Science.gov

Sample records for radioisotopes production possibilities

  1. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  2. Acceleration radioisotope production simulations

    SciTech Connect

    Waters, L.S.; Wilson, W.B.

    1996-12-31

    We have identified 96 radionuclides now being used or under consideration for use in medical applications. Previously, we calculated the production of {sup 99}Mo from enriched and depleted uranium targets at the 800-MeV energy used in the LAMPF accelerator at Los Alamos. We now consider the production of isotopes using lower energy beams, which may become available as a result of new high-intensity spallation target accelerators now being planned. The production of four radionuclides ({sup 7}Be, {sup 67}Cu, {sup 99}Mo, and {sup 195m}Pt) in a simplified proton accelerator target design is being examined. The LAHET, MCNP, and CINDER90 codes were used to model the target, transport a beam of protons and secondary produced particles through the system, and compute the nuclide production from spallation and low-energy neutron interactions. Beam energies of 200 and 400 MeV were used, and several targets were considered for each nuclide.

  3. Discussion of possible content of an IAEA (International Atomic Energy Agency) handbook/computer file for ''Data for Medical Radioisotope Production''

    SciTech Connect

    Blann, M.

    1987-04-01

    Several possible approaches will be put forward in order to stimulate discussion and seek consensus on the relative emphasis and format of a proposed IAEA handbook and computer file for ''Data for Medical Radioisotope Production.'' An outline for possible chapters for non-nuclear physicists will be presented describing low, medium, and high energy reactions induced by light projectiles (e.g., n,p,..cap alpha..), by photons, and by heavy ions. Qualitative features would be described, typical experimental examples would be presented to illustrate each type of reaction, and examples would be presented of how well various computer codes would permit the calculation/prediction of the experimental results. We next solicit discussion of the desirability of the above, and of the format and means of compilation of a computer data file for isotope production. This should include format of experimental data, and also, whether a calculated file should be presented for production of particular isotopes from a ''most wanted'' list.

  4. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  5. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  6. Production possibility of 60,61,62Cu radioisotopes by alpha induced reactions on cobalt for PET studies

    NASA Astrophysics Data System (ADS)

    Szelecsényi, Ferenc; Suzuki, Kazutoshi; Kovács, Zoltán; Takei, Makoto; Okada, Kazuhiro

    2002-02-01

    Excitation functions were measured by the stacked-foil technique for 59Co( α, n) 62Cu, 59Co( α,2 n) 61Cu and 59Co( α,3 n) 60Cu nuclear reactions up to 60 MeV. The excitation functions were compared with the published data. The optimum energy range for the production of 61Cu and 62Cu was found to be 39 → 18 and 18.5 → 6 MeV, respectively. The calculated thick target yield of 61Cu in this energy range was 21.0 mCi/ μA (supposing one half-life activation time); and 16.2 mCi/ μA (supposing three half-life activation time) for 62Cu. The level of 60Cu and 62Cu impurities at 61Cu production decreases to around 1% after a 1 h cooling time. The practical yield in this case is 17.2 mCi/ μA. For production of 62Cu the contamination level of 61Cu increases continuously after EOB, but remains below 1% if the cooling time is less than 0.5 h ( 1.9 mCi/ μA at 0.5 h after EOB). Unfortunately, in the case of 60Cu production, the contamination level of 61Cu and 62Cu at EOB was found to be 18.4% and 47.9%, respectively, of the produced 60Cu activity ( 6.4 mCi/ μA, after 60 min irradiation time, in the energy interval 60 → 44 MeV).

  7. Radioisotope Production for Medical and Physics Applications

    NASA Astrophysics Data System (ADS)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  8. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  9. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  10. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  11. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  12. A 5 MW TRIGA reactor design for radioisotope production

    SciTech Connect

    Veca, Anthony R.; Whittemore, William L.

    1994-07-01

    The production and preparation of commercial-scale quantities of radioisotopes has become an important activity as their medical and industrial applications continue to expand. There are currently various large multipurpose research reactors capable of producing ample quantities of radioisotopes. These facilities, however, have many competing demands placed upon them by a wide variety of researchers and scientific programs which severely limit their radioisotope production capability. A demonstrated need has developed for a simpler reactor facility dedicated to the production of radioisotopes on a commercial basis. This smaller, dedicated reactor could provide continuous fission and activation product radioisotopes to meet commercial requirements for the foreseeable future. The design of a 5 MW TRIGA reactor facility, upgradeable to 10 MW, dedicated to the production of industrial and medical radioisotopes is discussed. A TRIGA reactor designed specifically for this purpose with its demonstrated long core life and simplicity of operation would translate into increased radioisotope production. As an example, a single TRIGA could supply the entire US needs for Mo-99. The facility is based on the experience gained by General Atomics in the design, installation, and construction of over 60 other TRIGAs over the past 35 years. The unique uranium-zirconium hydride fuel makes TRIGA reactors inexpensive to build and operate, reliable in their simplicity, highly flexible due to unique passive safety, and environmentally friendly because of minimal power requirements and long-lived fuel. (author)

  13. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure - Nuclear Physics facility

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bobeica, Mariana; Gheorghe, Ioana; Filipescu, Dan M.; Niculae, Dana; Balabanski, Dimiter L.

    2016-01-01

    We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility. The specific activity for three benchmark radioisotopes, 99Mo/99Tc, 225Ra/225Ac and 186Re, was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI-NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1-2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of 10^{11} photons/s. Based on these results, we suggest that the ELI-NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

  14. Radioisotope production and management at Oak Ridge National Laboratory

    SciTech Connect

    Collins, E.D.; Aaron, W.S.; Alexander, C.W.; Bigelow, J.E.; Parks, J.T.; Tracy, J.G.; Wham, R.M.

    1994-09-01

    The production of radioisotopes has been one of the basic activities at Oak Ridge since the end of World War II. The importance of this work was best described by Alvin Weinberg, former Laboratory Director, when he wrote ``... If God has a golden book and writes down what it is that Oak Ridge National Laboratory did that had the biggest influence on science, I would guess that was the production and distribution of isotopes.`` Radioisotopes production continues to be an important aspect of Oak Ridge programs today and of those planned for the future. Past activities, current projects, and future plans and potentials will be described briefly in this paper. Also, some of the major issues facing the continued production of radioisotopes will be described. The scope of the program has always been primarily that of process development, followed by special batch-type productions, where no other supply exists. The technology developed has been available for adoption by US commercial corporations, and in cases where this has occurred, Oak Ridge has withdrawn as a supplier of the particular isotopes involved. One method of production that will not be described is that of target bombardment with an accelerator. This method was used at Oak Ridge prior to 1978 in the 86-inch Cyclotron. However, this method has not been used at Oak Ridge since then for radioisotope production, except as a research tool.

  15. Optimization of commercial scale photonuclear production of radioisotopes

    SciTech Connect

    Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.; Stoner, Jon; Wells, Douglas P.

    2013-04-19

    Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activity of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. {sup 67}Cu photonuclear production via {sup 68}Zn({gamma}p){sup 67}Cu reaction was used as an example of such an optimization process.

  16. Production of radioisotopes by direct electron activation.

    PubMed

    Weeks, K J; O'Shea, P G

    1998-04-01

    High-energy electrons bombarded on materials can induce radioactivity by either directly knocking out neutrons or by first converting a fraction of the electron kinetic energy into electromagnetic energy, with subsequent neutron emission induced by the photons produced. The purpose of this paper was to develop a calculation method for estimating neutron emission and radionuclide production by high-energy (15-25 MeV) electrons directly interacting with a nucleus. The reaction (e,n) is considered using the method of virtual photons. The cross section for electron bombardment of lead, tantalum, rhenium, and tungsten targets is calculated. The electron cross sections are roughly 100 times less than the corresponding photon cross sections. The cross section increases monotonically with incident energy. A traveling wave linear accelerator was used for a qualitative test of the magnitude and energy dependence of the calculated cross sections. Tantalum was bombarded with electrons and the resultant emission of neutrons was inferred from the induced activation of 180Ta. The energy dependence and magnitude of the calculated electron cross sections agree with experiment within experimental uncertainties. It is concluded that accurate estimates of electron activation via the direct process is possible. PMID:9571615

  17. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  18. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  19. Radio-isotope production using laser Wakefield accelerators

    SciTech Connect

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-07-27

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu{sup 61} was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator.

  20. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and... a construction and operating license for a radioisotope production facility and the Research and..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  1. Novel production techniques of radioisotopes using electron accelerators

    NASA Astrophysics Data System (ADS)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  2. ULTRASONIC AND RADIOGRAPHIC IMAGING OF NIOBIUM TARGET CAPSULES FOR RADIOISOTOPE PRODUCTION

    SciTech Connect

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Dozier, B. E.; Nortier, F. M.; Smith, D. M.; Lenz, J. W.; Moddrell, C.; Smith, P. A.

    2009-03-03

    In the case of proton-irradiated radioisotope production, niobium target capsules containing gallium are exposed to intense radiation, thermally induced stress, for extended periods. The structural integrity of the target capsules is of crucial importance for containing the accelerator-produced radioisotopes and target material. The capsule window should be as thin and transparent to the proton beam as possible, and preferably should not become significantly activated under proton irradiation. In addition, the material for the capsule needs to be as defect-free as possible. Niobium encapsulated gallium targets have a history of unpredictable failure under intense irradiation with 100 MeV protons. This study illustrates the utility of non-destructive testing in order to detect defects that may result in mechanical failure of the capsules during irradiation. Prior to this work, it was not known if the gallium initially wets the niobium capsule that encapsulates it, and if it does, it is not known to what degree. However, the imaging techniques used in this work show that local areas of wetting do occur. We used ultrasonic images from various lots of niobium capsule material to assess the integrity of the capsules. Digital radiography is also used to detect any voids in the gallium that will tend to cause local heating in the capsules.

  3. Targets for the production of radioisotopes and method of assembly

    DOEpatents

    Quinby, Thomas C.

    1976-01-01

    A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.

  4. Fast flux test facility radioisotope production and medical applications

    SciTech Connect

    Schenter, R.E.; Smith, S.G.; Tenforde, T.S.

    1997-12-01

    The Fast Flux Test Facility (FFTF) is a 400-MW, sodium-cooled reactor that operated successfully from 1982 to 1992, conducting work in support of the liquid-metal reactor industry by developing and testing fuel assemblies, control rods, and other core reactor components. Upon termination of this program, the primary mission of FFTF ended, and it was placed in a standby mode in 1993. However, in January 1997 the U.S. Secretary of Energy requested that FFTF be evaluated for a future mission that would consist of a primary goal of producing tritium for nuclear defense applications and a secondary goal of supplying medical isotopes for research and clinical applications. Production by FFTF of tritium for U.S. nuclear weapons would augment the dual-track strategy now under consideration for providing a long-term tritium supply in the United States (consisting of a light water reactor option and an accelerator option). A decision by the Secretary of Energy on proceeding with steps leading toward the possible reactivation of FFTF will be made before the end of 1998.

  5. Radio-isotope production scale-up at the University of Wisconsin

    SciTech Connect

    Nickles, Robert Jerome

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing

  6. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    SciTech Connect

    Srivastava, S.C.; Mausner, L.F.

    1994-03-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

  7. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.

    PubMed

    Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad

    2016-07-01

    During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I

  8. The advanced neutron source (ANS) - A proposed national resource for medical radioisotope production

    SciTech Connect

    Mirzadeh, S.; Knapp, F.F. Jr.; Alexander, C.W.

    1994-05-01

    The ANS will be a state-of-the-art 330-MWt research reactor which is under design for construction at ORNL. The ANS is heavy water cooled/moderated with a 21-day fuel cycle, scheduled for full power in year 2002. Radioisotope production facilities of the ANS include 3 hydraulic tubes (HT1, 2 and 4) and 4 vertical holes. The projected average thermal neutron flux at HT4 is 4.6 x 10E15 n/cm{sup 2}/sec., 2.3 times greater and more than doubling the capabilities of the ORNL-HFIR. The HT1 and HT3 have peak thermal fluxes {approximately}50% of that in the HFIR, with {theta}{sub n}(th){approx}1 x 10E15 n/cm{sup 2}/sec. The on-line access capability of the ANS vertical hole Facilities is unique and should offset the larger sample capacity of the HFIR reflector positions. The capabilities of the ANS facilities will offer increased availability and efficiency of radioisotope production, and a conservation of expensive target isotopes. To further illustrate the unique capabilities of the ANS, a comparison for the production of several key medical radioisotopes is given below. Because of the greatly increased flux, the ANS may also be an important facility for production of high specific activity [n,{gamma}] Mo-99, thus overcoming the major difficulties associated with the radioactive waste from fission-produced Mo-99.

  9. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    SciTech Connect

    Kiebel, G.R.

    1991-09-01

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

  10. 77 FR 21592 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is requesting public comment on Chapters 7-18 of Draft Interim Staff Guidance (ISG) NPR-ISG-2011-002, augmenting NUREG-1537, Part 1, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Format and Content,'' for the production of radioisotopes and NUREG-1537, Part 2, ``Guidelines for......

  11. Production of ^38K Radioisotope for Plant Research

    NASA Astrophysics Data System (ADS)

    Zawisza, Irene; Howell, C. R.; Crowell, A. S.; Reid, C. D.; Weisenberger, D.

    2012-10-01

    Identifying and measuring the time scale of physiological responses to environmental changes provides information about mechanisms involved in the resource regulatory system of plants. Varying the amounts and types of nutrients and minerals available to a plant, the uptake and allocation of these resources are observed using Positron Emission Tomography (PET). Potassium is important to plant growth and maintenance in a number of areas. Among them is the K^+ and H^+ ion exchange provides the driving force for sugar loading into the phloem. A technique was developed for producing ^38K in a chemical form that can be absorbed by plants. The ^38K was created by the ^35Cl(α,n)^38K reaction using 14 MeV α-particles from the tandem accelerator at the Triangle Universities Nuclear Laboratory (TUNL). The target was a NaCl film about 20 mg/cm^2 thick that was evaporated onto a water-cooled tantalum disk. The irradiated NaCl film was dissolved in water and was transported to the Duke Plant Facilities (The Phytotron). The details of isotope production and demonstration of plant physiology measurement are presented.

  12. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect

    Liem, Peng Hong; Tran, Hoai Nam; Sembiring, Tagor Malem; Arbie, Bakri

    2014-09-30

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  13. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  14. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    SciTech Connect

    Sherrell, D.L.

    1992-06-01

    This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

  15. A shielded storage and processing facility for radioisotope thermoelectric generator heat source production

    NASA Astrophysics Data System (ADS)

    Sherrell, Dennis L.

    1993-01-01

    A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

  16. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  17. GEANT4 simulation of cyclotron radioisotope production in a solid target.

    PubMed

    Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P

    2016-05-01

    The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and

  18. Specific radioactivity of neutron induced radioisotopes: assessment methods and application for medically useful 177Lu production as a case.

