0.016 (pmol of 14C-adducts/mg globin)/(mumol of retained (14C)isoprene/kg body wt), respectively (mean +/- SE; n = 12). Hb adducts also accumulated linearly after repeated daily administration of 100 mumol (14C)butadiene or 500 mumol (14C)isoprene per kilogram body wt to mice and rats, respectively, for 3 days. (14C)Butadiene-derived Hb adducts in blood showed lifetimes of approximately 24 and approximately 65 days for mice and rats, respectively, which correlate with the reported lifetimes for red blood cells in these rodent species. Thus, levels of butadiene- or isoprene-derived adducts on Hb in circulating blood may be a useful measure of prior repeated exposures to these compounds.

  18. Determination of tritium and 14C concentration in two hydrostratigraphic units below the University of California, Davis, waste burial holes at the Laboratory for Energy-Related Health Research/South Campus Disposal Site (LEHR/SCDS).

    PubMed

    Pay, Stephen

    2003-08-01

    The Laboratory for Energy-Related Health Research site at the University of California at Davis was used as a disposal site for tritium and 14C waste generated by campus related research. This low-level radioactive waste was disposed of by shallow land burial from 1956 to 1974 in waste burial holes and resulted in extensive contamination of soils and groundwater at the LEHR/SCDS. In part, due to this contamination, the LEHR/SCDS was placed on the National Priority List in May of 1994. In 1999, soils in the vicinity of the waste burial holes were subject to a CERCLA Removal Action. To this day elevated tritium and 14C concentrations are found in two groundwater monitoring wells that are located down gradient from the waste burial holes. The Bioscreen, Natural Attenuation Decision Support System software program was used, along with site-specific hydrogeologic conditions, to estimate the maximum source zone concentrations in the water bearing intervals below the waste burial holes. The first order decay process, and assumptions of horizontal flow provided reasonably accurate estimates of contaminant concentrations in the unconfined portion of the water bearing interval, but results for the confined portion of the water bearing intervals were mixed. Dose estimates for the time period of maximum contaminant concentration in the aquifer below the waste burial holes, predicted by modeling, suggested that the 4 mrem drinking water standard had not been exceeded at this site. PMID:12865745

  19. Status of mass spectrometric radiocarbon detection at ETHZ

    NASA Astrophysics Data System (ADS)

    Seiler, Martin; Maxeiner, Sascha; Wacker, Lukas; Synal, Hans-Arno

    2015-10-01

    A prototype of a mass spectrometric radiocarbon detection instrument without accelerator stage was built for the first time and set into operation at ETH Zurich. The system is designed as an experimental platform to optimize performance of 14C detection at low ion energies and to study the most relevant processes that may limit system performance. The optimized stripper unit incorporates differential pumping to maintain a low gas outflow and a revised tube design to better match the phase space volume of the ion beam at low energies. The system is fully operational and has demonstrated true radiocarbon dating capabilities. The overall beam transmission through the stripper tube is about 40% for the 1+ charge state. Radiocarbon analyses with an overall precision of 0.6% were obtained on a single sample under regular measurement conditions. By analyzing multiple targets of the same sample material an uncertainty level of 0.3% has been reached. The background level corresponds to a radiocarbon age of 40,000 years.

  20. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  1. A comparison of the Greenland Ice-Core and IntCal timescales through the Laschamp geomagnetic excursion, utilising new 14c data from Tenaghi Philippon, Greece

    NASA Astrophysics Data System (ADS)

    Staff, Richard A.; Hardiman, Mark; Bronk Ramsey, Christopher; Koutsodendris, Andreas; Pross, Jörg

    2016-04-01

    Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, with their formation in the Earth's upper atmosphere modulated by changes to the geomagnetic field, as well as variations in the intensity of the solar wind. Here, we present 54 new 14C measurements from a terrestrial fen peat core extracted from the classical site of Tenaghi Philippon, NE Greece, contiguously spanning the time period between ~48,000 and 39,000 cal. BP. Utilising the most pronounced cosmogenic production peak of the last 100,000 years - that associated with the Laschamp geomagnetic excursion circa 41,000 years ago - we exploit this common production signal, comparing Greenland 10Be with our Tenaghi Philippon 14C record, thereby providing a means to assess the concordance between the radiocarbon (IntCal) and Greenland ice-core (GICC05) timescales themselves for this, the oldest portion of the radiocarbon technique.

  2. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Definitions. 240.14c-1 Section 240.14c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  3. 17 CFR 240.14c-5 - Filing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Filing requirements. 240.14c-5 Section 240.14c-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  4. 17 CFR 240.14c-5 - Filing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Filing requirements. 240.14c-5 Section 240.14c-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  5. 17 CFR 240.14c-5 - Filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Filing requirements. 240.14c-5 Section 240.14c-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  6. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Definitions. 240.14c-1 Section 240.14c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  7. 17 CFR 240.14c-5 - Filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Filing requirements. 240.14c-5 Section 240.14c-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  8. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Definitions. 240.14c-1 Section 240.14c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  9. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definitions. 240.14c-1 Section 240.14c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  10. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Definitions. 240.14c-1 Section 240.14c-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL... Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) §...

  11. Radiocarbon pollution and self-purification of humus in chernozems of the East-European plain in 1900-2008

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Khokhlova, O. S.; Galitskii, V. V.; Chichagova, O. A.; Zazovskaya, E. P.

    2012-08-01

    The dynamics of the 14C content in the humus of chernozems in 1900-2008 are considered. The elevated 14C content in the atmosphere because of nuclear weapons tests has led to the contamination of humus with bomb radiocarbon. In 1966-1968, the 14C reserves in the profiles of chernozems exceeded the background ones by 15%; in 1978, by 12%; and, in 1998, by 2%. By the year of 2008, its reserves became equal to the background ones. The 14C distribution along the soil profiles changed. By 1978, the 0- to 30-cm-thick soil layer became free from radiocarbon due to its self-purification; however, at depths of 40-70 and 100-115 cm, its weak accumulation was registered. By 2008, the whole soil profile was free from 14C. The main mechanism of the soil self-purification from radiocarbon is suggested to be the constant substitution of fragments of humus compound structures for those of fresh organic matter entering the soils with the 14C content being in equilibrium with the atmospheric one, i.e., due to the renewal of the carbon in the humus. The rate of the carbon renewal and its migration in the soils are assed based on the 14C concentrations in the humus.

  12. Metabolism of (2-14C)acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis

    SciTech Connect

    Schumann, W.C.; Magnusson, I.; Chandramouli, V.; Kumaran, K.; Wahren, J.; Landau, B.R. )

    1991-04-15

    To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, (2-14C)acetate, (2-14C)ethanol, and (1-14C)ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With (2-14C)acetate and (2-14C)ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of (2-14C)acetate being primarily in liver. Therefore, (2-14C)acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from (2-14C)acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. (1,3-14C)Acetone formation from the (2-14C)acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after (1-14C)ethanol administration.

  13. Radiocarbon of dissolved humic substances in river waters from the Chernobyl area

    NASA Astrophysics Data System (ADS)

    Nagao, Seiya; Aramaki, Takafumi; Fujitake, Nobuhide; Matsunaga, Takeshi; Tkachenko, Yuri

    2004-08-01

    Radiocarbon (14C) was used to study the origin and transport of aquatic humic substances in river waters at the Chernobyl area, which received a pulse input of 14C as a consequence of the nuclear accident. Water samples were collected in April 1999 from the Pripyat and Sakhan Rivers, which flow through the radioactive contaminated area (30 km exclusion zone). The Δ14C values of humic and fulvic acids ranged from -68‰ to +75‰ and were ∼400‰ lower than those of non-contaminated environments. The aquatic humic substances may be derived mainly from those of bog, peat, and podzolic soil with older 14C age, and thereby reflect a larger proportion of older groundwater humic substances. Contribution of 14C by the Chernobyl accident appears to be small because of the long residence time of organic carbon at the surface soil.

  14. 14C content in aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Gómez, V.; Solís, C.; Chávez, E.; Andrade, E.; Ortiz, M. E.; Huerta, A.; Aragón, J.; Rodríguez-Ceja, M.; Martínez, M. A.; Ortiz, E.

    2016-03-01

    14C-AMS of total carbon was determined in aerosols (PM10 fraction), collected in Mexico City during two weeks from 21 November to 3 December 2012. Other tracers such as total carbon (TC), organic carbon (OC), elemental carbon (EC) and trace element contents were also determined. F14C values varied from 0.39 to 0.48 with an average of 0.43. These values are slightly lower than those previously obtained for PM2.5 in 2003 and 2006 and reflect a high contribution of fossil CO2 to the carbonaceous matter in aerosols from Mexico City. In contrast, from 2006 to 2012 PM10 increased; EC, Ca, Ti and Fe concentrations remained constant, while OC, TC and K concentrations decreased. The use of potassium as an indicator of biomass burning showed that this source was negligible during this campaign. Combined analytical approaches allowed us to distinguish temporal variations of anthropogenic and natural inputs to the F14C.

  15. Reconciliation of excess 14C-constrained global CO2 piston velocity estimates

    NASA Astrophysics Data System (ADS)

    Naegler, Tobias

    2009-04-01

    Oceanic excess radiocarbon data is widely used as a constraint for air-sea gas exchange. However, recent estimates of the global mean piston velocity from Naegler et al., Krakauer et al., Sweeney et al. and Müller et al. differ substantially despite the fact that they all are based on excess radiocarbon data from the GLODAP data base. Here I show that these estimates of can be reconciled if first, the changing oceanic radiocarbon inventory due to net uptake of CO2 is taken into account; second, if realistic reconstructions of sea surface Δ14C are used and third, if is consistently reported with or without normalization to a Schmidt number of 660. These corrections applied, unnormalized estimates of from these studies range between 15.1 and 18.2cmh-1. However, none of these estimates can be regarded as the only correct value for . I thus propose to use the `average' of the corrected values of presented here (16.5+/-3.2cmh-1) as the best available estimate of the global mean unnormalized piston velocity , resulting in a gross ocean-to-atmosphere CO2 flux of 76 +/- 15PgCyr-1 for the mid-1990s.

  16. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ice-free corridor of western Canada

    SciTech Connect

    MacDonald, G.M.; Beukens, R.P.; Kieser, W.E.; Vitt, D.H.

    1987-09-01

    In order to assess the reliability of aquatic moss for radiocarbon dating, /sup 14/C analyses were performed on a stratigraphic series of terrestrial plant macrofossils and samples of Drepanocladus crassicostatus from a small, hard-water lake (pH = 8.2) in the ice-free corridor of Alberta. All /sup 14/C dating was done by using accelerator mass spectrometry. Mazama Ash provided an independent chronological control. The aquatic bryophyte samples consistently produced /sup 14/C ages significantly older than the terrestrial macrofossils. The relation between the radiocarbon dates from the macrofossils and the moss was not linear, and age differences ranged from approximately 1400 to 6400 yr. The /sup 14/C content of D. crassicostatus growing in the lake at present was less than 85% modern. Despite the apparent inability to take up /sup 14/C-deficient carbon by the direct incorporation of bicarbonate, the bryophytes clearly do not provide reliable material /sup 14/C dating. The /sup 14/C deficiency of aquatic mosses may be explained by the generation of /sup 14/C-deficient CO/sub 2/ through isotopic exchange, the formation of CO/sub 2/ from bicarbonate by chemical processes, and metabolic CO/sub 2/ production. These results demonstrate the potential unreliability of /sup 14/C dates from aquatic mosses and raise serious concerns about the deglaciation dates from the ice-free corridor that were obtained from aquatic Drepanocladus.

  17. Relative sea-level trends along the coast of Maine during the past 5,000 [sup 14]C years

    SciTech Connect

    Gehrels, W.R.; Belknap, D.F. . Dept. of Geological Sciences); Kelley, J.T. ); Gong, B.; Pearce, B.R. . Dept. of Civil Engineering)

    1993-03-01

    Holocene differential crustal movements in coastal regions are best inferred by comparing slopes of relative sea-level curves from different coastal localities. Sea-level indicators must have a narrow vertical range that is precisely established in the modern environment. Their age must be determined with the highest degree of certainty; Accelerator Mass Spectrometry (AMS) [sup 14]C dating of very small samples minimizes the changes of mixing older and younger materials. Finally, when indicators not related to Mean Tide Level are used, a correction should be applied to account for changes in paleotidal range. This study reports on sea-level chronologies from three salt marshes along the coast of Maine: Well(43[degree]17 minutes N, 70[degree]34 minutes W), Phippsburg (43[degree]45 minutes N, 69[degree]49 minutes W), and Machiasport (44[degree]41 minutes N, 67[degree]24 minutes W). Radiocarbon dates number 44 for Wells (23 new: 7 conventional basal, 2 AMS basal), 21 for Phippsburg (11 new: 5 conventional basal, 3 AMS basal), and 11 for Machiasport (all new: 7 conventional basal, 4 AMS basal). All newly collected [sup 14]C samples were analyzed for associated foraminiferal assemblages. These fossil assemblages were then compared with the modern vertical zonation of salt marsh foraminifera that was established along transects in each marsh. In agreement with earlier studies from Nova Scotia marshes, a 100% Trochammina macrescens zone occurs within a narrow (20 cm) vertical range along the edge of the marshes in Maine (level of Highest High Water). In addition, Tiphotrocha comprimata is abundantly observed in a 30 cm vertical zone between Mean High Water (MHW) and Mean Higher High Water. After elevations of sea-level indicators were adjusted to a common datum (MHW), a final correction was applied to account for changes in tidal range using a numerical tidal model for the Gulf of Maine.

  18. Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.

  19. Strong carbon release from the deep ocean induced a major atmospheric 14C drop over Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Grootes, P. M.; Schneider, B.

    2012-12-01

    Using the modern global distributions of apparent 14C ventilation ages and DIC we established a transfer function to trace past changes in the carbon storage of ocean waters >2000 m water depth. On this basis we concluded that the LGM carbon inventory was approximately 730-980 Gt larger than during pre-industrial times. This amount compares well with an estimated glacial transfer of 530-700 Gt from both the atmosphere and terrestrial biosphere in addition to a major DIC relocation from ocean intermediate waters. We consider that the LGM atmosphere contained 190 ppm CO2 (~375 Gt C) with a 14C concentration 1.4 times higher than that of the standard modern atmosphere (fMC) (Reimer et al. 2009). The LGM deep ocean had an average reservoir age of 2100 yr, which means that its 14C concentration was 0.77 times that of the LGM atmosphere, 1.08 times that of the modern atmosphere (fMC). During the subsequent early deglac¬ial Heinrich Stadial 1, a large portion of this 14C depleted carbon was released to the atmosphere and terrestrial biosphere (Monnin et al. 2001; Ciais et al. 2012). Our estimates suggest that the ocean-atmosphere exchange, producing this deglacial transfer of deep-ocean carbon, was sufficient to account for a 190-permil drop in atmospheric 14C. Thus an alleged major 'mystery' of last deglacial times, the source of 14C-depleted additional atmospheric carbon, appears solved. -- Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., et al. (2012), Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience 5, 74-79. Monnin, E., et al. (2001), Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112-114. Reimer, P., et al. (2009), INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years cal. BP. Radiocarbon 51, 1111-1150.

  20. Disposition of /sup 14/C tolrestat in laboratory animals and man

    SciTech Connect

    Ferdinandi, E.S.; Hicks, D.R.; Cayen, M.N.

    1986-03-01

    The disposition of the aldose reductase inhibitor tolrestat (T) was determined in the mouse, rat, dog, assemensis monkey, and man. Serum T and radioactivity ratios, and % of dose excreted after p.o. administration of /sup 14/C-T at a dose of 10 mk/kg (100 mg to man), are presented. Except for the rat and monkey, 55 to 95% of the urinary /sup 14/C was due to T and oxo-tolrestat (oxo-T, N-((5-(trifluoromethyl)-6-methoxy-1-napthalenyl)oxo-methyl)-N-methylglycine). Oxo-T is formed, in part, non-enzymatically from T; a potential intermediate in this transformation was detected in all the urine samples. In man and monkey, about 15% and 68%, respectively, of the urinary /sup 14/C was due to T-glucuronide. In rat urine, >90% of the /sup 14/C was due to polar metabolites; in bile, about 66% of the /sup 14/C was due to T. The composition of the serum /sup 14/C in the mouse and rat was determined. In conclusion, /sup 14/C-T was rapidly and well absorbed by all species. Except for the rat and dog, urine was the main excretion route for /sup 14/C. Urine/sup 14/ comprised mainly T, t-glucuronide of oxo-T in all the species except the rat.

  1. Bottom sediments of the Caspian Sea and Dnepr-Bug Liman with the use of radiocarbon analysis data

    SciTech Connect

    Karpychev, Yu.A.

    1987-11-01

    On the basis of the age determinations obtained they can judge the arrival of /sup 14/C and its distribution in sediments of the Caspian Sea and Dnepr-Bug liman. The age of the organic material being removed by rivers is 1500-2700 years for the Kura and Terek Rivers and 950-1200 years for the Dnepr and Southern Bug Rivers. The age of the carbonate of the Kura and Terek is in the range 13,000-14,000 years. The difference in the results of determining the age from the organic and carbonate fractions indicates the presence of a terrigenous component in the sediments. Slump phenomena and abrasion of the shores have a considerable effect on the distribution of radiocarbon in sediments. Despite the complexity of the process of sedimentogenesis, dating over the section makes it possible to calculate the sedimentation rates.

  2. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  3. Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

    SciTech Connect

    Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

    2005-06-27

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  4. Autoradiographic disposition of (1-methyl-/sup 14/C)- and (2-/sup 14/C)caffeine in mice

    SciTech Connect

    Lachance, M.P.; Marlowe, C.; Waddell, W.J.

    1983-11-01

    Male, C57B1/6J mice received either (1-methyl-14C)caffeine or (2-14C)caffeine via the tail vein at a dose of 0.7 or 11 mg/kg, respectively. At 0.1, 0.33, 1, 3, 9, and 24 hr after treatment, the mice were anesthetized with ether and frozen by immersion in dry ice/hexane. The mice were processed for whole-body autoradiography by the Ullberg technique; this procedure does not allow thawing or contact with solvents. All autoradiographs revealed some retention of radioactivity at early time intervals in the lacrimal glands, seminal vesicle fluid, nasal and olfactory epithelium, and retinal melanocytes. The remaining portion of the animal was densitometrically uniform except for the lower levels noted in the CNS and adipose tissues. Excretion of radioactivity by the liver and kidneys seems to be the major routes of elimination. Localization in the liver at late time intervals was confined principally to the centrilobular region. Late sites of retention, observed only after (1-methyl-14C)caffeine administration, included the pancreas, minor and major salivary glands, splenic red pulp, thymal cortex, bone marrow, and gastrointestinal epithelium. Sites of localization present in both studies included the olfactory epithelium, lacrimal glands, hair follicles, and retinal melanocytes. Further studies are needed to determine whether the localization at these various sites is due to metabolic degradation, active transport, or possibly a specific receptor interaction.

  5. New biomedical applications of radiocarbon

    SciTech Connect

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  6. Synthesis of. beta. -sitosterol-/sup 14/C

    SciTech Connect

    Askinazi, B.Z.; Kivokurtseva, L.N.; Bobrova, N.S.; Kozarinskaya, N.Ya.

    1986-08-01

    The method of synthesis of ..beta..-sitosterol-4-/sup 14/C starting with the enolactone 4-oxa-5-sitosten-3-one is discussed. Methyl-/sup 14/C magnesium iodide is utilized for the introduction of the label. The authors selected this method for the isolation of ..beta..-sitosterol-/sup 14/C, introducing a series of changes into the original method. The authors discuss obtaining sitostenone, the ketoacid of sitostenone, the enol-lactone of the ketoacid of sitostenone, sitostenone-4-/sup 14/C (by different methods), the enol-acetate of sitostenone-/sup 14/C, and ..beta.. sitosterol-4-/sup 14/C.

  7. Using accelerator mass spectrometry for radiocarbon dating of textiles

    SciTech Connect

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  8. Terrestrial model food chain and environmental chemicals. I. Transfer of sodium [14C]pentachlorophenate between springtails and carabids.

    PubMed

    Gruttke, H; Kratz, W; Weigmann, G; Haque, A

    1988-06-01

    A model soil food chain of a ruderal ecosystem has been constructed in order to study the uptake, transfer, and accumulation of [14C]pentachlorophenate (PCP-Na). The model was based on three food levels, viz. baker's yeast, collembola, and carabid beetles, and the contaminant chemical introduced was via initial food. Continuous exposure of the organisms to the test chemical resulted in a significant uptake and transfer of radiocarbon into the food chain elements. Bioaccumulation of radiocarbon in the body tissues of the organisms was low, as large amounts taken up were quickly eliminated through the excrements. The radiocarbon level of prey animals was about 100 times higher than that of their predators, but there was only small difference in concentration between collembolas and yeast. This was probably because of a faster excretion of the chemical by the beetles than by the collembolas. During the test period no conversion of [14C]PCP-Na took place in the yeast, but the collembolas and beetles metabolized 50 and 59%, respectively. Criteria are proposed for successful implementation of food chain models. PMID:3049045

  9. Terrestrial model food chain and environmental chemicals. I. Transfer of sodium (/sup 14/C)pentachlorophenate between springtails and carabids

    SciTech Connect

    Gruttke, H.; Kratz, W.; Weigmann, G.; Haque, A.

    1988-06-01

    A model soil food chain of a ruderal ecosystem has been constructed in order to study the uptake, transfer, and accumulation of (/sup 14/C)pentachlorophenate (PCP-Na). The model was based on three food levels, viz. baker's yeast, collembola, and carabid beetles, and the contaminant chemical introduced was via initial food. Continuous exposure of the organisms to the test chemical resulted in a significant uptake and transfer of radiocarbon into the food chain elements. Bioaccumulation of radiocarbon in the body tissues of the organisms was low, as large amounts taken up were quickly eliminated through the excrements. The radiocarbon level of prey animals was about 100 times higher than that of their predators, but there was only small difference in concentration between collembolas and yeast. This was probably because of a faster excretion of the chemical by the beetles than by the collembolas. During the test period no conversion of (/sup 14/C)PCP-Na took place in the yeast, but the collembolas and beetles metabolized 50 and 59%, respectively. Criteria are proposed for successful implementation of food chain models.

  10. The fate of 14C in glucose 6-phosphate synthesized from [1-14C]Ribose 5-phosphate by enzymes of rat liver.

    PubMed Central

    Williams, J F; Clark, M G; Blackmore, P F

    1978-01-01

    1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation. PMID:728109

  11. Measurement of biocarbon in flue gases using 14C

    SciTech Connect

    Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J.

    2007-07-01

    A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

  12. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  13. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-101. Item 1. Information required by Items of Schedule 14A (17 CFR 240.14a-101). Furnish the information called for by all of the items of Schedule 14A of Regulation 14A (17 CFR 240.14a-101) (other than... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Schedule 14C....

  14. Evaluation of Calendar Values of the Climatostratigraphic Borders on the Base of Large Sets of 14C Dates

    NASA Astrophysics Data System (ADS)

    Michczynska, D. J.; Michczynski, A.; Pazdur, A.; Starkel, L.

    2009-04-01

    Two large sets of radiocarbon dates (785 dates for peat samples and 331 dates for fluvial sediments) were used to establish calendar values of the climatostratigraphic borders for the last 16 ka. All samples were collected from the territory of Poland and dated in Gliwice Radiocarbon Laboratory. For both sets Probability Density Functions (PDFs) were constructed by summing the probability distributions of individual 14C dates after the calibration. In the previous analysis (Michczynska and Pazdur, 2004; Michczynski and Michczynska, 2006) authors noticed and discussed the presence of high narrow peaks of the PDFs. Their appearance is caused by two facts: 1. Calibration curve is a record of the environmental changes in the past. The steep slope sections of the calibration curve work as an amplifier and increase the height of the PDF. 2. Environmental changes are indirectly recorded in the frequency of radiocarbon dates because of preferential sampling - the general rule of taking samples from places of visible sedimentation changes (e.g. from the top and bottom of the peat layer) may be the reason that samples from the border of the Late Quaternary climatostratigraphic subdivisions are collected essentially frequently. The high, narrow peaks of the PDFs are produced both by preferential sampling and through the influence of the calibration curve shape. This fact may be useful to establish the border of the Late Quaternary subdivision on the calendar scale for the analyzed geographical area. References: Michczyński A., Michczyńska D.J., 2006. The efect of pdf peaks' height increase during calibration of radiocarbon date sets. Geochronometria, 25: 1-4. Michczyńska D.J., Pazdur A., 2004. A shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in Late Glacial and Holocene. Radiocarbon, 46(2): 733-744.

