Science.gov

Sample records for radiological protection problemas

  1. 5.3 Applied Radiological Protection

    NASA Astrophysics Data System (ADS)

    Almén, A.; Valentin, J.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.3 Applied Radiological Protection' of the Chapter '5 Medical Radiological Protection' with the contents:

  2. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses. PMID:26913507

  3. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included. (KRM)

  4. History and Organizations for Radiological Protection

    PubMed Central

    2016-01-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection. PMID:26908987

  5. History and Organizations for Radiological Protection.

    PubMed

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection. PMID:26908987

  6. Ethical foundations of the radiological protection system.

    PubMed

    Cho, K W

    2016-06-01

    The International Commission on Radiological Protection (ICRP) has established Task Group 94 under Committee 4 to develop a report on the ethical foundations of the system of radiological protection. The aim of this report is to consolidate the basis of ICRP recommendations, to improve understanding of the system, and to provide a basis for communication on radiation risk and its perception. Through a series of workshops organised by the Commission in cooperation with the International Radiation Protection Association and its associate societies involving radiological protection professionals and specialists of ethics around the world, Task Group 94 has identified the key ethical and social values underpinning the system of radiological protection. The purpose of eliciting the ethical principles and values of the radiological protection system is not only to clarify the rationale for recommendations made by the Commission, but also to assist in discussions related to its practical implementation. A clear understanding of the ethical principles will help resolve dilemmas caused by potential conflicts in actions that might be considered, or decisions that must be made. PMID:26980798

  7. 5.2 Conceptual Radiological Protection and International Recommendations

    NASA Astrophysics Data System (ADS)

    Almén, A.; Valentin, J.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.2 Conceptual Radiological Protection and International Recommendations' of the Chapter '5 Medical Radiological Protection' with the contents:

  8. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for radiological protection. 72.126 Section 72... WASTE General Design Criteria § 72.126 Criteria for radiological protection. (a) Exposure control... radiation exposure. (b) Radiological alarm systems. Radiological alarm systems must be provided...

  9. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The book covers all the basic concepts concerned with minimizing the radiation dose to patients, parents, and personnel, while producing radiographic studies of diagnostic quality. Practical information about tissues at risk, radiation risks specific to children, performance of radiographic and fluoroscopic examination, gonadal protection, pregnancy, immobilization of children, mobile radiography, and equipment considerations including those pertaining to computed tomography and dental radiography are given. (KRM)

  10. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  11. Guidelines for selection of radiological protective head covering

    SciTech Connect

    Galloway, G.R. Jr.

    1995-08-01

    The hood is recognized throughout the nuclear industry as the standard radiological protective head covering for use in radioactively contaminated work environments. As of June 15, 1995, hoods were required for all activities performed in contaminated areas at the Y-12 Plant. The use of hoods had historically been limited to those radiological activities with a high potential for personnel contamination. Due to the large size of many posted contaminated areas at the Y-12 Plant, and compounding safety factors, requirements for the use of hoods are being reevaluated. The purpose of the evaluation is to develop technically sound guidelines for the selection of hoods when prescribing radiological protective head covering. This report presents the guidelines for selection of radiological protective hoods.

  12. Evolution of the Radiological Protection System and its Implementation.

    PubMed

    Lazo, Edward

    2016-02-01

    The International System of Radiological Protection, developed, maintained, and elaborated by the International Commission on Radiological Protection (ICRP) has, for the past 50 y, provided a robust framework for developing radiological protection policy, regulation, and application. It has, however, been evolving as a result of experience with its implementation, modernization of social awareness of a shrinking world where the Internet links everyone instantly, and increasing public interest in safety-related decisions. These currents have gently pushed the ICRP in recent years to focus more sharply on particular aspects of its system: optimization, prevailing circumstances, the use of effective dose and aspects of an individual's risk, and consideration of the independent implementation of the international system's elements. This paper will present these issues and their relevance to the ICRP system of protection and its evolution. The broader framework of radiological protection (e.g., science, philosophy, policy, regulation, implementation), of which the ICRP is an important element, will provide a global, equally evolving context for this characterization of the changing ICRP system of radiological protection. PMID:26717167

  13. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. PMID:25816279

  14. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology.

    PubMed

    Mori, Hiroshige

    2015-06-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses' annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units' pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses. PMID:26052718

  15. Ethical foundations of environmental radiological protection.

    PubMed

    Oughton, D H

    2016-06-01

    Assessing the potential ecological impact of ionising radiation raises a number of ethical questions. These include fundamental questions such as what exactly constitutes harming the environment, and how the environment should be valued, as well as links to political protection principles such as sustainability and biodiversity. Starting from developments within ecological risk assessment, this paper summarises some of the ethical issues concerning the protection of the environment from radiation. Chapter 2 gives a brief overview of different philosophical and cultural world views on valuing the environment in a context of radiation risk. Chapter 3 addresses some recent challenges to proposed environmental protection frameworks, including practical applications following the Chernobyl and Fukushima accidents, and some scientific developments such as the ecosystem approach. Finally, Chapter 4 offers some recommendations on how ethical evaluation can help produce a more robust and transparent approach to the protection of the environment. In conclusion, there is a need for a holistic evaluation of the environmental impacts of ionising radiation that not only considers the direct consequences on the health of humans and non-human species, but also the more complex social, ethical, and economic consequences of both human and non-human exposures. PMID:27048755

  16. Hanford Radiological Protection Support Services Annual Report for 1998

    SciTech Connect

    DE Bihl; JA MacLellan; ML Johnson; RK Piper; TP Lynch

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  17. Hanford Radiological Protection Support Services Annual Report for 2000

    SciTech Connect

    Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

    2001-05-07

    During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

  18. Importance of establishing radiation protection culture in Radiology Department

    PubMed Central

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-01-01

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  19. Importance of establishing radiation protection culture in Radiology Department.

    PubMed

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  20. Synchrotron radiation shielding design and ICRP radiological protection quantities.

    PubMed

    Bassey, Bassey; Moreno, Beatriz; Chapman, Dean

    2015-06-01

    Protection and operational quantities as defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU) are the two sets of quantities recommended for use in radiological protection for external radiation. Since the '80s, the protection quantities have evolved from the concept of dose equivalent to effective dose equivalent to effective dose, and the associated conversion coefficients have undergone changes. In this work, the influence of three different versions of ICRP photon dose conversion coefficients in the synchrotron radiation shielding calculations of an experimental enclosure has been examined. The versions are effective dose equivalent (ICRP Publication 51), effective dose (ICRP Publication 74), and effective dose (ICRP Publication 116) conversion coefficients. The sources of the synchrotron radiation white beam into the enclosure were a bending magnet, an undulator and a wiggler. The ranges of photons energy from these sources were 10-200 keV for the bending magnet and undulator, and 10-500 keV for the wiggler. The design criterion aimed a radiation leakage less than 0.5 µSv h(-1) from the enclosure. As expected, larger conversion coefficients in ICRP Publication 51 lead to higher calculated dose rates. However, the percentage differences among the calculated dose rates get smaller once shielding is added, and the choice of conversion coefficients set did not affect the final shielding decision. PMID:25906251

  1. Hanford radiological protection support services annual report for 1988

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1989-06-01

    The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

  2. Hanford radiological protection support services annual report for 1987

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1988-08-01

    This report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1987 by Pacific Northwest Laboratory in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standards or industry committees are also discussed. The programs covered provide services in the areas of: external dosimetry, internal dosimetry, in vivo measurements, instrument calibration and evaluation, calibration of radiation sources traceable to the National Bureau of Standards, and radiological records. 21 refs., 10 figs., 12 tabs.

  3. Hanford radiological protection support services annual report for 1990

    SciTech Connect

    Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Freolich, T J; Leonowich, J A; Lynch, T P

    1991-07-01

    Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs.

  4. Hanford radiological protection support services annual report for 1994

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Olsen, P.C.

    1995-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

  5. Hanford radiological protection support services annual report for 1997

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  6. Hanford radiological protection support services. Annual report for 1995

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  7. Hanford radiological protection support services annual report for 1989

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.

    1990-07-01

    Certain sitewide radiation protection services operated by Pacific Northwest Laboratory for the US Department of Energy-Richland Operations office and Hanford contractor are documented in this annual report on these services provided during calendar year 1989. These activities include internal dosimetry, in vivo measurements, external dosimetry, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. In each case the routine program, program changes, associated tasks, investigations, and studies, as well as related publications, presentations, and other professional activities are discussed as applicable. 26 refs., 19 figs., 18 tabs.

  8. Hanford Radiological Protection Support Services annual report for 1992

    SciTech Connect

    Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Froelich, T J; Lynch, T P

    1993-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  9. Hanford Radiological Protection Support Services annual report for 1993

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

    1994-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  10. Hanford radiological protection support services annual report for 1991

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Leonwich, J.A.; Lynch, T.P.

    1992-07-01

    Various Hanford sitewide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy, Richland Field Office and Hanford contractors are described In this annual report for calendar year 1991. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable.

  11. Hanford radiological protection support services annual report for 1996

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  12. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. PMID:25816274

  13. TECHNICAL SUPPORT FOR RADIOLOGICAL EMERGENCY PROTECTION ACTION RECOMMENDATIONS

    EPA Science Inventory

    RPD staff provide techical support for other EPA offices, other Federal departments and agencies and to state and local governments in preparing for and responding to radiological and nuclear emergencies under the National Response Framework's Nuclear/Radiological Incident Annex....

  14. Probability of causation: Implications for radiological protection and dose limitation

    SciTech Connect

    Fabrikant, J.I.

    1987-05-01

    This report on the probability of causation of radiation-induced cancer is an attempt to bring together biology, chemistry, physics and statistics to calculate a value in the form of a ratio expressed as a percentage. In involves the interactions of numerous cancer risk factors, and all are fraught with technical difficulties and uncertainties. It is a computational approach to a societal problem that should be resolved in the political arena by men and women of government and law. But, it must be examined, because at the present, we have no reasonable method to explain the complexity of the mechanism of radiation-induced cancer and the probability of injury to an individual exposed in the past to ionizing radiation, and because society does not know how to compensate such a person who may have been injured by radiation, and particularly low-level radiation. Five questions are discussed that concern probability of causation of radiation-induced cancer. First, what is it and how can we best define the concept? Second, what are the methods of estimation and cancer causation? Third, what are the uncertainties involved? Fourth, what are the strengths and limitation of the computational approach? And fifth, what are the implications for radiological protection and dose-limitation?

  15. Probability of causation: Implications for radiological protection and dose limitation

    SciTech Connect

    Fabrikant, J.I.

    1987-05-01

    This report on the probability of causation of radiation-induced cancer is an attempt to bring together biology, chemistry, physics and statistics to calculate a value in the form of a ratio expressed as a percentage. In involves the interactions of numerous cancer risk factors, and all are fraught with technical difficulties and uncertainties. It is a computational approach to a societal problem that should be resolved in the political arena by men and women of government and law. But, it must be examined, because at the present, we have no reasonable method to explain the complexity of the mechanism of radiation-induced cancer and the probability of injury to an individual exposed in the past to ionizing radiation, and because society does not know how to compensate such a person who may have been injured by radiation, and particularly low-level radiation. Five questions are discussed that concern probability of causation of radiation-induced cancer. First, what is it and how can we best define the concept Second, what are the methods of estimation and cancer causation Third, what are the uncertainties involved Fourth, what are the strengths and limitation of the computational approach And fifth, what are the implications for radiological protection and dose-limitation

  16. Hanford Radiological Protection Support Services Annual Report for 1999

    SciTech Connect

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-05-19

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  17. Application of radiological protection measures to meet different environmental protection criteria.

    PubMed

    Copplestone, D

    2012-01-01

    The International Commission on Radiological Protection (ICRP) recognises that there is no simple or single universal definition of 'environmental protection', and that the concept differs from country to country and from one circumstance to another. However, there is an increasing need to be able to demonstrate that the environment is protected from radioactive substances released under authorisation for various reasons, such as for wildlife conservation requirements, or wildlife management for commercial reasons, or simply as part of pollution control. The Commission is developing the concept of Representative Organisms, which may be identified from any specific legal requirements or from more general requirements to protect local habitats or ecosystems. Such organisms may be the actual objects of protection or they may be hypothetical, depending on the objectives of the assessment. They may be similar to, or even congruent with, one or more of the Reference Animals and Plants (RAPs). Where this is not the case, attempts can be made to consider the extent to which the Representative Organisms differ from the nearest RAP in terms of known radiation effects upon it, basic biology, radiation dosimetry, and pathways of exposure. This paper discusses the practical implications of such an approach. PMID:23089025

  18. Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection.

    PubMed

    Valentin, J

    2005-01-01

    This report responds to a widely perceived need for professional advice on radiological protection measures to be undertaken in the event of a radiological attack. The report, which is mainly concerned with possible attacks involving 'radioactive dispersion devices', re-affirms the applicability of existing ICRP recommendations to such situations, should they ever occur. Many aspects of the emergency scenarios expected to arise in the event of a radiological attack may be similar to those that experience has shown can arise from radiological accidents, but there may also be important differences. For instance, a radiological attack would probably be targeted at a public area, possibly in an urban environment, where the presence of radiation is not anticipated and the dispersion conditions commonly assumed for a nuclear or radiological emergency, such as at a nuclear installation, may not be applicable. First responders to a radiological attack and other rescuers need to be adequately trained and to have the proper equipment for identifying radiation and radioactive contamination, and specialists in radiological protection must be available to provide advice. It may be prudent to assume that radiological, chemical, and/or biological agents are involved in an attack until it is proven otherwise. This calls for an 'all-hazard' approach to the response. In the aftermath of an attack, the main aim of radiological protection must be to prevent the occurrence of acute health effects attributable to radiation exposure (termed 'deterministic' effects) and to restrict the likelihood of late health effects (termed 'stochastic' effects) such as cancers and some hereditable diseases. A supplementary aim is to minimise environmental contamination from radioactive residues and the subsequent general disruption of daily life. The report notes that action taken to avert exposures is a much more effective protective measure than protective measure the provision of medical treatment

  19. Application of the diagnostic radiological index of protection to protective garments

    SciTech Connect

    Pasciak, Alexander S.; Jones, A. Kyle; Wagner, Louis K.

    2015-02-15

    Purpose: Previously, the diagnostic radiological index of protection (DRIP) was proposed as a metric for quantifying the protective value of radioprotective garments. The DRIP is a weighted sum of the percent transmissions of different radiation beams through a garment. Ideally, the beams would represent the anticipated stray radiation encountered during clinical use. However, it is impractical to expect a medical physicist to possess the equipment necessary to accurately measure transmission of scattered radiation. Therefore, as a proof of concept, the authors tested a method that applied the DRIP to clinical practice. Methods: Primary beam qualities used in interventional cardiology and radiology were observed and catalogued. Based on the observed range of beam qualities, five representative clinical primary beam qualities, specified by kV and added filtration, were selected for this evaluation. Monte Carlo simulations were performed using these primary beams as source definitions to generate scattered spectra from the clinical primary beams. Using numerical optimization, ideal scatter mimicking primary beams, specified by kV and added aluminum filtration, were matched to the scattered spectra according to half- and quarter-value layers and spectral shape. To within reasonable approximation, these theoretical scatter-mimicking primary beams were reproduced experimentally in laboratory x ray beams and used to measure transmission through pure lead and protective garments. For this proof of concept, the DRIP for pure lead and the garments was calculated by assigning equal weighting to percent transmission measurements for each of the five beams. Finally, the areal density of lead and garments was measured for consideration alongside the DRIP to assess the protective value of each material for a given weight. Results: The authors identified ideal scatter mimicking primary beams that matched scattered spectra to within 0.01 mm for half- and quarter-value layers in

  20. Focal role of tolerability and reasonableness in the radiological protection system.

    PubMed

    Schneider, T; Lochard, J; Vaillant, L

    2016-06-01

    The concepts of tolerability and reasonableness are at the core of the International Commission on Radiological Protection (ICRP) system of radiological protection. Tolerability allows the definition of boundaries for implementing ICRP principles, while reasonableness contributes to decisions regarding adequate levels of protection, taking into account the prevailing circumstances. In the 1970s and 1980s, attempts to find theoretical foundations in risk comparisons for tolerability and cost-benefit analysis for reasonableness failed. In practice, the search for a rational basis for these concepts will never end. Making a wise decision will always remain a matter of judgement and will depend on the circumstances as well as the current knowledge and past experience. This paper discusses the constituents of tolerability and reasonableness at the heart of the radiological protection system. It also emphasises the increasing role of stakeholder engagement in the quest for tolerability and reasonableness since Publication 103. PMID:27012845

  1. Radiological Protection in Cone Beam Computed Tomography (CBCT). ICRP Publication 129.

    PubMed

    Rehani, M M; Gupta, R; Bartling, S; Sharp, G C; Pauwels, R; Berris, T; Boone, J M

    2015-07-01

    The objective of this publication is to provide guidance on radiological protection in the new technology of cone beam computed tomography (CBCT). Publications 87 and 102 dealt with patient dose management in computed tomography (CT) and multi-detector CT. The new applications of CBCT and the associated radiological protection issues are substantially different from those of conventional CT. The perception that CBCT involves lower doses was only true in initial applications. CBCT is now used widely by specialists who have little or no training in radiological protection. This publication provides recommendations on radiation dose management directed at different stakeholders, and covers principles of radiological protection, training, and quality assurance aspects. Advice on appropriate use of CBCT needs to be made widely available. Advice on optimisation of protection when using CBCT equipment needs to be strengthened, particularly with respect to the use of newer features of the equipment. Manufacturers should standardise radiation dose displays on CBCT equipment to assist users in optimisation of protection and comparisons of performance. Additional challenges to radiological protection are introduced when CBCT-capable equipment is used for both fluoroscopy and tomography during the same procedure. Standardised methods need to be established for tracking and reporting of patient radiation doses from these procedures. The recommendations provided in this publication may evolve in the future as CBCT equipment and applications evolve. As with previous ICRP publications, the Commission hopes that imaging professionals, medical physicists, and manufacturers will use the guidelines and recommendations provided in this publication for implementation of the Commission's principle of optimisation of protection of patients and medical workers, with the objective of keeping exposures as low as reasonably achievable, taking into account economic and societal factors, and

  2. Radiological protection issues arising during and after the Fukushima nuclear reactor accident.

    PubMed

    González, Abel J; Akashi, Makoto; Boice, John D; Chino, Masamichi; Homma, Toshimitsu; Ishigure, Nobuhito; Kai, Michiaki; Kusumi, Shizuyo; Lee, Jai-Ki; Menzel, Hans-Georg; Niwa, Ohtsura; Sakai, Kazuo; Weiss, Wolfgang; Yamashita, Shunichi; Yonekura, Yoshiharu

    2013-09-01

    Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential

  3. 77 FR 47117 - Chemical, Biological, Radiological, Nuclear (CBRN) Protective Ensemble Standard, Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ...In an effort to obtain comments from interested parties, the U.S. Department of Justice, Office of Justice Programs, National Institute of Justice (NIJ) will make available to the general public (at www.justnet.org) three draft documents related to Chemical, Biological, Radiological, Nuclear (CBRN) protective ensembles used by law enforcement...

  4. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    NASA Astrophysics Data System (ADS)

    Belinato, W.; Souza, D. N.

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  5. Radiological protection in ion beam radiotherapy: practical guidance for clinical use of new technology.

    PubMed

    Yonekura, Y; Tsujii, H; Hopewell, J W; Ortiz López, P; Cosset, J-M; Paganetti, H; Montelius, A; Schardt, D; Jones, B; Nakamura, T

    2016-06-01

    Recently introduced technologies in radiotherapy have significantly improved the clinical outcome for patients. Ion beam radiotherapy, involving proton and carbon ion beams, provides excellent dose distributions in targeted tumours, with reduced doses to the surrounding normal tissues. However, careful treatment planning is required in order to maximise the treatment efficiency and minimise the dose to normal tissues. Radiation exposure from secondary neutrons and photons, particle fragments, and photons from activated materials should also be considered for radiological protection of the patient and medical staff. Appropriate maintenance is needed for the equipment and air in the treatment room, which may be activated by the particle beam and its secondary radiation. This new treatment requires complex procedures and careful adjustment of parameters for each patient. Therefore, education and training for the personnel involved in the procedure are essential for both effective treatment and patient protection. The International Commission on Radiological Protection (ICRP) has provided recommendations for radiological protection in ion beam radiotherapy in Publication 127 Medical staff should be aware of the possible risks resulting from inappropriate use and control of the equipment. They should also consider the necessary procedures for patient protection when new technologies are introduced into clinical practice. PMID:26980799

  6. Optimization of the radiological protection of patients undergoing digital radiography.

    PubMed

    Zhang, Menglong; Chu, Cunkun

    2012-02-01

    Because of a much higher dynamic range of flat panel detectors, patient dose can vary without change of image quality being perceived by radiologists. This condition makes optimization (OT) of radiation protection undergoing digital radiography (DR) more complex, while a chance to reduced patient dose also exists. In this study, we evaluated the difference of patient radiation and image rejection before and after OT to identify if it is necessary to carry out an OT procedure in a routine task with DR. The study consisted of a measurement of the dose area product (DAP) and entrance surface dose (ESD) received by a reference group of patients for eight common radiographic procedures using the DR system before and after OT. Meanwhile image rejection data during two 2-month periods were collected and sorted according to reason. For every radiographic procedure, t tests showed significant difference in average ESD and DAP before and after OT (p < 0.005). The ESDs from most examinations before OT were three times higher than that after OT. For DAPs, the difference is more significant. Image rejection rate after OT is significantly lower than that before OT (χ (2) = 36.5, p < 0.005). The substantial reductions of dose after OT resulted from appropriate mAs and exposure field. For DR patient dose, less than recommended diagnostic reference level can meet quality criteria and clinic diagnosis. PMID:21725621

  7. Challenging the current strategy of radiological protection of the environment: arguments for an ecosystem approach.

    PubMed

    Brèchignac, F; Doi, Masahiro

    2009-12-01

    The system of radiological protection of the environment that is currently under development is one contribution to the general need to adequately protect the environment against stress. Dominated by operational goals, it emphasizes conceptual and methodological approaches that are readily accessible today: reference organisms supported by individual-based traditional ecotoxicological data. Whilst there are immediate advantages to this approach (pragmatism, consistency with other approaches in use for man and biota), there are also clear limitations, especially in a longer run perspective, that need to be acknowledged and further considered. One can mention a few: uncertainties generated by the need for various extrapolations (from lower to higher levels of biological organisation, ...), various features missed such as potential ecological impact through impairment of ecosystem processes, trans-generational impacts as mediated through genomic instability, indirect effects mediated through trophic interactions or disruption of ecological balances,... Such limitations have already been faced in other fields of environmental protection against other stressors, pushing a number of environment professionals to assign stronger emphasis on more systemic approaches. This review discusses the advantages and limitations of the current approach designed for the radiological protection of non-human biota in the broader context of environment protection as a whole, with especial reference to upcoming trends and evolutions. This leads in particular to advocating the need to boost scientific and methodological approaches featuring the ecosystem concept as a mean to access a unified goal of protection: preserving life sustainability through protection of ecosystem structure and functioning. PMID:19643514

  8. Lessons learned: Radiological protection for emergency workers at the TEPCO Fukushima Daiichi APP (part 1).

    PubMed

    Yasui, Shojiro

    2013-01-01

    During the emergency work at the Fukushima Daiichi Atomic Power Plant (APP), Tokyo Electric Power Company (TEPCO) and the Japanese government experienced various problems in radiological exposure management for emergency workers. To improve the implementation of appropriate radiological protection, the Ministry of Health, Labour and Welfare (MHLW) issued a series of compulsory directives and provided administrative guidance to TEPCO. Based on the experiences and lessons learned, the MHLW recognized that to properly manage radiological exposure should a similar accident occur at another APP, sufficient measures and systematic preparation for radiological management should be ensured, including the following: a) Should an APP accident occur, assistance from the power company's corporate office or off-site support facilities outside the evacuation area is indispensable; b) Primary contractors must independently implement exposure management operations for the employees of their sub-contractors; c) APP operators should compile an operations manual, stockpile personal protective equipment, and personal alarm dosimeters (PADs) and prepare emergency systems and whole body counters (WBCs); and the labor standards authorities should compile an emergency operations manual. PMID:24116670

  9. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  10. Radiological protection in the Spanish nuclear industry under Franco, 1939-1975.