    PubMed

    Le, Van So

    2011-01-01

    The conventional reaction yield evaluation for radioisotope production is not sufficient to set up the optimal conditions for producing radionuclide products of the desired radiochemical quality. Alternatively, the specific radioactivity (SA) assessment, dealing with the relationship between the affecting factors and the inherent properties of the target and impurities, offers a way to optimally perform the irradiation for production of the best quality radioisotopes for various applications, especially for targeting radiopharmaceutical preparation. Neutron-capture characteristics, target impurity, side nuclear reactions, target burn-up and post-irradiation processing/cooling time are the main parameters affecting the SA of the radioisotope product. These parameters have been incorporated into the format of mathematical equations for the reaction yield and SA assessment. As a method demonstration, the SA assessment of 177Lu produced based on two different reactions, 176Lu (n,γ)177Lu and 176Yb (n,γ) 177Yb (β- decay) 177Lu, were performed. The irradiation time required for achieving a maximum yield and maximum SA value was evaluated for production based on the 176Lu (n,γ)177Lu reaction. The effect of several factors (such as elemental Lu and isotopic impurities) on the 177Lu SA degradation was evaluated for production based on the 176Yb (n,γ) 177Yb (β- decay) 177Lu reaction. The method of SA assessment of a mixture of several radioactive sources was developed for the radioisotope produced in a reactor from different targets. PMID:21248665

  19. Design study on the beam line for radioisotope production at KOMAC

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2015-10-01

    A beam line for radioisotope (RI) production was designed for the 100-MeV proton linear accelerator at Korea Multi-purpose Accelerator Complex (KOMAC). The specifications of the beam line are such that the energy is 100 MeV and the average current is 0.6 mA for a target size of 100 mm in diameter. The system consists of a beam transport system including a magnet, a vacuum system, beam diagnostics, power supplies and a control system. The key components of the system are the high-field 45 bending magnet, the beam scanning system and beam window. In this paper, the design of the beam line and its key components are presented.

  20. Operational readiness review plan for the radioisotope thermoelectric generator materials production tasks

    SciTech Connect

    Cooper, R.H.; Martin, M.M.; Riggs, C.R.; Beatty, R.L.; Ohriner, E.K.; Escher, R.N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium-alloy component used to contain the plutonia heat source and a carbon-composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon-composite material. Because of the importance to DOE that Energy Systems deliver these high-quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP-24 entitled Operational Readiness Process'' describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management-approved readiness plan'' to be issued. This document is the readiness plan for the RTG materials production tasks. 6 refs., 11 figs., 1 tab.

  1. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    DOE R&D Accomplishments Database

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  2. Cross sections for fuel depletion and radioisotope production calculations in TRIGA reactors

    SciTech Connect

    Aguilar, H.F.; Mazon, R.R.

    1994-07-01

    For TRIGA Reactors, the fuel depletion and isotopic inventory calculations, depends on the computer code and in the cross sections of some important actinides used. Among these we have U-235, U-238, Pu-239, Pu-240 and Pu-241. We choose ORIGEN2, a code with a good reputation in this kind of calculations, we observed the cross sections for these actinides in the libraries that we have (PWR's and BWR), the fission cross section for U-235 was about 50 barns. We used a PWR library and our results were not satisfactory, specially for standard elements. We decided to calculate cross sections more suitable for our reactor, for that purpose we simulate the standard and FLIP TRIGA cells with the transport code WIMS. We used the fuel average flux and COLAPS (a home made program), to generate suitable cross sections for ORIGEN2, by collapsing the WIMS library cross sections of these nuclides. For the radioisotope production studies using the Central Thimble, we simulate the A and B rings and used the A average flux to collapse cross sections. For these studies, the required nuclides sometimes are not present in WIMS library, for them we are planning to process the ENDF/B data, with NJOY system, and include the cross sections to WIMS library or to collapse them using the appropriate average-flux and the program COLAPS. (author)

  3. KOVEC studies of radioisotope thermoelectric generator response (In connection with possible NASA space shuttle accident explosion scenarios)

    SciTech Connect

    Walton, J.; Weston, A.; Lee, E.

    1984-06-26

    The Department of Energy (DOE) commissioned a study leading to a final report (NUS-4543, Report of the Shuttle Transportation System (STS) Explosion Working Group (EWG), June 8, 1984), concerned with PuO/sub 2/ dispersal should the NASA space shuttle explode during the proposed Galileo and ISPN launches planned for 1986. At DOE's request, LLNL furnished appendices that describe hydrocode KOVEC calculations of potential damage to the Radioisotope Thermoelectric Generators, fueled by PuO/sub 2/, should certain explosion scenarios occur. These appendices are contained in this report.

  4. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  5. Improved Techniques Used at Brookhaven National Laboratory to Package and Dispose of Radioisotope Production Waste Lowers Worker Exposure

    SciTech Connect

    Sullivan, P.

    2003-02-24

    This paper describes the operations that generate Radioisotope Production Waste at Brookhaven National Laboratory (BNL) and the improved techniques used to handle and dispose of this waste. Historically, these wastes have produced high worker exposure during processing, packaging and disposal. The waste is made up of accelerator-produced nuclides of short to mid-length half-lives with a few longer-lived nuclides. However, because radiopharmaceutical research and treatment requires a constant supply of radioisotopes, the waste must be processed and disposed of in a timely manner. Since the waste cannot be stored for long periods of time to allow for adequate decay, engineering processes were implemented to safely handle the waste routinely and with ALARA principles in mind.

  6. Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes 122-125I

    NASA Astrophysics Data System (ADS)

    Artun, Ozan; Aytekin, Hüseyin

    2015-02-01

    In this work, the excitation functions for production of medical radioisotopes 122-125I with proton, alpha, and deuteron induced reactions were calculated by two different level density models. For the nuclear model calculations, the Talys 1.6 code were used, which is the latest version of Talys code series. Calculations of excitation functions for production of the 122-125I isotopes were carried out by using the generalized superfluid model (GSM) and Fermi-gas model (FGM). The results have shown that generalized superfluid model is more successful than Fermi-gas model in explaining the experimental results.

  7. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    SciTech Connect

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  8. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    SciTech Connect

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  9. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments Database

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  10. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    SciTech Connect

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  11. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    NASA Astrophysics Data System (ADS)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  12. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    NASA Astrophysics Data System (ADS)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22 24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  13. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    SciTech Connect

    King, James F

    2008-04-01

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  14. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    SciTech Connect

    Greenfield, Bryce A.

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  15. Possibility of sweet corn synthetic seed production.

    PubMed

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2009-08-01

    Somatic embryogenesis in sweet corn has been reported by a number of workers. However, the knowledge maintaining storage life, vigor and viability of these somatic embryos are limited. A model system of synchronous somatic embryos production combined with encapsulation to synthetic seed was studied in sweet corn (Zea mays var. saccharata). In this study immature zygotic embryo cultured on N6 medium, contained 2, 4-D 2 mg L(-1) and sucrose 60 g L(-1) form the embryogenic callus. Higher 2, 4-D levels did not show increasing in inducing embryogenic callus. If the concentration of 2, 4-D decreased globular-stage, somatic zygote form the roots. Somatic embryo develop without surrounding nutritive tissues and protective seed coat has been devoted to causing somatic embryos to functionally mimic embryo, then was encapsulated by 3% (w/v) sodium alginate with 4-6 mm in diameter. It was found that when synthetic seed were treated with 60 g L(-1) sucrose and stored at 15+/-2 degree Celsius for 2 weeks, the survival rate of synthetic seed were 44%, after 8 days of germination test, it was found that there were 91% of which were normal seedling and 9% were abnormal seedling. This result indicated that there is a possibility in sweet corn synthetic seed production. Anyhow, more research for better technique are further required. PMID:19943466

  16. Production of {sup 17}F, {sup 15}O and other radioisotopes for PET using a 3 MV electrostatic tandem accelerator

    SciTech Connect

    Roberts, A. D.; Davidson, R. J.; Nickles, R. J.

    1999-06-10

    Target systems for the production of positron emitting radioisotopes used for medical research with positron emission tomography (PET) are under development for a 3 MV electrostatic tandem accelerator (NEC 9SDH-2). This machine is intended primarily for the continuous production of short lived tracers labeled with {sup 15}O (t{sub 1/2}=122 s) or {sup 17}F (t{sub 1/2}=65 s) for determining regional cerebral blood flow in humans. Simple gas, liquid, and solid target systems are presented for the production of [{sup 15}O]H{sub 2}O (yield at saturation 13 mCi/{mu}A), [{sup 17}F]F{sub 2} (22 mCi/{mu}A), [{sup 17}F] fluoride (aq.) (12 mCi/{mu}A), [{sup 18}F]fluoride (aq.) (21 mCi/{mu}A), [{sup 13}N] in graphite (25 mCi/{mu}A), and [{sup 11}C]CO{sub 2} (2.3 mCi/{mu}A). Current limitations on single window targets for each production are discussed.

  17. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  18. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  19. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    PubMed

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. PMID:25813003

  20. B cell increases and ex vivo IL-2 production as secondary endpoints for the detection of sensitizers in non-radioisotopic local lymph node assay using flow cytometry.

    PubMed

    Jung, Kyoung-Mi; Jang, Won-Hee; Lee, Yong-Kyoung; Yum, Young Na; Sohn, Soojung; Kim, Bae-Hwan; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2012-03-25

    Non-radioisotopic local lymph node assay (LLNA) using 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FCM) is gaining attention since it is free from the regulatory issues in traditional LLNA (tLLNA) accompanying in vivo uses of radioisotope, (3)H-thymidine. However, there is also concern over compromised performance of non-radioisotopic LLNA, raising needs for additional endpoints to improve the accuracy. With the full 22 reference substances enlisted in OECD Test Guideline No. 429, we evaluated the performance of LLNA:BrdU-FCM along with the concomitant measurements of B/T cell ratio and ex vivo cytokine production from isolated lymph node cells (LNCs) to examine the utility of these markers as secondary endpoints. Mice (Balb/c, female) were topically treated with substances on both ears for 3 days and then, BrdU was intraperitoneally injected on day 5. After a day, lymph nodes were isolated and undergone FCM to determine BrdU incorporation and B/T cell sub-typing with B220+ and CD3e+. Ex vivo cytokine production by LNCs was measured such as IL-2, IL-4, IL-6, IL-12, IFN-γ, MCP-1, GM-CSF and TNFα. Mice treated with sensitizers showed preferential increases in B cell population and the selective production of IL-2, which matched well with the increases in BrdU incorporation. When compared with guinea pig or human data, BrdU incorporation, B cell increase and IL-2 production ex vivo could successfully identify sensitizers with the accuracy comparable to tLLNA, suggesting that these markers may be useful for improving the accuracy of LLNA:BrdU-FCM or as stand-alone non-radioisotopic endpoints. PMID:22245253

  1. Successes and problems in the development of medical radioisotope production in Russia

    NASA Astrophysics Data System (ADS)

    Zhuikov, B. L.

    2016-05-01

    There are many challenges that face radionuclide production and application for medical diagnostics and therapy in Russia. In this article, the development of novel production methods for medical radionuclides (82Sr, 82Sr/82Rb-generator, 117mSn, 225Ac, etc.) at the Institute for Nuclear Research, RAS is described, providing an example of how supporting basic nuclear facilities, backing fundamental research, granting scientists and medical specialists freedom in choosing a research area, and effective international collaboration involving developed countries combine to enable progress in the field.

  2. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2002 Through September 30, 2003

    SciTech Connect

    King, J.F.

    2004-05-18

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2003. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  3. Semi-Annual Technical Progress Report of the Radioisotope Power System Materials Production and Technology Program Tasks for September 2000 through March 2001

    SciTech Connect

    Moore, J.P.

    2001-05-22

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) and weld shields (WS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2001. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, CVS, and WS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials. or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  4. Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for April 1, 2002 Through September 20, 2002

    SciTech Connect

    Moore, J.P.

    2002-12-03

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  5. Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2001 Through March 31, 2002

    SciTech Connect

    J. P. Moore, JPM

    2002-05-22

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  6. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004

    SciTech Connect

    None listed

    2005-06-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  7. 78 FR 1848 - Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... foreseeable future in the NI PEIS (DOE/EIS-0310), which was issued on December 15, 2000 (65 FR 78484). The NI... production capabilities. The NI PEIS ROD was published on January 26, 2001 (66 FR 7877). In the ROD, DOE had... determined that no additional NEPA documentation was necessary and amended its ROD (69 FR 50180, August...

  8. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    SciTech Connect

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  9. Feasibility study for production of I-131 radioisotope using MNSR research reactor.

    PubMed

    Elom Achoribo, A S; Akaho, Edward H K; Nyarko, Benjamin J B; Osae Shiloh, K D; Odame Duodu, Godfred; Gibrilla, Abass

    2012-01-01

    A feasibility study for (131)I production using a Low Power Research Reactor was conducted to predict the yield of (131)I by cyclic activation technique. A maximum activity of 5.1GBq was achieved through simulation using FORTRAN 90, for an irradiation of 6h. But experimentally only 4h irradiation could be done, which resulted in an activity of 4.0×10(5)Bq. The discrepancy in the activities was due to the fact that beta decays released during the process could not be considered. PMID:21900016

  10. LANL Activities Supporting Electron Accelerator Production of 99Mo for NorthStar Medical Radioisotopes, LLC

    SciTech Connect

    Dale, Gregory E.; Kelsey, Charles T. IV; Woloshun, Keith A.; Holloway, Michael A.; Olivas, Eric R.; Dalmas, Dale A.; Romero, Frank P.; Hurtle, Kenneth P.

    2012-07-11

    Summary of LANL FY12 Activities are: (1) Preparation, performance, and data analysis for the FY12 accelerator tests at ANL - (a) LANL designed and installed a closed-loop helium target cooling system at ANL for the FY12 accelerator tests, (b) Thermal test was performed on March 27, (c) 24 h production test to follow the accelerator upgrade at ANL; (2) Local target shielding design and OTR/IR recommendations - (a) Target dose rate and activation products were calculated with MCNPX, (b) {sup 206}Pb({gamma},2n){sup 204m}Pb vs {sup 204g}Pb branching ratio unpublished, will measure using the LANL microtron, (c) OTR system nearing final configuration, (d) IR prototype system demonstrated during the recent thermal test at ANL; (3) Target housing lifetime estimation - Target housing material specifications and design to be finalized following the thermal test, lifetime not believed to be an issue; and (4) Target cooling system reliability - Long duration system characterizations will begin following the thermal test.

  11. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    SciTech Connect

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-12-31

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents {sup 153}Sm EDTMP and {sup 186}Re/{sup 188}Re HEDP, as well as in the use of {sup 186}Re, {sup 177}Lu, {sup 166}Ho, and {sup 105}Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, {sup 90}Y-labeled glass microspheres for the treatment of liver tumors, a product ({sup 90}Y Therasphere{trademark}) which is currently an approved drug in Canada. MURR has also pioneered the development of {sup 188}W/{sup 188}Re and {sup 99}Mo/{sup 99m}Tc gel generators, which make the use of low specific activity {sup 188}W and {sup 99}Mo practical for such isotope generators.