  15. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin

    PubMed Central

    Masarudin, Mas Jaffri; Cutts, Suzanne M; Evison, Benny J; Phillips, Don R; Pigram, Paul J

    2015-01-01

    Development of parameters for the fabrication of nanosized vectors is pivotal for its successful administration in therapeutic applications. In this study, homogeneously distributed chitosan nanoparticles (CNPs) with diameters as small as 62 nm and a polydispersity index (PDI) of 0.15 were synthesized and purified using a simple, robust method that was highly reproducible. Nanoparticles were synthesized using modified ionic gelation of the chitosan polymer with sodium tripolyphosphate. Using this method, larger aggregates were mechanically isolated from single particles in the nanoparticle population by selective efficient centrifugation. The presence of disaggregated monodisperse nanoparticles was confirmed using atomic force microscopy. Factors such as anions, pH, and concentration were found to affect the size and stability of nanoparticles directly. The smallest nanoparticle population was ∼62 nm in hydrodynamic size, with a low PDI of 0.15, indicating high particle homogeneity. CNPs were highly stable and retained their monodisperse morphology in serum-supplemented media in cell culture conditions for up to 72 hours, before slowly degrading over 6 days. Cell viability assays demonstrated that cells remained viable following a 72-hour exposure to 1 mg/mL CNPs, suggesting that the nanoparticles are well tolerated and highly suited for biomedical applications. Cellular uptake studies using fluorescein isothiocyanate-labeled CNPs showed that cancer cells readily accumulate the nanoparticles 30 minutes posttreatment and that nanoparticles persisted within cells for up to 24 hours posttreatment. As a proof of principle for use in anticancer therapeutic applications, a [14C]-radiolabeled form of the anticancer agent doxorubicin was efficiently encapsulated within the CNP, confirming the feasibility of using this system as a drug delivery vector. PMID:26715842

  16. Effects of Seafloor Diagenesis on Planktic Foraminiferal Radiocarbon Ages

    NASA Astrophysics Data System (ADS)

    Wycech, J.; Kelly, D. C.

    2014-12-01

    Radiocarbon (14C) analysis of planktic foraminiferal calcite is widely used to study ocean-climate change over the past ~40 ka of Earth history. However, it is well known that planktic shell calcite typically yields 14C ages ~400 years older than those of bulk carbonate from the same sample. Such age discrepancies are problematic, and have been attributed to size-selective sediment mixing and/or differential dissolution of planktic shells within the sedimentary bioturbated zone. Another likely cause of such temporal offsets is the addition of secondary calcite to planktic shells via post-depositional diagenesis, but quantifying the deleterious effects of diagenesis on foraminiferal 14C ages has proven difficult owing to a paucity of suitable study materials. We address this problem by comparing 14C ages and δ13C values of planktic shells exhibiting a state of preservation (frosty) traditionally deemed acceptable for paleoceanographic studies to those of extremely well preserved (glassy) shells. Aliquots of frosty and glassy shells (>150 mm) of mixed-layer species (Globigerinoides ruber, Gs. sacculifer, Orbulina universa) were picked separately from a stratigraphic series of clay-rich samples recovered in a piston core taken atop Blake Ridge (northwestern Atlantic Ocean). Sample selection was guided by a foraminiferal δ18O record, which constrained the Last Glacial Maximum to ~100 cm core depth. Results support a diagenetic mechanism as glassy shells yield 14C ages that average ~2,000 ± 100 years younger than frosty shells from the same samples. Further, average δ13C of glassy shells is 0.6 ± 0.1‰ lower than that of frosty shells. Our findings indicate that 14C ages are artificially elevated by the dissolution of previously deposited ("old") carbonate and its subsequent reprecipitation as secondary carbonate on younger foraminiferal shells at, and beneath, the seafloor - a phenomenon that has not been quantified prior to this study.

  17. Investigating global change and fish biology with fish otolith radiocarbon

    NASA Astrophysics Data System (ADS)

    Kalish, John M.

    1994-06-01

    Fish otoliths, calcium carbonate gravity and auditory receptors in the membranous labyrinths of teleost fish, can provide radiocarbon data that are valuable to a wide range of disciplines. For example, the first pre- and post-bomb time series of radiocarbon levels from northern or southern hemisphere temperate oceans was obtained by carrying out accelerator mass spectrometry analyses on selected regions of fish otoliths. These data can provide powerful constraints on both carbon cycle models and ocean general circulation models. Because fish otoliths can serve as a proxy of radiocarbon in seawater dissolved inorganic carbon in all oceans and at most depths, there is considerable scope for further investigations of otolith radiocarbon in relation to both oceanography and global change. In addition to applications relevant to global change, fish otoliths are also valuable sources of information on the age, growth, and ecology of fishes, with age being among the most important parameters in population modelling and fisheries management. Use of the bomb radiocarbon chronometer to validate fish age determination methods offers considerable advantages over traditional forms of age validation and promises to become a standard tool in fish biology and fisheries management. Radiocarbon data from otoliths can also provide valuable information on the ecology of fishes and has already provided surprising information relevant to the ecology of some deep-sea fishes.

  18. Disposition of 14C-β-carotene following delivery with autologous triacylglyceride-rich lipoproteins

    NASA Astrophysics Data System (ADS)

    Dueker, Stephen R.; Vuong, Le Thuy; Faulkner, Brian; Buchholz, Bruce A.; Vogel, John S.

    2007-06-01

    Following ingestion, a fraction of β-carotene is cleaved into vitamin A in the intestine, while another is absorbed intact and distributed among tissues and organs. The extent to which this absorbed β-carotene serves as a source of vitamin A is unknown in vivo. In the present study we use the attomole sensitivity of accelerator mass spectrometry (AMS) for 14C to quantify the disposition of 14C-β-carotene (930 ng; 60.4 nCi of activity) after intravenous injection with an autologous triacylglyceride-rich lipoprotein fraction in a single volunteer. Total 14C was quantified in serial plasma samples and also in triglyceride-rich, and low density lipoprotein, subfractions. The appearance of 14C-retinol, the circulating form of vitamin A in plasma, was determined by chromatographic separation of plasma retinol extracts prior to AMS analysis. The data showed that 14C concentrations rapidly decayed within the triglyceride-rich lipoprotein fractions after injection, whereas low density lipoprotein 14C began a significant rise in 14C 5 h post dose. Plasma 14C-retinol also appeared at 5 h post dose and its concentrations were maintained above baseline for >88 days. Based upon comparisons of 14C-retinol concentrations following an earlier study with orally dosed 14C-β-carotene, a molar vitamin A value of the absorbed β-carotene of 0.19 was derived, meaning that 1 mole of absorbed β-carotene provides 0.19 moles of vitamin A. This is the first study to show that infused β-carotene contributes to the vitamin A economy in humans in vivo.

  19. The TOCATTA-χ model for assessing 14C transfers to grass: an evaluation for atmospheric operational releases from nuclear facilities.

    PubMed

    Aulagnier, Céline; Le Dizès, Séverine; Maro, Denis; Hébert, Didier; Lardy, Romain; Martin, Raphael

    2013-06-01

    Radioactive (14)C is formed as a by-product of nuclear power generation and from the operation of nuclear fuel reprocessing plants like AREVA-NC La Hague (North France), which releases about 15 TBq per year of (14)C into the atmosphere. This article evaluates a recently improved radioecology model (TOCATTA-χ) to assess (14)C transfers to grassland ecosystems under normal operating conditions. The new version of the TOCATTA model (TOCATTA-χ) includes developments that were derived from PaSiM, a pasture model for simulating grassland carbon and radiocarbon cycling. The TOCATTA-χ model has been tested against observations of (14)C activity concentrations in grass samples collected monthly from six plots which are located around the periphery of the reprocessing plant. Simulated (14)C activities are consistent with observations on both intensively managed and poorly managed grasslands, but an adaptation of the mean turn-over time for (14)C within the plant is necessary in the model to account for different management practices. When atmospheric (14)C activity concentrations are directly inferred from observations, TOCATTA-χ performs better than TOCATTA (the root mean square error is decreased by 45%), but when atmospheric (14)C activity concentrations are not known and must be calculated, the uncertainty associated with the TOCATTA-χ model outcomes is estimated to be larger than the standard deviation of the observations. PMID:23466654

  20. Measurements and modeling of contemporary radiocarbon in the stratosphere

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Comfort, L. L.; Guilderson, T. P.; Cameron-Smith, P. J.; Bergmann, D. J.; Atlas, E. L.; Schauffler, S.; Boering, K. A.

    2016-02-01

    Measurements of the 14C content of carbon dioxide in air collected by high-altitude balloon flights in 2003-2005 reveal the contemporary radiocarbon distribution in the northern midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric testing of nuclear weapons. Comparisons with results from a 3-D chemical-transport model show that the 14CO2 distribution is now largely governed by the altitude/latitude dependence of the natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere of the decreasing radiocarbon trend in tropospheric CO2 due to fossil fuel combustion. From the observed correlation of 14CO2 with N2O mixing ratios, an annual global mean net flux of 14CO2 to the troposphere of 1.6(±0.4) × 1017‰ mol CO2 yr-1 and a global production rate of 2.2(±0.6) × 1026 atoms 14C yr-1 are empirically derived. The results also indicate that contemporary 14CO2 observations provide highly sensitive diagnostics for stratospheric transport and residence times in models.

  1. Vertebral Bomb Radiocarbon Suggests Extreme Longevity in White Sharks

    PubMed Central

    Hamady, Li Ling; Natanson, Lisa J.; Skomal, Gregory B.; Thorrold, Simon R.

    2014-01-01

    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon14C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of 14C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought. PMID:24416189

  2. Vertebral bomb radiocarbon suggests extreme longevity in white sharks.

    PubMed

    Hamady, Li Ling; Natanson, Lisa J; Skomal, Gregory B; Thorrold, Simon R

    2014-01-01

    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ(14)C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of (14)C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought. PMID:24416189

  3. The role of inter-comparisons in radiocarbon quality assurance

    NASA Astrophysics Data System (ADS)

    Scott, Marian; Cook, Gordon; Naysmith, Philip

    2016-04-01

    Radiocarbon dating is used widely in many geochronology projects as a basis for the creation and testing of chronological constructs. Radiocarbon measurements are by their nature complex and the degree of sample pre-treatment varies considerably depending on the material. Within the UK and Europe, there are a number of well-established laboratories and increasingly, scientists are not just commissioning new dates, but also using statistical modelling of assemblages of dates, perhaps measured in different laboratories, to provide formal date estimates for their investigations. The issue of comparability of measurements (and thus bias, accuracy and precision of measurement) from the diverse laboratories is one which has been the focus of some attention both within the 14C community and the wider user communities for some time. As a result of this but also as part of laboratory benchmarking and quality assurance, the 14C community has undertaken a wide-scale, far-reaching and evolving programme of inter-comparisons, to the benefit of laboratories and users alike. This paper presents the results from the most recent exercise SIRI. The objectives of SIRI included, through choice of material, to contribute to the discussion concerning laboratory offsets and error multipliers in the context of IntCal (the International Calibration Programme) and to gain a better understanding of differences in background derived from a range of infinite age material types.

  4. Radiocarbon Signatures and Cycling of Dissolved Organic Carbon in the World Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R.; Griffin, S.; Walker, B. D.

    2012-12-01

    Radiocarbon (Delta14C) measurements of bulk dissolved organic carbon (DOC) in the deep ocean range from -390 per mil in the North Atlantic to -550 per mil in the Northeast Pacific. We report Delta14C measurements of DOC from six sites in the South Pacific and three sites in the South Atlantic collected on Repeat Hydrography cruises P6 (2010) and A10 (2011). We compare our new results with those reported earlier for the North central Pacific, Northeast Pacific, Southern Ocean and Sargasso Sea. We find that the Delta14C results from the deep South Pacific are lower than expected, given the range between Southern Ocean DOC Delta14C values (-500 per mil) and those from the North central Pacific (-525 per mil). Implications for DOC cycling in the world ocean are presented.

  5. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release. PMID:27333443

  6. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  7. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required by Items of Schedule 14A (17 CFR 240.14a-101). Furnish the information called for by all of the items of Schedule 14A of Regulation 14A (17 CFR 240.14a-101) (other than Items 1(c). 2, 4 and 5 thereof... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Schedule 14C....

  8. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required by Items of Schedule 14A (17 CFR 240.14a-101). Furnish the information called for by all of the items of Schedule 14A of Regulation 14A (17 CFR 240.14a-101) (other than Items 1(c). 2, 4 and 5 thereof... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Schedule 14C....

  9. 17 CFR 240.14c-101 - Schedule 14C. Information required in information statement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required by Items of Schedule 14A (17 CFR 240.14a-101). Furnish the information called for by all of the items of Schedule 14A of Regulation 14A (17 CFR 240.14a-101) (other than Items 1(c). 2, 4 and 5 thereof... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Schedule 14C....

  10. The biological fate of sup 14 C-dimercaptosuccinic acid in monkeys and rabbits

    SciTech Connect

    Tillotson, J.A.; Boswell, G.; Kincannon, L.; Speckman, C.L.

    1989-09-01

    The biological fate of {sup 14}C-labeled dimercaptosuccinic acid (DMSA) in monkeys and rabbits was determined by measuring the {sup 14}C activity in their urine, feces, and expired air ({sup 14}CO{sub 2}). Monkeys absorbed less than 20% DMSA from three oral dose levels (0.082, 0.16, and 0.5 mmol/kg) of {sup 14}C-DMSA, and the rabbits absorbed 32% DMSA or less from an oral dose of {sup 14}C-DMSA (0.5 mmol/kg). Although the bioavailability of DMSA was limited in either species, DMSA was detected in the blood of both species within minutes after oral dosing. In either species, most of the radiolabel from the absorbed {sup 14}C-DMSA was detected in the urine within 12 hours. We also developed a sensitive assay for directly measuring levels of DMSA (as free thiols) in blood. Intact DMSA was not detected in the blood of the monkeys or the rabbits more than 200 minutes after oral or intravenous dosing at 0.5 mmol DMSA/kg body weight. However, {sup 14}C activity in blood and urine of the monkeys was measurable 72 hours after this dose. Differences between measured {sup 14}C concentrations and intact DMSA concentrations in the blood suggest the presence of DMSA metabolites that have longer half-lives than DMSA. Consequently, until the biological activities of these compounds are identified, the pharmacokinetic analysis of DMSA may be incomplete.

  11. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  12. Low-level (submicromole) environmental 14C metrology

    NASA Astrophysics Data System (ADS)

    Currie, L. A.; Kessler, J. D.; Marolf, J. V.; McNichol, A. P.; Stuart, D. R.; Donoghue, J. C.; Donahue, D. J.; Burr, G. S.; Biddulph, D.

    2000-10-01

    Accelerator mass spectrometry (AMS) measurements of environmental 14C have been employed during the past decade at the several micromole level (tens of μg carbon), but advanced research in the atmospheric and marine sciences demands still higher (μg) sensitivity, an extreme example being the determination of 14C in elemental or "black" carbon (BC) at levels of 2-10 μg per kg of Greenland snow and ice (Currie et al., 1998). A fundamental limitation for 14C AMS is Poisson counting statistics, which sets in at about 1 μg modern-C. Using the small sample (25 μg) AMS target preparation facility at NOSAMS (Pearson et al., 1998), and the microsample combustion-dilution facility at NIST, we have demonstrated an intrinsic modern-C quantification limit ( mQ) of ca. 0.9 μg, based on a 1-parameter fit to the empirical AMS variance function. (For environmental 14C, the modern carbon quantification limit is defined as that mass ( mQ) corresponding to 10% relative standard deviation (rsd) for the fraction of modern carbon, σ( fM)/ fM.) Stringent control, required for quantitative dilution factors (DL), is achieved with the NIST on-line manometric/mass spectrometry facility that compensates also for unsuspected trace impurities from vigorous chemical processing (e.g., acid digestion). Our current combustion blank is trivial (mean: 0.16 ± 0.02 μg C, n=13) but lognormally distributed (dispersion [σ]: 0.07 ± 0.01 μg). An iterative numerical expression is introduced to assess the quantitative impacts of fossil and modern carbon blank components on mQ; and a new "clean chemistry" BC processing system is described for the minimization of such blanks. For the assay of soot carbon in Greenland snow/ice, the overall processing blank has been reduced from nearly 7 μg total carbon to less than 1 μg, and is undetectable for BC.

  13. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk L.; Beck, J. Warren; Richards, David A.; Smart, Peter L.; Singarayer, Joy S.; Ketchmark, Tricia; Hawkesworth, Chris J.

    2010-01-01

    We present a new speleothem record of atmospheric Δ 14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U-Th ages using high precision MC-ICPMS procedures. Atmospheric Δ 14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 ( Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ 14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology ( Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 ( Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ∆ 14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study ( Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ 14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ∆ 14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean-atmosphere system reorganisation also played a supporting role.

  14. Radiocarbon analysis and Quaternary Geochronology

    NASA Astrophysics Data System (ADS)

    Hajdas, Irka

    2014-05-01

    Reliable chronological frames are basis of all studies of the past. Dependent on type of the studies and records various methods are used to date natural archives. Most of natural archives of the last 50 kyr such as: lake sediments, peat sections, soils, tree rings and the ocean sediments can be dated using radiocarbon dating method. Recent developments in the AMS dating technique allow measurements of radiocarbon ages on sample containing fractions of mg of C, which opens new opportunities for dating paleo records. Some examples of recent studies of various records will be presented.

  15. Correlating the Ancient Maya and Modern European Calendars with High-Precision AMS 14C Dating

    PubMed Central

    Kennett, Douglas J.; Hajdas, Irka; Culleton, Brendan J.; Belmecheri, Soumaya; Martin, Simon; Neff, Hector; Awe, Jaime; Graham, Heather V.; Freeman, Katherine H.; Newsom, Lee; Lentz, David L.; Anselmetti, Flavio S.; Robinson, Mark; Marwan, Norbert; Southon, John; Hodell, David A.; Haug, Gerald H.

    2013-01-01

    The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS 14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martínez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization. PMID:23579869

  16. The coevolution of ritual and society: New 14C dates from ancient Mexico

    PubMed Central

    Marcus, Joyce; Flannery, Kent V.

    2004-01-01

    New 14C dates from Oaxaca, Mexico, document changes in religious ritual that accompanied the evolution of society from hunting and gathering to the archaic state. Before 4000 B.P. in conventional radiocarbon years, a nomadic egalitarian lifeway selected for unscheduled (ad hoc) ritual from which no one was excluded. With the establishment of permanent villages (4000–3000 B.P.), certain rituals were scheduled by solar or astral events and restricted to initiates/social achievers. After state formation (2050 B.P.), many important rituals were performed only by trained full-time priests using religious calendars and occupying temples built by corvée labor. Only 1,300–1,400 years seem to have elapsed between the oldest known ritual building and the first standardized state temple. PMID:15601758

  17. Uptake and distribution of /sup 14/C during and following exposure to (/sup 14/C)methyl isocyanate

    SciTech Connect

    Ferguson, J.S.; Kennedy, A.L.; Stock, M.F.; Brown, W.E.; Alarie, Y.

    1988-06-15

    Guinea pigs were exposed to (/sup 14/C)methyl isocyanate (/sup 14/CH/sub 3/-NCO, /sup 14/C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of /sup 14/C. Clearance of /sup 14/C was then gradual over a period of 3 days. Similarly /sup 14/C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced /sup 14/C uptake in blood indicating that most of the /sup 14/C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs /sup 14/C was distributed to all examined tissues. In pregnant female mice similarly exposed to /sup 14/C MIC, /sup 14/C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of /sup 14/C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators.

  18. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Shugang; Huo, Wenwen; Xiong, Xiaohu; Cheng, Peng; Lu, Xuefeng; Niu, Zhenchuan

    2014-09-01

    Radiocarbon can be used to trace fossil fuel CO2 (CO2ff) in the atmosphere, because radiocarbon has been depleted in fossil fuels. Here we present our study on the spatial distribution and temporal variations of CO2ff in Xi'an City, China using Δ14C of both green foxtail (Setaria viridis, L. Beauv.) leaf samples and urban air samples collected in the recent years. Our results show that the CO2ff indicated by green foxtail ranged from 14.7 ± 1.7 to 52.6 ± 1.7 ppm, reflecting high CO2ff mole fractions in downtown, industrial areas, and at road sites, and low CO2ff mole fractions in public parks. Meanwhile, the monthly CO2ff reflected by air samples showed higher value in winter (57.8 ± 17.1 ppm) than that in summer (20.2 ± 9.8 ppm) due to the enhancement usage of coal burning and the poor dispersion condition of atmosphere. This study displays that the increased fossil fuel emission is associated with the fast development of Xi'an City in China. It is worth mentioning that the green foxtail samples can be used to map out the CO2ff spatial distribution on large scale quickly and conveniently, while the air samples can be used to trace the CO2ff temporal variations with high resolution effectively. Therefore the Δ14C of both green foxtail and air samples is a good indicator of CO2ff emission.

  19. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Smith, S.S.; Elmore, D.; Kubik, P.W.; Dorn, R.I.; Roddy, D.J.

    1991-01-01

    Using cosmogenic 36Cl buildup and rock varnish radiocarbon, we have measured the exposure age of rock surfaces at Meteor Crater, Arizona. Our 36Cl measurements on four dolomite boulders ejected from the crater by the impact yield a mean age of 49.7 ?? 0.85 ka, which is in excellent agreement with an average age of 49 ?? 3 ka obtained from thermoluminescence studies on shock-metamorphosed dolomite and quartz. These ages are supported by undetectably low 14C in the oldest rock varnish sample. ?? 1991.

  20. Radiocarbon dating of marine material: mollusc versus foraminifera ages

    NASA Astrophysics Data System (ADS)

    Callard, L.; Long, A. J.; Plets, R. M.; Cooper, A.; Belknap, D. F.; Edwards, R.; Jackson, D.; Kelley, J. T.; Long, D.; Milne, G. A.; Monteys, X.; Quinn, R.

    2013-12-01

    A key challenge in reconstructing Quaternary environmental change from marine archives is developing a robust chronology. During the last ~50k a-1, radiocarbon dating is the mainstay for many studies. Often investigators are restricted in the material that is available for dating, with studies relying on AMS dating of either mono-specific or mixed assemblages of foraminifera. In some instances, marine molluscs (broken or whole, articulated or disarticulated) may also be present and can provide an alternative or complementary dating target. Previous radiocarbon dating of paired foraminiferal and marine molluscan samples from the Kattegat (Denmark) revealed significant age offsets between these materials, inferred to reflect greater reworking of foraminifera compared to the marine molluscs (Heier-Nielsen et al., 1995). Here we present the results of a comparable study from the Irish Sea Basin, which forms part of a wider investigation into the evidence for the Late Glacial sea-level minima at offshore sites from around Britain and Ireland. We have collected and AMS 14C-dated twelve paired samples of foraminifera and marine shells. The results shows a systematic age offset with the monospecific foraminifera samples consistently giving older ages than their shell counterparts. This offset increases with sample age, reaching a maximum offset of 3000 years in the oldest sample (~ 13 ka cal a BP). These results are consistent with the observations of Heier-Nielsen et al. (1995), and we hypothesize that foraminifera may be more susceptible to reworking from older deposits because of their lower effective density than the shell samples. However, foraminifera size and shape may also be contributing factors. These findings are potentially significant for studies that develop chronologies based on radiocarbon dating of foraminifera alone, since the resulting dates may over-estimate sample age by several thousand years. We conclude by outlining an experimental design that seeks

  1. Radiocarbon dating: Jewish inspiration of Christian catacombs

    NASA Astrophysics Data System (ADS)

    Rutgers, Leonard V.; van der Borg, Klaas; de Jong, Arie F. M.; Poole, Imogen

    2005-07-01

    The famous catacombs of ancient Rome are huge underground cemeteries, of which two Jewish catacomb complexes of uncertain age and 60 early-Christian catacombs have survived. Here we use radiocarbon dating to determine the age of wood originating from one of the Jewish catacombs and find that it pre-dates its Christian counterparts by at least 100 years. These results indicate that burial in Roman catacombs may not have begun as a strictly Christian practice, as is commonly believed, but rather that its origin may lie in Jewish funerary customs.

