Sample records for radiochemical yields decay

  1. Calculated secondary yields for proton broadband using DECAY TURTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondgeroth, A.

    1995-02-01

    The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC{_}E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as themore » target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield.« less

  2. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  3. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  4. Symmetry relations in charmless B{yields}PPP decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronau, Michael; Rosner, Jonathan L.; Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

    2005-11-01

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{submore » S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.« less

  5. Enhanced Electroweak Penguin Amplitude in B{yields}VV Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beneke, M.; Rohrer, J.; Yang, D.

    2006-04-14

    We discuss a novel electromagnetic penguin contribution to the transverse helicity amplitudes in B decays to two vector mesons, which is enhanced by two powers of m{sub B}/{lambda} relative to the standard penguin amplitudes. This leads to unique polarization signatures in penguin-dominated decay modes such as B{yields}{rho}K* similar to polarization effects in the radiative decay B{yields}K*{gamma} and offers new opportunities to probe the magnitude and chirality of flavor-changing neutral current couplings to photons.

  6. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  7. NEANDC specialists meeting on yields and decay data of fission product nuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrien, R.E.; Burrows, T.W.

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  8. Evidence for B{yields}K{eta}'{gamma} decays at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedd, R.; Barberio, E.; Limosani, A.

    2010-06-01

    We present the results of a search for the radiative decay B{yields}K{eta}{sup '{gamma}} and find evidence for B{sup +{yields}}K{sup +{eta}'{gamma}} decays at the 3.3 standard deviation level with a partial branching fraction of (3.6{+-}1.2{+-}0.4)x10{sup -6}, where the first error is statistical and the second systematic. This measurement is restricted to the region of combined K{eta}{sup '} invariant mass less than 3.4 GeV/c{sup 2}. A 90% confidence level upper limit of 6.4x10{sup -6} is obtained for the partial branching fraction of the decay B{sup 0{yields}}K{sup 0{eta}'{gamma}} in the same K{eta}{sup '} invariant mass region. These results are obtained from a 605more » fb{sup -1} data sample containing 657x10{sup 6}BB pairs collected at the {Upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider.« less

  9. Effect of unitarization on the amplitudes for the decays K{sub 1}{sup 0} {sup {yields} {pi}+{pi}-} and K{sup +} {sup {yields} {pi}+{pi}+{pi}-}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalin, E. P., E-mail: shabalin@itep.r

    The unitarization of the amplitude for the decay process K{sub 1}{sup 0} {sup {yields} {pi}+{pi}-} and allowance for the rescattering of final-state pions in the decay process K{sup +} {sup {yields} {pi}+{pi}+{pi}-} make it possible to evaluate, by using the parameters extracted from data on K {sup {yields}}2{pi} decays, the K{sup +} {sup {yields} {pi}+{pi}+{pi}-} decay width. The result agrees with the experimental width value at a level of a few percent. Allowance for corrections for higher order terms of the momentum expansion of the amplitude for the decay process K{sup +} {sup {yields} {pi}+{pi}+{pi}-} leads to the slope-parameter valuemore » of g{sub ++-}{sup th} = 0.2182, which agrees with its experimental counterpart, g{sub ++-}{sup exp} = 0.2154 {+-} 0.0035.« less

  10. The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.

    PubMed

    Wilson, Erica L; Kim, Younggy

    2016-05-01

    In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A combined simple bubbling method with high performance liquid chromatography purification strategy, higher radiochemical yield and purity and faster preparation of carbon-11-raclopride.

    PubMed

    Huang, Huacheng; Ning, Yanli; Zhang, Bucheng; Lou, Cen

    2015-01-01

    Carbon-11-raclopride (¹¹C-R) is a positron-emitting radiotracer successfully used for the study of cognitive control and widely applied in PET imaging. A simple automated preparation of ¹¹C-R by using the reaction of carbon-(11)-methyl triflate (¹¹C-MeOTF) or ¹¹C-methyl iodide (¹¹C-MeI) with demethylraclopride is described. Specifically we used a simple setup applied an additional "U" reaction vessel for ¹¹C-MeOTf compared with ¹¹C-MeI and assessed the influence of several solvents and of the amount of the percussor for ¹¹C-methylation of demethylraclopride by the bubbling method. The reversal of retention order between product and its precursor has been achieved for ¹¹C-R, enabling collection of the purified ¹¹C-R by using the HPLC column after shorter retention time. By the improved radiosynthesis and purification strategy, ¹¹C-R could be prepared with higher radiochemical yield than that of the previous studies. The yield for ¹¹C-MeOTf was 76% and for ¹¹C-CH3I >26% and with better radiochemical purity (>99% based on both ¹¹C-MeOTf and ¹¹C-MeI) as compared to the previously obtained purity of ¹¹C-R using HPLC method with acetonitrile as a part of mobile phase. Furthermore, by using ethanol as the organic modifier, residual solvent analysis prior to human injection could be avoided and ¹¹C-R could be injected directly following simple dilution and sterile filtration. Improved radiosynthesis and HPLC purification in combination with ethanol containing eluent, extremely shortened the time for preparation of ¹¹C-R, gave a higher radiochemical yield and purity for ¹¹C-R and can be used for multiple and faster synthesis of ¹¹C-R and probably for other ¹¹C-labeled radiopharmaceuticals.

  12. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  13. SAM Radiochemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.

  14. Measurements of branching fraction ratios and CP-asymmetries in suppressed B{sup -}{yields}D({yields}K{sup +}{pi}{sup -})K{sup -} and B{sup -}{yields}D({yields}K{sup +}{pi}{sup -}){pi}{sup -} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Brucken, E.; Devoto, F.

    2011-11-01

    We report the first reconstruction in hadron collisions of the suppressed decays B{sup -}{yields}D({yields}K{sup +}{pi}{sup -})K{sup -} and B{sup -}{yields}D({yields}K{sup +}{pi}{sup -}){pi}{sup -}, sensitive to the Cabibbo-Kobayashi-Maskawa phase {gamma}, using data from 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B{sup -}{yields}D({yields}K{sup +}{pi}{sup -})K{sup -} suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K)=[22.0{+-}8.6(stat){+-}2.6(syst)]x10{sup -3}, R{sup +}(K)=[42.6{+-}13.7(stat){+-}2.8(syst)]x10{sup -3}, R{sup -}(K)=[3.8{+-}10.3(stat){+-}2.7(syst)]x10{sup -3} as well as the direct CP-violating asymmetry A(K)=-0.82{+-}0.44(stat){+-}0.09(syst) of this mode. Corresponding quantitiesmore » for B{sup -}{yields}D({yields}K{sup +}{pi}{sup -}){pi}{sup -} decay are also reported.« less

  15. Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield

    NASA Astrophysics Data System (ADS)

    Borshchev, O.; Cavalcante, A. B. R.; Gavardi, L.; Gruber, L.; Joram, C.; Ponomarenko, S.; Shinji, O.; Surin, N.

    2017-05-01

    We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.

  16. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  17. A novel radiochemical approach to 1-(2'-deoxy-2'-[(18) F]fluoro-β-d-arabinofuranosyl)cytosine ((18) F-FAC).

    PubMed

    Meyer, Jan-Philip; Probst, Katrin C; Trist, Iuni M L; McGuigan, Christopher; Westwell, Andrew D

    2014-09-01

    (18) F-FAC (1-(2'-deoxy-2'-[(18) F]fluoro-β-D-arabinofuranosyl)-cytosine) is an important 2'-fluoro-nucleoside-based positron emission tomography (PET) tracer that has been used for in vivo prediction of response to the widely used cancer chemotherapy drug gemcitabine. Previously reported synthetic routes to (18) F-FAC have relied on early introduction of the (18) F radiolabel prior to attachment to protected cytosine base. Considering the (18) F radiochemical half-life (110 min) and the technical challenges of multi-step syntheses on PET radiochemistry modular systems, late-stage radiofluorination is preferred for reproducible and reliable radiosynthesis with in vivo applications. Herein, we report the first late-stage radiosynthesis of (18) F-FAC. Cytidine derivatives with leaving groups at the 2'-position are particularly prone to undergo anhydro side-product formation upon heating because of their electron density at the 2-carbonyl pyrimidone oxygen. Our rationally developed fluorination precursor showed an improved reactivity-to-stability ratio at elevated temperatures. (18) F-FAC was obtained in radiochemical yields of 4.3-5.5% (n = 8, decay-corrected from end of bombardment), with purities ≥98% and specific activities ≥63 GBq/µmol. The synthesis time was 168 min. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Search for Proton Decay via p{yields}e{sup +}{pi}{sup 0} and p{yields}{mu}{sup +}{pi}{sup 0} in a Large Water Cherenkov Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, H.; Hazama, S.; Higuchi, I.

    2009-04-10

    We have searched for proton decays via p{yields}e{sup +}{pi}{sup 0} and p{yields}{mu}{sup +}{pi}{sup 0} using data from a 91.7 kt{center_dot}yr exposure of Super-Kamiokande-I and a 49.2 kt{center_dot}yr exposure of Super-Kamiokande-II. No candidate events were observed with expected backgrounds induced by atmospheric neutrinos of 0.3 events for each decay mode. From these results, we set lower limits on the partial lifetime of 8.2x10{sup 33} and 6.6x10{sup 33} years at 90% confidence level for p{yields}e{sup +}{pi}{sup 0} and p{yields}{mu}{sup +}{pi}{sup 0} modes, respectively.

  19. Measurement of |V{sub cb}| using {bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Della Ricca, Giuseppe

    A preliminary measurement of |V{sub cb}| and the branching fraction {Beta}({bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}}) has been performed based on a sample of about 55,700 {bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}} decays recorded with the BABAR detector. The decays are identified in the D*{sup +} {yields} D{sup 0}{pi}{sup +} final state, with the D{sup 0} reconstructed in three different decay modes. The differential decay rate is measured as a function of the relativistic boost of the D*{sup +} in the {bar B}{sup 0} rest frame. The value of the differential decay rate atmore » ''zero recoil'', namely the point at which the D*{sup +} is at rest in the {bar B}{sup 0} frame, is predicted in Heavy Quark Effective Theory as a kinematic factor times F(1)|V{sub cb}|, where F is the unique form factor governing the decay. We extrapolate the measured differential decay rate to the zero recoil point and obtain F(1)|V{sub cb}| = (34.03 {+-} 0.24 {+-} 1.31) x 10{sup -3}. Using a theoretical calculation for F(1) we extract |V{sub cb}| = (37.27 {+-} 0.26(stat.) {+-} 1.43(syst.){sub -1.2}{sup +1.5}(theo.)) x 10{sup -3}. From the integrated decay rate we obtain {Beta}({bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}}) = (4.68 {+-} 0.03 {+-} 0.29)%.« less

  20. Chiral symmetry and N*(1440){yields}N{pi}{pi} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamano, H.; Morishita, M.; Arima, M.

    2005-04-01

    The N*(1440){yields}N{pi}{pi} decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction that is absent in the recent study of Hernandez et al. [Phys. Rev. C 66, 065201 (2002)]. The contact interaction is introduced into their model and is found to be necessary for the simultaneous description of g{sub RN{pi}}{sub {pi}} and the {pi}{pi} and {pi}N invariant mass distributions.

  1. Implementing and testing theoretical fission fragment yields in a Hauser-Feshbach statistical decay framework

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Möller, Peter; Stetcu, Ionel; Talou, Patrick; Schmitt, Christelle

    2018-03-01

    We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity v, as compared with experimental fragment yields. We deduce the uncertainty on the 〈TKE〉 and v from this procedure and identify possible applications.

  2. Evidence for B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0} Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Bona, M.; Boutigny, D.

    2007-03-16

    We search for the decays B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0}, B{sup 0}{yields}{rho}{sup 0}f{sub 0}(980), and B{sup 0}{yields}f{sub 0}(980)f{sub 0}(980) in a sample of about 384x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at Stanford Linear Accelerator Center. We find evidence for B{sup 0}{yields}{rho}{sup 0}{rho}{sup 0} with 3.5{sigma} significance and measure the branching fraction B=(1.07{+-}0.33{+-}0.19)x10{sup -6} and longitudinal polarization fraction f{sub L}=0.87{+-}0.13{+-}0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the Cabibbo-Kobayashi-Maskawa quark-mixing matrix unitarity angle {alpha} due to penguin contributions in B{yields}{rho}{rho} decays is 18 deg.more » at the 1{sigma} level. We also set upper limits on the B{sup 0}{yields}{rho}{sup 0}f{sub 0}(980) and B{sup 0}{yields}f{sub 0}(980)f{sub 0}(980) decay rates.« less

  3. Measurement of CP observables in B{sup {+-}{yields}D}{sub CP}K{sup {+-}}decays and constraints on the CKM angle {gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    Using the entire sample of 467x10{sup 6} {Upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B{sup {+-}}{yields}DK{sup {+-}}decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A{sub CP+}=0.25{+-}0.06{+-}0.02 and A{sub CP-}=-0.09{+-}0.07{+-}0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A{sub CP+} is different from zero with a significance of 3.6 standardmore » deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R{sub CP+}=1.18{+-}0.09{+-}0.05 and R{sub CP-}=1.07{+-}0.08{+-}0.04. We infer frequentist confidence intervals for the angle {gamma} of the unitarity triangle, for the strong phase difference {delta}{sub B}, and for the amplitude ratio r{sub B}, which are related to the B{sup -}{yields}DK{sup -} decay amplitude by r{sub B}e{sup i({delta}{sub B}-{gamma})}=A(B{sup -}{yields}D{sup 0}K{sup -})/A(B{sup -}{yields}D{sup 0}K{sup -}). Including statistical and systematic uncertainties, we obtain 0.24

  4. K+-nucleus scattering using K {yields} {mu}{nu} decays as a normalization check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, R.; Hicks, K.; Bart, S.

    1995-04-01

    Elastic scattering of 720 and 620 MeV/c positive kaons from targets of {sup 12}C and {sup 6}Li has been measured up to laboratory angles of 42{degrees}. Since the magnitude of the cross sections is sensitive to nuclear medium effects, the K{yields}{mu}{nu} decay mode has been used to check the normalization. GEANT has been used to mimic the kaon decays over a path length of 12cm, with a correlated beam structure matching the experimental kaon beam. The corresponding muon distribution has been passed thru Monte Carlo simulations of the moby dick spectrometer. The results are compared with the experimental number ofmore » decay muons with good agreement. These results also agree with the normalization found using p-p elastic scattering. The normalized K{sup +} elastic data are compared to recent optical model predictions based on both Klein-Gordon and KDP equations in the impulse approximation.« less

  5. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    PubMed

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  6. Observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    2011-10-01

    We report the observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} with a significance larger than 7 standard deviations based on 471x10{sup 6} BB pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. We measure the branching fraction for the decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} to be (3.8{+-}0.8{sub stat}{+-}0.2{sub sys}{+-}1.0{sub {Lambda}}{sub c}{sup +})x10{sup -5}. The uncertainties are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. We find that the {Lambda}{sub c}{sup +}K{sup -} invariant-mass distribution shows an enhancement above 3.5 GeV/c{sup 2}.

  7. Improved Measurement of the Cabibbo-Kobayashi-Maskawa Angle {alpha} Using B{sup 0}(B){yields}{rho}{sup +}{rho}{sup -} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    2005-07-22

    We present results from an analysis of B{sup 0}(B{sup 0}){yields}{rho}{sup +}{rho}{sup -} using 232x10{sup 6} {upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. We measure the longitudinal polarization fraction f{sub L}=0.978{+-}0.014(stat)(+0.021/-0.029)(syst) and the CP-violating parameters S{sub L}=-0.33{+-}0.24(stat)(+0.08/-0.14)(syst) and C{sub L}=-0.03{+-}0.18(stat){+-}0.09(syst). Using an isospin analysis of B{yields}{rho}{rho} decays, we determine the unitarity triangle parameter {alpha}. The solution compatible with the standard model is {alpha}=(100{+-}13) deg.

  8. The Parity of the Neutral Pion and the Decay pi{sup 0} Yields 2e{sup +} + 2e{sup -}

    DOE R&D Accomplishments Database

    Samios, N. P.; Plano, R.; Prodell, A.; Schwartz, M.; Steinberger, J.

    1962-01-01

    Two hundred and six electronic decays of the pi{sup 0}, pi{sup 0} yields e{sup +} + e{sup -} + e{sup +} + e{sup -}, were observed in a hydrogen bubble chamber. The decay distributions of the electron pairs and the total rate for this process are shown to be in good agreement with theory. An examination of correlations of the e{sup +}e{sup -} pair decay planes on the basis of electrodynamic predictions is in agreement with the hypothesis that the pi{sup 0} is pseudoscalar, but disagrees for scalar pions by 3.6 standard deviations. (auth)

  9. Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishima, Satoshi; Yoshikawa, Tadashi

    2004-11-01

    We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite largemore » compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.« less

  10. Radiochemical Solar Neutrino Experiments - Successful and Otherwise.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn,R.L.

    2008-05-25

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous Internationalmore » Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.« less

  11. Slopes of $pi$-meson spectra in the K $Yields$ 3$pi$ decays (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapustnikov, A.A.

    1973-12-01

    The strong violation ( approximates 35%) of the rule DELTA T = 1/2 on the Dalitz piot for the K yields 3 pi decays is considered in the framework of the nonlinear realization of the chiral SU(2) x SU(2) symmetry. The Lagrangian without derivatives obtained previously is used to describe the contact weak K pi interaction. It is postulated that the enhancement of effects related to the electromagnetic mass differences of pi and K mesons in the K yields 3 pi amplitudes is due to the PCAC modification: partial delta A = constant pi (1 - 2 alpha lambda /supmore » 2/ KK). At alpha = 0.8 the predictions of the model are shown to coincide with the experiment. (auth)« less

  12. Study of B{yields}X{gamma} decays and determination of |V{sub td}/V{sub ts}|

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.

    2010-09-01

    Using a sample of 471x10{sup 6} BB events collected with the BABAR detector, we study the sum of seven exclusive final states B{yields}X{sub s(d){gamma}}, where X{sub s(d)} is a strange (nonstrange) hadronic system with a mass of up to 2.0 GeV/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b{yields}d{gamma} of (9.2{+-}2.0(stat){+-}2.3(syst))x10{sup -6} in this mass range, and a branching fraction for b{yields}s{gamma} of (23.0{+-}0.8(stat){+-}3.0(syst))x10{sup -5} in the same mass range. We find (B(b{yields}d{gamma})/B(b{yields}s{gamma}))=0.040{+-}0.009(stat){+-}0.010(syst), from which we determine |V{sub td}/V{sub ts}|=0.199{+-}0.022(stat){+-}0.024(syst){+-}0.002(th).

  13. First observation of the decays {chi}{sub cJ}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; An, Z. H.; Bai, J. Z.

    We present a study of the P-wave spin-triplet charmonium {chi}{sub cJ} decays (J=0, 1, 2) into {pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}. The analysis is based on 106x10{sup 6} {psi}{sup '} decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the {pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0} hadronic final state is observed for the first time. We measure the branching fractions B({chi}{sub c0}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0})=(3.34{+-}0.06{+-}0.44)x10{sup -3}, B({chi}{sub c1}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0})=(0.57{+-}0.03{+-}0.08)x10{sup -3}, and B({chi}{sub c2}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0})=(1.21{+-}0.05{+-}0.16)x10{sup -3}, where the uncertainties are statistical and systematical, respectively.

  14. Measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalwani, Kavita

    2011-10-24

    In this paper we present the preliminary results on the measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with the WASA Detector at COSY. We have used a sample of 10{sup 7}{eta} mesons produced at the COSY ring using the pd{yields}{sup 3}He{eta} reaction close to threshold. We detail the intricate extraction of the signal, which has about 360{+-}70(stat){eta}{yields}{pi}{sup 0}{gamma}{gamma} events, from the overwhelming background channels for example {eta}{yields}3{pi}{sup 0}, pd{yields}{sup 3}He 3{pi}{sup 0} and pd{yields}{sup 3}He 2{pi}{sup 0}.

  15. Synthesis of [11C]Am80 via Novel Pd(0)-Mediated Rapid [11C]Carbonylation Using Arylboronate and [11C]Carbon Monoxide

    PubMed Central

    2012-01-01

    11C-labeled methylbenzoates [11C]4a–d were synthesized using Pd(0)-mediated rapid cross-coupling reactions employing [11C]carbon monoxide and arylboronic acid neopentyl glycol esters 3a–d under atmospheric pressure in methanol–dimethylformamide (MeOH–DMF), in radiochemical yields of 12 ± 5–26 ± 13% (decay-corrected based on [11C]O). The reaction conditions were highly favorable for the synthesis of [11C]Am80 ([11C]2) and [11C]methyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate ([11C]2-Me) using 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)benzamide (5), both of which produced a decay-corrected radiochemical yield (RCY) of 26 ± 13%, with >99% radiochemical purity and an average specific radioactivity of 44 GBq/μmol. The yields of [11C]4a, [11C]2-Me, and [11C]2 were improved by the use of a 2-fold excess of the solvents and reagents under the same conditions to give respective yields of 66 ± 8, 65 ± 7, and 48 ± 2%. PMID:24900383

  16. Synthesis of [(11)C]Am80 via Novel Pd(0)-Mediated Rapid [(11)C]Carbonylation Using Arylboronate and [(11)C]Carbon Monoxide.

    PubMed

    Takashima-Hirano, Misato; Ishii, Hideki; Suzuki, Masaaki

    2012-10-11

    (11)C-labeled methylbenzoates [(11)C]4a-d were synthesized using Pd(0)-mediated rapid cross-coupling reactions employing [(11)C]carbon monoxide and arylboronic acid neopentyl glycol esters 3a-d under atmospheric pressure in methanol-dimethylformamide (MeOH-DMF), in radiochemical yields of 12 ± 5-26 ± 13% (decay-corrected based on [(11)C]O). The reaction conditions were highly favorable for the synthesis of [(11)C]Am80 ([(11)C]2) and [(11)C]methyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate ([(11)C]2-Me) using 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)benzamide (5), both of which produced a decay-corrected radiochemical yield (RCY) of 26 ± 13%, with >99% radiochemical purity and an average specific radioactivity of 44 GBq/μmol. The yields of [(11)C]4a, [(11)C]2-Me, and [(11)C]2 were improved by the use of a 2-fold excess of the solvents and reagents under the same conditions to give respective yields of 66 ± 8, 65 ± 7, and 48 ± 2%.

  17. Observation of the rare decay B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0} and measurement of the quasi-two-body contributions B{sup +}{yields}K*(892){sup +}{pi}{sup 0}, B{sup +}{yields}f{sub 0}(980)K{sup +}, and B{sup +}{yields}{chi}{sub c0}K{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We report an analysis of charmless hadronic decays of charged B mesons to the final state K{sup +}{pi}{sup 0}{pi}{sup 0}, using a data sample of (470.9{+-}2.8)x10{sup 6} BB events collected with the BABAR detector at the {Upsilon}(4S) resonance. We observe an excess of signal events, with a significance above 10 standard deviations including systematic uncertainties, and measure the branching fraction and CP asymmetry to be B(B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0})=(16.2{+-}1.2{+-}1.5)x10{sup -6} and A{sub CP}(B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0})=-0.06{+-}0.06{+-}0.04, where the uncertainties are statistical and systematic, respectively. Additionally, we study the contributions of the B{sup +}{yields}K{sup *}(892){sup +}{pi}{sup 0}, B{sup +}{yields}f{submore » 0}(980)K{sup +}, and B{sup +}{yields}{chi}{sub c0}K{sup +} quasi-two-body decays. We report the world's best measurements of the branching fraction and CP asymmetry of the B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0} and B{sup +}{yields}K{sup *}(892){sup +}{pi}{sup 0} channels.« less

  18. Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation

    NASA Astrophysics Data System (ADS)

    Rivaton, A.; Cambon, S.; Gardette, J.-L.

    2005-01-01

    The preceding paper of this series was devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co gamma rays. The double bond of the diene was observed to be consumed with a high radiochemical yield. The oxidation and reticulation rates were observed to be higher in the case of EPDM than in EPR. Accumulation of the major oxidation products in both polymers was shown to occur in the order of decreasing concentrations: hydroperoxides, ketones, carboxylic acids and alcohols, peroxides. On the basis of the analysis of the oxidation products formed in EPDM and EPR, and taking into account their relative concentrations, the mechanisms accounting for the EPDM γ-degradation under oxygen atmosphere are proposed in the present paper. Two main processes are involved in the EPDM radiooxidation. The random γ-radiolysis of the polymer provides a constant source of macroalkyl radicals mainly formed on ethylene units. The secondary radicals so formed are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In particular, the hydroperoxides decomposition and the consumption of the ENB moieties, this latter being the most oxidisable site and the source of crosslinking, may result from hydrogen abstraction by radical species.

  19. Evidence for Direct CP Violation in the Measurement of the Cabbibo-Kobayashi-Maskawa Angle {gamma} with B{sup {+-}}{yields}D(*)K{sup (*){+-}} Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    2010-09-17

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D-meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0}K{sup +}K{sup -} produced in the processes B{sup {+-}}{yields}DK{sup {+-}}, B{sup {+-}}{yields}D*K{sup {+-}} with D*{yields}D{pi}{sup 0}, D{gamma}, and B{sup {+-}}{yields}DK*{sup {+-}} with K*{sup {+-}}{yields}K{sub S}{sup 0}{pi}{+-}, using 468 million BB pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma}=(68{+-}14{+-}4{+-}3) deg. (modulo 180 deg.), where the first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the uncertaintymore » in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma}=0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  20. Rare decay of the top quark t{yields}cll and single top quark production at the ILC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    We perform a complete and detailed analysis of the flavor changing neutral current rare top quark decays t{yields}cl{sup +}l{sup -} and t{yields}c{nu}{sub i}{nu}{sub i} at one-loop level in the standard model, two Higgs doublet models (I and II), and in minimal supersymmetric standard model (MSSM). The branching ratios are very small in all models, O(10{sup -14}), except for the case of the unconstrained MSSM, where they can reach O(10{sup -6}) for e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -}, and {nu}{sub i}{nu}{sub i}, and O(10{sup -5}) for {tau}{sup +}{tau}{sup -}. This branching ratio is comparable to the ones for t{yields}cV, cH. Wemore » also study the production rates of single top and the forward-backward asymmetry in e{sup +}e{sup -}{yields}tc and comment on the observability of such a signal at the International Linear Collider.« less

  1. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  2. A SEARCH FOR THE DECAY $mu$$Yields$e+$nu$ $gamma$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankel, S.; Frati, W.; Halpern, J.

    1963-02-16

    A search for the decay mu min gave no sig e + gamma is made using spark chambers and sodium iodide crystals. The spark chambers provide the means of measuring the angle between the electron and photon, while the sodium iodide crystals are used to measure the particle energies. A lithium target and thin (0.001 in.) aluminum foils in the spark chamber are used to minimize the scattering of the electron. An upper limit of 4.3, 10/sup -8/ (90% confidence) is found for the ratio of the rate of the mu min gave no sig e + gamma decay tomore » the normal muon decay rate. A search for the decay mu min gave no sig e + gamma + gamma is also made. (auth)« less

  3. Analysis of 161Tb by radiochemical separation and liquid scintillation counting

    DOE PAGES

    Jiang, J.; Davies, A.; Arrigo, L.; ...

    2015-12-05

    The determination of 161Tb activity is problematic due to its very low fission yield, short half-life, and the complication of its gamma spectrum. At AWE, radiochemically purified 161Tb solution was measured on a PerkinElmer 1220 Quantulus TM Liquid Scintillation Spectrometer. Since there was no 161Tb certified standard solution available commercially, the counting efficiency was determined by the CIEMAT/NIST Efficiency Tracing method. The method was validated during a recent inter-laboratory comparison exercise involving the analysis of a uranium sample irradiated with thermal neutrons. Lastly, the measured 161Tb result was in excellent agreement with the result using gamma spectrometry and the resultmore » obtained by Pacific Northwest National Laboratory.« less

  4. Prospects for studying penguin decays in LHCb experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsuk, S. Ya.; Pakhlova, G. V., E-mail: Galina.Pakhlova@cern.ch; Belyaev, I. M.

    2006-04-15

    Investigation of loop penguin decays of beauty hadrons seems promising in testing the predictions of the Standard Model of electroweak and strong interactions and in seeking new phenomena beyond the Standard Model. The possibility of studying the radiative penguin decays B{sup 0} {sup {yields}} K*{sup 0}{gamma}, B{sup 0}{sub s} {sup {yields}} {phi}{gamma}, and B{sup 0} {sup {yields}} {omega}{gamma} and the gluonic penguin decays B{sup 0} {sup {yields}} {phi}K{sup 0}{sub S} and B{sup 0}{sub s} {sup {yields}} {phi}{phi} in LHCb experiments is discussed.

  5. Rapid Radiochemical Methods for Asphalt Paving Material ...

    EPA Pesticide Factsheets

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  6. Analysis of low levels of rare earths by radiochemical neutron activation analysis

    USGS Publications Warehouse

    Wandless, G.A.; Morgan, J.W.

    1985-01-01

    A procedure for the radiochemical neutron-activation analysis for the rare earth elements (REE) involves the separation of the REE as a group by rapid ion-exchange methods and determination of yields by reactivation or by energy dispersive X-ray fluorescence (EDXRF) spectrometry. The U. S. Geological Survey (USGS) standard rocks, BCR-1 and AGV-1, were analyzed to determine the precision and accuracy of the method. We found that the precision was ??5-10% on the basis of replicate analysis and that, in general the accuracy was within ??5% of accepted values for most REE. Data for USGS standard rocks BIR-1 (Icelandic basalt) and DNC-1 (North Carolina diabase) are also presented. ?? 1985 Akade??miai Kiado??.

  7. Decay constants and radiative decays of heavy mesons in light-front quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ho-Meoyng

    2007-04-01

    We investigate the magnetic dipole decays V{yields}P{gamma} of various heavy-flavored mesons such as (D,D*,D{sub s},D{sub s}*,{eta}{sub c},J/{psi}) and (B,B*,B{sub s},B{sub s}*,{eta}{sub b},{upsilon}) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F{sub VP}(q{sup 2}) for V{yields}P{gamma}* decays are obtained in the q{sup +}=0 frame and then analytically continued to the timelike region by changing q{sub perpendicular} to iq{sub perpendicular} in the form factors. The coupling constant g{sub VP{gamma}} for real photon case is then obtained in the limit as q{sup 2}{yields}0, i.e. g{sub VP{gamma}}=F{sub VP}(q{sup 2}=0). The weak decaymore » constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations.« less

  8. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    PubMed

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  9. Study of the branching ratio of {psi}(3770){yields}DD in e{sup +}e{sup -{yields}}DD scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Haibo; Qin Xiaoshuai; Yang Maozhi

    2010-01-01

    Based on the data of BES and Belle, the production of DD in the e{sup +}e{sup -{yields}}DD scattering process is studied in this paper. We analyze the continuum and resonant contributions in the energy region from 3.7 to 4.4 GeV. In the {chi}{sup 2} fit to data, we obtain the resonance parameters of {psi}(3770), the branching ratio of {psi}(3770){yields}DD decay by confronting the data to the theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of {psi}(3770){yields}DD decay is 97.2%{+-}8.9%, as well as the branching ratio of {psi}(4040), {psi}(4160){yields}DDmore » decays.« less

  10. Radiative Penguin Decays at the B Factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koneke, Karsten; /MIT, LNS

    2007-11-16

    In this article, I review the most recent results in radiative penguin decays from the B factories Belle and BABAR. Most notably, I will talk about the recent new observations in the decays B {yields} ({rho}/{omega}) {gamma}, a new analysis technique in b {yields} s{gamma}, and first measurements of radiative penguin decays in the B{sup 0}{sub s} meson system. Finally, I will summarize the current status and future prospects of radiative penguin B physics at the B factories.

  11. Study of the strong {sigma}{sub c}{yields}{lambda}{sub c}{pi},{sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays in a nonrelativistic quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertus, C.; Nieves, J.; Hernandez, E.

    We present results for the strong widths corresponding to the {sigma}{sub c}{yields}{lambda}{sub c}{pi}, {sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays. The calculations have been done in a nonrelativistic constituent quark model with wave functions that take advantage of the constraints imposed by heavy quark symmetry. Partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements. Our results {gamma}({sigma}{sub c}{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=2.41{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=2.79{+-}0.08{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=2.37{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}*{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=17.52{+-}0.74{+-}0.12 MeV, {gamma}({sigma}{sub c}*{supmore » +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=17.31{+-}0.73{+-}0.12 MeV, {gamma}({sigma}{sub c}*{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=16.90{+-}0.71{+-}0.12 MeV, {gamma}({xi}{sub c}*{sup +}{yields}{xi}{sub c}{sup 0}{pi}{sup +}+{xi}{sub c}{sup +}{pi}{sup 0})=3.18{+-}0.10{+-}0.01 MeV, and {gamma}({xi}{sub c}*{sup 0}{yields}{xi}{sub c}{sup +}{pi}{sup -}+{xi}{sub c}{sup 0}{pi}{sup 0})=3.03{+-}0.10{+-}0.01 MeV are in good agreement with experimental determinations.« less

  12. Charmless and Penguin Decays at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorigo, Mirco; Collaboration, for the CDF

    2010-12-01

    Penguin transitions play a key role in the search of New Physics hints in the heavy flavor sector. During the last decade CDF has been exploring this opportunity with a rich study of two-body charmless decays of neutral B mesons into charged final-state particles. After briefly introducing the aspects of this physics peculiar to the hadron collision environment, I report on two interesting results: the first polarization measurement of the B{sub s}{sup 0} {yields} {phi}{phi} decay and the update of the B{sub (s)}{sup 0} {yields} h{sup +}h{prime}{sup -} decays analysis.

  13. Rare B Meson Decays With Omega Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; /Colorado U.

    2006-04-24

    Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed themore » decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.« less

  14. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  15. Charged bottomoniumlike states Z{sub b}(10610) and Z{sub b}(10650) and the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Dianyong; Nuclear Theory Group, Institute of Modern Physics of CAS, Lanzhou 730000; Liu Xiang

    2011-10-01

    Inspired by the newly observed two charged bottomoniumlike states, we consider the possible contribution from the intermediate Z{sub b}(10610) and Z{sub b}(10650) states to the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay process, which naturally explains Belle's previous observation of the anomalous {Upsilon}(2S){pi}{sup +}{pi}{sup -} production near the peak of {Upsilon}(5S) at {radical}(s)=10.87 GeV [K. F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 112001 (2008)]. The resulting d{Gamma}({Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -})/dm{sub {pi}}{sup +}{sub {pi}}{sup -} and d{Gamma}({Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -})/dcos{theta} distributions agree with Belle's measurement after inclusion of these Z{sub b} states. This formalism also reproduces the Belle observation of the double-peak structuremore » and its reflection in the {Upsilon}(2S){pi}{sup +} invariant mass spectrum of the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay.« less

  16. Determination of radionuclides and radiochemical impurities produced by in-house cyclotron irradiation and subsequent radiosynthesis of PET tracers.

    PubMed

    Ishiwata, Kiichi; Hayashi, Kunpei; Sakai, Masanari; Kawauchi, Sugio; Hasegawa, Hideaki; Toyohara, Jun

    2017-01-01

    To elucidate the radionuclides and radiochemical impurities included in radiosynthesis processes of positron emission tomography (PET) tracers. Target materials and PET tracers were produced using a cyclotron/synthesis system from Sumitomo Heavy Industry. Positron and γ-ray emitting radionuclides were quantified by measuring radioactivity decay and using the high-purity Ge detector, respectively. Radiochemical species in gaseous and aqueous target materials were analyzed by gas and ion chromatography, respectively. Target materials had considerable levels of several positron emitters in addition to the positron of interest, and in the case of aqueous target materials extremely low levels of many γ-emitters. Five 11 C-, 15 O-, or 18 F-labeled tracers produced from gaseous materials via chemical reactions had no radionuclidic impurities, whereas 18 F-FDG, 18 F-NaF, and 13 N-NH 3 produced from aqueous materials had several γ-emitters as well as impure positron emitters. 15 O-Labeled CO 2 , O 2 , and CO had a radionuclidic impurity 13 N-N 2 (0.5-0.7 %). Target materials had several positron emitters other than the positron of interest, and extremely low level γ-emitters in the case of aqueous materials. PET tracers produced from gaseous materials except for 15 O-labeled gases had no impure radionuclides, whereas those derived from aqueous materials contained acceptable levels of impure positron emitters and extremely low levels of several γ-emitters.

  17. Decay heat uncertainty quantification of MYRRHA

    NASA Astrophysics Data System (ADS)

    Fiorito, Luca; Buss, Oliver; Hoefer, Axel; Stankovskiy, Alexey; Eynde, Gert Van den

    2017-09-01

    MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  18. Substoichiometric radiochemical determination of silver with potassium ethyl xanthate in photofilm washings.

    PubMed

    Reddy, P C; Rangamannar, B

    1990-05-01

    An accurate and rapid radiochemical method has been developed for the determination of microgram amount of silver employing potassium ethyl xanthate as a substoichiometric radiochemical reagent. The light yellow coloured silver ethyl xanthate formed was extracted into nitrobenzene from sulphuric acid media. The effect of foreign ions on the extraction was studied. The method was applied to the determination of silver content in photofilm washings.

  19. Validation of the fission yield and decay data libraries with the 10 s-delayed 235 U fission γ-ray energy spectrum

    NASA Astrophysics Data System (ADS)

    Mendoza, E.; Álvarez-Velarde, F.; Bécares, V.; Cano-Ott, D.; González-Romero, E.; Martínez, T.; Villamarín, D.

    2017-10-01

    We have measured with a LaCl3 detector the γ-ray spectrum emitted by a 235 U enriched UO2 fuel rod 10 s after being irradiated with thermal neutrons. The experimental results are compared with simulations performed with the fission product yield and radioactive decay data libraries present in the most recent releases of ENDF/B, JEFF and JENDL.

  20. Selected Topics on Hadronic B Decays From BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, K.; /SLAC

    Recent measurements of branching fractions and decay-rate asymmetries in charmless hadronic B decays at the BaBar experiment are presented. The selected topics include Dalitz plot analyses of B {yields} K{sup +} {pi}{sup -}{pi} and signal searches in B {yields} PP and PV, where isoscalar mesons are involved, and in B {yields} b{sub 1}P, P and V denote a pseudoscalar and vector meson, respectively. Several measurements in charmless hadronic B decays have indicated possible deviations from the theoretical predictions within the Standard Model. The measurements presented would contribute to searching for and resolving such puzzles.

  1. Radiochemical ageing of EPDM elastomers.. 2. Identification and quantification of chemical changes in EPDM and EPR films γ-irradiated under oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Rivaton, A.; Cambon, S.; Gardette, J.-L.

    2005-01-01

    This paper is devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing under oxygen atmosphere of ethylene-propylene-diene monomer (EPDM) and ethylene-propylene rubber (EPR) films containing the same molar ratio of ethylene/propylene. IR and UV-Vis analysis showed that radiooxidation produces a complex mixture of different products and provokes the consumption of the diene double bond. The radiochemical yields of formation of ketones, carboxylic acids, hydroperoxides and alcohols were determined by combining IR analysis with derivatisation reactions and chemical titration. The contributions of secondary and tertiary structures of these two types of -OH groups were separated. Esters and γ-lactones were formed in low concentration. The oxidation products distribution in irradiated films was determined by micro-FTIR spectroscopy. Crosslinking was evaluated by gel fraction methods. In complement, the gas phase composition was analysed by mass spectrometry.

  2. Some Comments on the Decays of eta (550)

    DOE R&D Accomplishments Database

    Veltman, M.; Yellin, J.

    1966-07-01

    Various decay modes of the {eta}(500) are discussed. The relations, through SU{sub 3} and the Gell-Mann, Sharp, Wagner model, between the {eta}-decay modes and the modes {eta} {yields} {pi}{pi}{gamma), {pi}{sup 0} {yields} {gamma}{gamma} are investigated taking into account {eta}-{eta}{sup *} mixing. The present experimental values for the neutral branching ratios plus the shape of the {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} Dalitz plot are shown to require a 25% {vert_bar}{Delta}{rvec I}{vert_bar} = 3 contribution to the {eta} {yields} 3{pi} amplitude. The connection between a possible charge asymmetry in {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} and the branching ratio {Gamma}{sub {eta} {yields} {pi}{sup 0}e{sup +}e{sup {minus}}}/{Gamma}{sub {eta}}{sup all} is investigated in the framework of a model proposed earlier by several authors. It is shown that there is no conflict between the existing data and this model. The Dalitz plot distribution of {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} is discussed under various assumptions about the properties of the interaction responsible for the decay. (auth)

  3. First observation of the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Burducea, I.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Holtrop, M.; Hombach, C.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-11-01

    The first observation of the decay is reported. The analysis is based on a data sample corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at TeV, collected with the LHCb detector. A yield of 30 ± 6 decays is found in the mass windows 1012.5 < M ( K + K -) < 1026.5 MeV/ c 2 and 746 < M( K - π +) < 1046 MeV/ c 2. The signal yield is found to be dominated by decays, and the corresponding branching fraction is measured to be = (1.10 ± 0.24 (stat) ± 0.14 (syst) ± 0.08 ( f d / f s )) × 10-6, where the uncertainties are statistical, systematic and from the ratio of fragmentation fractions f d / f s which accounts for the different production rate of B 0 and mesons. The significance of signal is 6.1 standard deviations. The fraction of longitudinal polarization in decays is found to be f 0 = 0.51 ± 0.15 (stat) ± 0.07 (syst). [Figure not available: see fulltext.

  4. Study of {chi}{sub cj} Decays at BES III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, J.

    2010-08-05

    In spring 2009 BES III has taken its first large data sample on the {psi}(2S) resonance. More than 1{center_dot}10{sup 8} {psi}(2S) decays have been recorded. First results on the analyses {chi}{sub cJ{yields}{pi}}{sup 0{pi}0}, {chi}{sub cj{yields}{eta}{eta}} and {chi}{sub cj{yields}{phi}{phi}} are presented. The decay mode {chi}{sub c1{yields}{phi}{phi}} has been observed for the first time. The results presented in this document are preliminary.

  5. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    NASA Astrophysics Data System (ADS)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  6. Charmless hadronic B decays into a tensor meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Yang; C. N. Yang Institute for Theoretical Physics, State University of New York Stony Brook, Stony Brook, New York 11794; Yang, Kwei-Chou

    2011-02-01

    Two-body charmless hadronic B decays involving a tensor meson in the final state are studied within the framework of QCD factorization (QCDF). Because of the G-parity of the tensor meson, both the chiral-even and chiral-odd two-parton light-cone distribution amplitudes of the tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit. Our main results are: (i) In the naieve factorization approach, the decays such as B{sup -}{yields}K{sub 2}*{sup 0}{pi}{sup -} and B{sup 0}{yields}K{sub 2}*{sup -}{pi}{sup +} with a tensor meson emitted are prohibited because a tensor meson cannot be created frommore » the local V-A or tensor current. Nevertheless, the decays receive nonfactorizable contributions in QCDF from vertex, penguin and hard spectator corrections. The experimental observation of B{sup -}{yields}K{sub 2}*{sup 0}{pi}{sup -} indicates the importance of nonfactorizable effects. (ii) For penguin-dominated B{yields}TP and TV decays, the predicted rates in naieve factorization are usually too small by 1 to 2 orders of magnitude. In QCDF, they are enhanced by power corrections from penguin annihilation and nonfactorizable contributions. (iii) The dominant penguin contributions to B{yields}K{sub 2}*{eta}{sup (')} arise from the processes: (a) b{yields}sss{yields}s{eta}{sub s} and (b) b{yields}sqq{yields}qK{sub 2}* with {eta}{sub q}=(uu+dd)/{radical}(2) and {eta}{sub s}=ss. The interference, constructive for K{sub 2}*{eta}{sup '} and destructive for K{sub 2}*{eta}, explains why {Gamma}(B{yields}K{sub 2}*{eta}{sup '})>>{Gamma}(B{yields}K{sub 2}*{eta}). (iv) We use the measured rates of B{yields}K{sub 2}*({omega},{phi}) to extract the penguin-annihilation parameters {rho}{sub A}{sup TV} and {rho}{sub A}{sup VT} and the observed longitudinal polarization fractions f{sub L}(K{sub 2}*{omega}) and f{sub L}(K{sub 2}*{phi}) to fix the phases {phi}{sub A}{sup VT} and {phi}{sub A}{sup TV}. (v) The experimental

  7. Strontium and barium iodide high light yield scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.

    2008-02-01

    Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.