  12. A multi-millennial reconstruction of the total solar irradiance from the carbon radioisotope production rate

    NASA Astrophysics Data System (ADS)

    Vieira, L. A.; Krivova, N.; Solanki, S.; Balmaceda, L.

    2008-05-01

    The total solar irradiance (TSI) changes by about 0.1% between solar activity minimum and maximum. In addition to this cyclic variation, a secular variation in the irradiance is also plausible. Recent models suggest that the magnitude of the secular increase in the TSI since the Maunder Minimum was comparable to the solar cycle variation. Detailed reconstructions of irradiance since the Maunder minimum are common, but on longer timescales hardly any quantitative reconstructions are available, due to the lack of solar data. Here we present a reconstruction of solar irradiance on millennial time scales. The reconstruction involves two steps: (1) modelling of the evolution of the solar open magnetic flux from the production rate of 14C (as earlier carried out by Solanki et al. 2004 and Usoskin et al. 2007) and (2) evaluation of the solar irradiance from the calculated open magnetic flux. The model is tested by comparing to the TSI reconstruction from the sunspot number for the last 4 centuries. We also discuss limits and uncertainties of the model.

  13. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006

    SciTech Connect

    King, James F

    2007-04-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  14. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Programs Tasks for October 1, 2005, through September 30, 2006

    SciTech Connect

    2006-09-30

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  15. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technical Program Tasks for October 1, 2005 through September 30, 2006

    SciTech Connect

    2007-04-02

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  16. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011

    SciTech Connect

    King, James F

    2012-05-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

  17. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2004, THROUGH SEPTEMBER 30, 2005

    SciTech Connect

    2005-09-30

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  18. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2004 through September 30, 2005

    SciTech Connect

    None listed

    2006-08-03

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  19. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2004 Through September 30, 2005

    SciTech Connect

    King, James F

    2006-06-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  20. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance

    NASA Astrophysics Data System (ADS)

    Habs, D.; Köster, U.

    2011-05-01

    We study the production of radioisotopes for nuclear medicine in ( γ, xn+ yp) photonuclear reactions or ( γ, γ') photoexcitation reactions with high-flux [(1013-1015) γ/s], small diameter ˜(100 μm)2 and small bandwidth (Δ E/ E≈10-3-10-4) γ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion, xn+ yp) reactions with (ion = p,d, α) from particle accelerators like cyclotrons and (n, γ) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ-beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). However, for ions with a strong atomic stopping only a fraction of less than 10-2 leads to nuclear reactions resulting in a target heating, which is at least 105 times larger per produced radioactive ion and often limits the achievable activity. In photonuclear reactions the well defined initial excitation energy of the compound nucleus leads to a small number of reaction channels and enables new combinations of target isotope and final radioisotope. The narrow bandwidth γ excitation may make use of the fine structure of the Pygmy Dipole Resonance (PDR) or fluctuations in γ-width leading to increased cross sections. Within a rather short period compared to the isotopic half-life, a target area of the order of (100 μm)2 can be highly transmuted, resulting in a very high specific activity. ( γ, γ') isomer production via specially selected γ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ-beams allow to produce certain radioisotopes, e.g. 47Sc, 44Ti, 67Cu, 103Pd, 117 m Sn, 169Er, 195 m Pt or 225Ac, with higher specific activity

  1. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    SciTech Connect

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983.

  2. Annual Technical Progress Report of the Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2008 through September 30, 2009

    SciTech Connect

    King, James F

    2010-05-01

    The Office of Space and Defense Power Systems of the U. S. Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators (RTG) were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. ORNL has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2009. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  3. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    SciTech Connect

    King, James F

    2009-04-01

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  4. Radioisotopes: Today's Applications.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  5. The possibility of concrete production on the Moon

    NASA Technical Reports Server (NTRS)

    Ishikawa, Noboru; Kanamori, Hiroshi; Okada, Takeji

    1992-01-01

    When a long-term lunar base is constructed, most of the materials for the construction will be natural resources on the Moon, mainly for economic reasons. In terms of economy and exploiting natural resources, concrete would be the most suitable material for construction. This paper describes the possibility of concrete production on the Moon. The possible production methods are derived from the results of a series of experiments that were carried out taking two main environmental features, low gravity acceleration and vacuum, into consideration.

  6. Excitation functions for production of radioisotopes of niobium, zirconium and yttrium by irradiation of zirconium with deuterons

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Takács, S.; Ditrói, F.; Dityuk, A. I.; Shubin, Yu. N.

    2004-05-01

    Excitation functions of deuteron-induced reactions on natural zirconium were re-measured up to 50 MeV for the natZr(d,x) 90,91m,92m,95,96Nb, natZr(d,x) 88,89,95,97Zr and natZr(d,x) 86,87,88Y reactions. A physically accurate activation method on stacks of natural zirconium foils was used. The results were critically compared with a detailed compilation of earlier reported experimental data and with theoretical calculations. In the overlapping energy regions mainly acceptable agreement was found or our data complete the database where contradictory or scarce data were available. The possible alternative uses in medically relevant radionuclide production as well as applications in thin layer activation and dosimetry are discussed.

  7. HFIR-produced medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Knapp, F.F. Jr.; Beets, A.L.; Alexander, C.W.

    1997-12-01

    We have experimentally determined the yields of a number of medical radioisotopes produced in the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) Hydraulic Tube (HT) facility. The HT facility is located in the very high flux region in the flux trap of the reactor, providing on-line access capability while the reactor is operating. The HT facility consists of nine vertically stacked capsules centered just adjacent to the core horizontal midplane. HFIR operates at a nominal power level of 85 MW. The capabilities of the HFIR-HT facilities offer increased efficiency, greater availability, and optimization of radioisotope production, and, as a result, the conservation of rare or expensive target isotopes.

  8. Markets for reactor-produced non-fission radioisotopes

    SciTech Connect

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included.

  9. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  10. Possible dynamical explanations for Paltridge's principle of maximum entropy production

    SciTech Connect

    Virgo, Nathaniel Ikegami, Takashi

    2014-12-05

    Throughout the history of non-equilibrium thermodynamics a number of theories have been proposed in which complex, far from equilibrium flow systems are hypothesised to reach a steady state that maximises some quantity. Perhaps the most celebrated is Paltridge's principle of maximum entropy production for the horizontal heat flux in Earth's atmosphere, for which there is some empirical support. There have been a number of attempts to derive such a principle from maximum entropy considerations. However, we currently lack a more mechanistic explanation of how any particular system might self-organise into a state that maximises some quantity. This is in contrast to equilibrium thermodynamics, in which models such as the Ising model have been a great help in understanding the relationship between the predictions of MaxEnt and the dynamics of physical systems. In this paper we show that, unlike in the equilibrium case, Paltridge-type maximisation in non-equilibrium systems cannot be achieved by a simple dynamical feedback mechanism. Nevertheless, we propose several possible mechanisms by which maximisation could occur. Showing that these occur in any real system is a task for future work. The possibilities presented here may not be the only ones. We hope that by presenting them we can provoke further discussion about the possible dynamical mechanisms behind extremum principles for non-equilibrium systems, and their relationship to predictions obtained through MaxEnt.

  11. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  12. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  13. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    SciTech Connect

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979.

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    SciTech Connect

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  15. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    SciTech Connect

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.

  16. Possible enhancement of BP180 autoantibody production by herpes zoster.

    PubMed

    Kamiya, Koji; Aoyama, Yumi; Suzuki, Takahiro; Niwa, Haruo; Horio, Ai; Nishio, Eiichi; Tokura, Yoshiki

    2016-02-01

    Bullous pemphigoid (BP) is an autoimmune blistering disease caused by autoantibodies against type XVII collagen/BP180 (BP180). Although the mechanisms of autoantibody production remain to be elucidated, herpes virus infections have been identified as a possible triggering factor for pemphigus. We report a case of herpes zoster (HZ) having anti-BP180 serum antibodies. The patient developed sudden-onset, tense blisters and edematous erythema on the right anterior chest, shoulder and upper back. Histopathology showed remarkable degeneration of keratinocytes, acantholysis and blister formation with ballooning cells, indicating herpes virus infection. A polymerase chain reaction analysis of varicella zoster virus (VZV) was positive in crusts and effusions from the skin lesions, confirming the definitive diagnosis of HZ. Notably, we found that the patient had anti-BP180 serum antibodies in association with the occurrence of HZ. After successful treatment with valacyclovir hydrochloride for 7 days, the serum levels of anti-BP180 antibodies decreased in accordance with the improvement of skin lesions. These findings suggest that the production of anti-BP180 antibodies could be triggered by the reactivation of VZV. PMID:26212492

  17. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  18. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  19. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope.

    PubMed

    Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S

    2003-07-01

    A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use. PMID:12878120

  20. Formation of medical radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu in photonuclear reactions

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-01

    The possibility of the photonuclear production of radioisotopes 111In, 117 m Sn, 124Sb, and 177Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes 112, 118Sn and Te and HfO2 of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes 111In and 117 mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO2 of natural isotopic composition and leading to the formation of 124Sb and 177Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  1. Safe radioisotope thermoelectric generators and heat sources for space applications

    NASA Astrophysics Data System (ADS)

    O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V.

    2008-07-01

    Several isotopes are examined as alternatives to 238Pu that is traditionally used in radioisotope thermoelectric generators (RTGs) and heating units (RHUs). The radioisotopes discussed include 241Am, 208Po, 210Po, and 90Sr. The aim of this study is to facilitate the design of an RTG with a minimal radiation dose rate and mass including any required shielding. Applications of interest are primarily space and planetary exploration. In order to evaluate the properties of the alternative radioisotopes a Monte Carlo model was developed to examine the radiation protection aspect of the study. The thermodynamics of the power generation process is examined and possible materials for the housing and encapsulation of the radioisotopes are proposed. In this study we also present a historical review of radioisotope thermoelectric generators (RTGs) and the thermoelectric conversion mechanism in order to provide a direct comparison with the performance of our proposed alternative isotope systems.

  2. Cosmogenic radioisotopes on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.

    1992-01-01

    The radioisotope Be-7 was discovered in early 1990 on the front surface, and the front surface only, of the LDEF. A working hypothesis is that the isotope, which is known to be mainly produced in the stratosphere by spallation of nitrogen and oxygen nuclei with cosmic ray protons or secondary neutrons, diffuses upward and is absorbed onto metal surfaces of spacecraft. The upward transport must be rapid, that is, its characteristic time scale is similar to, or shorter than, the 53 day half-life of the isotope. It is probably by analogy with meteoritic metal atmospheric chemistry, that the form of the Be at a few 100 km altitude is as the positive ion Be(+) which is efficiently incorporated into the ionic lattice of oxides, such as Al2O3, Cr2O3, Fe2O3, etc., naturally occurring on surfaces of Al and stainless steel. Other radioisotopes of Be, Cl, and C are also produced in the atmosphere, and a search was begun to discover these. Of interest are Be-10 and C-14 for which the production cross sections are well known. The method of analysis is accelerator mass spectrometry. Samples from LDEF clamp plates are being chemically extracted, purified, and prepared for an accelerator run.

  3. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  4. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  5. Radioisotopes as Political Instruments, 1946–1953

    PubMed Central

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  6. Radioisotopes as Political Instruments, 1946-1953.

    PubMed

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War. PMID:20725612

  7. Road Sediment Production and Delivery: Processes, Rates, and Possible Improvements

    NASA Astrophysics Data System (ADS)

    MacDonald, Lee; Ramos-Scharron, Carlos; Coe, Drew; Stafford, Alexander; Welsh, Matthew; Korte, Abby; Libohova, Zamir; Brown, Ethan; James, Cajun

    2013-04-01

    Unpaved roads are increasingly recognized as one of the largest sources of anthropogenic sediment in forested areas. For nearly 20 years we have been studying road surface erosion and sediment delivery across widely varying environments in California, Colorado, and the Caribbean. The objectives of this paper are to: 1) compare road sediment production and delivery rates across different environments; 2) summarize the primary controls on road surface erosion and sediment delivery; 3) estimate the relative contribution of roads to watershed-scale sediment yields; and 4) suggest management practices to minimize road sediment production and delivery. In our studies segment-scale sediment production is measured with sediment fences, while detailed road surveys are used to assess road-stream connectivity and estimating the contribution of roads to watershed-scale sediment yields. Road-induced mass movements are not included here. Our mean road sediment production rates range from 0.1 kg m-2 yr-1 in snow-dominated areas in California's Sierra Nevada to 3.5 kg m-2 yr-1 in Colorado and 7.4 kg m-2 yr-1 on St. John in the Caribbean. First-order controls on road sediment production are the amount and type of precipitation, road gradient, road surface area, and surface cover, although geology and soil type also can be important. Higher traffic levels can greatly increase road sediment production by reducing the amount of surface cover, increasing the supply of fine sediment, and increasing the propensity for rilling, particularly during wet weather. Applying gravel can reduce road sediment production by a factor of 2-8 times by largely eliminating rainsplash and reducing rilling. Grading will at least double road sediment production by increasing the supply of easily erodible fine particles. The percent of road length connected to streams also varies widely. In California only 3% of the road length was connected in a snow-dominated area as opposed to 30% in a nearby rain

  8. The Possibility of Illusion in the Production of Knowledge

    ERIC Educational Resources Information Center

    Garcia, Luis

    2009-01-01

    Information and communication technologies--ICTs--have become a defining feature in the vocabulary of 21st century education and training. The major question now is not when and how they will be introduced into the education system, but what impact the manipulation inherent in their use will have on the resulting production of knowledge. The added…

  9. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  10. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  11. Alpha-emitting radioisotopes for switchable neutron generators

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Hilton, N. R.; Lund, J. C.; Van Scyoc, J. M.

    2003-06-01

    Traditionally, radioisotopic neutron generators mix an alpha-emitting radioisotope with beryllium. The disadvantage of such an alpha-Be source is that they emit neutrons at a steady rate even when stored. These conventional generators are extremely awkward to use in many applications because of the neutron shielding required to prevent exposure to personnel and sensitive electronics. Recently, at our laboratory and others, the possibility of using switchable radioactive neutron sources has been investigated. These sources rely on a mechanical operation to separate the alpha-emitting radioisotope from the Be target, thus allowing the source to be switched on and off. The utility of these new switchable sources is critically dependent on the selection of the alpha-emitting radioisotope. In this paper we discuss issues that determine the desirability of an alpha-emitting source for a switchable neutron generator, and select alpha emitters that are best suited for use in this application.

  12. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  13. Chlorofluorocarbon production scenarios: possible changes to stratospheric ozone

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.; Nold, A.; Wood, W.P.