  2. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  3. Fate of ( sup 14 C)arsanilic acid in pigs and chickens

    SciTech Connect

    Aschbacher, P.W.; Feil, V.J. )

    1991-01-01

    Arsanilic acid uniformly labeled with {sup 14}C in the benzene ring was used to determine the metabolic fate of oral arsanilic acid in pigs and chickens. Arsanilic acid was well absorbed in both species, and urine was the predominant route of excretion. The bile was a minor (< 5% of the dose) route of excretion in pigs; however, biliary excretion was not measured in roosters. Arsanilic acid, N-acetylarsanilic acid, and (4-acetamidophenyl)dimethylarsine oxide were isolated from pig urine (17-39%, 15-29%, and < 5% of urinary {sup 14}C, respectively). Only 25% of the {sup 14}C in pig feces was extractable, and no metabolites could be isolated. Arsanilic acid was the only radioactive compound isolated from urine of colostomized roosters, and there was no suggestion of other metabolites from the isolation scheme employed. No attempt was made to isolate {sup 14}C compounds in feces from colostomized roosters or in excreta from normal roosters.

  4. A shell-derived time history of bomb {sup 14}C on Georges Bank and its Labrador Sea implications

    SciTech Connect

    Weidman, C.R.; Jones, G.A.

    1993-08-15

    Bomb-produced radiocarbon has been used in the past as an important tracer of ocean circulation and as a valuable tool for calculating CO{sub 2} air-sea exchange. However, previous studies of the ocean`s time-varying bomb {sup 14}C record have been confined exclusively to analyzing banded corals, and thus their application has been limited to the lower latitudes. The first time history of bomb {sup 14}C from the high-latitude North Atlantic Ocean is obtained from a 54-year-old mollusc specimen, (Bivalvia) Arctica islandica, which was collected live from Georges Bank (41{degrees}N) in 1990. The annual growth bands of its shell were analyzed for {Delta}{sup 14}C using accelerator mass spectrometry, producing a {Delta}{sup 14}C time history from 1939 to 1990. The depleted condition of the Georges Bank bomb {sup 14}C signal relative to two coral-derived North Atlantic {Delta}{sup 14}C time histories suggests a significant deepwater source for the waters on Georges Bank. Supported by previous work linking the origin of waters on Georges Bank to the Labrador Sea, the {Delta}{sup 14}C budget on Georges Bank is modeled as Labrador Sea water, which largely becomes confined to the shelf and partially equilibrates with the atmosphere during a 1-year transit time from the Labrador Sea to Georges Bank. This model is also used to estimate a time history of bomb {sup 14}C for the Labrador Sea. Prebomb {Delta}{sup 14}C values calculated for the surface Labrador Sea suggest that a greater inventory of bomb {sup 14}C has accumulated here than has previously been reported. Deduced variations in the ventilation and/or {sup 14}CO{sub 2} uptake rates in the Labrador Sea correspond with observed changes in surface salinity of the Labrador Sea, suggesting a reduction in deepwater formation during the late 1960s and 1970s. 59 refs., 11 figs., 2 tabs.

  5. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool.

    PubMed

    Ronge, T A; Tiedemann, R; Lamy, F; Köhler, P; Alloway, B V; De Pol-Holz, R; Pahnke, K; Southon, J; Wacker, L

    2016-01-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ(14)C) suggest the release of (14)C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this (14)C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ(14)C over the last 30,000 years. In ∼2,500-3,600 m water depth, we find (14)C-depleted deep waters with a maximum glacial offset to atmospheric (14)C (ΔΔ(14)C=-1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845

  6. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774-775

    NASA Astrophysics Data System (ADS)

    Rakowski, Andrzej Z.; Krąpiec, Marek; Huels, Mathias; Pawlyta, Jacek; Dreves, Alexander; Meadows, John

    2015-10-01

    Evidence of a rapid increase in atmospheric radiocarbon (14C) content in AD 774-775 was presented by Miyake et al. (2012), who observed an increase of about 12‰ in the 14C content in annual tree rings from Japanese cedar. Usoskin et al. (2013) report a similar 14C spike in German oak, and attribute it to exceptional solar activity. If this phenomenon is global in character, such rapid changes in 14C concentration may affect the accuracy of calibrated dates, as the existing calibration curve is composed mainly of decadal samples. Single-year samples of dendro-chronologically dated tree rings of deciduous oak (Quercus robur) from Kujawy, a village near Krakow (SE Poland), spanning the years AD 765-796, were collected and their 14C content was measured using the AMS system in the Leibniz Laboratory. The results clearly show a rapid increase of 9.2 ± 2.1‰ in the 14C concentration in tree rings between AD 774 and AD 775, with maximum Δ14C = 4.1 ± 2.3‰ noted in AD 776.

  7. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

    PubMed Central

    Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.

    2016-01-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845

  8. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

    NASA Astrophysics Data System (ADS)

    Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; de Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.

    2016-05-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=-1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.

  9. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating

    SciTech Connect

    Eglinton, T.I.; Aluwihare, L.I.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M.

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated pereparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for {sup 14}C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the {sup 14}C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that {Delta}{sup 14}C values generally agreed well ({+-}10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (<5% for {delta}{sup 13}C), provided the entire peak was collected during PCGC. Trapping of partially coeluting peaks did cause errors, and these results highlight the importance of conducting stable carbon isotopic measurements of each trapped compound in concert with AMS for reliable radiocarbon measurements. 29 refs., 9 figs., 2 tabs.

  10. Solar activity around AD 775 from aurorae and radiocarbon

    NASA Astrophysics Data System (ADS)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  11. Effects of insulin on the utilization of 14C-glycerol and 14C-glucose in hepatectomized nephrectomized rats.

    PubMed

    Mampel, T; Herrera, E

    1985-04-01

    Insulin (i.v.) administration to functionally hepatectomized-nephrectomized rats did not alter circulating levels of glycerol and only slightly affected plasma radioactivity when animals received (U-14C)-glycerol, whereas after (U-14C)-glucose administration insulin enhanced hypoglycemia and greatly accelerated the rate of radioactivity loss from plasma. At 15 min after i.v. injection of (U-14C)-glycerol, radioactivity in total lipids was reduced in heart and lungs by insulin administration and enhanced in carcass and brown adipose tissue. These effects involved the 14C-glyceride glycerol fraction in the case of heart and 14C-fatty acids in carcass and adipose tissue. When (U-14C)-glucose was administered, insulin enhanced the appearance of 14C-water-soluble material in heart and carcass and 14C-total lipids in heart, carcass, and both brown and white adipose tissue. The effect in heart corresponded mainly to the 14C-glyceride glycerol fraction whereas it corresponded to the 14C-fatty acids in the other tissues. Therefore, insulin effects on glycerol metabolism substantially differ from those on glucose. Opposite effects on heart and lung glycerol utilization as compared to those in carcass and brown adipose tissue may account for the difficulties in observing changes in plasma glycerol levels after insulin treatment. PMID:3891443

  12. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia.

    PubMed

    Povinec, P P; Chudý, M; Sivo, A; Simon, J; Holý, K; Richtáriková, M

    2009-02-01

    Radiocarbon variations in the atmospheric CO(2) with attenuating amplitudes and decreasing mean values with typical maxima in summer and minima in winter have been observed since 1967 in two localities of Slovakia, in Bratislava and Zlkovce, situated about 60 km NE from Bratislava, only 5 km from the Bohunice Nuclear Power Plant (NPP). The (14)C record in Bratislava has been influenced mainly by fossil CO(2) emissions, in contrast to the Zlkovce record which has been more variable, as it has clearly been affected by operation of the Bohunice NPP. However, during specific meteorological conditions with NE transport of air masses to Bratislava, the effect of the Bohunice NPP has been visible in Bratislava as well. Maximum (14)C concentrations (up to 120% above a natural background) were observed around A1 NPP which used CO(2) with admixture of air as a cooling agent. The (14)C concentrations around four pressurized light water reactors were up to 30% above the background. The Delta(14)C values in the heavily polluted atmosphere of Bratislava were up to 10% and at Zlkovce up to 5% lower than the European clean air represented by the Jungfraujoch Delta(14)C data. Later the Delta(14)C values were similar at both sites, and from 2003 they were close to the European clean air levels. The observed Delta(14)C behaviour in the atmosphere provides a unique evidence of decreased fossil fuel CO(2) emissions in the region, as well as the long-term effect of the Bohunice NPP on the Bratislava and Zlkovce stations. The estimated annual radiation doses to the local public due to digestion of radiocarbon contaminated food have been estimated to be around 3 microSv. PMID:18926606

  13. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena

    NASA Astrophysics Data System (ADS)

    Carmine, Lubritto; Caroselli, Marta; Lugli, Stefano; Marzaioli, Fabio; Nonni, Sara; Marchetti Dori, S.; Terrasi, Filippo

    2015-10-01

    The carbon dioxide contributing to binder formation during the set of a lime mortar reflects the atmospheric 14C content at the time of construction of a building. For this reason, the 14C dating of mortars is used with increasing frequencies in archaeological and architectural research. Mortars, however, may also contain carbonaceous contaminants potentially affecting radiocarbon dating. The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) of the Second University of Naples (SUN) has recently obtained some promising results in mortar radiocarbon dating thanks to the development of a procedure (i.e. CryoSoniC/Cryo2SoniC) aiming to eliminate exogenous C contamination that may occur in a mortar. The construction history of the UNESCO World Heritage Site of Modena (Italy) is still controversial and represents a challenging case study for the application of absolute dating methodologies for different reasons. From the point of view of 14C dating, for example, given the high percentage of carbonate aggregates composing these samples, Modena mortars represent an experimental test particularly indicative of exogenous carbon sources suppression ensuring methodology accuracy. In this paper several AMS Radiocarbon dates were carried out on lime lumps with the aim to: (i) verify procedure accuracy by a comparison of the results obtainable from lime lumps dated after different treatments (i.e. bulk lime lumps vs. CryoSoniC purified lime lumps); (ii) compare different building phases absolute chronology for the medieval UNESCO site of Modena, with that assumed by historical sources in order to assess preliminary the 14C dating feasibility for of the site. Historical temporal constraints and mortar clustering, based on petrography, have been applied to define a temporal framework of the analyzed structure. Moreover, a detailed petrographic characterization of mortars was used both as a preliminary tool for the choice of samples and to infer about the

  14. Behaviour of (14)C-sulfadiazine and (14)C-difloxacin during manure storage.

    PubMed

    Lamshöft, Marc; Sukul, Premasis; Zühlke, Sebastian; Spiteller, Michael

    2010-03-01

    The persistence of sulfadiazine, difloxacin, and their metabolites has been investigated in stored manure. The manure collected from sulfadiazine ((14)C-SDZ) and difloxacin ((14)C-DIF) treated pigs contained N-acetylsulfadiazine (Ac-SDZ), 4-hydroxy-SDZ (4-OH-SDZ), and sarafloxacin (SARA) as the main metabolites, respectively along with their parent compounds. Manures were stored separately at 10 degrees C and 20 degrees C at various moisture levels. About 96-99% of the radioactivity remained in extractable parent compounds and their metabolites after 150d of storage. The formation of non-extractable residue and the rate of mineralization were both negligible in manure containing SDZ and DIF. During storage SDZ concentration increased as a result of the deacetylation of Ac-SDZ, whose concentration decreased proportionally. Hence the environmental effects may be underestimated if the parent compound alone is considered for environmental risk assessment. About 11% and 14% of 4-OH-SDZ were lost after 20 and 40d of storage; thereafter its concentration increased relatively, highlighting hydroxylation of SDZ. DIF degraded very slowly (7% loss after 150d) during the storage of manure; in contrast the concentration of SARA decreased rapidly (72-90% loss after 150d). Dilution of manure and storage at higher temperatures for a reasonable period of time enhanced the rate of reactions of SDZ, DIF and their related metabolites. PMID:20022355

  15. A Coral Based Reconstruction of Atmospheric Δ14C through the Mystery Interval (17.5 to 14.5 kyr BP)

    NASA Astrophysics Data System (ADS)

    Mortlock, R. A.; Abdul, N. A.; Wright, J. D.; Fairbanks, R. G.; Cao, L.

    2011-12-01

    Reconstructions of atmospheric Δ14C from various archives (speleothems, planktic foraminifera, surface corals) record a ~ 190 per mil (%) decrease in Δ14C during the Mystery Interval (17.5 to 14.5 kyr BP). It has been suggested that the decrease results from the injection of 14C depleted waters during the deglacial. Supporting evidence comes from benthic forams in sediment cores off Baja, CA that record a 300% decrease in the 14C content of intermediate waters at the same time ice core records display an increase in atmospheric CO2. Records of opal burial in Southern Ocean sediments suggest increased upwelling (and release of 14C depleted CO2 to the atmosphere) during the Mystery Interval. We have updated our previously published record of atmospheric Δ14C with an additional 60-paired radiocarbon and U-series dated surface corals. A unique advantage to using the fossil coral archive is that both radiocarbon and calendar ages can be obtained from the same sample, whereas atmospheric 14C reconstructions generated from deep sea core microfossils require assigned calendar ages which are based on proxies correlated to ice cores and are subject to proxy interpretations, correlation errors, and uncertainties in ice core chronologies. Unfortunately small inaccuracies in the estimated calendar ages lead to large Δ14C errors. The updated coral record adds considerable coverage to both the Mystery Interval (previously constrained by coral data only at the boundaries in INTCAL04 and 09), and for the time period 26 to 18 kyr BP. Our record permits a better estimate as to the timing, duration, and magnitude of the decrease in Δ14C during the Mystery Interval. We observe a break in the declining 27 to 21 kyr BP trend of Δ14C at about 20 kyr BP. From 20 to 18.5 kyr BP Δ14C increases by about 100% to a maximum value of about 430%. Δ14C decreases to 300% by about 17 kyr BP at which time the long term declining trend in Δ14C is re-established and continues throughout the

  16. Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating.

    SciTech Connect

    Andrews, A H; Kerr, L A; Cailliet, G M; Brown, T A; Lundstrom, C C; Stanley, R D

    2007-11-04

    Canary rockfish (Sebastes pinniger) have long been an important part of recreational and commercial rockfish fishing from southeast Alaska to southern California, but localized stock abundances have declined considerably. Based on age estimates from otoliths and other structures, lifespan estimates vary from about 20 years to over 80 years. For the purpose of monitoring stocks, age composition is routinely estimated by counting growth zones in otoliths; however, age estimation procedures and lifespan estimates remain largely unvalidated. Typical age validation techniques have limited application for canary rockfish because they are deep dwelling and may be long lived. In this study, the unaged otolith of the pair from fish aged at the Department of Fisheries and Oceans Canada was used in one of two age validation techniques: (1) lead-radium dating and (2) bomb radiocarbon ({sup 14}C) dating. Age estimate accuracy and the validity of age estimation procedures were validated based on the results from each technique. Lead-radium dating proved successful in determining a minimum estimate of lifespan was 53 years and provided support for age estimation procedures up to about 50-60 years. These findings were further supported by {Delta}{sup 14}C data, which indicated a minimum estimate of lifespan was 44 {+-} 3 years. Both techniques validate, to differing degrees, age estimation procedures and provide support for inferring that canary rockfish can live more than 80 years.

  17. Investigating δ13C and Δ14C within Mytilus californianus shells as proxies of upwelling intensity

    NASA Astrophysics Data System (ADS)

    Ferguson, J. E.; Johnson, K. R.; Santos, G.; Meyer, L.; Tripati, A.

    2013-06-01

    Along the west coast of North America, climate and marine productivity is affected by seasonal to interannual changes in coastal upwelling. Our understanding of upwelling variability in the past is limited by the short duration of instrumental records. Changes in upwelling intensity are expected to affect the 13C/12C (δ13C) and radiocarbon (∆14C) content of marine dissolved inorganic carbon (DIC) due to variable mixing of old, upwelled seawater into surface waters. If seasonal variations in the δ13C of DIC are recorded in marine bivalve shells, they may provide valuable information about the extent of upwelling in the past. Comparison of modern Mytilus californianus shells from South California with a 5 year time series of coastal seawater ∆14C and δ13C allows an assessment of the suitability of Mytilus shell ∆14C and δ13C as proxies of upwelling intensity. We show that both absolute values and the seasonal range in seawater ∆14C are preserved in shell ∆14C, allowing its use as an indicator of upwelling intensity. Interpretation of shell δ13C is more problematic, with the δ13C of shell carbonate lower than seawater DIC by variable amounts (ranging from 0.5‰ to 1.5‰) due to the incorporation of metabolic carbon. The spatial and temporal variability observed in specimens that grew during the severe El Niño event of 1997-1998 demonstrates how a transect of shells spanning the western North American coastline can be used to reconstruct large-scale patterns of seawater ∆14C variability for specific intervals of interest, such as those associated with El Niño Southern Oscillation-type phenomena.

  18. Metabolism of L-(guanidinooxy-/sup 14/C)canavanine in the rat

    SciTech Connect

    Thomas, D.A.; Rosenthal, G.A.

    1987-12-01

    The metabolism of L-canavanine, a nonprotein amino acid with significant antitumor effects, was investigated. L-Canavanine, provided at 2.0 g/kg, was supplemented with 5 microCi of L-(guanidinooxy-/sup 14/C)canavanine (58 microCi/mumol) and administered iv, sc, or orally to female Sprague-Dawley rats weighing approximately 200 g. /sup 14/C recovery in the urine at 24 hr was 83, 68, or 61%, respectively, of the administered dose. Another 5-8% of the /sup 14/C was expired as /sup 14/CO/sub 2/. The gastrointestinal tract contained 21% of orally administered /sup 14/C. Serum, feces, tissues, and de novo synthesized proteins only accounted for a few percent of the original dose by any administrative route. Analysis of the /sup 14/C-containing urinary metabolites revealed that (/sup 14/C) urea accounted for 88% of the urinary radioactivity for an iv injection, 75% for sc administration, and 50% following an oral dose. By all routes of administration, (/sup 14/C)guanidine represented 5% of the radioactivity in the urine and (/sup 14/C)guanidinoacetic acid accounted for 2%. Serum and urine amino acid analysis showed a markedly elevated ornithine level. Basic amino acids such as histidine, lysine, and arginine were also higher in the urine. Plasma ammonia levels were determined following oral canavanine doses of 1.0, 2.0, and 4.0 g/kg. A rapid but transient elevation in plasma ammonia was observed only at the 4.0 g/kg dose. This indicates that elevated plasma ammonia is not a likely cause of canavanine toxicity at the drug concentrations used in this study.

  19. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue. PMID:23401563

  20. Radiocarbon dating of small terrestrial gastropod shells in North America

    USGS Publications Warehouse

    Pigati, J.S.; Rech, J.A.; Nekola, J.C.

    2010-01-01

    Fossil shells of small terrestrial gastropods are commonly preserved in wetland, alluvial, loess, and glacial deposits, as well as in sediments at many archeological sites. These shells are composed largely of aragonite (CaCO3) and potentially could be used for radiocarbon dating, but they must meet two criteria before their 14C ages can be considered to be reliable: (1) when gastropods are alive, the 14C activity of their shells must be in equilibrium with the 14C activity of the atmosphere, and (2) after burial, their shells must behave as closed systems with respect to carbon. To evaluate the first criterion, we conducted a comprehensive examination of the 14C content of the most common small terrestrial gastropods in North America, including 247 AMS measurements of modern shell material (3749 individual shells) from 46 different species. The modern gastropods that we analyzed were all collected from habitats on carbonate terrain and, therefore, the data presented here represent worst-case scenarios. In sum, ~78% of the shell aliquots that we analyzed did not contain dead carbon from limestone or other carbonate rocks even though it was readily available at all sites, 12% of the aliquots contained between 5 and 10% dead carbon, and a few (3% of the total) contained more than 10%. These results are significantly lower than the 20-30% dead carbon that has been reported previously for larger taxa living in carbonate terrain. For the second criterion, we report a case study from the American Midwest in which we analyzed fossil shells of small terrestrial gastropods (7 taxa; 18 AMS measurements; 173 individual shells) recovered from late-Pleistocene sediments. The fossil shells yielded 14C ages that were statistically indistinguishable from 14C ages of well-preserved plant macrofossils from the same stratum. Although just one site, these results suggest that small terrestrial gastropod shells may behave as closed systems with respect to carbon over geologic

  1. Bound sup 14 C residues in stored wheat treated with ( sup 14 C)deltamethrin and their bioavailability in rats

    SciTech Connect

    Khan, S.U.; Kacew, S. ); Akhtar, M.H. )

    1990-04-01

    Wheat grains treated with radiolabeled deltamethrin ((S)-{alpha}-cyano-3-phenoxybenzyl (1R,3R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate) and stored in the laboratory for 168 days formed bound (nonextractable) {sup 14}C residues. The amount of bound {sup 14}C residues formed was about 11% of the total {sup 14}C in stored grain. Br{sub 2}CA (3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylic acid) and 3-PBacid (3-phenoxybenzoic acid) were present in the form of bound {sup 14}C residues in addition to some radiolabeled product of unknown composition. The stored wheat containing bound {sup 14}C was fed to rats. The {sup 14}C residues were excreted in urine and feces in nearly equal proportion. The {sup 14}C residues identified in urine were Br{sub 2}CA, 3-PBacid, and conjugated compounds of 4{prime}-OH-3-PBacid (3-(4-hydroxyphenoxy)benzoic acid). Most of the {sup 14}C residues excreted in feces were extractable with methanol. Trace amounts of {sup 14}C residues were also present in lungs, kidney, and liver. The results suggest that bound residues in stored wheat treated with deltamethrin when fed to rats are highly bioavailable.

  2. Concentrations and 14C age of nonstructural carbon in California oaks

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Druffel-Rodriguez, K.; Trumbore, S. E.

    2008-12-01

    Plants store photosynthetic assimilates as nonstructural carbon (NSC), mainly glucose, fructose, sucrose, and starch. NSC fuels processes such as respiration and growth. Research suggests that NSC represents a significant fraction of a plant's annual C budget, but temporal dynamics of NSC are poorly understood. We used concentration and radiocarbon (14C) measurements of NSC to investigate how temporal dynamics of NSC vary with life strategy and throughout a species' range. In Mediterranean environments, oaks have developed two strategies (evergreen and deciduous) to cope with drought. Within California, the uncertainty of annual winter rain increases from north to south. We compared two evergreen and deciduous species: Coastal and Interior live oak (Quercus agrifolia and wislizenii) and Valley and Blue oak (Q. lobata and douglasii). Samples (4 mm cores to 20 cm depth at dbh) were taken in 2008 before leaf-out and fall at five sites which represent an inland to coast temperature gradient from high to low summer temperatures as well as a north- south precipitation gradient. Sugars were isolated by shaking in methanol-water and quantified using a spectrometric micro-plate technique. Starch was isolated by boiling in ethanol followed by HCl digestion and quantified manometrically. 14C contents were measured by AMS. Preliminary findings indicate that in live oaks, winter sugar concentrations are constant throughout the tree and across sites, while 14C concentrations increase towards a tree's center. This suggests that the NSC pool oaks is not well mixed. Future work will elucidate whether plants can access these older NSC stores.

  3. Low-Charge State AMS for High Throughput 14C Quantification

    SciTech Connect

    Ognibene, T.J.; Roberts, M.L.; Southon, J.R.; Vogel, J.S.

    2000-06-16

    Accelerator mass spectrometry (AMS) quantifies attomole (10{sup -18}) amounts of {sup 14}C in milligram sized samples. This sensitivity is used to trace nutrients, toxins and therapeutics in humans and animals at less than {micro}g/kg doses containing 1-100 nCi of {sup 14}C. Widespread use of AMS in pharmaceutical development and biochemical science has been hampered by the size and expense of the typical spectrometer that has been developed for high precision radiocarbon dating. The precision of AMS can be relaxed for biochemical tracing, but sensitivity, accuracy and throughput are important properties that must be maintained in spectrometers designed for routine quantification. We are completing installation of a spectrometer that will maintain the high throughput of our primary spectrometer but which requires less than 20% of the floor space and of the cost. Sensitivity and throughput are kept high by using the LLNL intense cesium sputter ion source with solid graphitic samples. Resultant space-charge effects are minimized by careful modeling to find optimal ion transport in the spectrometer. A long charge-changing ''stripper gas'' volume removes molecular isobars at potentials of a few hundred kiloVolts, reducing the size of the accelerating component. Fast ion detectors count at high rates to keep a wide dynamic range for 14 C concentrations. Solid sample presentation eliminates the sample cross contamination that degrades accuracy and the effects of ''memory'' in the ion source. Automated processes are under development for conversion of liquid and solid biological samples to the preferred graphitic form for the ion source.