    PubMed

    Menéndez-Navarro, Alfredo; Vázquez, Luis Sánchez

    2013-01-01

    In debates about nuclear controversy, the issue of occupational safety in radioactive facilities is rarely foregrounded; it has historically been relegated to second place compared to the attention given to potential harm to the general population. Aiming for, at least, partially filling this historiographical gap, this article deals with the development of occupational radiological protection in Spain under the dictatorship of General Franco (1939-1975). It covers the rise of radiological protection measures on an international level and the subsequent development of legislation in the case of Spain, a process that paralleled the growth of the nation's nuclear program. Finally, it explores the main evidence of the impact of ionizing radiation on Spain's working population. PMID:24141916

  11. FIRST THOMAS S. TENFORDE TOPICAL LECTURE: The Ethics of Radiological Protection.

    PubMed

    Lochard, Jacques

    2016-02-01

    The International Commission on Radiological Protection system of radiological protection is based on three pillars: science, ethical and social values, and experience. As far as ethics and the protection of humans are concerned, the system combines the values of beneficence/non-maleficence, prudence, justice, and dignity. Beneficence and non-maleficence are directly related to the aim to prevent deterministic effects and to reduce the risk of stochastic effects. Prudence allows taking into account uncertainties concerning both the deterministic and stochastic effects of radiation on health. Justice is the way to ensure social equity and fairness in decisions related to protection. Over the past decade, the system has also integrated procedural values such as right to know, informed consent, stakeholder involvement and self-help protection, and reflecting the importance to properly inform and also preserve the autonomy and dignity of the individuals potentially or actually exposed to radiation. In practice, the search for reasonable levels of protection and tolerable exposure levels is a permanent questioning that depends on the prevailing circumstances in order to act wisely; i.e., with the desire to do more good than harm (beneficence/non-maleficence), to avoid unnecessary exposure (prudence), to seek fair distribution of exposures (justice), and to treat people with respect (dignity). PMID:26717180

  12. Are the core values of the radiological protection system shared across cultures?

    PubMed

    Zölzer, F

    2016-06-01

    In spite of ongoing globalisation in many fields, the ethics of radiological protection have long been discussed almost exclusively in terms of 'Western' moral philosophy concepts such as utilitarianism or deontology. A cross-cultural discourse in this field is only just beginning. In 'Principles of Biomedical Ethics', Beauchamp and Childress suggested that there exists a 'common morality' which is 'not relative to cultures or individuals, because it transcends both'. They proposed four cross-culturally valid principles for decision making in medicine: respect for autonomy, non-maleficence, beneficence, and justice. A similar approach is being developed by the International Commission on Radiological Protection Task Group 94 on the ethics of radiological protection. Here, the core values are: human dignity, beneficence/non-maleficence, prudence, and justice. Other values could be added, such as consideration for the interests of society as a whole or the interests of future generations, or procedural values such as transparency and accountability; this paper will include a brief discussion on how they relate to the four basic principles. The main question to be addressed here, however, is whether the proposed core values are indeed part of a 'common morality'. This, as it will be argued, cannot be decided by a global opinion poll, but has to be based on an analysis of the written and oral traditions that have provided ethical orientation throughout history, and are still considered seminal by the majority of people. It turns out that there are indeed many commonalities across cultures, and that the concept of globally shared core values for the radiological protection system is not hopelessly idealistic. PMID:26984903

  13. Feasibility study for a realistic training dedicated to radiological protection improvement

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Reinald, Kutschera; Gaillard-Lecanu, Emmanuelle; Sylvie, Jahan; Riedel, Alexandre; Therache, Benjamin

    2014-06-01

    Any personnel involved in activities within the controlled area of a nuclear facility must be provided with appropriate radiological protection training. An evident purpose of this training is to know the regulation dedicated to workplaces where ionizing radiation may be present, in order to properly carry out the radiation monitoring, to use suitable protective equipments and to behave correctly if unexpected working conditions happen. A major difficulty of this training consist in having the most realistic reading from the monitoring devices for a given exposure situation, but without using real radioactive sources. A new approach is developed at EDF R&D for radiological protection training. This approach combines different technologies, in an environment representative of the workplace but geographically separated from the nuclear power plant: a training area representative of a workplace, a Man Machine Interface used by the trainer to define the source configuration and the training scenario, a geolocalization system, fictive radiation monitoring devices and a particle transport code able to calculate in real time the dose map due to the virtual sources. In a first approach, our real-time particles transport code, called Moderato, used only an attenuation low in straight line. To improve the realism further, we would like to switch a code based on the Monte Carlo transport of particles method like Geant 4 or MCNPX instead of Moderato. The aim of our study is the evaluation of the code in our application, in particular, the possibility to keep a real time response of our architecture.

  14. A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation.

    PubMed

    Doering, Che; Bollhöfer, Andreas

    2016-01-01

    A soil guideline value for radiological protection of the environment was determined for the impending rehabilitation of Ranger uranium mine in the wet-dry tropics of northern Australia. The guideline value was 1000 Bq kg(-1) of (226)Ra in the proposed waste rock substrate of the rehabilitated landform and corresponded to an above-baseline dose rate of 100 μGy h(-1) to the most highly exposed individuals of the limiting organism. The limiting organism was reptile based on an assessment using site-specific concentration ratio data. PMID:26350640

  15. Web-based tools for quality assurance and radiation protection in diagnostic radiology.

    PubMed

    Moores, B M; Charnock, P; Ward, M

    2010-01-01

    Practical and philosophical aspects of radiation protection in diagnostic radiology have changed very little over the past 50 y even though patient doses have continued to rise significantly in this period. This rise has been driven by technological developments, such as multi-slice computed tomography, that have been able to improve diagnostic accuracy but not necessarily provide the same level of risk-benefit to all patients or groups of patients given the dose levels involved. Can practical radiation protection strategies hope to keep abreast of these ongoing developments? A project was started in 1992 in Liverpool that aimed to develop IT driven quality assurance (QA)/radiation protection software tools based upon a modular quality assurance dose data system. One of the modules involved the assessment of the patient entrance surface air kerma (ESAK) for an X-ray examination that was based upon the use of calibrated X-ray tube exposure factors to calculate ESAK as well as collecting appropriate patient details (age, sex, weight, thickness etc). The package also contained modules for logging all necessary equipment performance QA data. This paper will outline the experience gained with this system through its transition from a local application on a stand alone PC within the department to the current web-based approach. Advantages of a web-based approach to delivering such an application as well as centrally storing data originating on many hospital sites will be discussed together with the scientific support processes that can be developed with such a system. This will include local, national and international considerations. The advantages of importing radiographic examination details directly from other electronic storage systems such as a hospital's radiology information system will be presented together with practical outcomes already achieved. This will include the application of statistical techniques to the very large data sets generated. The development

  16. Radiation Protection in Pediatric Radiology: Results of a Survey Among Dutch Hospitals.

    PubMed

    Bijwaard, Harmen; Valk, Doreth; de Waard-Schalkx, Ischa

    2016-10-01

    A survey about radiation protection in pediatric radiology was conducted among 22 general and seven children's hospitals in the Netherlands. Questions concerned, for example, child protocols used for CT, fluoroscopy and x-ray imaging, number of images and scans made, radiation doses and measures taken to reduce these, special tools used for children, and quality assurance issues. The answers received from 27 hospitals indicate that radiation protection practices differ considerably between general and children's hospitals but also between the respective general and children's hospitals. It is recommended that hospitals consult each other to come up with more uniform best practices. Few hospitals were able to supply doses that can be compared to the national Diagnostic Reference Levels (DRLs). The ones that could be compared exceeded the DRLs in one in five cases, which is more than was expected beforehand. PMID:27575352

  17. International Commission on Radiological Protection Committee 1: Current Status and Future Directions

    SciTech Connect

    Morgan, William F.

    2015-05-19

    The International Commission on Radiological Protection (ICRP), Committee 1 (C1) considers the risk of induction of cancer and heritable disease (stochastic effects) together with the underlying mechanisms of radiation action. C1 also considers the risks, severity, and mechanisms of induction of tissue/organ damage and developmental defects (deterministic effects). The committee was significantly revamped in 2013 and last met in Abu Dhabi in October of 2013. C1 evaluated progress on two ongoing Task Groups (TG’s); TG 64 “Cancer Risk from Alpha Emitters” and TG 75 “Stem Cell Radiobiology”. Following approval from the Main Commission (MC), C1 established two new TG’s; TG 91 “Radiation Risk Inference at Low Dose and Low Dose Rate Exposure for Radiological Protection Purposes”, and TG 92 “Terminology and Definitions”. Here I will present a synopsis of the current status of C1 and outline the tasks C1 may undertake in the future.

  18. Evidence for variation in human radiosensitivity and its potential impact on radiological protection.

    PubMed

    Bouffler, S D

    2016-06-01

    Radiological protection standards generally assume that all members of the population are equally sensitive to the adverse health effects associated with radiation exposure, recognising the age- and sex-related differences in sensitivity to radiation-induced cancer. It has become very clear over recent years that genetic and lifestyle factors can play important roles in the susceptibility of individuals to a range of diseases; as such, the same may apply to radiation-associated diseases. Evidence is accumulating from studies at many levels of biological organisation - cells, experimental organisms, and humans - that a range of radiosensitivity exists between individuals in the population. Consideration of improvements in radiological protection practices to take account of such differences will require the availability of robust and accurate ways to assess the sensitivity of an individual or population subgroup. In addition, there will need to be careful consideration of the ethical aspects relating to use of individual sensitivity information. These ethical considerations are very likely to be exposure context dependent, and require careful risk-benefit balance consideration before practical application. PMID:26956676

  19. Future challenges for nuclear power plant development research, and for radiological protection sciences.

    PubMed

    Lazo, Edward

    2007-11-01

    The promise of the future shines brightly for nuclear energy technology and production, yet also holds many challenges. Focus on new reactor designs is currently aiming at what is termed the fourth generation of reactors, which will come into operation after 2030. The 10 countries participating in the Generation-IV International Forum to develop the new generation of reactors have designated six reactor designs that will be studied. This paper will briefly discuss some of these challenges in new reactor designs in general. In addition to the challenges posed by new reactor designs, radiation protection is also faced with a series of challenges for the future. These are borne from experience with the implementation of the current system of radiological protection, from the evolution of radiation biological research, and from changes in society in the area of radiological risk assessment and management. This paper will address all of these emerging challenges, and point towards approaches to resolve them in the future. PMID:18049234

  20. Lower bound of optimization in radiological protection system taking account of practical implementation of clearance

    SciTech Connect

    Hattori, Takatoshi

    2007-07-01

    The dose criterion used to derive clearance and exemption levels is of the order of 0.01 mSv/y based on the Basic Safety Standard (BSS) of the International Atomic Energy Agency (IAEA), the use of which has been agreed upon by many countries. It is important for human beings, who are facing the fact that global resources for risk reduction are limited, to carefully consider the practical implementation of radiological protection systems, particularly for low-radiation-dose regions. For example, in direct gamma ray monitoring, to achieve clearance level compliance, difficult issues on how the uncertainty (error) of gamma measurement should be handled and also how the uncertainty (scattering) of the estimation of non-gamma emitters should be treated in clearance must be resolved. To resolve these issues, a new probabilistic approach has been proposed to establish an appropriate safety factor for compliance with the clearance level in Japan. This approach is based on the fundamental concept that 0.1 mSv/y should be complied with the 97.5. percentile of the probability distribution for the uncertainties of both the measurement and estimation of non-gamma emitters. The International Commission on Radiological Protection, ICRP published a new concept of the representative person in Publication 101 Part I. The representative person is a hypothetical person exposed to a dose that is representative of those of highly exposed persons in a population. In a probabilistic dose assessment, the ICRP recommends that the representative person should be defined such that the probability of exposure occurrence is lower than about 5% that of a person randomly selected from the population receiving a high dose. From the new concept of the ICRP, it is reasonable to consider that the 95. percentile of the dose distribution for the representative person is theoretically always lower than the dose constraint. Using this established relationship, it can be concluded that the minimum dose

  1. Radiological protection and the exposure of animals as patients in veterinary medicine.

    PubMed

    Pentreath, R J

    2016-06-01

    It is apparent that most of the techniques that make use of ionising radiation in human medical practices are now being applied in veterinary medicine. Steps are being taken by the IAEA to provide guidance for humans involved in such practices, but there appears to be no international initiative that considers the protection or welfare of the animal as a patient. There is therefore a risk that the deliberate exposure of an animal, particularly in the therapeutic application of radiation, could do more harm than good. In the light of recent developments in dosimetric modelling and the application of known effects of radiation on different types of animals, for the purposes of the protection of biota in an environmental context, it is argued that it would be sensible now to start a serious consideration of this issue. Some suggestions are made with regard to a number of areas that could be considered further, both specifically and with regard to the field of radiological protection as a whole. PMID:27183275

  2. The impact of the Patient Protection and Affordable Care Act on radiology: beyond reimbursement.

    PubMed

    Krishnaraj, Arun; Norbash, Alexander; Allen, Bibb; Ellenbogen, Paul H; Kazerooni, Ella A; Thorwarth, William; Weinreb, Jeffrey C

    2015-01-01

    The 2014 ACR Forum focused on the noneconomic implications of the Affordable Care Act on the field of radiology, with specific attention to the importance of the patient experience, the role of radiology in public and population health, and radiology's role in the effort to lower overall health care costs. The recommendations generated from the Forum seek to inform ACR leadership on the best strategies to pursue to best prepare the radiology community for the rapidly evolving health care landscape. PMID:25557569

  3. Radiological Threat Reduction (RTR) program : implementing physical security to protect large radioactive sources worldwide.

    SciTech Connect

    Lowe, Daniel L.

    2004-11-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory and knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security

  4. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders. PMID:27044363

  5. Accelerators in our past, present, and future: A challenge to radiological protection in the twenty-first century

    SciTech Connect

    Thomas, R.H. |

    1993-09-01

    The foundations of many of the subdisciplines of radiological protection laid in accelerator laboratories began with the invention of accelerators. This paper suggests that the discipline of accelerator radiological protection has played and will continue play a more significant part in our lives than is generally recognized. A brief review of some existing uses of accelerators by society is given, and a few probable future uses are described. These future applications will result in the exposure of accelerator (or {open_quotes}mixed{close_quotes}) radiation fields to an increased population. Consequently, what are perceived to be the rather specialized concerns of today`s accelerator health physicists will -- by necessity -- become of general interest to all health physicists.

  6. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  7. Development of composite materials for non-leaded glove for use in radiological hand protection

    NASA Astrophysics Data System (ADS)

    Dodoo-Amoo, David Nii Amoo

    Lead is a hazardous material and US congress has mandated the rapid reduction of all hazardous waste generation as a matter of national policy. With the large amount of plutonium handling in numerous projects including the development of MOX fuel, power source etc., hand glove protection for the emitted alpha-beta- and low energy photons is an important issue. Leaded gloves are the prime shields used for radiological hand protection. US Department of Energy laboratories require a substitute material for the lead oxide in the gloves, as a way to reduced mixed waste. To solve this problem, a new blend of non-hazardous materials that have the same radiological properties, approximately the same cost of production, and lastly not potentially fall under the Resource Conservation and Recovery Act (RCRA) regulation, to replace the lead oxide currently used in the gloves had been investigated. The investigations have produced alternative materials using calculations (deterministic and Monte Carlo, MCNP) and experiments. The selection of the constituent compounds for the new composite materials, were based on the k-absorption edge energy of the main constituent element(s) in the compound. The formulations of these composites were fashioned on the principle of blending neoprene rubber formulation with several constituent compounds. Calculations based on the Lambert-Beer attenuation law together with the mass attenuation coefficient values from the XCOM cross section database program were used to determine the transmission fractions of these proposed composite materials. Selected composite materials that compared favorably with the leaded-neoprene were fabricated. These fabricated composite materials were tested with attenuation experiments and the results were in excellent agreement with the calculations using the Lambert-Beer law. For the purpose of benchmarking the result of the calculations, Monte Carlo calculations were also made. The success of this research would mean

  8. Evaluation of Awareness on Radiation Protection and Knowledge About Radiological Examinations in Healthcare Professionals Who Use Ionized Radiation at Work

    PubMed Central

    Yurt, Ayşegül; Çavuşoğlu, Berrin; Günay, Türkan

    2014-01-01

    Objective: In this study, we evaluated the knowledge and perception and mitigation of hazards involved in radiological examinations, focusing on healthcare personnel who are not in radiation-related occupations, but who use ionising radiation as a part of their work. Methods: A questionnaire was applied to physicians, nurses, technicians and other staff working in different clinics that use radiation in their work, in order to evaluate their knowledge levels about ionizing radiation and their awareness about radiation doses resulting from radiological examinations. The statistical comparisons between the groups were analyzed with the Kruskal Wallis test using the SPSS program. Results: Ninety two participants took part in the study. Their level of knowledge about ionizing radiation and doses in radiological examinations were found to be very weak. The number of correct answers of physicians, nurses, medical technicians and other personnel groups were 15.7±3.7, 13.0±4.0, 10.1±2.9 and 11.8±4.0, respectively. In the statistical comparison between the groups, the level of knowledge of physicians was found to be significantly higher than the level of the other groups (p=0.005). Conclusion: The present study demonstrated that general knowledge in relation to radiation, radiation protection, health risks and doses used for radiological applications are insufficient among health professions using with ionizing radiation in their work. PMID:24963445

  9. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  10. Individual dose monitoring of the nuclear medicine departments staff controlled by Central Laboratory for Radiological Protection.

    PubMed

    Szewczak, Kamil; Jednoróg, Sławomir; Krajewski, Paweł

    2013-01-01

    Presented paper describes the results of the individual doses measurements for ionizing radiation, carried out by the Laboratory of Individual and Environmental Doses Monitoring (PDIS) of the Central Laboratory for Radiological Protection in Warsaw (CLOR) for the medical staff employees in several nuclear medicine (NM) departments across Poland. In total there are48 NM departments in operation in Poland [1] (consultation in Nuclear Atomic Agency). Presented results were collected over the period from January 2011 to December 2011 at eight NM departments located in Krakow, Warszawa (two departments), Rzeszow (two departments), Opole, Przemysl and Gorzow Wielkopolski. For radiation monitoring three kinds of thermo luminescence dosimeters (TLD) were used. The first TLD h collected information about whole body (C) effective dose, the second dosimeter was mounted in the ring (P) meanwhile the third on the wrist (N) of the tested person. Reading of TLDs was performed in quarterly periods. As a good approximation of effective and equivalent dose assessment of operational quantities both the individual dose equivalent Hp(10) and the Hp(0.07) were used. The analysis of the data was performed using two methods The first method was based on quarterly estimations of Hp(10)q and Hp(0.07)q while the second measured cumulative annual doses Hp(10)a and Hp(0.07)a. The highest recorded value of the radiation dose for quarterly assessments reached 24.4 mSv and was recorded by the wrist type dosimeter worn by a worker involved in source preparation procedure. The mean values of Hp(10)q(C type dosimeter) and Hp(0.07)q (P and N type dosimeter) for all monitored departments were respectively 0.46 mSv and 3.29 mSv. There was a strong correlation between the performed job and the value of the received dose. The highest doses always were absorbed by those staff members who were involved in sources preparation. The highest annual cumulative dose for a particular worker in the considered time

  11. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  12. Decision-making and radiological protection at Three Mile Island: response of the Department of Health, Education and Welfare

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    Decision-making by decision-makers during the nuclear accident at Three Mile Island all had to do in some way, and impacted on the public health and safety, the health and safety of the workers, and emergency preparedness and health care. This paper reviews the activities of only one federal agency during the accident, the Department of Health, Education, and Welfare (HEW), and its effectiveness in its role as the leading institution responsible for protecting the public health during the first accident in a nuclear power plant designed for the commerical generation of electricity in the United States. My comments are limited to only three acts dealing with radiological health and protection: the struggle for power and assertion of leadership in response to possible health consequences of the accident; the decisions to evacuate the area during the radiological emergency; and the use of potassium iodide as a means of protecting the public and the workers from the hazards of exposure to radioactive iodine released to the environment.

  13. Radiology Preparedness in Ebola Virus Disease: Guidelines and Challenges for Disinfection of Medical Imaging Equipment for the Protection of Staff and Patients

    PubMed Central

    Palmore, Tara N.; Folio, Les R.; Bluemke, David A.

    2015-01-01

    The overlap of early Ebola virus disease (EVD) symptoms (eg, fever, headache, abdominal pain, diarrhea, emesis, and fatigue) with symptoms of other more common travel-related diseases (eg, malaria, typhoid fever, pneumonia, and meningococcemia) may result in delayed diagnosis of EVD before isolation of infected patients. Radiology departments should consider policies for and approaches to decontamination of expensive and potentially easily damaged radiology equipment. In addition, the protection of radiology personnel must be considered during the work-up phase of undiagnosed EVD patients presenting to emergency departments. The purpose of this article is to consider the effect of EVD on radiology departments and imaging equipment, with particular consideration of guidelines currently available from the Centers for Disease Control and Prevention that may be applicable to radiology. © RSNA, 2015 PMID:25654616

  14. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  15. COST-RISK-BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT.

    PubMed

    Moores, B Michael

    2016-06-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: [Formula: see text] This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358

  16. COST–RISK–BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT

    PubMed Central

    Moores, B. Michael

    2016-01-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost–benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V−(P+X+Y). This article presents a theoretical cost–risk–benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358

  17. Interventional radiology

    SciTech Connect

    Castaneda-Zuniga, W.R.

    1987-01-01

    This reference gives a step-by-step presentation of the elements of interventional radiology. CONTENTS: Introduction; Radiation protection; Embolotherapy; Interventional techniques in the management of gastrointestinal bleeding; Transluminal angioplasty; Thrombolytic therapy; Foreign body removal; Inferior vena cava filter placement; Percutaneous uroradiologic techniques; Interventional techniques in the biliary tract; Nonvascular gastrointestinal tract dilations; Percutaneous biopsy techniques; Drainage of abscess fluid collections in the abdomen.

  18. Radiation protection recommendations as applied to the disposal of long-lived solid radioactive waste. A report of The International Commission on Radiological Protection.

    PubMed

    1998-01-01

    (79) Waste, by definition, has no benefit. It should be viewed as one aspect of the beneficial practice that gave rise to it. Furthermore, radioactive waste management should be placed in the context of the management of society's waste in general. (80) A major issue in evaluating the acceptability of a disposal system for long-lived solid radioactive waste is that doses or risks may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Such exposures are treated as potential exposures as their magnitude depends on future processes and conditions that have probabilities associated with them. (81) Nevertheless, the Commission recognises a basic principle that individuals and populations in the future should be afforded at least the same level of protection from the action of disposing of radioactive waste today as is the current generation. This implies use of the current quantitative dose and risk criteria derived from considering associated health detriment. Therefore, protection of future generations should be achieved by applying these dose or risk criteria to the estimated future doses or risks in appropriately defined critical groups. These estimates should not be regarded as measures of health detriment beyond times of around several hundreds of years into the future. In the case of these longer time periods, they represent indicators of the protection afforded by the disposal system. (82 Constrained optimisation is the central approach to evaluating the radiological acceptability of a waste disposal system; dose or risk constraints are used rather than dose or risk limits. By this transition from limitation to optimisation, the needs of practical application of the radiological protection system to the disposal of long-lived solid waste disposal are met: determination of acceptability now for exposures that may occur in the distant future

  19. Current status of radiological protection at nuclear power stations in Japan.

    PubMed

    Suzuki, Akira; Hori, Shunsuke

    2011-07-01

    The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future. PMID:21525040

  20. Hazard control indices for radiological and non-radiological materials

    SciTech Connect

    Boothe, G.F.

    1994-12-21

    This document devises a method of comparing radiological and non-radiological hazard control levels. Such a comparison will be useful in determining the design control features for facilities that handle radioactive mixed waste. The design control features of interest are those that assure the protection of workers and the environment from unsafe airborne levels of radiological or non-radiological hazards.

  1. The Revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    SciTech Connect

    Bair, W.J.

    1991-09-01

    The new respiratory tract model is based on the premise that the large differences in radiation sensitivity of respiratory tract tissues, and the wide range of doses they receive, argue for calculating specific tissue doses rather than average lung doses for radiation protection purposes. The new model is more complex than the current lung model because it describes deposition of inhaled radioactive material in the clearance from several tissues and regions of the respiratory tract and is applicable to the worldwide population of both workers and the public. 2 refs., 2 figs.

  2. 3.3 Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.; Moores, B. M.; Stieve, F.-E.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.3 Diagnostic Radiology' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  3. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    PubMed

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. PMID:26956677

  4. 39th Lauriston S. Taylor Lecture: Dosimetry of Internal Emitters: Contribution of Radiation Protection Bodies and Radiological Events.

    PubMed

    Eckerman, Keith F

    2016-02-01

    Since the early days of the Manhattan Engineer District, Oak Ridge National Laboratory (ORNL) has served to advance the dosimetry models used to set protection standards for radionuclides taken into the body. Throughout the years, this effort benefited significantly from ORNL staff's active participation in national and international scientific bodies. The first such interaction was in 1946 with the National Committee on Radiation Protection (NCRP), chaired by L.S. Taylor, which led to the 1949 to 1953 series of tripartite conferences of experts from Canada, the United Kingdom, and the United States. These conferences addressed the need for standardization of dosimetry models and led to the establishment of an anatomic and physiologic model called "Standard Man," a precursor of the reference worker defined in Publication 23 of the International Commission on Radiological Protection (ICRP). Standard Man was used in setting the maximum permissible concentrations in air and water published in NBS Handbook 52 and subsequent reports by NCRP and ICRP. K.Z. Morgan, then director of the Health Physics Division at ORNL, participated in the tripartite conferences and subsequently established ORNL as a modeling and computational resource for development of radiation protection standards. ORNL's role expanded with participation in the work of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Results of interactions with the MIRD Committee are evident in the radiation protection guidance for internal emitters in ICRP Publication 30. The annual limit on intake and derived air concentration values tabulated in Publication 30 were computed by an ORNL-based task group of ICRP Committee 2. A few years after the appearance of Publication 30, the Chernobyl nuclear reactor accident made clear the need to develop standard dosimetry models for pre-adult ages as members of the public. In the late 1980s, ICRP began an effort to extend its reference

  5. Informatics in Radiology (infoRAD): personal computer security: part 2. Software Configuration and file protection.

    PubMed

    Caruso, Ronald D

    2004-01-01

    Proper configuration of software security settings and proper file management are necessary and important elements of safe computer use. Unfortunately, the configuration of software security options is often not user friendly. Safe file management requires the use of several utilities, most of which are already installed on the computer or available as freeware. Among these file operations are setting passwords, defragmentation, deletion, wiping, removal of personal information, and encryption. For example, Digital Imaging and Communications in Medicine medical images need to be anonymized, or "scrubbed," to remove patient identifying information in the header section prior to their use in a public educational or research environment. The choices made with respect to computer security may affect the convenience of the computing process. Ultimately, the degree of inconvenience accepted will depend on the sensitivity of the files and communications to be protected and the tolerance of the user. PMID:15371625

  6. Guide of good practices for occupational radiological protection in plutonium facilities

    SciTech Connect

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

  7. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident.

    PubMed

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047

  8. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident

    PubMed Central

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047

  9. Decommissioning a phosphoric acid production plant: a radiological protection case study.

    PubMed

    Stamatis, V; Seferlis, S; Kamenopoulou, V; Potiriadis, C; Koukouliou, V; Kehagia, K; Dagli, C; Georgiadis, S; Camarinopoulos, L

    2010-12-01

    During a preliminary survey at the area of an abandoned fertilizer plant, increased levels of radioactivity were measured at places, buildings, constructions and materials. The extent of the contamination was determined and the affected areas were characterized as controlled areas. After the quantitative and qualitative determination of the contaminated materials, the decontamination was planned and performed step by step: the contaminated materials were categorized according to their physical characteristics (scrap metals, plastic pipes, scales and residues, building materials, etc) and according to their level of radioactivity. Depending on the material type, different decontamination and disposal options were proposed; the most appropriate technique was chosen taking into account apart from technical issues, the legal framework, radiation protection issues, the opinion of the local authorities involved as well as the owner's wish. After taking away the biggest amount of the contaminated materials, an iterative process consisting of surveys and decontamination actions was performed in order to remove the residual traces of contamination from the area. During the final survey, no residual surface contamination was detected; some sparsely distributed low level contaminated materials deeply immersed into the soil were found and removed. PMID:20813440

  10. Evaluation on radiation protection aspect and radiological risk at Mukim Belanja repository

    NASA Astrophysics Data System (ADS)

    Azmi, Siti Nur Aisyah; Kenoh, Hamiza; Majid, Amran Ab.