    1981-01-01

    As one aspect of the regulatory process, the Environmental Protection Agency has derived a series of scenarios for future atmospheric emission rates of the chlorofluorocarbons CFCl/sub 3/ (also referred to as F-11), CF/sub 2/Cl/sub 2/ (F-12), CCl/sub 2/FCClF/sub 2/(F-113), CClF/sub 2/CClF/sub 2/(F-114), and CClF/sub 2/CF/sub 3/ (F-115). These scenarios are based on potential industrial production and commercial applications, and the eventual release of these chemicals into the atmosphere. In this study, the potential effect on stratospheric ozone resulting from future chlorofluorocarbon emissions as suggested by these scenarios is examined. Assessments are based upon model calculations using the one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere developed at Lawrence Livermore National Laboratory. The change in total ozone column calculated for the seven scenarios as a function of time is given. (JGB)

  14. Quantitation of renal function using radioisotopic techniques.

    PubMed

    O'Malley, J P; Ziessman, H A

    1993-03-01

    Radioisotopic methods are practical for clinical use because they do not require continuous intravenous infusion or urine collection. This obviously is of great advantage in infants and small children, in whom accurate urine collection is difficult, but the techniques apply to adults as well. The ability to determine individual kidney function is a major benefit. Accuracies of the radioisotopic techniques vary but generally are within clinically acceptable ranges. The need for accuracy and reproducibility can be balanced with the desire for speed and convenience when choosing among the different techniques. Methods that use plasma sampling provide greater accuracy and are recommended in cases of severe dysfunction, whereas methods such as Gates' camera method, which eliminates plasma samples, can be completed in minutes. Radioisotopic techniques are most useful in the ranges of mild to moderately decreased function, in which serum creatinine concentration is nondiagnostic, and although they are much less accurate at markedly low renal function levels, so is 24-hour creatinine clearance. In conclusion, radiopharmaceutical agents offer a wide array of possible techniques for simple, accurate, and noninvasive measurement of global as well as individual GFR and ERPF. PMID:8462269

  15. Illustrating Environmental Issues by Using the Production-Possibility Frontier: A Classroom Experiment

    ERIC Educational Resources Information Center

    Carson, Nancy; Tsigaris, Panagiotis

    2011-01-01

    The authors develop a new classroom experimental game to illustrate environmental issues by using the production-possibility frontier in an introductory economics course. Waste evolves as a byproduct of the production of widgets. Environmental cleanup is produced by reallocating scarce resources away from the production of the dirty good. In…

  16. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  17. Possibility of combining electroslag remelting and continuous casting for the production of hollow ingots

    NASA Astrophysics Data System (ADS)

    Medovar, L. B.; Stovpchenko, A. P.; Fedorovskii, B. B.; Noshchenko, G. V.

    2012-06-01

    The fundamental possibility of a combination of ESR and continuous casting for the production of hollow tube billets is considered, and the problems to be solved to put this process into operation are discussed.

  18. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  19. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization.

    PubMed

    Huang, Chao; Chen, Xue-fang; Xiong, Lian; Chen, Xin-de; Ma, Long-long; Chen, Yong

    2013-01-01

    Currently, single cell oils (SCO) attract much attention because of their bi-function as a supplier of functional oils and feedstock for biodiesel production. However, high fermentation costs prevent their further application, and the possibility and potential of their industrialization is suspected. Therefore, various low-cost, hydrophilic and hydrophobic substrates were utilized for SCO production. Of these substrates, lignocellulosic biomass, which is the most available and renewable source in nature, might be an ideal raw material for SCO production. Although many reviews on SCO have been published, few have focused on SCO production from low-cost substrates or evaluated the possibility and potential of its industrialization. Therefore, this review mainly presents information on SCO and its production using low-cost substrates and mostly focuses on lignocellulosic biomass. Finally, the possibility and potential of SCO industrialization is evaluated. PMID:22960618

  20. How to Handle Radioisotopes Safely.

    ERIC Educational Resources Information Center

    Sulcoski, John W.

    This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. The various units and forms of radioactive materials used by teachers are first considered. Then, the quantities of radioisotopes that a person may possess without a license from the Atomic Energy Commission (AEC) are…

  1. Radioisotopes for research on and control of mosquitos

    PubMed Central

    Bruce-Chwatt, Leonard J.

    1956-01-01

    Practical applications of radioactive isotopes in medicine, science, and industry have multiplied enormously during the past five years. In this paper, the author attempts to gather what is known about the use of radioactive isotopes in the research on malaria control. The development of the uranium pile for large-scale production of radioisotopes and technical progress in the making of reliable electronic equipment have greatly contributed to the application of radioactive tracers in biological research. The present knowledge of radioisotopes in mosquito and in insecticide research is discussed. ImagesFIG. 1 PMID:13404435

  2. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  3. Preparing for Harvesting Radioisotopes from FRIB

    SciTech Connect

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  4. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments Database

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  5. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Murray, Christopher S.; Crowley, Christopher J.; Murray, Susan; Elkouh, Nabil A.; Hill, Roger W.; Chubb, Donald E.

    2004-11-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in the possibility of combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths. Spectral control, including the combination of emitter, TPV module, and filter, is key to high-efficiency operation. This paper summarizes the performance characteristics of monolithic integrated module (MIM) PV cells and arrays, tandem filters, and tungsten emitters fabricated for the present studies. The current, voltage, quantum efficiency, and diode efficiency of multi-junction 0.60 eV bandgap devices are presented for individual PV cells and strings of several cells. This paper discusses the design considerations for mechanical layout of PV cell arrays and integration with filters. The vacuum facility to be used to test these PV cell arrays is also described.

  6. Linking the Production Possibilities Curve, the Supply Curve, and the Competitive Norm.

    ERIC Educational Resources Information Center

    Kosicki, George

    1991-01-01

    Recommends that economics instruction begin a synthesizing process early by connecting discussion of the production possibilities curve and the supply curve. Suggests that linking the two is logical for conveying integrated economic thinking to beginning students. Argues that such a link makes it easier to discuss the competitive norm. (DK)

  7. Transport of the radioisotopes iodine-131, cesium-134, and cesium-137 from the fallout following the accident at the Chernobyl nuclear reactor into cheesemaking products

    SciTech Connect

    Assimakopoulos, P.A.; Ioannides, K.G.; Pak; Paradopoulou, C.V.

    1987-07-01

    The transport of radiation contamination from milk to products of the cheese making process has been studied. The concentration of radioactive iodine and cesium in samples of sheep milk and cheese (Gruyere) products was measured for 10 consecutive production d. Milk with concentration 100 Bq/L in each of the radionuclides /sup 131/I, /sup 134/Cs, and /sup 137/Cs cheese with concentration 82.2 +/- 3.9 Bq/kg in iodine and an average of 42.3 +/- 2.3 Bq/kg in the cesium isotopes is produced. The corresponding concentrations in cream extracted from the same milk are 26.7 +/- 2.8 Bq/kg (/sup 131/I) and 18.6 +/- 1.9 Bq/kg (/sup 134/Cs, /sup 137/Cs).

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    SciTech Connect

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  9. Nuclear model calculations on the production of {sup 125,123}Xe and {sup 133,131,129,128}Ba radioisotopes

    SciTech Connect

    Aydin, A. Pekdogan, H.; Tel, E.; Kaplan, A.

    2012-03-15

    In this study, production rates of {sup 125,123}Xe and {sup 133,131,129,128}Ba medical isotopes produced by {sup 127}I(p, 3n){sup 125}Xe, {sup 127}I(p, 5n){sup 123}Xe, {sup 133}Cs(p, n){sup 133mg}Ba, {sup 133}Cs(p, 3n){sup 131mg}Ba, {sup 133}Cs(p, 5n){sup 129}Ba, and {sup 133}Cs(p, 6n){sup 128}Ba reactions have been investigated up to 100 MeV incident proton energy. The preequilibrium calculations involve the hybrid model, the geometry-dependent hybrid model and the cascade exciton model. The calculated results are compared with the experimental data taken from the literature.

  10. Power from Radioisotopes, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Mead, Robert L.

    This 1971 revision deals with radioisotopes and their use in power generators. Early developments and applications for the Systems for Nuclear Auxiliary Power (SNAP) and Radioisotope Thermoelectric Generators (RTGs) are reviewed. Present uses in space and on earth are included. Uses in space are as power sources in various satellites and space…

  11. Radioisotope penogram in diagnosis of vasculogenic impotence

    SciTech Connect

    Fanous, H.N.; Jevtich, M.J.; Chen, D.C.; Edson, M.

    1982-11-01

    A radioisotope technique to estimate penile blood flow is described. The radioisotope penogram is noninvasive and gives a dynamic evaluation of the arterial supply, venous drainage, and blood flow in the corporeal bodies. The penogram is a valuable adjunct in evaluation of patients with vasculogenic impotence.

  12. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. PMID:23827782

  13. Development of a radioisotope heat source for the two-watt radioisotope thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Howell, Edwin I.; McNeil, Dennis C.; Amos, Wayne R.

    1992-01-01

    Described is a radioisotope heat source for the Two-Watt Radioisotope Thermoelectric Generator (RTG) which is being considered for possible application by the U.S. Navy and for other Department of Defense applications. The heat source thermal energy (75 Wt) is produced from the alpha decay of plutonium-238 which is in the form of high-fired plutonium dioxide. The capsule is non-vented and consists of three domed cylindrical components each closed with a corresponding sealed end cap. Surrounding the fuel is the liner component, which is fabricated from a tantalum-based alloy, T-111. Also fabricated from T-111 is the next component, the strength member, which serves to meet pressure and impact criteria. The outermost component, or clad, is the oxidation- and corrosion-resistant nickel-based alloy, Hastelloy S. This paper defines the design considerations, details the hardware fabrication and welding processes, discusses the addition of yttrium to the fuel to reduce liner embrittlement, and describes the testing that has been conducted or is planned to assure that there is fuel containment not only during the heat source operational life, but also in case of an accident environment.

  14. Possibilities of production of smokeless fuel via carbonization of Czech coals

    SciTech Connect

    Buchtele, J.; Straka, P.

    1995-12-01

    It was consumed 48 -51 % of hard coal (total output 28 - 30 Mt/year) in a long period for the production of coke. It appears to be anomaly in comparison with other coke producers in Europe and in the world, it was predeterminated by {open_quotes}steel conception{close_quotes} of state`s economics. The production of coke reached 10-11 Mt/year in former Czechoslovakia in the period 1970-1990. A considerable quantity 1.2 - 1.7 Mt/year of produced coke was utilized for heating. In comparison, 7-5.4 Mt coke/year was it in Poland for the heating. Al coke production is realized on the basis of Czech hard coals mined in the southern part of Upper Silesian Coal District. The coke production is operated in multi-chamber system with full recovery of chemical products (gas, raw tar, raw benzene, amonium etc.). The future trend of smokeless fuel production in Czech Republic makes for to the non-recovery coke oven, it means to two-product processes (coke + reduction gas, coke + electricity and so on). Jewell--Thompson coke oven (hard coal) and Salem oven (ignites) represent nonrecovery nowadays. The possibility of it`s application in Czech Republic are discussed. Jumbo coking reactor system (European project No. 500 to the Eureka programme) produces primarily metallurgical coke. The strong Clean Air Act suspends the production of smokeless fuel in multi-chamber system also in Czech Republic for the future period 2010-2020.

  15. Radioisotope requirements and usage in the radiopharmaceutical industry

    SciTech Connect

    Langton, M.A.

    1995-12-31

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world`s largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a {open_quotes}cold kit,{close_quotes} which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product.

  16. Possible applications of aquatic bioregenerative life support modules for food production in a Martian base

    NASA Astrophysics Data System (ADS)

    Bluem, V.; Paris, F.

    Water is the essential precondition of life in general and also for the establishment of a martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a ``frozen ocean'' under the surface of mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a martian base.

  17. Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production

    NASA Astrophysics Data System (ADS)

    Weston, Ralph E.

    Tetrafluoromethane (CF 4) is an extremely stable gas which strongly absorbs infrared radiation at ˜ 8 μm, and therefore is capable of influencing the greenhouse effect. No natural sources have been identified, and the major anthropogenic source appears to be the electrolytic smelting of alumina to produce aluminum. Measurements of CF 4 concentrations in the atmosphere are reviewed, and these are combined with aluminum production rates to provide an estimate of 1.3-3.6 kg of CF 4 emitted per ton of aluminum produced for the period up to ˜ 1985. Aluminum production also requires large amounts of electrical energy, leading to the emission of as much as 22 tons of carbon dioxide per ton of aluminum due to fossil fuel combustion in power plants. The present day contribution of hydroelectric power reduces this figure to about 14 tons of carbon dioxide per ton of aluminum. An estimate of the relative radiative trapping of CF 4 and CO 2 emitted in aluminum production during this same period (1900-1985) indicates that the effect of CF 4 is about one-third that of the CO 2 formed by aluminum production. However, the emission of fluorocarbons from modem aluminum electrolysis cells is much lower than previous estimates indicate, and this factor is considered in estimating potential long-term global warming effects of CF 4 and CO 2 from aluminum production. Possible processes leading to removal of CF 4 from the atmosphere are described.

  18. Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers’ perspective

    SciTech Connect

    Cappuyns, Valérie Deweirt, Valentine; Rousseau, Sandra

    2015-04-15

    Highlights: • Consumers are suspicious towards bricks produced from dredged sediments. • Technical quality, safety and environmental impacts are considered key characteristics. • Public has insufficient knowledge on bricks produced from dredged sediments. • Sensitization and provision of information to customers are of primary importance. - Abstract: A possible solution for the oversupply of dredged sediments is their use as a raw material in brick production. Despite the fact that several examples (e.g., Agostini et al., 2007; Hamer and Karius, 2002; Xu et al., 2014) show that this application is feasible, some economic, technical and social limitations interfere with the development of a market of dredged materials in brick production in Flanders. While we describe the main characteristics of the supply side, we focus on the limitations and barriers from the demand side in the present study. Based on a consumers survey we analyze consumers’ risk perceptions and attitudes towards bricks produced from dredged sediments. Consumers in Flanders are rather suspicious with respect to bricks produced from dredged sediments and their risk perception is mainly determined by the possibility of a bad bargain (brick of inferior quality) and the connotation with chemical contamination. The willingness to pay for bricks made from dredged sediments is mainly influenced by the age of the respondents, as well environmental awareness, and the respondents’ belief in their ability to influence environmental problems. Sensitization and information of customers seems to be of primary importance to make dredged-sediment-derived bricks a successful product.

  19. Dredged sediments as a resource for brick production: possibilities and barriers from a consumers' perspective.

    PubMed

    Cappuyns, Valérie; Deweirt, Valentine; Rousseau, Sandra

    2015-04-01

    A possible solution for the oversupply of dredged sediments is their use as a raw material in brick production. Despite the fact that several examples (e.g., Agostini et al., 2007; Hamer and Karius, 2002; Xu et al., 2014) show that this application is feasible, some economic, technical and social limitations interfere with the development of a market of dredged materials in brick production in Flanders. While we describe the main characteristics of the supply side, we focus on the limitations and barriers from the demand side in the present study. Based on a consumers survey we analyze consumers' risk perceptions and attitudes towards bricks produced from dredged sediments. Consumers in Flanders are rather suspicious with respect to bricks produced from dredged sediments and their risk perception is mainly determined by the possibility of a bad bargain (brick of inferior quality) and the connotation with chemical contamination. The willingness to pay for bricks made from dredged sediments is mainly influenced by the age of the respondents, as well environmental awareness, and the respondents' belief in their ability to influence environmental problems. Sensitization and information of customers seems to be of primary importance to make dredged-sediment-derived bricks a successful product. PMID:25618756

  20. Radioisotope scanning in osseous sarcoidosis

    SciTech Connect

    Rohatgi, P.K.