  4. Distributions of dissolved organic and inorganic carbon and radiocarbon in the eastern North Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Bauer, James E.; Druffel, Ellen R. M.; Wolgast, David M.; Griffin, Sheila; Masiello, Caroline A.

    Temporal variations in the natural radiocarbon ( 14C) signatures of dissolved organic and inorganic carbon (DOC and DIC, respectively) in seawater have been studied previously (Druffel, E.R.M., Bauer, J.E., Williams, P.M., Griffin, S., Wolgast, D.M., 1996. Seasonal variability of radiocarbon in particulate organic carbon in the northeast Pacific. J. Geophys. Res. 101, 20 543-20 552; Bauer, J.E., Druffel, E.R.M., Williams, P.M., Wolgast, D.M., Griffin, S., 1998. Temporal variability in dissolved organic carbon and radiocarbon in the eastern North Pacific Ocean. J. Geophys. Res. 103, 2867-2882) at a long-term time-series station (Sta. M: 32°N, 123W) in the eastern North Pacific located at the eastern edge of the North Pacific abyssal plain. In June 1995 a transect was made from Sta. M inshore to approximately 500 m depth in order to evaluate the distributions of 14C in DOC and DIC from the abyssal plain to the upper continental slope. Concentrations and Δ 14C values of DOC in mixed layer waters (25 and 85 m) decreased toward the upper slope. In deeper waters, concentrations and Δ 14C values were in general similar at all three sites. Differences in DOC concentrations and Δ 14C-DOC between Sta. M and the rise and upper slope sites were explained in part by the mixing of DOC and Δ 14C along constant density ( σt) surfaces. However, specific deviations from conservative behavior due to mixing were observed for Δ 14C-DOC at mesopelagic (˜700 m) and near-bottom (˜3600- 3900 m) depths of the continental rise. Comparable findings are reported for DIC, where σt-normalized concentrations and Δ 14C values in Sta. M, rise and upper slope waters were similar, with the exception of slight increases in concentrations and Δ 14C values in near-bottom waters of the rise. These observations indicate that both DOC and DIC in continental rise and slope surface waters of the eastern North Pacific Ocean margin are comprised of a component of actively upwelled material derived

  5. Age models for peat deposits on the basis of coupled lead-210 and radiocarbon data.

    NASA Astrophysics Data System (ADS)

    Piotrowska, Natalia; de Vleeschouwer, François; Sikorski, Jarosław; Sensuła, Barbara; Michczyński, Adam; Fiałkiewicz-Kozieł, Barbara; Palowski, Bernard

    2010-05-01

    The study presents three examples of age-model construction based on the results of 210Pb and 14C dating methods applied to peat deposits. The three sites are ombrotrophic peat bogs: the Misten (Belgium), Slowinskie Bloto (N Poland) and Puscizna Mala (S Poland). All sites have been subjected to multiproxy studies aimed at reconstructing paleoenvironment and human activity, covering the last 1500, 1300 and 1800 years, respectively (De Vleeschouwer et al. 2009A, 2009B, in prep., Fialkiewicz-Koziel, ongoing PhD). A detailed comparison between 210Pb and post-bomb 14C results in the Misten bog has also been carried out by Piotrowska et al. (2009). In all cores, the 210Pb activity was calculated using 210Po and 208Po activities after acid-extraction from bulk samples, subsequent deposition on silver discs and measurements by alpha spectrometry. Unsupported 210Pb was detected until 35cm in Slowinskie Bloto, 15cm in the Misten and 19cm in Puscizna Mala. Constant Rate of Supply (CRS) model was then applied to compute ages of each 1-cm core interval. For the Misten and Slowinskie Bloto, radiocarbon measurements were performed on selected aboveground plant macrofossils, mainly Sphagnum spp. or Calluna vulgaris, Erica tetralix, and Andromeda polyfolia. Radiocarbon ages were determined using accelerator mass spectrometry (AMS) after acid-alkali-acid wash, combustion, purification of carbon dioxide and graphitisation. For Puscizna Mala bulk samples were dated after chemical preparation of benzene for liquid scintillation counting (LSC) or CO2 for gas proportional counting (GPC). Radiocarbon calibration was undertaken using the Intcal04 calibration curve and OxCal 4 software. As a priori information the 210Pb-derived ages were used in a P_Sequence model (Bronk Ramsey, 2008). A number of dates characterized by low agreement with stratigraphical order had to be considered as outliers and rejected from the final age model. For building a continuous age models a non-linear approach

  6. Radiocarbon variability in the western equatorial Pacific inferred from a high-resolution coral record from Nauru Island

    SciTech Connect

    Guilderson, T.P.; Schrag, D.P.; Kashgarian, M.; Southon, J.

    1998-10-01

    We have generated a high resolution coral {Delta}{sup 14}C record spanning the last 50 years to document the seasonal and interannual redistribution of surface waters in the western tropical Pacific. Prebomb (1947{endash}1956) {Delta}{sup 14}C values average {minus}63{per_thousand} and have a total range of 30{per_thousand}. Values begin to increase in 1957, reaching a maximum of 137{per_thousand} in mid-1983. Large interannual variability of up to 80{per_thousand} closely follows the El Ni{tilde n}o-Southern Oscillation (ENSO). During each ENSO warm phase, {Delta}{sup 14}C values begin to increase, reflecting the reduction of low-{sup 14}C water upwelling in the east and the invasion of subtropical water into the western equatorial tropical Pacific. Maximum {Delta}{sup 14}C values are in phase or lag the corresponding sea surface temperature maxima in the eastern tropical Pacific, whereas the rapid return to more negative {Delta}{sup 14}C is in phase with eastern Pacific ENSO indices. The highest-amplitude excursions occur during the 1965/1966 and 1972/1973 events, when the {sup 14}C contrast is highest between the eastern Pacific and subtropics. The 1982/1983 El Ni{tilde n}o, although a larger ENSO event, has a lower {Delta}{sup 14}C amplitude, reflecting the penetration of bomb radiocarbon into the equatorial undercurrent and the reduced contrast in {Delta}{sup 14}C between thermocline and subtropical surface waters at that time. This coral record demonstrates the potential for using similar radiocarbon time series for documenting variability in Pacific shallow circulation over interannual and decadal timescales. {copyright} 1998 American Geophysical Union

  7. Radiocarbon dating and archeology in North America.

    PubMed

    Johnson, F

    1967-01-13

    The history of the development of a radiocarbon chronology shows how the establishment of the times of events and the order of them has greatly improved the understanding of prehistory in North America. This is true also of other parts of the world. Too little has been said of existing discordance between archeologically determined sequences, and interregional associations, and the radiocarbon chronology. It does appear that these will be resolved as additional dates are added and as the results become more finely calibrated so that secular variations may be accounted for. The collaborative aspect of the venture was apparent at the outset. Nevertheless no one expects an archeologist to delve into nuclear physics and geochemistry, and vice versa. There is great need, nevertheless, for the man in the laboratory to comprehend the difficulties of sample collecting and of judgement of the significance of the source of organic matter to be dated. At the same time, the archeologist must become more familiar with the importance of the various steps in the processing of the sample and with, what is most vital, interpretation of the significance of the numbers that appear on the counters. PMID:6015523

  8. Simulation of bombe radiocarbon transient in the Mediterranean Sea using a high-resolution regional model.

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Mouchet, Anne; Tisnérat-Laborde, Nadine; Houma-Bachari, Fouzia; Louanchi, Ferial; jean-baptiste, Philippe

    2016-04-01

    The radiocarbon isotope of carbon "14C", which a half-life of 5730 years, is continually formed naturally in the atmosphere by the neutron bombardment of 14N atoms. However, in the 1950s and early1960s, the atmospheric testing of thermonuclear weapons added a large amount of 14C into the atmosphere. The gradual infusion and spread of this "bomb" 14C through the oceans has provided a unique opportunity to gain insight into the specific rates characterizing the carbon cycle and ocean ventilations on such timescales. This numerical study provides, for the first time in the Mediterranean Sea, a simulation of the anthropogenic 14C invasion covers a 70-years period spanning the entire 14C generated by the bomb test, by using a high resolution regional model NEMO-MED12 (1/12° of horizontal resolution). This distribution and evolution of Δ14C of model is compared with recent high resolution 14C measurements obtained from surface water corals (Tisnérat-Laborde et al, 2013). In addition to providing constraints on the air-sea transfer of 14C, our work provides information on the thermohaline circulation and the ventilation of the deep waters to constrain the degree to which the NEMO-MED12 can reproduce correctly the main hydrographic features of the Mediterranean Sea circulation and its variations estimated from corals 14C time series measurements. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  9. Transport of sup 14 C-IAA and sup 14 C-ACC within floral organs of Ipomoea nil

    SciTech Connect

    Kiss, H.G. ); Maurice, H.R. ); Koning, R.E. ); Daie, J. )

    1989-04-01

    The transport of {sup 14}C-IAA {sup 14}C-ACC from agarose donor blocks applied to I. nil filaments their recovery as {sup 14}C-accumulation into floral organs was examined. The accumulation of the isotopes in the corolla tissue was greater when {sup 14}C-ACC was applied than {sup 14}C-IAA in intact isolated flower buds. Greater levels of the isotopes accumulated in the pistil, with minimal levels in receptacle and calyx tissues from isolated buds. With intact buds, greater levels of the isotopes were recovered in pistil, calyx receptacle tissues. This study provides further evidence for the role of the filaments as transport vectors for IAA ACC for the production of ethylene.

  10. Percutaneous absorption of ( sup 14 C)DDT and ( sup 14 C)benzo(a)pyrene from soil

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Bucks, D.A.; Sedik, L.; Melendres, J.; Liao, C.; DiZio, S. )

    1990-10-01

    The objective was to determine percutaneous absorption of DDT and benzo(a)pyrene in vitro and in vivo from soil into and through skin. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with (14C)-labeled chemical at 10 ppm. Acetone solutions at 10 ppm were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 24-hr skin application time. With acetone vehicle, DDT (18.1 +/- 13.4%) readily penetrated into human skin. Significantly less DDT (1.0 +/- 0.7%) penetrated into human skin from soil. DDT would not partition from human skin into human plasma in the receptor phase (less than 0.1%). With acetone vehicle, benzo(a)pyrene (23.7 +/- 9.7%) readily penetrated into human skin. Significantly less benzo(a)pyrene (1.4 +/- 0.9%) penetrated into human skin from soil. Benzo(a)pyrene would not partition from human skin into human plasma in the receptor phase (less than 0.1%). Substantivity (skin retention) was investigated by applying 14C-labeled chemical to human skin in vitro for only 25 min. After soap and water wash, 16.7 +/- 13.2% of DDT applied in acetone remained absorbed to skin. With soil only 0.25 +/- 0.11% of DDT remained absorbed to skin. After soap and water wash 5.1 +/- 2.1% of benzo(a)pyrene applied in acetone remained absorbed to skin. With soil only 0.14 +/- 0.13% of benzo(a)pyrene remained absorbed to skin.

  11. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Jacobi, R. M.; Higham, T. F. G.; Bronk Ramsey, C.

    2006-07-01

    Recent research at the Oxford Radiocarbon Accelerator Unit (ORAU) has shown that ultrafiltration of gelatin from archaeological bone can, in many instances, remove low molecular weight contaminants. These can sometimes be of a different radiocarbon age and, unless removed, may severely influence results, particularly when dating bones greater than two to three half-lives of 14C. In this study this methodology is applied to samples of Late Middle and Early Upper Palaeolithic age from the British Isles. In many instances the results of redating invite serious reconsideration of the chronology for these periods. Copyright

  12. Radiocarbon Depression in Aquatic Foodwebs of the Colorado River, USA: Coupling Between Carbonate Weathering and the Biosphere

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.

    2012-12-01

    The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of

  13. Radiocarbon Signature and Cycling of Dissolved Organic Carbon in the South Pacific

    NASA Astrophysics Data System (ADS)

    Druffel, E. R.; Griffin, S.

    2010-12-01

    The average radiocarbon (Delta14C) measurements of bulk dissolved organic carbon (DOC) in the deep ocean range from -390 per mil in the deep Sargasso Sea to -550 per mil in the deep Northeast Pacific. The data set used to estimate this range is based on only four sites in the world ocean. We participated in the P-6 Repeat Hydrography cruise in January to February 2010 along 30-32°S in the South Pacific and collected samples from four depth profiles. High-precision Delta14C measurements of bulk DOC are ongoing using AMS (accelerator mass spectrometry) techniques at the Keck Carbon Cycle AMS Laboratory. We will report completed Delta14C measurements from these South Pacific sites and compare them to those available from two other sites in the North Pacific and one in the Southern Ocean. It is anticipated that Delta14C values of deep South Pacific DOC are intermediate between those in the Southern Ocean (Delta14C = -500‰) and those in the North central Pacific (-525‰). These DOC Delta14C values will be used to assess the residence time and overall cycling of bulk DOC in deep waters of the Pacific.

  14. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    PubMed

    Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael

    2016-01-01

    Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis. PMID:26938469

  15. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone

    PubMed Central

    Harvey, Virginia L.; Egerton, Victoria M.; Chamberlain, Andrew T.; Manning, Phillip L.; Buckley, Michael

    2016-01-01

    Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six 14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated 14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 14C analysis. PMID:26938469

  16. On the radiocarbon record in banded corals: exchange parameters and net transport of /sup 14/CO/sub 2/ between atmosphere and surface ocean

    SciTech Connect

    Druffel, E.M.; Suess, H.E.

    1983-02-20

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the /sup 14/C//sup 12/C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing /sup 14/C levels with dead CO/sub 2/ from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend was observed in the distribution of bomb-produced /sup 14/C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic ..delta../sup 14/C in the surface during post-bomb times, the approximate annual rate of net input of /sup 14/CO/sub 2/ to the ocean waters is calculated to be about 8% of the prevailing /sup 14/C difference between atmosphere and ocean. From this input and from preanthropogenic ..delta../sup 14/C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream.

  17. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    SciTech Connect

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  18. A simplified approach to calibrating [sup 14]C dates

    SciTech Connect

    Talma, A.S.; Vogel, J.C. )

    1993-01-01

    The authors propose a simplified approach to the calibration of radiocarbon dates. They use splines through the tree-ring data as calibration curves, thereby eliminating a large part of the statistical scatter of the actual data points. To express the age range, they transform the [plus minus]1 [sigma] and [plus minus]2 [sigma] values of the BP age to calendar dates and interpret them as the 68% and 95% confidence intervals. This approach by-passes the conceptual problems of the transfer of individual probability values from the radiocarbon to the calendar age. They have adapted software to make this calibration possible.

  19. Atmosphere-ocean gas exchange based on radiocarbon data

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey

    2014-05-01

    In recent decades, the intensity of global atmospheric convection has accelerated faster than climate warming; it is possible to judge this process from indirect data. Increasing ocean salinity contrasts provide evidence that evaporation has intensified [1]; sea surface wind velocities and wave heights have increased [2]. The CO2 gas exchange between the atmosphere and ocean must also simultaneously increase. Monthly measurements of atmospheric CO2 concentration have been published since 1958 [3], but directly measuring its fluxes from the atmosphere to the ocean and back is hardly possible. We show they can be reconstructed from 14C isotope concentration data. In the past century, two processes influenced the atmospheric 14C concentration in opposite directions: burning fossil fuels and testing nuclear weapons in the atmosphere. We compare the gas exchange theory with measurements of radiocarbon content in the atmosphere [4—6], which allows assessing the gas exchange quantitatively for the ocean to atmosphere and atmosphere to ocean fluxes separately for period 1960—2010 [7]. References 1. Durack P. J. and Wijffels S. E., J. Climate 23, 4342 (2010). 2. Young I. R., Sieger S., and Babanin A.V., Science 332, 451 (2011). 3. NOAA Earth System Research Laboratory Data: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt. 4. Nydal R., Lövseth K. // J. Geophys. Res. 1983. V. 88. P. 3579. 5. Levin I., Kromer B. // Radiocarbon. 1997. V. 39. P. 205. 6. Miller J.B., Lehman S.J., Montzka S.A., et al. // J. Geophys. Res. 2012. V. 117. D08302. 7. Byalko A.V. Doklady Physics, 2013. V. 58, 267-271.

  20. Evaluation of preparation methods in radiocarbon dating of old wood

    NASA Astrophysics Data System (ADS)

    Hajdas, Irka; Hendriks, Laura; Fontana, Alessandro; Monegato, Giovanni

    2015-04-01

    Radiocarbon analyses require pre-treatment of the material before proceeding with the isotopic analysis, both with counting of decay particles (conventional method) or 14C atoms (AMS method). From the early days of the method the standard treatment involved removal of contamination by washes in acid (carbonates dissolved) and base (humic acid) dissolved (ABA). Modification of this method has been suggested, especially for old material, i.e. older than 20 ka. However the criticism of ABA and application of a more aggressive oxidizing method might be only needed in some special cases, for example of poor preservation (ABOX or separation of cellulose from wood). As a part of studies focusing on chronology of late Pleistocene sedimentary processes in the Venetian-Friulian Plain and Carnic Alps (NE Italy), radiocarbon analyses were performed on old wood samples found in sedimentary deposits of pre-LGM age. Our results show that in most cases ABA method is sufficient to remove the contamination of naturally deposited wood independently of the age of the wood.

  1. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    SciTech Connect

    Hughen, K; Baille, M; Bard, E; Beck, J; Bertrand, C; Blackwell, P; Buck, C; Burr, G; Cutler, K; Damon, P; Edwards, R; Fairbanks, R; Friedrich, M; Guilderson, T; Kromer, B; McCormac, F; Manning, S; Bronk-Ramsey, C; Reimer, P; Reimer, R; Remmele, S; Southon, J; Stuiver, M; Talamo, S; Taylor, F; der Plicht, J v; Weyhenmeyer, C

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.

  2. Distribution of /sup 14/C after oral administration of (1-/sup 14/C)linoleic acid in rats fed different levels of essential fatty acids

    SciTech Connect

    Becker, W.

    1984-09-01

    Rats from an inbred Sprague-Dawley strain were fed semisynthetic diets with a low (0.3 energy percent (en %)), normal (3 en %) or high (10 en %) content of essential fatty acids (EFA) for at least three generations. Twenty-nine- to 33-day-old male rats were given a single intragastric dose of (1-14C)linoleic acid in olive oil, and the respiratory CO2, urine and feces were collected for 46 hours (expt 1) or 20 hours (expt 2). The 14C activity in respiratory CO2, feces, urine and the carcass was determined in both experiments. In experiment 2 it was also measured in samples of the brown fat, liver, adrenals, white fat, skeletal muscles and brain. In both experiments the rats fed the low EFA diet retained significantly more 14C activity than the rats fed the normal or high EFA diets. In all groups the concentration of label was highest in the brown fat and the adrenals, but the above differences among the groups with respect to 14C retention were mainly observed in the liver, skeletal muscles and brain.

  3. The next chapter of direct phytolith 14C dating: debunking the myth of occluded photosynthetic carbon exclusivity

    NASA Astrophysics Data System (ADS)

    Santos, G.; Harutyunyan, A.; Alexandre, A. E.; Reyerson, P. E.; Gallagher, K. L.; Isabelle, B. D.

    2014-12-01

    Radiocarbon dating of carbon (C) encapsulated in phytoliths (phytC) is currently used in many Earth Science disciplines for absolute chronologies and paleoclimatic reconstructions; however, the usefulness of phytC has been hampered by inadequate extraction methods[1] and uncertainties regarding its origin as purely photosynthetic [2,3,4]. An early investigation measuring isotopes from Gramineae spp. grown in free-air C enrichment experiments (FACE), showed that part of of its phytC is from a non-photosynthetic source, thus indicating a dual origin[5]. To demonstrate that non-photosynthetic sources within phytC could be from soil C stocks, we measured 14C-AMS phytC extracted from a set of Sorghum bicolor growing on known 14C and d13C bulk substrates and hydroponic solutions. The phytolith concentrates and a silica blank were extracted at UCI, CEREGE and Wisconsin using an improved protocol [1,2]. We also measured CO2 fluxes and isotopic signatures of microbial respiration, percentage of biomass and phytolith extracts produced, and isotopic signatures of the local air and bulk-plant during the growing season of 2012. This allowed comparison of the belowground substrate and nutrient C contributions to phytC 14C results. Meanwhile, NanoSIMS analyses of phytolith polished sections was used to locate phytC in the phytolith siliceous structure [6]. These results will be shown and discussed. [1] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179 [2] Santos et al. 2010 T. Radiocarbon 52:113 [3] Santos et al. 2012a Biogeosci. 9:1873 [4] Santos et al. 2012b Biogeosci. Discussion 9:C6114 [5] Reyerson et al. 2013 AGU Fall meeting 2013 (Abstract ID: 1803125). [6] Alexandre, et al., submitted.

  4. Marine radiocarbon reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic Coast of North America

    NASA Astrophysics Data System (ADS)

    Rick, Torben C.; Henkes, Gregory A.; Lowery, Darrin L.; Colman, Steven M.; Culleton, Brendan J.

    2012-01-01

    Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ∆R, ranging from 148 ± 46 14C yr on the Potomac River to - 109 ± 38 14C yr at Swan Point, Maryland. The ∆R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (- 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ∆R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.

  5. Liquid scintillation counting of /sup 14/C for differentiation of synthetic ethanol from ethanol of fermentation

    SciTech Connect

    Martin, G.E.; Noakes, J.E.; Alfonso, F.C.; Figert, D.M.

    1981-09-01

    Samples containing ethanol are fractionated on a column so that the resultant ethanol content is > 93%. Determination of /sup 14/C by liquid scintillation counting on the ethanol fraction differentiates ethanol produced by fermentation from synthetic ethanol produced from fossil fuel sources. Twenty-seven samples were fractionated and analyzed for the /sup 14/C isotope. Six samples were synthetic ethanol derived from ethylene gas (direct and indirect process), and yielded a mean value for /sup 14/C isotope of 0.167 dpm/g carbon with a standard deviation (SD) of 0.066 dpm/g carbon (disintegrations per minute per gram of carbon). The remaining samples were ethanol derived from the fermentation of natural materials, such as corn, pear, sugar cane, grape, cherry, and blackberry, and yielded a mean value for /sup 14/C isotope of 16.11 dpm/g carbon with an SD of 1.27. The /sup 14/C values for specific mixtures of a synthetic and a natural ethanol compare favorably with the analytical values obtained by this procedure.

  6. Intestinal absorption and tissue distribution of ( sup 14 C)pyrroloquinoline quinone in mice

    SciTech Connect

    Smidt, C.R.; Unkefer, C.J.; Houck, D.R.; Rucker, R.B. )

    1991-05-01

    Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and membrane-bound glucose dehydrogenase. In animals fed chemically defined diets, PQQ improves reproductive outcome and neonatal growth. Consequently, the present study was undertaken to determine the extent to which PQQ is absorbed by the intestine, its tissue distribution, and route of excretion. About 28 micrograms of PQQ (0.42 microCi/mumol), labeled with {sup 14}C derived from L-tyrosine, was administered orally to Swiss-Webster mice (18-20 g) to estimate absorption. PQQ was readily absorbed (62%, range 19-89%) in the lower intestine, and was excreted by the kidneys (81% of the absorbed dose) within 24 hr. The only tissues that retained significant amounts of ({sup 14}C)PQQ at 24 hr were skin and kidney. For kidney, it was assumed that retention of ({sup 14}C)PQQ represented primarily PQQ destined for excretion. For skin, the concentration of ({sup 14}C)PQQ increased from 0.3% of the absorbed dose at 6 hr to 1.3% at 24 hr. Furthermore, most of the ({sup 14}C)PQQ in blood (greater than 95%) was associated with the blood cell fraction, rather than plasma.

  7. Uptake and metabolism of (14C)-aspartate by developing kernels of maize (Zea mays L. )

    SciTech Connect

    Muhitch, M.J. )

    1990-05-01

    Pulse-chase experiments were performed to determine the metabolic fate of (14C)-aspartate in the pedicel region and subsequent uptake into the endosperm. Kernels were removed from the cob, leaving the pedicel attached but removing glumes, palea, and lemma. The basal tips were incubated in (14C)-aspartate for 0.5 h, followed by a 2 h chase period with unlabeled aspartate. In contrast to a previous study in which 70% of the 14C from aspartate was recovered in the organic acid fraction (Lyznik, et al., Phytochemistry 24: 425, 1985), only 20 to 25% of the radioactivity found in the 2 h chase period. While a small amount of the 14C transiently appeared in alanine at the beginning of the chase period, the most heavily labeled non-fed amino acid was glutamine, which accounted for 21% of the radioactivity within the pedicel amino acid fraction by 0.5 h into the chase period. There was no evidence for asparagine synthesis within the pedicel region of the kernel. 14C recovered from the endosperm in the form of amino acids were aspartate (60%), glutamine (20%), glutamate (15%), and alanine (5%). These results suggest that some of the maternally supplied amino acids undergo metabolic conversion to other amino acids before being taken up by the endosperm.