  8. Recent results of {chi}{sub cJ} decays from BESIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Liang

    2011-05-23

    Using (106{+-}4)x10{sup 6} {psi}{sup '} events collected with BESIII/BEPCII in March and April 2009, some {chi}{sub cJ} decay modes are studied, such as {chi}{sub cJ}{yields}{pi}{sup 0}{pi}{sup 0}, {chi}{sub cJ}{yields}{eta}{eta}, {chi}{sub cJ}{yields}VV, {chi}{sub cJ}{yields}{gamma}V, and so on. The precisions of these branching fraction measurements are improved, which is helpful to understand {chi}{sub cJ} decay mechanism.

  9. The lepton flavor violating decay {tau}{sup {+-}} {yields} Micro-Sign {sup {+-}} Micro-Sign {sup {+-}} Micro-Sign {sup Minus-Or-Plus-Sign} at LHCb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keune, A., E-mail: anne.keune@epfl.ch

    2012-09-15

    The possibility of improving the limit on the branching fraction of the lepton flavor violating decay {tau}{sup {+-}} {yields} Micro-Sign {sup {+-}} Micro-Sign {sup {+-}} Micro-Sign {sup Minus-Or-Plus-Sign} at LHCb is discussed. It is shown that a simple, cut-based analysis is sufficient to improve the upper limit on this branching fraction within the lifetime of LHCb.

  10. Preparation of 99Tcm-MAG3: no confirmation that sodium chloride injections from plastic containers affect radiochemical purity.

    PubMed

    Millar, A M; O'Brien, L M

    1998-05-01

    Reports have suggested that when sodium chloride injections from a plastic ampoule are used during the preparation of 99Tcm-mercaptoacetyltriglycine (99Tcm-MAG3), the radiochemical purity of the final product might be reduced. A study was therefore undertaken to examine the effect of sodium chloride injections from five manufacturers on the radiochemical purity and stability of 99Tcm-MAG3. One sodium chloride injection was supplied in a glass vial, three in plastic ampoules and one in a plastic infusion bag. Three batches of sodium chloride injections from each manufacturer were tested. The radiopharmaceutical was prepared at a radioactive concentration of 1.1 GBq in 10 ml according to the instructions of the manufacturer of TechneScan MAG3. Analysis of radiochemical purity was performed by high-performance liquid chromatography immediately after preparation and 6 h later. Using 95% as the minimum acceptable radiochemical purity, all the products were satisfactory over the 6 h test period. No manufacturer's sodium chloride injection was found to have a statistically significant effect on the radiochemical purity. Based on the 15 batches of sodium chloride injection tested, this study cannot confirm that sodium chloride injections from a plastic container affect the radiochemical purity of 99Tcm-MAG3. However, in view of the known sensitivity of some 99Tcm radiopharmaceuticals to external influences, it is probably good practice to test radiochemical purity when new batches of ancillary materials, such as sodium chloride injections, are introduced.

  11. A simple and rapid radiochemical choline acetyltransferase (ChAT) assay screening test.

    PubMed

    Shiba, Kazuhiro; Ogawa, Kazuma; Kinuya, Seigo; Yajima, Kazuyoshi; Mori, Hirofumi

    2006-10-15

    A simple radiochemical choline acetyltransferase (ChAT) assay screening test was developed by measuring for [(3)H]acetylcholine ([(3)H]ACh) formed from 0.2 mM [(3)H]acetyl-coenzyme A ([(3)H]acetyl-CoA) and 1 mM choline by 0.2 mg of rat brain homogenates containing ChAT into 96-well microplates. A simple and rapid procedure for isolating [(3)H]ACh from the incubation mixture into 96-well microplates was achieved by using a sodium tetraphenylboron (Kalibor) solution (in ethyl acetate, 0.75%, w/v) and a hydrophobic liquid scintillator mixture (1:5, v/v, 0.2 mL) as an extraction solvent. The benefits of this radiochemical method using 96-well microplates are as follows: (1) this method is reliable and reproducible; (2) many samples can be examined at the same time by this method; (3) this method is economical and effective in reducing radioactive waste. The development of a new simple radiochemical ChAT assay screening test is the first stage of development of radiolabeled ChAT mapping agent.

  12. Measurement of exclusive baryon-antibaryon decays of {chi}{sub cJ} mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, P.; Rademacker, J.; Asner, D. M.

    2008-08-01

    Using a sample of 2.59x10{sup 7} {psi}(2S) decays collected by the CLEO-c detector, we present results of a study of {chi}{sub cJ} (J=0, 1, 2) decays into baryon-antibaryon final states. We present the world's most precise measurements of the {chi}{sub cJ}{yields}pp and {chi}{sub cJ}{yields}{lambda}{lambda} branching fractions, and the first measurements of {chi}{sub c0} decays to other hyperons. These results illuminate the decay mechanism of the {chi}{sub c} states.

  13. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    PubMed

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials.

  14. Radiolabelling of isopeptide N epsilon-(gamma-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.

    PubMed

    Wüst, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine 4 was labelled with 18F via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). A modified approach for the convenient synthesis of [18F]SFB was used, and [18F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n = 20) and radiochemical purity >95% within 40 min after EOB. For labelling N(epsilon)-(gamma-glutamyl)-L-lysine with [18F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3GBq of [18F]SFB could be converted into 447MBq (46%, decay-corrected) of [18F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  15. Study of {Lambda}-{Lambda} oscillation in quantum coherent {Lambda}{Lambda} by using J/{psi}{yields}{Lambda}{Lambda} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Xianwei; Department of Physics, Henan Normal University, Xinxiang 453007; Li Haibo

    2010-03-01

    We discuss the possibility of searching for the {Lambda}-{Lambda} oscillations for coherent {Lambda}{Lambda} production in the J/{psi}{yields}{Lambda}{Lambda} decay process. The sensitivity of measurement of {Lambda}-{Lambda} oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the {Delta}B=2 amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract the {Lambda}-{Lambda} oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of {delta}m{sub {Lambda}{Lambda}<}10{sup -15} MeV at 90% confidence level, corresponding to about 10{sup -6} s of {Lambda}-{Lambda} oscillation time.

  16. D meson hadronic decays at CLEO-c

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    The CLEO-c experiment is the best arena in which to study most D meson decay phenomena. Precise measurements of hadronic deecays of D mesons allow us to better constrain parameters of the Standard Model. We study the inclusive decays of D+s mesons, using data collected near the D*+sD-s peak production energy Ecm = 4170 MeV by the CLEO-c detector. We report the inclusive yields of D+s decays to K+X, K-X, K0SX , pi+X, pi-X, pi 0X, etaX, eta'X , φX, oX and f0(980)X, and also decays into pairs of kaons, D+s → KK¯X. Using these measurements, we obtain an overview of D+s decays. The measurements of inclusive decays of D+s mesons indicate that the inclusive o yield, Ds → oX, is substantial. Using the same D*+sD-s data sample, we search for D+s exclusive hadronic decays involving o. We report the first observation of D+s → pi+pi0o decay and first upper limits on D+s → pi+etao, D+s → K+pi0o, D+s → K+o, and D+s → K+etao decays. Our measurement of D+s → pi+o decay is consistent with other experiments. Using the data collected on psi(3770) resonance and near the D*+sD-s peak production energy by the CLEO-c detector, we study the decays of charmed mesons D0, D +, and Ds to pairs of light pseudoscalar mesons P. We report branching fractions of Cabibbo-favored, singly-Cabibbo-suppressed, and doubly-Cabibbo-suppressed decays. We normalize against the Cabibbo-favored D modes, D 0 → K-pi+, D+ → K-pi +pi+, and D+s → K+ K0S. These measurements of D → PP decays allow the testing of flavor symmetry and the extraction of key amplitudes.

  17. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less

  18. Measurement of the Cabibbo-Kobayashi-Maskawa Angle {gamma} in B{sup {+-}}{yields}D{sup (*)}K{sup {+-}} Decays with a Dalitz Analysis of D{yields}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    2005-09-16

    We report on a measurement of the Cabibbo-Kobayashi-Maskawa CP-violating phase {gamma} through a Dalitz analysis of neutral D decays to K{sub S}{sup 0}{pi}{sup -}{pi}{sup +} in the processes B{sup {+-}}{yields}D{sup (*)}K{sup {+-}}, D*{yields}D{pi}{sup 0}, D{gamma}. Using a sample of 227x10{sup 6} BB pairs collected by the BABAR detector, we measure the amplitude ratios r{sub B}=0.12{+-}0.08{+-}0.03{+-}0.04 and r{sub B}*=0.17{+-}0.10{+-}0.03{+-}0.03, the relative strong phases {delta}{sub B}=(104{+-}45{sub -21-24}{sup +17+16}) deg. and {delta}{sub B}*=(-64{+-}41{sub -12}{sup +14}{+-}15) deg. between the amplitudes A(B{sup -}{yields}D{sup (*)0}K{sup -}) and A(B{sup -}{yields}D{sup (*)0}K{sup -}), and {gamma}=(70{+-}31{sub -10-11}{sup +12+14}) deg. The first error is statistical, the second is the experimentalmore » systematic uncertainty, and the third reflects the Dalitz model uncertainty. The results for the strong and weak phases have a twofold ambiguity.« less

  19. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less

  20. Novel, simple and fast automated synthesis of 18F-choline in a single Synthera module

    NASA Astrophysics Data System (ADS)

    Litman, Y.; Pace, P.; Silva, L.; Hormigo, C.; Caro, R.; Gutierrez, H.; Bastianello, M.; Casale, G.

    2012-12-01

    The aim of this work is to develop a method to produce 18F-Fluorocholine in a single Synthera module with high yield, quality and reproducibility. We give special importance to the details of the drying and distillation procedures. After 5 syntheses we report a decay corrected yield of (27 ± 2) % (mean ± S.D.). The radiochemical purity was > 95%, and the other quality control parameters were within the specifications. Product 18F-fluorocholine was administrated to 17 humans with no observed side-effects.

  1. Single electron yields from semileptonic charm and bottom hadron decays in Au + Au collisions at s N N = 200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s( NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function ofmore » transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s( NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p (T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R (AA) to calculate the R (AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p (T) < 4 GeV/c.« less

  2. Exclusive B Decays to Charmonium Final States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    We report on exclusive decays of B mesons into final states containing charmonium using data collected with the BABAR detector at the PEP-II storage rings. The charmonium states considered here are J/{psi}, {psi}(2S), and {chi}{sub c1}. Branching fractions for several exclusive final states, a measurement of the decay amplitudes for the B{sup 0} {yields} J/{psi} K* decay, and measurements of the B{sup 0} and B{sup +} masses are presented. All of the results we present here are preliminary.

  3. Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals.

    PubMed

    Uccelli, Licia; Boschi, Alessandra; Martini, Petra; Cittanti, Corrado; Bertelli, Stefania; Bortolotti, Doretta; Govoni, Elena; Lodi, Luca; Romani, Simona; Zaccaria, Samanta; Zappaterra, Elisa; Farina, Donatella; Rizzo, Carlotta; Giganti, Melchiore; Bartolomei, Mirco

    2018-03-15

    The influence of effective room temperature on the radiochemical purity of 99m Tc-radiopharmaceuticals was reported. This study was born from the observation that in the isolators used for the preparation of the 99m Tc-radiopharmaceuticals the temperatures can be higher than those reported in the commercial illustrative leaflets of the kits. This is due, in particular, to the small size of the work area, the presence of instruments for heating, the continuous activation of air filtration, in addition to the fact that the environment of the isolator used for the 99m Tc-radiopharmaceuticals preparation and storage is completely isolated and not conditioned. A total of 244 99m Tc-radiopharmaceutical preparations (seven different types) have been tested and the radiochemical purity was checked at the end of preparation and until the expiry time. Moreover, we found that the mean temperature into the isolator was significantly higher than 25 °C, the temperature, in general, required for the preparation and storage of 99m Tc-radiopharmaceuticals. Results confirmed the radiochemical stability of radiopharmaceutical products. However, as required in the field of quality assurance, the impact that different conditions than those required by the manufacturer on the radiopharmaceuticals quality have to be verified before human administration.

  4. Searches for Leptonic B Decays at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Silke; /SLAC

    2012-04-25

    Measurements of the branching fractions of purely leptonic decays of B-mesons translate into constraints in the plane of the charged Higgs mass versus tan {beta} which are relatively insensitive to the particular theoretical model. Using the full BABAR dataset of 450 million B-decays we search for these decays. No significant signal is found in the decays into electrons or muons and we set upper limits on the branching fractions of the order of a 10{sup -6} at 90% confidence level. We measure the branching fraction of B {yields} {tau}{mu} to be (1.7 {+-} 0.6) x 10{sup -4}.

  5. Phomopsis seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean-growing countries. The disease is caused primarily by the fungal pathogen Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seed range from symptomless to shriveled, elongated, ...

  6. Single electron yields from semileptonic charm and bottom hadron decays in Au +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3

  7. Two-photon decay in gold atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunford, R. W.; Kanter, E. P.; Kraessig, B.

    2006-07-15

    We have measured the energy differential transition probabilities for the two-photon decay of K vacancies in gold atoms (nuclear charge Z=79). This is the heaviest atom for which this information has been obtained, and so is most sensitive to relativistic effects. The experiment determined the shape of the continuum radiation for the transitions 2s{yields}1s, 3s{yields}1s, 3d{yields}1s, and (4s+4d){yields}1s at an emission pair opening angle {theta}={pi}/2. Our results for 3d{yields}1s and (4s+4d){yields}1s extend to energies above and below the region of the intermediate state resonances. No relativistic calculations exist for Au, so we compare with calculations by Mu and Crasemann andmore » Tong et al. for Ag (Z=47) and Xe (Z=54). For equal-energy, back-to-back two-photon decay, the calculations show an increase in transition probability with Z for the 2s{yields}1s and 3d{yields}1s transitions. In contrast, our data, at Z=79, corrected for the angular distribution, give a smaller transition probability than the lower-Z experimental results of Ilakovac et al. and Mokler et al. for Ag and Xe. The shapes of the two-photon continua in our data are in general agreement with theory except that we find anomalously high values for the differential two-photon transition probability for the 3s{yields}1s transition near y=0.35, where y is the fraction of the transition energy carried by the lower-energy photon.« less

  8. Observation of B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +} and evidence for B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chistov, R.; Aushev, T.; Balagura, V.

    We report the first observation of the decay B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +} with a significance of 8.7{sigma} and evidence for the decay B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +} with a significance of 3.8{sigma}. The product B(B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +})xB({xi}{sub c}{sup 0}{yields}{xi}{sup +}{pi}{sup -}) is measured to be (4.8{sub -0.9}{sup +1.0}{+-}1.1{+-}1.2)x10{sup -5}, and B(B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +})xB({xi}{sub c}{sup -}{yields}{xi}{sup +}{pi}{sup -}{pi}{sup -}) is measured to be (9.3{sub -2.8}{sup +3.7}{+-}1.9{+-}2.4)x10{sup -5}. The errors are statistical, systematic and the error of the {lambda}{sub c}{sup +}{yields}pK{sup -}{pi}{sup +} branching fraction, respectively. The decay B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{supmore » +} is the first example of a two-body exclusive B{sup +} decay into two charmed baryons. The data used for this analysis was accumulated at the {upsilon}(4S) resonance, using the Belle detector at the e{sup +}e{sup -} asymmetric-energy collider KEKB. The integrated luminosity of the data sample is equal to 357 fb{sup -1}, corresponding to 386x10{sup 6} BB pairs.« less

  9. Application of Microreactor to the Preparation of C-11-Labeled Compounds via O-[11C]Methylation with [11C]CH3I: Rapid Synthesis of [11C]Raclopride.

    PubMed

    Kawashima, Hidekazu; Kimura, Hiroyuki; Nakaya, Yuta; Tomatsu, Kenji; Arimitsu, Kenji; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2015-01-01

    A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.

  10. Synthesis of [¹¹C]PBR170, a novel imidazopyridine, for imaging the translocator protein with PET.

    PubMed

    Bourdier, Thomas; Henderson, David; Fookes, Christopher J R; Lam, Peter; Mattner, Filomena; Fulham, Michael; Katsifis, Andrew

    2014-08-01

    The translocator protein (TSPO) ligand 2-(6,8-dichloro-2-(4-ethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)-N-(2-fluoropyridin-3-yl)-N-methylacetamide (PBR170), is a novel imidazopyridineacetamide with high affinity (2.6 nm) and selectivity for the TSPO. The synthesis of [(11)C]PBR170 was accomplished by N-methylation of the corresponding desmethyl precursor with [(11)C]methyl iodide in the presence of sodium hydroxide in dimethylformamide. [(11)C]PBR170 was produced in 30-45% radiochemical yield (decay-corrected, based on [(11)C]methyl iodide) with a radiochemical purity >98% and a specific activity of 90-190 GBq/μmol after 35 min of synthesis time. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Synthesis of [(11)C]GSK1482160 as a new PET agent for targeting P2X(7) receptor.

    PubMed

    Gao, Mingzhang; Wang, Min; Green, Mark A; Hutchins, Gary D; Zheng, Qi-Huang

    2015-05-01

    The authentic standards GSK1482160 and its isomer, as well as the radiolabeling precursors desmethyl-GSK1482160 and Boc-protected desmethyl-GSK1482160 were synthesized from L-pyroglutamic acid, methyl L-pyroglutamate and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 27-28% in 3 steps, 58% in 4 steps, 76% in 1 step and 33% in 2 steps, respectively. [(11)C]GSK1482160 was prepared from either desmethyl-GSK1482160 or Boc-protected desmethyl-GSK1482160 with [(11)C]CH3OTf through N-[(11)C]methylation and isolated by HPLC combined with SPE in 40-50% and 30-40% radiochemical yield, respectively, based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity at EOB was 370-1110 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. CP Violation in b- and c-hadron decays at LHCb

    NASA Astrophysics Data System (ADS)

    Steinkamp, Olaf; LHCb Collaboration

    2017-07-01

    Testing the Standard Model of particle physics by precision measurements of CP violating observables in the decays of b and c hadrons has been one of the design goals of the LHCb experiment. World-leading measurements have been performed of the semileptonic asymmetry, {a}ssl, and of the mixing-induced CP-violating phase ϕs in the {B}s0{\\bar{B}}s0 system. The CKM angle γ is still the least known angle of the Unitarity Triangle, and the only one easily accessible using tree-level decays. A recent combination of LHCb measurements in various B → DK decay modes has yielded the most precise determination of γ from a single experiment to date. The LHCb experiment is collecting unprecedented samples of beauty baryons, allowing for the first time to study CP violating observables in their decays. A recent analysis provided the first evidence for CP violation in the beauty baryon sector. Finally, LHCb has the largest samples of charmed hadron decays collected by any experiment to date. These samples yield some of the world’s most sensitive searches for direct and indirect CP violation in the charm sector.

  13. Measuring B{sup {+-}}{yields}{tau}{sup {+-}}{nu} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu} at the Z peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; Chen, C.H.; National Center for Theoretical Sciences, Taiwan

    2008-06-01

    The measurement of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} at the B factories provides important constraints on the parameter tan{beta}/m{sub H{sup {+-}}} in the context of models with two Higgs doublets. Limits on this decay from e{sup +}e{sup -} collisions at the Z peak were sensitive to the sum of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}}. Because of the possibly sizeable contribution from B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} we suggest that a signal for this combination might be observed if the CERN LEP L3 Collaboration used its total data of {approx}3.6x10{sup 6} hadronic decays of the Z boson.more » Moreover, we point out that a future linear collider operating at the Z peak (Giga Z option) could constrain tan{beta}/m{sub H{sup {+-}}} from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} alone.« less

  14. CP asymmetry in charged Higgs decays to chargino-neutralino pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2007-10-01

    We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-neutralino pairs, H{sup {+-}}{yields}{chi}{sub i}{sup {+-}}{chi}{sub j}{sup 0}, i=1, 2, j=1,...,4. We show first that these modes have a large branching ratio for m{sub H{sup {+-}}} > or approx. 600 GeV. We use Cutkosky rules to obtain the analytical formulas needed for the evaluation of the asymmetry under consideration. We then calculate the CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well as constraints from b{yields}s{gamma} (g-2){sub {mu}}, {delta}{rho} and electric dipole moments. Finally, we discuss observability of the asymmetry at the LHC bymore » calculating the number of required charged Higgs events to observe the asymmetry for each decay channel. We show that the inclusion of constraints considerably reduces the projected CP asymmetry, and that the optimal channel for observing the asymmetry is H{sup {+-}}{yields}{chi}{sub 1}{sup {+-}}{chi}{sub 2}{sup 0}.« less

  15. The beta-delayed particle decay of neon-17

    NASA Astrophysics Data System (ADS)

    Morton, Anthony Colin

    2001-10-01

    An experiment has been proposed to study the β- delayed proton decay of 17Ne into α- particle-emitting states in 16O below the 12C + α threshold in the hopes of using the information gained to constrain the 12C(α, γ) 16O cross section at stellar energies; several experiments have been carried out using the TISOL facility at TRIUMF in an effort to determine the feasibility of such an approach. 17Ne decays by β-particle emission to excited states in 17F; by studying proton-γ-ray coincidences in the decay of these states, relative branching ratios have been obtained for the β-delayed proton decay of 17Ne to γ-ray-emitting states in 16O. These indicate that the decay of the isobaric analogue state (IAS) at 11.1929 MeV in 17F to the 2 + subthreshold state at 6.917 MeV in 16O is a factor of thirty weaker than that of the IAS to any other γ- emitting state. From measurements of the angular correlations observed in such coincidences, the spins and parities of several excited states in 17F have been determined; it has also been shown that the decay of the IAS to the 1 - subthreshold state at 7.117 MeV in 16O is strongly anisotropic, suggesting that it has a strong l = 2 component. Further decay studies have yielded a comprehensive set of β-delayed particle branching ratios from the decay of 17Ne; from these, fAt values and reduced Gamow-Teller matrix elements have been calculated, and the Fermi decay strength of the IAS has been limited to >=2.96 +/- 0.14 indicating a T = / isospin purity of >=98.7 +/- 4.6% for the IAS. The results obtained suggest that a determination of both the E1 and E2 components of the 12C(α, γ) 16O cross section is not feasible; however, with improved yields of 17Ne, a determination of only the E1 component should be.

  16. Study of the Rare Hyperon Decay $${\\boldmath \\Omega^\\mp \\to \\Xi^\\mp \\: \\pi^+\\pi^-}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamaev, O.; Solomey, N.; Burnstein, R.A.

    The authors report a new measurement of the decay {Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -} with 76 events and a first observation of the decay {bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -} with 24 events, yielding a combined branching ratio (3.74{sub -0.56}{sup +0.67}) x 10{sup -4}. This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with {Beta}({Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -}) = 4.04{sub -0.71}{sup +0.83} x 10{sup -4} and {Beta}({bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -}) = 3.15{submore » -0.89}{sup +1.12} x 10{sup -4}. Contrary to theoretical expectation, they see little evidence for the decays {Omega}{sup -} {yields} {Xi}*{sub 1530}{sup 0} {pi}{sup -} and {bar {Omega}}{sup +} {yields} {bar {Xi}}*{sub 1530}{sup 0} {pi}{sup +} and place a 90% C.L. upper limit on the combined branching ratio {Beta}({Omega}{sup -}({bar {Omega}}{sup +}) {yields} {Xi}*{sub 1530}{sup 0} ({bar {Xi}}*{sub 1530}{sup 0}){pi}{sup {-+}}) < 7.0 x 10{sup -5}.« less

  17. Preliminary Therapy Evaluation of 225Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from 225Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization

    PubMed Central

    Pandya, Darpan N.; Hantgan, Roy; Budzevich, Mikalai M.; Kock, Nancy D.; Morse, David L.; Batista, Izadora; Mintz, Akiva; Li, King C.; Wadas, Thaddeus J.

    2016-01-01

    The theranostic potential of 225Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of 225Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La3+ ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare 225Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other 225Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3+ tumors in live animals using the daughter products derived from 225Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy. PMID:27022417

  18. Preliminary Therapy Evaluation of (225)Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from (225)Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization.

    PubMed

    Pandya, Darpan N; Hantgan, Roy; Budzevich, Mikalai M; Kock, Nancy D; Morse, David L; Batista, Izadora; Mintz, Akiva; Li, King C; Wadas, Thaddeus J

    2016-01-01

    The theranostic potential of (225)Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of (225)Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La(3+) ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare (225)Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other (225)Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3 (+) tumors in live animals using the daughter products derived from (225)Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy.

  19. A new precursor for the preparation of 6-[18F]-fluoro-L-m-tyrosine (FMT): Efficient synthesis and comparison of radiolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanBrocklin, Henry F.; Blagoev, Milan; Hoepping, Alexander

    For the electrophilic preparation of 6-[18F]-Fluoro-L-m-tyrosine (FMT), a PET tracer for measuring changes in dopaminergic function in movement disorders, a novel precursor, N-(tert-butoxycarbonyl)-3-(tert-butoxycarbonyloxy)-6-trimethylstannnyl-L-phenylalanine ethyl ester, was synthesized in four steps and 26 percent yield starting from L-m-tyrosine. FMT produced by two methods at two institutions was comparable in decay corrected yield, 25-26 percent, and quality (chemical, enantiomeric, and radiochemical purity and specific activity) as that obtained with the original N-trifluoroacetyl-3-acetyl-6-trimethylstannyl-L-m-tyrosine ethyl ester FMT precursor.

  20. Which hadronic decay modes are good for {eta}{sub b} searching: Double J/{psi} or something else?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Yu

    2008-09-01

    It has been controversial whether {eta}{sub b} can be discovered in Tevatron Run 2 through the decay {eta}{sub b}{yields}J/{psi}J/{psi} followed by J/{psi}{yields}{mu}{sup +}{mu}{sup -}. I clear this controversy by an explicit calculation which predicts Br[{eta}{sub b}{yields}J/{psi}J/{psi}] to be of order 10{sup -8}. It is concluded that observing {eta}{sub b} through this decay mode in Tevatron Run 2 may be rather unrealistic. The {eta}{sub b} may be observed in the forthcoming CERN LHC experiments through the 4-lepton channel, if the background events can be significantly reduced by imposing some kinematical cuts. By some rough but plausible considerations, I find that themore » analogous decay processes {eta}{sub b}{yields}VV, D*D* also have very suppressed branching ratios; nevertheless it may be worth looking for {eta}{sub b} at LHC and Super B factory through the decay modes {eta}{sub b}{yields}K{sub S}K{sup {+-}}{pi}{sup {+-}}, D*D.« less

  1. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  2. Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.

  3. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  4. Radiochemical Processing Laboratory (RPL) at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, Tony; Clark, Sue; Bryan, Sam

    2017-03-23

    Nuclear research is one of the core components of PNNL's mission. The centerpiece of PNNL's nuclear research is the Radiochemical Processing Laboratory (RPL), a Category 2 nuclear facility with state-of-the-art instrumentation, scientific expertise, and specialized capabilities that enable research with significant quantities of fissionable materials and other radionuclides—from tritium to plutonium. High impact radiological research has been conducted in the RPL since the 1950's, when nuclear weapons and energy production at Hanford were at the forefront of national defense. Since then, significant investments have been made in the RPL to maintain it as a premier nuclear science research facility supportingmore » multiple programs. Most recently, PNNL is developing a world-class analytical electron microscopy facility dedicated to the characterization of radiological materials.« less

  5. Amplitude Analysis of B0 to K^ pi^-pi^0 and Evidence of Direct CP Violation in B to K^* pi decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.

    We analyze the decay B{sup 0} {yields} K{sup +} {pi}{sup -} {pi}{sup 0} with a sample of 454 million B{bar B} events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays to construct isospin amplitudes from B{sup 0} {yields} K{sup *}{pi} and B{sup 0} {yields} {rho}K decays. We measure the phase of the isospin amplitude {Phi}{sub 3/2}, useful in constraining the CKM unitarity triangle angle {gamma}more » and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B{sup 0} {yields} K{sup *+}{pi}{sup -} decays at the level of 3 {sigma} when measurements from both B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} and B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays are combined.« less

  6. Measurements of the branching fractions for B{sub (s)}{yields}D{sub (s)}{pi}{pi}{pi} and {Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{pi}{pi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaij, R.; Bauer, Th.; Beuzekom, M. van

    Branching fractions of the decays H{sub b}{yields}H{sub c}{pi}{sup -}{pi}{sup +}{pi}{sup -} relative to H{sub b}{yields}H{sub c}{pi}{sup -} are presented, where H{sub b} (H{sub c}) represents B{sup 0} (D{sup +}), B{sup -} (D{sup 0}), B{sub s}{sup 0} (D{sub s}{sup +}), and {Lambda}{sub b}{sup 0} ({Lambda}{sub c}{sup +}). The measurements are performed with the LHCb detector using 35 pb{sup -1} of data collected at {radical}(s)=7 TeV. The ratios of branching fractions are measured to be [B(B{sup 0}{yields}D{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup 0}{yields}D{sup +}{pi}{sup -})]=2.38{+-}0.11{+-}0.21, [B(B{sup -}{yields}D{sup 0}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup -}{yields}D{sup 0}{pi}{sup -})]= 1.27{+-}0.06{+-}0.11, [B(B{sub s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{submore » s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -})]=2.01{+-}0.37{+-}0.20, [B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -} {pi}{sup +}{pi}{sup -})]/[B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -})]=1.43{+-}0.16{+-}0.13 We also report measurements of partial decay rates of these decays to excited charm hadrons. These results are of comparable or higher precision than existing measurements.« less

  7. Measurement of the moments of the photon energy spectrum in B{yields}X{sub s}{gamma} decays and determination of |V{sub cb}| and m{sub b} at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwanda, C.; Mandl, F.; Mitaroff, W.

    2008-08-01

    Using the previous Belle measurement of the inclusive photon energy in B{yields}X{sub s}{gamma} decays, we determine the first and second moments of this spectrum for minimum photon energies in the B meson rest frame ranging from 1.8 to 2.3 GeV. Combining these measurements with recent Belle data on the lepton energy and hadronic mass moments in B{yields}X{sub c}l{nu} decays, we perform fits to theoretical expressions derived in the 1S and kinetic mass schemes and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V{sub cb}, the b-quark mass, and other nonperturbative parameters. In the 1S scheme analysis we find |V{sub cb}|=(41.56{+-}0.68(fit){+-}0.08({tau}{submore » B}))x10{sup -3} and m{sub b}{sup 1S}=(4.723{+-}0.055) GeV. In the kinetic scheme, we obtain |V{sub cb}|=(41.58{+-}0.69(fit){+-}0.08({tau}{sub B}){+-}0.58(th))x10{sup -3} and m{sub b}{sup kin}=(4.543{+-}0.075) GeV.« less

  8. Radium-223: From Radiochemical Development to Clinical Applications in Targeted Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruland, Oyvind S.; Jonasdottir, Thora J.; Fisher, Darrell R.

    2008-09-15

    The radiochemical properties of radium-223 (223Ra, T1/2 = 11.4 d) render this alpha-emitting radionuclide promising for targeted cancer therapy. Together with its short-lived daughters, each 223Ra decay produces four alpha-particle emissions—which enhance therapy effectiveness at the cellular level. In this paper, we review the recently published data reported for pre-clinical and clinical use of 223Ra in cancer treatment. We have evaluated two distinct chemical forms of 223Ra in vivo: 1) cationic 223Ra as dissolved RaCl2, and 2) liposome-encapsulated 223Ra. Cationic 223Ra seeks metabolically active osteoblastic bone and tumor lesions with high uptake and strong binding affinity based on its similaritiesmore » to calcium. Based on these properties, we have advanced the clinical use of 223Ra for treating bone metastases from late-stage breast and prostate cancer. The results show impressive anti-tumor activity and improved overall survival in hormone-refractory prostate cancer patients with bone metastases. In other studies, we have evaluated the biodistribution and tumor uptake of liposomally encapsulated 223Ra in mice with human osteosarcoma xenografts, and in dogs with spontaneous osteosarcoma and associated soft tissue metastases. Results indicate excellent biodistributions in both species. In dogs, we found considerable uptake of liposomal 223Ra in cancer metastases in multiple organs, resulting in favorable tumor-to-normal soft tissue ratios. Collectively, these findings show an outstanding potential for 223Ra as a therapeutic agent.« less

  9. Fission Reaction Event Yield Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  10. Radiochemical analysis of waters and mud of Euganean spas (Padua)

    NASA Astrophysics Data System (ADS)

    Cantaluppi, C.; Fasson, A.; Ceccotto, F.; Cianchi, A.; Degetto, S.

    2012-04-01

    The area around the Euganean Hills (North-East Italy) is concerned with thermal phenomena known and used for therapeutic purposes since ancient times. The thermal waters collected in this area have taken up a natural radionuclides content due to the leaching of hot and permeable deep rocks, with which they come into contact, before their rising to the surface. During the "maturation" process of the mud used for treatment purposes, the thermal waters make happen a complex series of biochemical changes and release a series of chemical species to the mud, resulting, in particular, in an enrichment phenomenon for some radionuclides. In this work, the first radiochemical analysis extended to all the Euganean Thermal District is reported. In particular, chemical analyses of mud, as well as radiochemical analyses of both mud and waters were performed; the enrichment of the radioisotopes in mud used for treatments was also documented. The results show that the 226Ra content in mud, during the "maturation" process, presents an enrichment even of one order of magnitude with respect to the value found in the unprocessed mud. Furthermore, in the same thermal waters, high concentrations of "unsupported" 222Rn have been found, which have shown to be not completely negligible both for people under treatment and particularly for spa workers.

  11. High Yield Production and Radiochemical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Labeling Strategies for the Development of Theranostic Radiopharmaceuticals.

    PubMed

    Ellison, Paul A; Barnhart, Todd E; Chen, Feng; Hong, Hao; Zhang, Yin; Theuer, Charles P; Cai, Weibo; Nickles, Robert J; DeJesus, Onofre T

    2016-01-20

    Radioisotopes of arsenic are of considerable interest to the field of nuclear medicine with unique nuclear and chemical properties making them well-suited for use in novel theranostic radiopharmaceuticals. However, progress must still be made in the production of isotopically pure radioarsenic and in its stable conjugation to biological targeting vectors. This work presents the production and irradiation of isotopically enriched (72)Ge(m) discs in an irrigation-cooled target system allowing for the production of isotopically pure (72)As with capability on the order of 10 GBq. A radiochemical separation procedure isolated the reactive trivalent radioarsenic in a small volume buffered aqueous solution, while reclaiming (72)Ge target material. The direct thiol-labeling of a monoclonal antibody resulted in a conjugate exhibiting exceptionally poor in vivo stability in a mouse model. This prompted further investigations to alternative radioarsenic labeling strategies, including the labeling of the dithiol-containing chelator dihydrolipoic acid, and thiol-modified mesoporous silica nanoparticles (MSN-SH). Radioarsenic-labeled MSN-SH showed exceptional in vivo stability toward dearsenylation.

  12. High Yield Production and Radiochemical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Labeling Strategies for the Development of Theranostic Radiopharmaceuticals

    PubMed Central

    Ellison, Paul A.; Barnhart, Todd E.; Chen, Feng; Hong, Hao; Zhang, Yin; Theuer, Charles P.; Cai, Weibo; Nickles, Robert J.; DeJesus, Onofre T.

    2016-01-01

    Radioisotopes of arsenic are of considerable interest to the field of nuclear medicine with unique nuclear and chemical properties making them well-suited for use in novel theranostic radiopharmaceuticals. However, progress must still be made in the production of isotopically pure radioarsenic and in its stable conjugation to biological targeting vectors. This work presents the production and irradiation of isotopically enriched 72Ge(m) discs in an irrigation-cooled target system allowing for the production of isotopically pure 72As with capability on the order of 10 GBq. A radiochemical separation procedure isolated the reactive trivalent radioarsenic in a small volume buffered aqueous solution, while reclaiming 72Ge target material. The direct thiol-labeling of a monoclonal antibody resulted in a conjugate exhibiting exceptionally poor in vivo stability in a mouse model. This prompted further investigations to alternative radioarsenic labeling strategies, including the labeling of the dithiol-containing chelator dihydrolipoic acid, and thiol-modified mesoporous silica nanoparticles (MSN-SH). Radioarsenic-labeled MSN-SH showed exceptional in vivo stability toward dearsenylation. PMID:26646989

  13. Beta decay of 187Re and cosmochronology

    NASA Astrophysics Data System (ADS)

    Ashktorab, K.; Jänecke, J. W.; Becchetti, F. D.

    1993-06-01

    Uncertainties which limit the use of the 187-187Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe include those of the partial half-lives of the continuum and bound-state decays of 187Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several previous measurements are not compatible with each other. A high-temperature quartz proportional counter has been used in this work to remeasure the continuum decay of 187Re by introducing a metallo-organic rhenium compound into the counting gas. The measured beta end-point energy for the continuum decay of neutral 187Re to singly ionized 187Os of 2.70+/-0.09 keV agrees with earlier results. However, the present half-life measurement of (45+/-3) Gyr agrees within the quoted uncertainties only with the earlier measurement of Payne [Ph.D. thesis, University of Glasgow, 1965 (unpublished)] and Drever (private communication). The new half-life for the continuum decay and the total half-life of (43.5+/-1.3) Gyr, as reported by Linder et al. [Nature (London) 320, 246 (1986)] yield a branching ratio for the bound-state decay into discrete atomic states of (3+/-6)%. This is in agreement with the most recent calculated theoretical branching ratio of approximately 1%.

  14. Cosmic-Ray Nucleosynthesis of p-nuclei: Yields and Routes

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Mathews, Grant J.

    2018-02-01

    We investigate the cosmic-ray nucleosynthesis (CRN) of proton-rich stable nuclides (p-nuclides). We calculate the cosmic-ray (CR) energy spectra of heavy nuclides with mass number A=[74,209], taking into account the detailed nuclear spallation, decay, energy loss, and escape from the Galaxy during the CR propagation. We adopt the latest semiempirical formula SPACS for the spallation cross sections and the latest data on nuclear decay. Effective electron-capture decay rates are calculated using the proper cross sections for recombination and ionization in the whole CR energy region. Calculated CR spectral shapes vary for different nuclides. Abundances of proton-rich unstable nuclides increase in CRs with increasing energy relative to those of other nuclides. Yields of the primary and secondary spallation processes and differential yields from respective seed nuclides are calculated. We find that the CR energy region of ≤slant { \\mathcal O }(100) MeV/nucleon predominantly contributes to the total yields. The atomic cross sections in the low-energy range adopted in this study are then necessary. Effects of CRN on the Galactic chemical evolution of p-nuclides are calculated. Important seed nuclides are identified for respective p-nuclides. The contribution of CRN is significant for 180m Ta, accounting for about 20% of the solar abundance. About 87% of the 180m Ta CRN yield can be attributed to the primary process. The most important production routes are reactions of 181Ta, 180Hf, and 182W. CRN yields of other p-nuclides are typically about { \\mathcal O }(10‑4–10‑2) of solar abundances.

  15. Automated radiosynthesis of no-carrier-added 4-[18F]fluoroiodobenzene: a versatile building block in 18F radiochemistry.

    PubMed

    Way, Jenilee Dawn; Wuest, Frank

    2014-02-01

    4-[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal-mediated C-C and C-N cross-coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no-carrier-added [18F]FIB on a GE TRACERlab™ FX automated synthesis unit starting from commercially available(4-iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay-corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/μmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride.

  16. Uranium and its decay products in samples contaminated with uranium mine and mill waste

    NASA Astrophysics Data System (ADS)

    Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.

    2003-05-01

    The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.

  17. Resistance to Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen, Phomopsis longicolla T.W. Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but...

  18. Study of the decay D0 --> K+pi-.

    PubMed

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferi, A; de Miranda, J M; Pepe, I M; dos Reis, A C; Simão, F R; Carrillo, S; Casimiro, E; Sánchez-Hernández, A; Uribe, C; Vazquez, F; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramirez, J E; Vaandering, E W; Butler, J N; Cheung, H W; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, F L; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Park, H; Alimonti, G; Boschini, M; Caccianiga, B; D'Angelo, P; DiCorato, M; Dini, P; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Agostino, L; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Segoni, I; Viola, L; Vitulo, P; Hernandez, H; Lopez, A M; Mendez, H; Mendez, L; Mirles, A; Montiel, E; Olaya, D; Paris, A; Quinones, J; Rivera, C; Xiong, W; Zhang, Y; Wilson, J R; Cho, K; Handler, T; Engh, D; Hosack, M; Johns, W E; Nehring, M S; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M

    2001-04-02

    Using a large sample of photoproduced charm mesons from the FOCUS experiment at Fermilab (FNAL-E831), we observe the decay D0-->K+pi- with a signal yield of 149+/-31 events compared to a similarly cut sample consisting of 36 760+/-195 D0-->K-pi+ events. We use the observed ratio of D0-->K+pi- to D0-->K-pi+ (0.404+/-0.085+/-0.025)% to obtain a relationship between the D0 mixing and doubly Cabibbo suppressed decay parameters.

  19. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  20. DNA-incorporated 125I induces more than one double-strand break per decay in mammalian cells.

    PubMed

    Elmroth, Kecke; Stenerlöw, Bo

    2005-04-01

    The Auger-electron emitter 125I releases cascades of 20 electrons per decay that deposit a great amount of local energy, and for DNA-incorporated 125I, approximately one DNA double-strand break (DSB) is produced close to the decay site. To investigate the potential of 125I to induce additional DSBs within adjacent chromatin structures in mammalian cells, we applied DNA fragment-size analysis based on pulsed-field gel electrophoresis (PFGE) of hamster V79-379A cells exposed to DNA-incorporated 125IdU. After accumulation of decays at -70 degrees C in the presence of 10% DMSO, there was a non-random distribution of DNA fragments with an excess of fragments <0.5 Mbp and the measured yield was 1.6 DSBs/decay. However, since these experiments were performed under high scavenging conditions (DMSO) that reduce indirect effects, the yield in cells exposed to 125IdU under physiological conditions would most likely be even higher. In contrast, using a conventional low-resolution assay without measurement of smaller DNA fragments, the yield was close to one DSB/decay. We conclude that a large fraction of the DSBs induced by DNA-incorporated 125I are nonrandomly distributed and that significantly more than one DSB/decay is induced in an intact cell. Thus, in addition to DSBs produced close to the decay site, DSBs may also be induced within neighboring chromatin fibers, releasing smaller DNA fragments that are not detected by conventional DSB assays.

  1. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  2. Facile radiosynthesis of fluorine-18 labeled beta-blockers. Synthesis, radiolabeling, and ex vivo biodistribution of [18F]-(2S and 2R)-1-(1-fluoropropan-2-ylamino)-3-(m-tolyloxy)propan-2-ol.

    PubMed

    Stephenson, Karin A; Wilson, Alan A; Meyer, Jeffrey H; Houle, Sylvain; Vasdev, Neil

    2008-08-28

    An efficient and general method has been developed for fluorine-18 labeling of beta-blockers that possess the propanolamine moiety. A new synthetically versatile intermediate, 3-(1-(benzyloxy)propan-2-yl)-2-oxooxazolidin-5-yl)methyl 4-methylbenzenesulfonate (13), was prepared and can be conjugated to any phenoxy core. To demonstrate the synthetic methodology, fluorinated derivatives of toliprolol were prepared, namely, [(18)F]-(2S and 2R)-1-(1-fluoropropan-2-ylamino)-3-(m-tolyloxy)propan-2-ol ((2S and 2R)-[(18)F]1). The radiosyntheses were accomplished in <1 h, with 20-24% (uncorrected for decay, n = 7) radiochemical yields, >96% radiochemical and >99% enantiomeric purities, with specific activities of 0.9-1.1 Ci/micromol (EOS). Ex vivo biodistribution studies with the radiotracers demonstrated excessively rapid washout that may limit their use for cerebral PET imaging.

  3. Improved Limits on $$B^{0}$$ Decays to Invisible $(+gamma)$ Final States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.; Poireau, V.; Tisserand, V.

    2013-11-01

    We establish improved upper limits on branching fractions for B{sup 0} decays to final states where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million B{bar B} pairs collected at the {Upsilon} (4S) resonance by the BABAR experiment at the PEP-II e{sup +}e{sup -} storage ring at the SLAC National Acceleratormore » Laboratory, we establish upper limits at the 90% confidence level of 2.4 x 10{sup -5} for the branching fraction of B{sup 0} {yields} invisible and 1.7 x 10{sup -5} for the branching fraction of B{sup 0} {yields} invisible + {gamma}.« less

  4. Branching fractions for {chi}{sub cJ{yields}}pp{pi}{sup 0}, pp{eta}, and pp{omega}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.