    1980-01-01

    Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, but there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.

  1. Miniature Radioisotope Thermoelectric Power Cubes

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry

    2004-01-01

    Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

  2. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    SciTech Connect

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  3. A radioisotope-powered surface acoustic wave transponder

    NASA Astrophysics Data System (ADS)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  4. Radioisotopes for radioimmunodetection (RAID) and radioimmunotherapy (RAIT)---current and new perspectives

    SciTech Connect

    Knapp, F.F. Jr.

    1991-01-01

    In this paper the availability and properties of radioisotopes for both radioimmunodiagnosis (RAID) and radioimmunotherapy (RAIT) are discussed. Examples are provided for radioisotopes available via direct production in nuclear reactors and accelerators or as daughters obtained from radionuclide generator systems whose parents are either reactor or accelerator produced. Important factors which must be considered for the use of a particular radioisotope include availability, the physical half-life and decay properties, and chemical versatility for protein attachment. Although both direct'' and indirect'' methods are available for attachment of radioisotopes to antibodies, this broad field of research is not reviewed in detail. Practical issues related to the availability and use of a variety of radionuclides are described. 47 refs., 5 tabs.

  5. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    SciTech Connect

    Myojin, Sachi; Yamasaki, Chizuko; Yamasaki, Nakamichi; Kuroki, Toshihiro; Manabe, Wataru

    2010-11-24

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH{sub 4}H{sub 2}PO{sub 4} solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 deg. C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca{sub 7}Mg{sub 2}P{sub 6}O{sup 24}) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid--phosphorus.

  6. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  7. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    SciTech Connect

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984.

  8. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    PubMed

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders. PMID:16343751

  9. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants

    PubMed Central

    Radjasa, Ocky K.; Vaske, Yvette M.; Navarro, Gabriel; Vervoort, Hélène C.; Tenney, Karen; Linington, Roger G.; Crews, Phillip

    2011-01-01

    Coral reefs are among the most productive marine ecosystems and are the source of a large group of structurally unique biosynthetic products. Annual reviews of marine natural products continue to illustrate that the most prolific source of bioactive compounds consist of coral reef invertebrates—sponges, ascidians, mollusks, and bryozoans. This account examines recent milestone developments pertaining to compounds from invertebrates designated as therapeutic leads for biomedical discovery. The focus is on the secondary metabolites, their inspirational structural scaffolds and the possible role of microorganism associants in their biosynthesis. Also important are the increasing concerns regarding the collection of reef invertebrates for the discovery process. The case examples considered here will be useful to insure that future research to unearth bioactive invertebrate-derived compounds will be carried out in a sustainable and environmentally conscious fashion. Our account begins with some observations pertaining to the natural history of these organisms. Many still believe that a serious obstacle to the ultimate development of a marine natural product isolated from coral reef invertebrates is the problem of compound supply. Recent achievements through total synthesis can now be drawn on to forcefully cast this myth aside. The tools of semisynthesis of complex natural products or insights from SAR efforts to simplify an active pharmacophore are at hand and demand discussion. Equally exciting is the prospect that invertebrate-associated micro-organisms may represent the next frontier to accelerate the development of high priority therapeutic candidates. Currently in the United States there are two FDA approved marine-derived therapeutic drugs and two others that are often cited as being marine-inspired. This record will be examined first followed by an analysis of a dozen of our favorite examples of coral reef invertebrate natural products having therapeutic

  10. Personal reflections on the highlights and changes in radiation and radioisotope measurement applications

    NASA Astrophysics Data System (ADS)

    Gardner, Robin P.; Lee, Kyoung O.

    2015-11-01

    This paper describes the recent changes that the authors have perceived in the use of radiation and radioisotope measurement applications. The first change is that due to the increased use of Monte Carlo simulation which has occurred from a normal evolutionary process. This is due in large part to the increased accuracy that is being obtained by the use of detector response functions (DRFs) and the simultaneous increased computational efficiency that has become available with these DRFs, the availability of a greatly improved weight windows variance reduction method, and the availability of inexpensive computer clusters. This first change is a happy one. The other change that is occurring is in response to recent terrorist activities. That change is the replacement or major change in the use of long-lived radioisotopes in radioisotope measurement and other radioisotope source applications. In general this can be done by improving the security of these radioisotope sources or by replacing them altogether by using machine sources of radiation. In either case one would like to preclude altogether or at least minimize the possibility of terrorists being able to obtain radioisotopes and use them for clandestine purposes.

  11. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  12. Minocycline-treatment of diabetic rats normalizes skin collagen production and mass: possible causative mechanisms.

    PubMed

    Schneir, M; Ramamurthy, N; Golub, L

    1990-05-01

    Daily minocycline-treatment of streptozotocin-induced diabetic rats not only prevented a diabetes-caused atrophy of skin collagen mass (10-mos old rats), but also normalized skin collagen mass to match that of growing (ca. 1%/d) non-diabetic controls (4- and 5-mos old rats). The causative mechanism by which minocycline-treatment normalizes skin collagen mass must, in part, be related to a general anabolic effect on growth (body weight) because the effect on skin collagen mass correlates strongly to that on body weight. Consequently, a minocycline-stimulated increase of a systemic factor (such as insulin-like growth factor) is not unlikely. The anabolic effect of minocycline-treatment of diabetic rats is also expressed as a normalized cellular ribosome mass (an index of total protein synthetic capacity) and a normalized absolute rate of collagen production. (Calculation of an absolute rate was justified by an apparent maximum saturation of the prolyl-tRNA pool(s) of skin, maximum saturation obtained by the pool-flooding approach). The normalized skin ribosome amount does not, however, explain a selective effect of minocycline-treatment on collagen production as opposed to that for non-collagen protein, this selective effect measured as relative collagen production. To explain such selectivity, the inhibition of diabetes-induced excess skin collagenase activity seems unlikely. (This inference is based on results from a preliminary study indicating that recently [less than 2 h] synthesized collagen is not degraded by the excess collagenase in skin of diabetic rats). Thus, the principal collagen fraction acted on by pathologically excess collagenase might be collagen at a later stage (greater than 2 h after synthesis) in its life cycle. (Another possibility for the selective effect of minocycline on collagen production, as yet untested, is reduced intracellular procollagen degradation.) Overall, this is the first study aimed at discerning the mechanism(s) by which

  13. Playing With Time: Gay Intergenerational Performance Work and the Productive Possibilities of Queer Temporalities

    PubMed Central

    Farrier, Stephen

    2015-01-01

    This article examines the tendencies of LGBT intergenerational theater projects. By engaging with ideas of queer time, temporal drag, and the pervasive heteronormative imagery of heritability and inheritance, this article explores the possibility that LGBT intergenerational projects may generate some of the problems they aim to challenge. Through the lens of queer time, the article describes the normativity generated in LGBT intergenerational theater projects as a form of restrictive interpellation. The article explores the temporal complexities at play in such theater productions as The Front Room, a specific LGBT intergenerational theater project performed in the United Kingdom in 2011. The article concludes by noting some ways in which intergenerational theater projects might seek to work through the embodiment of the historical quotidian as a mode of resistance to normativity’s recirculation. PMID:26177263

  14. The green oat story: possible mechanisms of green color formation in oat products during cooking.

    PubMed

    Doehlert, D C; Simsek, S; Wise, M L

    2009-08-01

    Consumers occasionally report greenish colors generated in their oat products when cooking in tap water. Here we have investigated pH and ferrous (Fe(2+)) ion as possible mechanisms for this color change. Steel-cut oat groats can turn brown-green color when cooked in alkaline conditions (pHs 9 to 12). Extraction of this color with methanol, and high-pressure liquid chromatography indicated a direct association of this color with the phenolic acid or avenanthramide content of the oat. The presence of 50 mM NaHCO(3) in water will cause oat/water mixtures to turn alkaline when cooked as CO(2) is driven off, generating OH(-) ion. Although tap water rarely, if ever, contains so much bicarbonate, bicarbonate is used as a leavening agent in baking applications. Industrial interests using baking soda or alkaline conditions during oat processing should be aware of possible off color generation. We have also found that as little as 10 ppm Fe(2+) will turn oat products gray-green when cooked. The aleurone stained darker than the starchy endosperm. Other divalent cations, such as Ca(2+) or Mg(2+) had no effect on cooked oat color. As much as 50 ppm Fe(2+) may be found in freshly pumped well water, but Fe(2+) reacts quickly with oxygen and precipitates as Fe(OH)(3). Thus, some freshly pumped well water may turn oats green when cooked, but if the water is left under atmospheric conditions for several hours, no discoloration will appear in the cooked oats. PMID:19723227

  15. Formation of medical radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu in photonuclear reactions

    SciTech Connect

    Danagulyan, A. S.; Hovhannisyan, G. H. Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-15

    The possibility of the photonuclear production of radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes {sup 112,} {sup 118}Sn and Te and HfO{sub 2} of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes {sup 111}In and {sup 117}mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO{sub 2} of natural isotopic composition and leading to the formation of {sup 124}Sb and {sup 177}Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  16. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests.

    PubMed

    Ager, Alan A; Day, Michelle A; Vogler, Kevin

    2016-07-01

    We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. PMID:27033166

  17. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  18. Experience with a commercial kit for the radioisotopic assay of vitamin B12 in serum: the Phadebas B12 Test

    PubMed Central

    Raven, J. L.; Robson, M. B.

    1974-01-01

    The first commercial kit for the radioisotopic assay of vitamin B12 in serum—the Phadebas B12 Test produced higher values than the radioisotopic method of Raven, Robson, Walker, and Barkham (1969) and the Lactobacillus leichmannii microbiological assay. Its normal range was 300-1100 pg/ml and its reproducibility was similar to that of the other radioisotopic method. It should be possible to lower the results obtained by the Phadebas method by modifying its standard curve and to reduce the time taken for the assay by shortening its incubation period. PMID:4821096

  19. Radioisotope measurement of the velocity of tracheal mucus.

    PubMed

    Russo, K J; Palmer, D W; Beste, D J; Carl, G A; Belson, T P; Pelc, L R; Toohill, R J

    1985-04-01

    A radioisotope scanning technique for measuring the velocity of tracheal mucus has been developed utilizing a canine model. A solution of stannous phytate labeled with 99mTc is introduced percutaneously into the lower trachea and the upward movement of the leading edge of the radioactivity is followed by repeat scanning at 2-minute intervals using a modified rectilinear scanner, thus allowing calculation of the velocity of the mucus. It is believed that this technique may be of value in studying the effect of experimentally induced tracheal injuries on mucus velocity. Possible applications of the technique for the study of the velocity of mucus in the human trachea are discussed. PMID:3921912

  20. Presence of nitrate NO 3 a ects animal production, photocalysis is a possible solution

    NASA Astrophysics Data System (ADS)

    Barba-Molina, Heli; Barba-Ortega, J.; Joya, M. R.

    2016-02-01

    Farmers and ranchers depend on the successful combination of livestock and crops. However, they have lost in the production by nitrate pollution. Nitrate poisoning in cattle is caused by the consumption of an excessive amount of nitrate or nitrite from grazing or water. Both humans and livestock can be affected. It would appear that well fertilised pasture seems to take up nitrogen from the soil and store it as nitrate in the leaf. Climatic conditions, favour the uptake of nitrate. Nitrate poisoning is a noninfectious disease condition that affects domestic ruminants. It is a serious problem, often resulting in the death of many animals. When nitrogen fertilizers are used to enrich soils, nitrates may be carried by rain, irrigation and other surface waters through the soil into ground water. Human and animal wastes can also contribute to nitrate contamination of ground water. A possible method to decontaminate polluted water by nitrates is with methods of fabrication of zero valent iron nanoparticles (FeNps) are found to affect their efficiency in nitrate removal from water.

  1. RADIOISOTOPE INVENTORY FOR TSPA-SR

    SciTech Connect

    C. Leigh; R. Rechard

    2001-01-30

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR.

  2. NASA's Radioisotope Power Systems Program Status

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.

  3. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    SciTech Connect

    Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.; Milbrath, B. D.; Jordan, D. V.; Warren, G. A.; Wilmer, N. G.

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analyses of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.

  4. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  5. Self-reciprocating radioisotope-powered cantilever

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lal, Amit; Blanchard, James; Henderson, Douglass

    2002-07-01

    A reciprocating cantilever utilizing emitted charges from a millicurie radioisotope thin film is presented. The actuator realizes a direct collected-charge-to-motion conversion. The reciprocation is obtained by self-timed contact between the cantilever and the radioisotope source. A static model balancing the electrostatic and mechanical forces from an equivalent circuit leads to an analytical solution useful for device characterization. Measured reciprocating periods agree with predicted values from the analytical model. A scaling analysis shows that microscale arrays of such cantilevers provide an integrated sensor and actuator platform.

  6. New possibilities for the valorization of olive oil by-products.

    PubMed

    Herrero, Miguel; Temirzoda, Temirkhon N; Segura-Carretero, Antonio; Quirantes, Rosa; Plaza, Merichel; Ibañez, Elena

    2011-10-21

    In this contribution, the capabilities of pressurized liquid extraction (PLE) using food-grade solvents, such as water and ethanol, to obtain antioxidant extracts rich on polyphenolic compounds from olive leaves are studied. Different extraction conditions were tested, and the PLE obtained extracts were characterized in vitro according to their antioxidant capacity (using the DPPH radical scavenging and the TEAC assays) and total phenols amounts. The most active extracts were obtained with hot pressurized water at 200 °C (EC(50) 18.6 μg/mL) and liquid ethanol at 150 °C (EC(50) 27.4 μg/mL), attaining at these conditions high extraction yields, around 40 and 30%, respectively. The particular phenolic composition of the obtained extracts was characterized by LC-ESI-MS. Using this method, 25 different phenolic compounds could be tentatively identified, including phenolic acids, secoiridoids, hydroxycinnamic acid derivatives, flavonols and flavones. Among them, hydroxytyrosol, oleuropein and luteolin-glucoside were the main phenolic antioxidants and were quantified on the extracts together with other minor constituents, by means of a UPLC-MS/MS method. Results showed that using water as extracting agent, the amount of phenolic compounds increased with the extraction temperature, being hydroxytyrosol the main phenolic component on the water PLE olive leaves extracts, reaching up to 8.542 mg/g dried extract. On the other hand, oleuropein was the main component on the extracts obtained with ethanol (6.156-2.819 mg/g extract). Results described in this work demonstrate the good possibilities of using PLE as a useful technique for the valorization of by-products from the olive oil industry, such as olive leaves. PMID:21600577

  7. Possible energetic linkage between primary production and deep-sea benthic archaea: insight from biogeochemical lipidomics

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Ohkouchi, Naohiko

    2013-04-01

    Marine archaea have been recognized as a cosmopolitan player for global carbon and nitrogen cycles in the water column and sub-seafloor environments. Recent molecular evidence based on lipids and DNA suggests that uncultured benthic archaea dominate biomass in marine sediment, implying past primary production is a crucial factor for their presently ongoing heterotrophy (e.g., 1-4). Focusing on benthic archaeal heterotrophic processes in deep-sea sediment, we preliminarily traced 13C-signature in archaeal lipids to determine de novo and salvage pathway by in situ 13C-experiment. On the basis of the differential 13C-uptake, we suggest that benthic archaea recycles sedimentary relic membrane lipids to minimize the energy expenditure during 405 days (5). The 16S rRNA and quantitative PCR analysis indicated a community shift in the composition of the benthic archaeal community (e.g., Marine Group I, Marine Benthic Group, Miscellaneous Crenarchaeotic Group). In bacteria and eukarya, it is commonly recognized that free fatty acids are incorporated into cells and converted to acyl-CoA, which are eventually incorporated into membrane lipids as a salvage pathway (cf. 6). Considering the suggestion of salvage pathway in archaeal membrane synthesis (7,8), we discuss archaeal heterotrophic processes in terms of possible biogeochemical lipidomics. Reference [1] Biddle et al., (2006) PNAS, 103, 3846-3851. [2] Lipp et al., (2008) Nature, 454, 991-994. [3] Kallmeyer et al., (2012) PNAS, doi: 10.1073/pnas.1203849109 [4] Hinrichs and Inagaki, (2012) Science, 338, 204-205. [5] Takano et al., (2010) Nature Geosci., 3, 858-861. [6] Silbert et al., (1968) J Bacteriol., 95, 1658-1665. [7] Poulter et al., (1988) JACS, 110, 2620-2624. [8] Ohnuma et al., (1996) J Biochem., 119, 541-547.