  8. Decay width measurements of excited states in 14C

    NASA Astrophysics Data System (ADS)

    Haigh, P.; Ashwood, N.; Bloxham, T.; Curtis, N.; Freer, M.; Price, D.; Ziman, V.; Bohlen, H.; Kokalova, T.; Schulz, C.; von Oertzen, W.; Weldon, C.; Catford, W.; Harlin, C.

    2008-05-01

    Various excited states in 14C, above the α-decay threshold, are believed to possess a geometric arrangement of three α-particles covalently bound by the two delocalised valence neutrons. The 12C(16O, 14O)14C* reaction was studied at a beam energy of 234 MeV, at the ISL facility at the Hahn-Meitner-Institut (HMI), Berlin. The 14O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the excited 14C recoil break-up fragments were measured in coincidence using a double sided silicon strip detector array comprised of four detectors at backwards angles. A complete kinematic reconstruction of the reaction was performed to reconstruct the 14C* → 10Be + α and 14C* → 13C + n decay channels and the branching ratios of these decays were calculated. Neutron emission was found to be favoured for the 12.96, 14.87, 16.72 and 18.6 MeV states. Evidence for α-decay was found for the 14.87, 18.6 and 21.4 MeV states; which are candidates for the three bodied molecular cluster structure of 14C.

  9. Prediction of [3-(14)C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques.

    PubMed

    Dew, Nadia M; Paton, Graeme I; Semple, Kirk T

    2005-11-01

    This study investigated the use of an aqueous hydroxypropyl-beta-cyclodextrin (HPCD) shake extraction in predicting microbial mineralisation and total loss of [3-(14)C]phenyldodecane associated activity in soils spiked with cable insulating oil; phenyldodecane represents a major constituent of cable insulating oil. Direct comparisons were made between freshly spiked and aged soils, and following composting. Soil was spiked with [3-(14)C]phenyldodecane (10mg kg(-1)) and stored in microcosms and aged for 1, 23, 44, 65, 90 and 153 d. At each sample time point, a variety of analyses were performed to assess the relationship between chemical and biological techniques in determining mineralisation and loss of (14)C-activity in soils under composting and non-composting conditions. Methods included determination of total (14)C-activity remaining, dichloromethane (DCM) and HPCD extractions. Mineralisation assays were also carried out to quantify the fraction of (14)C-phenyldodecane associated activity available for degradation in the soil at each time point. DCM and HPCD extractability were compared to contaminant mineralisation and to total loss of (14)C-phenyldodecane associated activity from the microcosms, after 153 d incubation. Poor relationships were found between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using DCM extraction and (ii) DCM extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. Good relationships were observed between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using the HPCD extraction and (ii) HPCD extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. The results of this study indicate that an aqueous HPCD extraction may be a useful tool in assessing the microbial availability of phenyldodecane in freshly and aged spiked soils. PMID:15949878

  10. Decadal- to interannual-scale source water variations in the Caribbean Sea recorded by Puerto Rican coral radiocarbon

    SciTech Connect

    Kilbourne, K H; Quinn, T M; Guilderson, T P; Webb, R S; Taylor, F W

    2006-12-05

    Water that forms the Florida Current, and eventually the Gulf Stream, coalesces in the Caribbean from both subtropical and equatorial sources. The equatorial sources are made up of, in part, South Atlantic water moving northward and compensating for southward flow at depth related to meridional overturning circulation. Subtropical surface water contains relatively high amounts of radiocarbon ({sup 14}C), whereas equatorial waters are influenced by the upwelling of low {sup 14}C water and have relatively low concentrations of {sup 14}C. We use a 250-year record of {Delta}{sup 14}C in a coral from southwestern Puerto Rico along with previously published coral {Delta}{sup 14}C records as tracers of subtropical and equatorial water mixing in the northern Caribbean. Data generated in this study and from other studies indicate that the influence of either of the two water masses can change considerably on interannual to interdecadal time scales. Variability due to ocean dynamics in this region is large relative to variability caused by atmospheric {sup 14}C changes, thus masking the Suess effect at this site. A mixing model produced using coral {Delta}{sup 14}C illustrates the time varying proportion of equatorial versus subtropical waters in the northern Caribbean between 1963 and 1983. The results of the model are consistent with linkages between multidecadal thermal variability in the North Atlantic and meridional overturning circulation. Ekman transport changes related to tradewind variability are proposed as a possible mechanism to explain the observed switches between relatively low and relatively high {Delta}{sup 14}C values in the coral radiocarbon records.

  11. Comparison of Varve and 14C Chronologies from Steel Lake, Minnesota, USA

    SciTech Connect

    Tian, J; Brown, T A; Hu, F S

    2004-12-29

    Annually laminated sediments (varves) offer an effective means of acquiring high-quality paleoenvironmental records. However, the strength of a varve chronology can be compromised by a number of factors, such as missing varves, ambiguous laminations, and human counting error. We assess the quality of a varve chronology for the last three millennia from Steel Lake, Minnesota, through comparisons with nine AMS {sup 14}C dates on terrestrial plant macrofossils from the same core. These comparisons revealed an overall 8.4% discrepancy, primarily because of missing/uncountable varves within two stratigraphic intervals characterized by low carbonate concentrations and obscure laminations. Application of appropriate correction factors to these two intervals results in excellent agreement between the varve and {sup 14}C chronologies. These results, together with other varve studies, demonstrate that an independent age-determination method, such as {sup 14}C dating, is usually necessary to verify, and potentially correct, varve chronologies.

  12. Revised 14C dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Lawson, Daniel E.; Sloat, Alison R.

    2012-09-01

    Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.

  13. Radiocarbon variability during the Laschamp excursion (ca. 41 ka) based on Gulf of Mexico sediments

    NASA Astrophysics Data System (ADS)

    Williams, C. C.; Guilderson, T. P.

    2009-12-01

    The Laschamp excursion is a rapid (<2 ka) geomagnetic reversal approximately 41.25 ± 0.8 ka BP (based on the 2005 Greenland Ice Core Chronology (GICC05)) that is present in many terrestrial and marine sediment records. Due to changes in Earth’s magnetic field during geomagnetic excursions and reversals, atmospheric 14C production is variable and can subsequently make 14C dating and calendar year calibration difficult. Although paleointensity lows during the Laschamp interval are useful in correlating sediment and ice core records data to a common timescale, climate archives that lack these data require radiocarbon dating for temporal constraint. Yet, the 14C response during geomagnetic changes is not well understood. We present a new record of accelerator mass spectrometry (AMS) 14C dates combined with paleointensity data from core MD02-2551 from Orca Basin, Gulf of Mexico. High sedimentation rates (~60 cm/1000 yrs) allow for high-resolution sampling over the duration of the Laschamp interval. In this section of the core sediments are oxic and massive, consistent with a hemipelagic depositional environment. The comparison of paleogeomagnetic data to 14C ages during the Laschamp excursion allow us to further investigate the geochemical 14C signal during magnetic excursions. Results exhibit a plateau in 14C ages with high-frequency fluctuations superimposed during the Laschamp interval that supports the expectation of increased atmospheric 14C production during this geomagnetic excursion. We compare our results to a similar marine derived record from the oxic non-laminated interval of Cariaco Basin with a similar albeit slightly lower sedimentation rate (~30cm/1000 yrs).

  14. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  15. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  16. A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile

    NASA Astrophysics Data System (ADS)

    Grosjean, M.; van Leeuwen, J. F. N.; van der Knaap, W. O.; Geyh, M. A.; Ammann, B.; Tanner, W.; Messerli, B.; Núñez, L. A.; Valero-Garcés, B. L.; Veit, H.

    2001-02-01

    Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45'S, 67°45'W, 4140 m a.s.l., 13.5 km 2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (˜200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.

  17. Anomalous radiocarbon ages from a Holocene detrital organic lens in Alaska and their implications for radiocarbon dating and paleoenvironmental reconstructions in the arctic

    USGS Publications Warehouse

    Nelson, R.E.; Carter, L.D.; Robinson, S.W.

    1988-01-01

    Eleven radiocarbon age determinations clearly show that a lens of Holocene fluvial organic debris on the Alaskan Arctic Coastal Plain contains mostly pre-Holocene organic material. Radio-carbon ages of identified plant macrofossils indicate the material was deposited about 9000 to 9500 yr B.P. Radiocarbon analyses of bulk samples from this deposit, however, range from 13,300 to 30,300 yr B.P. Most of the old organic matter seems to be in the smaller size fractions in the deposit, particularly in the fraction between 0.25 and 0.5 mm, but all size fractions are contaminated. Particular caution must be exercised in submitting bulk samples for radiocarbon dating from areas where conditions favor redeposition of isotopically "dead" carbon. ?? 1988.

  18. Radiocarbon constraints on fossil thinolite tufa formation in the Mono Basin, CA, USA

    NASA Astrophysics Data System (ADS)

    Leroy, S. L.; Zimmerman, S. R.; Hemming, S. R.; Stine, S.; Guilderson, T. P.

    2009-12-01

    Mono Lake is a terminal lake located at the western edge of the Great Basin, and is famous for its tufa towers. Thinolite, which is thought to be a CaCO3 pseudomorph of ikaite, is found around the Mono Basin in many fossil tufa towers, particularly at elevations above 2000 meters. The subaqueous parent mineral ikaite forms at low temperatures (< 6 °C) (Bischoff et al., 1993) and requires specific water chemistry. Previous radiocarbon dating of fossil tufa towers around the Mono Basin has yielded a rather small range of ages for the highest elevation towers, between 11.8 and 14.1 14C kyr BP (no corrections for reservoir effects have been made). A thinolite fan collected from outcrops in Mill Creek, just north of the current Mono Lake yielded an age of 10,690 ± 45 14C yr BP (12,750 ± 80 cal yr BP), consistent with a ca. 1000 year reservoir age and coincidence with thinolite crystals found in a core from the northwestern embayment of Mono Lake (Davis, 1999, QR), and thus correlating with the Younger Dryas cooling event as exhibited in the GISP2 δ18O record. While most of the thinolite textures are found at high elevations, we sampled a mound at 1955 meters (near the current shoreline, north of the lake and just east of Black Point) that has many concentric layers, some containing thinolite textures. Although tufa mounds can form very rapidly, the location at low elevation and the presence of at least 19 distinct layers led us to consider that this mound might represent a long term record of Mono Lake’s chemistry. The new data confirm that the mound formed over a long period within the last glacial cycle, with ages ranging beyond the current limits of measurement (>34 kyr) to as young as 15.5 14C kyr BP. In general there is a consistent stratigraphic trend of ages within the mound, but the thinolite ages are anomalously young and one thinolite sample shows a large age reversal. The best estimate of the age of the precipitation of this tufa mound is given by the

  19. Analysis of past recurrent methane seep activity using radiocarbon dating of Calyptogena spp. shells in the eastern Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuhiro; Ashi, Juichiro; Yokoyama, Yusuke; Miyairi, Yosuke; Kuramoto, Shin'ichi

    2016-04-01

    Fault activity around subduction zones have been widely studied and monitored through drilling of oceanic plates, studying piston cores, use of monitoring equipment or through visual analysis using submersible vehicles. Yet the understanding of how small scale faults near shallow regions of the seabed behave in relation to cold seep vent activity is still vague, especially determining when they were active in the past. In tectonically active margins such as the Nankai and Tokai regions off Japan, dense methane hydrate reservoirs have been identified. Cold seeps releasing methane rich hydrocarbon fluids are common here, supporting a wide variety of biological species that hold a symbiotic relationship with the chemosynthetic bacteria. In 1998 a large dead Calyptogena spp. bivalve colony (over 400m2 in size) was discovered off Tokai, Japan. It is unusual for a bivalve colony this size to mostly be dead, raising questions as to what caused their death. In this study we document the radiocarbon 14C age of these bivalve shells to attempt analysing the possible methane seep bahaviour in the past. The measured 14C age ranged in three age groups of 1396±36-1448±34, 1912±31-1938±35 and 5975±34. The 14C age of shells that were alive upon collection and the dissolved inorganic carbon (DIC) in seawater show little difference (˜100 14C age) indicating that shells are not heavily affected by the dead carbon effect from cold seeps that is of biogenic or thermogenic origin, which can make the age to become considerably older than the actual age. Thus the novel calibration model used was based on the seawater DIC collected above the Calyptogena spp. colony site (1133±31), which resulted in the dead shells to be clustered around 1900 Cal AD. This proves to be interesting as the predicted epicenter of the Ansei-Tokai earthquake (M 8.4) in 1854 is extremely close to the bibalve colony site. Using geological data obtained using visual analysis and sub-seafloor structural

  20. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.; Key, R.; Khatiwala, S.; Giraud, X.

    2012-10-01

    The injection of radiocarbon (14C) into the atmosphere by nuclear weapons testing in the 1950s and 1960s has provided a powerful tracer to investigate ocean physical and chemical processes. While the oceanic uptake of bomb-derived 14C was primarily controlled by air-sea exchange in the early decades after the bomb spike, we demonstrate that changes in oceanic 14C are now primarily controlled by shallow-to-deep ocean exchange, i.e., the same mechanism that governs anthropogenic CO2 uptake. This is a result of accumulated bomb 14C uptake that has rapidly decreased the air-sea gradient of 14C/C (Δ14C) and shifted the main reservoir of bomb 14C from the atmosphere to the upper ocean. The air-sea Δ14C gradient, reduced further by fossil fuel dilution, is now weaker than before weapons testing in most regions. Oceanic 14C, and particularly its temporal change, can now be used to study the oceanic uptake of anthropogenic CO2. We examine observed changes in oceanic Δ14C between the WOCE/SAVE (1988-1995) and the CLIVAR (2001-2007) eras and simulations with two ocean general circulation models, the Community Climate System Model (CCSM) and the Estimating the Circulation and Climate of the Ocean Model (ECCO). Observed oceanic Δ14C and its changes between the 1980s-90s and 2000s indicate that shallow-to-deep exchange is too efficient in ECCO and too sluggish in CCSM. These findings suggest that mean global oceanic uptake of anthropogenic CO2 between 1990 and 2007 is bounded by the ECCO-based estimate of 2.3 Pg C yr-1 and the CCSM-based estimate of 1.7 Pg C yr-1.

  1. The Remarkable Metrological History of Radiocarbon Dating [II

    PubMed Central

    Currie, Lloyd A.

    2004-01-01

    This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural 14C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications. PMID:27366605

  2. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology.

    PubMed

    Marzaioli, Fabio; Lubritto, Carmine; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Terrasi, Filippo

    2011-03-15

    Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures. PMID:21338118

  3. Kinetic Distribution of 14C-Metsulfuron-methyl Residues in Paddy Soils under Different Moisture Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice paddy soils undergo several cycles of drying and wetting during a growing season. A laboratory study was conducted to determine the effect of soil moisture conditions on the distribution and kinetics of extractable and bound residues of 14C-metsulfuron-methyl in six Chinese paddy soils during 8...

  4. DERMAL PENETRATION OF [14C] CAPTAN IN YOUNG AND ADULT RATS

    EPA Science Inventory

    Dermal penetration of [14C] Captan was determined in young (33 day old) and adult (82 day old) female Fischer 344 rats by an in vivo method and two in vitro methods. ermal penetration in vivo at 72 hours was about 9% of the dose in both young and adult rats. o significant differe...

  5. Some archaeologic applications of accelerator radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Donahue, D. J.; Jull, A. J. T.; Linick, T. W.

    1990-01-01

    The method of preparation of archaeologic samples for AMS radiocarbon dating, the precision of such measurements and the conversion of radiocarbon results to calendar ages are presented. The application of the technique to measurements of the ages of bones, textiles (including the Shroud of Turin), cultigens and other achaeologic artifacts is described.

  6. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units. PMID:18617793

  7. Interface dissolution control of the [sup 14]C profile in marine sediment

    SciTech Connect

    Keir, R.S. ); Michel, R.L. )

    1993-08-01

    The process of carbonate dissolution at the sediment-water interface has two possible end-member boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content, and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and [sup 230]Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in [sup 230]Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5,000 years ago. 30 refs., 8 figs., 3 tabs.

  8. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  9. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site

    PubMed Central

    MIYATA, Yoshiki; MINAMI, Masayo; ONBE, Shin; SAKAMOTO, Minoru; MATSUZAKI, Hiroyuki; NAKAMURA, Toshio; IMAMURA, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 14C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis. PMID:21986315

  10. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site.

    PubMed

    Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis. PMID:21986315

  11. Radiocarbon isotopic evidence for assimilation of atmospheric CO2 by the seagrass Zostera marina

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Kuwae, T.

    2015-10-01

    Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (-40 to -10 ‰) were significantly higher than those of aquatic DIC (-46 to -18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0-40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.

  12. Multidecadal variations in Southern Hemisphere atmospheric 14C: Evidence against a Southern Ocean sink at the end of the Little Ice Age CO2 anomaly

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Palmer, Jonathan; Hogg, Alan; Fogwill, Christopher J.; Jones, Richard T.; Bronk Ramsey, Christopher; Fenwick, Pavla; Grierson, Pauline; Wilmshurst, Janet; O'Donnell, Alison; Thomas, Zoë A.; Lipson, Mathew

    2016-02-01

    Northern Hemisphere-wide cooling during the Little Ice Age (LIA; 1650-1775 Common Era, C.E.) was associated with a ~5 ppmv decrease in atmospheric carbon dioxide. Changes in terrestrial and ocean carbon reservoirs have been postulated as possible drivers of this relatively large shift in atmospheric CO2, potentially providing insights into the mechanisms and sensitivity of the global carbon cycle. Here we report decadally resolved radiocarbon (14C) levels in a network of tree-ring series spanning 1700-1950 C.E. located along the northern boundary of, and within, the Southern Ocean. We observe regional dilutions in atmospheric radiocarbon (relative to the Northern Hemisphere) associated with upwelling of 14CO2-depleted abyssal waters. We find the interhemispheric 14C offset approaches zero during increasing global atmospheric CO2 at the end of the LIA, with reduced ventilation in the Southern Ocean and a Northern Hemisphere source of old carbon (most probably originating from deep Arctic peat layers). The coincidence of the atmospheric CO2 increase and reduction in the interhemispheric 14C offset imply a common climate control. Possible mechanisms of synchronous change in the high latitudes of both hemispheres are discussed.

  13. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    SciTech Connect

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.; Sisterson, J.M.; Reedy, R.C.; Masarik, J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C were observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.

  14. An analytical method for 14C in environmental water based on a wet-oxidation process.

    PubMed

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. PMID:25590997

  15. Effect of foliar treatments on distribution of /sup 14/C-glyphosate in Convolvulus arvensis L

    SciTech Connect

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate (N-(phosphonomethyl)glycine) used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D((2,4-dichlorophenoxy) acetic acid) or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and /sup 14/C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on /sup 14/C-glyphosate translocation. After /sup 14/C-glyphosate was applied, intact plants had about twice as much /sup 14/C in distal root sections as in proximal or middle root sections. Decapitated plants had more /sup 14/C in proximal and middle root sections than in distal sections, and about twice as much /sup 14/C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants.

  16. Calculation of the compounded uncertainty of 14C AMS measurements

    NASA Astrophysics Data System (ADS)

    Nadeau, Marie-Josée; Grootes, Pieter M.

    2013-01-01

    The correct method to calculate conventional 14C ages from the carbon isotopic ratios was summarised 35 years ago by Stuiver and Polach (1977) and is now accepted as the only method to calculate 14C ages. There is, however, no consensus regarding the treatment of AMS data, mainly of the uncertainty of the final result. The estimation and treatment of machine background, process blank, and/or in situ contamination is not uniform between laboratories, leading to differences in 14C results, mainly for older ages. As Donahue (1987) and Currie (1994), among others, mentioned, some laboratories find it important to use the scatter of several measurements as uncertainty while others prefer to use Poisson statistics. The contribution of the scatter of the standards, machine background, process blank, and in situ contamination to the uncertainty of the final 14C result is also treated in different ways. In the early years of AMS, several laboratories found it important to describe their calculation process in details. In recent years, this practise has declined. We present an overview of the calculation process for 14C AMS measurements looking at calculation practises published from the beginning of AMS until present.

  17. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: Assessing applicability and quantifying uncertainties

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan C.; Lubbe, H. J. L.; Davies, Gareth R.

    2016-01-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to dynamic external impacts of the past. Radiocarbon (14C) dating is commonly used for palaeoclimate studies, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioral processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test bed, combined with a comprehensive approach that objectively excludes both old carbon (using GIS) and species-specific 14C effects, we demonstrate the use of 87Sr/86Sr ratios for quantifying R(t) in ubiquitous mollusc shell material, leading to almost an order of magnitude increase in Baltic Sea 14C geochronological precision over the current state of the art. We propose that similar proxy methods can be developed for other brackish water bodies worldwide.

  18. Measuring chlorophyll. cap alpha. and /sup 14/C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer. [/sup 14/C-labelled photosynthate

    SciTech Connect

    Beer, S.; Stewart, A.J.; Wetzel, R.G.

    1982-01-01

    A compound that quantitatively correlated with chlorophyll ..cap alpha.. could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 60/sup 0/C but rapidly degraded in sunlight or when acidified. /sup 14/C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H/sup 14/CO/sub 3/, was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be used to determine both chlorophyll ..cap alpha.. content and /sup 14/C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material (about 3 milligrams).

  19. Persistence of the herbicides (/sup 14/C)chlorsulfuron and (/sup 14/C)metsulfuron methyl in prairie soils under laboratory conditions

    SciTech Connect

    Smith, A.E.

    1986-11-01

    Metsulfuron methyl, whose structure is closely related to that of chlorsulfuron, is currently being evaluated on the Canadian prairies as a postemergence treatment for the control of broadleaf weeds in cereal crops, in non-crop land and for brush control. Although applied postemergence, some of the herbicide will come into contact with the soil making it necessary to determine the fate of metsulfuron methyl in the soil. These studies were undertaken to investigate the rate of breakdown and the fate of (/sup 14/C)metsulfuron methyl in three soils under laboratory conditions where no leaching could occur. The rate of breakdown of (/sup 14/C)chlorsulfuron was also investigated in one of the soils.

  20. Constraints on the Origin of Sedimentary Organic Carbon in the Beaufort Sea from Coupled Molecular 13C and 14C Measurements

    NASA Astrophysics Data System (ADS)

    Drenzek, N.; Montlucon, D.; Yunker, M.; MacDonald, R.; Eglinton, T.

    2005-12-01

    The type and flux of organic carbon (OC) delivered from the continents to the sea can both influence, and be influenced by, climate change on regional and global scales. In order to develop a more complete view of OC delivery in the climatically sensitive Arctic region, we measured the stable carbon and radiocarbon isotopic signatures of individual lipid biomarkers and products of kerogen pyrolysis from the surficial sediments of several sites on the Mackenzie Shelf and adjacent slope of the Beaufort Sea. Even carbon numbered fatty acids exhibit a trend of increasing radiocarbon age with increasing chain length, from modern values for shorter homologues (nC18 or below) to several thousand years old for their longer counterparts (nC24 or greater). Such depleted Δ14C values for longer-chain fatty acids likely reflect supply of vascular plant OC that has been `pre-' on the continents for several millennia prior to delivery to the Beaufort Sea. Their concomitant stable carbon isotopic compositions support a C3 land plant source. The molecular distributions and corresponding δ13C and Δ14C signatures of solvent-extractable alkanes point to at least two sources: higher plant leaf waxes and a 14C-`dead' component likely derived from erosion of organic-rich sedimentary rocks exposed within the Mackenzie River drainage basin. The stable carbon and radiocarbon compositions of straight chain n-hydrocarbon pyrolysis products from the corresponding demineralized sediments suggest their vascular plant-derived precursor structures also spent several millennia in continental reservoirs before being delivered to the Beaufort Sea. On a bulk level, the trend in sedimentary organic carbon contents, C/N ratios, and δ13C values point to an overall decrease in the terrigenous input (mainly from the Mackenzie river) with distance offshore, whereas bulk Δ14C measurements exhibit no trend suggesting a somewhat constant pre-aged component. A dual molecular isotopic mass balance approach

  1. High-resolution chronology for the Mesoamerican urban center of Teotihuacan derived from Bayesian statistics of radiocarbon and archaeological data

    NASA Astrophysics Data System (ADS)

    Beramendi-Orosco, Laura E.; Gonzalez-Hernandez, Galia; Urrutia-Fucugauchi, Jaime; Manzanilla, Linda R.; Soler-Arechalde, Ana M.; Goguitchaishvili, Avto; Jarboe, Nick

    2009-03-01

    A high-resolution 14C chronology for the Teopancazco archaeological site in the Teotihuacan urban center of Mesoamerica was generated by Bayesian analysis of 33 radiocarbon dates and detailed archaeological information related to occupation stratigraphy, pottery and archaeomagnetic dates. The calibrated intervals obtained using the Bayesian model are up to ca. 70% shorter than those obtained with individual calibrations. For some samples, this is a consequence of plateaus in the part of the calibration curve covered by the sample dates (2500 to 1450 14C yr BP). Effects of outliers are explored by comparing the results from a Bayesian model that incorporates radiocarbon data for two outlier samples with the same model excluding them. The effect of outliers was more significant than expected. Inclusion of radiocarbon dates from two altered contexts, 500 14C yr earlier than those for the first occupational phase, results in ages calculated by the model earlier than the archaeological records. The Bayesian chronology excluding these outliers separates the first two Teopancazco occupational phases and suggests that ending of the Xolalpan phase was around cal AD 550, 100 yr earlier than previously estimated and in accordance with previously reported archaeomagnetic dates from lime plasters for the same site.