    2010-07-01

    Using a sample of 25.9x10{sup 6} {psi}(2S) decays acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we report branching fractions for the decays {chi}{sub cJ{yields}}pp{pi}{sup 0}, pp{eta}, and pp{omega}, with J=0, 1, 2. Our results for B({chi}{sub cJ{yields}}pp{pi}{sup 0}) and B({chi}{sub cJ{yields}}pp{eta}) are consistent with, but more precise than, previous measurements. Furthermore, we include the first measurement of B({chi}{sub cJ{yields}}pp{omega}).

  5. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    PubMed

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  6. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    NASA Astrophysics Data System (ADS)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  7. QUANTITATIVE RADIO-CHEMICAL ANALYSIS-SOLVENT EXTRACTION OF MOLYBDENUM-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wish, L.

    1961-09-12

    A method was developed for the rapid quantitative separation of Mo/sup 99/ from fission product mixtures. It is based on the extraction of Mo into a solution of alpha -benzoin oxime in chloroform. The main contaminants are Zr, Nb, and 1. The first two are eliminated by couple with fluoride and the third by volatilization or solvent extraction. About 5% of the Te/sup 99/ daughter is extracted with its parent, and it is necessary to wait 48 hrs for equilibrium of fission product mixtures by this method and a standard radiochemical gravimetric procedure showed agreement within 1 to 2%. (auth)

  8. Observation of {psi}(3770){yields}{gamma}{chi}{sub c0}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briere, R. A.; Brock, I.; Chen, J.

    2006-08-01

    From e{sup +}e{sup -} collision data acquired with the CLEO-c detector at CESR, we search for the non-DD decays {psi}(3770){yields}{gamma}{chi}{sub cJ}, with {chi}{sub cJ} reconstructed in four exclusive decays modes containing charged pions and kaons. We report the first observation of such decays for J=0 with a branching ratio of (0.73{+-}0.07{+-}0.06)%. The rates for different J are consistent with the expectations assuming {psi}(3770) is predominantly a 1{sup 3}D{sub 1} state of charmonium, but only if relativistic corrections are applied.

  9. Study of \\Bpilnu and \\Brholnu decays and determination of \\Vub at \\babar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulsin, H.Wells

    2011-02-07

    The authors report a measurement of the branching fractions for B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu} and B{sup 0} {yields} {rho}{sup -}{ell}{sup +}{nu} decays using charged and neutral B decays with isospin constraints. They find {beta}(B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}) = (1.41 {+-} 0.05 {+-} 0.07) x 10{sup -4}, and {beta}(B{sup 0} {yields} {rho}{sup -}{ell}{sup +}{nu}) = (1.75 {+-} 0.15 {+-} 0.27) x 10{sup -4}, where the first error is statistical and the second is systematic. They measure {Delta}{beta}/{Delta}q{sup 2}, with 6 q{sup 2} bins for B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu} and 3 q{sup 2} bins for B{supmore » 0} {yields} {rho}{sup -}{ell}{sup +}{nu}, and compare the distributions in data with theoretical predictions for the form factors. They use these branching fractions and form-factor calculations to determine |V{sub ub}|. Based on a combined fit to the FNAL/MILC lattice QCD calculation and data over the full q{sup 2} range, they find |V{sub ub}| = (2.95 {+-} 0.31) x 10{sup -3}.« less

  10. Understanding the branching ratios of {chi}{sub c1{yields}{phi}{phi}}, {omega}{omega}, {omega}{phi} observed at BES-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Dianyong; He Jun; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000

    In this work, we discuss the contribution of the mesonic loops to the decay rates of {chi}{sub c1{yields}{phi}{phi}}, {omega}{omega}, which are suppressed by the helicity selection rules and {chi}{sub c1{yields}{phi}{omega}}, which is a double-Okubo-Zweig-Iizuka forbidden process. We find that the mesonic loop effects naturally explain the clear signals of {chi}{sub c1{yields}{phi}{phi}}, {omega}{omega} decay modes observed by the BES Collaboration. Moreover, we investigate the effects of the {omega}-{phi} mixing, which may result in the order of magnitude of the branching ratio BR({chi}{sub c1{yields}{omega}{phi}}) being 10{sup -7}. Thus, we are waiting for the accurate measurements of the BR({chi}{sub c1{yields}{omega}{omega}}), BR({chi}{sub c1{yields}{phi}{phi}}), andmore » BR({chi}{sub c1{yields}{omega}{phi}}), which may be very helpful for testing the long-distant contribution and the {omega}-{phi} mixing in {chi}{sub c1{yields}{phi}{phi}}, {omega}{omega}, {omega}{phi} decays.« less

  11. Measurements of J/{psi} and {psi}(2S) decays into {lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J. Z.; Cai, X.

    2007-11-01

    Using 58x10{sup 6} J/{psi} and 14x10{sup 6} {psi}(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/{psi} and {psi}(2S){yields}{lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta} are measured. For the isospin violating decays, the upper limits are determined to be B(J/{psi}{yields}{lambda}{lambda}{pi}{sup 0})<6.4x10{sup -5} and B[{psi}(2S){yields}{lambda}{lambda}{pi}{sup 0}]<4.9x10{sup -5} at the 90% confidence level. The isospin conserving process J/{psi}{yields}{lambda}{lambda}{eta} is observed for the first time, and its branching fraction is measured to be B(J/{psi}{yields}{lambda}{lambda}{eta})=(2.62{+-}0.60{+-}0.44)x10{sup -4}, where the first error is statistical and the second one is systematic. No {lambda}{lambda}{eta} signal is observed in {psi}(2S) decays, and B[{psi}(2S){yields}{lambda}{lambda}{eta}]<1.2x10{supmore » -4} is set at the 90% confidence level. Branching fractions of J/{psi} decays into {sigma}{sup +}{pi}{sup -}{lambda} and {sigma}{sup -}{pi}{sup +}{lambda} are also reported, and the sum of these branching fractions is determined to be B(J/{psi}{yields}{sigma}{sup +}{pi}{sup -}{lambda}+c.c.)=(1.52{+-}0.08{+-}0.16)x10{sup -3}.« less

  12. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    NASA Astrophysics Data System (ADS)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  13. Measurement of branching fraction and time-dependent CP asymmetry parameters in B{sup 0}{yields}D*{sup +}D*{sup -}K{sub S}{sup 0} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalseno, J.; Moloney, G. R.; Sevior, M. E.

    2007-10-01

    We present a measurement of the branching fraction and time-dependent CP violation parameters for B{sup 0}{yields}D*{sup +}D*{sup -}K{sub S}{sup 0} decays. These results are obtained from a 414 fb{sup -1} data sample that contains 449x10{sup 6} BB pairs collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. We obtain the branching fraction, B(B{sup 0}{yields}D*{sup +}D*{sup -}K{sub S}{sup 0})=[3.4{+-}0.4(stat){+-}0.7(syst)]x10{sup -3}, which is in agreement with the current world average. We also obtain an upper limit on the product branching fraction for a possible two-body decay, B(B{sup 0}{yields}D{sub s1}{sup +}(2536)D*{sup -})B(D{sub s1}{sup +}(2536){yields}D*{sup +}K{submore » S}{sup 0})<7.1x10{sup -4} (90% CL). In the traditional 2-parameter time-dependent CP analysis, we measure the CP violation parameters, A{sub CP}=-0.01{sub -0.28}{sup +0.28}(stat){+-}0.09(syst), Dsin2{phi}{sub 1}=0.06{sub -0.44}{sup +0.45}(stat){+-}0.06(syst). No evidence for either mixing-induced or direct CP violation is found. In a 3-parameter fit sensitive to cos2{phi}{sub 1} performed in the half-Dalitz spaces, s{sup -}{<=}s{sup +} and s{sup -}>s{sup +}, where s{sup {+-}}{identical_to}m{sup 2}(D*{sup {+-}}K{sub S}{sup 0}), we extract the CP violation parameters, J{sub c}/J{sub 0}=0.60{sub -0.28}{sup +0.25}(stat){+-}0.08(syst), 2J{sub s1}/J{sub 0}sin2{phi}{sub 1}=-0.17{sub -0.42}{sup +0.42}(stat){+-}0.09(syst), 2J{sub s2}/J{sub 0}cos2{phi}{sub 1}=-0.23{sub -0.41}{sup +0.43}(stat){+-}0.13(syst). A large value of J{sub c}/J{sub 0} would indicate a significant resonant contribution from a broad unknown D{sub s}**{sup +} state. Although the sign of the factor, 2J{sub s2}/J{sub 0}, can be deduced from theory, no conclusion can be drawn regarding the sign of cos2{phi}{sub 1} given the errors.« less

  14. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  15. Moments of the electron energy spectrum and partial branching fraction of B{yields}X{sub c}e{nu} decays at the Belle detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urquijo, P.; Barberio, E.; Dalseno, J.

    2007-02-01

    We report a measurement of the inclusive electron energy spectrum for charmed semileptonic decays of B mesons in a 140 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We determine the first four moments of the electron energy spectrum for threshold values of the electron energy between 0.4 and 2.0 GeV. In addition, we provide values of the partial branching fraction (zeroth moment) for the same electron threshold energies, and independent measurements of the B{sup +} and B{sup 0} partial branching fractions at 0.4 GeV andmore » 0.6 GeV electron threshold energies. We measure the independent B{sup +} and B{sup 0} partial branching fractions with electron threshold energies of 0.4 GeV to be {delta}B(B{sup +}{yields}X{sub c}e{nu})=(10.79{+-}0.25(stat.){+-}0.27(sys.))% and {delta}B(B{sup 0}{yields}X{sub c}e{nu})=(10.08{+-}0.30(stat.){+-}0.22(sys.))%. Full correlations between all measurements are evaluated.« less

  16. Z{gamma}{gamma}{gamma} {yields} 0 Processes in SANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@nu.jinr.ru; Uglov, E. D., E-mail: corner@nu.jinr.ru

    2013-11-15

    We describe the analytic and numerical evaluation of the {gamma}{gamma} {yields} {gamma}Z process cross section and the Z {yields} {gamma}{gamma}{gamma} decay rate within the SANC system multi-channel approach at the one-loop accuracy level with all masses taken into account. The corresponding package for numeric calculations is presented. For checking of the results' correctness we make a comparison with the other independent calculations.

  17. Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Kotila, J.; Suhonen, J.

    2017-02-01

    Effective values of the axial-vector coupling constant gA have lately attracted much attention due to the prominent role of gA in determining the half-lives of double β decays, in particular their neutrinoless mode. The half-life method, i.e., comparing the calculated half-lives to the corresponding experimental ones, is the most widely used method to access the effective values of gA. The present paper investigates the possibilities offered by a complementary method: the spectrum-shape method (SSM). In the SSM, comparison of the shapes of the calculated and measured β electron spectra of forbidden nonunique β decays yields information on the magnitude of gA. In parallel, we investigate the impact of the next-to-leading-order terms of the β -decay shape function and the radiative corrections on the half-life method and the SSM by analyzing the fourfold forbidden decays of 113Cd and 115In by using three nuclear-structure theory frameworks; namely, the nuclear shell model, the microscopic interacting boson-fermion model, and the microscopic quasiparticle-phonon model. The three models yield a consistent result, gA≈0.92 , when the SSM is applied to the decay of 113Cd for which β -spectrum data are available. At the same time the half-life method yields results which are in tension with each other and the SSM result.

  18. A new method for the radiochemical purity measurement of ¹¹¹In-pentetreotide.

    PubMed

    Salgado-Garcia, Carlos; Montoza-Aguado, Manuel; Luna-Alcaide, Ana B; Segovia-Gonzalez, Maria M; de Mora, Elena Sanchez; Lopez-Martin, Juana; Ramos-Font, Carlos; Jimenez-Heffernan, Amelia

    2011-12-01

    The recommended method for the measurement of radiochemical purity (RCP) of ¹¹¹In-labelled pentetreotide is thin-layer chromatography with a silica gel as the stationary phase and a 0.1 N sodium citrate solution (pH 5) as the mobile phase. According to the supplier's instructions, the mobile phase must be prepared before the test is carried out, and the recommended stationary phase is off-market. We propose a new method for RCP measurement in which the mobile phase is acid citrate dextrose, solution A, which does not need to be prepared beforehand, and thin-layer chromatography is performed with a silica gel-impregnated glass fibre sheet as the stationary phase. We used both methods to measure the percentages of radiopharmaceutical and impurities. The range of RCP values obtained was 98.0-99.9% (mean=99.3%) by the standard method and 98.1-99.9% (mean=99.2%) by the new method. We observed no differences between the RCP values of both methods (P=0.070). The proposed method is suitable for RCP testing because it yields results that are in good agreement with those of the standard method and because it is easier to perform as the mobile-phase solution need not be prepared in advance.

  19. Development of buoyant currents in yield stress fluids

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Karimfazli, I.

    2017-11-01

    Infinitesimal perturbations are known to decay in a motionless yield stress fluid. We present experimental evidence to reveal other mechanisms promoting free advection from a motionless background state. Development of natural convection in a cavity with differentially heated side-walls is investigated as a benchmark. Velocity and temperature fields are measured using particle image velocimetry/thermometry. We examine time evolution of the flow, compare experimental findings with theoretical predictions and comment on the striking features brought about by the yield stress.

  20. Production and Decay of {xi}{sub c}{sup 0} at BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Boutigny, D.

    Using 116.1 fb{sup -1} of data collected by the BABAR detector, we present an analysis of {xi}{sub c}{sup 0} production in B decays and from the cc continuum, with the {xi}{sub c}{sup 0} decaying into {omega}{sup -}K{sup +} and {xi}{sup -}{pi}{sup +} final states. We measure the ratio of branching fractions B({xi}{sub c}{sup 0}{yields}{omega}{sup -}K{sup +})/B({xi}{sub c}{sup 0}{yields}{xi}{sup -}{pi}{sup +}) to be 0.294{+-}0.018{+-}0.016, where the first uncertainty is statistical and the second is systematic. The {xi}{sub c}{sup 0} momentum spectrum is measured on and 40 MeV below the {upsilon}(4S) resonance. From these spectra the branching fraction product B(B{yields}{xi}{sub c}{sup 0}X)xB({xi}{submore » c}{sup 0}{yields}{xi}{sup -}{pi}{sup +}) is measured to be (2.11{+-}0.19{+-}0.25)x10{sup -4}, and the cross-section product {sigma}(e{sup +}e{sup -}{yields}{xi}{sub c}{sup 0}X)xB({xi}{sub c}{sup 0}{yields}{xi}{sup -}{pi}{sup +}) from the continuum is measured to be (388{+-}39{+-}41) fb at a center-of-mass energy of 10.58 GeV.« less

  1. Measurement of CP--violating asymmetries in $$D^0\\to\\pi^+\\pi^-$$ and $$D^0\\to K^+K^-$$ decays at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.

    2011-11-01

    We report on a measurement of CP-violating asymmetries (A{sub CP}) in the Cabibbo-suppressed D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays reconstructed in a data sample corresponding to 5.9 fb{sup -1} of integrated luminosity collected by the upgraded Collider Detector at Fermilab. We use the strong decay D*{sup +} {yields} D{sup 0}{pi}{sup +} to identify the flavor of the charmed meson at production and exploit CP-conserving strong c{bar c} pair-production in p{bar p} collisions. High-statistics samples of Cabibbo-favored D{sup 0} {yields} K{sup -}{pi}{sup +} decays with and without a D*{sup {+-}} tag are usedmore » to correct for instrumental effects and significantly reduce systematic uncertainties. We measure A{sub CP}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (+0.22 {+-} 0.24(stat) {+-} 0.11 (syst))% and A{sub CP}(D{sup 0} {yields} K{sup +}K{sup -}) = (-0.24 {+-} 0.22 (stat) {+-} 0.09 (syst))%, in agreement with CP conservation. These are the most precise determinations from a single experiment to date. Under the assumption of negligible direct CP violation in D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays, the results provide an upper limit to the CP-violating asymmetry in D{sup 0} mixing, |A{sub CP}{sup ind}(D{sup 0})| < 0.13% at the 90% confidence level.« less

  2. Production and Evaluation of 236gNp and Reference Materials for Naturally Occurring Radioactive Materials

    NASA Astrophysics Data System (ADS)

    Larijani, Cyrus Kouroush

    This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which

  3. A convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer.

    PubMed

    Mathias, Carla J; Green, Mark A

    2008-12-01

    A convenient method is described for compounding [(68)Ga]Ga-MAA (MAA=macroaggregated human serum albumin) with the eluate of a commercially available TiO(2)-based (68)Ge/(68)Ga generator. The final [(68)Ga]Ga-MAA product was obtained with an 81.6+/-5.3% decay-corrected radiochemical yield and a radiochemical purity of 99.8+/-0.1% (n=5). Microscopic examination showed the [(68)Ga]Ga-MAA product to remain within the original particle size range. The entire procedure, from generator elution to delivery of the final [(68)Ga]Ga-MAA suspension, could be completed in 25 min. Only 4.4+/-0.9% of the total (68)Ge breakthrough remaining associated with the final [(68)Ga]Ga-MAA product. The procedure allows reasonably convenient preparation of [(68)Ga]Ga-MAA in a fashion that can be readily adapted to sterile product compounding for human use.

  4. Effect of low electric fields on alpha scintillation light yield in liquid argon

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  5. UPDATE E923 - SEARCH FOR T VIOLATING MUON POLARIZATION IN K+ YIELDS M+P0VM DECAY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARROLL,A.; DIWAN,M.V.; FRANK,J.

    This is an update to the E923 proposal for a new search for the time reversal violating polarization of the muon normal to the decay plane of the K{sup +} {r_arrow} {mu}{sup +}{pi}{sup 0}{nu} decay. The value of such polarization in the Standard Model is zero. However, it is now accepted that the baryon asymmetry of the universe requires a source of CP violation stronger than that embodied in the quark mixing matrix. Models of non-standard CP violation that produce the baryon asymmetry could also produce effects observable in the transverse polarization. The very high sensitivity of the experiment makesmore » this search interesting and timely. In this update we discuss the possibility of additional kaon decay measurements with the same apparatus as well as the detector development over the last year. In particular, we show that we will be able to measure the T-violating muon polarization in K{sup +} {r_arrow} {mu}{sup +}{nu}{gamma} decays. Such a measurement is complimentary to the main goal of this experiment. We also show that we will obtain a large sample of K{sup +} {r_arrow} {pi}{sup +}{pi}{sup 0}{gamma} events that can be used to understand kaon structure and test the detailed predictions from Chiral Perturbation Theory.« less

  6. WIMP-less dark matter and meson decays with missing energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeen, David

    2009-06-01

    WIMP-less dark matter [J. L. Feng and J. Kumar, Phys. Rev. Lett. 101, 231301 (2008).] offers an attractive framework in which dark matter can be very light. We investigate the implications of such scenarios on invisible decays of bottomonium states for dark matter with a mass less than around 5 GeV. We relate these decays to measurements of nucleon-dark matter elastic scattering. We also investigate the effect that a coupling to s quarks has on flavor changing b{yields}s processes involving missing energy.

  7. Measuring mass of neutrinos with {beta}-decays of tritium and rhenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornicky, R.; Simkovic, F.; Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna

    2009-11-09

    Already long time ago the shape of the electron spectrum in {beta}-decays of {sup 3}H and {sup 187}Re has been recognized as an important tool for understanding of neutrino masses. The sensitivity of KATRIN (in preparation, tritium {beta}-decay) and the MARE (under consideration, {sup 187}Re{beta}-decay) experiments to neutrino mass will reach the sub eV domain. In view of this experimental progress there is a request for a highly accurate theoretical description of the electron endpoint spectra. By taking the advantage of the elementary particle treatment of {sup 3}H and {sup 3}He the relativistic form for {beta}-decay endpoint spectrum of tritiummore » is obtained by taking into account also the effect of nuclear recoil. Further, the currently unknown shape of the electron spectrum for the {beta}-decay of {sup 187}Re is presented. It is found that the first forbidden {sup 187}Re(5/2{sup +}){yields}{sup 187}Os(1/2{sup -}){beta}-decay transition is accompanied with emission of mostly p{sub 3/2}-state electrons.« less

  8. Radiochemical Reactions Between Tritium Molecule and Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, W.M.; O'Hira, S.; Suzuki, T.

    To have better understanding of radiochemical reactions among oxygen baking products in a fusion reactor, reactions in equimolar tritium molecule (T{sub 2}) and carbon dioxide (CO{sub 2}) were examined by laser Raman spectroscopy and mass spectrometry. After mixing them at room temperature, T{sub 2} and CO{sub 2} decreased rapidly in the first 30 minutes and then the reactions between them became much slower. As the predominant products of the reactions, carbon monoxide (CO) and tritiated water (T{sub 2}O) were found in gaseous phase and condensed phase, respectively. However, there likely existed also some solid products that were thermally decomposed intomore » CO, CO{sub 2}, T{sub 2}, T{sub 2}O, etc. during baking up to 523 K.« less

  9. An improved radiosynthesis of O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer.

    PubMed

    Neumann, Kiel D; Thompson, Charles M; Blecha, Joseph E; Gerdes, John M; VanBrocklin, Henry F

    2017-06-15

    O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [ 18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [ 18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [ 18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [ 18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Implications of R parity violating Yukawa couplings in {delta}S=1 semileptonic decays of K mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Azeem; Tahir, Farida; Haseeb, Mahnaz Q.

    2007-12-01

    We present a class of constraints on products and combinations of Yukawa couplings for R parity violating (Re{sub p}) and lepton flavor conserving as well as violating semileptonic decays of K mesons into light pseudoscalar mesons along with two charged leptons at 1{sigma} and 2{sigma} levels. We compare the constraints obtained by semileptonic rare decays with pure leptonic rare decays and find that most of these bounds are now improved over the existing ones. We also study the forward-backward asymmetry in the decays of K{sup +}{yields}{pi}{sup +}l{sup +}l{sup -} (l=e and {mu}) in the absence of tensor terms. The asymmetrymore » is found to be up to O(10{sup -3}) (O(10{sup -1})) for the electron and muon modes, respectively. The asymmetry is found to be as large as O(10{sup -1}) in the case of K{sup +}{yields}{pi}{sup +}{mu}{sup +}{mu}{sup -}.« less

  11. Search for baryon number violation in top-quark decays

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-20

    A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less

  12. Effect of low electric fields on alpha scintillation light yield in liquid argon

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-01-24

    Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less

  13. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.

    1992-01-01

    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.

  14. Optimization of 18 F-syntheses using 19 F-reagents at tracer-level concentrations and liquid chromatography/tandem mass spectrometry analysis: Improved synthesis of [18 F]MDL100907.

    PubMed

    Zhang, Xiang; Dunlow, Ryan; Blackman, Burchelle N; Swenson, Rolf E

    2018-05-15

    Traditional radiosynthetic optimization faces the challenges of high radiation exposure, cost, and inability to perform serial reactions due to tracer decay. To accelerate tracer development, we have developed a strategy to simulate radioactive 18 F-syntheses by using tracer-level (nanomolar) non-radioactive 19 F-reagents and LC-MS/MS analysis. The methodology was validated with fallypride synthesis under tracer-level 19 F-conditions, which showed reproducible and comparable results with radiosynthesis, and proved the feasibility of this process. Using this approach, the synthesis of [ 18 F]MDL100907 was optimized under 19 F-conditions with greatly improved yield. The best conditions were successfully transferred to radiosynthesis. A radiochemical yield of 19% to 22% was achieved with the radiochemical purity >99% and the molar activity 38.8 to 53.6 GBq/ μmol (n = 3). The tracer-level 19 F-approach provides a high-throughput and cost-effective process to optimize radiosynthesis with reduced radiation exposure. This new method allows medicinal and synthetic chemists to optimize radiolabeling conditions without the need to use radioactivity. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Determining the Critical Dose Threshold of Electron-Induced Electron Yield for Minimally Charged Highly Insulating Materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan

    2006-03-01

    When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.

  16. Study of B{yields}{lambda}{sub c}{lambda}{sub c} and B{yields}{lambda}{sub c}{lambda}{sub c}K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, H.-Y.; Hsiao, Y.-K.; Chua, C.-K.

    2009-06-01

    We study the doubly charmful two-body and three-body baryonic B decays B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K. As pointed out before, a naive estimate of the branching ratio O(10{sup -8}) for the latter decay is too small by 3 to 4 orders of magnitude compared to experiment. Previously, it has been shown that a large enhancement for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can occur due to a charmoniumlike resonance (e.g. X(4630) discovered by Belle) with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. Motivated by the BABAR's observation of a resonance in themore » {lambda}{sub c}K system with a mass of order 2930 MeV, we study in this work the contribution to B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K from the intermediate state {xi}{sub c}(2980) which is postulated to be a first positive-parity excited D-wave charmed baryon state. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}(2980){lambda}{sub c} and {lambda}{sub c}{lambda}{sub c}, it is found that branching ratios of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} are of order 3.5x10{sup -4} and 5x10{sup -5}, respectively, in agreement with experiment except that the prediction for the {lambda}{sub c}{lambda}{sub c}K{sup -} is slightly smaller. In conjunction with our previous analysis, we conclude that the enormously large rate of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K arises from the resonances {xi}{sub c}(2980) and X(4630)« less

  17. Radiochemical Determination of Metallic Mercury Vapour in Air

    PubMed Central

    Magos, L.

    1966-01-01

    A radiochemical method has been developed for the estimation of atmospheric mercury. When air containing mercury is passed through a solution of 203Hg-mercuric acetate and KCL, isotope exchange takes place so that the issuing air contains the same concentration of mercury, but labelled and with the same specific activity as the reagent solution. The 203Hg is absorbed on hopcalite and estimated by gamma scintillation counting. The standard deviation of the method is 0·004 μg.Hg/litre in concentrations up to 0·2 μg.Hg/litre, and is 0·075 μg.Hg/litre in the range 0·2-1·2 μg.Hg/litre concentration. The method is simple and can be used for snap or long-run sampling, and with continuous recording. PMID:5946132

  18. Determination of the D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} coherence factors and average strong-phase differences using quantum-correlated measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, N.; Mehrabyan, S.; Selen, M.

    The first measurements of the coherence factors (R{sub K{pi}}{sub {pi}{sup 0}} and R{sub K3{pi}}) and the average strong-phase differences ({delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}} and {delta}{sub D}{sup K3{pi}}) for D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} are presented. These parameters can be used to improve the determination of the unitarity triangle angle {gamma} in B{sup -}{yields}DK{sup -} decays, where D is a D{sup 0} or D{sup 0} meson decaying to the same final state. The measurements are made using quantum-correlated, fully reconstructed D{sup 0}D{sup 0} pairs produced in e{sup +}e{sup -} collisions at the {psi}(3770)more » resonance. The measured values are: R{sub K{pi}}{sub {pi}{sup 0}}=0.84{+-}0.07, {delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}}=(227{sub -17}{sup +14}) deg., R{sub K3{pi}}=0.33{sub -0.23}{sup +0.20}, and {delta}{sub D}{sup K3{pi}}=(114{sub -23}{sup +26}) deg. These results indicate significant coherence in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0}, whereas lower coherence is observed in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}. The analysis also results in a small improvement in the knowledge of other D-meson parameters, in particular, the strong-phase difference for D{sup 0}{yields}K{sup -}{pi}{sup +}, {delta}{sub D}{sup K{pi}}, and the mixing parameter y.« less

  19. A novel prosthetic group for site-selective labeling of peptides for positron emission tomography.

    PubMed

    Olberg, Dag Erlend; Hjelstuen, Ole Kristian; Solbakken, Magne; Arukwe, Joseph; Karlsen, Hege; Cuthbertson, Alan

    2008-06-01

    Efficient methodologies for the radiolabeling of peptides with [(18)F]fluoride are a prerequisite to enabling commercialization of peptide-containing radiotracers for positron emission tomography (PET) imaging. It was the purpose of this study to investigate a novel chemoselective ligation reaction comprising conjugation of an [(18)F]-N-methylaminooxy-containing prosthetic group to a functionalized peptide. Twelve derivatives of general formula R1-CO-NH-Lys-Gly-Phe-Gly-Lys-OH were synthesized where R1 was selected from a short list of moieties anticipated to be reactive toward the N-methylaminooxy group. Conjugation reactions were initially carried out with nonradioactive precursors to assess, in a qualitative manner, their general suitability for PET chemistry with only the most promising pairings progressing to full radiochemical assessment. Best results were obtained for the ligation of O-[2-(2-[(18)F]fluoroethoxy)ethyl]-N-methyl-N-hydroxylamine 18 to the maleimidopropionyl-Lys-Gly-Phe-Gly-Lys-OH precursor 10 in acetate buffer (pH 5) after 1 h at 70 degrees C. The non-decay-corrected isolated yield was calculated to be 8.5%. The most encouraging result was observed with the combination 18 and 4-(2-nitrovinyl)benzoyl-Lys-Gly-Phe-Gly-Lys-OH, 9, where the conjugation reaction proceeded rapidly to completion at 30 degrees C after only 5 min. The corresponding non-decay-corrected radiochemical yield for the isolated (18)F-labeled product 27 was 12%. The preliminary results from this study demonstrate the considerable potential of this novel strategy for the radiolabeling of peptides.

  20. A Convenient Route to [68Ga]Ga-MAA for Use as a Particulate PET Perfusion Tracer

    PubMed Central

    Mathias, Carla J.; Green, Mark A.

    2008-01-01

    A convenient method is described for compounding [68Ga]Ga-MAA (MAA = macroaggregated human serum albumin) with the eluate of a commercially available TiO2-based 68Ge/68Ga generator. The final [68Ga]Ga-MAA product was obtained with an 81.6 ± 5.3% decay-corrected radiochemical yield and a radiochemical purity of 99.8 ± 0.1% (n = 5). Microscopic examination showed the [68Ga]Ga-MAA product to remain within the original particle size range. The entire procedure, from generator elution to delivery of the final [68Ga]Ga-MAA suspension, could be completed in 25 minutes. Only 4.4 ± 0.9% of the total 68Ge breakthrough remaining associated with the final [68Ga]Ga-MAA product. The procedure allows reasonably convenient preparation of [68Ga]Ga-MAA in a fashion that can be readily adapted to sterile product compounding for human use. PMID:18640845

  1. Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, M.A.; Jones, R.M.; Yano, Y.

    We report an improved method for the synthesis and purification of (11C)methylcholine from the precursors (11C)methyliodide and 2-dimethylaminoethanol (deanol). Preparation time, including purification, is 35 min postbombardment. Forty millicuries of purified injectable (11C)choline were produced with a measured specific activity of greater than 300 Ci/mmol and a radiochemical purity greater than 98%. The decay corrected radiochemical yield for the synthesis and purification was approximately 50%. Residual precursor deanol, which inhibits brain uptake of choline, is removed by a rapid preparative high performance liquid chromatography (HPLC) method using a reverse phase cyano column with a biologically compatible 100% water eluent. Evaporationmore » alone did not completely remove the deanol precursor. Brain uptake of the (11C)choline product was six times greater after HPLC removal of deanol because doses of less than 1 microgram/kg significantly inhibit (14C)choline brain uptake.« less

  2. Sprinkling to prevent decay in decked western hemlock logs.

    Treesearch

    Ernest Wright; A.C. Knauss; R.M. Lindgren

    1959-01-01

    Decay developing in decked western hemlock (Tsuga heterophylla) has caused considerable loss in pulp yields in the Pacific Northwest. The Oregon Pulp and Paper Co., which commonly decks hemlock logs through one summer and occasionally through two summers, cooperated with the Pacific Northwest Forest and Range Experiment Station in a study to...

  3. Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium

    NASA Astrophysics Data System (ADS)

    Antón, M. P.; Espinosa, A.; Aragón, A.

    2006-01-01

    The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation of two thermonuclear bombs accidentally dropped in 1966. While performing radiometric measurements in the field, the possible presence of 237Np was observed through its 29 keV gamma emission. To accomplish a detailed characterization of the source term in the contaminated area using the isotopic ratios Pu-Am-Np, the radiochemical isolation and quantification by alpha spectrometry of 237Np was initiated. The selected radiochemical procedure involves separation of Np from Am, U and Pu with ionic resins, given that in soil samples from Palomares 239+240Pu levels are several orders of magnitude higher than 237Np. Then neptunium is isolated using TEVA organic resins. After electrodeposition, quantification is performed by alpha spectrometry. Different tests were done with blank solutions spiked with 236Pu and 237Np, solutions resulting from the total dissolution of radioactive particles and soil samples. Results indicate that the optimal sequential radionuclide separation order is Pu-Np, with decontamination percentages obtained with the ionic resins ranging from 98% to 100%. Also, the addition of NaNO2 has proved to be necessary, acting as a stabilizer of Pu-Np valences.

  4. Two-body open charm decays of Z{sup +}(4430)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiang; Centro de Fisica Teorica, Departamento de Fisica, Universidade de Coimbra, P-3004-516, Coimbra; Zhang Bo

    2008-06-01

    The two-body open charm decays Z{sup +}(4430){yields}D{sup +}D*{sup 0}, D*{sup +}D{sup 0}, D*{sup +}D*{sup 0} occur through the rescattering mechanism and their branching ratios are strongly suppressed if Z{sup +}(4430) is a D{sub 1}D* molecular state. In contrast, Z{sup +}(4430) falls apart into these modes easily with large phase space and they become the main decay modes if Z{sup +}(4430) is a tetraquark state. Experimental search of these two-body open charm modes and the hidden charm mode {chi}{sub cJ}{rho} will help distinguish different theoretical schemes.

  5. False-vacuum decay in generalized extended inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    False-vacuum decay was studied in context of generalized extended inflationary theories, and the bubble nucleation rates was computed for these theories in the limit of G(sub N) yields 0. It was found that the time dependence of the nucleation rate can be exponentially strong through the time dependence of the Jordan-Brans-Dicke field. This can have a pronounced effect on whether extended inflation can be successfully implemented.

  6. Fission yield covariances for JEFF: A Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Leray, Olivier; Rochman, Dimitri; Fleming, Michael; Sublet, Jean-Christophe; Koning, Arjan; Vasiliev, Alexander; Ferroukhi, Hakim

    2017-09-01

    The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties) and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.

  7. Search for charmless hadronic decays of B mesons with the SLAC SLD detector

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Akimoto, H.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Erofeeva, I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gifford, J.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Walston, S.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    2000-10-01

    Based on a sample of approximately 500 000 hadronic Z0 decays accumulated between 1993 and 1998, the SLD experiment has set limits on 24 fully charged two-body and quasi-two-body exclusive charmless hadronic decays of B+, B0, and B0s mesons. The precise tracking capabilities of the SLD detector provided for the efficient reduction of combinatoric backgrounds, yielding the most precise available limits for ten of these modes.

  8. Observation of {eta}{sup '} Decays to {pi}{sup +}{pi}{sup -}{pi}{sup 0} and {pi}{sup +}{pi}{sup -}e{sup +}e{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, P.; Rademacker, J.; Asner, D. M.

    Using {psi}(2S){yields}{pi}{sup +}{pi}{sup -}J/{psi}, J/{psi}{yields}{gamma}{eta}{sup '} events acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we make the first observations of the decays {eta}{sup '}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} and {eta}{sup '}{yields}{pi}{sup +}{pi}{sup -}e{sup +}e{sup -}, measuring absolute branching fractions (37{sub -9}{sup +11}{+-}4)x10{sup -4} and (25{sub -9}{sup +12}{+-}5)x10{sup -4}, respectively. For {eta}{sup '}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}, this result probes the mechanism of isospin violation and the roles of {pi}{sup 0}/{eta}/{eta}{sup '}-mixing and final state rescattering in strong decays. We also set upper limits on branching fractions for {eta}{sup '} decays to {pi}{sup +}{pi}{sup -}{mu}{sup +}{mu}{sup -}, 2({pi}{supmore » +}{pi}{sup -}), {pi}{sup +}{pi}{sup -}2{pi}{sup 0}, 2({pi}{sup +}{pi}{sup -}){pi}{sup 0}, 3({pi}{sup +}{pi}{sup -}), and invisible final states.« less

  9. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    NASA Astrophysics Data System (ADS)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  10. Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best M.; Fowler J.; Best, M.

    2011-11-25

    A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relativemore » to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.« less

  11. Determination of the Michel Parameters and the tau Neutrino Helicity in tau Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-07

    Using the CLEO II detector at the e{sup +}e{sup -} storage ring CESR, we have determined the Michel parameters {rho}, {zeta}, and {delta} in {tau}{sup {-+}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter H{sub {nu}{sub {tau}}} in {tau}{sup {-+}}{pi}{sup 0}{nu} decay. From a data sample of 3.02 x 10{sup 6} {tau} pairs produced at {radical}s = 10.6 GeV, using events of the topology e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} (l{sup {+-}}{nu}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}) and e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} ({pi}{sup {+-}}{pi}{sup 0}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}), and the determined sign of h{submore » {nu}{sub {tau}}} [1,2], the combined result of the three samples is: {rho} = 0.747 {+-} 0.010 {+-} 0.006, {zeta} = 1.007 {+-} 0.040 {+-} 0.015, {zeta}{delta} = 0.745 {+-}0.026 {+-}0.009, and h{sub {nu}{sub {tau}}} = -0.995 {+-} 0.010 {+-} 0.003. The results are in agreement with the Standard Model V-A interaction.« less

  12. Weak decays of doubly heavy baryons: multi-body decay channels

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Ji; Wang, Wei; Xing, Ye; Xu, Ji

    2018-01-01

    The newly-discovered Ξ _{cc}^{++} decays into the Λ c^+ K^-π ^+π ^+, but the experimental data has indicated that this decay is not saturated by any two-body intermediate state. In this work, we analyze the multi-body weak decays of doubly heavy baryons Ξ _{cc}, Ω _{cc}, Ξ _{bc}, Ω _{bc}, Ξ _{bb} and Ω _{bb}, in particular the three-body nonleptonic decays and four-body semileptonic decays. We classify various decay modes according to the quark-level transitions and present an estimate of the typical branching fractions for a few golden decay channels. Decay amplitudes are then parametrized in terms of a few SU(3) irreducible amplitudes. With these amplitudes, we find a number of relations for decay widths, which can be examined in future.

  13. Search for a pentaquark decaying to Ξπ

    NASA Astrophysics Data System (ADS)

    FOCUS Collaboration; Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.

    2008-03-01

    We present a search for a pentaquark decaying strongly to Ξπ in γN collisions at a center-of-mass energy up to 25 GeV/c. Finding no evidence for such a state in the mass range of 1480 MeV/c to 2400 MeV/c, we set limits on the yield and on the cross section times branching ratio relative to Ξ1530.

  14. Leptonic and charged kaon decay modes of the phi meson measured in heavy-ion collisions at the CERN super proton synchrotron.

    PubMed

    Adamová, D; Agakichiev, G; Antończyk, D; Appelshäuser, H; Belaga, V; Bielcíková, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Krobath, G; Kushpil, V; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Miśkowiec, D; Ortega, R; Panebrattsev, Y; Petchenova, O; Petrácek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2006-04-21

    We report on results of a measurement of meson production in central Pb-Au collisions at E(lab) = 158A GeV. For the first time in the history of high energy heavy-ion collisions, phi mesons were reconstructed both in the K+K- and the dilepton decay channels in the same experiment. This measurement yields rapidity densities near midrapidity, from the two decay channels, of 2.05 +/- 0.14(stat) +/- 0.25(syst) and 2.04 +/- 0.49(stat) +/- 0.32(syst), respectively. The shape of the measured transverse momentum spectrum is also in close agreement in both decay channels. The data rule out a possible enhancement of the phi yield in the leptonic over the hadronic decay channel of a factor 1.6 or larger at the 95% C.L. This rules out the discrepancy reported in the literature between measurements of the hadronic and dimuon decay channels by two different experiments.

  15. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchán, E.; Moran, K.; Lister, C. J.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0 + → 0 + transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the J π = 11/2 - isomericmore » state at 662 keV in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.« less

  16. Screening soybean germplasm and commerical varieties for resistance to Phomopsis seed decay: results from 2012 trials

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean production areas of the United States. In 2009, PSD caused a yield loss of over 12 million bushels in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsi...

  17. Observation of the decay B- → D(s)((*)+) K- ℓ- ν(ℓ).

    PubMed

    Sanchez, P del Amo; Lees, J P; Poireau, V; Prencipe, E; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Hooberman, B; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tanabe, T; Hawkes, C M; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Randle-Conde, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Yushkov, A N; Bondioli, M; Curry, S; Kirkby, D; Lankford, A J; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Campagnari, C; Hong, T M; Kovalskyi, D; Richman, J D; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Rakitin, A Y; Andreassen, R; Dubrovin, M S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Schubert, K R; Schwierz, R; Bernard, D; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Nicolaci, M; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Bhuyan, B; Prasad, V; Lee, C L; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Ebert, M; Lacker, H M; Lueck, T; Volk, A; Dauncey, P D; Tibbetts, M; Behera, P K; Mallik, U; Chen, C; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Davier, M; Derkach, D; da Costa, J Firmino; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Perez, A; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, L; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Anderson, J; Cenci, R; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Cowan, R; Dujmic, D; Fisher, P H; Sciolla, G; Zhao, M; Lindemann, D; Patel, P M; Robertson, S H; Schram, M; Biassoni, P; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Nguyen, X; Simard, M; Taras, P; De Nardo, G; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kass, R; Morris, J P; Rahimi, A M; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Feltresi, E; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Ben-Haim, E; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Prendki, J; Sitt, S; Biasini, M; Manoni, E; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Pegna, D Lopes; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Piredda, G; Renga, F; Hartmann, T; Leddig, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; de Monchenault, G Hamel; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bard, D J; Bartoldus, R; Benitez, J F; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Sevilla, M Franco; Fulsom, B G; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Santoro, V; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Sun, S; Suzuki, K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Park, W; Purohit, M V; White, R M; Wilson, J R; Sekula, S J; Bellis, M; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Guttman, N; Soffer, A; Lund, P; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Lanceri, L; Vitale, L; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Latham, T E; Puccio, E M T; Band, H R; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2011-07-22

    We report the observation of the decay B- → D(s)((*)+) K- ℓ- ν(ℓ) based on 342  fb(-1) of data collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e+ e- storage rings at SLAC. A simultaneous fit to three D(s)(+) decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B- → D(s)((*)+) K- ℓ- ν(ℓ) with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B- → D(s)((*)+) K- ℓ- ν(ℓ)) = [6.13(-1.03)(+1.04)(stat)±0.43(syst)±0.51(B(D(s)))]×10(-4), where the last error reflects the limited knowledge of the D(s) branching fractions.

  18. Automated Synthesis of 18F-Fluoropropoxytryptophan for Amino Acid Transporter System Imaging

    PubMed Central

    Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D.; Zhang, Yin-Han; Yang, David J.

    2014-01-01

    Objective. This study was to develop a cGMP grade of [18F]fluoropropoxytryptophan (18F-FTP) to assess tryptophan transporters using an automated synthesizer. Methods. Tosylpropoxytryptophan (Ts-TP) was reacted with K18F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of 18F-FTP and 18F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with 18F-FTP and 18F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Results. Radio-TLC and HPLC analyses of 18F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of 18F-FTP and 18F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that 18F-FTP had less tumor uptake than 18F-FDG in prostate cancer model. However, 18F-FTP had more uptake than 18F-FDG in small cell lung cancer model. Conclusion. 18F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by 18F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response. PMID:25136592

  19. Automated synthesis of 18F-fluoropropoxytryptophan for amino acid transporter system imaging.

    PubMed

    Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D; Yang, Kevin; Zhang, Yin-Han; Yang, David J

    2014-01-01

    This study was to develop a cGMP grade of [(18)F]fluoropropoxytryptophan ((18)F-FTP) to assess tryptophan transporters using an automated synthesizer. Tosylpropoxytryptophan (Ts-TP) was reacted with K(18)F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of (18)F-FTP and (18)F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with (18)F-FTP and (18)F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Radio-TLC and HPLC analyses of (18)F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of (18)F-FTP and (18)F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that (18)F-FTP had less tumor uptake than (18)F-FDG in prostate cancer model. However, (18)F-FTP had more uptake than (18)F-FDG in small cell lung cancer model. (18)F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by (18)F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response.

  20. First Observation of the Cabibbo-suppressed Decays Xi+(c) ---> Sigma+ pi- pi+ and Xi+(c) ---> Sigma- pi+ pi+ and Measurement of their Branching Ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez-Jauregui, E.; /San Luis Potosi U.; Engelfried, J.