    2016-01-01

    Asian Rare Earth (ARE) is a locally incorporated company that operated a mineral processing operation to extract rare earth element. ARE has received much attention from the public since the beginning of their operation until the work of decommissioning and decontamination of the plant. Due to the existence of Naturally Occurring Radioactive Material (NORM) in the residue, the decommissioning and disposal was done by the company in collaboration with the Perak State Government and the Atomic Energy Licensing Board (AELB). The main objective of this study is to review the level of compliance of the existing Radiation Protection Regulations enforced by AELB particularly in the achievement of allowed exposure dose limit. The next objective was to study the impact of the construction of the Mukim Belanja Repository to workers and public. This study was conducted by analyzing documents that were issued and conducting the area monitoring using a Geiger Muller detector (GM) and Sodium Iodide (NaI(Tl)) survey meters. The measurements were made at 5 cm and 1 m from the ground surface at 27 measurement stations. The external doses measured were within the background levels of the surrounding area. The annual effective dose using the highest reading at 5 cm and 1 m from ground surface by GM detector was calculated to be 1.36 mSv/year and 1.21 mSv/year respectively. Whereas the annual effective dose using the highest reading at 5 cm and 1 m from ground surface by using NaI(Tl) detector was calculated to be 3.31 mSv/year and 2.83 mSv/year respectively. The calculated cancer risks from the study showed that the risk is small compared with the risks derived from natural radiation based on global annual radiation dose to humans. This study therefore indicated that the repository is able to constrain the dose exposure from the disposed NORM waste. The study also revealed that the construction of the repository has complied with all the rules and regulations subjected to it. The

  11. Latin American dose survey results in mammography studies under IAEA programme: radiological protection of patients in medical exposures (TSA3).

    PubMed

    Mora, Patricia; Blanco, Susana; Khoury, Helen; Leyton, Fernando; Cárdenas, Juan; Defaz, María Yolanda; Garay, Fernando; Telón, Flaviano; Aguilar, Juan Garcia; Roas, Norma; Gamarra, Mirtha; Blanco, Daniel; Quintero, Ana Rosa; Nader, Alejandro

    2015-03-01

    Latin American countries (Argentina, Brazil, Chile, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Mexico, Nicaragua, Paraguay, Uruguay and Venezuela) working under the International Atomic Energy Agency (IAEA) Technical Cooperation Programme: TSA3 Radiological Protection of Patients in Medical Exposures have joined efforts in the optimisation of radiation protection in mammography practice. Through surveys of patient doses, the region has a unique database of diagnostic reference levels for analogue and digital equipment that will direct future optimisation activities towards the early detection of breast cancer among asymptomatic women. During RLA9/057 (2007-09) 24 institutions participated with analogue equipment in a dose survey. Regional training on methodology and measurement equipment was addressed in May 2007. The mean glandular dose (DG) was estimated using the incident kerma in air and relevant conversion coefficients for both projections craneo caudal and mediolateral oblique (CC and MLO). For Phase 2, RLA9/067 (2010-11), it was decided to include also digital systems in order to see their impact in future dose optimisation activities. Any new country that joined the project received training in the activities through IAEA expert missions. Twenty-nine new institutions participated (9 analogue and 20 digital equipment). A total of 2262 patient doses were collected during this study and from them D(G) (mGy) for both projections were estimated for each institution and country. Regional results (75 percentile in mGy) show for CC and MLO views, respectively: RLA9/057 (analogue) 2.63 and 3.17; RLA/067: 2.57 and 3.15 (analogue) and 2.69 and 2.90 (digital). Regarding only digital equipment for CC and MLO, respectively, computed radiography systems showed 2.59 and 2.78 and direct digital radiography (DDR) systems 2.78 and 3.04. Based on the IAEA Basic Safety Standard (BSS) reference dose (3 mGy), it can be observed that there is enough room to start

  12. Some lessons on radiological protection learnt from the accident at the Fukushima Dai-ichi nuclear power plant.

    PubMed

    Kai, M

    2012-03-01

    The accident at the Fukushima Dai-ichi nuclear power plant released a large quantity of radioactive iodine and caesium into the environment. In terms of radiological protection, the evacuation and food restrictions that were adopted in a timely manner by the authorities effectively reduced the dose received by people living in the affected area. Since late March, the transition from an emergency to an existing exposure situation has been in progress. In selecting the reference exposure levels in some areas under an existing exposure situation, the authorities tried to follow the situation-based approach recommended by the ICRP. However, a mixture of emergency and post-emergency approaches confused the people living in the contaminated areas because the reactor conditions continued to be not completely stable. In deriving the criteria in an existing exposure situation, the regulatory authority selected 20 mSv y(-1). The mothers in the affected area believed that a dose of 20 mSv y(-1) was unacceptably high for children since 1 mSv y(-1) is the dose limit for the public under normal conditions. Internet information accelerated concern about the internal exposure to children and the related health effects. From some experiences after the accident the following lessons could be learned. The selection of reference doses in existing exposure situations after an accident must be openly communicated with the public using a risk-informed approach. The detriment-adjusted nominal risk coefficient was misused for calculating the hypothetical number of cancer deaths by some non-radiation experts. It would not be possible to resolve this problem unless the ICRP addressed an alternative risk assessment to convey the meaning and associated uncertainty of the risk to an exposed population. A situation-based approach in addition to a risk-informed approach needs to be disseminated properly in order to select the level of protection that would be the best possible under the

  13. Protection against radon-222 at home and at work. A report of a task group of the International Commission on Radiological Protection.

    PubMed

    1993-01-01

    The Commission has used an epidemiological basis for the assessment and control of radon exposure in this report. Since all the available epidemiological studies use the quantity inhaled potential alpha energy, this has been used as the primary quantity in this report. The Commission does not recommend the use of the dosimetric human respiratory model (ICRP, 1994) for the assessment and control of radon exposures. The Commission sees practical advantages in the delineation of radon-prone areas where more buildings than usual have elevated radon levels. For dwellings, it is suggested that areas with more than 1% of buildings with radon concentrations exceeding ten times the national average concentration might be designated as radon-prone, but the choice will depend on local conditions. A similar approach might be adopted in non-residential areas. Action against radon should be focused on such radon-prone areas. The imperatives of intervention against adventitious exposure to radon in buildings are clear. Above appropriate action levels, intervention is practicable and usually more cost-effective than other investments in radiological protection. Two types of building need to be considered, dwellings and workplaces. In both cases, radon concentrations are most likely to be elevated by the ingress of soil gas from the subjacent ground. Preventive and remedial measures to avoid this circumstance are recommended. The action levels adopted should fall within the recommended range of values given in Table 7. Proven measures against radon are readily available. For remedial work, the technical procedure that is most likely to maintain the radon level to a value well below the action level should be adopted from the outset. Intervention should take place soon after the discovery of elevated levels, especially if the concentrations are substantially above the action levels adopted by the competent authority. For preventive work, construction codes and building guides should

  14. Creation and application of voxelised dosimetric models, and a comparison with the current methodology as used for the International Commission on Radiological Protection's Reference Animals and Plants.

    PubMed

    Higley, K; Ruedig, E; Gomez-Fernandez, M; Caffrey, E; Jia, J; Comolli, M; Hess, C

    2015-06-01

    Over the past decade, the International Commission on Radiological Protection (ICRP) has developed a comprehensive approach to environmental protection that includes the use of Reference Animals and Plants (RAPs) to assess radiological impacts on the environment. For the purposes of calculating radiation dose, the RAPs are approximated as simple shapes that contain homogeneous distributions of radionuclides. As uncertainties in environmental dose effects are larger than uncertainties in radiation dose calculation, some have argued against more realistic dose calculation methodologies. However, due to the complexity of organism morphology, internal structure, and density, dose rates calculated via a homogenous model may be too simplistic. The purpose of this study is to examine the benefits of a voxelised phantom compared with simple shapes for organism modelling. Both methods typically use Monte Carlo methods to calculate absorbed dose, but voxelised modelling uses an exact three-dimensional replica of an organism with accurate tissue composition and radionuclide source distribution. It is a multi-stage procedure that couples imaging modalities and processing software with Monte Carlo N-Particle. These features increase dosimetric accuracy, and may reduce uncertainty in non-human biota dose-effect studies by providing mechanistic answers regarding where and how population-level dose effects arise. PMID:25856572

  15. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  16. Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents

    SciTech Connect

    Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

    2002-02-25

    Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and

  17. Diagnostic radiology

    SciTech Connect

    Leeds, N.E.; Jacobson, H.G.

    1986-10-17

    Developments in the burgeoning field of diagnostic radiology have continued apace. Four areas that represent either subspecialities or technological advances in diagnostic radiology will be considered in this report: ultrasonography, interventional radiology, nuclear radiology, and magnetic resonance. In no sense is the exclusion of other subdisciplines and modalities (eg, pediatric radiology, computed tomography) and indication of their of importance or their failure to include innovative concepts.

  18. Individual Radiological Protection Monitoring of Utrok Atoll Residents Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Bioassay

    SciTech Connect

    Hamilton, T; Kehl, S; Brown, T; Martinelli, R; Hickman, D; Jue, T; Tumey, S; Langston, R

    2007-06-08

    This report contains individual radiological protection surveillance data developed during 2006 for adult members of a select group of families living on Utrok Atoll. These Group I volunteers all underwent a whole-body count to determine levels of internally deposited cesium-137 ({sup 137}Cs) and supplied a bioassay sample for analysis of plutonium isotopes. Measurement data were obtained and the results compared with an equivalent set of measurement data for {sup 137}Cs and plutonium isotopes from a second group of adult volunteers (Group II) who were long-term residents of Utrok Atoll. For the purposes of this comparison, Group II volunteers were considered representative of the general population on Utrok Atoll. The general aim of the study was to determine residual systemic burdens of fallout radionuclides in each volunteer group, develop data in response to addressing some specific concerns about the preferential uptake and potential health consequences of residual fallout radionuclides in Group I volunteers, and generally provide some perspective on the significance of radiation doses delivered to volunteers (and the general Utrok Atoll resident population) in terms of radiological protection standards and health risks. Based on dose estimates from measurements of internally deposited {sup 137}Cs and plutonium isotopes, the data and information developed in this report clearly show that neither volunteer group has acquired levels of internally deposited fallout radionuclides specific to nuclear weapons testing in the Marshall Islands that are likely to have any consequence on human health. Moreover, the dose estimates are well below radiological protection standards as prescribed by U.S. regulators and international agencies, and are very small when compared to doses from natural sources of radiation in the Marshall Islands and the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a

  19. Radiological protection regulation during spent nuclear fuel and radioactive waste management in the western branch of the Federal State Unitary Enterprise 'SevRAO'.

    PubMed

    Simakov, A V; Sneve, M K; Abramov, Yu V; Kochetkov, O A; Smith, G M; Tsovianov, A G; Romanov, V V

    2008-12-01

    The site of temporary storage of spent nuclear fuel and radioactive waste, situated at Andreeva Bay in Northwest Russia, was developed in the 1960s, and it has carried out receipt and storage of fresh and spent nuclear fuel, and solid and liquid radioactive waste generated during the operation of nuclear submarines and nuclear-powered icebreakers. The site is now operated as the western branch of the Federal State Unitary Enterprise, SevRAO. In the course of operation over several decades, the containment barriers in the Spent Nuclear Fuel and Radioactive Waste storage facilities partially lost their containment effectiveness, so workshop facilities and parts of the site became contaminated with radioactive substances. This paper describes work being undertaken to provide an updated regulatory basis for the protection of workers during especially hazardous remediation activities, necessary because of the unusual radiation conditions at the site. It describes the results of recent survey work carried out by the Burnasyan Federal Medical Biophysical Centre, within a programme of regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of Russia. The survey work and subsequent analyses have contributed to the development of special regulations setting out radiological protection requirements for operations planned at the site. Within these requirements, and taking account of a variety of other factors, a continuing need arises for the implementation of optimisation of remediation at Andreeva Bay. PMID:19029583

  20. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  1. A kinematic-based methodology for radiological protection: Runoff analysis to calculate the effective dose for internal exposure caused by ingestion of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.

    2014-05-01

    We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes

  2. Westinghouse radiological containment guide

    SciTech Connect

    Aitken, S.B.; Brown, R.L.; Cantrell, J.R.; Wilcox, D.P.

    1994-03-01

    This document provides uniform guidance for Westinghouse contractors on the implementation of radiological containments. This document reflects standard industry practices and is provided as a guide. The guidance presented herein is consistent with the requirements of the DOE Radiological Control Manual (DOE N 5480.6). This guidance should further serve to enable and encourage the use of containments for contamination control and to accomplish the following: Minimize personnel contamination; Prevent the spread of contamination; Minimize the required use of protective clothing and personal protective equipment; Minimize the generation of waste.

  3. The optimisation of radiological protection: broadening the process. ICRP publication 101. Approved by the Commission in September 2005.

    PubMed

    2006-01-01

    The principle of optimisation of radiation protection is defined by the Commission as the source-related process to keep the magnitude of individual doses, the number of people exposed, and the likelihood of potential exposure as low as reasonably achievable below the appropriate dose constraints, with economic and social factors being taken into account. According to the revised recommendations of ICRP, this process of optimisation below constraint should be applied whatever the exposure situation; i.e. planned, emergency, and existing. The previous recommendations for the practical implementation of the optimisation process are still valid. It must be implemented through an ongoing, cyclical process that involves the evaluation of the exposure situation to identify the need for action, the identification of the possible protective options to keep the exposure as low as reasonably achievable, the selection of the best option under the prevailing circumstances, the implementation of the selected option through an effective optimisation programme, and regular review of the exposure situation to evaluate if the prevailing circumstances call for the implementation of corrective protective actions. However, the way in which the optimisation process should be implemented is now viewed more broadly to reflect the increasing role of individual equity, safety culture, and stakeholder involvement in our modern societies. This report is a consolidation and an evolution of the Commission's recommendations concerning the optimisation principle. After some background information on the foundation and evolution of the principle, this report describes the main characteristics of the process, addresses the issue of exposure distribution in that process, and provides the basic requirements for its application in operation and regulation. A description of decision-aiding techniques commonly used for practical implementation of the optimisation process is provided in Annex A. PMID

  4. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the ...

  5. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  6. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  7. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  8. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  9. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  10. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  11. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses.

    PubMed

    Koukorava, C; Farah, J; Struelens, L; Clairand, I; Donadille, L; Vanhavere, F; Dimitriou, P

    2014-09-01

    Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that 'wrap around' glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient's skin and to the x-ray field. With the use of such shields, the Hp(10) values recorded at the collar, chest and waist level and the Hp(3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses. PMID:24938591

  12. [Instruction in dental radiology].

    PubMed

    van der Sanden, W J M; Kreulen, C M; Berkhout, W E R

    2016-04-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive intensive theoretical and practical training in practical and theoretical radiology, with the aim of obtaining the 'Eindtermen Stralingshygiëne voor Tandartsen en Orthodontisten'-certificate, which is required for legal permission to use oral radiology in dental practice. It is recommended that the curriculum be expanded to include the areas of knowledge required to qualify for the 'Eindtermen Stralingshygiëne voor het gebruik van CBCT-toestellen door tandartsen' (the certificate for the use of conebeam radiology by dentists). The general dental practitioner is faced with changing laws and regulations in all areas of practice. One of the most significant legal changes in the field of dental radiology was the introduction of the new radiation protection and safety rules in 2014. Moreover, a large group of dentists is also being confronted with the transition from conventional to digital images, with all its challenges and changes in everyday practice. PMID:27073811

  13. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1987-01-01

    This book is an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim is to show radiology as a dynamic subject. Orthopaedic Radiology is divided into two sections with the first part focusing on the principles of diagnostic imaging and interpretation and the second applying this information to practical clinical problems.

  14. Skeletal radiology

    SciTech Connect

    Bowerman, J.W.

    1982-01-01

    The main emphasis of the chapter on skeletal radiology is CAT scanning and its use in the diagnosis of neoplasms. Other topics that are discussed include infections, arthritis, trauma, and metabolic and endocrine diseases as they relate to skeletal radiology. (KRM)

  15. Handbook of radiologic procedures

    SciTech Connect

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography.

  16. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  17. Radiological health aspects of uranium milling

    SciTech Connect

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  18. Strontium-90 Biokinetics from Simulated Wound Intakes in Non-human Primates Compared with Combined Model Predictions from National Council on Radiation Protection and Measurements Report 156 and International Commission on Radiological Protection Publication 67.

    PubMed

    Allen, Mark B; Brey, Richard R; Gesell, Thomas; Derryberry, Dewayne; Poudel, Deepesh

    2016-01-01

    This study had a goal to evaluate the predictive capabilities of the National Council on Radiation Protection and Measurements (NCRP) wound model coupled to the International Commission on Radiological Protection (ICRP) systemic model for 90Sr-contaminated wounds using non-human primate data. Studies were conducted on 13 macaque (Macaca mulatta) monkeys, each receiving one-time intramuscular injections of 90Sr solution. Urine and feces samples were collected up to 28 d post-injection and analyzed for 90Sr activity. Integrated Modules for Bioassay Analysis (IMBA) software was configured with default NCRP and ICRP model transfer coefficients to calculate predicted 90Sr intake via the wound based on the radioactivity measured in bioassay samples. The default parameters of the combined models produced adequate fits of the bioassay data, but maximum likelihood predictions of intake were overestimated by a factor of 1.0 to 2.9 when bioassay data were used as predictors. Skeletal retention was also over-predicted, suggesting an underestimation of the excretion fraction. Bayesian statistics and Monte Carlo sampling were applied using IMBA to vary the default parameters, producing updated transfer coefficients for individual monkeys that improved model fit and predicted intake and skeletal retention. The geometric means of the optimized transfer rates for the 11 cases were computed, and these optimized sample population parameters were tested on two independent monkey cases and on the 11 monkeys from which the optimized parameters were derived. The optimized model parameters did not improve the model fit in most cases, and the predicted skeletal activity produced improvements in three of the 11 cases. The optimized parameters improved the predicted intake in all cases but still over-predicted the intake by an average of 50%. The results suggest that the modified transfer rates were not always an improvement over the default NCRP and ICRP model values. PMID:26606061

  19. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  20. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1985-01-01

    This book provides an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim of the book is to show radiology as a dynamic subject which can help clinicians, while at the same time assisting radiologists to understand the needs of the orthopedic surgeon.

  1. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    SciTech Connect

    Harpring, L; Frank Heckendorn, F

    2007-11-06

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.

  2. Risk management in radiology departments

    PubMed Central

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-01-01

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients. PMID:26120383

  3. Chest radiology

    SciTech Connect

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case.

  4. Genitourinary radiology

    SciTech Connect

    McClennan, B.L.

    1982-01-01

    A literature review of genitourinary radiology highlights new findings in the field that have occurred in the past year. The physiology of contrast media, and the occasional life-threatening contrast medial reaction are discussed. Common urologic problems such as stones, infection, and obstruction are examined in order to interpret static radiographs in a more meaningful way. The field of interventional uroradiology continues to expand, with new procedures being tried and new indications for old procedures being developed. (KRM)

  5. Nevada Test Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  6. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  7. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  8. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  9. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  10. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated in special units of curie, rad, roentgen,...

  11. Diagnostic radiology 1987

    SciTech Connect

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture.

  12. Pediatric radiology

    SciTech Connect

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton. (KRM)

  13. Radiological Toolbox User's Manual

    SciTech Connect

    Eckerman, KF

    2004-07-01

    A toolbox of radiological data has been assembled to provide users access to the physical, chemical, anatomical, physiological and mathematical data relevant to the radiation protection of workers and member of the public. The software runs on a PC and provides users, through a single graphical interface, quick access to contemporary data and the means to extract these data for further computations and analysis. The numerical data, for the most part, are stored within databases in SI units. However, the user can display and extract values using non-SI units. This is the first release of the toolbox which was developed for the U.S. Nuclear Regulatory Commission.

  14. Dental radiology.

    PubMed

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed. PMID:19410234

  15. Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations

    SciTech Connect

    1998-03-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas.

  16. Battlefield radiology

    PubMed Central

    Graham, R N J

    2012-01-01

    With the increasing tempo of military conflicts in the last decade, much has been learnt about imaging battlefield casualties in the acute setting. Ultrasound in the form of focused abdominal sonography in trauma (FAST) has proven invaluable in emergency triage of patients for immediate surgery. Multidetector CT allows accurate determination of battlefield trauma injuries. It permits the surgeons and anaesthetists to plan their interventions more thoroughly and to be made aware of clinically occult injuries. There are common injury patterns associated with blast injury, gunshot wounds and blunt trauma. While this body of knowledge is most applicable to the battlefield, there are parallels with peacetime radiology, particularly in terrorist attacks and industrial accidents. This pictorial review is based on the experiences of a UK radiologist deployed in Afghanistan in 2010. PMID:22806621

  17. Radiological assistance program: Region I. Part I

    SciTech Connect

    Musolino, S.V.; Kuehner, A.V.; Hull, A.P.

    1985-07-15

    The purpose of the Radiological Assistance Program (RAP) is to make DOE resources available and provide emergency assistance to state and local agencies in order to control radiological hazards, protect the public health and safety, and minimize the loss of property. This plan is an integral part of a nationwide program of radiological assistance established by the US DOE, and is implemented on a regional basis. The Brookhaven Area Office (BHO) Radiological Assistance Program is applicable to DOE Region I, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia. The BHO RAP-1 has been developed to: (a) ensure the availability of an effective radiological assistance capability to ensure the protection of persons and property; (b) provide guidelines to RAP-1 Team personnel for the evaluation of radiological incidents and implementation of corrective actions; (c) maintain liaison with other DOE installations, Federal, State and local organizations which may become involved in radiological assistance operations in Region I; and (d) encourage development of a local capability to cope with radiological incidents.

  18. Current radiology. Volume 5

    SciTech Connect

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular.

  19. [Risk of deterministic effects after exposure to low doses of ionizing radiation: retrospective study among health workers in view of a new publication of International Commission on Radiological Protection].

    PubMed

    Negrone, Mario; Di Lascio, Doriana

    2016-01-01

    The new recommended equivalent (publication n. 118 of International Commission on Radiological Protection) dose limit for occupational exposure of the lens of the eye is based on prevention of radiogenic cataracts, with the underlying assumption of a nominal threshold which has been adjusted from 2,5 Gy to 0.5 Gy for acute or protracted exposure. The study aim was to determine the prevalence of ocular lens opacity among healthcare workers (radiologic technologists, physicians, physician assistants) with respect to occupational exposures to ionizing radiations. Therefore, we conducted another retrospective study to explore the relationship between occupational exposure to radiation and opacity lens increase. Healthcare data (current occupational dosimetry, occupational history) are used to investigate risk of increase of opacity lens of eye. The sample of this study consisted of 148 health-workers (64 M and 84 W) aged from 28 to 66 years coming from different hospitals of the ASL of Potenza (clinic, hospital and institute with scientific feature). On the basis of the evaluation of the dosimetric history of the workers (global and effective dose) we agreed to ascribe the group of exposed subjects in cat A (equivalent dose > 2 mSV) and the group of non exposed subjects in cat B (workers with annual absorbed level of dose near 0 mSv). The analisys was conducted using SPSS 15.0 (Statistical Package for Social Science). A trend of increased ocular lens opacity was found with increasing number for workers in highest category of exposure (cat. A, Yates' chi-squared test = 13,7 p = 0,0002); variable significantly related to opacity lens results job: nurse (Χ(2)Y = 14,3 p = 0,0002) physician (Χ(2)Y = 2.2 p = 0,1360) and radiologic technologists (Χ(2)Y = 0,1 p = 0,6691). In conclusion our provides evidence that exposure to relatively low doses of ionizing radiation may be harmful to the lens of the eye and may increase a long-term risk of cataract formation; similary

  20. Common Interventional Radiology Procedures

    MedlinePlus

    ... of common interventional techniques is below. Common Interventional Radiology Procedures Angiography An X-ray exam of the ... into the vertebra. Copyright © 2016 Society of Interventional Radiology. All rights reserved. 3975 Fair Ridge Drive • Suite ...

  1. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications. PMID:24200475

  2. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  3. Radiological emergency: Malaysian preparedness and response.

    PubMed

    Yusof, Mohd Abd Wahab; Ali, Hamrah Mohd

    2011-07-01

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. PMID:21729940

  4. FRMAC Interactions During a Radiological or Nuclear Event

    SciTech Connect

    Wong, C T

    2011-01-27

    During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

  5. Nevada Test Site Radiological Control Manual. Revision 1

    SciTech Connect

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  6. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  7. Radiological evaluation of dysphagia

    SciTech Connect

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  8. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  9. Originality of new imaging techniques in pediatric radiology.

    PubMed

    Haddad-Zebouni, Soha; Abi Khalil, Samer; Ducou-Lepointe, Hubert

    2009-01-01

    Pediatric radiology is a specialty that combines the performances of imaging and radio-protection. It also has to deal with absence of cooperation and motion of the child which have limited for a long time many radiological applications. Technical advances with shorter acquisition time in CT and MRI, higher frequencies in ultrasound, and digitalization in conventional radiology have widened the indications especially with the new modalities. We present in this article the originalities and the benefits of current pediatric radiology and perform a historic review outlining its evolution. PMID:19459578

  10. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  11. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect

    Not Available

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  12. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  13. Training in Radiological Protection: Curricula and Programming.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    A summary of training programs relating to radiation health and safety is presented in this report. Training courses are primarily categorized into five types, respectively, for specialists, personnel whose work is closely related to radiation, radiation users, nuclear installation staff, and the general public. To meet the present world needs,…

  14. The disaggregation of radiology.

    PubMed

    Brant-Zawadzki, Michael N; Enzmann, Dieter R

    2008-12-01

    The authors discuss certain market and political forces buffeting the traditional structure of radiology, both in practice and in the academic setting. These forces can be, to a certain degree, disruptive and produce fragmentation of what are now integrated radiology services and specialties. The potential fallout from the current rapidly changing environment of health care, including strategies for delivering care along service lines or within discrete episodes of care, may have a profound impact on the future of radiology. Understanding the dynamics of the current environment may help plan strategies for dealing with the potential impact on our specialty. PMID:19027680

  15. Enhanced radiological work planning

    SciTech Connect

    DECKER, W.A.

    1999-05-21

    The purpose of this standard is to provide Project Hanford Management Contractors (PHMC) with guidance for ensuring radiological considerations are adequately addressed throughout the work planning process. Incorporating radiological controls in the planning process is a requirement of the Hanford Site Radiological Control Manual (HSRCM-I), Chapter 3, Part 1. This standard is applicable to all PHMC contractors and subcontractors. The essential elements of this standard will be incorporated into the appropriate site level work control standard upon implementation of the anticipated revision of the PHMC Administration and Procedure System.