  2. Low-level 14C measurements and Accelerator Mass Spectrometry

    SciTech Connect

    Litherland, A.E.; Beukens, R.P.; Zhao, X.-L.; Kieser, W.E.; Gove, H.E.

    2005-09-08

    Accelerator Mass Spectrometry (AMS) and isotope enrichment were used in 1991 to estimate that the 14C content of methane in natural gas was {<=}1.6x10-18 of the total carbon. The low content of 14C in underground hydrocarbons was verified later in the remarkable results from the Borexino test scintillation counter for solar neutrino studies. Since then studies of the 14C background problem have demonstrated that much of the background originally observed in the AMS measurements can, in principle, be eliminated. However, many difficulties and other backgrounds are to be faced as the limit for AMS is pushed still further towards possibly a ratio of < 10-21. These will be discussed.

  3. Carbon and 14C distribution in tropical and subtropical agricultural soils

    NASA Astrophysics Data System (ADS)

    Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie

    2016-04-01

    Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and

  4. Soil Carbon Vulnerability in Arctic Coastal Tundra: Seasonal and Spatial Variations in 14C-CO2

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Torn, M. S.; Conrad, M. E.; Curtis, J. B.; Hahn, M. S.

    2013-12-01

    One reason permafrost soils contain large, old soil organic carbon stores is slow decomposition rates due to cold and waterlogged conditions. If climate change causes high latitude soils to warm and dry, carbon emissions from permafrost soils could be an important atmospheric greenhouse gas source. The vulnerability of global Arctic soil carbon stocks to increased decomposition due to thaw is hard to assess, due to environmental heterogeneity, complex controls on microbial processes, uncertain carbon stocks and flux rates, and poorly understood soil carbon stabilization mechanisms. To address these knowledge gaps, we are using radiocarbon measurements to estimate carbon turnover times in polygonal tundra in Barrow, Alaska. Specifically, we ask: (1) how do old versus recently fixed soil carbon pools contribute to total decomposition, (2) how does this vary seasonally, and (3) how does it vary across a permafrost degradation gradient? Old radiocarbon ages of soil organic matter in perennially frozen soils and deep portions of the seasonally thawed active layer reflect slow historic decomposition rates, and changes in the radiocarbon content of respired CO2 indicate relative mineralization rates of this old, stored carbon. At four time points from June-October 2013, we sample soil organic matter and respired CO2 from low-centered, transitional, and high-centered polygons characteristic of a permafrost degradation cycle. We measure the radiocarbon content of CO2 in surface fluxes and soil pore space from 3 depths in the soil profile, and concurrently incubate active layer soils to resolve the 14C-CO2 signatures of individual soil layers. Preliminary data from 2012 suggest that old soil carbon stores are vulnerable to decomposition. CO2 ages increase with depth in the profile from modern radiocarbon ages to as old as 3115 BP, and high incubation flux rates indicate availability to microbes. As part of the Next Generation Ecosystem Experiment (NGEE-Arctic), we now study

  5. Insights into Holocene megafauna survival and extinction in southeastern Brazil from new AMS 14C dates

    NASA Astrophysics Data System (ADS)

    Hubbe, Alex; Hubbe, Mark; Karmann, Ivo; Cruz, Francisco W.; Neves, Walter A.

    2013-03-01

    The extinction of late Quaternary megafauna in South America has been extensively debated in past decades. The majority of the hypotheses explaining this phenomenon argue that the extinction was the result of human activities, environmental changes, or even synergism between the two. Although still limited, a good chronological framework is imperative to discuss the plausibility of the available hypotheses. Here we present six new direct AMS 14C radiocarbon dates from the state of São Paulo (Brazil) to further characterize the chronological distribution of extinct fauna in this part of South America. The new dates make evident that ground sloths, toxodonts, and saber-toothed cats lived in the region around the Pleistocene/Holocene transition, and, in agreement with previous studies, also suggest an early Holocene survival for the ground sloth Catonyx cuvieri. Taken together with local paleoclimatic and archaeological data, the new dates do not support hunting or indirect human activities as a major cause for megafauna extinction. Although more data are required, parsimony suggests that climatic changes played a major role in this extinction event.

  6. The surface expression of radiocarbon anomalies near Baja California during deglaciation

    NASA Astrophysics Data System (ADS)

    Lindsay, Colin M.; Lehman, Scott J.; Marchitto, Thomas M.; Ortiz, Joseph D.

    2015-07-01

    Periods of declining atmospheric radiocarbon activity (Δ14C) during the Heinrich 1 (∼17.8-14.6 ka) and Younger Dryas (∼12.8-11.5 ka) stadials of the last deglaciation coincide with intervals of rising atmospheric CO2, as well as evidence of 14C-depleted carbon at intermediate ocean depths near Baja California, Mexico and in the Arabian Sea. The latter has been interpreted as the signature of aged carbon emerging through the intermediate ocean to the atmosphere from a previously isolated deep ocean reservoir. Here we report measurements from near Baja California that enable us to reconstruct the Δ14 C of surface waters as recorded by three different species of planktonic foraminifera. We find that surface ocean Δ14 C recorded by planktonic foraminifera was anomalously low relative to the coeval atmosphere during previously documented periods of low benthic Δ14 C, consistent with upwelling and subsequent mixing and/or partial atmospheric equilibration of the intermediate-depth benthic signal. We also propose an oceanographic explanation for observed Δ14 C differences between individual planktonic species during deglaciation at this location, based on seasonal growth habitats and a seasonal change in the source of coastal upwelling waters: from northern in the spring to southern in late summer, as the shelf-trapped poleward California Undercurrent strengthens. An analysis of the contemporary hydrography and planktic habitat preferences suggests that G. bulloides and G. sacculifer record primarily springtime conditions off Baja California, when the local influence of waters sourced from the surface of the North Pacific is greatest. This is supported by the strong resemblance of the Δ14 C of those species and a recent record of planktic Δ14 C from the Northeast Pacific during deglaciation. Lower Δ14 C recorded by the late-summer species G. ruber suggests that locally upwelling waters carried 14C-depleted carbon that was proximately sourced from equatorial

  7. Study of Rainbow Scattering in 16O + 14C System

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Glukhov, Yu. A.; Ogloblin, A. A.; Trzaska, W.; Bohlen, H. G.; Oertzen, W. Von; Goncharov, S. A.; Izadpanakh, A.; Maslov, V. A.; Penionzhkevich, Yu. E.; Sobolev, Yu. G.; Khlebnikov, S. V.; Tyurin, G. P.

    2005-09-01

    We carried out new measurements of the 16O+14C differential cross-sections at the 16O energy 281 MeV in the large angles interval at the Jyvaskyla University cyclotron and at the smallest angles at the cyclotron of Hahn-Meitner institute. The results of the experiment showed that clear rainbow structure in 16O + 14C scattering really takes place. The observed position of the main Airy minimum predicted but not observed in previous measurements fits well to the empirical systematization "angle - inverse energy", obtained for the system 16O + 12C.

  8. Search for exotic cluster configurations in 14C nucleus

    NASA Astrophysics Data System (ADS)

    Korotkova, L. Yu; Chernyshev, B. A.; Gurov, Yu B.; Karpuhin, V. S.; Lapushkin, S. V.; Pritula, R. V.; Schurenkova, T. D.

    2016-02-01

    The analysis of 2-dimentional Dalitz’ diagram, measured in 14C(π-, pd)X reaction, allowed to distinguish the pion absorption by p intranuclear cluster and to obtain an indication on the existence of 3p + 11Li configuration in 14C nucleus. Highly excited states of 12,13Be isotopes were found with the energy of Ex ≈ 30 MeV for the first time. It was shown that these states decay as follows 12Be*→p + 11Li and 13Be*→d + 11Li.

  9. Origin of the Anomalous Long Lifetime of 14C

    SciTech Connect

    Dean, David Jarvis; Nam, Hai Ah; Maris, Pieter; Vary, J. P.; Navratil, Petr; Ormand, W. Erich

    2011-01-01

    We report the microscopic origins of the anomalously suppressed beta decay of 14C to 14N using the ab initio no-core shell model with the Hamiltonian from the chiral effective field theory including three-nucleon force terms. The three-nucleon force induces unexpectedly large cancellations within the p shell between contributions to beta decay, which reduce the traditionally large contributions from the nucleon-nucleon interactions by an order of magnitude, leading to the long lifetime of 14C.

  10. Source Apportionment of Elemental Carbon Across the San Francisco Bay Area Using Combined Radiocarbon and Chemical Mass Balances

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Fairley, D.; Sheesley, R. J.

    2014-12-01

    The San Francisco Bay Area is impacted by ambient particulate matter (PM) from a variety of sources including motor vehicles, biomass burning, off-road vehicles, industry, and meat cooking. Ambient PM, especially fine PM (diameter less than 2.5μm, PM2.5), is known to negatively impact health. Elemental Carbon (EC) is one of the major constituents of PM2.5. It not only negatively affects health but is also a powerful short-lived climate forcer. The State of California and Bay Area Air Quality Management District (BAAQMD) have made efforts in regulating contribution of EC from diesel trucks and wood burning, respectively. These and other efforts have assisted in significantly reducing the annual average PM2.5 concentrations approximately 30% since 2005 and 70% since 1990. Despite these improvements, to better determine the relative contribution of contemporary vs. fossil carbon, radiocarbon source apportionment of EC was conducted on PM2.5 collected in the Bay Area. Measurements of the abundance of 14C in the EC fractions are used to quantify the relative contributions of fossil carbon (fossil fuel combustion, including motor vehicle exhaust) and contemporary carbon (biomass combustion and meat cooking). This comprehensive study included seven sites in the Bay Area and 12 months of sampling starting November 2011 through October 2012. The samples were composited to represent winter (November-February) and non-winter (March-October). In addition to radiocarbon analysis, Chemical Mass Balance (CMB) analysis using bulk PM2.5 composition and selected trace gases was used to understand the split among gasoline, natural gas, and diesel exhaust. Preliminary apportionment of the seven sites shows roughly equal contributions of fossil fuel and biomass burning/cooking for both winter and non-winter samples. There is evidence that the diesel contribution to EC, in particular, has decreased substantially over the last decade.

  11. Calculating radiation exposures during use of (14)C-labeled nutrients, food components, and biopharmaceuticals to quantify metabolic behavior in humans.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2010-04-28

    (14)C has long been used as a tracer for quantifying the in vivo human metabolism of food components, biopharmaceuticals, and nutrients. Minute amounts (< or =1 x 10 (-18) mol) of (14)C can be measured with high-throughput (14)C-accelerator mass spectrometry (HT (14)C-AMS) in isolated chemical extracts of biological, biomedical, and environmental samples. Availability of in vivo human data sets using a (14)C tracer would enable current concepts of the metabolic behavior of food components, biopharmaceuticals, or nutrients to be organized into models suitable for quantitative hypothesis testing and determination of metabolic parameters. In vivo models are important for specification of intake levels for food components, biopharmaceuticals, and nutrients. Accurate estimation of the radiation exposure from ingested (14)C is an essential component of the experimental design. Therefore, this paper illustrates the calculation involved in determining the radiation exposure from a minute dose of orally administered (14)C-beta-carotene, (14)C-alpha-tocopherol, (14)C-lutein, and (14)C-folic acid from four prior experiments. The administered doses ranged from 36 to 100 nCi, and radiation exposure ranged from 0.12 to 5.2 microSv to whole body and from 0.2 to 3.4 microSv to liver with consideration of tissue weighting factor and fractional nutrient. In comparison, radiation exposure experienced during a 4 h airline flight across the United States at 37000 ft was 20 microSv. PMID:20349979

  12. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information...

  13. 17 CFR 240.14c-7 - Providing copies of material for certain beneficial owners.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for certain beneficial owners. 240.14c-7 Section 240.14c-7 Commodity and Securities Exchanges... Rules and Regulations Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-7 Providing copies of material for certain beneficial...

  14. 17 CFR 240.14c-4 - Presentation of information in information statement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... information statement. 240.14c-4 Section 240.14c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-4 Presentation of information in information statement. (a) The...

  15. 17 CFR 240.14c-7 - Providing copies of material for certain beneficial owners.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for certain beneficial owners. 240.14c-7 Section 240.14c-7 Commodity and Securities Exchanges... Rules and Regulations Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-7 Providing copies of material for certain beneficial...

  16. 17 CFR 240.14c-6 - False or misleading statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 240.14c-6 Section 240.14c-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-6 False or misleading statements. (a) No information statement shall contain any statement...

  17. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information...

  18. 17 CFR 240.14c-6 - False or misleading statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 240.14c-6 Section 240.14c-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-6 False or misleading statements. (a) No information statement shall contain any statement...

  19. 17 CFR 240.14c-7 - Providing copies of material for certain beneficial owners.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for certain beneficial owners. 240.14c-7 Section 240.14c-7 Commodity and Securities Exchanges... Rules and Regulations Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-7 Providing copies of material for certain beneficial...

  20. 17 CFR 240.14c-4 - Presentation of information in information statement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information statement. 240.14c-4 Section 240.14c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-4 Presentation of information in information statement. (a) The...

  1. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information...

  2. 17 CFR 240.14c-6 - False or misleading statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 240.14c-6 Section 240.14c-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-6 False or misleading statements. (a) No information statement shall contain any statement...

  3. 17 CFR 240.14c-6 - False or misleading statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 240.14c-6 Section 240.14c-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-6 False or misleading statements. (a) No information statement shall contain any statement...

  4. 17 CFR 240.14c-7 - Providing copies of material for certain beneficial owners.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for certain beneficial owners. 240.14c-7 Section 240.14c-7 Commodity and Securities Exchanges... Rules and Regulations Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-7 Providing copies of material for certain beneficial...

  5. 17 CFR 240.14c-4 - Presentation of information in information statement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... information statement. 240.14c-4 Section 240.14c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-4 Presentation of information in information statement. (a) The...

  6. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information...

  7. 17 CFR 240.14c-6 - False or misleading statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... 240.14c-6 Section 240.14c-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Regulation 14c: Distribution of Information Pursuant to Section 14(c) § 240.14c-6 False or misleading statements. (a) No information statement shall contain any statement...

  8. 14C in cropland soil of a long-term field trial - in-field variability and implications for estimating carbon turnover

    NASA Astrophysics Data System (ADS)

    Leifeld, J.; Mayer, J.

    2015-03-01

    Because of their controlled nature, the presence of independent replicates, and their known management history long-term field experiments are key to the understanding of factors controlling soil carbon. Together with isotope measurements, they provide profound insight into soil carbon dynamics. For soil radiocarbon, an important tracer for understanding these dynamics, in-field variability across replicates is usually not accounted for, hence, a relevant source of uncertainty for quantifying turnover rates is missing. Here, for the first time, radiocarbon measurements of independent field replicates, and for different layers, of soil from the 60 years old controlled field experiment ZOFE in Zurich, Switzerland, is used to address this issue. 14C variability was the same across three different treatments and for three different soil layers between surface and 90 cm depths. On average, in-field variability in 14C content was 12 times the analytical error but still, on a relative basis, smaller than that of in-field soil carbon concentration variability. Despite a relative homogeneous variability across the field and along the soil profile, the curved nature of the relationship between radiocarbon content and modelled carbon mean residence time suggests that the absolute error, without consideration of in-field variability, introduced to soil carbon turnover time calculations increases with soil depth. In our field experiment findings on topsoil carbon turnover variability would, if applied to subsoil, tend to underweight turnover variability even if in-field variability of the subsoil isotope concentration is not higher. Together, in-field variability in radiocarbon is an important component in an overall uncertainty assessment of soil carbon turnover.

  9. Assessing influences on speleothem dead carbon variability over the Holocene: Implications for speleothem-based radiocarbon calibration

    NASA Astrophysics Data System (ADS)

    Noronha, Alexandra L.; Johnson, Kathleen R.; Hu, Chaoyong; Ruan, Jiaoyang; Southon, John R.; Ferguson, Julie E.

    2014-05-01

    Recently, it has been shown that U-Th dated speleothems may provide a valuable archive of atmospheric radiocarbon (14C), but the reliability of these records is dependent upon the stability of the dead carbon proportion (DCP) derived from the soil and bedrock. In order to assess climatic influences on speleothem DCP, we have investigated DCP variability over the Holocene interval where atmospheric 14C is well known based on dendrochronologically dated tree rings by conducting 14C measurements on a U-Th dated stalagmite (HS4) from Heshang Cave, Hubei Province, China (30°27‧N, 110°25‧E; 294 m) spanning 0.5-9.6 ka. We investigated climatic controls on DCP, and found that DCP in HS4 has an average value over the Holocene of 10.3±1.5%, with an average age offset from atmospheric radiocarbon of 875±130 years, and displays a response to both precipitation increases and decreases. HS4 DCP increases during the wetter mid-Holocene interval (˜5.5-7.1 ka), likely reflecting a shift to more closed-system dissolution in response to increased soil moisture. DCP decreases during the 8.2 ka event, a time period of dry conditions at Heshang Cave, though the lower amplitude of this shift indicates that DCP may be less sensitive to dry events. Speleothems are potentially valuable archives of atmospheric radiocarbon, especially in older portions of the 14C calibration curve where knowledge of atmospheric 14C is limited, however minor climatic influences on DCP could introduce uncertainties of several hundred years to calibrated ages.

  10. Application of Bomb Radiocarbon Chronologies to Shortfin Mako (Isurus oxyrinchus)

    SciTech Connect

    Ardizzone, D; Cailliet, G M; Natanson, L J; Andrews, A H; Kerr, L A; Brown, T A

    2007-07-16

    and the number of samples for MIA analysis was insufficient for some months. Hence, unequivocal validation of shortfin mako age estimates has yet to be accomplished. Atmospheric testing of thermonuclear devices in the 1950s and 1960s effectively doubled the natural atmospheric radiocarbon ({sup 14}C). The elevated {sup 14}C levels were first recorded in 1957-58, with a peak around 1963. As a consequence, {sup 14}C entered the ocean through gas exchange with the atmosphere at the ocean surface and in terrestrial runoff. Despite variable oceanographic conditions, a worldwide rise of the bomb {sup 14}C signal entered the ocean mixed layer as dissolved inorganic carbon (DIC) in 1957-58. The large amounts of {sup 14}C released from the bomb tests produced a signature that can be followed through time, throughout the marine food web, and into deeper waters. The marked increase of radiocarbon levels was first measured in the DIC of seawater and in biogenic marine carbonates of hermatypic corals in Florida. Subsequently, this record was documented in corals from other regions and in the thallus of rhodoliths. The accumulation of radiocarbon in the hard parts of most marine organisms in the mixed layer (such as fish otoliths and bivalves) was synchronous with the coral time-series. This technique has been used to validate age estimates and longevity of numerous bony fishes to date, as well as to establish bomb radiocarbon chronologies from different oceans. In the first application of this technique to lamnoid sharks, validated annual band-pair deposition in vertebral growth bands for the porbeagle (Lamna nasus) aged up to 26 years. Radiocarbon values from samples obtained from 15 porbeagle caught in the western North Atlantic Ocean (some of which were known-age) produced a chronology similar in magnitude to the reference carbonate chronology for that region. The observed phase shift of about 3 years was attributed to different sources of carbon between vertebrae and those for

  11. Stepped-combustion 14C dating of bomb carbon in lake sediment

    USGS Publications Warehouse

    McGeehin, J.; Burr, G.S.; Hodgins, G.; Bennett, S.J.; Robbins, J.A.; Morehead, N.; Markewich, H.

    2004-01-01

    In this study, we applied a stepped-combustion approach to dating post-bomb lake sediment from north-central Mississippi. Samples were combusted at a low temperature (400 ??C) and then at 900 ??C. The CO2 was collected separately for both combustions and analyzed. The goal of this work was to develop a methodology to improve the accuracy of 14C dating of sediment by combusting at a lower temperature and reducing the amount of reworked carbon bound to clay minerals in the sample material. The 14C fraction modern results for the low and high temperature fractions of these sediments were compared with well-defined 137Cs determinations made on sediment taken from the same cores. Comparison of "bomb curves" for 14C and 137Cs indicate that low temperature combustion of sediment improved the accuracy of 14C dating of the sediment. However, fraction modern results for the low temperature fractions were depressed compared to atmospheric values for the same time frame, possibly the result of carbon mixing and the low sedimentation rate in the lake system.

  12. Quantitative Identification of Biogenic Nonextractable Pesticide Residues in Soil by (14)C-Analysis.

    PubMed

    Poßberg, Claudia; Schmidt, Burkhard; Nowak, Karolina; Telscher, Markus; Lagojda, Andreas; Schaeffer, Andreas

    2016-06-21

    Quantification of nonextractable residues (NER) of pesticides in soil is feasible by use of radioactively labeled compounds, but structural information on these long-term stabilized residues is usually lacking. Microorganisms incorporate parts of the radiolabeled ((14)C-) carbon from contaminants into microbial biomass, which after cell death enters soil organic matter, thus forming biogenic nonextractable residues (bioNER). The formation of bioNER is not yet determinable in environmental fate studies due to a lack of methodology. This paper focuses on the development of a feasible analytical method to quantify proteinaceous carbon, since proteins make up the largest mass portion of bacterial cells. The test substance (14)C-bromoxynil after 56 days forms more than 70% of NER in soil. For further characterization of NER the amino acids were extracted, purified, and separated by two-dimensional thin-layer chromatography (TLC). Visualization of the (14)C-amino acids was performed by bioimaging, unambiguous identification by GC-MS and LC-MS/MS. Our analysis revealed that after 56 days of incubation about 14.5% of the (14)C-label of bromoxynil was incorporated in amino acids. Extrapolating this content based on the amount of proteins in the biomass (55%), in total about 26% of the NER is accounted for by bioNER and thus is not environmentally relevant. PMID:27192605

  13. 14C-urea breath test in C pylori gastritis.

    PubMed Central

    Rauws, E A; Royen, E A; Langenberg, W; Woensel, J V; Vrij, A A; Tytgat, G N

    1989-01-01

    14C-urea breath test was used to detect Campylobacter pylori colonisation in 129 consecutive non-ulcer dyspepsia patients. Fasting patients were given 3 microCi (110 kBq) of 14C-labelled urea after a test meal. Breath samples were collected at 10 minute intervals for 90 minutes and the C-14 activity was counted on a liquid scintillation analyser. Urea derived 14CO2 appears in the exhaled breath of Campylobacter pylori culture positive individuals within 20-30 minutes. Likelihood analysis revealed a most favourable cut off level of [0.07% dose 14C-urea/mmol CO2] multiplied by body weight at t = 40 minutes, to separate culture positive from culture negative subjects. Using this upper limit of normal, a positive likelihood ratio of 50 and a negative likelihood ratio of 0.05 was calculated. Sensitivity of the test was 95% and specificity 98%. The 14C-urea breath test is a simple, sensitive and non-invasive test, that detects viable C pylori microorganism and semiquantitatively assesses the bacterial load of C pylori colonisation. Administration of a single dose of colloidal bismuth subcitrate resulted in a rapid decrease in 14CO2 excretion, so this test can be used to confirm eradication of the bacterium in therapeutic trials without endoscopy, or need for culture. PMID:2753404

  14. Applications of AMS {sup 14}C on Climate and Archaeology

    SciTech Connect

    Gomes, P. R. S.