  8. 78 FR 19713 - Possible Role of Independent Third Parties in Industry-Sponsored Tobacco Product Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... scientific evidence required for assessment and ongoing review of modified risk tobacco products (MRTPs... December 2011. In the report, entitled ``Scientific Standards for Studies on Modified Risk Tobacco Products'' (...

  9. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  10. [Application of radioisotopes for theranostics, a combination of diagnostics and therapy].

    PubMed

    Saji, Hideo

    2015-01-01

    Radioisotopes emit radiation with various characteristics. These characteristics have been used for various applications of radioisotopes in clinical fields. For example, diagnostic nuclear medicine is a technique that uses gamma-emitted radionuclides with high permeability into the body and can visualize changes in physiological and biochemical processes throughout the distributed and interrelated systems of living tissues and organs. Therapeutic nuclear medicine is a technique that uses beta-emitted radionuclides with high radiation damage to the cell and can be used for internal radiation therapy. Therefore, a strategy in which the same ligand is labeled with beta-emitted or gamma-emitted radioisotopes, i.e., a theranostics approach, is useful because an extensive availability of diagnostics and therapeutics is possible. In this presentation, some examples of a theranostics approach for radiolabeled compounds will be reported, including the results of our recent research. PMID:25832834

  11. Exploring the Possible Role That Solid Phase LNAPL Biodegradation End Products Have on Electrical Biogeophysical Signatures

    NASA Astrophysics Data System (ADS)

    Samuel, A. L.; McGuffy, C.; Slater, L. D.; Bekins, B. A.; Herkelrath, W. N.; Ntarlagiannis, D.; Atekwana, E. A.

    2013-12-01

    Prior biogeophysical research at sites contaminated by Light Non Aqueous Phase Liquid (LNAPL) has attributed electrical conductivity anomalies in the smear zone to increases in pore fluid specific conductance driven by the production of inorganic acids and associated mineral dissolution. However, data to support this interpretation are lacking and research at the Bemidji site suggests an alternative interpretation. Ongoing research at the National Crude Oil Spill Fate and Natural Attenuation Research Site in Bemidji, MN, provides an opportunity to study the biogeophysical signatures of a mature hydrocarbon spill with a unique supporting inventory of geochemical and hydrological data. Previous biogeophysical research at this site identified a strong magnetic susceptibility (MS) signal in the smear zone, primarily due to the presence of magnetite, which is presumably driven by biotic iron reduction processes associated with long-term natural attenuation. We hypothesize that it is possible that the conductivity enhancement previously observed at hydrocarbon sites is, at least in part driven by precipitation of metallic minerals in the smear zone. This process could also explain recently reported induced polarization anomalies observed in the smear zone at other sites. In order to test our hypothesis, a dense array of electrodes spanning a 5 m interval was installed in boreholes at two locations: [1] centered on the smear zone at a contaminated location (where oil pooling is known to be thickest); [2] centered on the water table at an uncontaminated location for control. We constructed arrays composed of 66 electrodes spaced between 7.5 and 10 cm apart in order to examine fine-scale resistivity and induced polarization structure of the smear zone. Electrical measurements were acquired using a Wenner-type configuration with multiple unit electrode spacings. Results from these arrays were compared with MS and magnetite concentration data from both borehole logs and cores

  12. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  13. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  14. ILLUSTRATIONS OF RADIOISOTOPES--DEFINITIONS AND APPLICATIONS.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    THIS PUBLICATION IS COMPOSED OF OVER 150 PAGES OF BLACK AND WHITE ILLUSTRATIONS DEALING WITH RADIOISOTOPES AND THEIR USES. THESE ILLUSTRATIONS CONSIST OF CHARTS, GRAPHS, AND PICTORIAL REPRESENTATIONS WHICH COULD BE PREPARED AS HANDOUTS, TRANSPARENCIES FOR OVERHEAD PROJECTION, OR WHICH COULD BE USED IN A NUMBER OF OTHER WAYS FOR PRESENTING SUCH…

  15. Safety monitoring system for radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Zoltan, A.

    1973-01-01

    System alerts personnel of hazards which may develop while they are performing tests on radioisotope thermoelectric generator (RTG). Remedial action is initiated to minimize damage. Five operating conditions are monitored: hot junction temperature, cold junction temperature, thermal shroud coolant flow, vacuum in test chamber, and alpha radiation.

  16. New data on cross-sections of deuteron induced nuclear reactions on gold up to 50 MeV and comparison of production routes of medically relevant Au and Hg radioisotopes

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Adam Rebeles, R.; Ignatyuk, A. V.

    2015-11-01

    Investigations of cross-sections of deuteron induced nuclear reactions on gold were extended up to 50 MeV by using the standard stacked foil irradiation technique and high resolution gamma-ray spectrometry. New cross-sections are reported for the 197Au(d,xn)197m,197g,195m,195g,193m,193gHg and 197Au(d,x)198m,198g,196m,196g,195,194Au nuclear reactions. The application for production of the medically relevant isotopes 198Au and 195m,195g,197m,197gHg is discussed, including the comparison with other charged particle induced production routes. The possible use of the 197Au(d,x)197m,197g,195m,193mHg and 196m,196gAu reactions for monitoring deuteron beam parameters is also investigated.

  17. Contributions and future of radioisotopes in medical, industrial and space applications

    SciTech Connect

    Tingey, G.L.; Dix, G.P.; Wahlquist, E.J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  18. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    DOE R&D Accomplishments Database

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  19. Radioisotope Thermoelectric Power Systems: Enabling Technology for European Space Exploration Missions

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Ambrosi, R. M.; Bannister, N. P.; Samara-Ratna, P.; Tinsley, T. P.; Rice, T.; Sarsfield, M. J.; Cordingley, L.; Slade, R.; Deacon, T.; Jorden, A.; Johnson, W.; Stephenson, K.

    2012-09-01

    Radioisotope power systems (RPS) have proved critical enablers for many of the most demanding space and planetary science missions. US systems, fuelled by 238Pu, have returned extraordinary science from missions such as the Pioneer and Voyager probes, Galileo (Jupiter) and Cassini (Saturn). At the time of writing, New Horizons and Mars Science Laboratory are en route to Pluto and Mars respectively and are equipped with Radioisotope Thermoelectric Generators (RTG). RPSs can provide electrical power to spacecraft systems independently of solar energy, permitting more capable and productive spacecraft and missions. Europe is focused on developing 241Am powered RPSs.

  20. Characteristics of exhaled particle production in healthy volunteers: possible implications for infectious disease transmission

    PubMed Central

    Wurie, Fatima

    2013-01-01

    The size and concentration of exhaled particles may influence respiratory infection transmission risk. We assessed variation in exhaled particle production between individuals, factors associated with high production and stability over time. We measured exhaled particle production during tidal breathing in a sample of 79 healthy volunteers, using optical particle counter technology. Repeat measurements (several months after baseline) were obtained for 37 of the 79 participants.   Multilevel linear regression models of log transformed particle production measures were used to assess risk factors for high production.  Stability between measurements over time was assessed using Lin’s correlation coefficients. Ninety-nine percent of expired particles were <1μm in diameter. Considerable variation in exhaled particle production was observed between individuals and within individuals over time. Distribution of particle production was right skewed.  Approximately 90% of individuals produce <150 particles per litre in normal breathing.  A few individuals had measurements of over 1000 particles per litre (maximum 1456). Particle production increased with age (p<0.001) and was associated with high tree pollen counts. Particle production levels did not remain stable over time [rho 0.14 (95%CI -0.10, 0.38, p=0.238)]. Sub-micron particles conducive to airborne rather than droplet transmission form the great majority of exhaled particles in tidal breathing. There is a high level of variability between subjects but measurements are not stable over time. Production increases with age and may be influenced by airway inflammation caused by environmental irritants. Further research is needed to determine whether the observed variations in exhaled particle production affect transmission of respiratory infection. PMID:24555026

  1. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  2. Sugarcane-based ethanol: production possibilities and trade implications for caribbean countries

    SciTech Connect

    Budhram, D.R.

    1986-01-01

    This study assesses the feasibility of producing and exporting fuel grade ethanol from two Caribbean countries, Jamaica and the Dominican Republic. Ethanol is produced from sugarcane by replacing current sugar production and exports, or by substituting increased sugarcane production for other domestic crops. Impacts on regional agricultural production, resource use and foreign trade are examined using a regional linear programming model. Principle findings are: (1) there are losses in export revenue when exports of ethanol replace sugar now shipped to the US and EEC quota markets; (2) there are higher export earnings when production and exports of ethanol replace previously exported molasses and sugar to the world market; (3) neither Jamaica nor the Dominican Republic have a comparative advantage vis-a-vis the US in feedgrain production; (4) expanding sugarcane area on pasture land for production and export of ethanol has a positive impact on employment and foreign exchange earnings; (5) increases in population reduce net foreign exchange earnings by inducing higher import expenditures for Jamaica and reducing exports from the Dominican Republic; and (6) changes in energy prices affect petroleum prices, production and transport costs, and comparative advantage, which together have opposite impacts on net foreign exchange earnings for Jamaica and the Dominican Republic.

  3. Sympathomimetic activity of a Hoodia gordonii product: a possible mechanism of cardiovascular side effects.

    PubMed

    Roza, Orsolya; Lovász, Norbert; Zupkó, István; Hohmann, Judit; Csupor, Dezső

    2013-01-01

    Hoodia gordonii, a popular appetite suppressant, is widely used as an ingredient in many food supplements despite the fact that supporting scientific evidence is scarce. Recently alarming side effects of H. gordonii products (increased blood pressure and elevated pulse rate) have been reported. The aim of our study was to elucidate the underlying mechanism of these symptoms. A H. gordonii-containing product was tested for sympathomimetic activity. Isolated organ experiments on rat uterine rings revealed smooth muscle relaxant effect with a substantial component mediated through β -adrenergic receptors. Chromatographic comparison of the analyzed product and authentic plant material confirmed that the herbal product contained Hoodia spp. extract, and its cardiovascular effects may be linked to the compounds of the plant. PMID:24307991

  4. A Study of the Possible Harmful Effects of Cosmetic Beauty Products on Human Health.

    PubMed

    Kaličanin, Biljana; Velimirović, Dragan

    2016-04-01

    The origins of the usage of different substances in beauty, skin, body, hair, and nails care products can be found in ancient times. To achieve better quality and enhance their effects, some additives such as preservatives, stabilizers, mineral pigments, dye, and shine were added to these products. Some of these substances may also have allergic, irritating, and harmful effects on human health. The aim of this study was the optimization of the potentiometric stripping analysis (PSA) for the purpose of determining the content of heavy metals (lead, cadmium, zinc), in some commercial cosmetic beauty products (lipsticks, lip glosses, eye shadows, and henna hair dye). In addition, in order to monitor the potential adverse effects of henna dye on hair quality, as well as the total body burden of heavy metals (Pb, Cd), the paper analyzed hair samples before and after henna dye treatment. Beauty products used for cosmetic purposes can have adverse effects to human health due to the fact that they contain lead, a highly toxic metal. The lead content in the tested samples varied depending on the additives used along with the method of production. The cosmetic products that were analyzed in this study contained a certain amount of zinc, which is an essential element, although its content above the prescribed limit may lead to side effects. Highly toxic metal, cadmium, was not detected in the tested samples. The presence of these metals in cosmetic products certainly indicate that it is necessary to monitor and determinate the content of toxic heavy metals in these products, especially because they are in direct contact with skin or mucous membranes and are often used in daily life. PMID:26296330

  5. Multi-Watt Small Radioisotope Thermoelectric Generator Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Determan, William R.; Otting, William; Frye, Patrick; Abelson, Robert; Ewell, Richard; Miyake, Bob; Synder, Jeff

    2007-01-01

    A need has been identified for a small, light-weight, reliable power source using a radioisotope heat source, to power the next generation of NASA's small surface rovers and exploration probes. Unit performance, development costs, and technical risk are key criteria to be used to select the best design approach. Because safety can be a major program cost and schedule driver, RTG designs should utilize the DOE radioisotope safety program's data base to the maximum extent possible. Other aspects important to the conceptual design include: 1) a multi-mission capable design for atmospheric and vacuum environments, 2) a module size based on one GPHS Step 2 module, 3) use of flight proven thermoelectric converter technologies, 4) a long service lifetime of up to 14 years, 5) maximize unit specific power consistent with all other requirements, and 6) be ready by 2013. Another critical aspect of the design is the thermal integration of the RTG with the rover or probe's heat rejection subsystem and the descent vehicle's heat rejection subsystem. This paper describes two multi-watt RTG design concepts and their integration with a MER-class rover.

  6. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  7. 77 FR 15839 - 2011 Generalized System of Preferences (GSP) Product Review: Inviting Public Comments on Possible...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... earlier in the 2011 GSP Annual Review. (See 76 FR 67531 and 77 FR 10034.) The last column in List I shows...) Potential revocation of competitive need limitations (CNL) waivers; (2) possible de minimis CNL waivers; and... revocation: Under Section 503(d)(5) of the 1974 Act, a CNL waiver remains in effect until the...

  8. Possible Mechanism of ``Additional'' Production of H^- in a Glow Discharge

    NASA Astrophysics Data System (ADS)

    Belostotskiy, S.; Economou, D.; Lopaev, D.; Rakhimova, T.