    The authors report the first observation of two Cabibbo-suppressed decay modes, {Xi}{sub c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +} and {Xi}{sub c}{sup +} {yields} {Sigma}{sup -} {pi}{sup +}{pi}{sup +}. They observe 56 {+-} 13 over a background of 21, and 23 {+-} 7 over a background of 12 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c {Sigma}{sup -} beam. The branching ratios of the decays relative to the Cabibbo-favored {Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +} are measured to be B({Xi}{submore » c}{sup +} {yields} {Sigma}{sup +}{pi}{sup -}{pi}{sup +})/B({xi}{sub c}{sup +} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup +}) = 0.50 {+-} 0.20, and B({Xi}{sub c}{sup +} {yields} {Sigma}{sup -}{pi}{sup +}{pi}{sup +})/B({Xi}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}{pi}{sup +}) = 0.23 {+-} 0.11, respectively. They also report branching ratios for the same decay modes of the {Lambda}{sub c}{sup +} relative to {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}.« less

  1. First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzurri, P.; Barria, P.; Ciocci, M.A.

    The authors present the first observation of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay using data from an integrated luminosity of approximately 2.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. They also present the first observation of the resonant decays {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup 0} {pi}{sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -}more » {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and measure their relative branching ratios.« less

  2. Scalar resonances in a unitary {pi}{pi} S-wave model for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boito, D. R.; Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970, Sao Paulo, SP; Dedonder, J.-P.

    We propose a model for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +} decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f{sub 0}(600)/{sigma} and f{sub 0}(980). The weak decay amplitude for D{sup +}{yields}R{pi}{sup +}, where R is a resonance that subsequently decays into {pi}{sup +}{pi}{sup -}, is constructed in a factorization approach. In the S wave, we implement the strong decay R{yields}{pi}{sup +}{pi}{sup -} by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m{sub {pi}}{sub {pi}}{sup 2}more » from threshold to about 3 GeV{sup 2}. In order to reproduce the experimental Dalitz plot for D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +}, we include contributions beyond the S wave. For the P wave, dominated by the {rho}(770){sup 0}, we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f{sub 2}(1270) and {rho}(1450){sup 0}. The major achievement is a good reproduction of the experimental m{sub {pi}}{sub {pi}}{sup 2} distribution, and of the partial as well as the total D{sup +}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup +} branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D{yields}{sigma} transition form factor at q{sup 2}=m{sub {pi}}{sup 2}.« less

  3. Study of the K{sup +}{pi}{sup +}{pi}{sup -} final state in B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, H.; McGill University, Montreal; Universite de Montreal, Montreal

    Using 535x10{sup 6} B-meson pairs collected by the Belle detector at the KEKB e{sup +}e{sup -} collider, we measure branching fractions of (7.16{+-}0.10(stat){+-}0.60(syst)x10{sup -4} for B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and (4.31{+-}0.20(stat){+-}0.50(syst))x10{sup -4} for B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -}. We perform amplitude analyses to determine the resonant structure of the K{sup +}{pi}{sup +}{pi}{sup -} final state in B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} and B{sup +}{yields}{psi}'K{sup +}{pi}{sup +}{pi}{sup -} and find that the K{sub 1}(1270) is a prominent component of both decay modes. There is significant interference among the different intermediate states, which leads, in particular, to a striking distortion ofmore » the {rho} line shape due to the {omega}. Based on the results of the fit to the B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} data, the relative decay fractions of the K{sub 1}(1270) to K{rho}, K{omega}, and K*(892){pi} are consistent with previous measurements, but the decay fraction to K{sub 0}*(1430) is significantly smaller. Finally, by floating the mass and width of the K{sub 1}(1270) in an additional fit of the B{sup +}{yields}J/{psi}K{sup +}{pi}{sup +}{pi}{sup -} data, we measure a mass of (1248.1{+-}3.3(stat){+-}1.4(syst)) MeV/c{sup 2} and a width of (119.5{+-}5.2(stat){+-}6.7(syst)) MeV/c{sup 2} for the K{sub 1}(1270).« less

  4. Update of the α - n Yields for Reactor Fuel Materials for the Interest of Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; van den Berg, Q. Y.

    2017-01-01

    The neutron yields caused by spontaneous α-decay of actinides and subsequent (α,xn) reactions were re-evaluated for the reactor fuel materials UO2, UF6, PuO2 and PuF4. For this purpose, the most recent reference data for decay parameters, α-particle stopping powers and (α,xn) cross sections were collected, analysed and used in calculations. The input data and elaborated code were validated against available thick target neutron yields in pure and compound materials measured at accelerators or with radioactive sources. This paper provides the specific neutron yields and their uncertainties resultant from α-decay of actinides 241Am, 249Bk, 252Cf, 242,244Cm, 237Np, 238-242Pu, 232Th and 232-236,238U in oxide and fluoride compounds. The obtained results are an update of previous reference tables issued by the Los Alamos National Laboratory in 1991 which were used for the safeguarding of radioactive materials by passive non-destructive techniques. The comparison of the updated values with previous ones shows an agreement within one estimated uncertainty (≈ 10%) for oxides, and deviations of up to 50% for fluorides.

  5. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Radiochemical determination of strontium-90 and cesium-137 in waters of the Pacific Ocean and its neighboring seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisenko, G.S.; Kandinskii, P.A.; Gedeonov, L.I.

    1987-03-01

    Depending on the salinity of the water, two versions of strontium-90 and cesium-137 concentration from water samples are presented. Cesium-137 was concentrated by precipitating sparingly soluble mixed hexacyanoferrates (II), and strontium-90 by precipitating carbonates together with calcium. A scheme has been given for radiochemical analysis of the concentrates. Strontium-90 and cesium-137 contents in the waters of the Pacific Ocean and its neighboring seas have been determined by the radiochemical method described. The levels of radionuclide content in the water and atmospheric precipitations have been shown to be inter-related. Strontium-90 and cesium-137 contents in the surface water of the northwestern Pacificmore » were found to be much lower in 1980 than in the early seventies. The area of technogenic radioactive pollution was found to persist in the region of the Columbia mouth into the Pacific Ocean.« less

  7. [18F]FEPPA a TSPO Radioligand: Optimized Radiosynthesis and Evaluation as a PET Radiotracer for Brain Inflammation in a Peripheral LPS-Injected Mouse Model.

    PubMed

    Vignal, Nicolas; Cisternino, Salvatore; Rizzo-Padoin, Nathalie; San, Carine; Hontonnou, Fortune; Gelé, Thibaut; Declèves, Xavier; Sarda-Mantel, Laure; Hosten, Benoît

    2018-06-07

    [ 18 F]FEPPA is a specific ligand for the translocator protein of 18 kDa (TSPO) used as a positron emission tomography (PET) biomarker for glial activation and neuroinflammation. [ 18 F]FEPPA radiosynthesis was optimized to assess in a mouse model the cerebral inflammation induced by an intraperitoneal injection of Salmonella enterica serovar Typhimurium lipopolysaccharides (LPS; 5 mg/kg) 24 h before PET imaging. [ 18 F]FEPPA was synthesized by nucleophilic substitution (90 °C, 10 min) with tosylated precursor, followed by improved semi-preparative HPLC purification (retention time 14 min). [ 18 F]FEPPA radiosynthesis were carried out in 55 min (from EOB). The non-decay corrected radiochemical yield were 34 ± 2% ( n = 17), and the radiochemical purity greater than 99%, with a molar activity of 198 ± 125 GBq/µmol at the end of synthesis. Western blot analysis demonstrated a 2.2-fold increase in TSPO brain expression in the LPS treated mice compared to controls. This was consistent with the significant increase of [ 18 F]FEPPA brain total volume of distribution ( V T ) estimated with pharmacokinetic modelling. In conclusion, [ 18 F]FEPPA radiosynthesis was implemented with high yields. The new purification/formulation with only class 3 solvents is more suitable for in vivo studies.

  8. Identification of soybean accessions with resistance to Phomopsis seed decay: joint effort from USDA and university scientists

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing states in the United States. In 2009, PSD caused yield loss of over 12 million bushels in 16...

  9. Observation of a resonance in B+ → K+ μ+ μ- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)  MeV/c2 and 65(-16)(+22)  MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates.

  10. Direct CP Violation in Charmless Hadronic B-Meson Decays at the PEP-II Asymmetric B-Meson Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telnov, Alexandre Valerievich; /UC, Berkeley

    2005-05-06

    The study of the quark transition b {yields} s{bar s}s, which is a pure loop-level (''penguin'') process leading to several B-meson-decay final states, most notably {phi}K, is arguably the hottest topic in B-meson physics today. The reason is the sensitivity of the amplitudes and the CP-violating asymmetries in such processes to physics beyond the Standard Model. By performing these measurements, we improve our understanding of the phenomenon of combined-parity (CP) violation, which is believed to be responsible for the dominance of matter over antimatter in our Universe. Here, we present measurements of branching fractions and charge asymmetries in the decaysmore » B{sup +} {yields} {phi}K{sup +} and B{sup 0} {yields} {phi}K{sup 0} in a sample of approximately 89 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B-meson Factory at SLAC. We determine {Beta}(B{sup +} {yields} {phi}K{sup +}) = (10.0{sub -0.8}{sup +0.9} {+-} 0.5) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}K{sup 0}) = (8.4{sub -1.3}{sup +1.5} {+-} 0.5) x 10{sup -6}, where the first error is statistical and the second is systematic. Additionally, we measure the CP-violating charge asymmetry {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) = 0.04 {+-} 0.09 {+-} 0.01, with a 90% confidence-level interval of [-0.10, 0.18], and set an upper limit on the CKM- and color-suppressed decay B{sup +} {yields} {phi}{pi}{sup +}, {Beta}(B{sup +} {yields} {phi}{pi}{sup +}) < 0.41 x 10{sup -6} (at the 90% confidence level). Our results are consistent with the Standard Model, which predicts {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) {approx}< 1% and {Beta}(B {yields} {phi}{tau}) << 10{sup -7}. Since many models of physics beyond the Standard Model introduce additional loop diagrams with new heavy particles and new CP-violating phases that would contribute to these decays, potentially making {Alpha}{sub CP} (B{sup {+-}} {yields} {phi}K{sup {+-}}) and {Beta

  11. Observation of {chi}{sub cJ} Radiative Decays to Light Vector Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J. V.; Mitchell, R. E.; Shepherd, M. R.

    2008-10-10

    Using a total of 2.74x10{sup 7} decays of the {psi}(2S) collected with the CLEO-c detector, we present a study of {chi}{sub cJ}{yields}{gamma}V, where V={rho}{sup 0}, {omega}, {phi}. The transitions {chi}{sub c1}{yields}{gamma}{rho}{sup 0} and {chi}{sub c1}{yields}{gamma}{omega} are observed with B({chi}{sub c1}{yields}{gamma}{rho}{sup 0})=(2.43{+-}0.19{+-}0.22)x10{sup -4} and B({chi}{sub c1}{yields}{gamma}{omega})=(8.3{+-}1.5{+-}1.2)x10{sup -5}. In the {chi}{sub c1}{yields}{gamma}{rho}{sup 0} transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other {chi}{sub cJ} states to light vector mesons are presented.

  12. Measurement of indirect CP-violating asymmetries in D 0→K +K - and D 0→π +π - decays at CDF

    DOE PAGES

    Aaltonen, Timo Antero

    2014-12-30

    We report a measurement of the indirect CP-violating asymmetries (A Γ) between effective lifetimes of anticharm and charm mesons reconstructed in D 0→K +K - and D 0→π +π - decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb -1 of integrated luminosity. The strong-interaction decay D *+→D 0π + is used to identify the meson at production as D 0 or D ¯0. We statistically subtract D 0 and D ¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charmmore » decays as a function of decay time. We measure A Γ(K +K -)=(-0.19±0.15(stat)±0.04(syst))%and A Γ(π +π -)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistent with the hypothesis of CP symmetry and their combination yields A Γ=(-0.12±0.12)%.« less

  13. Measurement of indirect CP-violating asymmetries in D 0→K +K - and D 0→π +π - decays at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, Timo Antero

    We report a measurement of the indirect CP-violating asymmetries (A Γ) between effective lifetimes of anticharm and charm mesons reconstructed in D 0→K +K - and D 0→π +π - decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb -1 of integrated luminosity. The strong-interaction decay D *+→D 0π + is used to identify the meson at production as D 0 or D ¯0. We statistically subtract D 0 and D ¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charmmore » decays as a function of decay time. We measure A Γ(K +K -)=(-0.19±0.15(stat)±0.04(syst))%and A Γ(π +π -)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistent with the hypothesis of CP symmetry and their combination yields A Γ=(-0.12±0.12)%.« less

  14. Search for a pentaquark decaying to Ξ-π-

    NASA Astrophysics Data System (ADS)

    Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.; Focus Collaboration

    2008-03-01

    We present a search for a pentaquark decaying strongly to Ξ-π- in γN collisions at a center-of-mass energy up to 25 GeV /c2. Finding no evidence for such a state in the mass range of 1480 MeV /c2 to 2400 MeV /c2, we set limits on the yield and on the cross section times branching ratio relative to Ξ∗(1530) 0.

  15. Exclusive decay of P-wave bottomonium into double J/{psi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Juan; Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006; Dong Hairong

    2011-11-01

    We calculate the relativistic corrections of J/{psi}, including electromagnetic corrections, to {chi}{sub b}J{yields}J/{psi}J/{psi} in the framework of nonrelativistic QCD factorization. The relativistic effects are found to increase the lower-order prediction for the decay width by about 10%, while the electromagnetism contribution is very small, about 0.2% for {chi}{sub b0} and {chi}{sub b2}. The total branching ratios are predicted to be of order 10{sup -5} for {chi}{sub b0,b2}{yields}J/{psi}J/{psi}, but 10{sup -11} for {chi}{sub b1}{yields}J/{psi}J/{psi}, since there is only electromagnetism contribution in this channel. We predict it is possible to observe these reactions in LHC.

  16. High sensitivity tests of the standard model for electroweak interactions. [Lepton-family-number-violating decay; Michel [rho] parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koetke, D.D.; Manweiler, R.W.; Shirvel Stanislaus, T.D.

    1993-01-01

    The work done on this project was focused on two LAMPF experiments. The MEGA experiment, a high-sensitivity search for the lepton-family-number-violating decay [mu] [yields] e [gamma] to a sensitivity which, measured in terms of the branching ratio, BR = [[mu] [yields] e [gamma

  17. Hadronic decays of the X(3872) to {chi}{sub cJ} in effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Sean; Mehen, Thomas

    2008-11-01

    The decays of the X(3872) to P-wave quarkonia are calculated under the assumption that it is a shallow bound state of neutral charmed mesons. The X(3872) is described using an effective theory of nonrelativistic D mesons and pions (X-EFT). We calculate X(3872) decays by first matching heavy hadron chiral perturbation theory (HH{chi}PT) amplitudes for D{sup 0}D*{sup 0}{yields}{chi}{sub cJ}({pi}{sup 0},{pi}{pi}) onto local operators in X-EFT, and then using these operators to calculate the X(3872) decays. This procedure reproduces the factorization theorems for X(3872) decays to conventional quarkonia previously derived using the operator product expansion. For single pion decays, we find nontrivialmore » dependence on the pion energy from HH{chi}PT diagrams with virtual D mesons. This nontrivial energy dependence can potentially modify heavy-quark symmetry predictions for the relative sizes of decay rates. At leading order, decays to final states with two pions are dominated by the final state {chi}{sub c1}{pi}{sup 0}{pi}{sup 0}, with a branching fraction just below that for the decay to {chi}{sub c1}{pi}{sup 0}. Decays to all other final states with two pions are highly suppressed.« less

  18. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  19. β-decay properties in the Cs decay chain

    NASA Astrophysics Data System (ADS)

    Benzoni, G.; Lică, R.; Borge, M. J. G.; Fraile, L. M.; IDS Collaboration

    2018-02-01

    The study of the decay of neutron-rich Cs isotopes has two main objectives: on one side β decay is a perfect tool to access the low-spin structures in the daughter Ba nuclei, where the evolution of octupole deformed shapes can be followed, while, on the other hand, the study of the gross properties of these decays, in terms of decay rates and branching to delayed-neutron emission, are fundamental inputs for the modelling of the r-process in the Rare-Earth Elements peak. Results obtained at CERN-ISOLDE are discussed within this framework and compared to existing data and predictions from state-of-the-art nuclear models.

  20. Complementarity in radiochemical and infrared spectroscopic characterization of electrode adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieckowski, A.

    1994-03-01

    Radioactive labelling and infrared spectroscopy are frequently used as direct, in situ probes into the structure of the electrochemical solid/liquid interface. These techniques are compared, in a polemical fashion, in the context of a recent publication by Parry et al. (Langmuir 1993, 9, 1878) where the research potential of the former technique was not adequately depicted. It is shown that radiotracers can clearly differentiate between the surface and solution species, both neutrals and anions. In addition to the surface specificity, the radiotracers offer a quantitative determination of adsorbate surface concentrations, a feature not yet demonstrated with surface infrared spectroscopy inmore » electrochemistry. Therefore, these two techniques are complementary. Examples of the combined radiochemical and spectroscopic measurements of adsorption with equivalent (smooth) electrode surfaces are quoted. 11 refs., 2 figs.« less

  1. Exploring Radioactive Decay and Geochronology through Hydrostatic Principles

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2008-12-01

    One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the

  2. Reaction of maturity group IV soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most of soybean-growing states in United States. In 2009, PSD caused over 12 million bushel yield loss in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Dia...

  3. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-09

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  4. The use of Whatman-31ET paper for an efficient method for radiochemical purity test of 131I-Hippuran

    NASA Astrophysics Data System (ADS)

    Rezka Putra, Amal; Maskur; Sugiharto, Yono; Chairuman; Hardi Gunawan, Adang; Awaludin, Rohadi

    2018-01-01

    Current chromatography methods used for radiochemical purity test of 131I-Hippuran is time consuming. Therefore, in this study we explored several static and mobile phases in order to have a chromatography method which is accurate and efficient or less time consuming. In this study, stationary phases (Whatman-1, 31ET, and 3MM papers) and several mobile phases were explored to separate 131I-Hippuran from its impurity (131I iodide ion). The results of this study showed that the most efficient chromatography system for measurement of radiochemical purity of 131I-Hippuran was by using Whatman-31ET paper and n-butanol: acetic acid: water (4:1:1) as a static phase and mobile phase respectively. Developing time for this method was of approximately 75.7 ± 2.7 minutes. The result of radiochemical purity (%RCP) of 131I-Hippuran measured with this chromatography system either using Whatman-1 or Whatman-31ET paper strips was 98.7%. The short size of Whatman-31ET paper strip (1 x 8 cm) was found to have shorter developing time compared to that of long size paper. This system showed a good separation of 131I-Hippuran from its impurities and gave %RCP of 98.1% ± 0.04% with developing time approximately 44.3 ± 9.4 minutes. The short size of Whatman-31ET paper strips was found to be more efficient compared to that of Whatman-1 and Whatman-3MM paper strips in term of developing time.

  5. Preparation of Radiolabeled Compounds for the U.S. Army Drug Development Program.

    DTIC Science & Technology

    1996-12-01

    with borane -THF complex gave an 83% radiochemical yield of [14C]-19 after several recrystallizations from ethanol. In the master synthesis , alcohol...amide [14C]-15 in 88% radiochemical yield and 99% radiochemical purity after chromatography. Reduction of [14C]-15 with borane -THF complex afforded a...163 mCi) and tetrahydrofuran (freshly distilled) (28.6 mL) in a 1 00-mL RBF was cooled to 0 0C by an ice-bath. Borane -tetra- hydrofuran complex (10.8 mL

  6. Associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001; Wilkin, Colin

    2010-08-15

    The total and differential cross sections for associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the K{sup -}p and {pi}{sup 0{Sigma}0} final states originate from the decay of the {Lambda}(1405) that was formed in the production chain pp{yields}p(N*(1535){yields}K{sup +{Lambda}}(1405)). The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the N*(1535) to {Lambda}(1405)K is further evidencemore » for large ss-bar components in the quark wave function of the N*(1535).« less

  7. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    NASA Astrophysics Data System (ADS)

    Baker, C. W.

    1984-06-01

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  8. Influence of different chelators on the radiochemical properties of a 68-Gallium labelled bombesin analogue.

    PubMed

    Asti, Mattia; Iori, Michele; Capponi, Pier C; Atti, Giulia; Rubagotti, Sara; Martin, René; Brennauer, Albert; Müller, Marco; Bergmann, Ralf; Erba, Paola A; Versari, Annibale

    2014-01-01

    The radiolabelled bombesin analogue AMBA shows high potential for diagnosis and treatment of prostate and breast cancer, but the influence of different chelators, which differ in terms of radiochemical reactivity and stability, have not been explored so far. In order to find the best suitable chelator for labelling of AMBA, we synthesized AMBA analogues linked to the most commonly used chelators DOTA, NOTA and NODAGA and compared their reactivity and stability after labelling with 68-Gallium. For the synthesis of DO3A-, NO2A- and NODAGA-AMBA, a solid-phase synthesis approach was used. The influence of concentration, pH and temperature on the radiolabelling was analysed. The in vitro stability of all complexes in saline, human serum, human whole blood and against transchelation and transmetallation was analysed. The peptides were synthesised in high yield and purity. Purity and identity of products and impurities were confirmed using UHPLC coupled to ESI-MS. Radiolabelling of these peptides was optimal at elevated temperature, although room temperature labelling was reported previously for NOTA and NODAGA chelators. The highest reactivity was observed for NODAGA-AMBA. On preparation of NO2A-AMBA, the formation of a by-product was detected with HPLC. More detailed analysis revealed the formation of an isomer with the same mass to charge ratio which led to the conclusion that a coordination isomer was formed. All complexes showed high stability in saline, human serum or when challenged with DTPA, transferrin and varying metals (Fe(3+), Cu(2+), Zn(2+)). Conversely, the stability in human blood was low, and varying metabolites were detected and identified by ESI-MS. All three precursors are available in high yields suitable for routine production. NODAGA-AMBA showed the most favoured features when labelled with 68-gallium, but a further comparison in vivo should be performed in order to confirm the superior features found in vitro. © 2013.

  9. Trunk decays

    Treesearch

    Alex L. Shigo

    1989-01-01

    Trunk decays are major causes of low quality wood-wood with little or no economic value. As a forest practitioner you should be able to recognize trees at high risk for decay and remove them if timber production is your primary objective. Remember, however, that decayed trees often develop into den trees or nesting sites and provide essential habitat for wildlife....

  10. Study of the rare hyperon decay Ω→Ξππ

    NASA Astrophysics Data System (ADS)

    Kamaev, O.; Solomey, N.; Burnstein, R. A.; Chakravorty, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gustafson, H. R.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Longo, M. J.; Lu, L. C.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.; HyperCP Collaboration

    2010-10-01

    We report a new measurement of the decay Ω→Ξππ with 76 events and a first observation of the decay Ω→Ξππ with 24 events, yielding a combined branching ratio (3.74-0.56+0.67)×10. This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with B(Ω→Ξππ)=4.04-0.71+0.83×10 and B(Ω→Ξππ)=3.15-0.89+1.12×10. Contrary to theoretical expectation, we see little evidence for the decays Ω→Ξ1530∗0π and Ω→Ξbar1530∗0π and place a 90% C.L. upper limit on the combined branching ratio B(Ω(Ω)→Ξ1530∗0(Ξbar1530∗0)π)<7.0×10.

  11. Direct measurements of the non-DD cross section {sigma}{sub {psi}}{sub (3770){yields}}{sub non-DD} at E{sub cm}=3.773 GeV and the branching fraction for {psi}(3770){yields}non-DD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J. Z.; Cai, X.

    2007-12-15

    By analyzing the data collected at the center-of-mass energy E{sub cm}=3.773 GeV and below the DD meson pair production threshold with the BES-II detector at the BEPC Collider, we directly measured the observed non-DD cross section of {psi}(3770) decay to be {sigma}{sub {psi}}{sub (3770){yields}}{sub non-DD}{sup obs}=(0.95{+-}0.35{+-}0.29) nb at E{sub cm}=3.773 GeV, and the branching fraction BF[{psi}(3770){yields}non-DD]=(13.4{+-}5.0{+-}3.6)% for inclusive non-DD decay of {psi}(3770). We also determined the cross section for DD meson pair production to be {sigma}{sub DD}{sup obs}=(6.12{+-}0.37{+-}0.23) nb at E{sub cm}=3.773 GeV.

  12. Observation and Study of the Baryonic B-meson Decays B to D(*) p pbar (pi) (pi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    We present results for B-meson decay modes involving a charm meson, protons, and pions using 455 x 10{sup 6} B{bar B} pairs recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider. The branching fractions are measured for the following ten decays: {bar B}{sup 0} {yields} D{sup 0}p{bar p}, {bar B}{sup 0} {yields} D*{sup 0}p{bar p}, {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, {bar B}{sup 0} {yields} D*{sup +}p{bar p}{pi}{sup -}, B{sup -} {yields} D{sup 0}p{bar p}{pi}{sup -}, B{sup -} {yields} D*{sup 0}pp{pi}{sup -}, {bar B}{sup 0} {yields} D{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, {bar B}{supmore » 0} {yields} D*{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, B{sup -} {yields} D{sup +}p{bar p}{pi}{sup -}{pi}{sup -}, and B{sup -} {yields} D*{sup +}p{bar p}{pi}{sup -}{pi}{sup -}. The four B{sup -} and the two five-body B{sup 0} modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(p{bar p}) and M(D{sup (*)0}p) invariant mass distributions show enhancements near threshold values. In the four-body mode {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, the M(p{pi}{sup -}) distribution shows a narrow structure of unknown origin near 1.5GeV/c{sup 2}. The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.« less

  13. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, H.H.; Klem, A.J.; Szabo, S.M.

    1985-03-01

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of (/sup 3/H)acetyl-CoA in the assaymore » using (/sup 3/H)acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-(/sup 3/H)acetylarylamine after separation from (/sup 3/H)acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase.« less

  14. Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demekhin, Philipp V.; Cederbaum, Lorenz S.

    2011-02-15

    The theory of resonant Auger decay of atoms in a high-intensity coherent x-ray pulse is presented. The theory includes the coupling between the ground state and the resonance due to an intense x-ray pulse, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the final ionic states coherently. The theory also considers the impact of the direct photoionization of the resonance state itself which typically populates highly excited ionic states. The combined action of the resonant decay and of the direct ionization of the ground state in the field induces amore » non-Hermitian time-dependent coupling between the ground and the ''dressed'' resonance stats. The impact of these competing processes on the total electron yield and on the 2s{sup 2}2p{sup 4}({sup 1}D)3p {sup 2}P spectator and 2s{sup 1}2p{sup 6} {sup 2}S participator Auger decay spectra of the Ne 1s{yields}3p resonance is investigated. The role of the direct photoionization of the ground state and of the resonance increases dramatically with the field intensity. This results in strong interference effects with distinct patterns in the electron spectra, which differ for the participator and spectator final states.« less

  15. A search for. nu. sub e appearance from stopped. pi. sup + and. mu. sup + decay at LAMPF (Los Alamos Meson Physics Facility)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujikawa, B.K.

    We report on a recent search for {bar {nu}}{sub e} appearance from stopped {pi}{sup +} {yields} {mu}{sup +}{nu}{sub {mu}} and {mu}{sup +} {yields} e{sup +}{nu}{sub e}{bar {nu}}{sub {mu}} decay made by the LAMPF experiment E645. The appearance of {bar {nu}}{sub e} may occur from {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e}, {nu}{sub e} {yields} {bar {nu}}{sub eL}, or {nu}{sub {mu}} {yields} {bar {nu}}{sub eL} oscillations. Appearance may also occur from rare {mu}{sup +} {yields} e{sup +}{bar {nu}}{sub e}{nu}{sub {mu}} decay, which is allowed by a multiplicative lepton charge conservation law. The neutrino energies range from E{sub {nu}} = 0 tomore » 52.8MeV. The neutrino detector, which is located 26.1 meters from the neutrino source, consists of a segmented liquid scintillator and proportional drift tube central detector surrounded by both active and passive shielding. The central detector detects {bar {nu}}{sub e} through the {bar {nu}}{sub e}p {yields} ne{sup +} Charge Current (CC) reaction, which is signaled by the direct detection of the final state positron and neutron. The hydrogen-rich liquid scintillators act as free proton targets for the {bar {nu}}{sub e}p CC reaction. The neutrons are detected through radiative neutron capture on gadolinium. We find no evidence for {bar {nu}}{sub e} appearance in the first year of running. New limits on the {bar {nu}}{sub {mu}},{nu}{sub e},{nu}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation parameters and the rare {mu}{sup +} {yields} e{sup +}{bar {nu}}{sub e}{nu}{sub {mu}} decay branching ratio are presented. 87 refs., 45 figs., 17 tabs.« less

  16. Automatic measurements and computations for radiochemical analyses

    USGS Publications Warehouse

    Rosholt, J.N.; Dooley, J.R.

    1960-01-01

    In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.

  17. Drug composition matters: the influence of carrier concentration on the radiochemical purity, hydroxyapatite affinity and in-vivo bone accumulation of the therapeutic radiopharmaceutical 188Rhenium-HEDP.

    PubMed

    Lange, R; de Klerk, J M H; Bloemendal, H J; Ramakers, R M; Beekman, F J; van der Westerlaken, M M L; Hendrikse, N H; Ter Heine, R

    2015-05-01

    (188)Rhenium-HEDP is an effective bone-targeting therapeutic radiopharmaceutical, for treatment of osteoblastic bone metastases. It is known that the presence of carrier (non-radioactive rhenium as ammonium perrhenate) in the reaction mixture during labeling is a prerequisite for adequate bone affinity, but little is known about the optimal carrier concentration. We investigated the influence of carrier concentration in the formulation on the radiochemical purity, in-vitro hydroxyapatite affinity and the in-vivo bone accumulation of (188)Rhenium-HEDP in mice. The carrier concentration influenced hydroxyapatite binding in-vitro as well as bone accumulation in-vivo. Variation in hydroxyapatite binding with various carrier concentrations seemed to be mainly driven by variation in radiochemical purity. The in-vivo bone accumulation appeared to be more complex: satisfactory radiochemical purity and hydroxyapatite affinity did not necessarily predict acceptable bio-distribution of (188)Rhenium-HEDP. For development of new bisphosphonate-based radiopharmaceuticals for clinical use, human administration should not be performed without previous animal bio-distribution experiments. Furthermore, our clinical formulation of (188)Rhenium-HEDP, containing 10 μmol carrier, showed excellent bone accumulation that was comparable to other bisphosphonate-based radiopharmaceuticals, with no apparent uptake in other organs. Radiochemical purity and in-vitro hydroxyapatite binding are not necessarily predictive of bone accumulation of (188)Rhenium-HEDP in-vivo. The formulation for (188)Rhenium-HEDP as developed by us for clinical use exhibits excellent bone uptake and variation in carrier concentration during preparation of this radiopharmaceutical should be avoided. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  19. a Search for Nucleon Decay with Multiple Muon Decays

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas James

    A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.

  20. The search for 0νββ decay with the GERDA experiment: Status and prospects

    NASA Astrophysics Data System (ADS)

    Majorovits, B.

    2015-08-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  1. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  2. Fluxes of metals to a manganese nodule: Radiochemical, chemical, structural, and mineralogical studies

    USGS Publications Warehouse

    Moore, W.S.; Ku, T.-L.; Macdougall, J.D.; Burns, V.M.; Burns, R.; Dymond, J.; Lyle, M.W.; Piper, D.Z.

    1981-01-01

    Fluxes of metals to the top and bottom surfaces of a manganese nodule were determined by combining radiochemical (230Th, 231Pa, 232Th, 238U, 234U) and detailed chemical data. The top of the nodule had been growing in its collected orientation at 4.7 mm Myr-1 for at least 0.5 Myr and accreting Mn at 200 ??g cm-2 kyr-1. The bottom of the nodule had been growing in its collected orientation at about 12 mm Myr-1 for at least 0.3 Myr and accreting Mn at about 700 ??g cm-2 yr-1. Although the top of the nodule was enriched in iron relative to the bottom, the nodule had been accreting Fe 50% faster on the bottom. 232Th was also accumulating more rapidly in the bottom despite a 20-fold enrichment of 230Th on the top. The distribution of alpha-emitting nuclides calculated from detailed radiochemical measurements matched closely the pattern revealed by 109-day exposures of alpha-sensitive film to the nodule. However, the shape and slope of the total alpha profile with depth into the nodule was affected strongly by 226Ra and 222Rn migrations making the alpha-track technique alone an inadequate method of measuring nodule growth rates. Diffusion of radium in the nodule may have been affected by diagenetic reactions which produce barite, phillipsite and todorokite within 1 mm of the nodule surface; however, our sampling interval was too broad to document the effect. We have not been able to resolve the importance of nodule diagenesis on the gross chemistry of the nodule. ?? 1981.

  3. Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.

    2011-08-01

    We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.

  4. Evidence for Direct CP Violation in the Measurement of the Cabibbo-Kobayashi-Maskawa Angle gamma with B-+ to D(*) K(*)-+ Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    2011-08-19

    We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0} K{sup +}K{sup -} produced in the processes B{sup {-+}} {yields} DK{sup {-+}}, B{sup {-+}} {yields} D* K{sup {-+}} with D* {yields} D{pi}{sup 0}, D{gamma}, and B{sup {-+}} {yields} DK*{sup {-+}} with K*{sup {-+}} {yields} K{sub S}{sup 0}{pi}{sup {-+}}, using 468 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma} = (68 {+-} 14 {+-} 4 {+-} 3){supmore » o} (modulo 180{sup o}), where the first error is statistical, the second is the experimental systematic uncertainty and the third reflects the uncertainty in the description of the neutral D decay amplitudes. This result is inconsistent with {gamma} = 0 (no direct CP violation) with a significance of 3.5 standard deviations.« less

  5. Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep).

    PubMed

    Malik, Noeen; Machulla, Hans-Jürgen; Solbach, Christoph; Winter, Gordon; Reske, Sven N; Zlatopolskiy, Boris

    2011-07-01

    Due to the specificity of expression of PSMA (prostate specific membrane antigen) particularly in prostate cancer cells (e.g. LNCaP), numerous PSMA ligands have been synthesized until now. In the current study, we synthesized DUPA-Pep having 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) linked via 8-aminooctanoic acid to two phenylalanine residues and chose 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester [(18)F]FPy-TFP as a prosthetic group for coupling. [(18)F]FPy-DUPA-Pep was obtained in a radiochemical yield of 48±0.9% (decay uncorrected) within 50 min with a chemical purity of >98%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A search for the top and b‧ quarks in hadronic Z 0 decays

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beard, C.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Boerner, H.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burchart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Perez, A.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Von Der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; Van Den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration

    1990-02-01

    We report on a search for new quarks in hadronic Z° decays. From the event shape analysis of a data sample containing 2185 multihadronic annihilation events, we observe no evidence for the top or b' quarks. We derive limits for the top and b' quark masses under the assumption of various possible standard model and non-standard model decay schemes. Our search is sensitive to quark masses larger than 23 GeV/ c2; it yields the following lower limits at a 95% confidence level: 44.5 GeV/ c2 for the top quark mass and 45.2 GeV/ c2 for the b‧ quark mass.

  7. The decay widths, the decay constants, and the branching fractions of a resonant state

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael

    2015-08-01

    We introduce the differential and the total decay widths of a resonant (Gamow) state decaying into a continuum of stable states. When the resonance has several decay modes, we introduce the corresponding partial decay widths and branching fractions. In the approximation that the resonance is sharp, the expressions for the differential, partial and total decay widths of a resonant state bear a close resemblance with the Golden Rule. In such approximation, the branching fractions of a resonant state are the same as the standard branching fractions obtained by way of the Golden Rule. We also introduce dimensionless decay constants along with their associated differential decay constants, and we express experimentally measurable quantities such as the branching fractions and the energy distributions of decay events in terms of those dimensionless decay constants.

  8. Postcollision interactions in the Auger decay of the Ar L-shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X.

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This resultmore » produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.« less

  9. Observation of {chi}{sub c1} Decays into Vector Meson Pairs {phi}{phi}, {omega}{omega}, and {omega}{phi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; An, Z. H.; Bai, J. Z.

    Using (106{+-}4)x10{sup 6} {psi}(3686) events accumulated with the BESIII detector at the BEPCII e{sup +}e{sup -} collider, we present the first measurement of decays of {chi}{sub c1} to vector meson pairs {phi}{phi}, {omega}{omega}, and {omega}{phi}. The branching fractions are measured to be (4.4{+-}0.3{+-}0.5)x10{sup -4}, (6.0{+-}0.3{+-}0.7)x10{sup -4}, and (2.2{+-}0.6{+-}0.2)x10{sup -5}, for {chi}{sub c1}{yields}{phi}{phi}, {omega}{omega}, and {omega}{phi}, respectively, which indicates that the hadron helicity selection rule is significantly violated in {chi}{sub cJ} decays. In addition, the measurement of {chi}{sub cJ}{yields}{omega}{phi} provides the first indication of the rate of doubly OZI-suppressed {chi}{sub cJ} decay. Finally, we present improved measurements for the branching fractionsmore » of {chi}{sub c0} and {chi}{sub c2} to vector meson pairs.« less

  10. Experimental search for radiative decays of the pentaquark baryon {Theta}{sup +}(1540)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.

    2010-07-15

    The data on the reactions K{sup +}Xe {sup {yields}}K{sup 0{gamma}}X and K{sup +}Xe {sup {yields}}K{sup +{gamma}}X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the {Theta}{sup +}(1540) baryon: {Theta}{sup +} {sup {yields}}K{sup 0}p{gamma} and {Theta}{sup +} {sup {yields}}K{sup +}n{gamma}. No signals have been observed, and we derive the upper limits {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p) < 0.032 and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 0.041 which, using our previous measurement of {Gamma}({Theta}{sup +} {sup {yields}}KN) = 0.39 {+-} 0.10 MeV, translate to {Gamma}({Theta}{sup +} {sup {yields}}K{supmore » 0}p{gamma}) < 8 keV and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 11 keV at 90% confidence level. We have also measured the cross sections of K{sup +}-induced reactions involving emission of a neutral pion: {sigma}(K{sup +}n {sup {yields}}K{sup 0}p{pi}{sup 0}) = 68 {+-} 18 {mu}b and {sigma}(K{sup +}N {sup {yields}}K{sup +}N{pi}{sup 0}) = 30 {+-} 8 {mu}b for incident K{sup +} momentum of 640 MeV.« less

  11. {chi}{sub cJ} decays to h{sup +}h{sup -}h{sup 0}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athar, S. B.; Patel, R.; Potlia, V.

    2007-02-01

    Using a sample of 3x10{sup 6} {psi}(2S) decays recorded by the CLEO detector, we study three-body decays of the {chi}{sub c0}, {chi}{sub c1}, and {chi}{sub c2} produced in radiative decays of the {psi}(2S). We consider the final states {pi}{sup +}{pi}{sup -}{eta}, K{sup +}K{sup -}{eta}, pp{eta}, {pi}{sup +}{pi}{sup -}{eta}{sup '}, K{sup +}K{sup -}{pi}{sup 0}, pp{pi}{sup 0}, {pi}{sup +}K{sup -}K{sub S}{sup 0}, and K{sup +}p{lambda}, measuring branching fractions or placing upper limits. For {chi}{sub c1}{yields}{pi}{sup +}{pi}{sup -}{eta}, K{sup +}K{sup -}{pi}{sup 0}, and {pi}{sup +}K{sup -}K{sub S}{sup 0} our observed samples are large enough to indicate the largest contributions to the substructure.

  12. Analysis of D0 -> K anti-K X Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-06-06

    Using data taken with the CLEO II detector, they have studied the decays of the D{sup 0} to K{sup +}K{sup -}, K{sup 0}{bar K}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}{pi}{sup 0}. The authors present significantly improved results for B(D{sup 0} {yields} K{sup +}K{sup -}) = (0.454 {+-} 0.028 {+-} 0.035)%, B(D{sup 0} {yields} K{sup 0}{bar K}{sup 0}) = (0.054 {+-} 0.012 {+-} 0.010)% and B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (0.074 {+-} 0.010 {+-} 0.015)% where the first errors are statistical and the second errors aremore » the estimate of their systematic uncertainty. They also present a new upper limit B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}) < 0.059% at the 90% confidence level and the first measurement of B(D{sup 0} {yields} K{sup +}K{sup -}{pi}{sup 0}) = (0.14 {+-} 0.04)%.« less

  13. Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria.

    PubMed

    Deák, Zsuzsanna; Sass, László; Kiss, Eva; Vass, Imre

    2014-09-01

    Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~1s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Internal γ Decay and the Superallowed Branching Ratio for the β+ Emitter Km38

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Austin, R. A. E.; Bandyopadhyay, D.; Barton, C.; Bassiachvilli, E.; Ettenauer, S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Melconian, D.; Morton, A. C.; Mythili, S.; Newman, O.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Savajols, H.; Schumaker, M. A.; Wong, J.

    2008-05-01

    The branching ratio for the superallowed β+ decay of Km38 was measured at TRIUMF’s ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of Km38 was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue β-decay branch to the first excited 0+ state in Ar38 was also performed and yielded an upper limit of ≤12ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for Km38 of 99.967(4)%, and increase the Km38 ft value by its entire quoted uncertainty to ft=3052.1(10)s. Implications for tests of the nuclear-structure dependent corrections in superallowed β decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element Vud are discussed.

  15. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120more » min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.« less

  16. Can neutrino decay-driven mock gravity save hot dark matter?

    NASA Technical Reports Server (NTRS)

    Splinter, Randall J.; Melott, Adrian L.

    1992-01-01

    The radiative decay of a 30 eV neutrino with a lifetime of order 10 exp 23-24 s has recently been shown to yield a satisfactory explanation of a wide range of problems in astrophysics. In this paper, it is investigated whether the photon flux generated by the radiative decay of a massive neutrino is capable of generating sufficient radiation pressure to cause a 'mock gravitational' collapse of primordial hydrogen clouds. It is shown that when using neutral hydrogen as a source of opacity for mock gravity the time scale for mock gravitational collapse is significantly larger than the expansion time scale. Thus, the model fails as a source of galactic seed perturbations. Furthermore, it is argued that nonlinear feedback mechanisms will be unable to increase the collapse rate of the cloud under mock gravity.

  17. Simultaneous determination of radionuclides separable into natural decay series by use of time-interval analysis.

    PubMed

    Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro

    2004-05-01

    A delayed coincidence method, time-interval analysis (TIA), has been applied to successive alpha- alpha decay events on the millisecond time-scale. Such decay events are part of the (220)Rn-->(216)Po ( T(1/2) 145 ms) (Th-series) and (219)Rn-->(215)Po ( T(1/2) 1.78 ms) (Ac-series). By using TIA in addition to measurement of (226)Ra (U-series) from alpha-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject beta-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N(2) gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the (221)Fr-->(217)At ( T(1/2) 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the (225)Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples.

  18. On the degelation of networks – Case of the radiochemical degradation of methyl methacrylate – ethylene glycol dimethacrylate copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-18

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  19. Aftershock occurrence rate decay for individual sequences and catalogs

    NASA Astrophysics Data System (ADS)

    Nyffenegger, Paul A.

    One of the earliest observations of the Earth's seismicity is that the rate of aftershock occurrence decays with time according to a power law commonly known as modified Omori-law (MOL) decay. However, the physical reasons for aftershock occurrence and the empirical decay in rate remain unclear despite numerous models that yield similar rate decay behavior. Key problems in relating the observed empirical relationship to the physical conditions of the mainshock and fault are the lack of studies including small magnitude mainshocks and the lack of uniformity between studies. We use simulated aftershock sequences to investigate the factors which influence the maximum likelihood (ML) estimate of the Omori-law p value, the parameter describing aftershock occurrence rate decay, for both individual aftershock sequences and "stacked" or superposed sequences. Generally the ML estimate of p is accurate, but since the ML estimated uncertainty is unaffected by whether the sequence resembles an MOL model, a goodness-of-fit test such as the Anderson-Darling statistic is necessary. While stacking aftershock sequences permits the study of entire catalogs and sequences with small aftershock populations, stacking introduces artifacts. The p value for stacked sequences is approximately equal to the mean of the individual sequence p values. We apply single-link cluster analysis to identify all aftershock sequences from eleven regional seismicity catalogs. We observe two new mathematically predictable empirical relationships for the distribution of aftershock sequence populations. The average properties of aftershock sequences are not correlated with tectonic environment, but aftershock populations and p values do show a depth dependence. The p values show great variability with time, and large values or changes in p sometimes precedes major earthquakes. Studies of teleseismic earthquake catalogs over the last twenty years have led seismologists to question seismicity models and

  20. Improvement of gross theory of beta-decay for application to nuclear data

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi

    2017-09-01

    A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.