  16. Overview of ICRP Committee 3: protection in medicine.

    PubMed

    Vañó, E; Miller, D L; Rehani, M M

    2016-06-01

    Committee 3 of the International Commission on Radiological Protection (ICRP) develops recommendations and guidance for protection of patients, staff, and the public against radiation exposure when ionising radiation is used for medical diagnosis, therapy, or biomedical research. This paper presents a summary of the work that Committee 3 has accomplished over the past few years, and also describes its current work. The most recent reports published by the Commission that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (Publication 129), 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (Publication 128, in cooperation with Committee 2), 'Radiological protection in ion beam radiotherapy' (Publication 127), 'Radiological protection in paediatric diagnostic and interventional radiology' (Publication 121), 'Radiological protection in cardiology' (Publication 120), and 'Radiological protection in fluoroscopically guided procedures outside the imaging department' (Publication 117). A new report on diagnostic reference levels in medical imaging will provide specific advice for interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and hybrid (multi-modality) imaging procedures, and is expected to be published in 2016. Committee 3 is also working on guidance for occupational radiological protection in brachytherapy, and on guidance on occupational protection issues in interventional procedures, paying particular attention to the 2011 Commission's recommendations on the occupational dose limit for the lens of the eye (Publication 118). Other reports in preparation deal with justification, radiological protection in therapy with radiopharmaceuticals, radiological protection in medicine as related to individual radiosusceptibility, appropriate use of effective dose (in cooperation with other

  17. Diagnostic radiology in the tropics: technical considerations.

    PubMed

    Ng, Kwan-Hoong; McLean, Ian Donald

    2011-11-01

    An estimated two thirds of the world's population is currently without access to diagnostic radiology services, and most of them live in resource-limited tropical regions with harsh environments. Most patients are diagnosed and treated in poorly equipped government-funded hospitals and clinics that have insufficiently trained staff and are barely operational. Any available imaging equipment is likely to be functioning suboptimally and be poorly maintained. The root of the problem is usually a lack of know-how and a quality culture, combined with insufficient basic equipment and infrastructure. Radiological imaging is an essential aspect of primary care and used in the critical diagnosis and management of trauma, tuberculosis, pneumonia, acquired immunodeficiency syndrome, cancer, and other respiratory and abdominal diseases. Considerations such as quality management and infrastructure, personnel, equipment, and radiation protection and safety are important to ensure the proper functioning and rational use of a diagnostic radiology facility in the tropics. PMID:22081279

  18. Optimization of radiation protection

    SciTech Connect

    Lochard, J.

    1981-07-01

    The practical and theoretical problems raised by the optimization of radiological protection merit a review of decision-making methods, their relevance, and the way in which they are used in order to better determine what role they should play in the decision-making process. Following a brief summary of the theoretical background of the cost-benefit analysis, we examine the methodological choices implicit in the model presented in the International Commission on Radiological Protection Publication No. 26 and, particularly, the consequences of the theory that the level of radiation protection, the benefits, and the production costs of an activity can be treated separately.

  19. Radiologic Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the radiologic technology program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  20. Society of Interventional Radiology

    MedlinePlus

    ... how interventional radiology research improves patients’ lives at Society of Interventional Radiology’s 2017 Annual Scientific Meeting; read ... comments to CMS on two MACRA coding issues; society is engaged with CMS as they develop codes ...

  1. Interventional Radiology in China

    SciTech Connect

    Teng Gaojun Xu Ke; Ni Caifang; Li Linsun

    2008-03-15

    With more than 3000 members, the Chinese Society of Interventional Radiology (CSIR) is one of the world's largest societies for interventional radiology (IR). Nevertheless, compared to other societies such as CIRSE and SIR, the CSIR is a relatively young society. In this article, the status of IR in China is described, which includes IR history, structure and patient management, personnel, fellowship, training, modalities, procedures, research, turf battle, and insightful visions for IR from Chinese interventional radiologists.

  2. Basic bone radiology

    SciTech Connect

    Griffiths, H.J.

    1987-01-01

    This clinical book surveys the skeletal system as seen through radiological imaging. It emphasizing abnormalities, disease, and trauma, and includes vital information on bones, bone growth, and the cells involved in bone pathology. It covers many bone diseases and injuries which are rarely covered in medical texts, as well as descriptions of radiologic procedures that specifically relate to the skeleton. This edition includes many illustrations, information on MR imaging and CT scanning, and discussions of osteoporosis, dysplasias, and metabolic bone disease.

  3. DOE Region 6 Radiological Assistance Program plan. Revision 1

    SciTech Connect

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950`s. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety.

  4. Practical pediatric imaging: diagnostic radiology of infants and children

    SciTech Connect

    Kirks, D.R.

    1984-01-01

    A textbook of pediatric radiology is reviewed. Practical techniques of imaging in the pediatric patient is discussed with emphasis on the problems involved in pediatric radiology. There are useful hints on equipment, protection, and special examinations. Information is included on traditional organ systems and techniques of examination, as well as descriptions of common general abnormalities, including normal variants and rarer specific abnormalities. There are four appendices dealing with patient preparation, suggested projections, radiation dosage, and recommended techniques.

  5. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  6. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  7. Successful Transformational Radiology Leaders.

    PubMed

    Douget, Karen

    2015-01-01

    Transformational radiology leaders elevate subordinates, expand self-awareness, develop lasting relationships, strive to exceed expectations, and uphold the vision and goals of the organization. In order for radiology leaders to become more transformational in their leadership style there are four fundamental elements they must learn: idealized influence, individualized consideration, inspirational motivation, and intellectual stimulation. Leaders can utilize personality and self-assessments to learn more about themselves, identify areas of strengths and weaknesses, and learn to be more effective when leading employees. PMID:26710553

  8. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  9. Radiology of thoracic diseases

    SciTech Connect

    Swensen, S.J.; Pugatch, R.D.

    1989-01-01

    This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

  10. Practical interventional radiology

    SciTech Connect

    Von Sonnenberg, E.; Mueller, P.R.

    1988-01-01

    This book describes techniques employed in interventional radiology with emphasis on imaging leading to intervention. Includes the entire array of procedures available to the radiologist, discussing the indications, materials, technique, results, and complications for each. Covers the chest, abdomen, bone, pediatric considerations, and nursing care.

  11. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  12. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  13. Research Training in Radiology.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    Radiology today is a major clinical specialty of medicine in terms of the number and complexity of patient examinations, and the financial resources, physician manpower, and supporting personnel required for performing its functions. It reached its present status because it provides accurate methods of diagnosis for so many diseases. However, this…

  14. Radiology of spinal curvature

    SciTech Connect

    De Smet, A.A.

    1985-01-01

    This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.

  15. PACS for GU radiology

    NASA Astrophysics Data System (ADS)

    Hayrapetian, Alek S.; Barbaric, Zoran L.; Weinberg, Wolfram S.; Chan, Kelby K.; Loloyan, Mansur; Taira, Ricky K.; Huang, H. K.

    1991-07-01

    The authors have developed a PACS module for genito-urinary radiology. This module is based on image acquisition subsystem, database and storage server/cluster controllers, communication networks, display workstation and local database, and dedicated digitizer and printer. The design guideline for this system is generality and flexibility. As such this module serves as a prototype for future PACS module designs.

  16. Radiologic Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a radiologic technology program. The guide contains four major sections. The General Information section contains an introduction giving an overview and defining purpose and objectives; a program description,…

  17. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  18. A dental radiologic health laboratory teaching method.

    PubMed

    Hallisey, R M; Darzenta, N C

    1976-07-01

    The School of Dental Medicine at Tufts University has given new direction to the understanding of radiologic health through a program in which all students participate in some laboratory activities directly related to the problems of radiologic health in dental practice. This article presents an explanation of the background of this program and the experiments performed and discusses the interest in the program and its effect on the dental students. The laboratory program described is held for 3 1/2 hours on Wednesday afternoons at the Dental School, since this is a period of minimum patient load in the Radiology Department. The course is presented for third-year dental students who already have takin a lecture course in the fundamentals and techniques of radiology and have received training in the proper procedures for taking radiographs. The program is designed as a series of experiments dealing with machine output, filtration, collimation, exposure factors, scatter radiation, film density, patient protection, and shielding. The students are introduced to various radiation-detection instruments and given the opportunity to use these instruments to measure output and scatter-radiation levels under varying conditions. The laboratory teaching method presented can also be reprogrammed for different group sizes and time schedules. PMID:1065831

  19. Ethical problems in radiology: radiological consumerism.

    PubMed

    Magnavita, N; Bergamaschi, A

    2009-10-01

    One of the causes of the increasing request for radiological examinations occurring in all economically developed countries is the active role played by the patient-consumer. Consumerism places the radiologist in an ethical dilemma, between the principle of autonomy on the one hand and the ethical principles of beneficence, nonmaleficence and justice on the other. The choice made by radiologists in moral dilemmas is inspired by an adherence to moral principles, which in Italy and elsewhere refer to the Judaeo-Christian tradition or to neo-Darwinian relativism. Whatever the choice, the radiologist is bound to adhere to that choice and to provide the patient with all the relevant information regarding his or her state of health. PMID:19662338

  20. Radiologic technology educators and andragogy.

    PubMed

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting. PMID:6729091

  1. Poul Erik Andersen's radiological work on Osteochondrodysplasias and interventional radiology

    PubMed Central

    Andersen, Poul Erik

    2011-01-01

    Poul Erik Andersen is a Professor and Interventional Radiologist at the University of Southern Denmark, Odense and Odense University Hospital, Denmark. His innovative and expertise is primarily in vascular interventions where he has introduced and developed many procedures at Odense University Hospital. His significant experience and extensive scientific work has led to many posts in the Danish Society of Interventional Radiology, the European Society of Radiology and the Cardiovascular and Interventional Radiological Society of Europe, where he is a fellow and has passed the European Board of Interventional Radiology - The European qualification in Interventional Radiology. PMID:22022640

  2. Data mining in radiology

    PubMed Central

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-01-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  3. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  4. Conjoined twins: Radiological experience.

    PubMed

    Watson, Sarah G; McHugh, Kieran

    2015-10-01

    Imaging plays a key role in the management of conjoined twins. Pre-operative multi-modality studies are vital to assess operability and to aid surgical planning. Technical advances in imaging such as high-resolution isovolumetric magnetic resonance imaging (MRI) techniques and three-dimensional modeling now result in extremely accurate anatomical information. Varied information from a comprehensive radiological work-up enables the surgeons to plan the safest possible operative procedure, helps the anesthetic team before and during surgery, and guides the intensive care team in the post-operative phase. This article will review the radiological techniques used in our institution, highlighting potential pitfalls with the various imaging modalities. PMID:26382258

  5. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  6. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  7. Federal Radiological Monitoring and Assessment Center: Phase I Response

    SciTech Connect

    C. Riland; D. R. Bowman; R. Lambert; R. Tighe

    1999-09-30

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions.

  8. REDUCED PROTECTIVE CLOTHING DETERMINATIONS

    SciTech Connect

    BROWN, R.L.

    2003-06-13

    This technical basis document defines conditions where reduced protective clothing can be allowed, defines reduced protective clothing, and documents the regulatory review that determines the process is compliant with the Tank Farm Radiological Control Manual (TFRCM) and Title 10, Part 835, of the Code of Federal Regulations (10CFR835). The criteria, standards, and requirements contained in this document apply only to Tank Farm Contractor (TFC) facilities.

  9. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Recommendation for quality assurance programs in diagnostic radiology facilities. 1000.55 Section 1000.55 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH GENERAL Radiation Protection Recommendations § 1000.55 Recommendation...

  10. [Oral and maxillofacial radiology: laws and regulations].

    PubMed

    van der Stelt, P F

    2015-05-01

    Since the discovery of X-rays, medical imaging has been one of its most important applications. In the course of years, understanding of the potentially harmful effects of radiation on tissue has substantially increased as a result of experience and scientific studies. This has led to the International Commission on Radiological Protection (ICRP), the organisation that is now regarded as the most authoritative in the field of information on radiation and radiation protection. In most countries the law governing radiation is based on the 3 principles of the ICRP: justification, ALARA and dosage limits. For the Dutch situation, these are the Nuclear Energy Act (Kernenergiewet) and the Radiation Protection Decree (Besluit stralingsbescherming). The Practice Guidelines on Radiology are available for the practical implementation of the regulations. By working according to the Practice Guidelines, the dentist satisfies the legal regulations, but, more importantly, he can apply X-ray diagnostics in a manner that is safe for him, the dental team, the patients and all other visitors of the practice. PMID:26210217

  11. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  12. Small bowel radiology

    SciTech Connect

    Antes, G.; Eggemann, F.

    1987-01-01

    This book deals mainly with technique, experiences and results of the biphasic small bowel enema (enteroclysis) with barium and methyl cellulose. The method allows the evaluation of both morphology and function of the small bowel. The introduction describes the examination technique, basic patterns, interpretation and indications, while the atlas shows a broad spectrum of small bowel diseases (Crohn's disease, other inflammatory diseases, tumors, motility disorders, obstructions and malformations). The possibilities of small bowel radiology are demonstrated with reference to clinical findings and differential diagnoses.

  13. Characterization of radiological emergencies

    SciTech Connect

    Chester, C.V.

    1985-01-01

    Several severe radiological emergencies were reviewed to determine the likely range of conditions which must be coped with by a mobile teleoperator designed for emergencies. The events reviewed included accidents at TMI (1978), SL-1 (1961), Y-12 (1958), Bethesda (1982), Chalk River (1952 and 1958), Lucens (1969). The important conditions were: radiation fields over 10,000 R/h, severe contamination, possible critical excursion, possible inert atmosphere, temperatures from 50/sup 0/C to -20/sup 0/C, 100% relative humidity, 60-cm-high obstacles, stairs, airlocks, darkness, and lack of electric power.

  14. Smart Radiological Dosimeter

    SciTech Connect

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  15. Prepare Your School for Chemical, Biological, and Radiological Threats

    ERIC Educational Resources Information Center

    Sechena, Ruth

    2005-01-01

    Recent accidents highlight that chemical, biological, and radiological (CBR) agent exposure risk isn't just about terrorism. In this article, the author, a parent and public health physician, wrestles with the fact that total protection from CBRs is probably not feasible in her son's or in the majority of American schools. Capital investments, for…

  16. Radiological aspects of the SSRL 3 GeV injector

    SciTech Connect

    Ipe, N.

    1991-09-01

    This document describes the shielding of the injector, results of radiation measurements, the personnel protection system, the beam containment system, the area monitoring, administrative controls and procedures, operator training and personnel dosimetry. In addition, other radiological aspects of the injector such as muons, air activation, toxic gases, induced activity and skyshine are discussed. 79 refs., 18 figs., 13 tabs.

  17. ICPP radiological and toxicological sabotage analysis

    SciTech Connect

    Kubiak, V.R.; Mortensen, F.G.

    1995-10-01

    In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options.

  18. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction. PMID:26466190

  19. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  20. Picture archiving and communication in radiology.

    PubMed

    Napoli, Marzia; Nanni, Marinella; Cimarra, Stefania; Crisafulli, Letizia; Campioni, Paolo; Marano, Pasquale

    2003-01-01

    After over 80 years of exclusive archiving of radiologic films, at present, in Radiology, digital archiving is increasingly gaining ground. Digital archiving allows a considerable reduction in costs and space saving, but most importantly, immediate or remote consultation of all examinations and reports in the hospital clinical wards, is feasible. The RIS system, in this case, is the starting point of the process of electronic archiving which however is the task of PACS. The latter can be used as radiologic archive in accordance with the law provided that it is in conformance with some specifications as the use of optical long-term storage media or with electronic track of change. PACS archives, in a hierarchical system, all digital images produced by each diagnostic imaging modality. Images and patient data can be retrieved and used for consultation or remote consultation by the reporting radiologist who requires images and reports of previous radiologic examinations or by the referring physician of the ward. Modern PACS owing to the WEB server allow remote access to extremely simplified images and data however ensuring the due regulations and access protections. Since the PACS enables a simpler data communication within the hospital, security and patient privacy should be protected. A secure and reliable PACS should be able to minimize the risk of accidental data destruction, and should prevent non authorized access to the archive with adequate security measures in relation to the acquired knowledge and based on the technological advances. Archiving of data produced by modern digital imaging is a problem now present also in small Radiology services. The technology is able to readily solve problems which were extremely complex up to some years ago as the connection between equipment and archiving system owing also to the universalization of the DICOM 3.0 standard. The evolution of communication networks and the use of standard protocols as TCP/IP can minimize

  1. Nevada National Security Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of

  2. Federal Radiological Monitoring and Assessment Center (FRMAC) overview of FRMAC operations

    SciTech Connect

    1996-02-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response plan (FRERP). This cooperative effort will assure the designated Lead Federal Agency (LFA) and the state(s) that all federal radiological assistance fully supports their efforts to protect the public. The mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) Operations describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas. These off-site areas may include one or more affected states.

  3. Common problems in gastrointestinal radiology

    SciTech Connect

    Thompson, W.M.

    1989-01-01

    This book covers approximately 70 common diagnostic problems in gastro-intestinal radiology. Each problem, includes a short illustrated case history, a discussion of the radiologic findings, a general discussion of the case, the differential diagnosis, a description of the management of the problem or procedure used, and, where appropriate, the results of the therapy suggested.

  4. Handbooks in radiology: Nuclear medicine

    SciTech Connect

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine.

  5. Radiological Technology. Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide was designed for use in postsecondary radiological technology education programs in Georgia. Its purpose is to provide for the development of entry level skills in radiological technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…

  6. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center (ESTSC)

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  7. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  8. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  9. The yearbook of diagnostic radiology. 1987

    SciTech Connect

    Bragg, D.G.

    1987-01-01

    This book contains seven selections. They are: Neuroradiology; Cardiovascular and Interventional Radiology; The Thorax; The Abdomen; The Musculoskeletal System; Pediatric Radiology; and Radiation Physics.

  10. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  11. El problema de estabilidad de los sistemas Hamiltonianos multidimensionales

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.

    Se revisarán los aspectos básicos del problema de estabilidad de sistemans Hamiltonianos N-dimensionales, haciendo especial énfasis en los posibles mecanismos que dan lugar a la aparición de ``caos": overlap de resonancias, difusión de Arnol'd y otros procesos difusivos alternativos. Se mencionarán los aspectos aún no resueltos sobre la estabilidad de los sistemas con N > 2. Finalmente, se discutirá cuáles de estos mecanismos podrían tener alguna relevancia en la dinámica de sistemas estelares y planetarios.

  12. Radiology and the mobile device: Radiology in motion.

    PubMed

    Panughpath, Sridhar G; Kalyanpur, Arjun

    2012-10-01

    The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available. PMID:23833412

  13. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  14. Radiology system evolution in the new millennium.

    PubMed

    Nauert, R C

    2001-01-01

    For many decades the practice of radiology grew slowly in America and was largely a secondary function under the control of hospitals. In more recent times it has vastly expanded its array of diagnostic, interventional, and therapeutic abilities. There is increasing consumer logic for direct access. Motivations have grown to create large independent entities with broadly diverse capabilities in order to succeed in the new millennium. Most regional markets are evolving rapidly in terms of managed care penetration, health system formation, physician practice consolidation and aggressive purchaser behavior by employers and consumers. To understand the enormity of healthcare evolution, it is useful to look at the industry's paradigm shifts in recent decades. Virtually every aspect of organizational infrastructure, delivery approaches, and the business environment has evolved markedly during the past fifty years. These changes will accelerate. To succeed financially, radiology groups must strengthen their market positions, technical capabilities, continuums of care and geographic dominance. Equally important is the wisdom of diversifying incomes into related services and businesses that provide additional related revenues. Key factors for successful development include facility market growth, full coverage of managed care contracts, high efficiency and aggressive diversification. A fully evolved system generates significant revenues and profitability by protecting and strengthening its financial position in this environment. That is accomplished through the development of strategically located radiology groups, aggressive alliances with medical practices in allied disciplines, and managed radiology departments and facilities for partner health systems. Organizational success ultimately depends on the ability to accept capitated payments under risk-bearing arrangements. The strategic business plan should be organized with the appropriate levels of detail needed to

  15. The radiologically isolated syndrome.

    PubMed

    Lebrun, C

    2015-10-01

    Even prior to the introduction of criteria defining the radiologically isolated syndrome (RIS), longitudinal clinical data from individuals with incidentally identified T2 lesions suggestive of multiple sclerosis (MS) were described. Healthy individuals who do not exhibit signs of neurological dysfunction may have a brain MRI performed for a reason other than suspicion of MS that reveals unexpected anomalies highly suggestive of demyelinating plaques given their size, location, and morphology. These healthy subjects lack a history or symptomatology suggestive of MS and fulfill formal criteria for RIS, a recently described MS subtype that shares the phenotype of at-risk individuals for future demyelinating events. A formal description of RIS was first introduced in 2009 by Okuda et al., and defines a cohort of individuals who are at risk for future demyelinating events. European or North American observational studies have found that up to 30-45% of patients presenting with RIS will present with neurological symptoms, either acute or progressive. The median time to clinical conversion differs between studies. It was 2.3 years for a series of French patients and 5.4 years for an American cohort. Most patients who developed clinical symptoms had prior radiological progression. The presence of asymptomatic lesions in the cervical cord indicated an increased risk of progression, either to relapsing or to progressive MS. The consortium studying the epidemiology of RIS worldwide (RISC) presented their first retrospective cohort last year. Data were available for 451 RIS subjects (F: 354 [78.5%]). The mean age at RIS diagnosis was 37.2 years with a mean clinical follow-up time of 4.4 years. The observed 5-year conversion rate to the first clinical event was 34%. Of the converters within this time period, 9.6% fulfilled criteria for primary progressive MS. In the multivariate model, age, sex (male), and lesions within the cervical or thoracic spinal cord were identified as

  16. Informatics in radiology: Render: an online searchable radiology study repository.

    PubMed

    Dang, Pragya A; Kalra, Mannudeep K; Schultz, Thomas J; Graham, Steven A; Dreyer, Keith J

    2009-01-01

    Radiology departments are a rich source of information in the form of digital radiology reports and images obtained in patients with a wide spectrum of clinical conditions. A free text radiology report and image search application known as Render was created to allow users to find pertinent cases for a variety of purposes. Render is a radiology report and image repository that pools researchable information derived from multiple systems in near real time with use of (a) Health Level 7 links for radiology information system data, (b) periodic file transfers from the picture archiving and communication system, and (c) the results of natural language processing (NLP) analysis. Users can perform more structured and detailed searches with this application by combining different imaging and patient characteristics such as examination number; patient age, gender, and medical record number; and imaging modality. Use of NLP analysis allows a more effective search for reports with positive findings, resulting in the retrieval of more cases and terms having greater relevance. From the retrieved results, users can save images, bookmark examinations, and navigate to an external search engine such as Google. Render has applications in the fields of radiology education, research, and clinical decision support. PMID:19564253

  17. Self-citation: comparison between Radiología, European Radiology and Radiology for 1997-1998.

    PubMed

    Miguel, Alberto; Martí-Bonmatí, Luis

    2002-01-01

    Self-citation, considered as the number of times a paper cites other papers in the same journal, is an important criteria of journal quality. Our objective is to evaluate the self-citation in the official journal of the Spanish Society of Radiology (Radiología), and to compare it with the European Radiology and Radiology journals. Papers published in Radiología, European Radiology, and Radiology during 1997 and 1998 were analyzed. The Self Citation Index, considered as the ratio between self-references and total number of references per article, for the journals Radiología (SCIR), European Radiology (SCIER), and Radiology (SCIRY), were obtained and expressed as percentages. Also, the number of references to Radiología in European Radiology and Radiology papers were calculated. Stratification of the index per thematic area and article type was also performed. Mean SCIR, SCIER, and SCIRY values were compared with the ANOVA and the Student-Newman-Keuls tests. The self-citation index was statistically higher in Radiology (23.2%; p<0.0001) than in Radiología (1.8%) and European Radiology (0.8%). There were no statistically significant differences between SCIR and SCIER indexes ( p=0.25). In the stratification per thematic areas and article type, self-citation in Radiology was statistically higher ( p<0.0001), with the only exception of "Radioprotection" area ( p=0.2), to SCIR and SCIER. Although there were no statistically significant differences, by thematic areas SCIR was always larger than SCIER, with the only exception of the "Genitourinary imaging" area, and by article type SCIR also went greater to SCIER, except in review articles. Radiología, The Spanish official radiological journal, although not included in Index Medicus and its database Medline, had a larger number of self-citing than European Radiology in the period 1997-1998. PMID:11868105

  18. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. Radiological Society of North America

    MedlinePlus

    ... Plan your RSNA 2016 experience as you discover programming options, add courses to your agenda, and plan ... the future of ethics and professionalism in radiology. One Year After ICD-10: The Conversion Went Well, ...

  20. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (ESTSC)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  1. Environmental Tools and Radiological Assessment

    EPA Science Inventory

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  2. Multimedia in the radiology environment

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Ramaswamy, Mohan R.; Arenson, Ronald L.

    1994-05-01

    Accessibility of multimedia information related to radiology in a timely manner is a key to success in practicing radiology in the future. In this paper we describe the concept of multimedia in the radiology environment and its implementation in our department at UCSF. This paper emphasizes the various types of databases related to radiology including HIS, RIS, PACS image database, digital voice dictation system, electronic mail and library information system. A method to interconnect these databases is through a comprehensive network architecture that also is described. As an application, we introduce the concept of a departmental image file server, for any of the 150 Macintosh users in the department to access this multimedia information.

  3. Radiological cleanup of Enewetak Atoll

    SciTech Connect

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  4. Negotiating the radiologically isolated syndrome.

    PubMed

    Cummings, A; Chataway, J

    2014-10-01

    Multiple sclerosis, always challenging, hands down a particular gauntlet with the concept of the radiologically isolated syndrome. This article discusses what it is, recent developments in the field and how these patients should be managed. PMID:25291606

  5. Radiological instrument. Patent Application

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1985-10-10

    This patent application discloses a radiological measuring instrument including an angularly variable radiation-sensitive structure comprised of two blocks of material having a different index of refraction with one of the materials comprising a radiochromic substance whose refractive index changes through anomolous dispersion as a result of being exposed to radiation. The ratio of the two indices of refraction is selected to be close to unity, with the radiation-sensitive structure being pivotally adjusted so that light is directed into one end of the block comprising the material having the greater index of refraction. This element, moreover, is selected to be clear and transparent with the incident angle being close to the critical angle where total reflection of all incident light occurs. A portion of the incident light is furthermore projected through the clear transparent block without reflection, with the two beams emerging from the other end of the block, where they are detected. Exposure to radiation changes the index of refraction of the radiochromic block and accordingly the reflected energy emerging therefrom. Calibrated readjustment of the angle of incidence provides a measure of the sensed radiation.