    2007-10-26

    We describe the Accelerator Mass Spectrometry (AMS) technique and two distinct applications of its use with {sup 14}C to study environmental problems in Brazil, such as forest fires and climate changes in the Amazon region and archaeological studies on the early settlements in the Southeast Brazilian coast.

  15. Excretion of radioactivity following the intraperitoneal administration of /sup 14/C-DDT, /sup 14/C-DDD, /sup 14/C-DDE and /sup 14/C-DDMU to the rat and Japanese Quail

    SciTech Connect

    Fawcett, S.C.; Bunyan, P.J.; Huson, L.W.; King, L.J.; Stanley, P.I.

    1981-09-01

    A study in progress to examine the metabolic fate of DDT in birds and mammals is discussed. The first phase of the study, which is reported in this article, has been to establish the rate of excretion of ratioactivity following the intraperitoneal administrations of /sup 14/C-DDT, /sup 14/C-DDE, /sup 14/C-DDD, and /sup 14/C-DDMU to male rats and male Japanese quail. The mean values from the three animals in each experimental group for the amount of radioactivity excreted daily are given, and it was found that the rats excreted the radioactivity administered as DDT, DDD, and DDE substantially faster than did the quail. DDMU was excreted relatively rapidly and at similar rates. This finding suggests that apparent differences in the rates of excretion of DDT by birds and mammals probably arise from differences in the conversion of DDT to DDD or DDE or in the degradation of these metabolites to DDMU. The Japanese quail differ from the rats in excreting substantial amounts of unchanged DDT, DDE, and DDD, which probably reflects the inability of the Japanese quail to readily metabolise these compounds.

  16. Relative and absolute emissions of anthropogenic trace gases around the US based on paired atmospheric observations of fossil fuel CO2 from 14C

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S.; Montzka, S. A.; Andrews, A. E.; Sweeney, C.; Miller, B. R.; Wolak, C.; Dlugokencky, E. J.; Southon, J. R.; Turnbull, J. C.; LaFranchi, B. W.; Guilderson, T. P.; Fischer, M. L.; Tans, P. P.

    2012-12-01

    The small radiocarbon fraction of atmospheric CO2 (~1:10^12 14C:C) has proven to be an ideal tracer for the fossil fuel derived component of observed CO2 (Cff) over large industrialized land areas. A growing number of 14CO2 measurements are now being made in air sampled from a network of tall towers and airborne profiling sites around the US alongside measurements of CO2, CO, CH4, N2O, SF6, and a large suite of halo- and hydro-carbons. Cff paired with boundary-layer enhancements of more than 20 other anthropogenic gases measured in the same samples allow us to determine apparent emissions ratios for each gas with respect to Cff (where apparent ratios refer to those at the time of observation rather than at the time of emission). Here we compare seasonal and spatial variability of apparent emissions ratios for regions of significant urban and industrial emissions around the US, including sites in California, Texas, the mid-west, south-east and north-east . Statistically significant and coherent spatial and seasonal patterns in apparent emissions ratios are determined for many gases over multiple years. These can in turn be combined with appropriate spatial footprints over which the emissions of fossil fuel derived CO2 has been independently determined based on inventories and process models in order to estimate absolute emissions of the correlate gases in different regions, following simple scaling methods we have outlined previously [Miller et al. 2012, J. Geophys. Res., doi:10.1029/2011JD017048]. This approach provides some of the first reliable "top down", observationally-based emissions estimates for these gases, many of which influence climate, air quality and stratospheric ozone. Unlike most "bottom up" inventories, our estimates of absolute trace gas emissions are accompanied by quantifiable estimates of uncertainty.

  17. Applications of radiocarbon measurements in environmental studies at INFN-LABEC, Florence

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Álvarez-Iglesias, P.; Caforio, L.; Calzolai, G.; Bernardoni, V.; Chiari, M.; Nava, S.; Taccetti, F.; Vecchi, R.

    2012-04-01

    Radiocarbon is one of the most widespread radionuclides in nature. Although it is probably best known for dating in archaeology, in the case of the general public, it represents a useful tracer to study our environment, both in the past and nowadays. For instance, carbonaceous particles, which are in many cases the most abundant among aerosols constituents, are believed to play a major role in both health and climatic effects of aerosols. In particular, measurement of radiocarbon concentration in particulate matter samples can give information on the contributions of the fossil fuels combustion and of natural sources to the carbonaceous fraction in aerosols. These measurements are especially effective when separately performed on different carbonaceous fractions, like elemental and organic carbon (EC and OC, respectively). Past climate is also studied thanks to old archives, as e.g. marine sediments can be. In this case, instead of radiocarbon dating the bulk sediment, a reliable method to fix chronological markers is represented by dating foraminifera tests of CaCO3 picked from different layers in the sediment. Both the aforementioned applications are characterized by the fact that the samples that can be collected for 14C measurements are typically very small, i.e. few mg or less (before any treatment). Accelerator Mass Spectrometry (AMS) is thus the only technique that can be applied to measure radiocarbon in such samples. Anyway, measurements cannot be so straightforward. In the case of the measurement of radiocarbon concentration in aerosol samples, a preparation line especially dedicated to the extraction of only the carbonaceous fraction of interest is mandatory. Actually, this line should include a combustion oven, from which either total carbon or EC and OC can separately evolve, and a system of traps to purify and collect the CO2. In the case of foraminifera tests (inorganic carbon), special care must be taken in the pre-treatment phase: foraminifera can

  18. 14C AMS measurements in tree rings to estimate local fossil CO 2 in Bosco Fontana forest (Mantova, Italy)

    NASA Astrophysics Data System (ADS)

    Capano, Manuela; Marzaioli, Fabio; Sirignano, Carmina; Altieri, Simona; Lubritto, Carmine; D'Onofrio, Antonio; Terrasi, Filippo

    2010-04-01

    Radiocarbon concentration in atmosphere changes overtime due to anthropogenic and natural factors. Species growth preserves the local atmospheric radiocarbon signature over their life span in the annual tree rings and make it possible to use tree rings for the monitoring of changes in fossil-fuel emissions due to an increase of traffic exhaust, during the last decades. In this paper, the CIRCE AMS system has been used to measure the 14C concentration in tree rings of plants grown near an industrial area and a very busy State Road, in a forest in north Italy. Preliminary results related to tree rings of several years of plants respectively near and far the emitting sources are displayed, in order to estimate the local pollution effect. It is possible to find a dilution in years 2000 and 2006 in both the trees analysed, but not enough data have been analysed yet in order to distinguish the fossil dilution derived from the street vehicular traffic or that from the industries.

  19. Distribution of N-methyl-(14)C-labeled selegiline in the rat.

    PubMed

    Tekes, Kornélia; Pöstényi, Zita; Faigl, Erzsébet B; Magyar, Kálmán; Polyák, András; Trencsényi, György; Balogh, Lajos; Kalász, Huba

    2015-01-01

    Tissue distribution of selegiline including N-methyl-(14)C-selegiline was studied with three different techniques. Whole body autoradiography of labeled selegiline in rats completed the former results obtained in mice. Counting radioactivity by liquid scintillation method in various body compartments gave an in-depth numerical estimation of distribution, while RP-HPLC determination of selegiline determined the fate of intact, non-metabolized parent compound. Whole body autoradiography following 15 and 60 min of intraperitoneal application of N-methyl-(14)C-selegiline verified definite and time-dependent blood-brain penetration of selegiline. Quantitative determination of tissue concentrations by liquid scintillation and RP-HPLC methods following 5, 15, 60 and 180 min of intraperitoneal administration of selegiline unanimously verified both blood-brain and blood-testis penetration of the compound through the barrier. PMID:25886391

  20. Thirteenth radioactive conference, radiocarbon measurements and applications, Dubrovnik, Yugoslavia, June 20--25, 1988: Foreign trip report

    SciTech Connect

    Peng, T.H.

    1988-07-08

    The International Radiocarbon Conference is held once every three years. The purpose of the meeting is to offer an opportunity for an international community of scientists to present and discuss results of their research on improving techniques for radiocarbon measurement and their application in various aspects of natural systems, including the ocean-atmosphere carbon cycle. Four major sessions were held for the presentation of scientific results, another session dealt with radiocarbon data bases, and the final session was devoted to workshops for radiocarbon measurement and international comparison. A total of 152 papers were presented, which included both oral and poster presentations. Participants came from over 30 countries, with a total number of about 200. The paper presented by the traveler, entitled ''Changes in Ocean Ventilation Rates Over the Last 7000 Years Based on /sup 14/C Variations in the Atmosphere and Oceans,'' was included in the oceanography portion of the Carbon Cycle in the Environment session. Radiocarbon is the most powerful and useful tracer for studying the carbon cycle in the atmosphere-biosphere-ocean system. The measuring technique has mostly shifted from a conventional ..beta..-counting approach that uses gas or liquid scintillation counters to an atom counting approach that uses the accelerator mass spectrometer.

  1. Air pollutants targeted by radiocarbon dating

    SciTech Connect

    Not Available

    1987-07-01

    Chemists at the Commerce Department's National Bureau of Standards (NBS) are answering questions about where certain atmospheric contaminants originate by refining a method best known for determining the age of archeological objects. Called radiocarbon dating, the method allows NBS scientists to examine air samples and determine whether contaminants come from naturally occurring or manmade sources-or a combination of the two. Making these distinctions is important to federal and state environmental agencies, which identify industrial sources of pollution for regulatory action. An overbalance of atmospheric carbon can cause a number of environmental problems. In methane's case, high levels are of concern to environmental agencies because of greenhouse properties. Methane also has been implicated as a possible contributor to changes in the ozone layer that protects the Earth from excessive ultraviolet light. Levels of methane have been increasing at an annual rate of about one percent over the last decade. This has caused concern in the environmental community, which hopes to determine just where the elevated levels are coming from. The NBS research is aimed at definitively pinpointing sources of methane and other atmospheric contaminants.

  2. Hard-water dynamics and their reservoir effects on radiocarbon dating of Lake Heihai sediments (NE Tibetan Plateau, Qinghai, China)

    NASA Astrophysics Data System (ADS)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd; Ramisch, Arne; Diekmann, Bernhard

    2014-05-01

    Age determination of lake sediments with radiocarbon dating can always entail a perturbation with hard water. Atmospheric carbon (expressing the "real" ages) can be mixed with older carbon from allochthonous input (e.g. marl or limestone), causing an overestimation of 14C ages. The usual approach to eliminate this effect is to date living plants or shells to determine the modern offset in age. Subsequently, this offset is subtracted from 14C ages of a sediment core to attain hard water corrected ages. However, this approach assumes a constant hard water effect over the entire period under consideration, which generally is unlikely. Here we present a highly variable hard water effect through time determined from a combined chronology of two long sediment cores from Lake Heihai (NE Tibetan Plateau). The chronology is based on 20 14C AMS dates of Potamogeton spec. Based on the relation between 14C ages and the input of allochthonous carbonates as well as calculated sedimentation rates, we developed an age-depth-model that estimates the actual ages of the sediments and allows the quantification of hard water effect through time. As a result this model suggests a fluctuating hard water effect varying between 102 to 103 ka. Ages in the lower 3 meter of the core, which corresponds to late glacial times, strongly correlate with the input of dolomite (CaMg(CO3)2). The correlation suggests a strong linkage between the allochthonous input of old carbon and the variations in dating results. In this section, the estimated hard water effect shows its highest values. Results of XRD, grain size and pollen data confirm a shallow lake with high rates of detrital input. The Late Glacial - Holocene transition to warmer and wetter conditions is marked by prominent changes in the mineralogy of lacustrine carbonates and the composition of pollen taxa. During this time the lake constantly rose and increasingly buffered the influence of allochthonous carbonates. The episode is

  3. Radiocarbon age of the kohitsugire calligraphy and the kiwamefuda certificate

    NASA Astrophysics Data System (ADS)

    Oda, Hirotaka; Ikeda, Kazuomi; Nakamura, Toshio

    2007-06-01

    Kohitsugire are ancient paper sheets with elegant calligraphy. They were originally leaves of ancient manuscripts written mainly from the 8th to the 15th century. Old manuscripts are rarely discovered as complete books; therefore, kohitsugire can be significant materials for historical studies if the written ages or the calligraphists or both are known. Most of kohitsugire have kiwamefuda certificates which identify the calligraphists. This is also a clue about the written age. In this study, we determined the written ages of kohitsugire from three viewpoints: radiocarbon dating, calligraphical investigation and the kiwamefuda. Comparison of radiocarbon age and the calligraphical evidence of each kohitsugire give fair agreement. The results are, however, in obvious conflict with the age of the calligraphist noted on the kiwamefuda, and showed the doubtful reliability of kiwamefuda.

  4. New radiocarbon dates on the cereals from Wadi Kubbaniya

    SciTech Connect

    Wendorf, F.; Schild, R.; Close, A.E.; Donahue, D.J.; Jull, A.J.T.; Zabel, T.H.; Wieckowska, H.; Kobusiewicz, M.; Issawi, B.; el Hadidi, N.

    1984-01-01

    In 1978, three carbonized grains of barley and a carbonized grain of einkorn wheat were found in a buried hearth at a Late Paleolithic site at Wadi Kubbaniya in Egypt. In 1981, two large clusters of barley seeds, which were identified as six-row barley and thus domestic, were found at a nearby site of comparable age. Numerous grinding stones, presumed to have been used for processing the cereals, were found in these and other sites, often deeply buried, and 30 radiocarbon dates placed the occupations between 18,500 and 17,000 radiocarbon years ago. These finds led us to suggest an early origin of food production, with implications for the initial development of complex societies. Several barley seeds were analyzed by electron spin resonance spectroscopy to determine the maximal temperature to which they had been subjected before burial. Six barley seeds and three small pieces of wood charcoal were dated directly by using a tandem accelerator mass spectrometer.

  5. Biogenic contribution to PM-2.5 ambient aerosol from radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Lewis, C.; Klouda, G.; Ellenson, W.

    2003-04-01

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (14C) measurements provide a means to quantify the biogenic fraction of any carbon-containing sample of ambient aerosol. In the absence of an impact from biomass burning (e.g., during summertime) such measurements can provide an estimate of the contribution of biogenic secondary organic aerosol, from biogenic volatile organic compound precursors. Radiocarbon results for 11.5-h PM-2.5 samples collected near Nashville, Tennessee, USA, during summer 1999 will be presented. On average the measured biogenic fraction was surprisingly large (more than half), with the average biogenic fraction for night samples being only slightly smaller than for day samples. Discussion will include (a) description of the radiocarbon methodology, (b) use of radiocarbon measurements on local vegetation and fuel samples as calibration data, (c) concurrent measurements of organic carbon and elemental carbon ambient concentrations, (d) assessment of organic aerosol sampling artifact through use of organic vapor denuders, variable face velocities, and filter extraction, and (e) comparison with published radiocarbon results obtained in Houston, Texas in a similar study. Disclaimer: This work has been funded wholly or in part by the United States Environmental Protection Agency under Interagency Agreement No. 13937923 to the National Institute of Standards and Technology, and Contract No. 68-D5-0049 to ManTech Environmental Tecnology, Inc. It has been subjected to Agency review and approved for publication.

  6. State of the Art of the all-Optical Radiocarbon Detection (Invited)

    NASA Astrophysics Data System (ADS)

    Cancio Pastor, P.; Mazzotti, D.; Galli, I.; Giusfredi, G.; Bartalini, S.; Cappelli, F.; De Natale, P.

    2013-12-01

    Radiocarbon (14C), the 'natural clock' for dating organic matter, is a very elusive atom. Its present concentration is about one part per trillion. For the past 30 years, accelerator mass spectrometry (AMS) has been adopted as the standard method for detecting such carbon isotope at concentrations well below its natural abundance (3 parts per quadrillion). AMS requires a smaller carbon mass and shorter measurement times than the old standard method of liquid scintillation counting. However, AMS requires huge, expensive and high-maintenance experimental facilities. We have developed a laser spectroscopy technique that is sensitive enough to detect the radiocarbon dioxide molecules at very low concentrations with an all-optical setup that is orders of magnitude more compact and less expensive than AMS [1]. The optical spectroscopy approach is based in the detection of very weak absorption of IR laser light by a 14C-containing molecule as 14C-Carbon Dioxide. Spectroscopic techniques as Cavity Ring Down (CRD) spectroscopy that uses the kilometric absorption paths provided by high-Finesse Fabry-Perot cavities have revolutionized the trace gas detection of molecular species in terms of ultimate sensitivity. Nevertheless CRD has been not capable to detect very elusive molecules as radiocarbon Dioxide. The new developed technique, named SCAR (saturated-absorption cavity ring-down), makes use of molecular absorption saturation to enhance resolution and sensitivity with respect to conventional CRD [2]. By combining SCAR with a frequency-comb-linked CW coherent source, which delivers tunable radiation (around 4.5-μm wavelength) [3], we could set an unprecedented limit in trace gas detection, accessing the part-per-quadrillion concentration range. Comparison between AMS and SCAR techniques to detect 14C by measuring the same carbon samples shows SCAR-based results are currently one order of magnitude shy of challenging AMS, but there is still room for improvement [4

  7. Characterization of terrestrial organic matter transported through the Lena River Delta (NE Siberia) to its adjacent nearshore zone using lignin phenols, δ13C and ∆14C

    NASA Astrophysics Data System (ADS)

    Winterfeld, M.; Goni, M. A.; Just, J.; Hefter, J.; Han, P.; Mollenhauer, G.

    2014-12-01

    The Lena River in central Siberia is one of the major pathways translocating terrestrial organic matter (OMterr) from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea and the Arctic Ocean. Permafrost soils from its vast catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, we analyzed the lignin phenol and carbon isotopic composition (δ13C and ∆14C) in total suspended matter (TSM) from surface waters collected in spring and summer, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta. A simple linear mixing model based on the lignin phenol distributions indicates OM in TSM samples from the delta and Buor Khaya Bay surface sediments contains comparable contributions from gymnosperm sources, which are primarily from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small area covered by tundra (~12% of total catchment), the input of tundra-derived OM input is substantial and likely to increase in a warming Arctic. Radiocarbon compositions (∆14C) of bulk OM in TSM samples varied from -55 to -391‰, i.e. 14C ages of 395 to 3920 yrs BP. Using δ13C compositions to estimate the fraction of phytoplankton-derived OM and assuming that this material has a modern 14C signature, we inferred the ∆14C compositions of OMterr in TSM exported by the Lena River to range between -190 and -700‰. Such variability in the ages of OMTERR (i.e. 1640 to 9720 14C yrs BP) reflects the heterogeneous composition and residence time of OM in the Lena River catchment soils (Holocene to Pleistocene ages). Lignin phenol and ∆14C compositions of surface sediments from the adjacent Buor Khaya Bay suggest that OMTERR deposited there is older and more degraded than materials present in river particles and catchment soils. Stronger

  8. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    NASA Astrophysics Data System (ADS)

    Pigati, Jeffrey S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-09-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ˜12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ˜40 ka should

  9. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur, III

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ∼12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ∼40 ka should

  10. Comparison of Soil Organic Matter Dynamics at Four Temperate Deciduous Forests with Physical Fractionation and Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Torn, M. S.; Hanson, P. J.; Swanston, C.; Guilderson, T. P.; Porras, R. C.

    2009-12-01

    Forest soils represent a significant pool for C sequestration and storage, but the factors controlling soil C cycling are not well constrained. We used density fractionation and radiocarbon measurements to assess differences in soil C cycling amongst four eastern deciduous forests that are part of the AmeriFlux Network and vary in climate, soil type, parent material, and soil ecology. We collected mineral soil from 0-5 cm and 5-15 cm depth at Harvard Forest (HAF) in central Massachusetts, Bartlett Experimental Forest (BEF) in New Hampshire, the University of Michigan Biological Station (UMBS), and Baskett Wildlife Recreation and Education Area in the Missouri Ozarks (MOZ). Deeper soil samples have been collected (to 75 cm in some cases) for future analysis. We fractionated soil samples by density into free light (unprotected SOM), occluded light (physically protected SOM), and dense (mineral-protected) fractions using sodium polytungstate (1.65 g ml-1), measured C concentration and radiocarbon in bulk soil and fractions, and used a three-pool steady-state model to determine radiocarbon-based turnover times for fractions. The northeastern sites, HAF and BEF, had higher bulk soil C (65 and 40 g C kg soil-1, respectively) than did MOZ or UMBS (20 and 10 g C kg soil-1). Bulk soil radiocarbon values (Δ14C) decreased with depth and were lower at northeastern sites than Midwestern sites (36, 8, 113, and 65 ‰ for 0-5 cm at HF, BEF, MOZ, and UMBS, respectively). Soil C distribution amongst fractions was similar at HAF, BEF, and MOZ with the unprotected free light fraction containing about 40% of bulk soil C for 0-5 cm and 20% of bulk soil C for 5-15 cm. At these three sites, the physically protected occluded light fraction contained about 10% of bulk soil C, with the mineral-protected dense fraction containing the remaining 50-70%. In contrast, UMBS, the site with the sandiest soil, had a greater portion of bulk soil C recovered in the unprotected free light fraction and

  11. Refinement of Isotopically Derived Fine Root Lifespans Using A Locally Released Radiocarbon Label in Oak Ridge, TN.

    NASA Astrophysics Data System (ADS)

    Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Joslin, J. D.

    2003-12-01

    Isotopic techniques (13C and 14C) are relative newcomers among the approaches used to quantify fine root (< 2 mm diameter) dynamics in a field setting. Direct measurements of the isotopic content of root tissues, used as a proxy for root age, have shown that at least some portion of the fine root system lives for 5-10 years or more. In this work we take advantage of a local radiocarbon (14C) release in Oak Ridge, TN in summer 1999, to examine (1) the influence of stored C in new root growth and (2) the lifespan of fine roots from a mature, temperate deciduous forest. This release provides a local 14C pulse of similar magnitude to the peak of the 14C bomb spike. However, since we have been able to make ecosystem wide measurements within one year of the local 14C release we have much greater time resolution than we do with the standard bomb-14C technique applied today (which is 1-2 years). We have constructed a new multi-compartment model of root growth and decay, whose structure was developed using data from field sampling at Oak Ridge, TN. Model results, constrained with a 14C time series of new root growth, show that fine roots are grown with 10% of their carbon coming from stored C sources. Additionally, a three-year time series of root cores shows that at least two pools are required to account for 14C changes in live and dead fine roots. Testing this 14C data set with our model shows that the shorter-lived root pool has a turnover time (mean lifetime) of a few months and the longer-lived pool has a turnover time of ~5 years.

  12. 14C Terrestrial Ages of Meteorites from Desert Regions: Algeria and Australia

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.; Wlotzka, F.; Bevan, A. W. R.; Brown, S. T.; Donahue, D. J.

    1993-07-01

    The terrestrial age or residence time on the Earth's surface is important in determining the history of a meteorite. Carbon-14 has been used for a terrestrial-age indicator since 1962 [1,2]. Since 1984, small samples of meteorites of 0.1 to 0.5 g have been dated using accelerator mass spectrometry [3-5]. The precision of terrestrial age estimates is limited by the accuracy to which the saturated activity of ^14C in the meteorite is known. Jull et al. [4,5] used Bruderheim and some other chondrites to establish a saturated activity reference level. It is important to be aware that ^14C can vary with the depth and size of the object, and ^14C as a function of accurate depth has so far been measured only for one object, Knyahinya [7]. Carbon-14 is of particular interest in warmer climatic regions, where the storage time before a meteorite weathers away is expected to be much less than other locations, for example, Antarctica. This view was originally based on the work of Boeckl [7], who determined a "weathering half life" of some 3500 yr for chondrites from the southwestern U.S. This work was reinvestigated [5] and it was determined that the ^14C age distribution of the meteorites was longer than the earlier report. We have studied ^14C ages of meteorites from Roosevelt County, New Mexico [8], and from the western Libyan desert [9]. In both these areas meteorites of ages as old as 35,000 yr are observed, and the mean survival time at both locations is well over 10,000 yr. We have studied the ^14C age distribution of a large number of meteorites from Acfer, Algeria, and the Nullarbor Plain, Australia. Figure 1 presents the ^14C age distribution of Acfer samples compared to some other locations where a substantial number of ^14C ages have been obtained. The Algerian site shows a simple exponential dependence of terrestrial age vs. time, and no meteorites of >25 K.y. age. This is in contrast to the results from the southwestern U.S. [7] and from Roosevelt County [8]. One

  13. Radiocarbon in annual coral rings from the eastern tropical Pacific ocean

    SciTech Connect

    Druffel, E.M.