  1. TMSOTf assisted synthesis of 2'-deoxy-2'-[18F]fluoro-β-D-arabinofuranosylcytosine ([18F]FAC).

    PubMed

    Gangangari, Kishore K; Humm, John L; Larson, Steven M; Pillarsetty, Naga Vara Kishore

    2018-01-01

    [18F]FAC (2'-deoxy-2'-[18F]fluoro-β-D-arabinofuranosylcytosine, 1) is a versatile probe for imaging deoxycytidine kinase (dCK) expression levels in vivo. dCK is responsible for phosphorylation of deoxycytidine (dC, 2) and other nucleoside analogs, plays a key role in immune activation and has demonstrated to be one of the key enzymes in activating nucleoside based drugs including gemcitabine. Reported synthesis of [18F]FAC is high yielding but is quite challenging requiring bromination using HBr and careful drying of excess HBr which is critical for successful synthesis. Here in we report a simplified trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted synthesis of [18F]FAC eliminating the need of bromination and drying. [18F]FAC (β-anomer) was synthesized with average isolated decay corrected yield of 10.59 + 4.2% (n = 6) with radiochemical purity of >98% and total synthesis time of 158 + 19 min.

  2. Role of higher-multipole deformations and noncoplanarity in the decay of the compound nucleus *220Th within the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Hemdeep, Chopra, Sahila; Kaur, Arshdeep; Kaushal, Pooja; Gupta, Raj K.

    2018-04-01

    Background: The formation and decay of the *220Th compound nucleus (CN) formed via some entrance channels (16O+204Pb,40Ar+180Hf,48Ca+172Yb,82Se+138Ba ) at near barrier energies has been studied within the dynamical cluster-decay model (DCM) [Hemdeep et al. Phys. Rev. C 95, 014609 (2017), 10.1103/PhysRevC.95.044603], for quadrupole deformations (β2 i) and "optimum" orientations (θopt) of the two nuclei or decay fragments lying in the same plane (coplanar nuclei, Φ =0∘ ). Purpose: We aim to investigate the role of higher-multipole deformations, the octupole (β3 i) and hexadecupole (β4 i), and "compact" orientations (θc i) together with the noncoplanarity degree of freedom (Φc) in the noncompound nucleus (nCN) cross section, already observed in the above mentioned study with quadrupole deformations (β2 i) alone, the Φ =0∘ case. Methods: The dynamical cluster-decay model (DCM), based on the quantum mechanical fragmentation theory (QMFT), is used to analyze the decay channel cross sections σx n for various experimentally studied entrance channels. The parameter Ra (equivalently, the neck length Δ R in Ra=R1+R2+Δ R ), which fixes both the preformation and penetration paths, is used to best fit both unobserved (1 n ,2 n ) and observed (3 n -5 n ) decay channel cross sections, keeping the root-mean-square (r.m.s) deviation to the minimum, which allows us to predict the nCN effects, if any, and fusion-fission (ff) cross sections in various reactions at different CN excitation energies E*. Results: For the decay of CN *220Th, the mass fragmentation potential V (Ai ) and preformation yields P0( Ai ) show an asymmetric fission mass distribution, in agreement with one observed in experiments, independent of adding or not adding (β3 i,β4 i ), and irrespective of large changes (by 36° and 34°), respectively, in "compact" orientations θc i and noncoplanarity Φc, and also in the potential energy surface V (Ai ) in light mass (1 n -5 n ) decays. Whereas the 3 n

  3. Radiosynthesis of [18F]Trifluoroalkyl Groups: Scope and Limitations

    PubMed Central

    Riss, P. J.

    2014-01-01

    The present paper is concerned with radiochemical methodology to furnish the trifluoromethyl motif labelled with 18F. Literature spanning the last four decades is comprehensively reviewed and radiochemical yields and specific activities are discussed. PMID:25110676

  4. An Investigation of the Neutral Cascade Muon Semileptonic Decay and its Observation at KTeV, Fermilab (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Ricardo Avelino

    2005-07-01

    The authors report an investigation of the semileptonic decay Ξ 0 → Σ + μ -more » $$\\bar{v}$$ μ. This decay was observed for the first time with nine identified events using the KTeV beam line and detector at Fermilab. The decay is normalized to the Ξ 0 beta decay mode and yields a value for the ratio of decay rates Γ(Ξ 0 → Σ 0 μ -$$\\bar{v}$$ μ)/Γ(Ξ 0 → Σ +e -$$\\bar{v}$$ e) of (1.8$$+0.7\\atop{-0.5}$$(stat.) ± 0.2(syst.)) x 10 -0 at the 68.27% confidence level, being the official measurement of KTeV Collaboration. They also used the dominant decay Ξ 0 → Γπ 0(Γ → pπ -) as normalization mode in an independent analysis which corroborated with the main result. In addition, a new measurement of the Ξ 0 → Σ + e -$$\\bar{v}$$ e branching ratio is presented, based on 1139 events and normalized to the Ξ 0 → Γπ 0(Γ → pπ -) decay mode. The results are in agreement with the SU(3) flavor symmetric quark model.« less

  5. SHAREv2: fluctuations and a comprehensive treatment of decay feed-down

    NASA Astrophysics Data System (ADS)

    Torrieri, G.; Jeon, S.; Letessier, J.; Rafelski, J.

    2006-11-01

    This the user's manual for SHARE version 2. SHARE [G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Comm. 167 (2005) 229] (Statistical Hadronization with Resonances) is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. While the structure of the program remains similar to v1.x, v2 provides several new features such as evaluation of statistical fluctuations of particle yields, and a greater versatility, in particular regarding decay feed-down and input/output structure. This article describes all the new features, with emphasis on statistical fluctuations. Program summaryTitle of program:SHAREv2 Catalogue identifier:ADVD_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVD_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC, Pentium III, 512 MB RAM not hardware dependent Operating system:Linux: RedHat 6.1, 7.2, FEDORA, etc. not system dependent Programming language:FORTRAN77 Size of the package:167 KB directory, without libraries (see http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html, http://wwwasd.web.cern.ch/wwwasd/cernlib.html for details on library requirements) Number of lines in distributed program, including test data, etc.:26 101 Number of bytes in distributed program, including test data, etc.:170 346 Distribution format:tar.gzip file Computer:Any computer with an f77 compiler Nature of the physical problem:Event-by-event fluctuations have been recognized to be the physical observable capable to constrain particle production models. Therefore, consideration of event-by-event fluctuations is required for a decisive falsification or constraining of (variants of) particle production models based on (grand-, micro-) canonical statistical mechanics phase space, the so called statistical hadronization models (SHM). As in the case of particle yields, to properly compare model

  6. New measurement of exclusive decays of the {chi}{sub c0} and {chi}{sub c2} to two-meson final states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asner, D. M.; Edwards, K. W.; Reed, J.

    2009-04-01

    Using a sample of 2.59x10{sup 7} {psi}(2S) decays collected by the CLEO-c detector, we present results of a study of {chi}{sub c0} and {chi}{sub c2} decays into two-meson final states. We present the world's most precise measurements of the {chi}{sub cJ,(J=0,2)}{yields}{pi}{sup +}{pi}{sup -}, {pi}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}, K{sub S}{sup 0}K{sub S}{sup 0}, {eta}{eta}, and {eta}{sup '}{eta}{sup '} branching fractions, and a search for {chi}{sub c} decays into {eta}{eta}{sup '}. These results shed light on the mechanism of charmonium decays into pseudoscalar mesons.

  7. A study of time-dependent CP-violating asymmetries in B0->J/psiK0S and B0->psi(2S)K0S decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    We present a preliminary measurement of time-dependent CP-violating asymmetries in B{sup 0} {yields} J/{psi} K{sub S}{sup 0} and B{sup 0} {yields} {psi}(2S)K{sub S}{sup 0} decays recorded by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The data sample consists of 9.0 fb{sup -1} collected at the {Upsilon}(4S) resonance and 0.8 fb{sup -1} off-resonance. One of the neutral B mesons, produced in pairs at the {Upsilon}(4S), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. A neural network taggingmore » algorithm is used to recover events without a clear lepton or kaon tag. The time difference between the decays is determined by measuring the distance between the decay vertices. Wrong-tag probabilities and the time resolution function are measured with samples of fully-reconstructed semileptonic and hadronic neutral B final states. The value of the asymmetry amplitude, sin2{beta}, is determined from a maximum likelihood fit to the time distribution of 120 tagged B{sup 0} {yields} J/{psi} K{sub S}{sup 0} and B{sup 0} {yields} {psi}(2S) K{sub S}{sup 0} candidates to be sin2{beta} = 0.12 {+-} 0.37(stat) {+-} 0.09(syst) (preliminary).« less

  8. A note on implementation of decaying product correlation structures for quasi-least squares.

    PubMed

    Shults, Justine; Guerra, Matthew W

    2014-08-30

    This note implements an unstructured decaying product matrix via the quasi-least squares approach for estimation of the correlation parameters in the framework of generalized estimating equations. The structure we consider is fairly general without requiring the large number of parameters that are involved in a fully unstructured matrix. It is straightforward to show that the quasi-least squares estimators of the correlation parameters yield feasible values for the unstructured decaying product structure. Furthermore, subject to conditions that are easily checked, the quasi-least squares estimators are valid for longitudinal Bernoulli data. We demonstrate implementation of the structure in a longitudinal clinical trial with both a continuous and binary outcome variable. Copyright © 2014 John Wiley & Sons, Ltd.

  9. High-precision {beta} decay half-life measurements of proton-rich nuclei for testing the CVC hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtukian-Nieto, T.; Collaboration: NEX Group of CENBG

    2011-11-30

    The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can bemore » expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.« less

  10. A measurement of B0 meson properties using partially reconstructed B0 to D*- pi+ and B0 tp D*- lepton+ nu-lepton decays with the BABAR detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    The two B{sup 0} decay processes B{sup 0} {yields} D*{sup -} {pi}{sup +} and B{sup 0} {yields} D*{sup -} {ell}{sup +} {nu}{sub {ell}} have been studied by means of a partial reconstruction technique using a data sample collected with the BABAR detector at the PEP-II storage ring. To increase statistics, only the soft {pi}{sup -} from the decay D*{sup -} {yields} {pi}{sup -} D{sup 0} was used in association with either an oppositely-charged high-momentum pion or lepton. Events were then identified by exploiting the constraints from the simple kinematics of {Upsilon}(4S) decays. A clear signature is obtained in each case.more » The position of the B{sup 0} decay point was obtained from the reconstructed {pi}{sup +} ({ell}{sup +}){pi}{sup -} vertex. The position of the other {bar B}{sup 0} in the event was also determined. Taking advantage of the boost given to the {Upsilon}(4S) system by the asymmetric beam energies of PEP-II, the lifetime of the B{sup 0} meson has been measured from the separation distance between the two vertices along the beam direction.« less

  11. Measurements of Time-Dependent CP Asymmetries in b\\to s Penguin Dominated Hadronic B Decays at BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biassoni, Pietro; /Milan U. /INFN, Milan

    2009-12-09

    We report measurements of Time-Dependent CP asymmetries in several b {yields} s penguin dominated hadronic B decays, where New Physics contributions may appear. We find no significant discrepancies with respect to the Standard Model expectations.

  12. The strange case of the [13N]NH3: validation of the production process for human use.

    PubMed

    Statuto, Massimo; Galli, Elisa; Bertagna, Francesco; Migliorati, Elena; Zanella, Isabella; Di Lorenzo, Diego; De Agostini, Antonio; Rodella, Carlo; Apostoli, Pietro; Caimi, Luigi; Giubbini, Raffaele; Biasiotto, Giorgio

    2016-04-01

    PET radiopharmaceuticals are often injected in patients before all quality controls are performed and before sterility results are available. We propose a process validation to produce very safe and pure [N]NH3 for human use. [N]NH3 was produced in the cyclotron target. Online purification was performed by anionic exchange resin. All the production steps were subjected to a sterility test. Some additional controls were added to those required by the monograph. The radiochemical yield of the syntheses was 26.3 and 61.5% corrected for decay, with a radiochemical purity of 100%. In addition to quality controls requested by the European Pharmacopeia monograph, we carefully analyzed the product for the presence of possible contaminants. Some elements, mainly metals, were found in very low amounts at concentrations in the range of ppb. The radionuclidic purity was verified. The achievement of the parameters of osmolality, by addition of saline solution to the preparation, made the analysis of chemical purity difficult and worsened the measurement of radiochemical purity by high performance liquid chromatography. Only pH control is necessary before administration to patients and therefore a safe production process was set up to prevent microbiological contamination. All phases were carefully standardized, starting from in-target production of [N]NH3, to final splitting in the syringes. Sterility tests showed no bacterial growth, indicating the safety of the production process. All our syntheses followed the monograph indications and were optimal to obtain PET imaging of a patient's myocardium.

  13. Visual cues for woodpeckers: light reflectance of decayed wood varies by decay fungus

    USGS Publications Warehouse

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2018-01-01

    The appearance of wood substrates is likely relevant to bird species with life histories that require regular interactions with wood for food and shelter. Woodpeckers detect decayed wood for cavity placement or foraging, and some species may be capable of detecting trees decayed by specific fungi; however, a mechanism allowing for such specificity remains unidentified. We hypothesized that decay fungi associated with woodpecker cavity sites alter the substrate reflectance in a species-specific manner that is visually discriminable by woodpeckers. We grew 10 species of wood decay fungi from pure cultures on sterile wood substrates of 3 tree species. We then measured the relative reflectance spectra of decayed and control wood wafers and compared them using the receptor noise-limited (RNL) color discrimination model. The RNL model has been used in studies of feather coloration, egg shells, flowers, and fruit to model how the colors of objects appear to birds. Our analyses indicated 6 of 10 decayed substrate/control comparisons were above the threshold of discrimination (i.e., indicating differences discriminable by avian viewers), and 12 of 13 decayed substrate comparisons were also above threshold for a hypothetical woodpecker. We conclude that woodpeckers should be capable of visually detecting decayed wood on trees where bark is absent, and they should also be able to detect visually species-specific differences in wood substrates decayed by fungi used in this study. Our results provide evidence for a visual mechanism by which woodpeckers could identify and select substrates decayed by specific fungi, which has implications for understanding ecologically important woodpecker–fungus interactions.

  14. Measurement of CP Violation in B0→J/ψK{S}^{0} Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casanova Mohr, R; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-07-17

    Measurements are presented of the CP violation observables S and C in the decays of B(0) and Bover ¯]0 mesons to the J/ψK(S)(0) final state. The data sample corresponds to an integrated luminosity of 3.0  fb(-1) collected with the LHCb experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, and contains a total of 41 560 selected B^{0} and B[over ¯]^{0} decays. The analysis of the time evolution of these decays yields S=0.731±0.035(stat)±0.020(syst) and C=-0.038±0.032(stat)±0.005(syst). In the standard model, S equals sin(2β) to a good level of precision. The values are consistent with the current world averages and with the standard model expectations.

  15. Synthesis of carbon-11-labeled bivalent β-carbolines as new PET agents for imaging of cholinesterase in Alzheimer's disease.

    PubMed

    Wang, Min; Zheng, David X; Gao, Mingzhang; Hutchins, Gary D; Zheng, Qi-Huang

    2011-04-01

    Carbon-11-labeled bivalent β-carbolines, 9,9'-(pentane-1,5-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2a), 9,9'-(nonane-1,9-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2b), 9,9'-(dodecane-1,12-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2c) and 1,9-bis(2-[(11)C]methyl-3,4-dihydro-1H-pyrido[3,4-b]indol-9(2H)-yl)nonane ([(11)C]3), were prepared by N-[(11)C]methylation of their corresponding amine precursors using [(11)C]CH(3)I and isolated by either a simplified solid-phase extraction (SPE) method or HPLC in 40-60% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 20-30min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-370 GBq/μmol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).

    PubMed

    Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang

    2016-03-01

    The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Discrete contribution to {psi}{sup '}{yields}J/{psi}+{gamma}{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Zhiguo; Soto, Joan; Lu Xiaorui

    2011-03-01

    The decay mode {psi}(2S){yields}J/{psi}+{gamma}{gamma} is proposed in order to experimentally identify the effects of the coupling of charmonium states to the continuum D{bar D} states. To have a better understanding of such a two-photon decay process, in this work we restrict ourselves to investigate the contribution of the discrete part, in which the photons are mainly produced via the intermediate states {chi}{sub cJ}(nP). Besides calculating the resonance contributions of {chi}{sub cJ}(1P)(J=0,1,2), we also take into account the contributions of the higher excited states {chi}{sub cJ}(2P) and the interference effect among the 1P and 2P states. We find that the contributionmore » of the 2P states and the interference terms to the total decay width is very tiny. However, for specific regions of the Dalitz plot, off the resonance peaks, we find that these contributions are sizable and should also be accounted for. We also provide the photon spectrum and study the polarization of J/{psi}.« less

  18. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.

    PubMed

    Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A

    2011-03-22

    A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

  19. B decays in an asymmetric left-right model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Hayreter, Alper; Turan, Ismail

    2010-08-01

    Motivated by recently observed disagreements with the standard model predictions in B decays, we study b{yields}d, s transitions in an asymmetric class of SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} models, with a simple one-parameter structure of the right-handed mixing matrix for the quarks, which obeys the constraints from kaon physics. We use experimental constraints on the branching ratios of b{yields}s{gamma}, b{yields}ce{nu}{sub e}, and B{sub d,s}{sup 0}-B{sub d,s}{sup 0} mixing to restrict the parameters of the model: g{sub R}/g{sub L}, M{sub W{sub 2}}, M{sub H}{sup {+-}}, tan{beta} as well as the elements of the right-handed quark mixing matrix V{sub CKM}{sup R}. We presentmore » a comparison with the more commonly used (manifest) left-right symmetric model. Our analysis exposes the parameters most sensitive to b transitions and reveals a large parameter space where left- and right-handed quarks mix differently, opening the possibility of observing marked differences in behavior between the standard model and the left-right model.« less

  20. Leptonic Decays of the Charged B Meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corwin, Luke A.

    2008-01-01

    We present a search for the decay B + → ℓ +ν ( = τ, μ, or e) in (458.9±5.1)×10 6 Υ(4S) decays recorded with the BABAR detector at the SLAC PEP-II B-Factory. A sample of events with one reconstructed exclusive semi-leptonic B decay (B - → D 0ℓ -more » $$\\bar{v}$$X) is selected, and in the recoil a search for B + →ℓ +ν ℓ signal is performed. The τ is identified in the following channels: τ + → e +ν e$$\\bar{v}$$ τ , τ + → μ +ν μ$$\\bar{v}$$ τ , τ + → π +$$\\bar{v}$$ τ , and τ + → π +π 0$$\\bar{v}$$ τ . The analysis strategy and the statistical procedure is set up for branching fraction extraction or upper limit determination. We determine from the dataset a preliminary measurement of B(B + → τ +ν τ) = (1.8 ± 0.8 ± 0.1) × 10 -4, which excludes zero at 2.4σ, and f B = 255 ± 58 MeV. Combination with the hadronically tagged measurement yields B(B + → τ +ν τ) = (1.8 ± 0.6) × 10 -4. We also set preliminary limits on the branching fractions at B(B + → e +ν e) < 7.7 × 10 -6 (90% C.L.), B(B + → μ +ν μ) < 11 × 10 -6 (90% C.L.), and B(B + → τ +ν τ ) < 3.2 × 10 -4(90% C.L.).« less

  1. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  2. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  3. Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model 'for the top quark'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Itzhak; Physics Department, Technion-Institute of Technology, Haifa 32000; Eilam, Gad

    2008-06-01

    In the so-called two Higgs doublet model for the top quark (T2HDM), first suggested by Das and Kao, the top quark receives a special status, which endows it with a naturally large mass, and also potentially gives rise to large flavor changing neutral currents only in the up-quark sector. In this paper, we calculate the branching ratio for the rare decays t{yields}ch and h{yields}tc (h is a neutral Higgs scalar) in the T2HDM, at tree level and at 1-loop when it exceeds the tree level. We compare our results to predictions from other versions of 2HDM's and find that themore » scalar flavor changing neutral currents in the T2HDM can play a significant role in these decays. In particular, the 1-loop mediated decays can be significantly enhanced in the T2HDM compared with the 2HDM of types I and II, in some instances reaching BR{approx}10{sup -4}, which is within the detectable level at the LHC.« less

  4. Search for charmonium and charmoniumlike states in {Upsilon}(2S) radiative decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. L.; Yuan, C. Z.; Wang, P.

    2011-10-01

    Using a sample of 158x10{sup 6} {Upsilon}(2S) events collected with the Belle detector, charmonium and charmoniumlike states with even charge parity are searched for in {Upsilon}(2S) radiative decays. No significant {chi}{sub cJ} or {eta}{sub c} signal is observed, and the following upper limits at 90% confidence level (C. L.) are obtained: B({Upsilon}(2S){yields}{gamma}{chi}{sub c0})<1.0x10{sup -4}, B({Upsilon}(2S){yields}{gamma}{chi}{sub c1})<3.6x10{sup -6}, B({Upsilon}(2S){yields}{gamma}{chi}{sub c2})<1.5x10{sup -5}, and B({Upsilon}(2S){yields}{gamma}{eta}{sub c})<2.7x10{sup -5}. No significant signal of any charmoniumlike state is observed, and we obtain the limits B({Upsilon}(2S){yields}{gamma}X(3872))xB(X(3872){yields}{pi}{sup +}{pi}{sup -}J/{psi})<0.8x10{sup -6}, B({Upsilon}(2S){yields}{gamma}X(3872))x B(X(3872){yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}J/{psi})<2.4x10{sup -6}, B({Upsilon}(2S){yields}{gamma}X(3915))xB(X(3915){yields}{omega}J/{psi})<2.8x10{sup -6}, B({Upsilon}(2S){yields}{gamma}Y(4140))xB(Y(4140){yields}{phi}J/{psi}))<1.2x10{sup -6}, and B({Upsilon}(2S){yields}{gamma}X(4350))xB(X(4350){yields}{phi}J/{psi}))<1.3x10{sup -6} at 90% C. L.

  5. Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-09-01

    A search for neutrinoless decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices were searched for. No signals were found and lower limits of the order of 10 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with Ge. A new result for the half-life of the neutrino-accompanied decay of Ge with significantly reduced uncertainties is also given, resulting in yr.

  6. Maximum Langmuir Fields in Planetary Foreshocks Determined from the Electrostatic Decay Threshold

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, Iver H.

    1995-01-01

    Maximum electric fields of Langmuir waves at planetary foreshocks are estimated from the threshold for electrostatic decay, assuming it saturates beam driven growth, and incorporating heliospheric variation of plasma density and temperature. Comparisons with spacecraft observations yields good quantitative agreement. Observations in type 3 radio sources are also in accord with this interpretation. A single mechanism can thus account for the highest fields of beam driven waves in both contexts.

  7. Study of B to X \\gamma Decays and Determination of |V_{td}/V_{ts}|

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    2011-08-22

    Using a sample of 471 million B{bar B} events collected with the BABAR detector, we study the sum of seven exclusive final states B {yields} X{sub s(d){gamma}}, where X{sub s(d)} is a strange (non-strange) hadronic system with a mass of up to 2.0 GeV/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b {yields} d{gamma} of (9.2 {+-} 2.0(stat.) {+-} 2.3(syst.)) x 10{sup -6} in this mass range, and a branching fraction for b {yields} s{gamma} of (23.0 {+-} 0.8(stat.) {+-} 3.0(syst.)) x 10{sup -5} in the same mass range. We find {Beta}(b{yields}d{gamma})/{Beta}(b{yields}s{gamma}) = 0.040more » {+-} 0.009(stat.) {+-} 0.010(syst.), from which we determine |V{sub td}/V{sub ts}| = 0.199 {+-} 0.022(stat.) {+-} 0.024(syst.) {+-} 0.002(th.).« less

  8. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  9. Measurement of CP-violation parameters in decays of B_s^0 \\to J/\\psi \\phi with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Maevskiy, A. S.; ATLAS Collaboration

    2017-01-01

    A measurement of CP-violating weak phase φs and B_s^0 meson decay width difference with B_s0 \\to J/\\psi φ decays in the ATLAS experiment is presented. It is based on integrated luminosity of 14.3 fb-1 collected by the ATLAS detector from 8 TeV pp collisions at the LHC. The measured values are statistically combined with those from 4.9 fb-1 of 7 TeV collisions data, yielding an overall Run-1 ATLAS result.

  10. Measurement of the Branching Fraction, Polarization, and CP Asymmetry for B{sup 0}{yields}{rho}{sup +}{rho}{sup -} Decays, and Determination of the Cabibbo-Kobayashi-Maskawa Phase {phi}{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, A.; Schwartz, A.J.; Bahinipati, S.

    2006-05-05

    We have measured the branching fraction B, longitudinal polarization fraction f{sub L}, and CP asymmetry coefficients A and S for B{sup 0}{yields}{rho}{sup +}{rho}{sup -} decays with the Belle detector at the KEKB e{sup +}e{sup -} collider using 253 fb{sup -1} of data. We obtain B=[22.8{+-}3.8(stat){sub -2.6}{sup +2.3}(syst)]x10{sup -6}, f{sub L}=0.941{sub -0.040}{sup +0.034}(stat){+-}0.030(syst), A=0.00{+-}0.30(stat){+-}0.09(syst), and S=0.08{+-}0.41(stat){+-}0.09(syst). These values are used to constrain the Cabibbo-Kobayashi-Maskawa phase {phi}{sub 2}; the solution consistent with the standard model is {phi}{sub 2}=(88{+-}17) deg. or 59 deg. <{phi}{sub 2}<115 deg. at 90% C.L.

  11. Study of the [Formula: see text] and [Formula: see text] decays with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    The decays [Formula: see text] and [Formula: see text] are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb[Formula: see text] of pp collisions collected at centre-of-mass energies [Formula: see text] TeV and 8 TeV, respectively. Signal candidates are identified through [Formula: see text] and [Formula: see text] decays. With a two-dimensional likelihood fit involving the [Formula: see text] reconstructed invariant mass and an angle between the [Formula: see text] and [Formula: see text] candidate momenta in the muon pair rest frame, the yields of [Formula: see text] and [Formula: see text], and the transverse polarisation fraction in [Formula: see text] decay are measured. The transverse polarisation fraction is determined to be [Formula: see text], and the derived ratio of the branching fractions of the two modes is [Formula: see text], where the first error is statistical and the second is systematic. Finally, a sample of [Formula: see text] decays is used to derive the ratios of branching fractions [Formula: see text] and [Formula: see text], where the third error corresponds to the uncertainty of the branching fraction of [Formula: see text] decay. The available theoretical predictions are generally consistent with the measurement.

  12. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  13. An efficient preparation of labelling precursor of [11C]L-deprenyl-D2 and automated radiosynthesis.

    PubMed

    Zirbesegger, Kevin; Buccino, Pablo; Kreimerman, Ingrid; Engler, Henry; Porcal, Williams; Savio, Eduardo

    2017-01-01

    The synthesis of [ 11 C]L-deprenyl-D 2 for imaging of astrocytosis with positron emission tomography (PET) in neurodegenerative diseases has been previously reported. [ 11 C]L-deprenyl-D 2 radiosynthesis requires a precursor, L-nordeprenyl-D 2 , which has been previously synthesized from L-amphetamine as starting material with low overall yields. Here, we present an efficient synthesis of L-nordeprenyl-D 2 organic precursor as free base and automated radiosynthesis of [ 11 C]L-deprenyl-D 2 for PET imaging of astrocytosis. The L-nordeprenyl-D 2 precursor was synthesized from the easily commercial available and cheap reagent L-phenylalanine in five steps. Next, N -alkylation of L-nordeprenyl-D 2 free base with [ 11 C]MeOTf was optimized using the automated commercial platform GE TRACERlab® FX C Pro. A simple and efficient synthesis of L-nordeprenyl-D 2 precursor of [ 11 C]L-deprenyl-D 2 as free base has been developed in five synthetic steps with an overall yield of 33%. The precursor as free base has been stable for 9 months stored at low temperature (-20 °C). The labelled product was obtained with 44 ± 13% ( n  = 12) (end of synthesis, decay corrected) radiochemical yield from [ 11 C]MeI after 35 min synthesis time. The radiochemical purity was over 99% in all cases and specific activity was (170 ± 116) GBq/μmol. A high-yield synthesis of [ 11 C]L-deprenyl-D 2 has been achieved with high purity and specific activity. L-nordeprenyl-D 2 precursor as free amine was applicable for automated production in a commercial synthesis module for preclinical and clinical application.

  14. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  15. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    PubMed

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  16. Search for the rare decay KS^0to {μ+}{μ-}

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Domingo Bonal, F.; Donleavy, S.; Dordei, F.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J.-C.; Garofoli, J.; GarraTico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Huston, R. S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Keaveney, J.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y. M.; Kochebina, O.; Komarov, V.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Mac Raighne, A.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Magnin, J.; Maino, M.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Santos, D. Martinez; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McGregor, G.; McNulty, R.; Meissner, M.; Merk, M.; Merkel, J.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pie Valls, B.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santinelli, R.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Soler, F. J. P.; Solomin, A.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tsaregorodtsev, A.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Videau, I.; Vieira, D.; Vilasis-Cardona, X.; Visniakov, J.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, H.; Voß, C.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhong, L.; Zvyagin, A.

    2013-01-01

    A search for the decay KS^0to {μ+}{μ-} is performed, based on a data sample of 1.0 fb-1 of pp collisions at sqrt{s}=7TeV collected by the LHCb experiment at the Large Hadron Collider. The observed number of candidates is consistent with the background-only hypothesis, yielding an upper limit of {B}( {KS^0to {μ+}{μ-}} ) < 11(9) × 10-9 at 95 (90)% confidence level. This limit is a factor of thirty below the previous measurement.

  17. Numerical calculation of the decay widths, the decay constants, and the decay energy spectra of the resonances of the delta-shell potential

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael

    2017-06-01

    We express the resonant energies of the delta-shell potential in terms of the Lambert W function, and we calculate their decay widths and decay constants. The ensuing numerical results strengthen the interpretation of such decay widths and constants as a way to quantify the coupling between a resonance and the continuum. We calculate explicitly the decay energy spectrum of the resonances of the delta-shell potential, and we show numerically that the lineshape of such spectrum is not the same as, and can be very different from, the Breit-Wigner (Lorentzian) distribution. We argue that the standard Golden Rule cannot describe the interference of two resonances, and we show how to describe such interference by way of the decay energy spectrum of two resonant states.

  18. Search for charmonium and charmoniumlike states in {Upsilon}(1S) radiative decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, C. P.; University of Hawaii, Honolulu, Hawaii 96822; Wang, X. L.

    2010-09-01

    Using a sample of 102x10{sup 6} {Upsilon}(1S) events collected with the Belle detector, we report on the first search for charge-parity-even charmonium and charmoniumlike states in {Upsilon}(1S) radiative decays. No significant {chi}{sub cJ} or {eta}{sub c} signal is observed and 90% C.L. limits on B({Upsilon}(1S){yields}{gamma}{chi}{sub c0})<6.5x10{sup -4}, B({Upsilon}(1S){yields}{gamma}{chi}{sub c1})<2.3x10{sup -5}, B({Upsilon}(1S){yields}{gamma}{chi}{sub c2})<7.6x10{sup -6}, and B({Upsilon}(1S){yields}{gamma}{eta}{sub c})<5.7x10{sup -5} are obtained. The product branching fraction limits B({Upsilon}(1S){yields}{gamma}X(3872))B(X(3872){yields}{pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}J/{psi})<1.6x10{sup -6}, B({Upsilon}(1S){yields}{gamma}X(3872))B(X(3872){yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}J/{psi})<2.8x10{sup -6}, B({Upsilon}(1S){yields}{gamma}X(3915)) B(X(3915){yields}{omega}J/{psi})<3.0x10{sup -6}, and B({Upsilon}(1S){yields}{gamma}Y(4140))B(Y(4140){yields}{phi}J/{psi})<2.2x10{sup -6} are obtained at the 90% C.L. Furthermore, no evidence is found for excited charmonium states below 4.8 GeV/c{sup 2}.

  19. Hyperon and hyperon resonance properties from charm baryon decays at BABAR

    NASA Astrophysics Data System (ADS)

    Ziegler, Veronique

    This thesis describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the X0c and W0c , it is shown, for the first time, that the spin of the O - is 3/2. The O- analysis procedures are extended to three-body final states and properties of the xi(1690)0 are extracted from a detailed isobar model analysis of the L+c → ΛK¯0K + Dalitz plot. The mass and width values of the xi(1690) 0 are measured with much greater precision than attained previously. The hypothesis that the spin of the xi(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The Λa0(980)+ decay mode of the L+c is observed for the first time. Similar techniques are then used to study xi(1530)0 production in L+c decay. The spin of the xi(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the xi -pi+ system is shown, and its interference with the xi(1530) 0 amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the xi(1530). The xi-pi + mass distribution in the vicinity of the xi(1690)0 exhibits interesting structure which may be interpreted as indicating that the xi(1690) has negative parity.

  20. Q Value of the Superallowed Decay of {sup 46}V and Its Influence on V{sub ud} and the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savard, G.; Department of Physics, University of Chicago, Chicago, Illinois 60637; Buchinger, F.

    2005-09-02

    The masses of the radioactive nuclei {sup 46}V and its decay daughter {sup 46}Ti have been measured with the Canadian Penning Trap on-line Penning trap mass spectrometer to a precision of 1x10{sup -8}. A Q{sub EC} value of 7052.90(40) keV for the superallowed beta decay of {sup 46}V is obtained from the difference of these two masses. With this precise Q value, the Ft value for this decay is determined with improved precision. An investigation of an earlier Q-value measurement for {sup 46}V uncovers a set of 7 measurements that cannot be reconciled with modern data and affects previous evaluationsmore » of V{sub ud} from superallowed Fermi decays. A new evaluation, adding our new data and removing the discredited subset, yields new values for G{sub V} and V{sub ud}. When combined with recent results for V{sub us}, this yields modified constraints for the unitarity of the Cabibbo-Kobayashi-Maskawa matrix and other extensions of the standard model.« less

  1. TMSOTf assisted synthesis of 2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosylcytosine ([18F]FAC)

    PubMed Central

    Humm, John L.; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2018-01-01

    [18F]FAC (2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosylcytosine, 1) is a versatile probe for imaging deoxycytidine kinase (dCK) expression levels in vivo. dCK is responsible for phosphorylation of deoxycytidine (dC, 2) and other nucleoside analogs, plays a key role in immune activation and has demonstrated to be one of the key enzymes in activating nucleoside based drugs including gemcitabine. Reported synthesis of [18F]FAC is high yielding but is quite challenging requiring bromination using HBr and careful drying of excess HBr which is critical for successful synthesis. Here in we report a simplified trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted synthesis of [18F]FAC eliminating the need of bromination and drying. [18F]FAC (β-anomer) was synthesized with average isolated decay corrected yield of 10.59 + 4.2% (n = 6) with radiochemical purity of >98% and total synthesis time of 158 + 19 min. PMID:29715301

  2. Dynamical Cluster-decay Model (DCM) applied to 9Li+208Pb reaction

    NASA Astrophysics Data System (ADS)

    Kaur, Arshdeep; Hemdeep; Kaushal, Pooja; Behera, Bivash R.; Gupta, Raj K.

    2017-10-01

    The decay mechanism of 217At* formed in 9Li+208Pb reaction is studied within the dynamical cluster-decay model (DCM) at various center-of-mass energies. The aim is to see the behavior of a light neutron-rich radioactive beam on a doubly-magic target nucleus for the (total) fusion cross section σfus and the individual decay channel cross sections. Experimentally, only the isotopic yield of heavy mass residues * 211- 214At [equivalently, the light-particles (LPs) evaporation residue cross sections σxn for x = 3- 6 neutrons emission] are measured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length parameter ΔR, the only parameter in the DCM, we are able to fit σfus =∑x=16σxn almost exactly for 9Li on 208Pb at all E c . m .'s. However, the observed individual decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n) and σff strongly over-estimated. Different ΔR values, meaning thereby different reaction time scales, are required to fit individually both the observed and unobserved evaporation residue channels (1n-6n) and σff, but then the compound nucleus (CN) contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay cross section σnCN contributes the most towards total σfus (=σCN +σnCN). Thus, the 9Li induced reaction on doubly-magic 208Pb is more of a quasi-fission-like nCN decay, which is further analyzed in terms of the statistical CN formation probability PCN and CN survival probability Psurv. For the reaction under study, PCN < < 1 and Psurv → 1, in particular at above barrier energies.

  3. Measurement of branching fractions and CP-violating charge asymmetries for B-meson decays to D{sup (*)}D{sup (*)}, and implications for the Cabibbo-Kobayashi-Maskawa angle {gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Barate, R.; Bona, M.

    2006-06-01

    We present measurements of the branching fractions and charge asymmetries of B decays to all D{sup (*)}D{sup (*)} modes. Using 232x10{sup 6} BB pairs recorded on the {upsilon}(4S) resonance by the BABAR detector at the e{sup +}e{sup -} asymmetric B factory PEP-II at the Stanford Linear Accelerator Center, we measure the branching fractions B(B{sup 0}{yields}D*{sup +}D*{sup -})=(8.1{+-}0.6{+-}1.0)x10{sup -4}, B(B{sup 0}{yields}D*{sup {+-}}D{sup {+-}})=(5.7{+-}0.7{+-}0.7)x10{sup -4}, B(B{sup 0}{yields}D{sup +}D{sup -})=(2.8{+-}0.4{+-}0.5)x10{sup -4}, B(B{sup +}{yields}D*{sup +}D*{sup 0})=(8.1{+-}1.2{+-}1.2)x10{sup -4}, B(B{sup +}{yields}D*{sup +}D{sup 0})=(3.6{+-}0.5{+-}0.4)x10{sup -4}, B(B{sup +}{yields}D{sup +}D*{sup 0})=(6.3{+-}1.4{+-}1.0)x10{sup -4}, and B(B{sup +}{yields}D{sup +}D{sup 0})=(3.8{+-}0.6{+-}0.5)x10{sup -4}, where in each case the first uncertainty is statistical and themore » second systematic. We also determine the limits B(B{sup 0}{yields}D*{sup 0}D*{sup 0})<0.9x10{sup -4}, B(B{sup 0}{yields}D*{sup 0}D{sup 0})<2.9x10{sup -4}, and B(B{sup 0}{yields}D{sup 0}D{sup 0})<0.6x10{sup -4}, each at 90% confidence level. All decays above denote either member of a charge-conjugate pair. We also determine the CP-violating charge asymmetries A(B{sup 0}{yields}D*{sup {+-}}D{sup {+-}})=0.03{+-}0.10{+-}0.02, A(B{sup +}{yields}D*{sup +}D*{sup 0})=-0.15{+-}0.11{+-}0.02, A(B{sup +}{yields}D*{sup +}D{sup 0})=-0.06{+-}0.13{+-}0.02, A(B{sup +}{yields}D{sup +}D*{sup 0})=0.13{+-}0.18{+-}0.04, and A(B{sup +}{yields}D{sup +}D{sup 0})=-0.13{+-}0.14{+-}0.02. Additionally, when we combine these results with information from time-dependent CP asymmetries in B{sup 0}{yields}D{sup (*)+}D{sup (*)-} decays and world-averaged branching fractions of B decays to D{sub s}{sup (*}}D{sup (*)} modes, we find the Cabibbo-Kobayashi-Maskawa phase {gamma} is favored to lie in the range (0.07-2.77) radians (with a +0 or +{pi} radians ambiguity) at 68% confidence level.« less

  4. Branching Fraction and CP Asymmetry Measurements in Inclusive B → X s ℓ⁺ℓ⁻ and B → X sγ Decays from BABAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigen, G.

    We present an update on total and partial branching fractions and on CP asymmetries in the semi-inclusive decay B → X sℓ⁺ℓ -. Further, we summarize our results on branching fractions and CP asymmetries for semi-inclusive and fully-inclusive B → X sγ decays. We present the first result on the CP asymmetry difference of charged and neutral B → X sγ decays yielding the first constraint on the ratio of Wilson coefficients Im(C 8 eff/C 7 eff).

  5. Radiative decays at LHCb

    NASA Astrophysics Data System (ADS)

    Giubega, L. E.

    2016-12-01

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B 0 → K *0 γ and B s → ϕ γ, the direct CP asymmetry in B 0 → K *0 γ decay channel and the observation of the photon polarization in the B ± → K ±π∓π± γ decay, are included. The first two measurements were performed in 1 fb-1 of pp collisions data and the third one in 3 fb-1 of data, respectively.

  6. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    USGS Publications Warehouse

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  7. Strength loss in decayed wood

    Treesearch

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  8. Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes.

    PubMed

    Wang, Min; Gao, Mingzhang; Miller, Kathy D; Sledge, George W; Hutchins, Gary D; Zheng, Qi-Huang

    2009-05-01

    A new type of styryl dyes have been developed as RNA-specific, live cell imaging probes for fluorescent microscopy technology to study nuclear structure and function. This study was designed to develop carbon-11 labeled styryl dyes as new probes for biomedical imaging technique positron emission tomography (PET) imaging of RNA in living cells. Precursors (E)-2-(2-(1-(triisopropylsilyl)-1H-indol-3-yl)vinyl)quinoline (2), (E)-2-(2,4,6-trimethoxystyryl)quinoline (3) and (E)-4-(2-(6-methoxyquinolin-2-yl)vinyl)-N,N-diemthylaniline (4), and standards styryl dyes E36 (6), E144 (7) and F22 (9) were synthesized in multiple steps with moderate to high chemical yields. Precursor 2 was labeled by [(11)C]CH(3)OTf, trapped on a cation-exchange CM Sep-Pak cartridge following a quick deprotecting reaction by addition of (n-Bu)(4)NF in THF, and isolated by solid-phase extraction (SPE) purification to provide target tracer [(11)C]E36 ([(11)C]6) in 40-50% radiochemical yields, decay corrected to end of bombardment (EOB), based on [(11)C]CO(2). The target tracers [(11)C]E144 ([(11)C]7) and [(11)C]F22 ([(11)C]9) were prepared by N-[(11)C]methylation of the precursors 3 and 4, respectively, using [(11)C]CH(3)OTf and isolated by SPE method in 50-70% radiochemical yields at EOB. The specific activity of the target tracers [(11)C]6, [(11)C]7 and [(11)C]9 was in a range of 74-111GBq/mumol at the end of synthesis (EOS).

  9. SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Levitskaia, Tatiana G.

    2013-09-29

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor

  10. Evidence for final state photons in multihadronic decays of the Z 0

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1990-08-01

    From the observed yield and properties of isolated energetic photons in the reaction e +e -→Z 0→hadrons+ γ measured with the OPAL detector at LEP, evidence for final state radiation from primary quarks is obtained. Combined with the measurement of the total hadronic width of the Z 0, the observed rate allows the extraction of the electroweak coupling constants of up and down type quarks: ν {1}/{3}2 + a {1}/{3}2 = 1.24±0.47 and ν {2}/{3}2 + a {2}/{3}2 = 1.72±0.70 No evidence for additional photon production from anomalous decays of the Z 0 or from decays of new particles is found. This measurement limits the contribution to the total Z 0 width from such sources to be less than 8.2 MeV at the 95% confidence level.

  11. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cal Latin-Small-Letter-Dotless-I k, A. E., E-mail: engincalik@yahoo.com; Gerceklioglu, M.; Selam, C.

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  12. Measurement of CP asymmetry in B s 0 → D s ∓ K ± decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M. O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Da Silva, C. L.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Durham, J. M.; Dutta, D.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Lopes, L.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fontana, M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hopchev, P. H.; Hu, W.; Huang, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Liang, X.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pietrzyk, G.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Qin, J.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Walsh, J.; Wang, J.; Wang, Y.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Q.; Xu, Z.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2018-03-01

    We report the measurements of the CP -violating parameters in B s 0 → D s ∓ K ± decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb-1 recorded with the LHCb detector. We measure C f = 0 .73 ± 0 .14 ± 0 .05, A f ΔΓ = 0.39 ± 0.28 ± 0.15, {A}_{\\overline{f}}^{Δ Γ }=0.31± 0.28± 0.15 , S f = -0 .52 ± 0 .20 ± 0 .07, {S}_{\\overline{f}}=-0.49± 0.20± 0.07 , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the B s 0 mixing phase, -2 β s , to obtain a measurement of the CKM angle γ from B s 0 → D s ∓ K ± decays, yielding γ = (128 - 22 + 17 ) ° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3 .8 σ evidence for CP violation in the interference between decay and decay after mixing. [Figure not available: see fulltext.