  6. [Controlling in outpatient radiology].

    PubMed

    Baum, T

    2015-12-01

    Radiology is among the medical disciplines which require the highest investment costs in the healthcare system. The need to design efficient workflows to ensure maximum utilization of the equipment has long been known. In order to be able to establish a sound financial plan prior to a project or equipment purchase, the costs of an examination have to be broken down by modality and compared with the reimbursement rates. Obviously, the same holds true for operative decisions when scarce human resources have to be allocated. It is the task of controlling to review the economic viability of the different modalities and ideally, the results are incorporated into the management decision-making processes. The main section of this article looks at the recognition and allocation of direct and indirect costs in a medical center (Medizinisches Versorgungszentrum - MVZ) in the German North Rhine region. The profit contribution of each examination is determined by deducting the costs from the income generated by the treatment of patients with either private or statutory health insurance. PMID:26538134

  7. Radiological design guide

    SciTech Connect

    Evans, R.A.

    1994-08-16

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

  8. 1995 AUR Hartman Centennial Lecture. Academic radiology: time for action.

    PubMed

    Maynard, C D

    1995-12-01

    To summarize, the 10 actions I believe we should take are as follows: 1. Protect our patient base by institutional involvement and selected departmental outreach programs. 2. Reorganize our faculties and gain their support to meet the changes that will occur as a result of health care reengineering. 3. Restructure our residency and fellowship programs to adapt positively to the needs of a new delivery system. 4. Take a stand on resident/fellow training, accreditation issues, and program length and composition. 5. Develop a national program to continue to attract the best medical students into radiology. 6. Get the information needed to provide the best estimate of work force requirements and work toward achieving the proper balance between supply and demand. 7. Support subspecialization in our field. Quality eventually will be an issue. 8. Support research training for faculty and make research important. 9. Continue to present our field as an exciting place to be, which it is. 10. Support the AUR, the SCARD, and the APDR as the collective voice for academic radiology. Finally, I would like to challenge the AUR, the SCARD, and the APDR to unite to become a strong force in academic radiology. Academic radiology now has no singular voice. Radiologists in private practice have the ACR, neuroradiologists have the ASNR, vascular-interventional radiologists have the SCVIR, nuclear medicine radiologists have the Society of Nuclear Medicine, ultrasonographers have the American Institute of Ultrasound in Medicine, and I can name many other important special interest groups within our field. No doubt, all these organizations share many of our common concerns and interests, but having an organization interested solely in the continued health of academic radiology is vital to our future and, because of the reengineering of the health care system, more important than ever. Academic radiology is in the unique position of being radiology's only supplier of human resources and

  9. Radiological training for tritium facilities

    SciTech Connect

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  10. Financial accounting for radiology executives.

    PubMed

    Seidmann, Abraham; Mehta, Tushar

    2005-03-01

    The authors review the role of financial accounting information from the perspective of a radiology executive. They begin by introducing the role of pro forma statements. They discuss the fundamental concepts of accounting, including the matching principle and accrual accounting. The authors then explore the use of financial accounting information in making investment decisions in diagnostic medical imaging. The paper focuses on critically evaluating the benefits and limitations of financial accounting for decision making in a radiology practice. PMID:17411806

  11. Radiology of congenital heart disease

    SciTech Connect

    Amplatz, K.

    1986-01-01

    This is a text on the radiologic diagnosis of congenital heart disease and its clinical manifestations. The main thrust of the book is the logical approach which allows an understanding of the complex theory of congenital heart disease. The atlas gives a concise overview of the entire field of congenital heart disease. Emphasis is placed on the understanding of the pathophysiology and its clinical and radiological consequences. Surgical treatment is included since it provides a different viewpoint of the anatomy.

  12. Radiological Features of Hepatocellular Carcinoma

    PubMed Central

    Shah, Samir; Shukla, Akash; Paunipagar, Bhawan

    2014-01-01

    Present article is a review of radiological features of hepatocellular carcinoma on various imaging modalities. With the advancement in imaging techniques, biopsy is rarely needed for diagnosis of hepatocellular carcinoma (HCC), unlike other malignancies. Imaging is useful not only for diagnosis but also for surveillance, therapy and assessing response to treatment. The classical and the atypical radiological features of HCC have been described. PMID:25755613

  13. FDH radiological design review guidelines

    SciTech Connect

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  14. Radiology practice models: the 2008 ACR Forum.

    PubMed

    Gunderman, Richard B; Weinreb, Jeffrey C; Van Moore, Arl; Hillman, Bruce J; Neiman, Harvey L; Thrall, James H

    2008-09-01

    The 2008 ACR Forum brought together a diverse group of participants from clinical radiology, radiology leadership and practice management, managed care, economics, law, and entrepreneurship in Washington, DC, in January 2008 to discuss current models of radiology practice and anticipate new ones. It addressed what forces shape the practice of radiology, how these forces are changing, and how radiology practices can most effectively respond to them in the future. PMID:18755435

  15. Overview of ICRP Committee 3 'Protection in Medicine'.

    PubMed

    Vañó, E; Miller, D L; Rehani, M M

    2015-06-01

    According to the 2011-2017 strategic plan, Committee 3 develops recommendations and guidance for protection of patients, staff, and the public against radiation exposure when ionising radiation is used for medical diagnosis, therapy, or biomedical research. This paper presents an overview of the work that Committee 3 has accomplished in recent years and describes its current work. The International Commission on Radiological Protection reports dealing with radiological protection in medicine from 2000 to the present cover topics on education and training in radiological protection; preventing accidental exposures in radiation therapy; doses to patients from radiopharmaceuticals; radiation safety aspects of brachytherapy; release of patients after therapy with unsealed radionuclides; and managing radiation dose in interventional radiology, digital radiology, computed tomography, paediatrics, cardiology, and other medical specialties. Current work deals with radiological protection in ion beam therapy, occupational protection in brachytherapy, justification in imaging, radiological protection in cone-beam computed tomography, occupational protection in interventional procedures, diagnostic reference levels for diagnostic and interventional imaging, and an update of an earlier publication on doses to patients and staff from radiopharmaceuticals. Committee 3 is also involved in preparation of a document on effective dose and its use in medicine. PMID:25816257

  16. The radiological assessment system for consequence analysis - RASCAL

    SciTech Connect

    Sjoreen, A.L.; Ramsdell, J.V.; Athey, G.F.

    1996-04-01

    The Radiological Assessment System for Consequence Analysis, Version 2.1 (RASCAL 2.1) has been developed for use during a response to radiological emergencies. The model estimates doses for comparison with U.S. Environmental Protection Agency (EPA) Protective Action Guides (PAGs) and thresholds for acute health effects. RASCAL was designed to be used by U.S. Nuclear Regulatory Commission (NRC) personnel who report to the site of a nuclear accident to conduct an independent evaluation of dose and consequence projections and personnel who conduct training and drills on emergency responses. It allows consideration of the dominant aspects of the source term, transport, dose, and consequences. RASCAL consists of three computational tools: ST-DOSE, FM-DOSE, and DECAY. ST-DOSE computes source term, atmospheric transport, and dose to man from accidental airborne releases of radionuclides. The source-term calculations are appropriate for accidents at U.S. power reactors. FM-DOSE computes doses from environmental concentrations of radionuclides in the air and on the ground. DECAY computes radiological decay and daughter in-growth. RASCAL 2.1 is a DOS application that can be run under Windows 3.1 and 95. RASCAL has been the starting point for other accident consequence models, notably INTERRAS, an international version of RASCAL, and HASCAL, an expansion of RASCAL that will model radiological, biological, and chemical accidents.

  17. A probabilistic assessment of the chemical and radiological risks of chronic exposure to uranium in freshwater ecosystems.

    PubMed

    Mathews, Teresa; Beaugelin-Seiller, Karine; Garnier-Laplace, Jacqueline; Gilbin, Rodolphe; Adam, Christelle; Della-Vedova, Claire

    2009-09-01

    Uranium (U) presents a unique challenge for ecological risk assessments (ERA) because it induces both chemical and radiological toxicity, and the relative importance of these two toxicities differs among the various U source terms (i.e., natural, enriched, depleted). We present a method for the conversion between chemical concentrations microg L(-1)) and radiological dose rates (microGy h(-1)) for a defined set of reference organisms, and apply this conversion method to previously derived chemical and radiological benchmarks to determine the extent to which these benchmarks ensure radiological and chemical protection, respectively, for U in freshwater ecosystems. Results show that the percentage of species radiologically protected by the chemical benchmark decreases with increasing degrees of U enrichment and with increasing periods of radioactive decay. In contrast, the freshwater ecosystem is almost never chemically protected by the radiological benchmark, regardless of the source term or decay period considered, confirming that the risks to the environment from uranium's chemical toxicity generally outweigh those of its radiological toxicity. These results are relevant to developing water quality criteria that protect freshwater ecosystems from the various risks associated with the nuclear applications of U exploitation, and highlight the need for (1) further research on the speciation, bioavailability, and toxicity of U-series radionuclides under different environmental conditions, and (2) the adoption of both chemical and radiological benchmarks for coherent ERAs to be conducted in U-contaminated freshwater ecosystems. PMID:19764235

  18. A Probabilistic Assessment of the Chemical and Radiological Risks of Chronic Exposure to Uranium in Freshwater Ecosystems

    SciTech Connect

    Mathews, Teresa J

    2009-01-01

    Uranium (U) presents a unique challenge for ecological risk assessments (ERA) because it induces both chemical and radiological toxicity, and the relative importance of these two toxicities differs among the various U source terms (i.e., natural, enriched, depleted). We present a method for the conversion between chemical concentrations microg L(-1)) and radiological dose rates (microGy h(-1)) for a defined set of reference organisms, and apply this conversion method to previously derived chemical and radiological benchmarks to determine the extent to which these benchmarks ensure radiological and chemical protection, respectively, for U in freshwater ecosystems. Results show that the percentage of species radiologically protected by the chemical benchmark decreases with increasing degrees of U enrichment and with increasing periods of radioactive decay. In contrast, the freshwater ecosystem is almost never chemically protected by the radiological benchmark, regardless of the source term or decay period considered, confirming that the risks to the environment from uranium's chemical toxicity generally outweigh those of its radiological toxicity. These results are relevant to developing water quality criteria that protect freshwater ecosystems from the various risks associated with the nuclear applications of U exploitation, and highlight the need for (1) further research on the speciation, bioavailability, and toxicity of U-series radionuclides under different environmental conditions, and (2) the adoption of both chemical and radiological benchmarks for coherent ERAs to be conducted in U-contaminated freshwater ecosystems.

  19. Standing up the National Ignition Facility radiation protection program.

    PubMed

    Kohut, Thomas R; Thacker, Rick L; Beale, Richard M; Dillon, Jon T

    2013-06-01

    Operation of the NIF requires a large and varied number of routine and infrequent activities involving contaminated and radioactive systems, both in servicing online equipment and offline refurbishment of components. Routine radiological operations include up to several dozen entries into contaminated systems per day, multiple laboratories refurbishing radiologically impacted parts, handling of tens of curies of tritium, and (eventually) tens of workers spending most of their day working in radiation areas and handling moderately activated parts. Prior to the introduction of radioactive materials and neutron producing experiments (capable of causing activation), very few of the operating staff had any radiological qualifications or experience. To support the full NIF operating program, over 600 radiological workers needed to be trained, and a functional and large-scale radiological protection program needed to be put in place. It quickly became evident that there was a need to supplement the LLNL site radiological protection staff with additional radiological controls technicians and a radiological protection staff within NIF operations to manage day-to-day activities. This paper discusses the approach taken to stand up the radiological protection program and some lessons learned. PMID:23629066

  20. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89.

    PubMed

    2002-01-01

    This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological features of the human body pertinent to radiation dosimetry. The reference values given in this report are based on: (a) anatomical and physiological information not published before by the ICRP; (b) recent ICRP publications containing reference value information; and (c) information in Publication 23 that is still considered valid and appropriate for radiation protection purposes. Moving from the past emphasis on 'Reference Man', the new report presents a series of reference values for both male and female subjects of six different ages: newborn, 1 year, 5 years, 10 years, 15 years, and adult. In selecting reference values, the Commission has used data on Western Europeans and North Americans because these populations have been well studied with respect to antomy, body composition, and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations

  1. 21 CFR 892.6500 - Personnel protective shield.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Personnel protective shield. 892.6500 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield. (a) Identification. A personnel protective shield is a device intended for medical purposes to protect the...

  2. Radiological Work Planning and Procedure

    SciTech Connect

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  3. Psychosocial considerations about children and radiological events.

    PubMed

    Lemyre, Louise; Corneil, Wayne; Johnson, Colleen; Boutette, Paul

    2010-11-01

    Children are identified as a vulnerable population in the case of radiological events because of their increased physical sensitivity to radiation and its impact on critical development stages. Using a comprehensive integrated risk framework, psychosocial risk protective factors are discussed in a social ecology paradigm. Children have been shown to be both vulnerable and resilient; they are both easily impressionable and also quick to adapt and learn. Psychosocial interventions during, after and most efficiently before an event can improve outcome, especially if they involve parents and schools, media and work organisations. Public education through children should be encouraged to increase knowledge of radiation and strategies to minimise exposure and irradiation. Children can become vectors of prevention, preparedness and mitigation through information and behavioural rehearsal. Special consideration must therefore be given to education, school programmes, practice rehearsal and media exposure. PMID:20798186

  4. Challenges in Interventional Radiology: The Pregnant Patient

    PubMed Central

    Moon, Eunice K.; Wang, Weiping; Newman, James S.; Bayona-Molano, Maria Del Pilar

    2013-01-01

    A pregnant patient presenting to interventional radiology (IR) has a different set of needs from any other patient requiring a procedure. Often, the patient's care can be in direct conflict with the growth and development of the fetus, whether it be optimal fluoroscopic imaging, adequate sedation of the mother, or the timing of the needed procedure. Despite the additional risks and complexities associated with pregnancy, IR procedures can be performed safely for the pregnant patient with knowledge of the special and general needs of the pregnant patient, use of acceptable medications and procedures likely to be encountered during pregnancy, in addition to strategies to protect the patient and her fetus from the hazards of radiation. PMID:24436567

  5. Radiological residua of healed diabetic arthropathies

    SciTech Connect

    Reinhardt, K.

    1981-12-01

    Diabetic arthropathy is a relatively rare manifestation of neuropathic disease, occurring in fewer than 5% of cases. Abnormalities of this type are confined largely to the small joints of the feet, although the larger joints of the lower limbs and the spine occasionally are affected. Some lesions, particularly in the feet, repair spontaneously, leaving radiological residua sufficiently characteristic to prompt suspicion of an unrecognised diabetic state. These include deformity of the head of the second metatarsal (akin to a Freiberg lesion), shortening of the great toe, painless deforming arthrosis of the knee, and ankylosis of interphalangeal joints. In the presence of these signs the patient should be interrogated concerning diabetes and blood sugar estimates, with provocation if necessary, obtained. Should such a diagnosis be sustained, appropriate protective measures may be undertaken to avoid a relapse of the arthropathy.

  6. Radiological criteria for underground nuclear tests

    SciTech Connect

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry.

  7. Estructura orbital en el Problema Restringido Rectilíneo Isósceles

    NASA Astrophysics Data System (ADS)

    Orellana, R. B.

    Para definir problemas en Mecánica Celeste se utilizan diferentes parámetros. El conocimiento de la dinámica del problema para valores particulares de estos parámetros nos permite entender el comportamiento en casos más generales. El Problema Restringido Rectilíneo Isósceles puede ser considerado como el caso límite del Problema de Sitnikov cuando la excentricidad tiende a uno o como el Problema Isósceles cuando la masa central tiende a cero. Se ha compactificado el espacio de fases y analizado la dinámica en el límite. Esto ha permitido separar el espacio de fases en diferentes regiones dependiendo de las clases de órbitas.

  8. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    SciTech Connect

    CARRO, C.A.

    2003-07-30

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  9. Radiological control manual. Revision 1

    SciTech Connect

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  10. [Radiological examinations that have disappeared].

    PubMed

    Puylaert, Carl B A J; Puylaert, Julien B C M

    2011-01-01

    If a radiologist from 1950 could travel in time to 2011, he or she would be baffled to see how few of the radiological examinations he was familiar with, remain. We review the radiological examinations that have disappeared since X-rays were discovered, and include the causes of their disappearance. Barium studies have mainly been replaced by endoscopy, oral cholecystography by ultrasound, and intravenous urography by CT-scan. Angiography by means of a direct puncture of carotid artery and aorta has been replaced by Seldinger angiography. Pneumencephalography and myelography have been replaced by CT and MRI. Bronchography has been replaced by bronchoscopy and CT-scan, arthrography by MRI and arthroscopy. Many other radiological examinations have been replaced by ultrasound, CT or MRI. PMID:21447222

  11. How to Start Interventional Radiology

    PubMed Central

    Ghanaati, Hossein; Firouznia, Kavous; Jalali, Amir Hossein; Shakiba, Madjid

    2013-01-01

    Interventional techniques aim to find safer and better ways to treat vascular diseases even in many instances, the interventional radiology solutions has been considered the only treatment option for the patients. Interventional radiologists are specialists who perform minimally invasive procedures instead of surgery or other treatments. These procedures apply various imaging and catheterization procedures in order to diagnose and treat diseases. In each country, interventional radiology practice establishment of varies according to local factors, but following a standard strategy seems better to set up this facility. According to above mentioned points, we decided to establish this specialty in our hospital since 2001 as the pioneer center in Iran. In this presentation we will discuss about our experience for start interventional radiology. PMID:24693402

  12. Managing Generational Differences in Radiology.

    PubMed

    Eastland, Robin; Clark, Kevin R

    2015-01-01

    Diversity can take many forms. One type of recent focus is generational differences and intergenerational issues. Much research exists regarding generational differences in the workplace and in healthcare as a whole. Very little has been done on generational differences within the field of radiology. An analysis of current research of generational differences within radiology, nursing, and healthcart in general was performed to identify current trends and establish similarities and discordance in available studies. An emphasis was placed on how generational differences influence education, teamwork, and patient care, along with what challenges and opportunities exist for managers, leaders, and organizations. PMID:26314182

  13. Commit to Sit in Radiology.

    PubMed

    Pittsenbargar, Jared; Amos, Gwendolyn; Gaudet, Jo-Anne

    2015-01-01

    At Houston Methodist Hospital, Commit to Sit is a program that encourages radiology professionals to communicate with patients in a way that demonstrates compassion, respect, empathy, and competence in order to foster a trusting relationship. Using active and empathic listening, dialogue is received and understood in the way it was intended, creating a patient centric environment resulting in high quality, safe patient care with improved outcomes. The implicit understanding derived from results and outcomes confirms the fact that patients prefer the radiology staff to sit while communicating with them. This understanding allows the voice of the patient to be heard and should be a consistent practice among all staff. PMID:26485897

  14. Interventional Radiology in Liver Transplantation

    SciTech Connect

    Karani, John B. Yu, Dominic F.Q.C.; Kane, Pauline A.

    2005-04-15

    Radiology is a key specialty within a liver transplant program. Interventional techniques not only contribute to graft and recipient survival but also allow appropriate patient selection and ensure that recipients with severe liver decompensation, hepatocellular carcinoma or portal hypertension are transplanted with the best chance of prolonged survival. Equally inappropriate selection for these techniques may adversely affect survival. Liver transplantation is a dynamic field of innovative surgical techniques with a requirement for interventional radiology to parallel these developments. This paper reviews the current practice within a major European center for adult and pediatric transplantation.

  15. Analysis of radiology business models.

    PubMed

    Enzmann, Dieter R; Schomer, Donald F

    2013-03-01

    As health care moves to value orientation, radiology's traditional business model faces challenges to adapt. The authors describe a strategic value framework that radiology practices can use to best position themselves in their environments. This simplified construct encourages practices to define their dominant value propositions. There are 3 main value propositions that form a conceptual triangle, whose vertices represent the low-cost provider, the product leader, and the customer intimacy models. Each vertex has been a valid market position, but each demands specific capabilities and trade-offs. The underlying concepts help practices select value propositions they can successfully deliver in their competitive environments. PMID:23245438

  16. [Radiological media and modern supporting tools in radiology].

    PubMed

    Sachs, A; Pokieser, P

    2014-01-01

    Radiology is a field with a high demand on information. Nowadays, a huge variety of electronic media and tools exists in addition to the classical media. Asynchronous and synchronous e-learning are constantly growing and support radiology with case collections, webinars and online textbooks. Various internet resources, social media and online courses have been established. Dynamic websites show a variety of interactive elements and it is easier and faster to access large amounts of data. Social media have an exponentially growing number of users and enable an efficient collaboration as well as forming professional networks. Massive open online courses (MOOCs) complete the offer of education and increase the opportunity to take part in educational activities. Apart from the existing variety of resources it is essential to focus on a critical selection for using these radiological media. It is reasonable to combine classical and electronic media instead of a one-sided use. As dynamic as the progress in the field of radiological media and its tools may be, the personal contact remains and should be maintained. PMID:24449282

  17. Neutron effects in humans: protection considerations

    SciTech Connect

    Fry, R.J.M.

    1985-01-01

    Committee I of the International Commission on Radiological Protection has recommended that the Quality Factor for neutrons should be changed from 10 to 20. This article is an interesting recount of the tale of Q from the viewpoint of an observer which illustrates many of the problems that the selection of protection standards pose. 32 refs., 5 tabs.

  18. 78 FR 5813 - 2013 Assuring Radiation Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...The Food and Drug Administration (FDA) is announcing the availability of grant funds for the support of the Center for Devices and Radiological Health (CDRH) radiation protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State, and Tribal activities to achieve effective solutions to present and future radiation control problems. The recipient of......

  19. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    SciTech Connect

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  20. Radiologic Technology Occupations. Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide delineates the tasks and performance standards for radiologic technology occupations. It includes job seeking skills, work attitudes, energy conservation practices, and safety. The guide is centered around the three domains of learning: psychomotor, cognitive, and affective. For each duty, the following are provided: task, standard of…

  1. Radiological Defense Officer. Student Workbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This student workbook includes the necessary administrative materials, briefs, exercises and answer sheets for the quizzes and final course examination as needed by the students during the conduct of the Radiological Defense Officer course. Among the briefs included are the following: (1) Reporting Forms; (2) Forecasting Dose Rates; (3) Dose…

  2. 100-DR-1 radiological surveys

    SciTech Connect

    Naiknimbalkar, N.M.

    1994-01-28

    This report summarizes and documents the results of the radiological surveys conducted over the surface of the 100-DR-1 Operable Unit, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 100-DR-1 radiological survey field task consisted of two activities: characterization of the operable unit-specific background conditions and the radiological survey of the operable unit surface area. The survey methodology was based on utilization of USRADS for automated recording of the gross gamma radiation levels at or near 6 in. and at 3 ft from the surface soil. The purpose of the survey is to identify the location of unidentified subsurface radioactive material areas and any surface contamination associated with these areas. The radiological surveys were conducted using both a digital count rate meter with a NaI detector reporting in counts per minute (CPM) and a dose rate meter reporting micro-Roentgen per hour (uR) connected to a CHEMRAD Tennessee Corp. Series 2000 USRADS. The count rate meter was set for gross counting, i.e., Window ``out``. The window setting allows detection of low, intermediate, and high energy photons. The USRADS equipment is used to record the detector readings verses the location of the readings, generate a map of the survey area, and save the data on computer storage media.

  3. International Data on Radiological Sources

    SciTech Connect

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  4. Counseling in radiologic technology programs.

    PubMed

    Warner, S L

    1975-01-01

    Rarely do radiologic technology programs have adequate faculty to provide full-time counselors for the student's personal, professional, and academic problems. The problems of using educational or administrative personnel as part-time couselors are discussed and the utilization of interested staff technologists in the role of student counselor is recommended. PMID:1188083

  5. Staff Radiation Doses to the Lower Extremities in Interventional Radiology

    SciTech Connect

    Shortt, C. P.; Al-Hashimi, H.; Malone, L.; Lee, M. J.

    2007-11-15

    The purpose of this study was to investigate the radiation doses to the lower extremities in interventional radiology suites and evaluate the benefit of installation of protective lead shielding. After an alarmingly increased dose to the lower extremity in a preliminary study, nine interventional radiologists wore thermoluminescent dosimeters (TLDs) just above the ankle, over a 4-week period. Two different interventional suites were used with Siemens undercouch fluoroscopy systems. A range of procedures was carried out including angiography, embolization, venous access, drainages, and biopsies. A second identical 4-week study was then performed after the installation of a 0.25-mm lead curtain on the working side of each interventional table. Equivalent doses for all nine radiologists were calculated. One radiologist exceeded the monthly dose limit for a Category B worker (12.5 mSv) for both lower extremities before lead shield placement but not afterward. The averages of both lower extremities showed a statistically significant dose reduction of 64% (p < 0.004) after shield placement. The left lower extremity received a higher dose than the right, 6.49 vs. 4.57 mSv, an increase by a factor of 1.42. Interventional radiology is here to stay but the benefits of interventional radiology should never distract us from the important issue of radiation protection. All possible measures should be taken to optimize working conditions for staff. This study showed a significant lower limb extremity dose reduction with the use of a protective lead curtain. This curtain should be used routinely on all C-arm interventional radiologic equipment.

  6. Radiological accident and incident in Thailand: lesson to be learned.

    PubMed

    Ya-anant, Nanthavan; Tiyapun, Kanokrat; Saiyut, Kittiphong

    2011-07-01

    Radioactive materials in Thailand have been used in medicine, research and industry for more than 50 y. Several radiological accident and incidents happened in the past 10 y. A serious one was the radiological accident that occurred in Samut Prakan, Thailand in 2000. The serious radiological accident occurred when the (60)Co head was partially dismantled, taken from that storage to sell as scrap metal. Three victims died and 10 people received high dose from the source. The lesson learned from the radiological accident in Samut Prakan was to improve in many subjects, such as efficiency in Ministerial Regulations and Atomic Energy Act, emergency response and etc. In addition to the serious accident, there are also some small incidents that occurred, such as detection of contaminated scrap metals from the re-cycling of scrap metals from steel factories. Therefore, the radiation protection infrastructure was established after the accident. Laws and regulations of radiation safety and the relevant regulatory procedures must be revised. PMID:21561942

  7. Radiological/toxicological sabotage assessments at the Savannah River Site

    SciTech Connect

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-11-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC`s approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs).