    2006-10-01

    Based on measurements of H^- and H densities a DC glow discharge in H2 (P=0.1-3 Torr) the rate coefficient of H^- production as a function of E/N was determined. To analyze the mechanisms of H^- production, a simple model of H2 vibrational excitation was developed. Estimations of vibrational level densities (v=3-5) obtained from VUV absorption measurements were in reasonable agreement with the calculated data. The analysis revealed that standard mechanisms of H^- production (dissociative attachment to vibrationally excited molecules H2(v) and molecules in Rydberg states H2(Ry)) were not enough to explain the experimental results. In order to describe both the shape (vs E/N) and the magnitude of the measured H^- production rate coefficient, an ``additional'' source of H^-, having a strong resonant electron attachment CS in the range of ˜5-9 eV, should be invoked. Although H2 has no resonances in the 5-9 eV range, water is known to strongly dissociatively attach in this range. Thus, even small amounts (0.1-1%) of water vapor in the apparatus can explain the origin of the ``additional'' H^- production. This result is corroborated by the work of Cadez et. al. in Proc. of XXVII ICPIG, 2005. This work was supported by the RFBR (No.05-02-17649a), Scientific School - 171113.2003.2 and NATO Collaborative Linkage Grant (No.980097).

  9. Possible Increase in Nitric Oxide Production by Lightning Discharges Due to Catalytic Effects of Ice Particles

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Beasley, William

    2011-01-01

    We address the question of whether ice crystals with habits typically encountered by lightning discharges may serve as catalysts for the production of NOx by lightning. If so, and if the effect is sufficiently large, it would need to be taken into account in estimates of global NOx production by lightning. In this study, we make a series of plausible assumptions about the temperatures and concentrations of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals could adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalyzed reactions at 2000 K, 3000 K, and 4000 K, temperatures observed in lightning channels during the cool-down period after a return stroke. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. The channel temperature stays around 2000 K for a longer period of time than at 4000 K. The longer residence time at 2000 K is sufficient to allow fresh reactants to participate in the mix in. Therefore, our results suggest that nearly three times as much NO per flash is produced by ice-catalyzed reactions as compared with uncatalyzed reactions.

  10. Possible Catalytic Effects of Ice Particles on the Production of NOx by Lightning Discharges

    NASA Technical Reports Server (NTRS)

    2010-01-01

    One mechanism by which NO(x) is produced in the atmosphere is heating in lightning discharge channels. Since most viable proposed electrification mechanisms involve ice crystals, it is reasonable to assume that lightning discharge channels frequently pass through fields of ice particles of various kinds. We address the question of whether ice crystals may serve as catalysts for the production of NO(x) by lightning discharges. If so, and if the effect is large, it would need to be taken into account in estimates of global NO(x) production by lightning. In this study, we make a series of plausible assumptions about the temperature and concentration of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals are able to adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalytic reactions at 2000 K, 3000 K, and 4000 K. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. 2010

  11. The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-01

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes 82Sr and 223,224Ra are also presented.

  12. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    SciTech Connect

    Panteleev, V. N. Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M.

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  13. Possibility of production of neutron-rich isotopes in transfer-type reactions at intermediate energies

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lukyanov, S. M.; Penionzhkevich, Yu. E.

    2008-08-15

    The production cross sections of neutron-rich isotopes of Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, and Ti in the multinucleon transfer reactions {sup 48}Ca(64 MeV/nucleon, 140 MeV/nucleon) + {sup 181}Ta and {sup 48}Ca(142 MeV/nucleon) + {sup nat}W are estimated. A good agreement of the calculated results with the available experimental data confirms the mechanism of multinucleon transfer at almost peripheral collisions at intermediate energies. The global trend of production cross section with the charge (mass) number of target in reactions with {sup 48}Ca beam is discussed for the future experiments.

  14. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol. PMID:18930392

  15. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect

    McCoy, J.C.; Becker, D.L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  16. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    NASA Astrophysics Data System (ADS)

    McCoy, John C.; Becker, David L.

    1996-03-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration's Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined.

  17. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  18. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    SciTech Connect

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun ({ge} 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe`s energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade.

  19. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  20. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    NASA Astrophysics Data System (ADS)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  1. Improving feed efficiency in dairy production systems – challenges and possibilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving production efficiency has always been a goal of animal agriculture to ensure an abundant food and fiber supply, and to maintain producer profitability. In recent decades, the concept of sustainable agriculture emerged, which includes the additional goals of safeguarding natural resources, ...

  2. 78 FR 16908 - 2012 Generalized System of Preferences (GSP) Product Review: Inviting Public Comments on Possible...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... 77 FR 44704 and 77 FR 76594.) The last column in List I shows those products for which petitions have... they previously exceeded the CNL thresholds; and (3) potential revocation of CNL waivers. FOR FURTHER... CNLs. CNL waiver revocation: Under Section 503(d)(5) of the 1974 Act, a CNL waiver remains in...

  3. Scaffolding for Creative Product Possibilities in a Design-Based STEM Activity

    ERIC Educational Resources Information Center

    Hathcock, Stephanie J.; Dickerson, Daniel L.; Eckhoff, Angela; Katsioloudis, Petros

    2015-01-01

    Creativity can and should play a role in students' science experiences. Beghetto ("Roeper Review" 29(4):265-270, 2007) suggested a framework for teachers to assist students in transforming their creative ideas into creative products. This framework involves taking time to listen to students' ideas, helping them recognize the constraints…

  4. Greenhouse gas balances in low-productive drained boreal peatlands - is climate-friendly management possible?

    NASA Astrophysics Data System (ADS)

    Ojanen, Paavo; Minkkinen, Kari; Heikkinen, Tiina; Penttilä, Timo

    2016-04-01

    Five million hectares of peatland has been drained for forestry in Finland. About 20% of that, i.e. one million hectares, has been estimated to be so low-productive that the profitability of keeping them in forestry is questionable. At the same time, drainage has introduced changes in the ecosystem functions of these peatlands, including fluxes of greenhouse gases. Options to manage such peatlands include for example 1) no measures, i.e. leaving the drained peatlands as they are 2) increasing intensity by e.g. repetitive fertilisations and 3) restoration back to functional peatlands. Here we estimate the greenhouse gas impacts of these three management options. We collected GHG and organic carbon flux data from 50 low-productive peatlands under these management options over two years 2014-2015. Gas fluxes (CO2, CH4, N2O) were measured with closed chambers. Litter production rates of different plants above and below ground were estimated using litter traps (trees), biomass sampling (roots), through-grow nets (mosses), allometric biomass models (other vasculars) and published turnover rates (roots, other vasculars). Characteristics for estimating tree stand biomass increment were measured at each site from circular sample plots. In this presentation we will estimate the GHG impacts for the different management options, and aim to find the most climate-friendly options for the management of low-productive peatlands in the short and long term. This work was funded by Life+ LIFE12/ENV/FI/150.

  5. NEW DIRECTIONS IN RADIOISOTOPE SPECTRUM IDENTIFICATION

    SciTech Connect

    Salaymeh, S.; Jeffcoat, R.

    2010-06-17

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  6. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  7. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    NASA Technical Reports Server (NTRS)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  8. Scaffolding for Creative Product Possibilities in a Design-Based STEM Activity

    NASA Astrophysics Data System (ADS)

    Hathcock, Stephanie J.; Dickerson, Daniel L.; Eckhoff, Angela; Katsioloudis, Petros

    2015-10-01

    Creativity can and should play a role in students' science experiences. Beghetto (Roeper Review 29(4):265-270, 2007) suggested a framework for teachers to assist students in transforming their creative ideas into creative products. This framework involves taking time to listen to students' ideas, helping them recognize the constraints of a task, and giving them multiple opportunities to think through and try their ideas. Ill-structured problems, such as those found in inquiry and engineering design activities, provide excellent opportunities for students to experience creative processing and express their creativity through product creation. These types of problems are typically challenging, but the use of appropriate questioning has been shown to assist students in solving problems. This multiple case study investigated the use of inquiry-based questioning as a means of supporting creativity within a design-based science, technology, engineering, and mathematics (STEM) activity. Findings suggest that groups facilitated by inquiry-based questioning strategies were better able to solve an ill-structured problem and achieved a more linear progression toward creative products than groups who were not facilitated by inquiry-based questions.

  9. Silver isotopic anomalies in iron meteorites - Cosmic-ray production and other possible sources

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1980-01-01

    Sources of excess Ag-107 observed in iron meteorites are investigated with emphasis on reactions of cosmic-ray particles with palladium. Cross sections for the production of the silver isotopes from palladium by energetic cosmic-ray particles are estimated to calculate spallogenic production rates relative to that of Mn-53 from iron. The upper limits for the production rates of Ag-107 and Ag-109 by energetic galactic cosmic-ray particles are 690 and 270 atoms/min/kg(Pd), respectively, and the maximum rate for making excess Ag-107 by spallation reactions is 400 atoms/min/kg(Pd). The excess Ag-107 cannot be produced by a long exposure to cosmic-ray particles, and because it is harder to make the amount of Pd-107 observed in the iron meteorites by an early intense proton irradiation than it is to make the Al-26 observed in other meteorites, it is concluded that the excess Ag-107 is due to the decay of nucleosynthetic Pd-107 in the iron meteorites.

  10. Acute Vitamin D Intoxication Possibly Due to Faulty Production of a Multivitamin Preparation

    PubMed Central

    Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Dizdarer, Ceyhun; Böber, Ece

    2013-01-01

    Vitamin D intoxication usually occurs as a result of inappropriate use of vitamin D preparations and can lead to life-threatening hypercalcemia. It is also known that there are a number of physicians who prescribe vitamin D supplements for various clinical conditions, such as poor appetite and failure to thrive. While inappropriate use of vitamin D supplements may lead to vitamin D intoxication, there are no reports of cases of vitamin D toxicity due to manufacturing errors of vitamin D preparations. Here, we present cases of hypervitaminosis D which developed following the use of a standard dose of a multivitamin preparation. All three cases presented with hypercalcemia symptoms and had characteristic laboratory findings such as hypercalcemia, hypercalciuria, low levels of parathyroid hormone. The very high serum 25(OH) vitamin D levels in these patients indicated vitamin D excess. The vitamin D level of the prescribed multivitamin preparation in the market was studied and was found to contain a very low level of vitamin D (10 IU/5 mL). Although the stated vitamin D content of the preparations ingested by these patients was not high, unproven but possible manufacturing errors were considered to be a possible cause of the hypervitaminosis D diagnosed in these three patients. Conflict of interest:None declared. PMID:23748070

  11. Behavioral externalities in natural resource production possibility frontiers: integrating biology and economics to model human-wildlife interactions.

    PubMed

    McCoy, N H

    2003-09-01

    Production possibility modeling has been applied to a variety of wildlife management issues. Although it has seen only limited employment in modeling human-wildlife output decisions, it can be expected that the theory's use in this area will increase as human interactions with and impacts on wildlife become more frequent. At present, most models applying production possibility theory to wildlife production can be characterized in that wildlife output quantities are determined by physically quantifiable functions representing rivalrous resources. When the theory is applied to human-wildlife interactions, it may not be sufficient to model the production tradeoffs using only physical constraints. As wildlife are known to respond to human presence, it could be expected that human activity may appear in wildlife production functions as an externality. Behavioral externalities are revealed by an output's response to the presence of another output and can result in a loss of concavity of the production possibilities frontier. Ignoring the potential of a behavioral externality can result in an unexpected and inefficient output allocation that may compromise a wildlife population's well-being. Behavioral externalities can be included in PPF models in a number of ways, including the use of data or cumulative effects modeling. While identifying that behavioral externalities exist and incorporating them into a model is important, correctly interpreting their implications will be critical to improve the efficiency of natural resource management. Behavioral externalities may cause a loss of concavity anywhere along a PPF that may compel managerial decisions that are inconsistent with multiple use doctrines. Convex PPFs may result when wildlife species are extremely sensitive to any level of human activity. It may be possible to improve the PPF's concavity by reducing the strength of the behavioral effect. Any change in the PPF that increases the convexity of the production set

  12. A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers

    NASA Technical Reports Server (NTRS)

    Lahav, N.; White, D. H.

    1980-01-01

    A model is proposed for the intermediate stages of prebiotic evolution, based on the characteristics of the adsorption and condensation of amino acids and nucleotides on the surface area of clay minerals in a fluctuating environment. Template replication and translation of adsorbed oligonucleotides and catalytic effects by peptide products on further condensation are proposed, due to specific properties of hypohydrous clay surfaces as well as the biomolecules themselves. Experimental evidence supports some of the proposed interactions, and all of them can be tested experimentally.

  13. Considerations in the fabrication, assembly, and testing of radioisotopic thermo-photovoltaic (RTPV) generators for future space missions

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Miller, Roger G.; Frazier, Timothy A.

    1996-03-01

    To increase energy output with a smaller size and mass than the radioisotopic thermoelectric generators (RTGs) that were previously used on deep space missions, a radioisotopic thermophotovoltaic (RTPV) system is being developed for the ``Pluto Express'' flyby mission. To minimize cost and development time, some facilities and components currently used for RTG production can be used to produce RTPVs. Production options also include out-sourcing and use of off-the-shelf hardware. Necessary modifications to tooling, production equipment, testing and shipping methods can be achieved in a timely manner so that the RTPV will be ready well before the planned launch of ``Pluto Express.''

  14. Downscaling of seasonal forecasts and possible application to hydro-power production forecasts in France

    NASA Astrophysics Data System (ADS)

    Dubus, L.; Berthelot, M.; Qu, Z.; Gailhard, J.

    2009-09-01

    Managing the power generation system at the scale of a country is a very complex problem which involves in particular climatic variables at different space and time scales. Air temperature and precipitation are among the most important ones, as they explain respectively an important part of the demand variability and the hydro power production capacity. If direct GCMs forecasts of local variables are not very skilful, specially over mid-latitudes, large scale fields such as geopotential height or mean sea level pressure show some positive skill over the North Atlantic / european region, that can be used to make local predictions of surface variables, using downscaling technics. In this study, we evaluated the 2m temperature and precipitation hindcasts of the DEMETER and ENSEMBLES systems on a number of hydrological basins in France. We used the University of Cantabria web portal for statistical downscaling, developed in the ENSEMBLES project, to downscale the most predictable large scale fields, and compared direct raw hindcasts with indirect downscaled hindcasts. Both direct and indirect hindcasts are then used in an hydrolocial model to evaluate their respective interest for hydro-power production forecasts.

  15. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  16. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease

    PubMed Central

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD. PMID:26587989

  17. The Green Oat Story: Possible Mechanisms of Green Color Formation in Oat Products During Cooking Color Changes in Cooked Oat Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumers occasionally report greenish colors generated in their oat products when cooking in tap water. Here we have investigated pH and ferrous (Fe2+) ion as possible mechanisms for this color change. Steel-cut oat groats can turn brown-green color when cooked in alkaline conditions (pH 9-12). Ext...

  18. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    SciTech Connect

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the help of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.

  19. Muramyl-dipeptide and its synthetic analog as possible inducers of interleukin-2 production

    SciTech Connect

    Malaitsev, V.V.; Andronova, T.M.; Bogdanova, I.M.; Sukhikh, G.T.