  13. Preparation of 99mTc-TRODAT-1 with high labeling yield in boiling water bath: a new formulation.

    PubMed

    Erfani, Mostafa; Shafiei, Mohammad

    2014-04-01

    A new formulation for preparation of (99m)Tc-labeled tropane derivative, (99m)Tc-TRODAT-1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. Preparation of (99m)Tc-TRODAT-1 was attained previously by a formulation in which vial has to be autoclaved at 121 °C for 30 min. It is highly desirable to further improve the preparation method by developing a simplified one vial formulation which will be labeled in boiling water bath (95 °C) for 15 min and a high labeling yield will be achieved. A formulation contained 10 μg of TRODAT-1, 20 μg tricine, 40 μg SnCl2 and 20mg manitol was prepared. Labeling was performed at 95 °C for 15 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radioconjugate was checked in the presence of human serum at 37 °C up to 24h. (99m)Tc-TRODAT-1 was prepared with a radiochemical purity of more than 95% and specific activity of 64.3 MBq/nmol. Biodistribution studies of this new formulation in rats revealed similar regional brain distribution as compared with those obtained with the previous preparation in which brain uptake was high in striatum and striatum to cerebellum ratio was high. Requiring no autoclave facility for labeling, this new formulation will significantly improve the using feasibility of this radiopharmaceutical in clinic. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Measurement of the CP-violating phase ϕs in Bs(0)→Ds(+)Ds(-) decays.

    PubMed

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elena, E; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2014-11-21

    We present a measurement of the CP-violating weak mixing phase ϕs using the decay Bs(0)→Ds(+)Ds(-) in a data sample corresponding to 3.0 fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV. An analysis of the time evolution of the system, which does not use the constraint |λ|=1 to allow for the presence of CP violation in decay, yields ϕs=0.02±0.17(stat)±0.02(syst)  rad, |λ|=0.91(-0.15)(+0.18)(stat)±0.02(syst). This result is consistent with the standard model expectation.

  15. Study of holmium (III) and yttrium(III) with DOTA complexes as candidates for radiopharmaceutical use

    NASA Astrophysics Data System (ADS)

    Ernestová, M.; Jedináková-Křížová, V.

    2003-01-01

    Reaction conditions for complexation of radionuclides with DOTA were studied using thinlayer chromatography (TLC), paper chromatography (PC) and potentiometry. It was found that all of the studied complexes can reach very high radiochemical yield about 95%. Optimal conditions for obtaining such high radiochemical yields are as follows: pH higher than 4 and the excess of chelating agent must be minimally 3∶1. Potentiometric study showed that the formation of complexes is characterised by very slow kinetics.

  16. Distortions in 2p4d Partial Fluorescence yield for 4d elements

    NASA Astrophysics Data System (ADS)

    Price, Alexander; de Groot, Frank; Datta, Trinanjan

    2014-03-01

    X-ray absorption spectroscopy (XAS) is a standard tool to determine the electronic structure of molecules and materials. CTM4XAS and CTM4RIXS are semi-empirical programs to analyze transition metal L - and M - edge transitions by evaluating the effects of crystal field and charge transfer parameters on the atomic multiplets. We compute and compare the XAS and the fluorescence yield (FY) XAS, of the 3d and 4d transition metal ions. In the case of 2p edges of 3d elements Auger decay dominates and sets the time scale. The 2p3d X -ray emission spectra (XES) accounts for approximately 80% of the radiative decay. The 2p3d partial FY is distorted and because it dominates the FY, the total FY is also distorted. For the 4d elements the 2p4d XES decay is approximately 10% of 2p3d XES decay, implying that (the energy-constant) core-core XES and Auger channels dominate the decay. The computed 2p4d partial FY -XAS spectra are different from the 2p XAS. Although 2p4d partial FY is distorted, the total FY is not because it is dominated by 2p3d XES. We also find that the 2p3s and 2p4s XES channels contribute less than 1% and can be neglected. Cottrell Research Corporation.

  17. Measurement of the direct C P violating charge asymmetry in B±→μ±νμD0 decays

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2017-02-01

    We present the first measurement of the C P violating charge asymmetry in B±→μ±νμD0 decays using the full Run II integrated luminosity of 10.4 fb-1 in proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure a difference in the yield of B- and B+ mesons in these decays by fitting the reconstructed invariant mass distributions. This results in an asymmetry of Aμ D0=[-0.14 ±0.20 ] % , which is consistent with standard model predictions.

  18. Suppressed Charmed B Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B 0 → D *- a 0 + decays and the non-resonant B 0 → D *- ηπ + decays in approximately 230 million Υ(4S) → Bmore » $$\\bar{B}$$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B 0 → D *- a{sub 0} + decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10 -6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B 0 → D *- a 0 + decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly enhance the measurement of this angle. However, the low expected branching fraction for the B 0 → D *- a 0 + decay channels could

  19. A search for jet handedness in hadronic Z{sup 0} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yoji

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z{sup 0} {yields} q{bar q} decays. The polarization of quarks and antiquark produced by Z{sup 0} decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on {open_quotes}jet handedness{close_quotes} methodsmore » and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z{sup 0} decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods.« less

  20. Search for penguin decays of B mesons at CDF

    NASA Astrophysics Data System (ADS)

    Kordas, Kostas

    Using a data sample of integrated luminosity ∫ Ldt = 28.9 +/- 1.2 pb-1 of proton-antiproton collisions at a center-of-mass energy s = 1.8 TeV collected with the CDF detector at the Fermilab Tevatron collider, we searched for "penguin" radiative decays of B0d and B0s mesons which involve the flavor-changing neutral-current transition of a b quark into an s quark with the emission of a photon, b→sg . Specifically, we searched for the decays B0d→K*0g, K*0→K+p- and B0s→fg, f→K+K- , as well as for the charge conjugate chains. In order to collect such decays, we designed a specialized trigger which required information on all the decay products of the B meson decay chain, the first such trigger in a hadron collider environment. This "penguin" trigger collected data during the last quarter of the 1994--1996 data taking period. After all selection criteria, we are left with one candidate B0d→K*0g decay and no B0s→fg candidates in the entire data sample. We then proceed to set upper limits on the branching fractions of the penguin channels. We exploit the topological similarity between the B¯→e-D0 X,D0→K-p + and the penguin decays, by forming ratios of branching fractions between the penguin and the B¯→e-D0 X channels. Uncertainties associated with the B meson production cross section, common efficiency corrections and other systematic effects are minimal in the ratio of branching fractions. The uncertainty on the B¯→e-D0 X yield is the biggest contribution to the total uncertainty on the penguin branching fraction. We assume equal production rates for B+u and B0d mesons, while the probability of producing B0s mesons relative to B0d mesons, fs/fd, is taken to be 1/3. The inferred upper limits on the ratios of branching fractions are B(B0 s→fg)B( B¯→e-D0 X)<3.5x10-3 at90% C.L. B(B 0d→K*0g) B(B¯→e- D0X)<1.9x10-3 at90%C.L. Relative branching fraction measurements were combined with the branching fraction measurement of the B¯→e-D0 X,D0

  1. Shannon entropy and particle decays

    NASA Astrophysics Data System (ADS)

    Carrasco Millán, Pedro; García-Ferrero, M. Ángeles; Llanes-Estrada, Felipe J.; Porras Riojano, Ana; Sánchez García, Esteban M.

    2018-05-01

    We deploy Shannon's information entropy to the distribution of branching fractions in a particle decay. This serves to quantify how important a given new reported decay channel is, from the point of view of the information that it adds to the already known ones. Because the entropy is additive, one can subdivide the set of channels and discuss, for example, how much information the discovery of a new decay branching would add; or subdivide the decay distribution down to the level of individual quantum states (which can be quickly counted by the phase space). We illustrate the concept with some examples of experimentally known particle decay distributions.

  2. Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Moe, Michael

    2013-04-01

    photographs and anecdotes it makes and interesting story. As a digital device, the TPC made data acquisition and analysis orders of magnitude simpler and faster. After seven years of massage, the TPC yielded good evidence for 2ν decay of ^82Se with a half-life near 10^20 years. While the 0ν mode was not in evidence, finally seeing ββ decay in the laboratory created optimism about an eventual 0ν discovery.

  3. High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.

    2018-05-01

    The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.

  4. Combinedatomic–nuclear decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyublik, A. Ya., E-mail: dzyublik@ukr.net

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  5. Observation of Exclusive B Decays to Final States Containing a Charmed Baryon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-23

    Using data collected in the region of the {Upsilon}(4S) resonance with the CLEO-II detector, they report on the first observation of exclusive decays of the B meson to final states with a charmed baryon. They have measured the branching fractions {Beta}(B{sup -} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup -}) = (0.62{sub -0.20}{sup +0.23} {+-} 0.11 {+-} 0.10) x 10{sup -3} and {Beta}({bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup +}{pi}{sup -}) = (1.33{sub -0.42}{sup +0.46} {+-} 0.31 {+-} 0.21) x 10{sup -3}. In addition, they report upper limits for final states of the form {bar B} {yields} {Lambda}{sub c}{sup +}{bar p}(n{pi})more » and {Lambda}{sub c}{sup +}{bar p}(n{pi}){pi}{sup 0} where (n{pi}) denotes up to four charged pions.« less

  6. Synthesis of empagliflozin, a novel and selective sodium-glucose co-transporter-2 inhibitor, labeled with carbon-14 and carbon-13.

    PubMed

    Hrapchak, Matt; Latli, Bachir; Wang, Xiao-Jun; Lee, Heewon; Campbell, Scot; Song, Jinhua J; Senanayake, Chris H

    2014-10-01

    Empagliflozin, (2S,3R,4R,5S,6R)-2-[4-chloro-3-[[4-[(3S)-oxolan-3-yl]oxyphenyl]methyl]phenyl]-6-(hydroxymethyl)oxane-3,4,5-triol was recently approved by the FDA for the treatment of chronic type 2 diabetes mellitus. Herein, we report the synthesis of carbon-13 and carbon-14 labeled empagliflozin. Carbon-13 labeled empagliflozin was prepared in five steps and in 34% overall chemical yield starting from the commercially available α-D-glucose-[(13)C6]. For the radiosynthesis, the carbon-14 atom was introduced in three different positions of the molecule. In the first synthesis, Carbon-14 D-(+)-gluconic acid δ-lactone was used to prepare specifically labeled empagliflozin in carbon-1 of the sugar moiety in four steps and in 19% overall radiochemical yield. Carbon-14 labeled empagliflozin with the radioactive atom in the benzylic position was obtained in eight steps and in 7% overall radiochemical yield. In the last synthesis carbon-14 uniformly labeled phenol was used to give [(14)C]empagliflozin in eight steps and in 18% overall radiochemical yield. In all these radiosyntheses, the specific activities of the final compounds were higher than 53 mCi/mmol, and the radiochemical purities were above 98.5%. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Observation of Bs-Bsbar Oscillations Using Partially Reconstructed Hadronic Bs Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Jeffrey Robert

    2008-02-01

    individual analyses show compelling evidence for B$$0\\atop{s}$$-$$\\bar{B}$$$0\\atop{s}$$ oscillations, and the combination yields a clear signal. The probability that random fluctuations could produce a comparable signature is 8 x 10 -8, which exceeds the 5 standard deviations threshold of significance for observation. The discovery threshold would not be achieved without inclusion of the partially reconstructed hadronic decays. They measure Δm s = 17.77 ± 0.10(stat) ± 0.07(syst) ps -1 and extract |V td/V ts| = 0.2060 ± 0.0007(exp)$$+0.0081\\atop{-0.0060}$$(theory), consistent with the Standard Model expectation.« less

  8. Measurement of the branching fractions of B-->D**(l) nu(l) decays in events tagged by a fully reconstructed B meson.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; Mckenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, E; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Lo Secco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, E; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2008-12-31

    We report a measurement of the branching fractions of B-->D**(l) nu(l), decays based on 417 fb(-1) of data collected at the Y(4S) resonance with the BABAR detector at the PEP-II e+e- storage rings. Events are selected by full reconstructing one of the B mesons in a hadronic decay mode. A fit to the invariant mass differences m(D(*) pi)- m(D(*)) is performed to extract the signal yields of the different D** states. We observe the B-->D**l(-1)nu(l) decay modes corresponding to the four D states predicted by heavy quark symmetry with a significance greater than 5 standard deviations including systematic uncertainties.

  9. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  10. Rare decays in quark flavour physics

    NASA Astrophysics Data System (ADS)

    Albrecht, Johannes; LHCb Collaboration

    2016-04-01

    Rare heavy-flavour decays are an ideal place to search for the effects of potential new particles that modify the decay rates or the Lorentz structure of the decay vertices. Recent results on Flavour Changing Neutral Current decays from the LHC are reviewed. An emphasis is put on the very rare decay Bs0 →μ+μ-, which was recently observed by the CMS and LHCb experiments, on a recent test of lepton universality in loop processes and on the analysis of the angular distributions of the B0 →K*0μ+μ- decays, both by the LHCb collaboration.

  11. Iconic Decay in Schizophrenia

    PubMed Central

    Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.

    2011-01-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0–1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia. PMID:20053864

  12. Iconic decay in schizophrenia.

    PubMed

    Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M

    2011-09-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.

  13. Study of the X±(5568 ) state with semileptonic decays of the Bs0 meson

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Drutskoy, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2018-05-01

    We present a study of the X±(5568 ) using semileptonic decays of the Bs0 meson using the full run II integrated luminosity of 10.4 fb-1 in proton-antiproton collisions at a center of mass energy of 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. We report evidence for a narrow structure, X±(5568 ), in the decay sequence X±(5568 )→Bs0π± where Bs0→μ∓Ds±X , Ds±→ϕ π± which is consistent with the previous measurement by the D0 Collaboration in the hadronic decay mode, X±(5568 )→Bs0π± where Bs0→J /ψ ϕ . The mass and width of this state are measured using a combined fit of the hadronic and semileptonic data, yielding m =5566.9-3.1+3.2(stat)-1.2 +0.6(syst ) MeV /c2 , Γ =18.6-6.1+7.9(stat)-3.8 +3.5(syst ) MeV /c2 with a significance of 6.7 σ .

  14. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten; In, Seongjin; Kumar, Jason

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showersmore » give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.« less

  15. Assessment of the direct cyclotron production of (99m)Tc: An approach to crisis management of (99m)Tc shortage.

    PubMed

    Rovais, Mohammad Reza Aboudzadeh; Aardaneh, Khosro; Aslani, Gholamreza; Rahiminejad, Ali; Yousefi, Kamran; Boulouri, Fatemeh

    2016-06-01

    Nowadays, the cyclotron production of technetium-99m ((99m)Tc) has been increased, due to the worldwide (99m)Tc generator shortage. In the present work, an improved strategy for the production of (99m)Tc, using the proton irradiation of the enriched (100)Mo was developed. The performance of this method in terms of the production yield, chemical purity, radiochemical purity, as well as radionuclide purity was evaluated. The average production yield was measured to be 356MBqμA(-1)h(-1). A good agreement was found between the calculated production yield and the experimental one. The radiochemical separation and total recovery yields of (99m)Tc were 92% and 69%, respectively. The radiochemical and the radionuclide purities of the (99m)Tc were 99% and >99.99% at the end of purification, respectively. The results of quality control tests (QC) support the concept that cyclotron-produced (99m)Tc is suitable for preparation of USP-compliant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station

    NASA Astrophysics Data System (ADS)

    Lică, R.; Benzoni, G.; Morales, A. I.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Madurga, M.; Sotty, C.; Vedia, V.; De Witte, H.; Benito, J.; Berry, T.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernández-Martínez, G.; Fynbo, H.; Greenlees, P.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Leoni, S.; Lund, M.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Regis, J. M.; Rotaru, F.; Saed-Sami, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.

    2017-05-01

    Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on 148-150Cs β-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of 149Ba is presented, giving a first insight in the structure of this neutron-rich nucleus.

  17. Search for b\\to u Transitions in \\Bz \\to \\Dz \\Kstarz Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Bona, M.; Karyotakis, Y.

    We present a study of the decays B{sup 0} {yields} D{sup 0} K*{sup 0} and B{sup 0} {yields} {bar D}{sup 0} K*{sup 0} with K*{sup 0} {yields} K{sup +}{pi}{sup -}. The D{sup 0} and the {bar D}{sup 0} mesons are reconstructed in the final states f = K{sup +} {pi}{sup -}, K{sup +}{pi}{sup -}{pi}{sup 0}, K{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and their charge conjugates. Using a sample of 465 million B{bar B} pairs collected with the BABAR detector at PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC, we measure the ratio R{sub ADS} {triple_bond} [{Lambda}({bar B}{sup 0} {yields} [f]{sub D}{barmore » K}*{sup 0}) + {Lambda}(B{sup 0} {yields} [{bar f}]{sub D}K*{sup 0})]/[{Lambda}({bar B}{sup 0} {yields} [{bar f}]{sub D}{bar K}*{sup 0}) + {Lambda}(B{sup 0} {yields} [f]{sub D}K*{sup 0})] for the three final states. We do not find significant evidence for a signal and set the following limits at 95% probability: R{sub ADS}(K{pi}) < 0.244, R{sub ADS}(K{pi}{pi}{sup 0}) < 0.181 and R{sub ADS}(K{pi}{pi}{pi}) < 0.391. From the combination of these three results, we find that the ratio r{sub S} between the b {yields} u and the b {yields} c amplitudes lies in the range [0.07; 0.41] at 95% probability.« less

  18. Study of B to pi l nu and B to rho l nu Decays and Determination of |V_ub|

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    2011-12-09

    We present an analysis of exclusive charmless semileptonic B-meson decays based on 377 million B{bar B} pairs recorded with the BABAR detector at the {Upsilon} (4S) resonance. We select four event samples corresponding to the decay modes B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}, B{sup +} {yields} {pi}{sup 0}{ell}{sup +}{nu}, B{sup 0} {yields} {rho}{sup -}{ell}{sup +}{nu}, and B{sup +} {yields} {rho}{sup 0}{ell}{sup +}{nu}, and find the measured branching fractions to be consistent with isospin symmetry. Assuming isospin symmetry, we combine the two B {yields} {pi}{ell}{nu} samples, and similarly the two B {yields} {rho}{ell}{nu} samples, and measure the branching fractions {Beta}(B{sup 0}more » {yields} {pi}{sup -}{ell}{sup +}{nu}) = (1.41 {+-} 0.05 {+-} 0.07) x 10{sup -4} and {Beta}(B{sup 0} {yields} {rho}{sup 0}{ell}{sup +}{nu}) = (1.75 {+-} 0.15 {+-} 0.27) x 10{sup -4}, where the errors are statistical and systematic. We compare the measured distribution in q{sup 2}, the momentum transfer squared, with predictions for the form factors from QCD calculations and determine the CKM matrix element |V{sub ub}|. Based on the measured partial branching fraction for B {yields} {pi}{ell}{nu} in the range q{sup 2} < 12 GeV{sup 2} and the most recent LCSR calculations we obtain |V{sub ub}| = (3.78 {+-} 0.13{sub -0.40}{sup +0.55}) x 10{sup -3}, where the errors refer to the experimental and theoretical uncertainties. From a simultaneous fit to the data over the full q{sup 2} range and the FNAL/MILC lattice QCD results, we obtain |V{sub ub}| = (2.95 {+-} 0.31) x 10{sup -3} from B {yields} {pi}{ell}{nu}, where the error is the combined experimental and theoretical uncertainty.« less

  19. Observation of B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.-W.; Wang, M.-Z.; Chao, Y.

    2009-03-01

    We study the charmless decays B{yields}{lambda}{lambda}h, where h stands for {pi}{sup +}, K{sup +}, K{sup 0},K*{sup +}, or K*{sup 0}, using a 605 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We observe B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} with branching fractions of (4.76{sub -0.68}{sup +0.84}(stat){+-}0.61(syst))x10{sup -6} and (2.46{sub -0.72}{sup +0.87}{+-}0.34)x10{sup -6}, respectively. The significances of these signals in the threshold-mass enhanced mass region, M{sub {lambda}}{sub {lambda}}<2.85 GeV/c{sup 2}, are 12.4{sigma} and 9.3{sigma}, respectively. We also update the branching fraction B(B{sup +}{yields}{lambda}{lambda}K{sup +})=(3.38{sub -0.36}{sup +0.41}{+-}0.41)x10{supmore » -6} with better accuracy, and report the following measurement or 90% confidence level upper limit in the threshold-mass-enhanced region: B(B{sup +}{yields}{lambda}{lambda}K*{sup +})=(2.19{sub -0.88}{sup +1.13}{+-}0.33)x10{sup -6} with 3.7{sigma} significance; B(B{sup +}{yields}{lambda}{lambda}{pi}{sup +})<0.94x10{sup -6}. A related search for B{sup 0}{yields}{lambda}{lambda}D{sup 0} yields a branching fraction B(B{sup 0}{yields}{lambda}{lambda}D{sup 0})=(1.05{sub -0.44}{sup +0.57}{+-}0.14)x10{sup -5}. This may be compared with the large, {approx}10{sup -4}, branching fraction observed for B{sup 0}{yields}ppD{sup 0}. The M{sub {lambda}}{sub {lambda}} enhancements near threshold and related angular distributions for the observed modes are also reported.« less

  20. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-09-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope Ge76. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10-2counts/(keVkgyr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of Ge76, T1/20ν>2.1×1025yr (90% C.L.). The combination with the results from the previous experiments with Ge76 yields T1/20ν>3.0×1025yr (90% C.L.).

  1. Decay of 34Mg

    NASA Astrophysics Data System (ADS)

    Chaney, Donlad; Benjamin Luna Collaboration

    2017-09-01

    One of concepts of modern physics that is not understood is the strong nuclear force. One manifestation of this is our lack of understanding of so-called `islands of inversion', which are groups of nuclides which have deformed ground states. It is known that 34Mg is included in this island, and that its decay (34Al) has a mixed ground state configuration. By studying their decays we hoped to discover definitive information about the branching ratios and the half lives of 34Mg and 34Al. In order to accomplish these goals, we studied the gamma radiation from the decays of 34Mg and 34Al. A Magnesium beam was implanted into a strip of mylar tape and transported to the center of an array of scintillators and germanium detectors, which has allowed us to determine the half-lives for the decays, and the branching ratios for the beta decay. My work on this project began with writing scripts to draw histograms with the data, and using those histograms to gather information that would allow me to gate our data on any number of variables and pieces of information. By cutting out bad portions of our data collection runs and gating on the coincidence of beta decays and other gamma rays, I was able to cut out a significant amount background radiation from our data.

  2. Two-pseudoscalar-meson decay of {chi}{sub cJ} with twist-3 corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Mingzhen; Zhou Haiqing; Department of Physics, Southeast University, Nanjing 211189

    2009-11-01

    The decays of {chi}{sub cJ}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} (J=0,2) are discussed within the standard and modified hard-scattering approach when including the contributions from twist-3 distribution amplitudes and wave functions of the light pseudoscalar meson. A model for twist-2 and twist-3 distribution amplitudes and wave functions of the pion and kaon with BHL prescription are proposed as the solution to the end-point singularities. The results show that the contributions from twist-3 parts are actually not power suppressed comparing with the leading-twist contribution. After including the effects from the transverse momentum of light meson valence-quark state and Sudakov factors, themore » decay widths of the {chi}{sub cJ} into pions or kaons are comparable with the their experimental data.« less

  3. Branching ratio of the electromagnetic decay of the Σ+(1385)

    NASA Astrophysics Data System (ADS)

    Keller, D.; Hicks, K.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Vernarsky, B.; Vineyard, M. F.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhao, B.; Zhao, Z. W.

    2012-03-01

    The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the Σ*+(1385) from the reaction γp→K0Σ*+(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and Σ* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the measured decay widths ratio Σ+(1385)→Σ+γ/Σ+(1385)→Σ+π0=11.95±2.21(stat)-1.21+0.53(sys)% and a deduced partial width of 250.0±56.9(stat)-41.2+34.3(sys)keV. A U-spin symmetry test using the SU(3) flavor-multiplet representation yields predictions for the Σ*+(1385)→Σ+γ and Σ*0(1385)→Λγ partial widths that agree with the experimental measurements.

  4. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  5. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  6. Rapid synthesis of maleimide functionalized fluorine-18 labeled prosthetic group using "radio-fluorination on the Sep-Pak" method.

    PubMed

    Basuli, Falguni; Zhang, Xiang; Jagoda, Elaine M; Choyke, Peter L; Swenson, Rolf E

    2018-06-30

    Following our recently published fluorine-18 labeling method, "Radio-fluorination on the Sep-Pak", we have successfully synthesized 6-[ 18 F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t-butanol) of its quaternary ammonium salt precursor, 6-(N,N,N-trimethylamino)nicotinaldehyde trifluoromethanesulfonate (2), through a fluorine-18 containing anion exchange cartridge (PS-HCO 3 ). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [ 18 F]fluoronicotinaldehyde ([ 18 F]5) was then conjugated with 1-(6-(aminooxy)hexyl)-1H-pyrrole-2,5-dione to prepare the fluorine-18 labeled maleimide functionalized prosthetic group, 6-[ 18 F]fluoronicotinaldehyde O-(6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl) oxime, 6-[ 18 F]FPyMHO ([ 18 F]6). The current Sep-Pak method not only improves the overall radiochemical yield (50 ± 9%, decay-corrected, n = 9) but also significantly reduces the synthesis time (from 60-90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  7. Branching Fraction Measurements of the Color-Suppressed Decays B0bar to D(*)0 pi0, D(*)0 eta, D(*)0 omega, and D(*)0 eta_prime and Measurement of the Polarization in the Decay B0bar to D*0 omega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.; Poireau, V.; Tisserand, V.

    2012-02-14

    We report updated branching fraction measurements of the color-suppressed decays {bar B}{sup 0} {yields} D{sup 0}{pi}{sup 0}, D*{sup 0}{pi}{sup 0}, D{sup 0}{eta}, D*{sup 0}{eta}, D{sup 0}{omega}, D*{sup 0}{omega}, D{sup 0}{eta}', and D*{sup 0}{eta}'. We measure the branching fractions (x10{sup -4}): {Beta}({bar B}{sup 0} {yields} D{sup 0}{pi}{sup 0}) = 2.69 {+-} 0.09 {+-} 0.13, {Beta}({bar B}{sup 0} {yields} D*{sup 0}{pi}{sup 0}) = 3.05 {+-} 0.14 {+-} 0.28, {Beta}({bar B}{sup 0} {yields} D{sup 0}{eta}) = 2.53 {+-} 0.09 {+-} 0.11, {Beta}({bar B}{sup 0} {yields} D*{sup 0}{eta}) = 2.69 {+-} 0.14 {+-} 0.23, {Beta}({bar B}{sup 0} {yields} D{sup 0}{omega}) = 2.57 {+-} 0.11more » {+-} 0.14, {Beta}({bar B}{sup 0} {yields} D*{sup 0}{omega}) = 4.55 {+-} 0.24 {+-} 0.39, {Beta}({bar B}{sup 0} {yields} D{sup 0}{eta}') = 1.48 {+-} 0.13 {+-} 0.07, and {Beta}({bar B}{sup 0} {yields} D*{sup 0}{eta}') = 1.49 {+-} 0.22 {+-} 0.15. We also present the first measurement of the longitudinal polarization fraction of the decay channel D*{sup 0}{omega}, f{sub L} = (66.5 {+-} 4.7 {+-} 1.5)%. In the above, the first uncertainty is statistical and the second is systematic. The results are based on a sample of (454 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the {Upsilon}(4S) resonance, with the BABAR detector at the PEP-II storage rings at SLAC. The measurements are the most precise determinations of these quantities from a single experiment. They are compared to theoretical predictions obtained by factorization, Soft Collinear Effective Theory (SCET) and perturbative QCD (pQCD). We find that the presence of final state interactions is favored and the measurements are in better agreement with SCET than with pQCD.« less

  8. Reaction of maturity group V soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    In 2009, Soybean Phomopsis seed decay (PSD) caused over 12 million bushels of yield loss in 16 southern states. This disease severely affects soybean seed quality due to the reduction of seed viability, oil content, and alteration of seed composition, and it may also increase moldy and/or split seed...

  9. 18F-Fluorosulfate for PET Imaging of the Sodium-Iodide Symporter: Synthesis and Biologic Evaluation In Vitro and In Vivo.

    PubMed

    Khoshnevisan, Alex; Chuamsaamarkkee, Krisanat; Boudjemeline, Mehdi; Jackson, Alex; Smith, Gareth E; Gee, Antony D; Fruhwirth, Gilbert O; Blower, Philip J

    2017-01-01

    Anion transport by the human sodium-iodide symporter (hNIS) is an established target for molecular imaging and radionuclide therapy. Current radiotracers for PET of hNIS expression are limited to 124 I - and 18 F-BF 4 - We sought new 18 F-labeled hNIS substrates offering higher specific activity, higher affinity, and simpler radiochemical synthesis than 18 F-BF 4 - METHODS: The ability of a range of anions, some containing fluorine, to block 99m TcO 4 - uptake in hNIS-expressing cells was measured. SO 3 F - emerged as a promising candidate. 18 F-SO 3 F - was synthesized by reaction of 18 F - with SO 3 -pyridine complex in MeCN and purified using alumina and quaternary methyl ammonium solid-phase extraction cartridges. Chemical and radiochemical purity and serum stability were determined by radiochromatography. Radiotracer uptake and efflux in hNIS-transduced HCT116-C19 cells and the hNIS-negative parent cell line were evaluated in vitro in the presence and absence of a known competitive inhibitor (NaClO 4 ). PET/CT imaging and ex vivo biodistribution measurement were conducted on BALB/c mice, with and without NaClO 4 inhibition. Fluorosulfate was identified as a potent inhibitor of 99m TcO 4 - uptake via hNIS in vitro (half-maximal inhibitory concentration, 0.55-0.56 μM (in comparison with 0.29-4.5 μM for BF 4 - , 0.07 μM for TcO 4 - , and 2.7-4.7 μM for I - ). Radiolabeling to produce 18 F-SO 3 F - was simple and afforded high radiochemical purity suitable for biologic evaluation (radiochemical purity > 95%, decay-corrected radiochemical yield = 31.6%, specific activity ≥ 48.5 GBq/μmol). Specific, blockable hNIS-mediated uptake in HCT116-C19 cells was observed in vitro, and PET/CT imaging of normal mice showed uptake in thyroid, salivary glands (percentage injected dose/g at 30 min, 563 ± 140 and 32 ± 9, respectively), and stomach (percentage injected dose/g at 90 min, 68 ± 21). Fluorosulfate is a high-affinity hNIS substrate. 18 F-SO 3 F - is easily

  10. Light Meson Decays at BESIII

    NASA Astrophysics Data System (ADS)

    Fang, Shuangshi

    2017-04-01

    At present the world's largest sample of 1.3 billion J/ψ events was accumulated at the BESIII detector, which offers a unique place to study light meson decays. The recent results on the light meson decays are reviewed in this talk. An emphasis is put on the significant progresses on the study of η/η' decays, including Dalitz plot analysis of η/η' → πππ, observation of new decay modes (η' → π+π-π+(0)π-(0), η' → ρ±π∓, η' → γe+e- and η' → e+e-ω), study of η' → γπ+π- and search for the rare decay of η' → Kπ. In addition, a prospect on the Dalitz plot analysis of ω → π+π-π0 is presented.

  11. Search for the lepton-flavour violating decays B ( s) 0 → e ± μ ∓

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2018-03-01

    A search for the lepton-flavour violating decays B s 0 → e ± μ ∓ and B 0 → e ± μ ∓ is performed based on a sample of proton-proton collision data corresponding to an integrated luminosity of 3 fb-1, collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The observed yields are consistent with the background-only hypothesis. Upper limits on the branching fraction of the B s 0 → e ± μ ∓ decays are evaluated both in the hypotheses of an amplitude completely dominated by the heavy eigenstate and by the light eigenstate. The results are @/@B({B}_s^0\\to {e}^{± }{μ}^{∓})<6.3(5.4)× 1{0}^{-9} and @/@B({B}_s^0\\to {e}^{± }{μ}^{∓})<7.2(6.0)× 1{0}^{-9} at 95% (90%) confidence level, respectively. The upper limit on the branching fraction of the B 0 → e ± μ ∓ decay is also evaluated, obtaining @/@B({B}^0\\to {e}^{± }{μ}^{∓})<1.3(1.0)× 1{0}^{-9} at 95% (90%) confidence level. These are the strongest limits on these decays to date. [Figure not available: see fulltext.

  12. Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging

    NASA Astrophysics Data System (ADS)

    Bathurst, James; Iroume, Andres

    2014-05-01

    While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions

  13. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Shirai, Junpei

    Double beta decay is a key process to reveal a fundamental property of neutrinos. If neutrinos are Majorana particles, that is they are equivalent to their antiparticles, neutrinoless double beta (0νββ) decay, (A,Z) → (A,Z + 2) + 2e‑, would occur. The process is beyond the standard model and would lead to a scenario which can explain the extremely small masses of neutrinos and provide a solution to the current matter dominance of the world. In this talk experimental efforts searching for 0νββ decays are presented. Then, major 0νββ experiments together with searches using 136Xe nuclei are described, followed by the current status of the KamLAND-Zen experiment.

  14. Radiochemical analyses of surface water from U.S. Geological Survey hydrologic bench-mark stations

    USGS Publications Warehouse

    Janzer, V.J.; Saindon, L.G.

    1972-01-01

    The U.S. Geological Survey's program for collecting and analyzing surface-water samples for radiochemical constituents at hydrologic bench-mark stations is described. Analytical methods used during the study are described briefly and data obtained from 55 of the network stations in the United States during the period from 1967 to 1971 are given in tabular form.Concentration values are reported for dissolved uranium, radium, gross alpha and gross beta radioactivity. Values are also given for suspended gross alpha radioactivity in terms of natural uranium. Suspended gross beta radioactivity is expressed both as the equilibrium mixture of strontium-90/yttrium-90 and as cesium-137.Other physical parameters reported which describe the samples include the concentrations of dissolved and suspended solids, the water temperature and stream discharge at the time of the sample collection.

  15. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  16. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  17. Protecting log cabins from decay

    Treesearch

    R. M. Rowell; J. M. Black; L. R. Gjovik; W. C. Feist

    1977-01-01

    This report answers the questions most often asked of the Forest Service on the protection of log cabins from decay, and on practices for the exterior finishing and maintenance of existing cabins. Causes of stain and decay are discussed, as are some basic techniques for building a cabin that will minimize decay. Selection and handling of logs, their preservative...

  18. Dental Caries (Tooth Decay)

    MedlinePlus

    ... Materials Contact Us Home Research Data & Statistics Share Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  19. DECAY OF INCORPORATED RADIOACTIVE PHOSPHORUS DURING REPRODUCTION OF BACTERIOPHAGE T2

    PubMed Central

    Stent, Gunther S.

    1955-01-01

    The multiplication of vegetative T2 bacteriophage in B/r bacteria has been followed by studying the lethal effects of decay of incorporated radiophosphorus P32 at various stages of the eclipse period. Experiment I. Non-radioactive B/r bacteria were infected with highly radioactive (i.e. P32-unstable) T2 and infection allowed to proceed at 37°C. for various numbers of minutes before freezing the infected cells and storing them in liquid nitrogen. The longer development had been allowed to proceed at 37°C. before freezing, the slower the inactivation of the frozen infective centers by P32 decay. Samples which were frozen after incubation for 9 minutes were completely stable. Experiment II. Radioactive B/r bacteria in radioactive growth medium were infected with non-radioactive (i.e. stable) T2 and incubated for various lengths of time before being frozen and stored in liquid nitrogen, like those of Experiment I. In this case, the infective centers were stable to P32 decay as long as they were frozen before the end of the eclipse period. The T2 progeny phages issuing from the infected bacteria were P32-unstable. Experiment III. Radioactive B/r bacteria in radioactive medium were infected with radioactive (i.e. P32-unstable) T2 and otherwise incubated and frozen like those of the first two experiments. In this case, the same progressive stabilization, of the infective centers towards inactivation by P32 decay was observed as that found in Experiment I. The ability to yield infective progeny of infected bacteria incubated for 10 minutes at 37°C. before freezing could no longer be destroyed by P32 decay. The progeny issuing from the infected cells were as unstable as the parental phage. These results could be explained by one of three general hypotheses. As vegetative phage begins to multiply, it is possible that: (a) there is a high probability that any part of the vegetative phage already duplicated can be saved after its destruction by P32 decay through a process

  20. Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data

    NASA Astrophysics Data System (ADS)

    Henderson, Christopher

    2016-10-01

    The Fisher-KPP equation is a model for population dynamics that has generated a huge amount of interest since its introduction in 1937. The speed with which a population spreads has been computed quite precisely when the initial data, u 0, decays exponentially. More recently, though, the case when the initial data decays more slowly has been studied. In Hamel F and Roques L (2010 J. Differ. Equ. 249 1726-45), the authors show that the level sets of height of m of u move super-linearly and may be bounded above and below by expressions of the form u0-1≤ft({{c}m}{{\\text{e}}-t}\\right) when u 0 decays algebraically of a small enough order. The constants c m for the upper and lower bounds that they obtain are not explicit and do not match. In this paper, we improve their precision for a broader class of initial data and for a broader class of equations. In particular, our approach yields the explicit highest order term in the location of the level sets, which in the most basic setting is given by u0-1≤ft(m{{\\text{e}}-t}/(1-m)\\right) as long as u 0 decays slower than {{\\text{e}}-\\sqrt{x}} . We generalize this to the previously unstudied setting when the nonlinearity is periodic in space. In addition, for large times, we characterize the profile of the solution in terms of a generalized logistic equation.

  1. Flavor violating top decays and flavor violating quark decays of the Higgs boson

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Itani, Ahmad; Nath, Pran; Zorik, Anas

    2017-08-01

    In the Standard Model, flavor violating decays of the top quark and of the Higgs boson are highly suppressed. Further, the flavor violating decays of the top and of the Higgs are also small in MSSM and not observable in current or in near future experiment. In this work, we show that much larger branching ratios for these decays can be achieved in an extended MSSM model with an additional vector-like quark generation. Specifically, we show that in the extended model, one can achieve branching ratios for t → h0c and t → h0u as large as the current experimental upper limits given by the ATLAS and the CMS Collaborations. We also analyze the flavor violating quark decay of the Higgs boson, i.e. h0 → sb¯ + b¯s and h0 → bd¯ + b¯d. Here again, one finds that the branching ratio for these decays can be as large as O(1)%. The analysis is done with inclusion of the CP phases in the Higgs sector, and the effect of CP phases on the branching ratios is investigated. Specifically, the Higgs sector spectrum and mixings are computed involving quarks and mirror quarks, squarks and mirror squarks in the loops consistent with the Higgs boson mass constraint. The resulting effective Lagrangian with inclusion of the vector-like quark generation induce flavor violating decays at the tree level. In the analysis, we also include the experimental constraints from the flavor changing quark decays of the Z boson. The test of the branching ratios predicted could come with further data from LHC13 and such branching ratios could also be accessible at future colliders such as the Higgs factories where the Higgs couplings to fermions will be determined with greater precision.

  2. Measurement of the K- pi+ S-wave system in D+ ---> K- pi+ pi+ decays from Fermilab E791

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, B.; /Cincinnati U.

    A new approach to the analysis of three body decays is presented. Measurements of the S-wave K{pi} amplitude are made in independent ranges of invariant mass from threshold up to the upper kinematic limit in D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +} decays. These are compared with results obtained from a fit where the S-wave is assumed to have {kappa} and K{sub 0}{sup +}(1430) resonances. Results are also compared with measurements of K{sup -} {pi}{sup +} elastic scattering. Contributions from I = 1/2 and I = 3/2 are not resolved in this study. If I = 1/2 dominates, however, themore » Watson theorem prediction, that the phase behavior below K{eta}' threshold should match that in elastic scattering, is not well supported by these data. Production of K{sup -} {pi}{sup +} from these D decays is also studied.« less

  3. Sedimentological and radiochemical characteristics of marsh deposits from Assateague Island and the adjacent vicinity, Maryland and Virginia, following Hurricane Sandy

    USGS Publications Warehouse

    Smith, Christopher G.; Marot, Marci E.; Ellis, Alisha M.; Wheaton, Cathryn J.; Bernier, Julie C.; Adams, C. Scott

    2015-09-15

    This report serves as an archive for sedimentological and radiochemical data derived from the surface sediments and marsh cores collected March 26–April 4, 2014. Select surficial data are available for the additional sampling periods October 21–30, 2014. Downloadable data are available as Excel spreadsheets and as JPEG files. Additional files include: Field documentation, x-radiographs, photographs, detailed results of sediment grain size analyses, and formal Federal Geographic Data Committee metadata (data downloads).

  4. First measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Maki, T.; Mehtala, P.

    2009-02-01

    This article presents the first measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -}). Measurements in two control samples using the same technique B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}) and B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb{sup -1} of pp collisions at {radical}(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be (B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{supmore » +}{pi}{sup -}))=16.6{+-}3.0(stat){+-}1.0(syst)(+2.6/-3.4)(PDG){+-}0.3 (EBR), (B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}))9.9{+-}1.0(stat){+-}0.6(syst){+-}0.4(PDG){+-}0.5(EBR), and (B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}))=16.5{+-}2.3(stat){+-} 0.6(syst){+-}0.5(PDG){+-}0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new {lambda}{sub b}{sup 0} semileptonic decays: {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2595){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2625){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup 0}{pi}{sup +}{mu}{sup -}{nu}{sub {mu}}, and {lambda}{sub b}{sup 0}{yields}{sigma}{sub c

  5. Superallowed nuclear beta decay: Precision measurements for basic physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separatemore » superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.« less

  6. The Decay Data Evaluation Project (DDEP) and the JEFF-3.3 radioactive decay data library: Combining international collaborative efforts on evaluated decay data

    NASA Astrophysics Data System (ADS)

    Kellett, Mark A.; Bersillon, Olivier

    2017-09-01

    The Decay Data Evaluation Project (DDEP), is an international collaboration of decay data evaluators formed with groups from France, Germany, USA, China, Romania, Russia, Spain and the UK, mainly from the metrology community. DDEP members have evaluated over 220 radionuclides, following an agreed upon methodology, including a peer review. Evaluations include all relevant parameters relating to the nuclear decay and the associated atomic processes. An important output of these evaluations are recommendations for new measurements, which can serve as a basis for future measurement programmes. Recently evaluated radionuclides include: 18F, 59Fe, 82Rb, 82Sr, 88Y, 90Y, 89Zr, 94mTc, 109Cd, 133Ba, 140Ba, 140La, 151Sm and 169Er. The DDEP recommended data have recently been incorporated into the JEFF-3.3 Radioactive Decay Data Library. Other sources of nuclear data include 900 or so radionuclides converted from the Evaluated Nuclear Structure Data File (ENSDF), 500 from two UK libraries (UKPADD6.12 and UKHEDD2.6), the IAEA Actinide Decay Data Library, with the remainder converted from the NUBASE evaluation of nuclear properties. Mean decay energies for a number of radionuclides determined from total absorption gamma-ray spectroscopy (TAGS) have also been included, as well as more recent European results from TAGS measurements performed at the University of Jyväskylä by groups from the University of Valencia, Spain and SUBATECH, the University of Nantes, France. The current status of the DDEP collaboration and the JEFF Radioactive Decay Data Library will be presented. Note to the reader: the pdf file has been changed on September 22, 2017.

  7. Primordial monopoles, proton decay, gravity waves and GUT inflation

    DOE PAGES

    Şenoğuz, Vedat Nefer; Shafi, Qaisar

    2015-11-18

    Here, we consider non-supersymmetric GUT inflation models in which intermediate mass monopoles may survive inflation because of the restricted number of e-foldings experienced by the accompanying symmetry breaking. Thus, an observable flux of primordial magnetic monopoles, comparable to or a few orders below the Parker limitmay be present in the galaxy. The mass scale associated with the intermediate symmetry breaking is 10 13 GeVfor an observable flux level, with the corresponding monopoles an order of magnitude or so heavier. Examples based on SO(10)and E 6 yield such intermediate mass monopoles carrying respectively two and three units of Dirac magnetic charge.more » For GUT inflation driven by a gauge singlet scalar field with a Coleman–Weinberg or Higgs potential, compatibility with the Planck measurement of the scalar spectral index yields a Hubble constant (during horizon exit of cosmological scales) H~7–9 ×10 13 GeV, with the tensor to scalar ratio rpredicted to be ≳0.02. Proton lifetime estimates for decays mediated by the superheavy gauge bosons are also provided.« less

  8. Determination of the S-Wave Pi Pi Scattering Lengths From a Study of K - to Pi - Pi0 Pi0 Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batley, J.R.; Culling, A.J.; Kalmus, G.