  8. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    SciTech Connect

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  9. The 1985 year book of diagnostic radiology

    SciTech Connect

    Bragg, D.G.

    1984-01-01

    This book provides reviews of 343 significant articles from 79 journals. Topics include the following: expanding use of nuclear magnetic resonance imaging; sonography and pediatric radiology; radiographic evaluation of skeletal stress injuries; cost effectiveness of radiographic procedures; radiologic manifestations of iatrogenic complications; breast cancer diagnosis; interventional radiology and underutilization; and computed tomography in diagnosis and staging of neoplasms.

  10. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  11. University Curriculums and Fellowships in Radiological Health.

    ERIC Educational Resources Information Center

    Villforth, John C.

    This booklet describes the academic programs funded through the Radiological Health Training Grants Program. Graduate Programs for the training of radiological health specialists at 28 universities and undergraduate (two year and four year) radiological technical programs at seven institutions are described. Program descriptions include degree(s)…

  12. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  13. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  14. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  15. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  16. Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device.

    PubMed

    Smith, James M; Ansari, Armin; Harper, Frederick T

    2005-11-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event. PMID:16217195

  17. Some current legal issues that may affect oral and maxillofacial radiology: part 1. Basic principles in digital dental radiology.

    PubMed

    MacDonald-Jankowski, David S; Orpe, Elaine C

    2007-06-01

    Developments in oral and maxillofacial radiology affect almost every aspect of dentistry: some change the legal framework in which Canadian dentists practise; some re-emphasize established standards of care, such as the dental radiologist's mantra, ALARA (using a dose that is as low as reasonably achievable) and viewing images in reduced ambient lighting. Developments in the legislation that regulates the use of radiology, such as Health Canada"s Safety Code 30 for radiation safety in dentistry and the Healing Arts Radiation Protection Act, also affect the practice of dental radiology. Some technical developments, such as charge-coupled devices and photostimulatable phosphors, are already well-known to the profession. Teleradiology, currently used in hospitals, but unfamiliar to most dentists (especially those working in urban communities), may soon have an impact on dentistry when it is used for Canada"s electronic health record, now under development. In this first of 2 articles about dental digital technology, we discuss the legal impact of developments in oral and maxillofacial radiology on dental practice and patient care. PMID:17555651

  18. Hospital management of mass radiological casualties : reassessing exposures from contaminated victims of an exploded radiological dispersal device (RDD).

    SciTech Connect

    Ansari, Armin; Harper, Frederick Taylor; Smith, James M.

    2005-04-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.

  19. The Principle of Digital Subtraction Angiography and Radiological Protection

    PubMed Central

    Okamoto, K.; Ito, J.; Sakai, K.; Yoshimura, S.

    2000-01-01

    Summary Recent improvements in x-ray technology have greatly contributed to the advancement of diagnostic imaging. Fluoroscopically guided neurointerventional procedures with digital subtraction angiography (DSΛ) are being performed with increasing frequency as the treatment of choice for a variety of neurovascular diseases. Radiation-induced skin injuries can occur after extended fluoroscopic exposure times, and the injuries have recently been reported. In this article, measured radiation doses at the surface of Rando Phantom with Skin Dose Monitor, and estimated and measured entrance skin doses in patients underwent neurointerventional procedures are reported as well as means of reducing radiation doses absorbed by patients and personnel to avoid occurrence of radiation-induced injuries. PMID:20667218

  20. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing their operability. (c) Effluent and direct radiation monitoring. (1) As appropriate for the handling and storage system, effluent systems must be provided. Means for measuring the amount of... have means for calibration and testing their operability....

  1. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... testing their operability. (c) Effluent and direct radiation monitoring. (1) As appropriate for the handling and storage system, effluent systems must be provided. Means for measuring the amount of... have means for calibration and testing their operability....

  2. Radiological protection and medical dosimetry for the Skylab crewmen

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.; Hoffman, R. A.; English, R. A.

    1977-01-01

    Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.

  3. Protecting building environments from airborne chemical, biologic, or radiologic attacks.

    PubMed

    2002-09-01

    In November 2001, following the discovery that letters containing Bacillus anthracis had been mailed to targeted locations in the United States, the Secretary of the U.S. Department of Health and Human Services requested site assessments of an array of public- and private-sector buildings by a team of engineers and scientists from CDC's National Institute for Occupational Safety and Health (NIOSH). In November 2001, this team assessed six buildings, including a large hospital and medical research facility, a museum, a transportation building, two large office buildings, and an office/laboratory building. In January 2002, additional building assessments were conducted at CDC campuses in Atlanta and, in April 2002, at a large, urban transportation facility. A total of 59 buildings were evaluated during this 5-month period. PMID:12227441

  4. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... handling and storage system, effluent systems must be provided. Means for measuring the amount of... systems. A means of measuring the flow of the diluting medium, either air or water, must also be...

  5. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... handling and storage system, effluent systems must be provided. Means for measuring the amount of... systems. A means of measuring the flow of the diluting medium, either air or water, must also be...

  6. Predicting the chemical protection factor of CBRN protective garments.

    PubMed

    Ambesi, Davide; Bouma, Richard; den Hartog, Emiel; Kleijn, Chris R

    2013-01-01

    The protection factor and pressure drop coefficient of single layers of active carbon particles in chemical, biological, radiological, and nuclear (CBRN) protective garments have been computed from computational fluid dynamics simulations of airflow and mass transport. Based on the results from the simulations, a closed-form analytical model has been proposed for the protection factor and the pressure drop coefficient as a function of layer porosity, particle diameter, and cross airflow velocity. This model has been validated against experimental data in literature. It can be used to find an optimal compromise between high protection factor and low pressure drop coefficient. Maximum protection factors are achieved when small carbon particles are employed in a layer with high packing density, at the expense of a high pressure drop coefficient. For a given required protection factor, the lowest pressure drop coefficient is found for layers combining a high porosity and small particle diameter. PMID:23473003

  7. Intensive Care Nurses’ Knowledge of Radiation Safety and Their Behaviors Towards Portable Radiological Examinations

    PubMed Central

    Dianati, Mansoor; Zaheri, Azita; Talari, Hamid Reza; Deris, Fateme; Rezaei, Sara

    2014-01-01

    Background: Radiological examinations for patients who are hospitalized at intensive care units are usually performed using portable radiography devices. However they may require knowledge and safety precautions of nurses. Objectives: The aim of the study was to investigate ICU nurses’ knowledge of radiation safety and their behaviors towards portable radiological examinations. Materials and Methods: In total, 44 intensive care nurses were recruited for this cross-sectional descriptive study using census sampling during April and May 2014. The study setting was at intensive care units of Shahid Beheshti Hospital of Kashan, Iran. An eleven-item questionnaire and a five-item checklist were used for evaluating nurses’ radiation protection knowledge and behaviors, respectively. An expert panel consisting of ten nursing and radiology faculty members confirmed the content validity of the questionnaire and the checklist. Moreover, a Geiger-Müller counter was used for measuring ionizing radiation during portable radiological examinations. Study data were analyzed using the SPSS software version 13.0. Mean, standard deviation, frequency and one-sample t test were used for description of the data. The level of significance was set at below 0.05. Results: The mean of participants’ radiation protection knowledge was 4.77 ± 1.38. The most prevalent radiation protection behavior of nurses was leaving the intensive care unit during portable radiological examinations. Only 6.8% of nurses stayed at the nursing station during radiological examinations. The highest dose of radiation was 0.11 micro Sievert per hour (μSv/h), which was much lower than the highest permitted level of radiation exposure i.e. 0.25 μSv/h. Conclusions: Portable radiological examinations did not expose healthcare providers to high doses of ionizing radiation. Nurses’ radiation protection knowledge was limited and hence, they require in-service education programs. PMID:25741515

  8. Radiological aspects of in situ uranium recovery

    SciTech Connect

    BROWN, STEVEN H.

    2007-07-01

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in

  9. NV/YMP radiological control manual, Revision 2

    SciTech Connect

    Gile, A.L.

    1996-11-01

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

  10. Radiology applications of financial accounting.

    PubMed

    Leibenhaut, Mark H

    2005-03-01

    A basic knowledge of financial accounting can help radiologists analyze business opportunities and examine the potential impacts of new technology or predict the adverse consequences of new competitors entering their service area. The income statement, balance sheet, and cash flow statement are the three basic financial statements that document the current financial position of the radiology practice and allow managers to monitor the ongoing financial operations of the enterprise. Pro forma, or hypothetical, financial statements can be generated to predict the financial impact of specific business decisions or investments on the profitability of the practice. Sensitivity analysis, or what-if scenarios, can be performed to determine the potential impact of changing key revenue, investment, operating cost or financial assumptions. By viewing radiology as both a profession and a business, radiologists can optimize their use of scarce economic resources and maximize the return on their financial investments. PMID:17411807

  11. Interventional radiology in the elderly

    PubMed Central

    Katsanos, Konstantinos; Ahmad, Farhan; Dourado, Renato; Sabharwal, Tarun; Adam, Andreas

    2009-01-01

    Interventional radiological percutaneous procedures are becoming all the more important in the curative or palliative management of elderly frail patients with multiple underlying comorbidities. They may serve either as alternative primary minimally invasive therapies or adjuncts to traditional surgical treatments. The present report provides a concise review of the most important interventional radiological procedures with a special focus on the treatment of the primary debilitating pathologies of the elderly population. The authors elaborate on the scientific evidence and latest developments of thermoablation of solid organ malignancies, palliative stent placement for gastrointestinal tract cancer, airway stenting for tracheobronchial strictures, endovascular management of aortic and peripheral arterial vascular disease, and cement stabilization of osteoporotic vertebral fractures. The added benefits of high technical and clinical success coupled with lower procedural mortality and morbidity are highlighted. PMID:19503761

  12. Southern states radiological emergency response laws and regulations

    SciTech Connect

    Not Available

    1990-06-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary. The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ``natural disasters.`` Some states have adopted extensive regulations on the topic, others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms. State-by-state breakdowns are given for specific states.

  13. [Digital radiology with storage phosphors in cephalometric study in orthodontics].

    PubMed

    Calderazzi, A; Palla, L; Battolla, L; Caramella, D; Barbieri, L

    1992-09-01

    Conventional radiology is continually modified with the development of digital systems which can be used for several types of radiologic examinations. Our study was aimed at evaluating the advantages of these new technologies in the orthodontic field, where the problems associated with image quality and radiation protection are major especially in young patients; the latter goal is achievable by dramatically reducing radiation dose and by avoiding repeating the exam. In our study, we compared lateral teleradiographs of the skull for cephalometric analysis obtained using conventional and digital diagnostic methods. The preliminary results demonstrated that the two imaging techniques did not differ relative to bone structure representation, even though the digital system provided better visualization of soft tissue structures. Computed radiography also allowed a marked reduction in the number of repeats and reduced radiation dose. The current disadvantages of this imaging method are the high initial cost of the equipment, reduced work rate, and the need of frequent technical assistance. PMID:1410666

  14. Differential diagnosis in pediatric radiology

    SciTech Connect

    Grunebaum, M.

    1986-01-01

    This work presents 415 tables of differential diagnosis applicable to pediatric radiology, emphasizing clinical presentation and the findings of conventional radiographs. The six chapters cover the respiratory, cardiovascular, urinary, gastrointestinal, and skeletal systems, and the head. The first few tables in each chapter cover major clinical signs, the next few deal with the newborn period only, and the remainder deal with radiographic differential diagnoses seen in children. An index and brief reference list complete the book.

  15. Radiology of occupational chest disease

    SciTech Connect

    Solomon, A. ); Kreel, L.

    1989-01-01

    Radiologic manifestations of occupational lung disease are summarized and classified in this book according to the ILO system. The interpretation of chest roentgenograms outlines the progression of each disease and is accompanied with clinically-oriented explanations. Some of the specific diseases covered include asbestosis, coal worker's pneumoconiosis, silicosis, non-mining inhalation of silica and silicates, beryllium induced disease, inhalation of organics and metallics, and occupationally induced asthma.

  16. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  17. Radiology uses of the Internet.

    PubMed

    Krug, H; Cheng, D

    1995-01-01

    The Internet promises to be an essential resource for radiology administrators. In addition to offering remarkable access to colleagues all over the world, the Internet offers specialized information resources for radiology, many of which are described in this article. The Internet is many networks that communicate with each other and whose general purpose is to share information. Although there are several consortium organizations that support and regulate it, no single body or organization "owns" the Internet. Many employees and students at large teaching centers already have access to the Internet through their institution's connection. Individuals and small institutions can contract with independent service providers for Internet access. Internet functions covered in this article include: e-mail, listservs, newsgroups, file transfer protocols, Gopher, and the World Wide Web. The rapid pace of information exchange is making the world of radiology smaller and more intimate. Communication and knowledge are becoming so accessible that individuals are privy to the most minute happenings in the industry. Sharing information on the Internet will benefit not only individual users and the industry, but also patients. PMID:10161227

  18. Activation and implementation of a Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Doyle, J.F. III

    1989-01-01

    The Nevada Operations Office of the U.S. Department of Energy (DOE/NV) has been assigned the primary responsibility for responding to a major radiological emergency. The initial response to any radiological emergency, however, will probably be conducted under the DOE regional radiological assistance plan (RAP). If the dimensions of the crisis demand federal assistance, the following sequence of events may be anticipated: (1) DOE regional RAP response, (2) activation of the Federal Radiological Monitoring and Assistance Center (FRMAC) requested, (3) aerial measuring systems and DOE/NV advance party respond, (4) FRMAC activated, (5) FRMAC responds to state(s) and cognizant federal agency (CFA), and (6) management of FRMAC transferred to the Environmental Protection Agency (EPA). The paper discusses activation channels, authorization, notification, deployment, and interfaces.

  19. U.S. national response assets for radiological incidents.

    PubMed

    Remick, Alan L; Crapo, John L; Woodruff, Charles R

    2005-11-01

    The federal government has had the ability to respond to incidents of national significance for decades. Since 11 September 2001, there have been enhancements to existing federal assets and the creation of new federal assets. This presentation will provide an overview of the more significant federal assets. Pivotal to a response of national significance is the U.S. Department of Energy (DOE) Federal Radiological Monitoring and Assessment Center, which organizes and coordinates federal agency monitoring activities during an emergency. DOE manages the Federal Radiological Monitoring and Assessment Center during the emergency phase, and the Environmental Protection Agency (EPA) manages the response during the recovery phase once the emergency is terminated. EPA monitoring teams provide support during both the emergency and recovery phases of an emergency. Other DOE teams are available to respond to major nuclear power plant events, transportation accidents, or terrorism events involving the use of radiological materials, including the Radiological Assistance Program, the Aerial Measuring System, the National Atmospheric Release Advisory Center, and the Radiation Emergency Assistance Center/Training Site. For incidents involving a nuclear weapon, an improvised nuclear device, or a radiological dispersal device, DOE assets such as the Nuclear Emergency Support Team and the Accident Response Group could provide capabilities for weapon or device search, recovery, and removal. The Radiological Triage System harnesses the weapons scientists and engineers at the DOE national laboratories to provide gamma spectroscopy interpretation for agencies responding to an incident. In recent years, National Guard Weapons of Mass Destruction-Civil Support Teams have been created to support state and local response to terrorism events. The Civil Support Teams normally come under direct control of the state and can respond without requiring authorization from the U.S. Department of

  20. Integrating IT into the radiology environment.

    PubMed

    McDonald, Andrea

    2002-01-01

    Rather than perpetuating the struggle, "who controls the PACS, Radiology or Information Technology (IT)," Community Hospital of the Monterey Peninsula (CHOMP) took the approach of incorporating IT support within the Radiology Department. CHOMP faced the challenge of staffing Radiology computer systems and networks by using a two-pronged approach; promoting and training clinical staff in IT functions and transferring an experienced IT person into the Radiology Department. Roles and responsibilities are divided. CHOMP's IT Department supports the Radiology Department's desktop devices, PCs, printers, and standard peripherals; while the department's DICOM print and archive network, specialized hardware (e.g., Merge DICOM interface computers), and applications are supported by the Radiology Department. The IT Department provides operating system support for multi-user VMS, Unix, and NT-based systems, e.g. Sun Solaris for the DICOM archive, and Windows NT for Mitra PACS Broker, the HL7/DICOM interface engine. IT also supports network communications, i.e., network electronics (routers, switches, etc.), TCP/IP communications, and network traffic analysis; and OS operations support for major Radiology systems, e.g. back-ups and off-site tape storage. Radiology staff provides applications support and troubleshooting, including analyst functions for RIS; and are the first point of contact with the Radiology systems vendors, e.g., GE Medical, or Siemens. The Radiology Department's senior IT person, the Clinical Technology Coordinator, transferred from CHOMP's IT Department after 7 years in that department. She performs analysis and design associated with Radiology's computer systems, coordinates development of the department's strategic plan, evaluates vendor proposals, and assists the department with product and application selection. Her IT experience and growing knowledge of Radiology's clinical tasks enhances communications between the Radiology and IT departments. Formal

  1. Effect of changes in technical parameters in radiological safety

    NASA Astrophysics Data System (ADS)

    Avendaño, Ge; Fernandez, C.

    2007-11-01

    This work analyzes the generation of secondary radiation that affects the professionals of health during interventional X ray procedures in first level hospitals. The research objectives were, on the one hand, to quantify the amount of radiation and to compare it with norms in force with respect to magnitudes, and on the other hand to evaluate the elements of protection used. The measurements will help to improve the radiological safety, to assess the eventuality of risks and, in the last term, to the possibility of norms modification for the improvement of the protection, especially that of the personnel who daily make a certain amount of interventional procedures guided by radiation, like angiographic cine applications, using continuous or pulsed fluoroscopy. The motivation of the study is in the suspicion that present interventionism is made with a false sensation of safety, based only in the use of lead apron and protection elements incorporated in the equipment by the manufacturer, nevertheless not always the health personnel are conscious that an excessive proximity with the tube and the patient body becomes a risky source of secondary and scattered radiation. The obtained results allow us to demonstrate the existence of conditions of risk, even possible iatrogenic events, in particular when the procedures imply the use of certain techniques of radiographic exploration, thus reaching the conclusion that the radiographic methodology must be changed in order to rationalize so much?. In order to achieve this we propose modifications to the present norms and legislation referred to the radiological safety in Chile.

  2. Insider protection: A report card

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.

    1986-01-01

    Enhanced security measures against external threats (e.g., terrorists, criminals) have been implemented at most facilities that handle special nuclear material, classified information, or other assets critical to national security. Attention is now focusing on insider protection, and safeguards managers are attempting to provide balanced protection against insider and outsider threats. Potential insider threats include attempts by facility employees to steal special nuclear material (SNM), to cause a radiological hazard to the public, to sabotage critical facilities, or to steal property or classified information. This paper presents a report card on the status of insider protection at Department of Energy and Nuclear Regulatory Commission-licensed facilities, with emphasis on SNM theft. The authors discuss the general trends in insider protection and the limitations of protection measures currently in use. They also discuss the most critical needs for improved procedures, technology, analytical tools, and education for safeguards personnel.

  3. Insider protection: a report card

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.

    1986-01-01

    Enhanced security measures against external threats (e.g., terrorists, criminals) have been implemented at most facilities that handle special nuclear material, classified information, or other assets critical to national security. Attention is not focussing on insider protection, and safeguards managers are attempting to provide balanced protection against insider and outsider threats. Potential insider threats include attempts by facility employees to steal special nuclear material (SNM), to cause a radiological hazard to the public, to sabotage critical facilities, or to steal property or classified information. This paper presents a report card on the status of insider protection at Department of Energy and Nuclear Regulatory Commission-licensed facilities, with emphasis on SNM theft. We discuss the general trends in insider protection and the limitations of protection measures currently in use. We also discuss the most critical needs for improved procedures, technology, analytical tools, and education for safeguards personnel.

  4. Implementation of a Radiological Safety Coach program

    SciTech Connect

    Konzen, K.K.; Langsted, J.M.

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  5. Radiological Assistance Program Flight Planning Tool

    SciTech Connect

    Messick, C.; Pham, M.; Ridgeway, J.; Smith, R.

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  6. Radiological Assistance Program Flight Planning Tool

    Energy Science and Technology Software Center (ESTSC)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this responsemore » time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.« less

  7. Radiological Evaluation of Bowel Ischemia.

    PubMed

    Dhatt, Harpreet S; Behr, Spencer C; Miracle, Aaron; Wang, Zhen Jane; Yeh, Benjamin M

    2015-11-01

    Intestinal ischemia, which refers to insufficient blood flow to the bowel, is a potentially catastrophic entity that may require emergent intervention or surgery in the acute setting. Although the clinical signs and symptoms of intestinal ischemia are nonspecific, computed tomography (CT) findings can be highly suggestive in the correct clinical setting. In our article, we review the CT diagnosis of arterial, venous, and nonocclusive intestinal ischemia. We discuss the vascular anatomy, pathophysiology of intestinal ischemia, CT techniques for optimal imaging, key and ancillary radiological findings, and differential diagnosis. PMID:26526436

  8. Managerial accounting applications in radiology.

    PubMed

    Lexa, Frank James; Mehta, Tushar; Seidmann, Abraham

    2005-03-01

    We review the core issues in managerial accounting for radiologists. We introduce the topic and then explore its application to diagnostic imaging. We define key terms such as fixed cost, variable cost, marginal cost, and marginal revenue and discuss their role in understanding the operational and financial implications for a radiology facility by using a cost-volume-profit model. Our work places particular emphasis on the role of managerial accounting in understanding service costs, as well as how it assists executive decision making. PMID:17411809

  9. Childhood arthritis: classification and radiology.

    PubMed

    Johnson, Karl; Gardner-Medwin, Janet

    2002-01-01

    Childhood arthritis has now been reclassified into a single internationally recognized entity of juvenile idiopathic arthritis (JIA). Radiology provides an important role in the management of JIA, in helping in the differential diagnosis, monitoring disease progression and detecting complications. Traditionally, plain radiographs have been the imaging investigation of choice but magnetic resonance imaging (MRI) and ultrasound are now providing a more effective and safer alternative. The appropriate use of sequences in MR imaging is important in the early detection of joint abnormalities in JIA. PMID:11798203

  10. Radiology.

    PubMed

    Patel, Ketan; Wallace, Roxanne; Busconi, Brian D

    2011-04-01

    Hip and groin pain are a common complaint among athletes of all ages, and may result from an acute injury or from chronic, repetitive trauma. Hip injuries can be intraarticular, extraarticular, or both. Labral abnormalities may occur in asymptomatic patients as well as in those with incapacitating symptoms and signs. Athletic hip injury leading to disabling intraarticular hip pain most commonly involves labral tear. The extraarticular causes are usually the result of overuse activity, leading to inflammation, tendonitis, or bursitis. In clinical practice, the term athletic pubalgia is used to describe exertional pubic or groin pain. PMID:21419955

  11. Force protection: today's reality.

    PubMed

    Torgerson, Ron

    2004-11-11

    Most US infrastructure and major chemical manufacturing facilities as well as their supporting utility systems are inherently vulnerable to a terrorist attack. Force protection is a military and civilian term used to protect personnel and critical facilities and assets against would-be aggressors or terrorists. The war on terrorism is a 200-300-year war. Terrorist attacks on US soil could become as common-place as in the State of Israel. It is very easy to penetrate infrastructure or plants as evidenced by vulnerability assessments performed for states, cities, plants, and military facilities by Versar and others around the country. Chemical, biological, radiological, nuclear, and explosive weapons can be readily used to attack facilities in the US. This paper will explain some of those vulnerabilities, outline the current DoD standard as it relates to vulnerability assessments, and explain how this may be used in commercial applications to deter potential aggressors. PMID:15573418

  12. Impact: development of a radiological mummy database.

    PubMed

    Nelson, Andrew John; Wade, Andrew David

    2015-06-01

    The Internet Mummy Picture Archiving and Communication Technology (IMPACT) radiological and context database, is a large-scale, multi-institutional, collaborative research project devoted to the digital preservation and scientific study of mummified remains, and the mummification traditions that produced them, using non-destructive medical imaging technologies. Owing to the importance of non-destructive analyses to the study of mummified human remains, the IMPACT database, website, and wiki provide a basis for anthropological and palaeopathological investigations, grounded in the most current technological imaging and communication standards, accessible through any internet connection, and protected against rapidly changing media standards. Composed of paired online radiographic and contextual databases, the IMPACT project is intended to provide researchers with large-scale primary data samples for anthropological and palaeopathological investigations. IMPACT addresses the limitations of the case-study approach to mummified human remains and contributes to the development of standards of practice in imaging of mummified remains. Furthermore, IMPACT allows researchers a greater appreciation of, and engagement with, patterns of health and disease in ancient times as well as the variability present in the mummification traditions of ancient Egypt and other cultures that sought to preserve their dead for eternity. PMID:25998630

  13. CRRIS: a computerized radiological risk-investigation system

    SciTech Connect

    Baes, C.F. III; Miller, C.W.

    1981-01-01

    The US Environmental Protection Agency (EPA) is responsible for regulating radioactive airborne effluents in the US. A comprehensive, integrated Computerized Radiological Risk Investigation System (CRRIS) is being developed to support EPA's radiation standards development. This modular system consists primarily of five computer codes and their supporting data bases for estimating environmental transport and radiation doses and risks. Health effects are estimated on the basis of a life-table methodology developed by EPA. CRRIS is designed to provide EPA with a reasonable and flexible way of assessing the risk to man associated with radionuclide releases to the atmosphere.

  14. Radiological assessment of steam generator repair and replacement

    SciTech Connect

    Parkhurst, M.A.; Rathbun, L.A.; Murphy, D.W.

    1983-12-01

    Previous analyses of the radiological impact of removing and replacing corroded steam generators have been updated based on experience at Surry Units 1 and 2 and Turkey Point Units 3 and 4. The sleeving repairs of degraded tubes at San Onofre Unit 1, Point Beach Unit 2, and R.E. Ginna are also analyzed. Actual occupational doses incurred during application of the various technologies used in repairs have been included, along with radioactive waste quantities and constituents. Considerable progress has been made in improving radiation protection and reducing worker dose by the development of remotely controlled equipment and the implementation of dose reduction strategies that have been successful in previous repair operations.