    1986-01-01

    This paper studies the action of muramyl-dipeptide (MDP) and its synthetic derivative N-acetylglucosaminyl-N-acetyl-muramyl-alanyl-D-isoglutamine (GMDP) on IL2 production in a population of BALB/c mouse spleen cells. Tritium-thymidine was added to the wells in the flat-bottomed culture panes and the radioactivity of the samples was measured on a scintillation beta-counter after deposition of material was precipitated with TCA on the filters. The supernatant of the culture of activated spleen cells, stimulated by MDP or GMDP induced a proliferative response of the con A blast cells. The effectiveness of the stimulating action of MDP and GMDP, and of the classical IL2 inducer, con A, was compared.

  20. The possibility of steam explosions for a misseated septifoil in the SRS K Production reactor

    SciTech Connect

    Allison, D.K.; Hyder, M.L.; Yau, W.W.F. ); Smith, D.C. )

    1992-01-01

    Control rods in the Savannah River Site's K-reactor are contained within housings composed of seven channels ( septifoils'). Each septifoil is suspended from the top of the reactor and is normally seated on an upflow pin that channels coolant to the septifoil. Forced flow to the septifoil would be eliminated in the unlikely event of a septifoil misseated upon installation, i.e., if the septifoil is not aligned with its upflow pin. If this event were not detected, control rod melting and the interaction of molten metal with water might occur. This paper describes a methodology used to address the issues of steam explosions that might arise by this mechanism. The probability of occurrence of a damaging steam explosion given a misseated septifoil was found to be extremely low. The primary reasons are: (1) the high probability that melting will not occur, (2) the possibility of material holdup by contact with the outer septifoil housing, (3) the relative shallowness of the pool of water into which molten material might fall, (4) the probable absence of a trigger, and (5) the relatively large energy release required to damage a nearby fuel assembly. The methodology is based upon the specification of conditions prevailing within the septifoil at the time molten material is expected to contact water, and upon information derived from the available experimental data base, supplemented by recent prototypic experiments.

  1. Possibilities of neural image analysis implementation in monitoring of microalgae production as a substrate for biogas plant

    NASA Astrophysics Data System (ADS)

    Cerbin, Slawomir; Nowakowski, Krzysztof; Dach, Jacek; Pilarski, Krzysztof; Boniecki, Piotr; Przybyl, Jacek; Lewicki, Andrzej

    2012-04-01

    The paper presents the possibilities of neural image analysis of microalgae content in the large-scale algae production for usage as a biomass. With the growing conflict between the culture produced both for feed and energetic purpose in Europe, the algae production seems to be very efficient way to produce the huge amount of biomass outside of conventional agronomy. However, for stable microalgae production the key point for culture management is the rapid estimation of algae population and assessment of its developmental stage. In traditional way the microalgae content is usually checked by the long microscopic analyses which cannot be used in large-scale industrial cultivation. Moreover, highly specialized personnel is required for algal determinations. So the main aim of this study is to estimate the possibility of usage of automatic image analysis of microalgae content made by artificial neural network. The preliminary results show that the selection of artificial neural network topology for the microalgae identification allowed for the selection and choice of teaching variables obtained by studying the image analysis. The selected neural model on the basis of data from computer image analysis allows to carry out the operations of algae identification and counting. On the basis of the obtained results of preliminary tests it is possible to count the algae on the photos. Additional information on their size and color allows to unlimited categorization.

  2. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method for detection of long-lived radioisotopes in small bio-chemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biologist host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  3. Diffusion and decay chain of radioisotopes in stagnant water in saturated porous media.

    PubMed

    Guzmán, Juan; Alvarez-Ramirez, Jose; Escarela-Pérez, Rafael; Vargas, Raúl Alejandro

    2014-09-01

    The analysis of the diffusion of radioisotopes in stagnant water in saturated porous media is important to validate the performance of barrier systems used in radioactive repositories. In this work a methodology is developed to determine the radioisotope concentration in a two-reservoir configuration: a saturated porous medium with stagnant water is surrounded by two reservoirs. The concentrations are obtained for all the radioisotopes of the decay chain using the concept of overvalued concentration. A methodology, based on the variable separation method, is proposed for the solution of the transport equation. The novelty of the proposed methodology involves the factorization of the overvalued concentration in two factors: one that describes the diffusion without decay and another one that describes the decay without diffusion. It is possible with the proposed methodology to determine the required time to obtain equal injective and diffusive concentrations in reservoirs. In fact, this time is inversely proportional to the diffusion coefficient. In addition, the proposed methodology allows finding the required time to get a linear and constant space distribution of the concentration in porous mediums. This time is inversely proportional to the diffusion coefficient. In order to validate the proposed methodology, the distributions in the radioisotope concentrations are compared with other experimental and numerical works. PMID:24814719

  4. Method for detection of long-lived radioisotopes in small biochemical samples

    DOEpatents

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-11-22

    Disclosed is a method for detection of long-lived radioisotopes in small biochemical samples, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biologist host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figs.

  5. Changes in Quartz During Heating and the Possible Effects on Si Production

    NASA Astrophysics Data System (ADS)

    Ringdalen, Eli

    2015-02-01

    In Si and FeSi production, the main Si source is SiO2, in the form of quartz. Reactions with SiO2 generate SiO gas that further reacts with SiC to Si. During heating, quartz will transform to other SiO2 modifications with cristobalite as the stable high-temperature phase. Transformation to cristobalite is a slow process. Its rate has been investigated for several industrial quartz sources and has been shown to vary considerably among the different quartz types. Other differences in behavior during heating between these quartz sources, such as softening temperature and volume expansion, have also been studied. The quartz-cristobalite ratio will affect the rate of reactions involving SiO2. The industrial consequences and other implications of the observed difference between quartz types are discussed. Initial studies of industrial quartz were published by Ringdalen et al. In the current work, a new experimental method has been developed, and an investigation of several new quartz sources has confirmed the earlier observed large variation between different sources. The repeatability of the data has been studied and the effect of gas atmosphere investigated. The results from the earlier work are included as a basis for the discussion.

  6. Entropy Production of Entirely Diffusional Laplacian Transfer and the Possible Role of Fragmentation of the Boundaries

    NASA Astrophysics Data System (ADS)

    Karamanos, K.; Mistakidis, S. I.; Massart, T. J.; Mistakidis, I. S.

    2015-06-01

    The entropy production and the variational functional of a Laplacian diffusional field around the first four fractal iterations of a linear self-similar tree (von Koch curve) is studied analytically and detailed predictions are stated. In a next stage, these predictions are confronted with results from numerical resolution of the Laplace equation by means of Finite Elements computations. After a brief review of the existing results, the range of distances near the geometric irregularity, the so-called "Near Field", a situation never studied in the past, is treated exhaustively. We notice here that in the Near Field, the usual notion of the active zone approximation introduced by Sapoval et al. [M. Filoche and B. Sapoval, Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett. 84(25) (2000) 5776;1 B. Sapoval, M. Filoche, K. Karamanos and R. Brizzi, Can one hear the shape of an electrode? I. Numerical study of the active zone in Laplacian transfer, Eur. Phys. J. B. Condens. Matter Complex Syst. 9(4) (1999) 739-753.]2 is strictly inapplicable. The basic new result is that the validity of the active-zone approximation based on irreversible thermodynamics is confirmed in this limit, and this implies a new interpretation of this notion for Laplacian diffusional fields.

  7. Detection of chlorodifluoroacetic acid in precipitation: A possible product of fluorocarbon degradation

    SciTech Connect

    Martin, J.W.; Franklin, J.; Hanson, M.L.; Solomon, K.R.; Mabury, S.A.; Ellis, D.A.; Scott, B.F.; Muri, D.C.G.

    2000-01-15

    Chlorodiffluoroacetic acid (CDFA) was detected in rain and snow samples from various regions of Canada. Routine quantitative analysis was performed using an in-situ derivatization technique that allowed for the determination of CDFA by GC-MS of the anilide derivative. Validation of environmental CDFA was provided by strong anionic exchange chromatography and detection by {sup 19}F NMR. CDFA concentrations ranges from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations ranged from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations in rain event samples showed a seasonal trend between June and November 1998, peaking in late summer and decreasing in the fall for Guelph and Toronto sites. Preliminary toxicity tests with the aquatic macrophytes Myriophyllum sibiricum and Myriophyllum spicatum suggest that CDFA does not represent a risk of acute toxicity to these aquatic macrophytes at current environmental concentrations. A degradation study suggests that CDFA is recalcitrant to biotic and abiotic degradation relative to dichloroacetic acid (DCA) and may accumulate in the aquatic environment. On the basis of existing experimental data, the authors postulate that CDFA is a degradation product of CFC-113 and, to a lesser extent, HCFC-142b. If CFC-113 is a source, its ozone depletion potential may be lower than previously assumed. Further work is required to identify alternative atmospheric and terrestrial sources of CDFA.

  8. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOEpatents

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  9. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was

  10. Space radioisotope power source requirements update and technology status

    SciTech Connect

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decision will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime

  11. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  12. Radioisotope thermoelectric generator transport trailer system

    NASA Astrophysics Data System (ADS)

    Ard, Kevin E.; King, David A.; Leigh, Harley; Satoh, Juli A.

    1995-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware.

  13. Performance tuned radioisotope thermophotovoltaic space power system

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  14. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  15. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  16. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  17. Cooling radioisotope thermoelectric generators in the Shuttle

    NASA Technical Reports Server (NTRS)

    Norman, R. M.

    1978-01-01

    Radioisotope thermoelectric generators (RTG) to be used on future spacecraft and launched by the Shuttle must be cooled from the time they are installed and enclosed until the spacecraft is deployed from the Shuttle. A special Cooling Kit maintains their temperature well below critical by circulating water through the coils soldered to them and through a heat exchanger that boils water and externally discharges the resulting steam. The RTG Cooling Kit, including its support frame, if fully charged with about 64 kg of evaporation water, will increase the Shuttle launch mass by about 200 kg.

  18. Using AQUACROP to model the impacts of future climates on crop production and possible adaptation strategies in Sardinia and Tunisia

    NASA Astrophysics Data System (ADS)

    Bird, Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; La Jeunesse, Isabelle; Meyer, Swen; Soddu, Antonino; Woess-Gallasch, Susanne

    2014-05-01

    A work package in the FP-7 funded CLIMB Project - Climate Induced Changes on the Hydrology of Mediterranean Basins Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System had the goal of assessing socioeconomic vulnerability in two super-sites in future climates (2040-2070). The work package had deliverables to describe of agricultural adaptation measures appropriate to each site under future water availability scenarios and assess the risk of income losses due to water shortages in agriculture. The FAO model AQUACROP was used to estimate losses of agricultural productivity and indicate possible adaptation strategies. The presentation will focus on two interesting crops which show extreme vulnerability to expected changes in climate; irrigated lettuce in Sardinia and irrigated tomatoes in Tunisia. Modelling methodology, results and possible adaptation strategies will be presented.

  19. Thermophotovoltaic Converter Performance for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Chubb, Donald L.

    2005-02-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion for Radioisotope Power Systems (RPS) for spacecraft. TPV power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than Si solar cells. Spectral control, through choices of selective radiant emitters, TPV modules, and filters, is key to high-efficiency operation. This paper describes performance tests of an array of TPV cells with boundary conditions prototypical of an RPS. TPV performance tests were conducted at prototypical array size (≅100 cm2), emitter temperature (1350 K), and heat rejection temperature (300 K). Test hardware included InGaAs TPV cells at 0.60 eV band-gap, with tandem plasma/interference filters for spectral control. At the target emitter temperature of 1350 K, a conversion efficiency of 19% has been demonstrated for the TPV module. Results are consistent with measured cell efficiency (28%), calculated spectral control efficiency (80%), and calculated thermal efficiency in the optical cavity (90%).

  20. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.

    2004-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  1. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  2. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    SciTech Connect

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  3. On the potential of a chemical Bonds: Possible effects of steroids on home run production in baseball

    NASA Astrophysics Data System (ADS)

    Tobin, R. G.

    2008-01-01

    In recent years several baseball players have hit a remarkable number of home runs, and there has been speculation that their achievements were enhanced by the use of anabolic steroids. Basic mechanics and physiology, combined with simple but reasonable models, show that steroid use by a player who is already highly skilled could produce such dramatic increases in home run production. Because home runs are relatively rare events on the tail of a batter's range distribution, even modest changes in bat speed can increase the proportion of batted balls that result in home runs by 50-100%. The possible effect of steroid use by pitchers is briefly considered.

  4. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  5. [Possible causes of unspecific reduced productivity in dairy herds in SchIeswig-Holstein: an explorative case-control study].

    PubMed

    Campe, Amely; Hohmeier, Stefan; Koesters, Sarah; Hartmann, Maria; Ruddat, Inga; Mahlkow-Nerge, Katrin; Heilemann, Martin

    2016-01-01

    Recently unspecific productivity losses were observed in dairy herds in Schleswig Holstein, Germany. This case-control study on cattle health investigated the possible association between a multifactorial event and the occurrence of unspecific productivity losses. 35 dairy farms were defined as cases and 65 farms as controls, when they met two out of three eligibility criteria, respectively (cell count, mortality and life production of cows). Case farms had relevantly more often problems with forage collection (too low cutting height), feed storage (no foil used), and energy supply of dairy cattle (insufficient feeding of corn silage and lowered energy content of grass silage). Case farms had relevantly more often dirty lying areas, feeding and walking alleys, feed bunks and watering places as well as more cows with dirty udders, flanks and legs than control farms. Farm individual self-control as well as veterinarian and agricultural consultancy should focus on these management areas. Furthermore, the health situation should be checked regularly on an individual animal level for diseases of the locomotor (especially by intensifying claw care), metabolic and reproductive systems. Additionally, 22 so-called intermediate farms with considerable herd health problem during the study period were investigated for possible exogenous influences on the farm performance. There were no indications for influences by the soil type, weather conditions at harvesting or wild bird occurrence on cropland, which might be as well due to the explorative nature of the study. However, herd health problems were apparent in case and intermediate farms more often and more diversely than in control farms. PMID:27169149

  6. Thermophotovoltaic Converter Design for Radioisotope Power Systems

    SciTech Connect

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Murray, Christopher

    2004-02-04

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion. Thermophotovoltaic power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than solar cells. Spectral control, including selective emitters, TPV module, and filters, are key to high-efficiency operation. This paper outlines the mechanical, thermal, and optical designs for the converter, including the heat source, the selective emitter, filters, photovoltaic (PV) cells, and optical cavity components. Focus is on the emitter type and the band-gap of InGaAs PV cells in developing the design. Any component and converter data available at the time of publication will also be presented.

  7. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  8. Induced radioisotopes in a linac treatment hall.

    PubMed

    Vega-Carrillo, Héctor René; de Leon-Martinez, Héctor Asael; Rivera-Perez, Esteban; Luis Benites-Rengifo, Jorge; Gallego, Eduardo; Lorente, Alfredo

    2015-08-01

    When linacs operate above 8MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect. The third category of spectrum has mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation in the linac components, the concrete walls and in the patient body. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. PMID:25989748

  9. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect

    Campbell, R.; Klein, J.

    1989-01-01

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  10. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.