    We report the results from a study of the full sample of {approx}6.031 x 10{sup 7} K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} decays recorded by the NA48/2 experiment at the CERN SPS. As first observed in this experiment, the {pi}{sup 0}{pi}{sup 0} invariant mass (M{sub 00}) distribution shows a cusp-like anomaly in the region around M{sub 00} = 2m{sub +}, where m{sub +} is the charged pion mass. This anomaly has been interpreted as an effect due mainly to the final state charge exchange scattering process {pi}{sup +}{pi}{sup -} {yields} {pi}{sup 0}{pi}{sup 0} in K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{supmore » +}{pi}{sup -} decay. Fits to the M{sub 00} distribution using two different theoretical formulations provide the presently most precise determination of a{sub 0} - a{sub 2}, the difference between the {pi}{pi} S-wave scattering lengths in the isospin I = 0 and I = 2 states. Higher-order {pi}{pi} rescattering terms, included in the two formulations, allow also an independent, though less precise, determination of a{sub 2}.« less

  9. Spontaneous fission of the end product in α-decay chain of recoiled superheavy nucleus: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    The temperature-dependent preformed cluster model [PCM(T)] is employed to extend our recent work [Niyti, G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 91 (2015) 054606] on α-decay chains of various isotopes of Z = 113-118 superheavy nuclei (SHN), to spontaneous fissioning nuclei 103266Lr, 104267Rf, 105266‑268Db, 111281Rg, and 112282Cn occurring as end products of these α-decay chains. The behavior of fragment mass distribution and competitive emergence of the dominant decay mode, i.e., the α-emission versus spontaneous fission (SF), are studied for identifying the most probable heavy fission fragments, along with the estimation of SF half-life times T1/2SF and total kinetic energy (TKE) of the above noted isotopes of Z = 103-112 nuclei decaying via the SF process. The mass distributions of chosen nuclei are clearly symmetric, independent of mass and temperature. The most preferred decay fragment is found to lie in the neighborhood of doubly magic shell closures of Z = 50 and N = 82, with largest preformation factor P0. In addition, a comparative study of the “hot compact” and “cold elongated” configurations of β2i-deformed and 𝜃iopt-oriented nuclei indicates significantly different behaviors of the two mass fragmentation yields, favoring “hot compact” configuration.

  10. Regulation of cytoplasmic mRNA decay

    PubMed Central

    Schoenberg, Daniel R.; Maquat, Lynne E.

    2012-01-01

    Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217

  11. Weak decays and double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, H.W.

    1983-08-01

    Work to measure the ..sigma../sup +/ 0 degree differential cross section in the reaction K/sup -/p ..-->.. ..sigma../sup +/..pi../sup -/ at several incident K/sup -/ momenta between 600 and 800 MeV/c as well as the asymmetries in the decays of polarized ..sigma../sup +/'s into protons and neutral pions and of polarized ..sigma../sup -/'s into neutrons and negative pions in collaboration with experimenters from Yale, Brookhaven, and the University of Pittsburgh (Brookhaven experiment 702) has been completed. Data from this experiment is currently being analyzed at Yale. Work is currently underway to develop and construct an experiment to search for neutrinolessmore » double beta decay in thin foils of Mo/sup 100/ in collaboration with experimenters from Lawrence Berkeley Laboratory. Development work on the solid state silicon detectors should be complete in the next six months and construction should e well underway within the next year.« less

  12. Photon transitions in {psi}(2S) decays to {chi}{sub cJ}(1P) and {eta}{sub c}(1S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athar, S.B.; Avery, P.; Breva-Newell, L.

    2004-12-01

    We have studied the inclusive photon spectrum in {psi}(2S) decays using the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates for {psi}(2S){yields}{gamma}{chi}{sub cJ}(1P) (J=0,1,2). We also confirm the hindered magnetic dipole (M1) transition, {psi}(2S){yields}{gamma}{eta}{sub c}(1S). However, the direct M1 transition {psi}(2S){yields}{gamma}{eta}{sub c}(2S) observed by the Crystal Ball as a narrow peak at a photon energy of 91 MeV is not found in our data.

  13. Radiostrontium accumulation in animal bones: development of a radiochemical method by ultra low-level liquid scintillation counting for its quantification.

    PubMed

    Iammarino, Marco; Dell'Oro, Daniela; Bortone, Nicola; Mangiacotti, Michele; Chiaravalle, Antonio Eugenio

    2018-03-31

    Strontium-90 (90Sr) is a fission product, resulting from the use of uranium and plutonium in nuclear reactors and weapons. Consequently, it may be found in the environment as a consequence of nuclear fallouts, nuclear weapon testing, and not correct waste management. When present in the environment, strontium-90 may be taken into animal body by drinking water, eating food, or breathing air. The primary health effects are bone tumors and tumors of the blood-cell forming organs, due to beta particles emitted by both 90Sr and yttrium-90 (90Y). Moreover, another health concern is represented by inhibition of calcification and bone deformities in animals. Actually, radiometric methods for the determination of 90Sr in animal bones are lacking. This article describers a radiochemical method for the determination of 90Sr in animal bones, by ultra low-level liquid scintillation counting. The method precision and trueness have been demonstrated through validation tests (CV% = 12.4%; mean recovery = 98.4%). Detection limit and decision threshold corresponding to 8 and 3 mBecquerel (Bq) kg-1, respectively, represent another strong point of this analytical procedure. This new radiochemical method permits the selective extraction of 90Sr, without interferences, and it is suitable for radiocontamination surveillance programs, and it is also an improvement with respect to food safety controls.

  14. The processing of enriched germanium for the Majorana Demonstrator and R&D for a next generation double-beta decay experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.

    The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less

  15. The processing of enriched germanium for the Majorana Demonstrator and R&D for a next generation double-beta decay experiment

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...

    2017-10-07

    The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less

  16. The processing of enriched germanium for the MAJORANA DEMONSTRATOR and R&D for a next generation double-beta decay experiment

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

  17. Rare decays at the LHCb experiment

    NASA Astrophysics Data System (ADS)

    Lanfranchi, G.

    2015-01-01

    Rare flavour-changing neutral-current (FCNC) decays of beauty and charm quarks, lepton flavour- and lepton-number-violating decays can provide a powerful probe for as yet unobserved virtual particles. Recent results on these topics from the LHCb experiment are reviewed. Particular attention is paid to the angular distribution of the B^0 → K^{*0}μ^+μ^- decay, where a measurement performed by LHCb shows a local discrepancy of 3.7 standard deviations with respect to the SM prediction. Using the decay B+ → K+ π+π- γ , LHCb have also been able to demonstrate the polarisation of photons produced in b → s transitions. An update for the studies dedicated to decays τ+ → μ+ μ- μ+ and B^0_{(s)} → μ^{±} e^{∓} and to the on-shell Majorana neutrinos coupling to muons in the B+ → π- μ+ μ+ decay channel are also presented.

  18. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  19. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  20. Fallout from Nuclear Cratering Shot DANNY BOY. I. Radiochemical Analysis and Some Physical Observations on Selected Samples

    DTIC Science & Technology

    1980-02-01

    radiochemical procedures described in Appendix A. All results were reported in terms of the number of u035 thermal- neutron fissions which would have produced...Ca, Mg, Al, Si, and Fe, expressed both as elements and as oxides . The last column shows the sum of the oxides . The deviation of t~pse values from 100...4.4 Cs13 6 12.9 0.0537 0.006 9.71 y 10’ 7.14 y i0ř 5.9 Ba140 12.79 0.0542 6.3 Ce 3.5 0.0213 6.0 6Ce 52 o.OQ h 6 6.1 a. For ther-a!- neutron fission

  1. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  2. Combined radiochemical procedure for determination of plutonium, americium and strontium-90 in the soil samples from SNTS

    NASA Astrophysics Data System (ADS)

    Kazachevskii, I. V.; Lukashenko, S. N.; Chumikov, G. N.; Chakrova, E. T.; Smirin, L. N.; Solodukhin, V. P.; Khayekber, S.; Berdinova, N. M.; Ryazanova, L. A.; Bannyh, V. I.; Muratova, V. M.

    1999-01-01

    The results of combined radiochemical procedure for the determination of plutonium, americium and90Sr (via measurement of90Y) in the soil samples from SNTS are presented. The processes of co-precipitation of these nuclides with calcium fluoride in the strong acid solutions have been investigated. The conditions for simultaneous separation of americium and yttrium using extraction chromatography have been studied. It follows from analyses of real soil samples that the procedure developed provides the chemical recovery of plutonium and yttrium in the range of 50-95% and 60-95%, respectively. The execution of the procedure requires 3.5 working days including a sample decomposition study.

  3. Radiochemistry and the Study of Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less

  4. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm

    NASA Astrophysics Data System (ADS)

    Kidd, M. F.; Esterline, J. H.; Finch, S. W.; Tornow, W.

    2014-11-01

    Background: Double-β decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron antineutrinos. Purpose: We measured the half-life of the two-neutrino double-β decay of 150Nd to excited final states of 150Sm by detecting the deexcitation γ rays of the daughter nucleus. Method: This study yields the first detection of the coincidence γ rays from the 0 1+ excited state of 150Sm. These γ rays have energies of 333.97 and 406.52 keV and are emitted in coincidence through a 01+→21+→0gs+ transition. Results: The enriched Nd2O3 sample consisted of 40.13 g 150Nd and was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half-life of T1 /2=[1 .07-0.25+0.45(stat ) ±0.07 (syst ) ] ×1020 yr. The effective nuclear matrix element was found to be 0.0465 -0.0054+0.0098. Finally, lower limits were obtained for decays to higher excited final states. Conclusions: Our half-life measurement agrees within uncertainties with another recent measurement in which no coincidence was employed. Our nuclear matrix element calculation may have an impact on a recent neutrinoless double-β decay nuclear matrix element calculation which implies that the decay to the first excited state in 150Sm is favored over that to the ground state.

  5. Decayed and missing teeth and oral-health-related factors: predicting depression in homeless people.

    PubMed

    Coles, Emma; Chan, Karen; Collins, Jennifer; Humphris, Gerry M; Richards, Derek; Williams, Brian; Freeman, Ruth

    2011-08-01

    The objective of the study was to determine the effect of dental health status, dental anxiety and oral-health-related quality of life (OHRQoL) upon homeless people's experience of depression. A cross-sectional survey was conducted on a sample of homeless people in seven National Health Service Boards in Scotland. All participants completed a questionnaire to assess their depression, dental anxiety and OHRQoL using reliable and valid measures. Participants had an oral examination to assess their experience of tooth decay (decayed and missing teeth). Latent variable path analysis was conducted to determine the effects of dental health status on depression via dental anxiety and OHRQoL using intensive resampling methods. A total of 853 homeless people participated, of which 70% yielded complete data sets. Three latent variables, decayed and missing teeth, dental anxiety (Modified Dental Anxiety Scale: five items) and depression (Center for Epidemiological Studies Depression Scale: two factors), and a single variable for OHRQoL (Oral Health Impact Profile total scale) were used in a hybrid structural equation model. The variable decayed and missing teeth was associated with depression through indirect pathways (total standardised indirect effects=0.44, P<.001), via OHRQoL and dental anxiety (χ²=75.90, df=40, comparative fit index=0.985, Tucker-Lewis index=0.977, root mean square error of approximation=0.051 [90% confidence interval: 0.037-0.065]). Depression in Scottish homeless people is related to dental health status and oral-health-related factors. Decayed and missing teeth may influence depression primarily through the psychological constructs of OHRQoL and, to a lesser extent, dental anxiety. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment.

    PubMed

    Agostini, M; Allardt, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Barnabé Heider, M; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Janicskó Csáthy, J; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-09-20

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

  7. Dark decay of the top quark

    DOE PAGES

    Kong, Kyoungchul; Lee, Hye -Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 σ deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t → b W + Z's. This is the same as the dominant topmore » quark decay (t → b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. In addition, we discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.« less

  8. Complex Degradation Processes Lead to Non-Exponential Decay Patterns and Age-Dependent Decay Rates of Messenger RNA

    PubMed Central

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-01-01

    Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982

  9. Flavor violating Higgs decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; Kopp, Joachim; Zupan, Jure

    2013-03-01

    We study a class of nonstandard interactions of the newly discovered 125 GeV Higgs-like resonance that are especially interesting probes of new physics: flavor violating Higgs couplings to leptons and quarks. These interaction can arise in many frameworks of new physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness. We rederive constraints on flavor violating Higgs couplings using data on rare decays, electric and magnetic dipole moments, and meson oscillations. We confirm that flavor violating Higgs boson decays to leptons can be sizeable with, e.g., h → τμ and h → τemore » branching ratios of (10%) perfectly allowed by low energy constraints. We estimate the current LHC limits on h → τμ and h → τe decays by recasting existing searches for the SM Higgs in the ττ channel and find that these bounds are already stronger than those from rare tau decays. We also show that these limits can be improved significantly with dedicated searches and we outline a possible search strategy. Flavor violating Higgs decays therefore present an opportunity for discovery of new physics which in some cases may be easier to access experimentally than flavor conserving deviations from the Standard Model Higgs framework.« less

  10. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or...

  11. Searching for displaced Higgs boson decays

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator; Slone, Oren

    2015-10-01

    We study a simplified model of the Standard Model (SM) Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs boson decays below 10 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at √{s }=13 TeV . With 20 fb-1 of data, we find that Higgs branching ratios down to 2 ×1 0-4 can be probed for centimeter decay lengths.

  12. Ultrafast Molecular Three-Electron Auger Decay.

    PubMed

    Feifel, Raimund; Eland, John H D; Squibb, Richard J; Mucke, Melanie; Zagorodskikh, Sergey; Linusson, Per; Tarantelli, Francesco; Kolorenč, Přemysl; Averbukh, Vitali

    2016-02-19

    Three-electron Auger decay is an exotic and elusive process, in which two outer-shell electrons simultaneously refill an inner-shell double vacancy with emission of a single Auger electron. Such transitions are forbidden by the many-electron selection rules, normally making their decay lifetimes orders of magnitude longer than the few-femtosecond lifetimes of normal (two-electron) Auger decay. Here we present theoretical predictions and direct experimental evidence for a few-femtosecond three-electron Auger decay of a double inner-valence-hole state in CH_{3}F. Our analysis shows that in contrast to double core holes, double inner-valence vacancies in molecules can decay exclusively by this ultrafast three-electron Auger process, and we predict that this phenomenon occurs widely.

  13. Searches for Lepton Flavor Violation in the Decays τ±→e±γ and τ±→μ±γ

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; D'Orazio, A.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Nguyen, X.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C. D.; Locke, C. B.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.; BaBar Collaboration

    2010-01-01

    Searches for lepton-flavor-violating decays of a τ lepton to a lighter mass lepton and a photon have been performed with the entire data set of (963±7)×106τ decays collected by the BABAR detector near the Υ(4S), Υ(3S) and Υ(2S) resonances. The searches yield no evidence of signals and we set upper limits on the branching fractions of B(τ±→e±γ)<3.3×10-8 and B(τ±→μ±γ)<4.4×10-8 at 90% confidence level.

  14. Measurements of {Gamma}(Z{sup O} {yields} b{bar b})/{Gamma}(Z{sup O} {yields} hadrons) using the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, H.A. Jr. II

    1995-07-01

    The quantity R{sub b} = {Gamma}(Z{sup o} {yields}b{bar b})/{Gamma}(Z{sup o} {yields} hadrons) is a sensitive measure of corrections to the Zbb vertex. The precision necessary to observe the top quark mass dependent corrections is close to being achieved. LEP is already observing a 1.8{sigma} deviation from the Standard Model prediction. Knowledge of the top quark mass combined with the observation of deviations from the Standard Model prediction would indicate new physics. Models which include charged Higgs or light SUSY particles yield predictions for R{sub b} appreciably different from the Standard Model. In this thesis two independent methods are used tomore » measure R{sub b}. One uses a general event tag which determines R{sub b} from the rate at which events are tagged as Z{sup o} {yields} b{bar b} in data and the estimated rates at which various flavors of events are tagged from the Monte Carlo. The second method reduces the reliance on the Monte Carlo by separately tagging each hemisphere as containing a b-decay. The rates of single hemisphere tagged events and both hemisphere tagged events are used to determine the tagging efficiency for b-quarks directly from the data thus eliminating the main sources of systematic error present in the event tag. Both measurements take advantage of the unique environment provided by the SLAC Linear Collider (SLC) and the SLAC Large Detector (SLD). From the event tag a result of R{sub b} = 0.230{plus_minus}0.004{sub statistical}{plus_minus}0.013{sub systematic} is obtained. The higher precision hemisphere tag result obtained is R{sub b} = 0.218{plus_minus}0.004{sub statistical}{plus_minus}0.004{sub systematic}{plus_minus}0.003{sub Rc}.« less

  15. Detection and Assessment of Wood Decay in Glulam Beams Using a Decay Rate Approach: A Review

    Treesearch

    C. Adam Senalik

    2013-01-01

    A glulam beam is subjected to X-ray computer tomography and acousto-ultrasonic measurements to detect and assess wood decay. A glulam beam without visible indications of wood decay was taken from field use. A modified impulse-echo technique is employed as an inspection method requiring access to only one side of the beam. It is observed that decay-rate analysis of the...

  16. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  17. Progress on the chemical separation of fission fragments from 236Np produced by proton irradiation of natural uranium target

    NASA Astrophysics Data System (ADS)

    Larijani, C.; Jerome, S. M.; Lorusso, G.; Ivanov, P.; Russell, B.; Pearce, A. K.; Regan, P. H.

    2017-11-01

    The aim of the current work is to develop and validate a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. A target containing 1.2 g of UO2 was irradiated with a beam of 25 MeV protons with a typical beam current of 30 μA for 19 h in December 2013 at the University of Birmingham Cyclotron facility. Using literature values for the production cross-section for fusion of protons with uranium targets, we estimate that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution α particle and γ-ray spectrometry.

  18. Chapter 3: Wood Decay

    Treesearch

    Dan Cullen

    2014-01-01

    A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...

  19. Probing the N˜Z line via β decay

    NASA Astrophysics Data System (ADS)

    Oinonen, Markku

    1999-11-01

    This contribution reports several beta-decay studies performed at ISOLDE On-line Mass Separator at CERN recently for nuclei close to N=Z line. Beta decay of 58Zn provides a possibility to compare Gamow-Teller strength extracted from complementary beta-decay studies and charge-exchange reactions. Measurement on beta-decay half-life of 70Kr shows importance of experimental information in modelling the path of the astrophysical rp process. Decay of 71Kr is an example of a mirror beta decay and extends the systematics of these particular decays towards highly deformed region close to A=80.

  20. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  1. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  2. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. Bartholomay; L. M. Williams; L. J. Campbell

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected andmore » analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.« less

  3. Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    NASA Astrophysics Data System (ADS)

    Gajos, A.; Kamińska, D.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Słomski, A.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-05-01

    This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.

  4. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means any soft breakdown of the flesh or skin of the berry resulting from bacterial or fungus infection...

  5. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means any soft breakdown of the flesh or skin of the berry resulting from bacterial or fungus infection...

  6. Search for the Higgs Boson in the H{yields}WW{yields}l{nu}jj Decay Channel in pp Collisions at {radical}(s)=7 TeV with the ATLAS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Ahles, F.; Beckingham, M.

    2011-12-02

    A search for a Higgs boson has been performed in the H{yields}WW{yields}l{nu}jj channel in 1.04 fb{sup -1} of pp collision data at {radical}(s)=7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 240 GeVyields}WW production is 3.1 pb, or 2.7 times the standard modelmore » prediction.« less

  7. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  8. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means any soft breakdown of the flesh or skin of the berry resulting from...

  9. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means any soft breakdown of the flesh or skin of the berry resulting from...

  10. A variety of characteristic behaviour of resonant KL23L23 Auger decays following Si K-shell photoexcitation of SiCl4

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.

    2013-04-01

    Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.

  11. Stick slip, charge separation and decay

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.

    1986-01-01

    Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested. ?? 1986 Birka??user Verlag.

  12. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Arnold, E-mail: aburger@fisk.edu; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235; Rowe, Emmanuel

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent lightmore » yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.« less

  13. A dispersive treatment of decays

    NASA Astrophysics Data System (ADS)

    Stoffer, Peter; Colangelo, Gilberto; Passemar, Emilie

    2017-01-01

    decays have several features of interest: they allow an accurate measurement of ππ-scattering lengths; the decay is the best source for the determination of some low-energy constants of chiral perturbation theory (χPT) one form factor of the decay is connected to the chiral anomaly. We present the results of our dispersive analysis of decays, which provides a resummation of ππ- and Kπ-rescattering effects. The free parameters of the dispersion relation are fitted to the data of the high-statistics experiments E865 and NA48/2. By matching to χPT at NLO and NNLO, we determine the low-energy constants and . In contrast to a pure chiral treatment, the dispersion relation describes the observed curvature of one of the form factors, which we understand as an effect of rescattering beyond NNLO.

  14. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  15. Radiochemical synthesis of a carbon-supported Pt-SnO2 bicomponent nanostructure exhibiting enhanced catalysis of ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-03-01

    Carbon-supported Pt-SnO2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO2. The contact between the Pt and SnO2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process.

  16. The A=96 system in ββ decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanssari, M.

    2015-10-28

    Properties of the single and double beta decays of {sup 96}Zr are discussed. It is argued that the single beta decay can provide important information to the neutrinoless variant of β β decay, as it provides a test of theories aimed at calculating the nuclear matrix elements (NME) for both decays. An experimental extraction of the NME for the single β decay requires a measurement of the decay Q-value and half-life. It is shown that the present Q-value of the {sup 96}Zr single β decay is insufficiently well known and requires a re-measurement, preferentially using high-precision ion traps. We alsomore » describe the geochemical method to determine the total half-life of {sup 96}Zr, from which to set a limit on the single β -decay half-life at a level of ≈15 × 10{sup 19}yr. Further, the geochemical analysis will allow setting a limit on a rather exotic quadruple β decay of {sup 96}Zr.« less

  17. The processing of enriched germanium for the Majorana   Demonstrator  and R&D for a next generation double-beta decay experiment

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...

    2017-10-07

    The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less

  18. QCD in heavy quark production and decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiss, J.

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effectivemore » Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.« less

  19. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  20. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. Bartholomay; B. V. Twining; L. J. Campbell

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of themore » reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.« less

  1. X(3872) as a hadronic molecule and its decays to charmonium states and pions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yubing; Institute of High Energy Physics, Beijing 100049; Theoretical Physics Center for Science Facilities

    2009-05-01

    The X(3872) with quantum numbers J{sup PC}=1{sup ++} is considered as a composite hadronic state comprised of the dominant molecular D{sup 0}D*{sup 0} component and other hadronic pairs--D{sup {+-}}D*{sup {+-}}, J/{psi}{omega}, and J/{psi}{rho}. Applying the compositeness condition we constrain the couplings of the X(3872) to its constituents. We calculate two- and three-body hadronic decays of the X(3872) to charmonium states {chi}{sub cJ} and pions using a phenomenological Lagrangian approach. Next using the estimated XJ/{psi}{omega} and XJ/{psi}{rho} couplings we calculate the widths of X(3872){yields}J/{psi}+h transitions, where h={pi}{sup +}{pi}{sup -}, {pi}{sup +}{pi}{sup -}{pi}{sup 0}, {pi}{sup 0}{gamma}, and {gamma}. The obtained results formore » the decay pattern of the X(3872) in a molecular interpretation could be useful for running and planned experiments.« less

  2. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement.

    PubMed

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K; Chen, Ying-Pin; McDougald, Roy N; Ivy, Joshua F; Yakovenko, Andrey A; Feng, Dawei; Omary, Mohammad A; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  3. Study of the $${X^\\pm(5568)}$$ state with semileptonic decays of the $${B_s^0}$$ meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, Victor Mukhamedovich; et al.

    2018-05-19

    We present a study of the X±(5568) using semileptonic decays of the Bs0 meson using the full run II integrated luminosity of 10.4  fb-1 in proton-antiproton collisions at a center of mass energy of 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. We report evidence for a narrow structure, X±(5568), in the decay sequence X±(5568)→Bs0π± where Bs0→μ∓Ds±X, Ds±→ϕπ± which is consistent with the previous measurement by the D0 Collaboration in the hadronic decay mode, X±(5568)→Bs0π± where Bs0→J/ψϕ. The mass and width of this state are measured using a combined fit of the hadronic and semileptonic data, yielding m=5566.9-3.1+3.2(stat)-1.2+0.6(syst)  MeV/c2,more » Γ=18.6-6.1+7.9(stat)-3.8+3.5(syst)  MeV/c2 with a significance of 6.7σ.« less

  4. Detailed α -decay study of 180Tl

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2017-11-01

    A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

  5. Tooth Decay

    MedlinePlus

    ... cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole ... or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  6. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  7. Radioactive decay data tables: A handbook of decay data for application to radiation dosimetry and radiological assessments

    NASA Astrophysics Data System (ADS)

    Kocher, D. C.; Smith, J. S.

    Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.

  8. Enhanced tau neutrino appearance through invisible decay

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Giulia; Di Marco, Natalia; Mannarelli, Massimo

    2016-06-01

    The decay of neutrino mass eigenstates leads to a change of the conversion and survival probability of neutrino flavor eigenstates. Exploiting the recent results released by the long-baseline OPERA experiment we perform the statistical investigation of the neutrino invisible decay hypothesis in the νμ→ντ appearance channel. We find that the neutrino decay provides an enhancement of the expected tau appearance signal with respect to the standard oscillation scenario for the long-baseline OPERA experiment. The increase of the νμ→ντ conversion probability by the decay of one of the mass eigenstates is due to a reduction of the "destructive interference" among the different massive neutrino components. Despite data showing a very mild preference for invisible decays with respect to the oscillations only hypothesis, we provide an upper limit for the neutrino decay lifetime in this channel of τ3/m3≳1.3 ×10-13 s /eV at the 90% confidence level.

  9. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution.

    PubMed

    Zhao, Yingying; Yang, Y Jeffrey; Shao, Yu; Neal, Jill; Zhang, Tuqiao

    2018-04-27

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation have been discussed extensively because of their regulatory and operational significance. This study further examines chemical reaction variability in the water quality changes under various hydrodynamic conditions in drinking water distribution. The variations of kinetic constant for overall chlorine decay (k E ) and trihalomethane (THM) formation were determined under stagnant to turbulent flows using three devices of different wall demand and two types of natural organic matters (NOM) in water. The results from the comparative experiments and modeling analyses show the relative importance of wall demand (k w ), DBP-forming chlorine decay (k D ), and other bulk demand (k b ' ) for pipe flows of Re = 0-52500. It is found that chlorine reactivity of virgin NOM is the overriding factor. Secondly, for tap water NOM of lower reactivity, pipe flow properties (Re or u) can significantly affect k E , the THM yield (T), formation potential (Y), and the time to reach the maximum THM concentration (t max ) through their influence on kinetic ratio k D (k b ' +k w ). These observations, corroborating with turbidity variations during experiments, cannot be explained alone by chlorine dispersion to and from the pipe wall. Mass exchanges through deposition and scale detachment, most likely being flow-dependent, may have contributed to the overall chlorine decay and DBP formation rates. Thus for the simultaneous occurrence of chlorine decay and DBP formation, model considerations of NOM reactivity, pipe types (wall demand), flow hydraulics, and their interactions are essential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Direct observation of unimolecular decay of CH 3 CH 2 CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J.

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantlymore » to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)(2)COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K.« less

  11. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2010-10-01

    A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Search for the β decay of 96Zr

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2016-01-01

    96Zr and 48Ca are unique among double-β decay candidate nuclides in that they may also undergo single-β decay. In the case of 96Zr, the single-β decay mode is dominated by the fourth-forbidden β decay with a 119 keV Q value. A search was conducted for the β decay of 96Zr by observing the decay of the daughter 96Nb nucleus. Two coaxial high-purity germanium detectors were used in coincidence to detect the γ-ray cascade produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 days of data with a 17.91 g enriched sample. No counts were seen above background, producing a limit of T1/2 > 2.4 ×1019 year. This is the first experimental search that is able to discern between the β decay and the double-β decay to an excited state of 96Zr.

  13. New bounds on the Cabibbo-Kobayashi-Maskawa matrix from B{yields}K{pi}{pi} Dalitz plot analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuchini, M.; Pierini, M.; Silvestrini, L.

    2006-09-01

    We present a new technique to extract information on the unitarity triangle from the study of B{yields}K{pi}{pi} Dalitz plots. Using the sensitivity of Dalitz analyses to the absolute values and the phases of decay amplitudes and isospin symmetry, we obtain a new constraint on the elements of the CKM matrix. We discuss in detail the role of electroweak penguin contributions and outline future prospects.

  14. Study of CP Violation in Dalitz-Plot Analyses of B-Meson Decays to Three Kaons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindquist, Brian

    The Standard Model (SM) explains CP violation in terms of the CKM matrix. The BABAR experiment was designed mainly to test the CKM model in B decays. B decays that proceed through b → s loop diagrams, of which B {yields} KKK decays are an example, are sensitive to new physics effects that could lead to deviations from the CKM predictions for CP violation. We present studies of CP violation in the decays B + → K +K -K +, B + → K S 0K S 0K +, and B 0 → K +K -K S 0, using a Dalitz plot amplitude analysis. These studies are based on approximately 470 million Bmore » $$\\bar{B}$$ decays collected by BABAR at the PEP-II collider at SLAC. We perform measurements of time-dependent CP violation in B 0 → K +K -K S 0, including B 0 → ΦK S 0. We measure a CP-violating phase β eff (ΦK S 0) = 0.36 ± 0.11 ± 0.04 rad., in agreement with the SM. This is the world's most precise measurement of this quantity. We also measure direct CP asymmetries in all three decay modes, including the direct CP asymmetry A CP (ΦK +) = (12.8 ± 4.4 ± 1.3)%, which is 2.8 sigma away from zero. This measurement is in tension with the SM, which predicts an asymmetry of a few percent. We also study the resonant and nonresonant features in the B → KKK Dalitz plots. We find that the hypothetical scalar f X(1500) resonance, introduced by prior analyses to explain an unknown peak in the m KK spectrum, cannot adequately describe the data. We conclude instead that the f X(1500) can be explained as the sum of the f 0(1500), f' 2(1525), and f 0(1710) resonances, removing the need for the hypothetical f X(1500). We also find that an exponential nonresonant model, used by previous analyses to describe the broad nonresonant feature seen in B → KKK decays, cannot fully model the data. We introduce a new nonresonant model that contains more free parameters, allows for phase motion, and contains both S-wave and P-wave components.« less

  15. Amplitude Analysis of the Decay $$D_s^+ \\to \\pi^+ \\pi^- \\pi^+$$ in the Experiment E831/FOCUS (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilithz, Anderson Correa; /Rio de Janeiro, CBPF

    We present in this thesis the Dalitz Plot analysis of the D{sub s}{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +} decay, with the data of the E831/FOCUS, that took data in 1996 and 1997. The masses and widhts of f{sub 0}(980) and f{sub 0}(1370) are free parametres of the fit on Dalitz Plot, objectiving to study in detail these resonances. After this analysis we present the Spectator Model study on the S wave in this decay. For this study we used the formalism developed by M. Svec [2] for scattering. We present the comparison between the Isobar Model, frequently used inmore » Dalitz Plot analysis, and this formalism.« less

  16. Unique forbidden beta decays and neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornický, Rastislav, E-mail: dvornicky@dnp.fmph.uniba.sk; Comenius University, Mlynská dolina F1, SK-842 48 Bratislava; Šimkovic, Fedor

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  17. A comprehensive study of Interatomic Coulombic Decay in argon dimers: Extracting R-dependent absolute decay rates from the experiment

    DOE PAGES

    Rist, J.; Miteva, T.; Gaire, B.; ...

    2016-09-15

    In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.

  18. Semiclassical approach to heterogeneous vacuum decay

    DOE PAGES

    Grinstein, Benjamin; Murphy, Christopher W.

    2015-12-10

    We derive the decay rate of an unstable phase of a quantum field theory in the presence of an impurity in the thin-wall approximation. This derivation is based on the how the impurity changes the (flat spacetime) geometry relative to case of pure false vacuum. Two examples are given that show how to estimate some of the additional parameters that enter into this heterogeneous decay rate. This formalism is then applied to the Higgs vacuum of the Standard Model (SM), where baryonic matter acts as an impurity in the electroweak Higgs vacuum. We find that the probability for heterogeneous vacuummore » decay to occur is suppressed with respect to the homogeneous case. That is to say, the conclusions drawn from the homogeneous case are not modified by the inclusion of baryonic matter in the calculation. On the other hand, we show that Beyond the Standard Model physics with a characteristic scale comparable to the scale that governs the homogeneous decay rate in the SM, can in principle lead to an enhanced decay rate.« less

  19. Preparation of a novel radiotracer targeting the EphB4 receptor via radiofluorination using spiro azetidinium salts as precursor.

    PubMed

    Wiemer, Jens; Steinbach, Jörg; Pietzsch, Jens; Mamat, Constantin

    2017-08-01

    The visualization of Eph receptors, which are overexpressed in various tumor entities, using selective small molecule Eph inhibitors by means of positron emission tomography is a promising approach for tumor imaging. N-(Pyrimidinyl)indazolamines represent a class of compounds, which are known to have high affinity especially for the EphB4 receptor. Radiofluorination of these compounds could provide a highly specific imaging agent and was investigated using a classical nucleophilic introduction of [ 18 F]fluoride as well as a less common nucleophilic ring-opening reaction of azetidinium salts. In the past, radiofluorinations using azetidinium precursors were demonstrated to result in high radiochemical yields in short periods. For this purpose, an azetidinium precursor based on the N-(pyrimidinyl)indazolamine lead compound was developed, and radiofluorination was successfully accomplished. The respective [ 18 F]radiotracer was quickly prepared with high radiochemical purity >97% and in a radiochemical yield of 34%. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quantum decay model with exact explicit analytical solution

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  1. Production and sequential decay of charmed hyperons

    NASA Astrophysics Data System (ADS)

    Fäldt, Göran

    2018-03-01

    We investigate production and decay of the Λc+ hyperon. The production considered is through the e+e- annihilation channel, e+e-→Λc+Λ¯c - , with summation over the Λ¯c- antihyperon spin directions. It is in this situation that the Λc+ decay chain is identified. Two kinds of sequential decays are studied. The first one is the doubly weak decay B1→B2M2 , followed by B2→B3M3. The other one is the mixed weak-electromagnetic decay B1→B2M2, followed by B2→B3γ . In both schemes B denotes baryons and M mesons. We should also mention that the initial state of the Λc+ hyperon is polarized.

  2. Remanent-magnetization decay in CoCr films

    NASA Astrophysics Data System (ADS)

    Skorjanec, J.; Cottles, V.; Close, J.; Iverson, P.; Edwards, J.; Dahlberg, E. Dan

    1990-05-01

    The decay of the remanent magnetization of several thin films of CoCr has been studied using the extraordinary Hall effect as a probe of the component of the magnetization perpendicular to the plane of the films. Consistent with previous measurements of CoCr, the remanent magnetization decays quasilogarithmically with time after the removal of a saturating magnetic field. In the present work the effect of a magnetically soft keeper layer on the decay of the magnetization has been investigated. It is found that the keeper layer does not affect the remanent magnetization nor does it decrease the decay rate of the perpendicular magnetization. This result indicates that the soft keeper layer is not effective at screening the demagnetization field on a length scale relevant to the decay-producing fields.

  3. Proton-induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development.

    PubMed

    Radchenko, Valery; Engle, Jonathan W; Medvedev, Dmitri G; Maassen, Joel M; Naranjo, Cleo M; Unc, George A; Meyer, Catherine A L; Mastren, Tara; Brugh, Mark; Mausner, Leonard; Cutler, Cathy S; Birnbaum, Eva R; John, Kevin D; Nortier, F Meiring; Fassbender, Michael E

    2017-07-01

    Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44g Sc is the 44 Ti/ 44g Sc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44 Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44 Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44 Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44 Ti via anion exchange sorption in concentrated HCl results in a 44 Tc/Sc separation factor of 10 2 -10 3 . A second, cation exchange based step in HCl media is then applied for 44 Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44 Ti recovery with an overall Ti/Sc separation factor of ≥10 6 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Proton induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/ 44Sc generator development

    DOE PAGES

    Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.; ...

    2017-04-07

    Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less

  5. Puzzling Two-Proton Decay of 67Kr

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Nazarewicz, W.

    2018-05-01

    Ground-state two-proton (2 p ) radioactivity is a rare decay mode found in a few very proton-rich isotopes. The 2 p decay lifetime and properties of emitted protons carry invaluable information on nuclear structure in the presence of a low-lying proton continuum. The recently measured 2 p decay of 67Kr turned out to be unexpectedly fast. Since 67Kr is expected to be a deformed system, we investigate the impact of deformation effects on the 2 p radioactivity. We apply the recently developed Gamow coupled-channel framework, which allows for a precise description of three-body systems in the presence of rotational and vibrational couplings. This is the first application of a three-body approach to a two-nucleon decay from a deformed nucleus. We show that deformation couplings significantly increase the 2 p decay width of 67Kr; this finding explains the puzzling experimental data. The calculated angular proton-proton correlations reflect a competition between 1 p and 2 p decay modes in this nucleus.

  6. Radiolabeling of multimeric neurotensin(8-13) analogs with the short-lived positron emitter fluorine-18.

    PubMed

    Hultsch, Christina; Berndt, Mathias; Bergmann, Ralf; Wuest, Frank

    2007-07-01

    Three methods for (18)F-labeling of dimeric and tetrameric neurotensin(8-13) derivatives were evaluated with respect to the labeling yield and the required peptide amounts. Labeling using N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) gave low radiochemical yield for the dimeric peptides. Coupling of the tetramer with [(18)F]SFB was not successful. High yields were obtained for labeling of the aminooxy-functionalized neurotensin(8-13) dimer using 4-[(18)F]fluorobenzaldehyde ([(18)F]FBA) whilst coupling of the corresponding tetramer gave only low yields. Labeling of sulfydryl-functionalized neurotensin(8-13) derivatives using the maleinimide 4-[(18)F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]-oxime ([(18)F]FBAM) resulted in high radiochemical yields for both, the dimer and the tetramer. Therefore, [(18)F]FBAM seems to be the most suitable (18)F-labeling agent for multivalent neurotensin(8-13) derivatives.

  7. Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay.

    PubMed

    Basso, Lorenzo; Dittmaier, Stefan; Huss, Alexander; Oggero, Luisa

    We present the extension of two general algorithms for the treatment of infrared singularities arising in electroweak corrections to decay processes at next-to-leading order: the dipole subtraction formalism and the one-cutoff slicing method. The former is extended to the case of decay kinematics which has not been considered in the literature so far. The latter is generalised to production and decay processes with more than two charged particles, where new "surface" terms arise. Arbitrary patterns of massive and massless external particles are considered, including the treatment of infrared singularities in dimensional or mass regularisation. As an application of the two techniques we present the calculation of the next-to-leading order QCD and electroweak corrections to the top-quark decay width including all off-shell and decay effects of intermediate [Formula: see text] bosons. The result, e.g., represents a building block of a future calculation of NLO electroweak effects to off-shell top-quark pair ([Formula: see text]) production. Moreover, this calculation can serve as the first step towards an event generator for top-quark decays at next-to-leading order accuracy, which can be used to attach top-quark decays to complicated many-particle top-quark processes, such as for [Formula: see text] or [Formula: see text].

  8. Decays of the vector glueball

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  9. The excited-state decay of 1-methyl-2(1H)-pyrimidinone is an activated process.

    PubMed

    Ryseck, Gerald; Schmierer, Thomas; Haiser, Karin; Schreier, Wolfgang; Zinth, Wolfgang; Gilch, Peter

    2011-07-11

    The photophysics of 1-methyl-2(1H)-pyrimidinone (1MP) dissolved in water is investigated by steady-state and time-resolved fluorescence, UV/Vis absorption, and IR spectroscopy. In the experiments, excitation light is tuned to the lowest-energy absorption band of 1MP peaking at 302 nm. At room temperature (291 K) its fluorescence lifetime amounts to 450 ps. With increasing temperature this lifetime decreases and equals 160 ps at 338 K. Internal conversion (IC) repopulating the ground state and intersystem crossing (ISC) to a triplet state are the dominant decay channels of the excited singlet state. At room temperature both channels contribute equally to the decay, that is, the quantum yields of IC and ISC are both approximately 0.5. The temperature dependence of UV/Vis transient absorption signals shows that the activation energy of the IC process (2140 cm(-1)) is higher than that of the ISC process (640 cm(-1)). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Search for D 0 decays to invisible final states at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Y. -T.; Wang, M. -Z.; Adachi, I.

    2017-01-01

    We report the result from the first search for D 0 decays to invisible final states. The analysis is performed on a data sample of 924 fb -1 collected at and near the Y(4S) and Y(5S) resonances with the Belle detector at the KEKB asymmetric-energy e +e - collider. The absolute branching fraction is determined using an inclusive D 0 sample, obtained by fully reconstructing the rest of the particle system including the other charmed particle. No significant signal yield is observed and an upper limit of 9.4 × 10 -5 is set on the branching fraction of D 0more » to invisible final states at 90% confidence level.« less

  11. Studies on Foam Decay Trend and Influence of Temperature Jump on Foam Stability in Sclerotherapy.

    PubMed

    Bai, Taoping; Chen, Yu; Jiang, Wentao; Yan, Fei; Fan, Yubo

    2018-02-01

    This study investigated the influence of temperature jump and liquid-gas ratio on foam stability to derive the foam-decay law. The experimental group conditions were as follows: mutation temperatures (10°C, 16°C, 20°C, 23°C, 25°C, and 27°C to >37°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). The control group conditions were as follows: temperatures (10°C, 16°C, 20°C, 23°C, 25°C and 27°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). A homemade device manufactured using the Tessari DSS method was used to prepare the foam. The decay process was videotape recorded. In the drainage rate curve, the temperature rose, and the liquid-gas ratio varied from 1:1 to 1:4, causing faster decay. In the entire process, the foam volume decreased with increasing drainage rate. The relationships were almost linear. Comparison of the experimental and control groups shows that the temperature jump results in a drainage time range of 1 to 15 seconds. The half-life ranges from 10 to 30 seconds. The maximum rate is 18.85%. Changes in the preparation temperature yields a drainage time range of 3 to 30 seconds. The half-life varies from 20 to 60 seconds. Decreasing the temperature jump range and liquid-gas ratio gradually enhances the foam stability. The foam decay time and drainage rate exhibit an exponential function distribution.

  12. Overview of the application of nanosecond electron beams for radiochemical sterilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, Y.A.; Sokovnin, S.Y.

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys),more » and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS.« less

  13. Observation of K*(892){sup 0}K*(892){sup 0} in {chi}{sub cJ} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J.Z.; Bian, J.G.

    2004-11-01

    K*(892){sup 0}K*(892){sup 0} signals from {chi}{sub cJ}(J=0,1,2) decays are observed for the first time using a data sample of 14 million {psi}(2S) events accumulated in the BES II detector. The branching fractions B[{chi}{sub cJ}{yields}K*(892){sup 0}K*(892){sup 0}] (J=0,1,2) are determined to be (1.78{+-}0.34{+-}0.34)x10{sup -3} (1.67{+-}0.32{+-}0.31)x10{sup -3}, and (4.86{+-}0.56{+-}0.88)x10{sup -3} for the {chi}{sub c0}, {chi}{sub c1}, and {chi}{sub c2} decays, respectively, where the first errors are statistical and the second are systematic. The significances of these signals are about 4.7{sigma}, 4.5{sigma}, and 7.6{sigma}, respectively.

  14. How to Prevent Tooth Decay in Your Baby

    MedlinePlus

    ... life-threatening infections. Tooth decay (called early childhood caries) is the most common chronic infectious disease of childhood. Tooth decay may also be called nursing caries or baby bottle tooth decay . Healthy dental habits ...

  15. Penguin Decays of B Mesons

    NASA Astrophysics Data System (ADS)

    Lingel, Karen; Skwarnicki, Tomasz; Smith, James G.