  15. Development of a statewide hospital plan for radiologic emergencies

    SciTech Connect

    Dainiak, Nicholas . E-mail: pndain@bpthosp.org; Delli Carpini, Domenico; Bohan, Michael; Werdmann, Michael; Wilds, Edward; Barlow, Agnus; Beck, Charles; Cheng, David; Daly, Nancy; Glazer, Peter; Mas, Peter; Nath, Ravinder; Piontek, Gregory; Price, Kenneth; Albanese, Joseph; Roberts, Kenneth; Salner, Andrew L.; Rockwell, Sara

    2006-05-01

    Although general guidelines have been developed for triage of victims in the field and for hospitals to plan for a radiologic event, specific information for clinicians and administrators is not available for guidance in efficient management of radiation victims during their early encounter in the hospital. A consensus document was developed by staff members of four Connecticut hospitals, two institutions of higher learning, and the State of Connecticut Department of Environmental Protection and Office of Emergency Preparedness, with assistance of the American Society for Therapeutic Radiology and Oncology. The objective was to write a practical manual for clinicians (including radiation oncologists, emergency room physicians, and nursing staff), hospital administrators, radiation safety officers, and other individuals knowledgeable in radiation monitoring that would be useful for evaluation and management of radiation injury. The rationale for and process by which the radiation response plan was developed and implemented in the State of Connecticut are reviewed. Hospital admission pathways are described, based on classification of victims as exposed, contaminated, and/or physically injured. This manual will be of value to those involved in planning the health care response to a radiologic event.

  16. Pediatric Interventional Radiology: Vascular Interventions.

    PubMed

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-07-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. PMID:26964551

  17. Local area networks for radiology.

    PubMed

    Dwyer, S J; Mankovich, N J; Cox, G G; Bauman, R A

    1988-11-01

    This article is a tutorial on local area networks (LAN) for radiology applications. LANs are being implemented in radiology departments for the management of text and images, replacing the inflexible point-to-point wiring between two devices (computer-to-terminal). These networks enable the sharing of computers and computer devices, reduce equipment costs, and provide improved reliability. Any LAN must include items from the following four categories: transmission medium, topology, data transmission mode, and access protocol. Media for local area networks are twisted pair, coaxial, and optical fiber cables. The topology of these networks include the star, ring, bus, tree, and circuit-switching. Data transmission modes are either analog signals or digital signals. Access protocol methods include the broadcast bus system and the ring system. A performance measurement for a LAN is the throughput rate as a function of the number of active computer nodes. Standards for LANs help to ensure that products purchased from multiple manufacturers will operate successfully. PMID:3154655

  18. Radiation exposure in interventional radiology

    NASA Astrophysics Data System (ADS)

    Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  19. [The quality offensive in radiology].

    PubMed

    Mödder, U; Strasser, G; Strasser, E; Rex, B

    1998-04-01

    The Institute of Diagnostic Radiology at the Heinrich-Heine-University Duesseldorf has recently defined and implemented more than thirty organizational changes as a result of a quality control project. The aim was to improve quality and efficiency of the Radiology service. The project was carried out in cooperation with an external consulting firm. To date the positive impact of this project on our work has been so profound that we would like to communicate some of the results in form of this report. During the first phase of the project quality circles were formed to define the various quality criteria and aims of a good service. Today these represent the core of a new quality policy for the Institute. In a second phase all members of staff cooperatively developed precise plans of action for implementation of the necessary changes. Main achievements are the reduction of organizational and communicational deficits obstructing the work process, enhancement of interaction between junior and senior medical staff, upgrading of the role and field of action of the radiography staff and last but not least improvements of cooperation between secretarial and medical staff. PMID:9622816

  20. Problemas de nervos: a multivocal symbol of distress for Portuguese immigrants.

    PubMed

    James, Susan; Fernandes, Mark; Navara, Geoffrey S; Harris, Sara; Foster, Durwin

    2009-06-01

    This article outlines research on a previous unstudied form of suffering specific to the Portugese immigrant community: problemas de nervos. Thirty-two Portuguese immigrant women (in Waterloo, ON and Boston, MA) were interviewed and each completed a questionnaire. Cluster analysis demonstrated that problemas de nervos has many meanings. The study profiled symptoms, causes and therapies associated with four variations of this culture-specific form of distress: "mal da cabeca" meaning problems with/in the head (e.g., lack of control, visions); " aflição" meaning affliction (e.g., nervous attacks, heart problems); immigration stress (causing sleep disturbances); and, conflicts with others (resulting in pressure within the body). None of the symptom clusters reported matched criteria for a DSM-IV-TR diagnosis, suggesting that problemas de nervos represents an idiomatic rather than universal expression of distress. PMID:19541751

  1. Pregnancy and Radiation Protection

    NASA Astrophysics Data System (ADS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  2. Pregnancy and Radiation Protection

    SciTech Connect

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-21

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  3. 76 FR 64960 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on November 1, 2011 in... INFORMATION: The role and functions of the Federal Radiological Preparedness Coordinating Committee...

  4. 77 FR 24213 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on May 3, 2012 in... role and functions of the Federal Radiological Preparedness Coordinating Committee (FRPCC)...

  5. 75 FR 27563 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on June 3, 2010 in... the Federal Radiological Preparedness Coordinating Committee (FRPCC) are described in 44 CFR...

  6. 75 FR 56127 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee is holding a public meeting on September 28, 2010 in Arlington... . SUPPLEMENTARY INFORMATION: The role and functions of the Federal Radiological Preparedness...

  7. 77 FR 7597 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on February 24, 2012 in... . SUPPLEMENTARY INFORMATION: The role and functions of the Federal Radiological Preparedness...

  8. 76 FR 49458 - TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... of the Secretary TRICARE; Hospital Outpatient Radiology Discretionary Appeal Adjustments AGENCY... hospitals of an opportunity for net adjusted payments for radiology services for which TRICARE payments were... radiology services specified in the regulation as being reimbursed under the allowable charge...

  9. Radiological Defense. Planning and Operations Guide. Revised.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    This guide is a reprint of published and draft materials from the Federal Civil Defense Guide. This guide is intended to assist the student in planning, developing, implementing and operating a local, county, or state radiological defense (RADEF) system. The state and local radiological defense program objectives are to create an effective and…

  10. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2013-05-28

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  11. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  12. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  13. Curricular Guidelines for Dental Auxiliary Radiology.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1981

    1981-01-01

    AADS curricular guidelines suggest objectives for these areas of dental auxiliary radiology: physical principles of X-radiation in dentistry, related radiobiological concepts, principles of radiologic health, radiographic technique, x-ray films and intensifying screens, factors contributing to film quality, darkroom, and normal variations in…

  14. Monitor displays in radiology: Part 2

    PubMed Central

    Indrajit, IK; Verma, BS

    2009-01-01

    Monitor displays play an important role in modern radiology practice. Practicing radiologists need to be familiar with the various performance parameters of medical-grade displays. A certain amount of technical knowledge is useful when making purchasing decisions since the right choice of equipment can have a great impact on the accuracy, efficiency, and speed in the radiology department. PMID:19881061

  15. Radiological Illustration of Spontaneous Ovarian Hyperstimulation Syndrome

    PubMed Central

    Mittal, Kartik; Koticha, Raj; Dey, Amit K.; Anandpara, Karan; Agrawal, Rajat; Sarvothaman, Madhva P.; Thakkar, Hemangini

    2015-01-01

    Summary Background The role of radiology is of utmost importance not only in diagnosing s-OHSS but also in ruling out other cystic ovarian diseases and to determine the underlying etiology and course of the disease. We presented a radiological algorithm for diagnosing the various causes of s-OHSS. Case Report A 26-year-old female, gravida one was referred to radiology department with history of lower abdominal pain, nausea and vomiting since 2 days which was gradual in onset and progression. The patient had no significant medical and surgical history. Conclusions This article illustrates and emphasizes that diagnosis of s-OHSS and its etiology can be completely evaluated radiologically. Biochemical markers will confirm the radiological diagnosis. PMID:25960820

  16. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  17. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  18. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  19. Radiologic sciences. Faculty needs assessment.

    PubMed

    Powers, Kevin J

    2005-01-01

    A total of 326 programs are represented in the data collected. Based on the average number of full- and part-time faculty members reported per program, this survey represents more than 1500 faculty positions. Based on the forecast of retirement and career change for all faculty members, there will be a turnover of 700 to 800 positions over the next 5 to 10 years. Part-time/adjunct faculty vacancies are expected to create the greatest number of opportunities for technologists to make the transition to education, with approximately one third of current part-time/adjunct educators planning on leaving radiologic sciences education within 5 years. To encourage retention of part-time/adjunct educators, annual evaluations should be modified to recognize the important educational role these instructors play. There is a need to create enthusiasm and interest in education as a career pathway for radiologic technologists. Resources are needed that help radiologic technologists make the transition to teaching. Finally, the retention of educators must be emphasized. Program applicant trends indicate radiologic technology students are older, have prior postsecondary education experience or are making a career change. This data emphasizes the need for educators, both full time and part time, to understand the characteristics and needs of the adult learner. Adult learners bring a wealth of education, experience and life skills that create both opportunities and challenges in the classroom and clinical setting. All categories of respondents indicated that their current salaries were greater than those of program graduates in their firstjob. Of interest is that 1 in 5 (20%) of part-time/adjunct educators indicated the opposite--that program graduates earn more in their firstjob than educators earn. When asked about salaries if working full time in clinical practice, the majority of all groups indicated their salary would be about the same or would decrease. Only 20% of program

  20. [Radiological assessment of bone quality].

    PubMed

    Ito, Masako

    2016-01-01

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;micro-CT or synchrotron-CT is available to analyze micro- or nano-structural property of bone samples ex vivo, and multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo. For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available aw sell se radiography and DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone. PMID:26728530

  1. Radiological Control Technician: Phase 1, Site academic training lesson plans

    SciTech Connect

    Not Available

    1992-10-01

    This volume provides lesson plans for training radiological control technicians. Covered here is basic radiological documentation, counting errors, dosimetry, environmental monitoring, and radiation instruments.

  2. Operation QUICKSILVER. Onsite radiological safety report, October 1978-September 1979

    SciTech Connect

    Mullen, O.W.; Eubank, B.F.

    1980-02-01

    QUICKSILVER was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1978 to September 30, 1979. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific optional procedures are defined.

  3. DOE Radiological Control Manual Core Training Program

    SciTech Connect

    Scott, H.L.; Maisler, J.

    1993-12-31

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program.

  4. Evidence-based Practice of Radiology.

    PubMed

    Lavelle, Lisa P; Dunne, Ruth M; Carroll, Anne G; Malone, Dermot E

    2015-10-01

    Current health care reform in the United States is producing a shift in radiology practice from the traditional volume-based role of performing and interpreting a large number of examinations to providing a more affordable and higher-quality service centered on patient outcomes, which is described as a value-based approach to the provision of health care services. In the 1990 s, evidence-based medicine was defined as the integration of current best evidence with clinical expertise and patient values. When these methods are applied outside internal medicine, the process is called evidence-based practice (EBP). EBP facilitates understanding, interpretation, and application of the best current evidence into radiology practice, which optimizes patient care. It has been incorporated into "Practice-based Learning and Improvement" and "Systems-based Practice," which are two of the six core resident competencies of the Accreditation Council for Graduate Medical Education and two of the 12 American Board of Radiology milestones for diagnostic radiology. Noninterpretive skills, such as systems-based practice, are also formally assessed in the "Quality and Safety" section of the American Board of Radiology Core and Certifying examinations. This article describes (a) the EBP framework, with particular focus on its relevance to the American Board of Radiology certification and maintenance of certification curricula; (b) how EBP can be integrated into a residency program; and (c) the current value and likely place of EBP in the radiology information technology infrastructure. Online supplemental material is available for this article. PMID:26466187

  5. Estimating radiological background using imaging spectroscopy

    SciTech Connect

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  6. Estimating radiological background using imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce; Schweppe, John E.; Stave, Sean; Jordan, David; Kulisek, Jonathan; Stewart, Trevor; Seifert, Carolyn

    2014-06-01

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km - 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRlS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  7. 21 CFR 892.6500 - Personnel protective shield.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Personnel protective shield. 892.6500 Section 892.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield....

  8. 21 CFR 892.6500 - Personnel protective shield.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Personnel protective shield. 892.6500 Section 892.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield....

  9. 21 CFR 892.6500 - Personnel protective shield.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Personnel protective shield. 892.6500 Section 892.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield....

  10. 21 CFR 892.6500 - Personnel protective shield.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Personnel protective shield. 892.6500 Section 892.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Miscellaneous Devices § 892.6500 Personnel protective shield....

  11. [Diagnostic reference levels in interventional radiology].

    PubMed

    Vañó Carruana, E; Fernández Soto, J M; Sánchez Casanueva, R M; Ten Morón, J I

    2013-12-01

    This article discusses the diagnostic reference levels for radiation exposure proposed by the International Commission on Radiological Protection (ICRP) to facilitate the application of the optimization criteria in diagnostic imaging and interventional procedures. These levels are normally established as the third quartile of the dose distributions to patients in an ample sample of centers and are supposed to be representative of good practice regarding patient exposure. In determining these levels, it is important to evaluate image quality as well to ensure that it is sufficient for diagnostic purposes. When the values for the dose received by patients are systematically higher or much lower than the reference levels, an investigation should determine whether corrective measures need to be applied. The European and Spanish regulations require the use of these reference values in quality assurance programs. For interventional procedures, the dose area product (or kerma area product) values are usually used as reference values together with the time under fluoroscopy and the total number of images acquired. The most modern imaging devices allow the value of the accumulated dose at the entrance to the patient to be calculated to optimize the distribution of the dose on the skin. The ICRP recommends that the complexity of interventional procedures be taken into account when establishing reference levels. In the future, diagnostic imaging departments will have automatic systems to manage patient dosimetric data; these systems will enable continuous dosage auditing and alerts about individual procedures that might involve doses several times above the reference values. This article also discusses aspects that need to be clarified to take better advantage of the reference levels in interventional procedures. PMID:24211195

  12. CDC Grand Rounds: radiological and nuclear preparedness.

    PubMed

    2010-09-17

    Radiological and nuclear disasters are infrequent, but when they occur, they result in large and demonstrable health burdens. Several scenarios can result in the public's exposure to radiation. For example, radiation sources used in health care or other industries can be lost or misused. Incidents in the nuclear power industry, such as those at Chernobyl and Three Mile Island, require significant public health response. In addition, radiological terrorism can involve the use of a radiological dispersal device (RDD) or an improvised nuclear device (IND). State and local health agencies are expected to perform essential public health functions in response to any of these emergencies. PMID:20847721

  13. Hospital preparedness for chemical and radiological disasters.

    PubMed

    Moore, Brooks L; Geller, Robert J; Clark, Charlotte

    2015-02-01

    Hospital planning for chemical or radiological events is essential but all too often treated as a low priority. Although some other types of disasters like hurricanes and tornadoes may be more frequent, chemical and radiological emergencies have the potential for major disruptions to clinical care. Thorough planning can mitigate the impact of a chemical or radiological event. Planning needs to include all 4 phases of an event: mitigation (preplanning), preparation, response, and recovery. Mitigation activities should include the performance of a hazards vulnerability analysis and identification of local subject-matter experts and team leaders. PMID:25455661

  14. Radiological considerations: percutaneous laser disc decompression.

    PubMed

    Botsford, J A

    1993-10-01

    Diagnostic radiology is an integral part of percutaneous laser disc decompression (PLDD). All physicians involved in PLDD patient selection and treatment must be familiar with the imaging techniques unique to this procedure to ensure a successful outcome. The following review is based on the cumulative experience gained in performing over 150 PLDD procedures. It discusses the function of diagnostic radiology in all facets of PLDD including patient selection, intraoperative imaging, postoperative evaluation, and analysis of complications. Fundamental radiologic concepts that apply to PLDD are explained and protocols suggested to optimize results and avoid complications. PMID:10146513

  15. Interventional radiology of the abdomen. Second edition

    SciTech Connect

    Ferrucci, J.T.; Wittenberg, J.; Mueller, P.R.; Simeone, J.F.

    1985-01-01

    This book differs from several other presently available texts on interventional radiology in that it is explicitly not derived from the principles of catheter angiography. Abdominal interventional radiology depends as much, if not more, on ultrasonographic and computed tomographic guidance and, while perhaps less glamorous, also on conventional fluoroscopic guidance (for procedures such as urinary and biliary manipulations). Thus, while technical aspects of catheter design and manipulation can never be minimized, they are not the sole elements of successful interventional radiology in the abdomen. Relevant anatomy and pathophysiology, along with clinical aspects of medical and surgical care and thorough patient follow-up are of equal concern.

  16. Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal

    SciTech Connect

    Klett, R.D.

    1997-06-01

    The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

  17. [Virtual organization in the digital age of radiology - principle and solution for radiologic research?].

    PubMed

    Leppek, R; Krass, S; Bourquain, H; Lang, M; Wein, B; Mildenberger, P; Schaller, S; Klose, K J; Peitgen, H-O

    2003-11-01

    The research project "VICORA - Virtual Institute for Computer-Assisted Radiology", funded by the German Federal Ministry of Education and Research, was initiated in the year 2000. Its virtual organization brings together physical science, engineering, information technology, clinical radiology and the medical technology industry. In the German radiology research domain VICORA serves as a model for interdisciplinary collaboration for the changing radiology paradigm illustrated by a "radiologycube". The project does not only aim at scientific goals but also considers the infrastructure, components and human resource management within a virtual organization. The common rapid prototyping platform ILAB 4 ensures user-friendly and time-efficient software that assists with the routine radiology work-flow including full DICOM functionality. By offering a new work environment and collaborative culture based on telematics and knowledge exchange in radiology research, VICORA overcomes limitations of traditional research organization. PMID:14610709

  18. A REGIONAL PARTNERSHIP ON RADIOLOGICAL SECURITY

    SciTech Connect

    Morris, Fred A.; Murray, Allan; Dickerson, Sarah; Tynan, Douglas M.; Rawl, Richard R.; Hoo, Mark S.

    2007-07-09

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO) created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP/RSRS partnership is to cooperate with regional neighbors in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports NNSA and IAEA objectives to improve the security of high risk radioactive sources by raising awareness of the need, and developing national programs, to: protect and control such materials; improve the security of such materials and recover and condition the materials no longer in use. To date, agreed upon joint activities have included assistance with the improvement of regulatory infrastructure for the control of radioactive sources, training on the physical protection of radioactive sources, training and assistance with the search, location, identification and securing of orphan radioactive sources and overall assistance with implementing the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. Since the inception of the partnership, ten Southeast Asian nations have participated in a range of activities from receiving general training on the security of radioactive sources to receiving specialized equipment and training to locate orphan or abandoned radioactive sources. By having a shared vision and objectives for radioactive source security in the Southeast Asian region, ANSTO and NNSA have been able to develop a successful partnership which has effectively utilized the technical, financial and political resources of each contributing partner. An example of how this partnership works is the cooperation with the Nuclear Energy Regulatory Agency, Indonesia (BAPETEN) to

  19. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiologic services, particularly ionizing radiology procedures, must be free from hazards for patients and... qualified full-time, part-time, or consulting radiologist must supervise the ionizing radiology services and... osteopathy who is qualified by education and experience in radiology. (2) Only personnel designated...

  20. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiologic services, particularly ionizing radiology procedures, must be free from hazards for patients and... qualified full-time, part-time, or consulting radiologist must supervise the ionizing radiology services and... osteopathy who is qualified by education and experience in radiology. (2) Only personnel designated...

  1. Corporate social responsibility of future radiology professionals.

    PubMed

    Collins, Sandra K; Collins, Kevin S

    2011-01-01

    Plagued by difficult economic times, many radiology managers may find themselves faced with ethical dilemmas surrounding ongoing organizational pressures to maintain high levels of productivity with restricted resources. This often times tests the level of moral resilience and corporate social consciousness of even the most experienced radiology professionals. A study was conducted to determine what Corporate Social Responsibility (CSR) orientation and viewpoint future radiology professionals may have. The results of the study indicate that these study participants may initially consider patient care more important than profit maximization. Study results indicate that these specific future radiology professionals will not need laws, legal sanctions, and intensified rules to force them to act ethically. However,they may need ongoing training as to the necessity of profit maximization if they seek the highest quality of care possible for their patients. PMID:21366145

  2. Data Standards in Tele-radiology

    PubMed Central

    Fatehi, Mansoor; Safdari, Reza; Ghazisaeidi, Marjan; Jebraeily, Mohamad; Habibi-koolaee, Mahdi

    2015-01-01

    Data standards play an important role to provide interoperability among different system. As other applications of telemedicine, the tele-radiology needs these standards to work properly. In this article, we conducted a review to introduce some data standards about tele-radiology. By searching PUBMED and Google Scholar database, we find more relevant articles about data standards in tele-radiology. Three categories of standards identified, including data interchange, document and terminology standards. Data interchange standards, including those which facilitate the understanding of the format of a massage between systems, such as DICOM and HL7. Document standards, including those which facilitate the contents of a massage, such as DICOM SR and HL7 CDA. And terminology standards, including those which facilitate the understanding of concepts of the domain. Since, the harmonization between different standards are important to meet interoperability, so the more effort is needed to conduct harmonization between tele-radiology standards and other domain. PMID:26236084

  3. Radiology of syndromes and metabolic disorders

    SciTech Connect

    Taybi, H.; Lachman, R.

    1989-01-01

    The authors describe both the clinical and radiologic manifestations of 700 syndromes. They provide illustrations describing each syndrome and descriptions of those syndromes discovered since publication of a previous edition.

  4. RADIOLOGICAL RISK ASSESSMENT METHODOLOGY DEVELOPMENT/IMPROVEMENTS

    EPA Science Inventory

    The office is developing improved methodologies and guidance for evaluating human health risks associated with exposure to environmental radiological contaminants. These activities involve coordination with numerous federal agencies and the development and communication of vari...

  5. Data Standards in Tele-radiology.

    PubMed

    Fatehi, Mansoor; Safdari, Reza; Ghazisaeidi, Marjan; Jebraeily, Mohamad; Habibi-Koolaee, Mahdi

    2015-06-01

    Data standards play an important role to provide interoperability among different system. As other applications of telemedicine, the tele-radiology needs these standards to work properly. In this article, we conducted a review to introduce some data standards about tele-radiology. By searching PUBMED and Google Scholar database, we find more relevant articles about data standards in tele-radiology. Three categories of standards identified, including data interchange, document and terminology standards. Data interchange standards, including those which facilitate the understanding of the format of a massage between systems, such as DICOM and HL7. Document standards, including those which facilitate the contents of a massage, such as DICOM SR and HL7 CDA. And terminology standards, including those which facilitate the understanding of concepts of the domain. Since, the harmonization between different standards are important to meet interoperability, so the more effort is needed to conduct harmonization between tele-radiology standards and other domain. PMID:26236084

  6. Apparatus for safeguarding a radiological source

    SciTech Connect

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  7. [Fibrous dysplasia of the skull. Radiologic diagnosis].

    PubMed

    Amato, C; Moschini, M; Colavita, N; Tagliaferri, G

    1993-09-01

    The authors examined 11 patients with fibrous dysplasia of the skull pointing out its radiologic features and preferential sites. Conventional radiology, CT and MR imaging were used. As for conventional radiology, tangential scans which of great value to depict the most typical morphologic patterns. Lesions of the skull base were most frequent in the sphenoid (7 of 11 cases), where 5 of 7 exhibited a sclerotic pattern. Bone changes in the skull vault were: mixed (3 cases), pagetoid (2 cases), "ground glass" (1 case) and lytic (1 case): none of these cases was of the sclerotic type. A typical feature of vault lesions was the widening of diploic space associated with expansion of the outer bone and integrity of the inner bone. Radiologic findings, often associated with suggestive clinical manifestations, always allowed a diagnostic hypothesis; histopathologic confirmation was needed only in a few cases (4 of 11 patients). PMID:8210526

  8. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  9. Leadership and management in quality radiology

    PubMed Central

    2007-01-01

    The practice of medical imaging and interventional radiology are undergoing rapid change in recent years due to technological advances, workload escalation, workforce shortage, globalisation, corporatisation, commercialisation and commoditisation of healthcare. These professional and economical changes are challenging the established norm but may bring new opportunities. There is an increasing awareness of and interest in the quality of care and patient safety in medical imaging and interventional radiology. Among the professional organisations, a range of quality systems are available to address individual, facility and system needs. To manage the limited resources successfully, radiologists and professional organisations must be leaders and champion for the cause of quality care and patient safety. Close collaboration with other stakeholders towards the development and management of proactive, long-term, system-based strategies and infrastructures will underpin a sustainable future in quality radiology. The International Radiology Quality Network can play a useful facilitating role in this worthwhile but challenging endeavour. PMID:21614284

  10. Radiological safety training for uranium facilities

    SciTech Connect

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  11. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  12. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  13. Multilingual retrieval of radiology images.