    1981-01-01

    Sixty radiocarbon measurements were performed on aragonite from annually banded corals collected from three sites in the Galapagos Islands. Preanthropogenic ..delta../sup 14/C values of coral that grew around A.D. 1930 averaged -70%/sub 0/. This is substantially lower than average values previously reported (-51%/sub 0/) for corals from Florida and Belize in the western North Atlantic Ocean. A decrease of 6% was noticed in coral that grew from 1930 to 1954. This decrease could be interpreted as a Suess effect in surface ocean water. The 100%/sub 0/ increase in ..delta../sup 14/C for coral that grew from 1954 to 1973 is the result of bomb-produced /sup 14/C that was introduced to the surface ocean waters. The /sup 14/C levels in corals that grew during El Nino years were considerably higher than those for normal years. These higher values are attributed to the absence of upwelling at the equator during El Nino events.

  14. The metabolism of [14C]-debrisoquine in man.

    PubMed Central

    Idle, J R; Mahgoub, A; Angelo, M M; Dring, L G; Lancaster, R; Smith, R L

    1979-01-01

    1 The synthesis of [14C]-debrisoquine hydrochloride and 4-hydroxy-debrisoquine sulphate is described. 2 The metabolic fate and excretion profile in both urine and faeces of 14C-labelled debrisoquine was studied in five healthy human subjects. 3 Investigations showed that the drug is well-absorbed after a single oral dose of 32 mg and quantitatively eliminated from the body within three days. 4 4-Hydroxy-debrisoquine is the major metabolite of debrisoquine, although significant amounts of 5-,6-, 7- and 8-hydroxy-debrisoquine are also formed. 5 Electron-capture gas chromatography is a useful method for measuring debrisoquine and its five hydroxylated metabolites in urine at the pg level. PMID:371651

  15. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: assessing applicability and quantifying uncertainties.

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan; van der Lubbe, Jeroen; Davies, Gareth

    2016-04-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to rapidly changing past external impacts. A common geochronological method used for such studies is radiocarbon (14C) dating, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioural processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test-bed, combined with a comprehensive approach that objectively excludes both old carbon and species-specific effects, we demonstrate that it is possible to use 87Sr/86Sr ratios to quantify R(t) in ubiquitous mollusc shell material, leading to almost one order of magnitude increase in Baltic Sea 14C geochronological precision over the current state-of-the-art. We propose that this novel proxy method can be developed for other brackish water bodies worldwide, thereby improving geochronological control in these climate sensitive, near-coastal environments.

  16. Pediatric microdose and microtracer studies using 14C in Europe.

    PubMed

    Turner, M A; Mooij, M G; Vaes, W H J; Windhorst, A D; Hendrikse, N H; Knibbe, C A J; Kõrgvee, L T; Maruszak, W; Grynkiewicz, G; Garner, R C; Tibboel, D; Park, B K; de Wildt, S N

    2015-09-01

    Important information gaps remain on the efficacy and safety of drugs in children. Pediatric drug development encounters several ethical, practical, and scientific challenges. One barrier to the evaluation of medicines for children is a lack of innovative methodologies that have been adapted to the needs of children. This article presents our successful experience of pediatric microdose and microtracer studies using (14) C-labeled probes in Europe to illustrate the strengths and limitations of these approaches. PMID:26095095

  17. Investigations of (Delta)14C, (delta)13C, and (delta)15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean

    SciTech Connect

    Kerr, L A; Andrews, A H; Cailliet, G M; Brown, T A; Coale, K H

    2006-06-08

    The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicity with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.

  18. Agriculture, population growth, and statistical analysis of the radiocarbon record

    PubMed Central

    Zahid, H. Jabran; Robinson, Erick; Kelly, Robert L.

    2016-01-01

    The human population has grown significantly since the onset of the Holocene about 12,000 y ago. Despite decades of research, the factors determining prehistoric population growth remain uncertain. Here, we examine measurements of the rate of growth of the prehistoric human population based on statistical analysis of the radiocarbon record. We find that, during most of the Holocene, human populations worldwide grew at a long-term annual rate of 0.04%. Statistical analysis of the radiocarbon record shows that transitioning farming societies experienced the same rate of growth as contemporaneous foraging societies. The same rate of growth measured for populations dwelling in a range of environments and practicing a variety of subsistence strategies suggests that the global climate and/or endogenous biological factors, not adaptability to local environment or subsistence practices, regulated the long-term growth of the human population during most of the Holocene. Our results demonstrate that statistical analyses of large ensembles of radiocarbon dates are robust and valuable for quantitatively investigating the demography of prehistoric human populations worldwide. PMID:26699457

  19. Agriculture, population growth, and statistical analysis of the radiocarbon record.

    PubMed

    Zahid, H Jabran; Robinson, Erick; Kelly, Robert L

    2016-01-26

    The human population has grown significantly since the onset of the Holocene about 12,000 y ago. Despite decades of research, the factors determining prehistoric population growth remain uncertain. Here, we examine measurements of the rate of growth of the prehistoric human population based on statistical analysis of the radiocarbon record. We find that, during most of the Holocene, human populations worldwide grew at a long-term annual rate of 0.04%. Statistical analysis of the radiocarbon record shows that transitioning farming societies experienced the same rate of growth as contemporaneous foraging societies. The same rate of growth measured for populations dwelling in a range of environments and practicing a variety of subsistence strategies suggests that the global climate and/or endogenous biological factors, not adaptability to local environment or subsistence practices, regulated the long-term growth of the human population during most of the Holocene. Our results demonstrate that statistical analyses of large ensembles of radiocarbon dates are robust and valuable for quantitatively investigating the demography of prehistoric human populations worldwide. PMID:26699457

  20. Bioproduction of [14C]ochratoxin A in submerged culture.

    PubMed Central

    Lillehoj, E B; Aalund, O; Hald, B

    1978-01-01

    A number of Aspergillus and Penicillium species were tested for production of ochratoxin A (OA) in several media. After 8 days of static incubations of submerged cultures at 28 degrees C, toxin yields of 25 and 30 micrograms/ml were obtained with Aspergillus alliaceus NRRL 4181 in Ferreirás and 2% yeast extract-4% sucrose media, respectively. However, the largest production observed in the preliminary screening was 54 micrograms/ml; this highest level was produced by A. sulphureus NRRL 4077 in a modified Czapek solution. The medium contained the basal salts and sucrose of Czapek plus urea (3%) and corn steep liquor (0.5% solids). A time study of toxin production demonstrated maximum yield of 350 micrograms/ml by the A. sulphureus isolate in the modified Czapek medium after 11 days of static incubation at 28 degrees C. The optimal production conditions were employed in additional tests designed to measure the efficiency of 14C incorporation from sodium [1-14C]-acetate into OA. Samples (20 microCi) of sodium acetate were added to separate culture flasks at 24-h intervals during the initial 9 days of the fermentation. Addition of [14C]acetate on day 4 of incubation provided the maximum yield of labeled OA. The highest specific activity of labeled toxin obtained was 0.07 microCi/mg of OA and the maximum incorporation rate of labeled acetate was 5.3%. PMID:727787

  1. Airy structure in 16O+14C nuclear rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2015-08-01

    The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.

  2. Temporal variation in the interhemispheric 14C offset

    NASA Astrophysics Data System (ADS)

    McCormac, F. G.; Hogg, A. G.; Higham, T. F. G.; Lynch-Stieglitz, J.; Broecker, W. S.; Baillie, M. G. L.; Palmer, J.; Xiong, L.; Pilcher, J. R.; Brown, D.; Hoper, S. T.

    Contemporaneous tree-ring dated wood, from trees in the northern and southern hemispheres, gives different 14C dates. Previous studies [Vogel et al., 1986; 1993] using wood from South Africa and The Netherlands have shown depletion's of -4.56 ± 0.85‰ and -5.12±0.62‰ respectively. This translates to age differences of 36±7 and 41±5 years (yrs) with the southern hemisphere giving the older dates. More recently, Stuiver and Braziunas [1998] have shown that an offset of 23±4 yrs exists between combined 19th century wood measurements from Tasmania and Chile in the southern hemisphere and the west coast of the U.S. (Washington) in the northern hemisphere. In this study measurements on contemporaneous decadal samples of oak from the British Isles and cedar from New Zealand over the period 1725 to 1885 AD show a depletion of -3.4±0.58‰ (27.2±4.7 yrs). However, data after 1895 AD has a mean offset of 0.66±1.06‰ (-5.3±8.5 yrs) with increased variance compared to 19th century data. This, we believe, is attributable to anthropogenic fossil fuel, which, due to its long residence time in the earth, has long since lost any 14C component and when burned preferentially depletes the northern hemisphere atmosphere of 14C.

  3. Radiocarbon measurements at LAC-UFF: Recent performance

    NASA Astrophysics Data System (ADS)

    Linares, Roberto; Macario, Kita D.; Santos, Guaciara M.; Carvalho, Carla; dos Santos, Hellen C.; Gomes, Paulo R. S.; Castro, Maikel D.; Oliveira, Fabiana M.; Alves, Eduardo Q.

    2015-10-01

    In 2012 a single stage accelerator mass spectrometer from NEC was installed at the Radiocarbon Laboratory of Universidade Federal Fluminense (LAC-UFF), Niterói, Brazil. Here, we present a status report of our facility. We discuss some modifications applied to our combustion protocol in an attempt to reduce our procedural blank, mostly to processed organic samples. Measurements of reference materials indicate low precision and accuracy that are partially related to beam optics through the acceleration tube. We observed that once the beam current intensity increases the measured 13C+/12C+ becomes erratic. Therefore, in order to maintain the AMS-δ13C values within reasonable values, so that fractionation corrections using the spectrometer 13C+/12C+ values does not affect the final 14C results, we are forced to limit the 12C- beam intensity to ⩽30 μA. This requirement was confirmed during our accuracy tests, when measuring selected annual tree-rings wood samples from a Parana pine (Araucaria angustifolia) between 1927 and 1997 previously measured at the Keck Carbon Cycle AMS Facility (KCCAMS), at the University of California, Irvine (UCI). At the LAC-UFF tree-ring wood samples were processed and measured in 4 different batches during a period of about 5 months. The 14C results were later compared to the high-precision data obtained at KCCAMS/UCI and reached a good agreement. Recently a problem associated with graphitization yield were finally identified and new measurements with secondary standards are promising.

  4. Lung retention and binding of (/sup 14/C)-1-nitropyrene when inhaled by F344 rats as a pure aerosol or adsorbed to carbon black particles

    SciTech Connect

    Wolff, R.K.; Sun, J.D.; Barr, E.B.; Rothenberg, S.J.; Yeh, H.C.

    1989-01-01

    1-Nitropyrene (NP), as found in the environment, is more typically associated with carbonaceous particles than found as an aerosol of the pure compound. To determine whether (and why) an association with particles resulted in prolonged lung retention of NP, rats were exposed to 14C-NP as a pure aerosol or adsorbed on carbon black particles. Total 14C retained in the lung was greater at all times from 0.5 h to 30 d after exposure to 14C-NP adsorbed to carbon black particles than after exposure to pure 14C-NP (p less than .05). The fraction of total 14C in lung bound to carbon black particles decreased steadily with time after exposure, indicating in vivo removal of NP from the particles. At 0.5 h after exposure, the fraction of the estimated deposited 14C that was covalently bound to lung macromolecules was twofold greater for NP adsorbed on carbon black than for pure NP. Covalently bound 14C in lungs increased with time after exposure to 14C-NP adsorbed to carbon black, reaching levels of approximately 1% of the deposited radioactivity at 7-30 d after exposure, whereas levels of covalently bound 14C declined with time after exposure to pure NP. Thus, at 30 d after exposure, the amount of 14C covalently bound to lung macromolecules was approximately 10-fold greater (p less than .05) in rats that inhaled 14C-NP adsorbed on carbon black particles than in rats that inhaled pure 14C-NP aerosols. These results suggest that association of NP with carbon black particles augments the interaction of reactive metabolites of NP with target macromolecules. This phenomenon is thought to be related to the slow release of NP from carbon black particles, and may augment the biological effects of inhaled NP when adsorbed on carbon black or similar particles in the environment.

  5. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals

    PubMed Central

    Higham, Tom; Ramsey, Christopher Bronk; Karavanić, Ivor; Smith, Fred H.; Trinkaus, Erik

    2006-01-01

    The 1998/1999 direct dating of two Neandertal specimens from level G1 of Vindija Cave in Croatia to ≈28,000 and ≈29,000 radiocarbon (14C) years ago has led to interpretations concerning the late survival of Neandertals in south-central Europe, patterns of interaction between Neandertals and in-dispersing early modern humans in Europe, and complex biocultural scenarios for the earlier phases of the Upper Paleolithic. Given improvements, particularly in sample pretreatment techniques for bone radiocarbon samples, especially ultrafiltration of collagen samples, these Vindija G1 Neandertal fossils are redated to ≈32,000–33,000 14C years ago and possibly earlier. These results and the recent redating of a number of purportedly old modern human skeletal remains in Europe to younger time periods highlight the importance of fine chronological control when studying this biocultural time period and the tenuous nature of monolithic scenarios for the establishment of modern humans and earlier phases of the Upper Paleolithic in Europe. PMID:16407102

  6. Radiocarbon ages of sedimentary lipids as tracers of organic carbon input to marine sediments

    SciTech Connect

    Eglinton, T.I.; Nelson, B.; McNichol, A.P.

    1996-10-01

    A novel analytical approach, Preparative Capillary Gas Chromatography (PCGC), has been used to isolate sufficient quantities of individual hydrocarbon lipids from two marine surface sediments (Black Sea, Arabian Sea) for radiocarbon dating by Accelerator Mass Spectrometry (AMS). {Delta}{sup 14}C values for bulk sedimentary organic carbon (OC) from the Black and Arabian Sea samples are -105 and -112{per_thousand} respectively. In the Black Sea, extended [higher plant] n-alkanes (n-C{sub 29}, n-C{sub 31}) are significantly enriched relative to bulk OC (ave -80{per_thousand}), indicating input of {open_quotes}fresh{close_quotes} terrestrial organic matter, while shorter chain homologues (n-C{sub 23}, n-C{sub 25}) exhibit depleted (ca. -160{per_thousand}) values, in keeping with the total hydrocarbon fraction (-150{per_thousand}). Arabian Sea hydrocarbons exhibit a much wider range of {Delta}{sup 14}C values (from -38 to -780{per_thousand}). Markers for diatoms (highly branched isoprenoid alkenes) show the youngest radiocarbon ages while saturated hydrocarbons display the oldest ages. We interpret these variations in terms of uptake of atmospheric CO{sub 2} and contributions from relic carbon sources. These and related data will be discussed in the context of organic carbon input and preservation in these marine systems.

  7. New radiocarbon chronology of a late Holocene landslide event in the Mont Blanc massif, Italy

    NASA Astrophysics Data System (ADS)

    Hajdas, Irka; Sojc, Ursula; Ivy-Ochs, Susan; Akçar, Naki; Deline, Philip

    2016-04-01

    The Ferret valley Arp Nouva peat bog located in the Mont Blanc massif was critically evaluated since previously published radiocarbon dates have led to controversial conclusions on the formation of the swamp. Radiocarbon dating of roots from three pits of up to 1 m depth was applied to discuss the question whether the historical documented rock avalanche occurring in AD 1717 overran the peat bog or formed it at a later stage. Our results indicate that the rock avalanche formed the Arp Nouva peat bog by downstream blockage of the Bellecombe torrent. Furthermore, careful sample preparation with consequent separation of roots from the bulk peat sample provides possible explanation for the too old 14C ages of bulk peat samples dated previously (Deline and Kirkbride, 2009 and references therein). This work demonstrates that a combined geomorphological and geochronological approach is the most reliable way to reconstruct landscape evolution, especially in light of apparent chronological problems. The key to successful 14C dating is a careful sample selection and the identification of material that might be not ideal for chronological reconstructions. References Deline, Philip, and Martin P. Kirkbride. "Rock avalanches on a glacier and morainic complex in Haut Val Ferret (Mont Blanc Massif, Italy)".Geomorphology 103 (2009): 80-92.

  8. Measurement of choline acetyltransferase with (/sup 14/C)acetate by a cycling procedure

    SciTech Connect

    O'Neill, J.J.; Hruschak, K.A.

    1987-06-01

    A multiple enzyme and multisubstrate cycling system is described for the radiometric determination of cholineacetyltransferase (ChAT) activity in crude tissue homogenates. The methods employs (/sup 14/C)acetate coupled with the enzymes acetate kinase (AK) and phosphotransacetylase (PTA) for the generation of (/sup 14/C)acetyl CoA. By recycling it was possible to avoid product inhibition of ChAT by CoA, ATP was maintained constant by rephosphorylation of ADP. Kinetics of the individual enzyme reactions were studied and the parameters obtained were used to select appropriate conditions to maintain linearity of varying amounts ChAT activity over a sixty minute time course. The sensitivity of the method is limited only by the specific activity of commercially available isotope labeled acetate.

  9. Radiocarbon based source apportionment of black carbon in the form of PM10 elemental carbon aerosol particles at the Zeppelin Observatory, Svalbard

    NASA Astrophysics Data System (ADS)

    Winiger, Patrik; Andersson, August; Espen Yttri, Karl; Tunved, Peter; Gustafsson, Örjan

    2015-04-01

    Black carbon (BC) aerosol particles are formed from incomplete combustion of fossil fuel and biomass. Transported into the Arctic, they potentially contributes to climate warming. However, there are still large uncertainties related to the climate effects of BC, including aspects of radiative properties, mixing state of the particles, transport, atmospheric lifetime and sources. The current study aims to reduce source uncertainties by applying a top-down (observational) source-diagnostic isotope approach and comparing these to bottom-up (modeling) emission inventories to better constrain the source types and source regions. The use of natural abundance radiocarbon14C) is a powerful tool to distinguish between fossil (void of 14C) and biomass (contemporary 14C) combustion sources. Due to the well-defined end-members, 14C-measurements (alone) provide high precision (

  10. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Zongli; Zhao, Hui; Dong, Guanghui; Zhou, Aifeng; Liu, Jianbao; Zhang, Dongju

    2014-12-01

    The accurate radiocarbon dating of loess-soil sequences plays an essential role in the reconstruction of the environmental and climatic changes in continental settings during the last glaciation and Holocene. However, our knowledge about the reliability of radiocarbon ages of various fractions of soil and loess samples is still insufficient. Here, we present our study results on radiocarbon ages based on bulk organic matter, humin fraction, and carbonate of samples collected from a loess-paleosol section in the western Chinese Loess Plateau. We compare these observations with the optically stimulated luminescence ages and charcoal radiocarbon ages to evaluate the reliability of these fractions. We observed that the radiocarbon ages of humin fraction are very close to those of charcoal and are consistent with the optically stimulated luminescence ages within the experimental errors. We observed a significant deviation in the radiocarbon ages of carbonate and bulk organic matter from those of charcoal and optically stimulated luminescence ages, likely due to the dilution of these fractions during the pedogenetic process. Our results reveal that, except for charcoal, the humin fraction may yield reliable 14C ages for the Chinese loess-soil sequence.

  11. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  12. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  13. Reconciling radiocarbon and ice core timescales over the Holocene - Cosmogenic radionuclides as synchronization tools

    NASA Astrophysics Data System (ADS)

    Muscheler, R.; Adolphi, F.; Mekhaldi, F.

    2015-12-01

    The atmospheric production rates of cosmogenic radionuclides, such as 14C and 10Be, vary globally due to external processes, namely the solar and geomagnetic modulation of the galactic cosmic ray flux as well as solar proton events. This signature is recorded in various archives such as ice cores (10Be) and tree-rings (14C). Hence, cosmogenic radionuclides offer a means to continuously assess timescale differences between two of the most widely used timescales in paleoclimatology - the radiocarbon and the ice core timescales. Short lived solar proton events additionally provide distinct marker horizons that allow synchronization of discrete horizons at annual precision. We will present a cosmogenic radionuclide based synchronization of the Greenland ice core timescale (GICC05, Svensson et al., 2008) and the radiocarbon timescale (IntCal13, Reimer et al., 2013) over the Holocene. This synchronization allows radiocarbon dated and ice core paleoclimate records to be compared on a common timescale at down to sub-decadal precision. We will compare these results to independent discrete isochrones obtained from tephrochronology and solar proton events. In addition, we will discuss implications for the accuracy and uncertainty estimates of GICC05 over the Holocene. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869-1887, 10.2458/azu_js_rc.55.16947, 2013. Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin

  14. A high resolution method for 14C analysis of a coral from South China Sea: Implication for "AD 775" 14C event

    NASA Astrophysics Data System (ADS)

    Ding, Ping; Shen, Chengde; Yi, Weixi; Wang, Ning; Ding, Xingfang; Liu, Kexin; Fu, Dongpo; Liu, Weiguo; Liu, Yi

    2015-10-01

    A pre-heating method that improves the background and precision of 14C dating significantly was applied for fossil coral dating with high resolution in our lab in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS). The reaction tube is heated under 300 °C in a vacuum line before it is used for graphitization. The method can reduce the contamination absorbed in TiH2, Zn and Fe power placed in the graphitization tube. With the pre-heating and average drilling method, bi-weekly resolution 14C dating in a fossil coral is carried out to investigate the "AD 775 14C spike event". Different from the tree ring 14C archives with the 14C spike of ∼15‰ (Δ14C), the 14C spike in the coral shows an abrupt peak of 45‰ and two smaller spikes of Δ14C > 20‰ in half a year in AD 776. And then, the 14C content in coral decreases gradually in AD 777. The peak time of the 14C spike event likely occurs in the summer of AD 776 according to the δ18O variation in coral. High-resolution dating of 14C in coral provides not only a more detail process of the event than that from tree rings, but also the first report of the event from sea ecosystem. Both of them suggest an extraterrestrial origin of the event cause.

  15. Groundwater dating with radiocarbon: application to an aquifer under semi-arid conditions in the south of Morocco (Guelmime).

    PubMed

    Bouhlassa, S; Aiachi, A

    2002-04-01

    Radiocarbon dating is based on measuring the loss of the parent radionuclide (14C) in a given sample. This assumes two key features of the system. The first is that the initial concentration of the parent is known and has remained constant in the past. The second is that the system is closed to subsequent gains or losses of the parent, except through radioactive decay. But, the reaction and evolution of the carbonate system strongly dilute the initial 14C activity in dissolved inorganic carbon (DIC). The result is an artificial "aging" of groundwater by dilution of 14C. Unravelling the relevant processes and distinguishing 14C decay from 14C dilution is an engaging geochemical problem. Several attempts to overcome these problems have been made during the past 30 years and a number of possible correction procedures have been presented by different authors. Environmental isotopes study (13C, 14C) from the aquifers of the Guelmime under semi-arid conditions provides new information on recharge zones, mixing zones and the circulation routes of water. The combination of logP(CO2), the saturation index of dolomite and calcite, HCO3, delta13C, 14C and pH along flow paths can provide an indication of open- and closed-system conditions in the Oumlaachar and Seyyad sub-basins. This approach of geochemical analysis, when combined with correction procedures, allows us to understand age and recharge in the Guelmime aquifer. 14C groundwater ages range from modern to about 2700 years in this aquifer, and indicate recharge values of 0.55-15 mm/yr. PMID:11999164

  16. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  17. Assessment of the 14C-Glycocholic Acid Breath Test

    PubMed Central

    James, O. F. W.; Agnew, J. E.; Bouchier, I. A. D.

    1973-01-01

    The 1-(14C)-glycine-glycocholic-acid breath test has been performed on 104 subjects and a normal range established. Abnormal results due to bacterial deconjugation of bile salts were found not only in patients with the “contaminated bowel” syndrome and in those with ileal resection but also in a third group, patients with cholangitis. Abnormal results were also found in patients with gastrocolic fistula and staphylococcal enterocolitis, while mildly abnormal results were also found in some patients with liver disease. PMID:4718834

  18. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia

    PubMed Central

    Wood, Rachel E.; Barroso-Ruíz, Cecilio; Caparrós, Miguel; Jordá Pardo, Jesús F.; Galván Santos, Bertila; Higham, Thomas F. G.

    2013-01-01

    It is commonly accepted that some of the latest dates for Neanderthal fossils and Mousterian industries are found south of the Ebro valley in Iberia at ca. 36 ka calB