    Penguin, or loop, decays of B mesons induce effective flavor-changing neutral currents, which are forbidden at tree level in the standard model. These decays give special insight into the CKM matrix and are sensitive to non-standard-model effects. In this review, we give a historical and theoretical introduction to penguins and a description of the various types of penguin processes: electromagnetic, electroweak, and gluonic. We review the experimental searches for penguin decays, including the measurements of the electromagnetic penguins b -> sgamma and B -> K*gamma and gluonic penguins B -> Kpi, B+ -> omegaK+ and B -> eta'K, and their implications for the standard model and new physics. We conclude by exploring the future prospects for penguin physics.

  16. Tree Decay - An Expanded Concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to wounding and infection-compartmentalization-and the orderly infection of wounds by many microorganisms-successions. The heartrot concept must be abandoned because it deals only with decay-causing fungi and it...

  17. Search for CP violation in hyperon decays

    NASA Astrophysics Data System (ADS)

    Zyla, Piotr; Chan, A.; Chen, Y. C.; Ho, C.; Teng, P. K.; Choong, W. S.; Gidal, G.; Fu, Y.; Gu, P.; Jones, T.; Luk, K. B.; Turko, B.; Zyla, P.; James, C.; Volk, J.; Felix, J.; Burnstein, R. A.; Chakrovorty, A.; Kaplan, D. M.; Lederman, L. M.; Luebke, W.; Rajaram, D.; Rubin, H. A.; Solomey, N.; Torun, Y.; White, C. G.; White, S. L.; Leros, N.; Perroud, J. P.; Gustafson, H. R.; Longo, M. J.; Lopez, F.; Park, H. K.; Clark, K.; Jenkins, M.; Dukes, E. C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L.; Nelson, K. S.

    2003-02-01

    Direct CP violation in nonleptonic hyperon decays can be established by comparing the decays of hyperons and anti-hyperons. For Ξ decay to Λπ followed by Λ to pπ, the proton distribution in the rest frame of Lambda is governed by the product of the decay parameters αΞαΛ. The asymmetry ΛΞΛ, proportional to the difference of αΞαΛ of the hyperon and anti-hyperon decays, vanishes if CP is conserved. We report on an analysis of a fraction of 1997 and 1999 data collected by the HyperCP (E871) collaboration during the fixed-target runs at Fermilab. The preliminary measurement of the assymmetry is AΞΛ = [-7±12(stat)±6.2(sys)] × 10 -4, an order of magnitude better than the present limit.

  18. Mesonic Decay of Charm Hypernuclei Λc+

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Fontoura, Carlos E.; Krein, Gastão

    2016-03-01

    Λc+ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely Λ(uds) and Λc+(udc). One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the Λc+ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.

  19. Measurement of inclusive radiative B-meson decay B decaying to X(S) meson-gamma

    NASA Astrophysics Data System (ADS)

    Ozcan, Veysi Erkcan

    Radiative decays of the B meson, B→ Xsgamma, proceed via virtual flavor changing neutral current processes that are sensitive to contributions from high mass scales, either within the Standard Model of electroweak interactions or beyond. In the Standard Model, these transitions are sensitive to the weak interactions of the top quark, and relatively robust predictions of the inclusive decay rate exist. Significant deviation from these predictions could be interpreted as indications for processes not included in the minimal Standard Model, like interactions of charged Higgs or SUSY particles. The analysis of the inclusive photon spectrum from B→ Xsgamma decays is rather challenging due to high backgrounds from photons emitted in the decay of mesons in B decays as well as e+e- annihilation to low mass quark and lepton pairs. Based on 88.5 million BB events collected by the BABAR detector, the photon spectrum above 1.9 GeV is presented. By comparison of the first and second moments of the photon spectrum with QCD predictions (calculated in the kinetic scheme), QCD parameters describing the bound state of the b quark in the B meson are extracted: mb=4.45+/-0.16 GeV/c2m2 p=0.65+/-0.29 GeV2 These parameters are useful input to non-perturbative QCD corrections to the semileptonic B decay rate and the determination of the CKM parameter Vub. Based on these parameters and heavy quark expansion, the full branching fraction is obtained as: BRB→X sgEg >1.6GeV=4.050.32 stat+/-0.38syst +/-0.29model x10-4. This result is in good agreement with previous measurements, the statistical and systematic errors are comparable. It is also in good agreement with the theoretical Standard Model predictions, and thus within the present errors there is no indication of any interactions not accounted for in the Standard Model. This finding implies strong constraints on physics beyond the Standard Model.

  20. A First Look at Tree Decay: An Introduction to How Injury and Decay Affect Trees

    Treesearch

    Kevin T Smith; Walter C. Shortle

    1998-01-01

    Photosynthesis and decay are the two most essential processes in nature. Photosynthesis by green plants captures and stores energy from the sun. This energy is used to form wood and other tree parts. Photosynthesis also removes carbon dioxide and adds oxygen to the atmosphere. Decay releases stored energy and essential elements by the breakdown...

  1. Evidence for the $$ H\\to b\\overline{b} $$ decay with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    A search for the decay of the Standard Model Higgs boson into a bmore » $$\\bar{b}$$ pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb -1, were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z → νν, W → ℓν and Z → ℓℓ. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess thus provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. Furthermore, the combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90±0.18(stat.) -0.19 + 0.21 (syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model.« less

  2. Evidence for the $$ H\\to b\\overline{b} $$ decay with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-06

    A search for the decay of the Standard Model Higgs boson into a bmore » $$\\bar{b}$$ pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb -1, were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z → νν, W → ℓν and Z → ℓℓ. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess thus provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. Furthermore, the combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90±0.18(stat.) -0.19 + 0.21 (syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model.« less

  3. Evidence for the H\\to b\\overline{b} decay with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2017-12-01

    A search for the decay of the Standard Model Higgs boson into a b\\overline{b} pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb-1, were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z → νν, W → ℓν and Z → ℓℓ. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 ± 0.18(stat.) - 0.19 + 0.21 (syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model. [Figure not available: see fulltext.

  4. Soil organic matter dynamics under decaying wood in a subtropical wet forest: effect of tree species and decay stage.

    Treesearch

    Marcela Zalamea; Grizelle Gonzalez; Chien-Lu Ping; Gary Michaelson

    2007-01-01

    Decaying wood is an important structural and functional component of forests: it contributes to generate habitat diversity, acts as either sink or source of nutrients, and plays a preponderant role in soil formation. Thus, decaying wood might likely have measurable effects on chemical properties of the underlying soil.We hypothesized that decaying wood would have a...

  5. Beyond low beta-decay Q values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustonen, M. T.; Suhonen, J.

    Beta decays with low Q values can be utilized in the quest to determine the neutrino mass scale. This is being realized in two experiments, KATRIN and MARE, using tritium and {sup 187}Re, respectively. The beta-decay of {sup 187}Re had the lowest known Q value until 2005, when the beta decay of {sup 115}In to the first excited state of {sup 115}Sn was discovered in Gran Sasso underground laboratory. Last year two independent ion trap measurements confirmed that this decay breaks the former record by an order of magnitude.Our theoretical study on this tiny decay channel complemented the experimental effortmore » by the JYFLTRAP group in Finland and HADES underground laboratory in Belgium. A significant discrepancy between the experimental and theoretical results was found. This might be explained by various atomic contributions known to grow larger as the Q value decreases. However, the traditional recipes for taking these effects into account break down on this new ultra-low Q value regime, providing new challenges for theorists on the borderline between nuclear and atomic physics.« less

  6. Interpreting anomalous electron pairs as new particle decays

    NASA Astrophysics Data System (ADS)

    Wilczynski, Henryk

    1999-08-01

    In heavy particle decays found in cosmic ray interactions recorded in the JACEE emulsion chambers, multiple electron pairs were previously reported. These pairs apparently originated from conversions of photons emitted in the decays. It is difficult to explain the overall properties of these decays in terms of known heavy particle decay modes. A recently published compilation of low-energy nuclear data suggests existence of excess electron pairs with invariant mass about 9 MeV/c2 , which may be explained by postulating a new neutral boson decaying into the electron pair. The feasibility of explaining the JACEE electron pairs with this hypothesis is presented.

  7. Power spectrum analyses of nuclear decay rates

    NASA Astrophysics Data System (ADS)

    Javorsek, D.; Sturrock, P. A.; Lasenby, R. N.; Lasenby, A. N.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Hoft, A. W.; Horan, T. J.; Jenkins, J. H.; Kerford, J. L.; Lee, R. H.; Longman, A.; Mattes, J. J.; Morreale, B. L.; Morris, D. B.; Mudry, R. N.; Newport, J. R.; O'Keefe, D.; Petrelli, M. A.; Silver, M. A.; Stewart, C. A.; Terry, B.

    2010-10-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are not a direct synchronous modulation. We conclude that the annual periodicity in these data sets is a real effect, but that further study involving additional carefully controlled experiments will be needed to establish its origin.

  8. Decay of Bogoliubov excitations in one-dimensional Bose gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristivojevic, Zoran; Matveev, K. A.

    For this research, we study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossovermore » region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. Finally, we account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.« less

  9. Decay of Bogoliubov excitations in one-dimensional Bose gases

    DOE PAGES

    Ristivojevic, Zoran; Matveev, K. A.

    2016-07-11

    For this research, we study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossovermore » region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. Finally, we account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.« less

  10. Neutron Decay with PERC: a Progress Report

    NASA Astrophysics Data System (ADS)

    Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration

    2012-02-01

    The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.

  11. Tree decay an expanded concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    This publication is the final one in a series on tree decay developed in cooperation with Harold G. Marx, Research Application Staff Assistant, U.S. Department of Agriculture, Forest Service, Washington, D.C. The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to...

  12. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  13. The decay of triple systems

    NASA Astrophysics Data System (ADS)

    Martynova, A. I.; Orlov, V. V.

    2014-10-01

    Numerical simulations have been carried out in the general three-body problem with equal masses with zero initial velocities, to investigate the distribution of the decay times T based on a representative sample of initial conditions. The distribution has a power-law character on long time scales, f( T) ∝ T - α , with α = 1.74. Over small times T < 30 T cr ( T cr is the mean crossing time for a component of the triple system), a series of local maxima separated by about 1.0 T cr is observed in the decay-time distribution. These local peaks correspond to zones of decay after one or a few triple encounters. Figures showing the arrangement of these zones in the domain of the initial conditions are presented.

  14. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the helpmore » of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.« less

  15. Simplified and reproducible radiochemical separations for the production of high specific activity 61Cu, 64Cu, 86Y and 55Co

    NASA Astrophysics Data System (ADS)

    Valdovinos, Hector F.; Graves, Stephen; Barnhart, Todd; Nickles, Robert J.

    2017-05-01

    Four positron-emitting radiometals 61Cu, 64Cu, 86Y and 55Co are increasingly being employed as labels for positron emission tomography (PET) imaging due to their favorable half-lives that match the pharmacokinetics of targeting moeities such as peptides, antibodies and antibody fragments and due to their use in internal dosimetry and treatment planning of targeted radionuclide therapy when they are substituted by their therapeutic analogues 67Cu, 90Y and 58mCo. The main disadvantage of the production methods reported in the literature for these radionuclides is that the final separated radioactive product is diluted in a large volume (> 5 mL), which obligates a lengthy evaporation step in a large vessel that is difficult to automate in-line after the chromatographic steps and that results in a highly variable amount of radioactivity lost in the vessel's surface. In this work we present simplified radiochemical separation methods for the production of 61Cu, 64Cu, 86Y and 55Co that result in: 1) a final eluate volume ≤ 600 µL; 2) reproducible separation yields of 84±4%, 82±6%, 94±5% and 93±6%, respectively; and 3) effective specific activities of 64.0±45.0 GBq/μmol NOTA, 114.9±40.1 GBq/μmol NOTA, 1.4±0.5 GBq/μmol DTPA and 10.1±5.7 GBq/μmol NOTA, respectively; without compromising the recycling efficiencies of the respective isotopically-enriched target materials 60Ni, 64Ni, 86SrCO3 and 58Ni, which accounted for 98±1%, 96±3%, 90±3% and 94±1%, respectively.

  16. Penguin and rare decays in BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Simon

    2015-04-29

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B 0 → K 0 Sπ – π +γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → X sγ and B → X sℓ +ℓ – inclusive decays.

  17. Study of the $${X^\\pm(5568)}$$ state with semileptonic decays of the $${B_s^0}$$ meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, Victor Mukhamedovich; et al.

    2017-12-29

    We present a study of themore » $$X^\\pm(5568)$$ using semileptonic decays of the $$B_s^0$$ meson using the full Run II integrated luminosity of 10.4 fb$$^{-1}$$ in proton-antiproton collisions at a center of mass energy of 1.96\\,TeV collected with the D0 detector at the Fermilab Tevatron Collider. We report evidence for a narrow structure, $$X^\\pm(5568)$$, in the decay sequence $$X^\\pm(5568) \\to B_s^0 \\pi^\\pm$$ where $$B_s^0 \\rightarrow \\mu^\\mp D_s^\\pm \\, \\mathrm{X}$$, $$D_s^\\pm \\rightarrow \\phi \\pi^{\\pm}$$ which is consistent with the previous measurement by the D0 collaboration in the hadronic decay mode, $$X^\\pm(5568) \\to B^0_s \\pi^\\pm$$ where $$B^0_s \\to J/\\psi\\phi$$. The mass and width of this state are measured using a combined fit of the hadronic and semileptonic data, yielding $$m = 5566.9 ^{+3.2}_{-3.1} \\thinspace {\\rm (stat)} ^{+0.6}_{-1.2} {\\rm \\thinspace (syst)}$$\\,MeV/$c^2$, $$\\Gamma = 18.6 ^{+7.9}_{-6.1} {\\rm \\thinspace (stat)} ^{+3.5}_{-3.8} {\\rm \\thinspace (syst)} $$\\,MeV/$c^2$ with a significance of 6.7$$\\,\\sigma$$.« less

  18. Investigation of near-threshold eta-meson production in the reaction {pi}{sup -}p{yields} {eta}n

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayadilov, D. E.; Beloglazov, Yu. A.; Gridnev, A. B.

    2012-08-15

    Differential and total cross sections for eta-meson production in the reaction {pi}{sup -}p {yields} {eta}n were measured within the experimental program eta-meson physics implemented in the pion channel of the synchrocyclotron of the Petersburg Nuclear Physics Institute (PNPI, Gatchina). These measurements were performed at incident-pion momenta (700, 710, 720, and 730 MeV/c) in the vicinity of the threshold for the process under study by using the neutral-meson spectrometer designed and created at the Meson Physics Laboratory of PNPI. It is shown that, in the immediate vicinity of the threshold (685 MeV/c), the process of eta-meson production proceeds predominantly via S{submore » 11}(1535)-resonance formation followed by the decay S{sub 11}(1535) {yields} {eta}n (the respective branching fraction is Br Almost-Equal-To 60%), but that, as the momentum of incident pions increases, the role of the D wave becomes ever more important. A detailed analysis of this effect indicates that it is due to the increasing contribution of the D{sub 13}(1520) resonance. Although the branching fraction of the decay of this resonance through the {eta}n channel is assumed to be very small (BR Almost-Equal-To 0.24%), the effect is enhanced owing to the interference between the D wave and the dominant resonance S{sub 11}(1535).« less

  19. Decay and the double-decay properties of edge bands of phosphorene ribbons

    NASA Astrophysics Data System (ADS)

    Yang, M.; Duan, H.-J.; Wang, R.-Q.

    2015-11-01

    Phosphorene (a monolayer of black phosphorus) recently spurred much attention due to its potential for application. We notice there are two types of zigzag edge and two types of armchair edge for phosphorene lattice. We study the winding number of various types of edge of phosphorene ribbons and conclude that, besides on the typical zigzag edge, the flat zero-energy edge band can be found in the ribbon of another nontypical armchair edge. The localization of these edge bands is investigated analytically. We find every single edge state of the atypical armchair edge decays to the bulk at two different decay rates.

  20. Decay properties of 256-339Ds superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Nithya, C.

    2017-09-01

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei ( Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of 256-339Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future.

  1. Radiochemical methodology for the determination of the mass balance of suspended particulate materials exchanged at the inlets of the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Degetto, S.; Cantaluppi, C.

    2004-11-01

    The Venice Lagoon is connected to the Adriatic Sea by three inlets, with an average daily water inflow of 345∗10 6 m 3. Due to the diversion of the major rivers out of the lagoon (done in the past centuries), the sediment supply from the drainage basin is now very low when compared to the amount of sediment exchanged at the inlets (<1%). The limited sediment supply and the combined action of natural and anthropic pressures (e.g. waves, ships, fishing activities, dredging for navigation purposes) have caused in the last few decades a significant erosion of mudflats and salt-marshes. In order to investigate the history and the characteristics of the above phenomenon, with particular regard to the most recent years and the future trend, a wide radiochemical survey has been carried out in the whole lagoon, including the characterisation of the suspended particulate matter entering and leaving the lagoon in different tidal and meteorological conditions, with the aim of obtaining an indirect estimate of the sediment mass balance of the lagoon. The proposed radiochemical methodology, which is based on concentration measurements of airborne radionuclides in suspended particulate matter, appears to be an useful alternative to direct methods (e.g. bathymetric campaigns in the lagoon or mass fluxes measurements of the suspended particulate materials exchanged at the inlets). The results obtained, which show a complex sedimentary situation, highlight the erosion acting in some central and southern lagoon areas but recognise also the present accumulation phase coming into view in the northern lagoon.

  2. Search for the decay modes D⁰→e⁺e⁻, D⁰→μ⁺μ⁻, and D⁰→e ±μ∓

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2012-08-01

    We present searches for the rare decay modes D⁰→e⁺e⁻, D0→μ⁺μ⁻, and D⁰→e ±μ ∓ in continuum e⁺e⁻→cc¯ events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468 fb⁻¹. These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D⁰→μ⁺μ⁻ channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on themore » branching fractions: B(D⁰→e⁺e⁻)<1.7×10⁻⁷, B(D⁰→μ⁺μ⁻) within [0.6,8.1]×10⁻⁷, and B(D⁰→e ±μ ∓)<3.3×10⁻⁷.« less

  3. Measurement of the Lambda(0)(b) lifetime in the exclusive decay Lambda(0)(b) -> J/psi Lambda(0) in p(p)over-bar collisions at root s=1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov V. M.; Abbott, B.; Acharya, B. S.

    2012-06-07

    We measure the {Lambda}{sub b}{sup 0} lifetime in the fully reconstructed decay {Lambda}{sub b}{sup 0} {yields} J/{psi}{Lambda}{sup 0} using 10.4 fb{sup -1} of p{bar p} collisions collected with the D0 detector at {radical}s = 1.96 TeV. The lifetime of the topologically similar decay channel B{sup 0} {yields} J/{psi}K{sub S}{sup 0} is also measured. We obtain {tau}({Lambda}{sub b}{sup 0}) = 1.303 {+-} 0.075(stat) {+-} 0.035(syst) ps and {tau}(B{sup 0}) = 1.508 {+-} 0.025(stat) {+-} 0.043(syst) ps. Using these measurements, we determine the lifetime ratio of {tau}({Lambda}{sub b}{sup 0})/{tau}(B{sup 0}) = 0.864 {+-} 0.052(stat) {+-} 0.033(syst).

  4. Weak decay of hypernuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  5. Measurement of direct CP violation parameters in B± → J/ψK± and B± → J/ψπ± decays with 10.4 fb-1 of Tevatron data.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Beattie, M; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hart, B; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Holzbauer, J; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lamont, I; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; Mason, N; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2013-06-14

    We present a measurement of the direct CP-violating charge asymmetry in B(±) mesons decaying to J/ψK(±) and J/ψπ(±) where J/ψ decays to μ(+) μ(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B(-) and B(+) mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/ψK) = [0.59 ± 0.37]%, which is the most precise measurement to date, and A(J/ψπ) = [-4.2 ± 4.5]%. Both measurements are consistent with standard model predictions.

  6. Double Charge Exchange Reactions and Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  7. Decay of Solar Wind Turbulence behind Interplanetary Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitňa, Alexander; Šafránková, Jana; Němeček, Zdeněk

    We investigate the decay of magnetic and kinetic energies behind IP shocks with motivation to find a relaxation time when downstream turbulence reaches a usual solar wind value. We start with a case study that introduces computation techniques and quantifies a contribution of kinetic fluctuations to the general energy balance. This part of the study is based on high-time (31 ms) resolution plasma data provided by the Spektr-R spacecraft. On the other hand, a statistical part is based on 92 s Wind plasma and magnetic data and its results confirm theoretically established decay laws for kinetic and magnetic energies. Wemore » observe the power-law behavior of the energy decay profiles and we estimated the power-law exponents of both kinetic and magnetic energy decay rates as −1.2. We found that the decay of MHD turbulence does not start immediately after the IP shock ramp and we suggest that the proper decay of turbulence begins when a contribution of the kinetic processes becomes negligible. We support this suggestion with a detailed analysis of the decay of turbulence at the kinetic scale.« less

  8. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  9. Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models

    PubMed Central

    Bonaiuto, James J; de Berker, Archy; Bestmann, Sven

    2016-01-01

    Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation. DOI: http://dx.doi.org/10.7554/eLife.20047.001 PMID:28005007

  10. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1974-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta-decay, and their resulting circularly polarized bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. The historical background to this subject is briefly reviewed. Our experiments involve subjecting a number of racemic and optically active amino acid samples to a beta-radiation source for a period of 1.34 years (total dose: 411 Mrads), then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography.

  11. Synthesis and evaluation of 18F-labeled CJ-042794 for imaging prostanoid EP4 receptor expression in cancer with positron emission tomography.

    PubMed

    Zhang, Zhengxing; Lau, Joseph; Kuo, Hsiou-Ting; Zhang, Chengcheng; Colpo, Nadine; Bénard, François; Lin, Kuo-Shyan

    2017-05-15

    The potent and selective prostanoid EP4 receptor antagonist CJ-042794 was radiolabeled with 18 F, and evaluated for imaging EP4 receptor expression in cancer with positron emission tomography (PET). The fluorination precursor, arylboronic acid pinacol ester 4, was prepared in 4 steps with 42% overall yield. 18 F-CJ-042794 was synthesized via a copper-mediated 18 F-fluorination reaction followed by base hydrolysis, and was obtained in 1.5±1.1% (n=2) decay-corrected radiochemical yield. PET/CT imaging and biodistribution studies in mice showed that 18 F-CJ-042794 was excreted through both renal and hepatobiliary pathways with significant retention in blood. The EP4-receptor-expressing LNCaP prostate cancer xenografts were clearly visualized in PET images with 1.12±0.08%ID/g (n=5) uptake value and moderate tumour-to-muscle contrast ratio (2.73±0.22) at 1h post-injection. However, the tumour uptake was nonspecific as it could not be blocked by co-injection of cold standard, precluding the application of 18 F-CJ-042794 for PET imaging of EP4 receptor expression in cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The shock waves in decaying supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Mac Low, M.-M.; Zuev, J. M.

    2000-04-01

    We here analyse numerical simulations of supersonic, hypersonic and magnetohydrodynamic turbulence that is free to decay. Our goals are to understand the dynamics of the decay and the characteristic properties of the shock waves produced. This will be useful for interpretation of observations of both motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail of fast shocks and an exponential decay in time, i.e. the number of shocks is proportional to t exp (-ktv) for shock velocity jump v and mean initial wavenumber k. In contrast to the velocity gradients, the velocity Probability Distribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Mach number shocks. The power loss peaks near a low-speed turn-over in an exponential distribution. An analytical extension of the mapping closure technique is able to predict the basic decay features. Our analytic description of the distribution of shock strengths should prove useful for direct modeling of observable emission. We note that an exponential distribution of shocks such as we find will, in general, generate very low excitation shock signatures.

  13. Tunneling decay of false vortices with gravitation

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, Manu B.; Yajnik, Urjit A.; Yeom, Dong-han

    2017-11-01

    We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.

  14. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-11-07

    , followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were

  15. Comparison of different methods for radiochemical purity testing of [99mTc-EDDA-HYNIC-D-Phe1,Tyr3]-octreotide.

    PubMed

    von Guggenberg, Elisabeth; Penz, Barbara; Kemmler, Georg; Virgolini, Irene; Decristoforo, Clemens

    2006-02-01

    [99mTc-EDDA-HYNIC-D-Phe1,Tyr3]-octreotide (99mTc-EDDA-HYNIC-TOC) is an alternative radioligand for somatostatin receptor (SSTR) scintigraphy of neuroendocrine tumours. In order to allow a rapid and accurate determination of the quality in the clinical routine the aim of this study was to evaluate different methods of radiochemical purity (RCP) testing. Three different methods of RCP testing were compared: high-performance liquid chromatography (HPLC), thin layer chromatography (TLC) and minicolumn (Sep-Pak purification = SPE). HPLC was shown to be the most effective method for the quality control. The use of TLC and SPE is only recommended after sufficient practical labelling experience.

  16. Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Mattes, J. J.; Newport, J. R.

    2010-12-01

    Evidence for an anomalous annual periodicity in certain nuclear-decay data has led to speculation on a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of 36Cl and 32Si, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18 year-1, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of 226Ra acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21 year-1, and a peak in the BNL dataset at 11.25 year-1. The change in the BNL result is not significant, since the uncertainties in the BNL and PTB analyses are estimated to be 0.13 year-1 and 0.07 year-1, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23 year-1. We will briefly comment on the possible implications of these results for solar physics and for particle physics.

  17. Electron trapping in the photo-induced conductivity decay in GaAs/SnO2 heterostructure

    NASA Astrophysics Data System (ADS)

    de Freitas Bueno, Cristina; de Andrade Scalvi, Luis Vicente

    2018-06-01

    The decay of photo-induced conductivity is measured for GaAs/SnO2 heterostructure, after illumination with appropriate wavelength. The top oxide layer is deposited by sol-gel-dip-coating and doped with Eu3+, and the GaAs bottom layer is deposited by resistive evaporation. It shows quite unusual behavior since the decay rate gets slower as the temperature is raised. The trapping by intrabandgap defects in the SnO2 top layer is expected, but a GaAs/SnO2 interface arrest becomes also evident, mainly for temperatures below 100 K. Concerning the SnO2 layer, trapping by different defects is possible, due to the observed distinct capture time range. Besides Eu3+ centers and oxygen vacancies, this sort of heterostructure also leads to Eu3+ agglomerate areas in the SnO2 top layer surface, which may contribute for electron scattering. The electrical behavior reported here aims to contribute for the understanding of the electrical transport mechanisms which, combined with emission from Eu3+ ions from the top layer of the heterostructure, opens new possibilities for optoelectronic devices because samples in the form of films are desirable for circuit integration. The modeling of the photo-induced decay data yields the capture barrier in the range 620-660 meV, and contributes for the defect rules on the electrical properties of this heterostructure.

  18. Fast proton decay

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Nanopoulos, Dimitri V.; Walker, Joel W.

    2010-10-01

    We consider proton decay in the testable flipped SU(5)×U(1)X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p→eπ from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the most plausible parameter space within reach of the future Hyper-Kamiokande and DUSEL experiments. Because the TeV-scale vector-like particles can be produced at the LHC, we predict a strong correlation between the most exciting particle physics experiments of the coming decade.

  19. Non-adiabatic dynamics investigation of the radiationless decay mechanism of trans-urocanic acid in the S{sub 2} state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; University of the Chinese Academy of Sciences, Beijing 100049; Zhou, Pan-Wang, E-mail: pwzhou@dicp.ac.cn, E-mail: gjzhao@dicp.ac.cn

    2016-07-28

    The trans-urocanic acid, a UV chromophore in the epidermis of human skin, was found to exhibit a wavelength dependent isomerization property. The isomerization quantum yield to cis-urocanic is greatest when being excited to the S{sub 1} state, whereas exciting the molecule to the S{sub 2} state causes almost no isomerization. The comparative photochemical behavior of the trans-urocanic on the S{sub 1} and S{sub 2} states continues to be the subject of intense research effort. This study is concerned with the unique photo-behavior of this interesting molecule on the S{sub 2} state. Combining the on-the-fly surface hopping dynamics simulations and staticmore » electronic structure calculations, three decay channels were observed following excitation to the S{sub 2} state. An overwhelming majority of the molecules decay to the S{sub 1} state through a planar or pucker characterized minimum energy conical intersection (MECI), and then decay to the ground state along a relaxation coordinate driven by a pucker deformation of the ring. A very small fraction of molecules decay to the S{sub 1} state by a MECI characterized by a twisting motion around the CC double bond, which continues to drive the molecule to deactivate to the ground state. The latter channel is related with the photoisomerization process, whereas the former one will only generate the original trans-form products. The present work provides a novel S{sub 2} state decay mechanism of this molecule, which offers useful information to explain the wavelength dependent isomerization behavior.« less

  20. Alpha-decay chains of superheavy nuclei 292-296118

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Kumawat, M.; Saxena, G.; Kaushik, M.; Jain, S. K.

    2018-05-01

    We have employed relativistic mean-field plus BCS (RMF+BCS) approach for the study of even-even superheavy nuclei with Z = 118 which is the last and recent observed element in the periodic chart so far. Our study includes binding energies, Qα values, alpha-decay half-lives and spontaneous decay half-lives along with comparison of available experimental data and the results of FRDM calculations. We find an excellent match with the only known decay chain of 294118 for Z = 118 so far and predict decay chain of 292118 and 296118 in consistency with known experimental decay chains and FRDM results. These results may provide a very helpful insight to conduct experiments for realizing the presence of nuclei with Z = 118.

  1. Exotic decays of heavy B quarks

    DOE PAGES

    Fox, Patrick J.; Tucker-Smith, David

    2016-01-08

    Heavy vector-like quarks of charge –1/3, B, have been searched for at the LHC through the decays B → bZ, bh, tW. In models where the B quark also carries charge under a new gauge group, new decay channels may dominate. We focus on the case where the B is charged under a U(1)' and describe simple models where the dominant decay mode is B → bZ' → b(bb¯¯). With the inclusion of dark matter such models can explain the excess of gamma rays from the Galactic center. We develop a search strategy for this decay chain and estimate thatmore » with integrated luminosity of 300 fb –1 the LHC will have the potential to discover both the B and the Z' for B quarks with mass below ~ 1.6 TeV, for a broad range of Z' masses. Furthermore, a high-luminosity run can extend this reach to 2 TeV.« less

  2. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-04-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  3. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-06-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  4. Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis.

    PubMed

    Kennel, Stephen J; Stuckey, Alan; McWilliams-Koeppen, Helen P; Richey, Tina; Wall, Jonathan S

    2016-08-01

    Systemic peripheral amyloidosis is a rare disease in which misfolded proteins deposit in various organs. We have previously developed I-124 labeled peptide p5 + 14 as a tracer for positron emission tomography imaging of amyloid in patients. In this report, we now document the labeling efficiency, bioactivity, and stability of Tc-99m labeled p5 + 14 for single-photon emission computed tomography (SPECT) imaging of amyloidosis, validated in a mouse model of systemic amyloidosis. Radiochemical yield, purity, and biological activity of [(99m)Tc]p5 + 14 were documented by instant thin-layer chromatography (ITLC), SDS-PAGE and a quantitative amyloid fibril pulldown assay. The efficacy and stability were documented in serum amyloid protein A (AA) amyloid-bearing or wild-type (WT) control mice imaged with SPECT/X-ray computed tomography (CT) at two time points. The uptake and retention of [(99m)Tc]p5 + 14 in hepatosplenic amyloid was evaluated using region of interest (ROI) and tissue counting measurements. Tc-99m p5 + 14 was produced with a radiochemical yield of 75 % with greater than 90 % purity and biological activity comparable to that of radioiodinated peptide. AA amyloid was visualized by SPECT/CT imaging with specific uptake seen in amyloid-laden organs at levels ∼5 folds higher than in healthy mice. ROI analyses of decay-corrected SPECT/CT images showed <20 % loss of radiolabel from the 1 to 4 h imaging time points. Biodistribution data confirmed the specificity of the probe accumulation by amyloid-laden organs as compared to non-diseased tissues. [(99m)Tc]p5 + 14 is a specific and stable radiotracer for systemic amyloid in mice and may provide a convenient and inexpensive alternative to imaging of peripheral amyloidosis in patients.

  5. Standardized methods for the production of high specific-activity zirconium-89

    PubMed Central

    Holland, Jason P.; Sheh, Yiauchung; Lewis, Jason S.

    2009-01-01

    Zirconium-89 is an attractive metallo-radionuclide for use in immunoPET due to the favorable decay characteristics. Standardized methods for the routine production and isolation of high purity and high specific-activity 89Zr using a small cyclotron are reported. Optimized cyclotron conditions reveal high average yields of 1.52 ± 0.11 mCi/μA·h at a proton beam energy of 15 MeV and current of 15 μA using a solid, commercially available 89Y-foil target (0.1 mm, 100% natural abundance). 89Zr was isolated in high radionuclidic and radiochemical purity (>99.99%) as [89Zr]Zr-oxalate by using a solid-phase hydroxamate resin with >99.5% recovery of the radioactivity. The effective specific-activity of 89Zr was found to be in the range 5.28 – 13.43 mCi/μg (470 – 1195 Ci/mmol) of zirconium. New methods for the facile production of [89Zr]Zr-chloride are reported. Radiolabeling studies using the trihydroxamate ligand desferrioxamine B (DFO) gave 100% radiochemical yields in <15 min. at room temperature and in vitro stability measurements confirmed that [89Zr]Zr-DFO is stable with respect to ligand dissociation in human serum for >7 days. Small-animal PET imaging studies have demonstrated that free 89Zr(IV) ions administered as [89Zr]Zr-chloride accumulate in the liver whilst [89Zr]Zr-DFO is excreted rapidly via the kidneys within <20 min. These results have important implication for the analysis of immunoPET imaging of 89Zr-labeled monoclonal antibodies. The detailed methods described can be easily translated to other radiochemistry facilities and will facilitate the use of 89Zr in both basic science and clinical investigations. PMID:19720285

  6. Analysis of four-body decay of D meson

    NASA Astrophysics Data System (ADS)

    Estabar, T.; Mehraban, H.

    2017-01-01

    The aim of this work is to provide a phenomenological analysis of the contribution of D0 meson to f0(980)π+π-(f 0(980) → π+π-), K+K-K¯∗(982)0(K¯∗(982)0 → π+K-) and ϕ(π+π-) S-wave(ϕ → K+K-) quasi-three-body decays. Such that the analysis of mentioned four-body decays is summarized into three-body decay and several channels are observed. Based on the factorization approach, hadronic three-body decays receive both resonant and nonresonant contributions. We compute both contributions of three-body decays. As, there are tree, penguin, emission, and emission annihilation diagrams for these decay modes. Our theoretical model for D0 → ϕ(ππ) S-wave decay is based on the QCD factorization to quasi-two body followed by S-wave. This model for this decay following experimental information which demonstrated two pion interaction in the S-wave is introduced by the scalar resonance. The theoretical values are (1.82 ± 0.24) × 10-4, (4.46 ± 0.41) × 10-5 and (1.1 ± 0.18) × 10-4, while the experimental results of them are (1.8 ± 0.5) × 10-4, (4.4 ± 1.7) × 10-5 and (2.5 ± 0.33) × 10-4, respectively. Comparing computation analysis values with experimental values show that our results are in agreement with them.

  7. Radiochemical determination of 241Am and Pu(alpha) in environmental materials.

    PubMed

    Warwick, P E; Croudace, I W; Oh, J S

    2001-07-15

    Americium-241 and plutonium determinations will become of greater importance over the coming decades as 137Cs and 241Pu decay. The impact of 137Cs on environmental chronology has been great, but its potency is waning as it decays and diffuses. Having 241Am and Pu as unequivocal markers for the 1963 weapon fallout maximum is important for short time scale environmental work, but a fast and reliable procedure is required for their separation. The developed method described here begins by digesting samples using a lithium borate fusion although an aqua regia leachate is also effective in many instances. Isolation of the Am and Pu is then achieved using a combination of extraction chromatography and conventional anion exchange chromatography. The whole procedure has been optimized, validated, and assessed for safety. The straightforwardness of this technique permits the analysis of large numbers of samples and makes 241Am-based techniques for high-resolution sediment accumulation rate studies attractive. In addition, the technique can be employed for the sequential measurement of Pu and Am in environmental surveillance programs, potentially reducing analytical costs and turnround times.

  8. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  9. Memory decay and loss of criticality in quorum percolation

    NASA Astrophysics Data System (ADS)

    Renault, Renaud; Monceau, Pascal; Bottani, Samuel

    2013-12-01

    In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes. Using different numerical approaches, we show evidence for this qualitative change even for very small decay values. In experiments where the steepest slopes can not be resolved and still appear as discontinuities, decay produces nonetheless a quantitative difference on the location of the apparent critical point. We discuss how this shift impacts network connectivity previously estimated without considering decay. In addition to this particular example, we believe that other percolation models are worth reinvestigating, taking into account similar sorts of memory decay.

  10. Decay associated with borer wounds in living oaks

    Treesearch

    Frederick H. Berry

    1978-01-01

    Wood-borer wounds serve as entry courts for decay fungi in oak species in the central hardwood region. Thirteen species of fungi were isolated from decayed areas surrounding borer galleries. Polyporus compactus was the most frequently isolated fungus, accounting for about 1/3 of the total decay volume caused by identified fungi.

  11. Inclusive rare B decays using effective field theories

    NASA Astrophysics Data System (ADS)

    Bauer, Christian

    In this thesis we will discuss several properties of rare decays of B mesons. First we discuss properties of the inclusive radiative decay B¯ --> Xsγ, where Xs stands for any hadronic state containing an s quark. We extend previous studies of this decay, which included perturbative corrections to order αs and nonperturbative contributions up to order (ΛQCD/ mb)2 and calculate the O (ΛQCD/mb)3 contributions to this decay. The values of the nonperturbative parameters entering at this order are unknown, leading to uncertainties in the standard model prediction of this decay. We estimate the size of these nonperturbative uncertainties by varying these parameters in the range suggested by dimensional analysis. We also estimate uncertainties arising from a cut on the photon energy which is required experimentally. Another decay mode investigated is B¯ --> Xsl+l-. We study the O (ΛQCD/mb)3 contributions to the leptonic invariant mass spectrum, the forward-backward asymmetry and hadronic invariant mass moments and estimate the resulting uncertainties. We calculate how the size of these uncertainties depend on the value of an experimental cut that has to be applied to eliminate the large background from other B decays. A model independent way to determinate the CKM matrix element | Vub| from the dilepton invariant mass spectrum of the inclusive decay B-->Xul+ n is presented next. We show that cuts required to eliminate the charm background still allow for a theoretically clean way to determine the CKM matrix element |Vub|. We also discuss the utility of the B¯ --> Xsl +l- decay rate above the y (2S) resonance to reduce the resulting uncertainties. Finally, we introduce a novel effective theory valid for highly energetic particles. In decays where the phase space is sufficiently restricted such that final state particles have very high energies compared to their mass, the perturbative as well as nonperturbative series diverge. The effective theory presented allows to

  12. Statistical Study of Rapid Penumbral Decay Associated with Flares

    NASA Astrophysics Data System (ADS)

    Chen, W.; Liu, C.; Wang, H.

    2005-05-01

    We present results of statistical study of rapid penumbral decay associated with flares. In total, we investigated 402 events from 05/09/98 to 07/17/04, including 40 X-class, 173 M-class and 189 C-class flares. We show strong evidence that penumbral segments decayed rapidly and permanently right after many flares. The rapid changes, which can be identified in the time profiles of white-light(WL) mean intensity are permanent, not transient, thus are not due to flare emissions. Our study shows that penumbral decay is more likely to be detected when associated with large solar flares. The larger the flare magnitude, the stronger the penumbral decay is. For X-class flares, almost 50% events show distinct decay. But for M- and C-class flares, this percentage drops to 16% and 10%, respectively. For all the events that clear decay can be observed, we find that the locations of penumbral decay are associated with flare emissions and are connected by prominent TRACE post-flare loops. To explain these observations, we propose a reconnection picture in that the penumbral fields change from a highly inclined to a more vertical configuration, leading to penumbral decay.

  13. The fully differential top decay distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Saavedra, J. A.; Boudreau, J.; Escobar, C.

    We write down the four-dimensional fully differential decay distribution for the top quark decay t → Wb → ℓνb. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general tbW interaction, and show how the untangled measurement of the two components of the fraction of longitudinal W bosons – those with b quark helicities of 1/2 and –1/2, respectively – could improve the precision of a global fit to the tbW vertex.

  14. The fully differential top decay distribution

    DOE PAGES

    Aguilar-Saavedra, J. A.; Boudreau, J.; Escobar, C.; ...

    2017-03-29

    We write down the four-dimensional fully differential decay distribution for the top quark decay t → Wb → ℓνb. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general tbW interaction, and show how the untangled measurement of the two components of the fraction of longitudinal W bosons – those with b quark helicities of 1/2 and –1/2, respectively – could improve the precision of a global fit to the tbW vertex.

  15. Exploring CP violation with Bc decays

    NASA Astrophysics Data System (ADS)

    Fleischer, Robert; Wyler, Daniel

    2000-09-01

    We point out that the pure ``tree'' decays B+/-c-->D+/-sD are particularly well suited to extract the Cabibbo-Kobayashi-Maskawa angle γ through amplitude relations. In contrast with conceptually similar strategies using B+/--->K+/-D or Bd-->K*0D decays, the advantage of the Bc approach is that the corresponding triangles have three sides of comparable length and do not involve small amplitudes. Decays of the type B+/-c-->D+/-D, the U-spin counterparts of B+/-c-->D+/-sD, can be added to the analysis, as well as channels, where the D+/-s and D+/- mesons are replaced by higher resonances.

  16. Decay Properties of K-Vacancy States in Fe X-Fe XVII

    NASA Technical Reports Server (NTRS)

    Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Palmeri, P.

    2003-01-01

    We report extensive calculations of the decay properties of fine-structure K-vacancy levels in Fe X-Fe XVII. A large set of level energies, wavelengths, radiative and Auger rates, and fluorescence yields has been computed using three different standard atomic codes, namely Cowan's HFR, AUTOSTRUCTURE and the Breit-Pauli R-matrix package. This multi-code approach is used to the study the effects of core relaxation, configuration interaction and the Breit interaction, and enables the estimate of statistical accuracy ratings. The Ksigma and KLL Auger widths have been found to be nearly independent of both the outer-electron configuration and electron occupancy keeping a constant ratio of 1.53 +/- 0.06. By comparing with previous theoretical and measured wavelengths, the accuracy of the present set is determined to be within 2 m Angstrom. Also, the good agreement found between the different radiative and Auger data sets that have been computed allow us to propose with confidence an accuracy rating of 20% for the line fluorescence yields greater than 0.01. Emission and absorption spectral features are predicted finding good correlation with measurements in both laboratory and astrophysical plasmas.

  17. CP asymmetries in Strange Baryon Decays

    NASA Astrophysics Data System (ADS)

    Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo

    2018-01-01

    While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)

  18. B{yields}X{sub s{gamma}} rate and CP asymmetry within the aligned two-Higgs-doublet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Martin; Pich, Antonio; Tuzon, Paula

    In the two-Higgs-doublet model the alignment of the Yukawa matrices in flavor space guarantees the absence of flavor-changing neutral currents at tree level, while introducing new sources for CP violation parametrized in a very economical way [Antonio Pich and Paula Tuzon, Phys. Rev. D 80, 091702 (2009)]. This implies a potentially large influence in a number of processes, b{yields}s{gamma} being a prominent example where rather high experimental and theoretical precision meet. We analyze the CP rate asymmetry in this inclusive decay and determine the resulting constraints on the model parameters. We demonstrate the compatibility with previously obtained limits [Martin Jung,more » Antonio Pich, and Paula Tuzon, J. High Energy Phys. 11 (2010) 003]. Moreover, we extend the phenomenological analysis of the branching ratio, and examine the influence of resulting correlations on the like-sign dimuon charge asymmetry in B decays.« less

  19. Nuclear Decay Data in the MIRD Format

    Science.gov Websites

    nuclear decay and decay scheme drawings will be produced in the Medical Internal Radiation Dose (MIRD National Laboratory Report BNL-NCS-52142, February 29, 1988) More information concerning medical

  20. Effects of fission yield data in the calculation of antineutrino spectra for U 235 ( n , fission ) at thermal and fast neutron energies

    DOE PAGES

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; ...

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinosmore » at 5–7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0–7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Lastly, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.« less