    PubMed

    Kahn, Charles E

    2009-01-01

    The multilingual search engine ARRS GoldMiner Global was created to facilitate broad international access to a richly indexed collection of more than 200,000 radiologic images. Images are indexed according to key-words and medical concepts that appear in the unstructured text of their English-language image captions. GoldMiner Global exploits the Unicode standard, which allows the accurate representation of characters and ideographs from virtually any language and which supports both left-to-right and right-to-left text directions. The user interface supports queries in Arabic, Chinese, French, German, Italian, Japanese, Korean, Portuguese, Russian, or Spanish. GoldMiner Global incorporates an interface to the United States National Library of Medicine that translates queries into English-language Medical Subject Headings (MeSH) terms. The translated MeSH terms are then used to search the image index and retrieve relevant images. Explanatory text, pull-down menu choices, and navigational guides are displayed in the selected language; search results are displayed in English. GoldMiner Global is freely available on the World Wide Web. PMID:19019997

  14. Public participation in radiological surveillance.

    PubMed

    Hanf, R W; Schreckhise, R G; Patton, G W; Poston, T M; Jaquish, R E

    1997-10-01

    In 1989, Pacific Northwest National Laboratory developed a program, for the U.S. Department of Energy, to involve local citizens in environmental surveillance at the Hanford Site. The Community-Operated Environmental Surveillance Program was patterned after similar community-involvement efforts at the Nevada Test Site and the Three Mile Island nuclear facility. Its purpose is to increase the flow of information to the public, thereby enhancing the public's awareness and understanding of surveillance activities. The program consists of two components: radiological air monitoring at nine offsite locations and agricultural product sampling at selected locations near the site. At each air-monitoring station, two local school teachers collect air particulate samples and operate equipment to monitor ambient radiation levels. Atmospheric tritium samples (as water vapor) are also collected at some locations. Four of the air-monitoring stations include large, colorful informational displays for public viewing. These displays provide details on station equipment, sample types, and sampling purposes. Instruments in the displays also monitor, record, and show real-time ambient radiation readings (measured with a pressurized ionization chamber) and meteorological conditions. Agricultural products, grown primarily by middle-school-aged students, are obtained from areas downwind of the site. Following analysis of these samples, environmental surveillance staff visit the schools to discuss the results with the students and their teachers. The data collected by these air and agricultural sampling efforts are summarized with other routinely collected sitewide surveillance data and reported annually in the Hanford Site environmental report. PMID:9314235

  15. Radiological maps for Trabzon, Turkey.

    PubMed

    Kurnaz, A; Kucukomeroglu, B; Damla, N; Cevik, U

    2011-04-01

    The activity concentrations and absorbed gamma dose rates due to primordial radionuclides and (137)Cs have been ascertained in 222 soil samples in 18 counties of the Trabzon province of Turkey using a HPGe detector. The mean activity concentrations of (238)U, (232)Th, (40)K and (137)Cs in soil samples were 41, 35, 437 and 21 Bq kg(-1), respectively. Based on the measured concentrations of these radionuclides, the mean absorbed gamma dose in air was calculated as 59 nGy h(-1) and hence, the mean annual effective dose due to terrestrial gamma radiation was calculated as 72 μSv y(-1). In addition, outdoor in situ gamma dose rate (D) measurements were performed in the same 222 locations using a portable NaI detector and the annual effective dose was calculated to be 66 μSv y(-1) from these results. The results presented in this study are compared with other parts of Turkey. Radiological maps of the Trabzon province were composed using the results obtained from the study. PMID:21382657

  16. Display considerations for quantitative radiology.

    PubMed

    Badano, Aldo

    2007-01-01

    The early prediction of the response to treatment using quantitative imaging holds great promise for streamlining the development, assessment, approval and personalization of new therapies. However, to realize this potential, quantitative radiology needs to develop an understanding of several limitations that might hinder the application of quantitation tools and techniques. Among these limitations, the fidelity of the display device used to interpret the image data is a significant factor that affects the accuracy and precision of quantitative visual tasks, particularly those involving large, volumetric, multi-dimensional and multi-modality image sets. This paper reviews several aspects of display performance and display image quality that are likely to contribute negatively to the robustness of quantitative imaging methods. Display characteristics that will be addressed include the grayscale and color performance of different classes of display devices, the angular distribution of the emissions of liquid crystal technologies, and the temporal response for stack mode viewing. The paper will also summarize current efforts for the metrology, standardization and image quality assessment methods for display devices.: PMID:24980719

  17. Radiological Safety Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-12-22

    Version 03 RSAC-6.2 can be used to model complex accidents and radiological consequences to individuals from the release of radionuclides to the atmosphere. A user can generate a fission product inventory; decay and ingrow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Doses are calculated through the inhalation, immersion, ground surface and ingestion pathways. New to RSAC-6.2 are the abilitiesmore » to calculate inhalation from release to a room, inhalation from resuspension of activities, and a new model for dry deposition. Doses can now be calculated as close as 10 meters from the release point. RSAC-6.2 has been subjected to extensive independent verification and validation for use in performing safety-related dose calculations to support safety analysis reports. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. RSAC-6, Rev. 6.2 (03/11/02) corrects an earlier issue with RSAC-6, compiled with F77L-EM/32 Fortran 77 Version 5.10, which would not allow the executable to run with XP or VISTA Windows operating systems. Because this version is still in use at some facilities, it is being released through RSICC in addition to the new RSAC 7 (CCC-761).« less

  18. Rumors and gossip in radiology.

    PubMed

    Dowd, S B; Davidhizar, R

    1997-01-01

    Rumors and gossip have long been popular topics in literature. Social scientists have even studied the topic and defined four main types of rumor: wish rumors; fear or bogey rumors; wedge-driving or aggressive rumors; and anticipatory rumors. In general, people believe rumor and gossip are synonymous. Rumormongering--the spreading of rumors--occurs among all cultures and types of people. Both men and women gossip and women's gossip is not more vindicative than men's, as is often thought. With such new means of communication as the Internet, transmitting rumor is possible beyond the traditional oral and written forms. Rumor is spread in both the higher and lower levels of an organization. Typically, disproving a rumor is more difficult than proving a rumor. The financial impact of a rumor must be considered also. If people believe, for example, that a radiology department does not have its act together or offers poor customer service, the department may lose revenue because people have lost confidence in it. Originally, the word gossip had positive implications. It referred to a family friend or the woman who delivered a child and announced the event to the community. Because well-intentioned gossip often turns into a damaging story, various approaches for stopping rumors have been identified. They include analyzing the grapevine, identifying the habitual spreaders of rumor and keeping employees informed. In most cases, a person of authority who provides facts can stop or at least slow down rumors spreading at the employee level. PMID:10175327

  19. Tools for placing the radiological health hazard in perspective following a severe emergency at a light water reactor (LWR) or its spent fuel pool.

    PubMed

    McKenna, Thomas; Welter, Phillip Vilar; Callen, Jessica; Martincic, Rafael; Dodd, Brian; Kutkov, Vladimir

    2015-01-01

    Experience from past nuclear and radiological emergencies shows that placing the radiological health hazard in perspective and having a definition of "safe" are required in order to prevent members of the public, those responsible for protecting the public (i.e., decision makers), and others from taking inappropriate and damaging actions that are not justified based on the radiological health hazard. The principle concerns of the public during a severe nuclear power plant or spent fuel pool emergency are "Am I safe?" and "What should I do to be safe?" However, these questions have not been answered to the satisfaction of the public, despite various protective actions being implemented to ensure their safety. Instead, calculated doses or various measured quantities (e.g., ambient dose rate or radionuclide concentrations) are used to describe the situation to the public without placing them into perspective in terms of the possible radiological health hazard, or if they have, it has been done incorrectly. This has contributed to members of the public taking actions that do more harm than good in the belief that they are protecting themselves. Based on established international guidance, this paper provides a definition of "safe" for the radiological health hazard for use in nuclear or radiological emergencies and a system for putting the radiological health hazard in perspective for quantities most commonly measured after a release resulting from a severe emergency at a light water reactor or its spent fuel pool. PMID:25437516

  20. Radiological interventions in malignant biliary obstruction

    PubMed Central

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar

    2016-01-01

    Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718

  1. Radiological interventions in malignant biliary obstruction.

    PubMed

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar

    2016-05-28

    Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718

  2. Stress management for the radiologic technologist.

    PubMed

    Romano, Jeannine M

    2012-01-01

    Changes in technology in the radiology department and an emphasis on multitasking can lead to stress and burnout, along with the potential for medical errors. A shift in viewpoint and exercises in self-evaluation can help radiologic technologists learn to manage change in a positive manner. Learning to approach change through a series of transitions and positive steps can reduce stress at work and at home. PMID:22988262

  3. Gastrointestinal Lymphoma: Radiologic-Pathologic Correlation.

    PubMed

    Manning, Maria A; Somwaru, Alexander S; Mehrotra, Anupamjit K; Levine, Marc S

    2016-07-01

    Extranodal lymphoma is a heterogeneous group of hematologic neoplasms that can affect every abdominal organ, with distinctive pathologic, radiologic, and clinical features. The radiologic findings are closely related to the underlying pathophysiology, and an understanding of these characteristic features should facilitate recognition of extranodal lymphoma and its various subtypes. Within the abdomen, lymphoma is found most commonly in the gastrointestinal tract, especially the stomach. This article presents the findings in gastrointestinal tract lymphoma. PMID:27265607

  4. Radiologic Professionalism in Modern Health Care.

    PubMed

    Hryhorczuk, Anastasia L; Hanneman, Kate; Eisenberg, Ronald L; Meyer, Elaine C; Brown, Stephen D

    2015-10-01

    Modern radiology is at the forefront of technological progress in medicine, a position that often places unique challenges on its professional character. This article uses "Medical Professionalism in the New Millennium: A Physician Charter," a document published in 2002 and endorsed by several major radiology organizations, as a lens for exploring professional challenges in modern radiology. The three main tenets of the Charter emphasize patient welfare, patient autonomy, and the reduction of disparities in health care distribution. This article reviews the ways in which modern technology and financial structures potentially create stressors on professionalism in radiology, while highlighting the opportunities they provide for radiologists seeking to fulfill the professional goals articulated in the Charter. Picture archiving and communication systems (PACS) and voice recognition systems have transformed the speed of radiology and enhanced the ability of radiologists to improve patient care but also have brought new tensions to the workplace. Although teleradiology may improve global access to radiologists, it may also promote the commoditization of radiology, which diminishes the professional stature of radiologists. Social media and patient portals provide radiologists with new forums for interacting with the public and patients, potentially promoting patient welfare. However, patient privacy and autonomy are important considerations. Finally, modern financial structures provide radiologists with both entrepreneurial opportunities as well as the temptation for unprofessional conduct. Each of these advances carries the potential for professional growth while testing the professional stature of radiology. By considering the risks and benefits of emerging technologies in the modern radiology world, radiologists can chart an ethical and professional future path. PMID:26466185

  5. A career ladder for radiological technologists.

    PubMed

    Gillan, G D; Pearce, J; Rutherford, M; Walters, L

    1984-03-01

    A career ladder is a mechanism for employee progression within a chosen field. This paper describes the design and implementation of such a system in a large community radiology department. The career ladder system included integrated job descriptions, salary scales and evaluation procedures for radiology technologists. The implementation of this new system had a positive effect on employee morale manifested in decreased turnover, less absenteeism and increased job satisfaction. PMID:10265983

  6. Glove Perforations During Interventional Radiological Procedures

    SciTech Connect

    Leena, R. V. Shyamkumar, N. K.

    2010-04-15

    Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.

  7. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea

    PubMed Central

    2016-01-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the “Institute for Quality Management of Nuclear Medicine”, and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  8. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea.

    PubMed

    Kim, Byung Il

    2016-02-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the "Institute for Quality Management of Nuclear Medicine", and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization. PMID:26908990

  9. Objective structured clinical examination in radiology

    PubMed Central

    Agarwal, Anurag; Batra, Bipin; Sood, AK; Ramakantan, Ravi; Bhargava, Satish K; Chidambaranathan, N; Indrajit, IK

    2010-01-01

    There is a growing need for introducing objective structured clinical examination (OSCE) as a part of radiology practical examinations in India. OSCE is an established, reliable, and effective multistation test for the assessment of practical professional skills in an objective and a transparent manner. In India, it has been successfully initiated and implemented in specialties like pediatrics, ophthalmology, and otolaryngology. Each OSCE station needs to have a pre-agreed “key-list” that contains a list of objective steps prepared for uniformly assessing the tasks given to students. Broadly, OSCE stations are classified as “manned” or “unmanned” stations. These stations may include procedure or pictorial or theory stations with clinical oriented contents. This article is one of a series of measures to initiate OSCE in radiology; it analyzes the attributes of OSCE stations and outlines the steps for implementing OSCE. Furthermore, important issues like the advantages of OSCE, its limitations, a strengths, weaknesses, opportunities, and threats (SWOT) analysis, and the timing of introduction of OSCE in radiology are also covered. The OSCE format in radiology and its stations needs to be validated, certified, and finalized before its use in examinations. This will need active participation and contribution from the academic radiology fraternity and inputs from faculty members of leading teaching institutions. Many workshops/meetings need to be conducted. Indeed, these collaborative measures will effectively sensitize universities, examiners, organizers, faculty, and students across India to OSCE and help successfully usher in this new format in radiology practical examinations. PMID:20607015

  10. A Design Protocol to Develop Radiology Dashboards

    PubMed Central

    Karami, Mahtab

    2014-01-01

    ABSTRACT Aim: The main objective of this descriptive and development research was to introduce a design protocol to develop radiology dashboards. Material and methods: The first step was to determine key performance indicators for radiology department. The second step was to determine required infrastructure for implementation of radiology dashboards. Infrastructure was extracted from both data and technology perspectives. The third step was to determine main features of the radiology dashboards. The fourth step was to determine the key criteria for evaluating the dashboards. In all these steps, non-probability sampling methods including convenience and purposive were employed and sample size determined based on a persuasion model. Results: Results showed that there are 92 KPIs, 10 main features for designing dashboards and 53 key criteria for dashboards evaluation. As well as, a Prototype of radiology management dashboards in four aspects including services, clients, personnel and cost-income were implemented and evaluated. Applying such dashboards could help managers to enhance performance, productivity and quality of services in radiology department. PMID:25568585

  11. Sun protection

    MedlinePlus

    ... age spots are caused by exposure to the sun. The two types of sun rays that can injure the skin are ultraviolet ... changes is to protect your skin from the sun. This includes using sunscreen and other protective measures. ...

  12. Application of a geographic information system for radiologic emergency response

    SciTech Connect

    Best, R.G.; Doyle, J.F.

    1995-03-01

    A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises.

  13. Radiologic diagnosis of explosion casualties.

    PubMed

    Eastridge, Brian J; Blackbourne, Lorne; Wade, Charles E; Holcomb, John B

    2008-01-01

    The threat of terrorist events on domestic soil remains an ever-present risk. Despite the notoriety of unconventional weapons, the mainstay in the armament of the terrorist organization is the conventional explosive. Conventional explosives are easily weaponized and readily obtainable, and the recipes are widely available over the Internet. According to the US Department of State and the Federal Bureau of Investigation, over one half of the global terrorist events involve explosions, averaging two explosive events per day worldwide in 2005 (Terrorism Research Center. Available at www.terrorism.com. Accessed April 1, 2007). The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads, published by the Institute of Medicine, states that explosions were the most common cause of injuries associated with terrorism (Institute of Medicine Report: The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads. Washington DC: National Academic Press, 2007). Explosive events have the potential to inflict numerous casualties with multiple injuries. The complexity of this scenario is exacerbated by the fact that few providers or medical facilities have experience with mass casualty events in which human and material resources can be rapidly overwhelmed. Care of explosive-related injury is based on same principles as that of standard trauma management paradigms. The basic difference between explosion-related injury and other injury mechanisms are the number of patients and multiplicity of injuries, which require a higher allocation of resources. With this caveat, the appropriate utilization of radiology resources has the potential to impact in-hospital diagnosis and triage and is an essential element in optimizing the management of the explosive-injured patients. PMID:19069034

  14. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    SciTech Connect

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable

  15. Development of a user-centered radiology teaching file system

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo; Fujino, Asa

    2011-03-01

    Learning radiology requires systematic and comprehensive study of a large knowledge base of medical images. In this work is presented the development of a digital radiology teaching file system. The proposed system has been created in order to offer a set of customized services regarding to users' contexts and their informational needs. This has been done by means of an electronic infrastructure that provides easy and integrated access to all relevant patient data at the time of image interpretation, so that radiologists and researchers can examine all available data to reach well-informed conclusions, while protecting patient data privacy and security. The system is presented such as an environment which implements a distributed clinical database, including medical images, authoring tools, repository for multimedia documents, and also a peer-reviewed model which assures dataset quality. The current implementation has shown that creating clinical data repositories on networked computer environments points to be a good solution in terms of providing means to review information management practices in electronic environments and to create customized and contextbased tools for users connected to the system throughout electronic interfaces.

  16. Interpreting and Reporting Radiological Water-Quality Data

    USGS Publications Warehouse

    McCurdy, David E.; Garbarino, John R.; Mullin, Ann H.

    2008-01-01

    This document provides information to U.S. Geological Survey (USGS) Water Science Centers on interpreting and reporting radiological results for samples of environmental matrices, most notably water. The information provided is intended to be broadly useful throughout the United States, but it is recommended that scientists who work at sites containing radioactive hazardous wastes need to consult additional sources for more detailed information. The document is largely based on recognized national standards and guidance documents for radioanalytical sample processing, most notably the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), and on documents published by the U.S. Environmental Protection Agency and the American National Standards Institute. It does not include discussion of standard USGS practices including field quality-control sample analysis, interpretive report policies, and related issues, all of which shall always be included in any effort by the Water Science Centers. The use of 'shall' in this report signifies a policy requirement of the USGS Office of Water Quality.

  17. Radiological and chemical assessment of phosphate rocks in some countries.

    PubMed

    Cevik, U; Baltas, H; Tabak, A; Damla, N

    2010-10-15

    In this study, the radiological, structural and chemical characterizations of Mardin-Mazidaği phosphate rock, which is an important phosphate fertilizer source in Turkey were investigated and compared to those of several different phosphate rocks of Tunisia, Egypt, Morocco, Algeria and Syria using gamma spectrometry, X-ray diffraction (XRD) and X-ray fluorescence (XRF) measurement techniques. Elemental analysis results of phosphate samples showed that they were mainly composed of CaO, P(2)O(5), SiO(2), Al(2)O(3), SO(3) and Fe(2)O(3). Elemental concentrations of U and Th were calculated using (226)Ra and (232)Th activity concentrations, respectively. As a result of XRD analysis, the main peaks of the samples were found to be Fluorapatite (Ca(5)(PO(4))(3)F). The radioactivity concentration levels for (226)Ra, (232)Th and (40)K in all phosphate samples ranged from 250 to 1029 Bq kg(-1) with a mean of 535 Bq kg(-1), from 5 to 50 Bq kg(-1) with a mean of 20 Bq kg(-1) and from 117 to 186 Bq kg(-1) with a mean of 148 Bq kg(-1), respectively. The computed values of annual effective doses ranged from 0.17 to 0.59 mSv, with a mean value of 0.33 mSv, which is lower than the recommended limit of 1 mSv y(-1) by the International Commission on Radiological Protection. PMID:20630655

  18. Assessing Potential Radiological Harm to Fukushima Recovery Workers

    PubMed Central

    Scott, Bobby R.

    2011-01-01

    A radiological emergency exists at the Fukushima Daiichi (Fukushima I) nuclear power plant in Japan as a result of the March 11, 2011 magnitude 9.0 earthquake and the massive tsunami that arrived later. News media misinformation related to the emergency triggered enormous social fear worldwide of the radioactivity that is being released from damaged fuel rods. The heroic recovery workers are a major concern because they are being exposed to mostly gamma radiation during their work shifts and life-threatening damage to the radiosensitive bone marrow could occur over time. This paper presents a way in which the bone marrow equivalent dose (in millisieverts), as estimated per work shift, could be used along with the hazard function model previously developed for radiological risk assessment to repeatedly check for potential life-threatening harm (hematopoietic system damage) to workers. Three categories of radiation hazard indication are proposed: 1, life-threatening damage unlikely; 2, life-threatening damage possible; 3, life-threatening damage likely. Categories 2 and 3 would be avoided if the whole body effective dose did not exceed the annual effective dose limit of 250 mSv. For down-wind populations, hormetic effects (activated natural protective processes) are much more likely than are deleterious effects. PMID:22013394

  19. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. PMID:20005611

  20. Radiation dose to physicians’ eye lens during interventional radiology

    NASA Astrophysics Data System (ADS)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  1. Occupational exposure assessment in procedures of portable digital veterinary radiology for small size animals

    NASA Astrophysics Data System (ADS)

    Canato, G. R.; Drumond, L. F.; Paschuk, S. A.; Asfora, V. K.; Andrade, M. E. A.; Denyak, V.; Schelin, H. R.

    2014-02-01

    This study evaluates the dose received by veterinarians and assistants involved in portable digital veterinary radiology procedures and checks the dose reduction obtained with the use of individual protection equipment. For this evaluation measurements were made using thermoluminescent dosimeters TLD-100, positioned at different parts of the body: hands, thorax, thyroids, gonads, left and right eye corners and at the center of the eyes. The dose was evaluated through 65 procedures performed with 55 animals. The results showed that in the case of assistants the received dose is significantly larger than that of the veterinarian. The most likely reason of this effect is that they are closer to the primary beam and thus are exposed to higher level of primary radiation first of all in regions of eyes and thyroids. The doses received by various body parts of the assistant are close to the annual limit recommended by International Commission on Radiological Protection.

  2. [Radiological diagnostics of pediatric lungs].

    PubMed

    Beer, M; Ammann, B

    2015-07-01

    Pediatric lung diseases are a common clinical problem. Besides the clinical examination and laboratory tests, imaging studies are the mainstay in the diagnostics of pediatric lung diseases. Thorough consideration of radiation protection based on optimized equipment also includes the protection of relatives and medical staff. The high impact of radiation protection in children necessitates a different choice of imaging modalities compared to adults. Ultrasound and magnetic resonance imaging (MRI) as adjunct or complementary imaging methods are of greater value than computed tomography (CT). The suspicion of pneumonia is the most common reason for chest imaging examinations in children. An anteroposterior or posteroanterior view chest X-ray is sufficient in most cases and sometimes in combination with ultrasound. The latter can also be used alone for follow-up examinations if the clinical presentation does not change. Additionally, ultrasound is applied to examine unclear structures seen on chest X-rays, such as the thymus or pulmonary sequestration in adjunct with color-coded duplex sonography. A chest X-ray is also the method of choice to examine the various forms of respiratory distress syndrome, such as wet lung disease or surfactant deficiency syndrome in newborns. Fluoroscopy is used in older children with suspected ingestion and/or aspiration of foreign bodies and CT is mostly used for staging and follow-up of thoracic and pulmonary structures in pediatric oncology. Recent technical advances, e.g. iterative reconstruction, have dramatically reduced the CT dosage. Apart from some indications (e.g. tumors and sequestration) MRI is rarely used in children; however, its potential for functional analyses (e.g. perfusion and ventilation) may increase the application in the near future. PMID:26152499

  3. The radiology assistant: a contrarian's view.

    PubMed

    Baker, Stephen R; Merkulov, Alex

    2005-06-01

    Recent and rapid increases in the utilization of diagnostic imaging have not been matched by concomitant additions to the supply of radiologists and radiology technologists. One proposal to alleviate an expected worsening of this emerging workforce crisis is to create a new job category, the radiology assistant (RA), encompassing a roster of enhanced capabilities that would allow the radiologists to divest themselves of some of their non-interpretative duties with respect to the performance of imaging tests. Through the collaborative efforts of the American College of Radiology and the American Society of Radiology Technologists a nationally recognized, baccalaureate-level curriculum has been designed for the training of RAs. A centerpiece of the curriculum is instruction in fluoroscopy. However, examinations of the GI tract by fluoroscopy are rapidly declining in frequency, raising doubt about the enhanced value an RA would bring to a radiology practice in the near future and worries about encroachment on the range of radiologists' responsibilities over the long term. PMID:16133603

  4. INEEL Radiological Control Performance Indicator Report - Quarterly

    SciTech Connect

    Hinckley, Frank Leroy

    1999-02-01

    This document provides a report of an analysis of the Radiological Control Program through the fourth quarter of Calendar Year (CY-98) and is the annual report for the Idaho National Engineering and Environmental Laboratory (INEEL). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation deep dose is 63.034 person-rem year to date, compared to a goal of 83.1 person-rem. During the fourth quarter, all areas experienced deletions of work resulting from the Maintenance Stand Down. This reduction in work is a primary factor in the difference in the year end dose and the ALARA goal. The work will be completed during CY-99. Beginning in CY-98, a numeric Radiological Performance Index (RPI) is being used to compare radiological performance. The RPI takes into consideration frequency and severity of events such as skin contaminations, clothing contaminations, spills, exposures to radiation exceeding limits, and positive internal dose. The RPI measures the cost of these events in cents per hour of radiological work performed. To make the RPI meaningful, tables have been prepared to show the facility that contributes to the values used. The data are compared on a quarterly basis to the prior year to show measurable performance.

  5. The incorporation of GIS in radiological transportation accident consequence assessments.

    SciTech Connect

    Biwer, B. M.; LePoire, D. J.; Kuiper, J. A.; Chen, S. Y.

    2001-06-26

    Potential impacts of transportation accidents must be addressed in documents prepared under the National Environmental Protection Act (NEPA) as amended or in other environmental-related documents when the transportation of radioactive materials is considered. Estimating the potential human health consequences from the release and dispersion of radioactive materials following such an accident involves a number of interrelated computational models and a variety of input parameters. The RISKIND radiological transportation risk computer program [1] was developed to provide these types of estimates for local scenarios. However, it is often difficult to gain a full understanding of the initial problem and consequences by looking solely at numerical input and tables of results. To permit better-informed decisions, visualization of the site-specific geographic area and the potential spread of contamination can provide greater understanding. Thus, a geographic information system (GIS) component has been integrated with RISKIND to provide visualization capabilities as well as site-specific and computational benefits.

  6. Analysis of factors correlating with medical radiological examination frequencies.

    PubMed

    Jahnen, A; Järvinen, H; Olerud, H; Vassilieva, J; Vogiatzi, S; Shannoun, F; Bly, R

    2015-07-01

    The European Commission (EC) funded project Dose Datamed 2 (DDM2) had two objectives: to collect available data on patient doses from the radiodiagnostic procedures (X-ray and nuclear medicine) in Europe, and to facilitate the implementation of the Radiation Protection 154 Guidelines (RP154). Besides the collection of frequency and dose data, two questionnaires were issued to gather information about medical radiological imaging. This article analyses a possible correlation between the collected frequency data, selected variables from the results of the detailed questionnaire and national economic data. Based on a 35 countries dataset, there is no correlation between the gross domestic product (GDP) and the total number of X-ray examinations in a country. However, there is a significant correlation (p < 0.01) between the GDP and the overall CT examination frequency. High income countries perform more CT examinations per inhabitant. That suggests that planar X-ray examinations are replaced by CT examinations. PMID:25813479

  7. Compliance of Iranian dentists with safety standards of oral radiology

    PubMed Central

    Shahab, S; Kavosi, A; Nazarinia, H; Mehralizadeh, S; Mohammadpour, M; Emami, M

    2012-01-01

    Objectives Dentists use radiographs in their daily practice. Their knowledge and behaviour towards radiographic examination can affect patients' exposure to radiation. The aim of this study was to survey the knowledge and behaviour of Iranian dentists regarding oral radiology safety standards. Methods 1000 questionnaires were given to the participants of the 48th Annual Congress of the Iranian Dental Association, of which 700 were returned. The participants were asked about demographic data, primary knowledge of radiation protection, selection criteria, radiographic equipment and technique, methods of patient and personnel protection and management of radiographic waste. Descriptive analysis of data was performed. Results 44% of respondents said the initial radiograph they took was of the periapical view of a limited area. 12% preferred the periapical paralleling technique. F-speed film was used by 9% and E-speed film by 62%. Only 2% had digital receptors. Proper exposure time was selected by 26.5%. The use of long and rectangular collimators was 15% and 6%, respectively. 34% occasionally covered their patients with both thyroid shields and lead aprons. 36% used the position and distance rule correctly for their own protection. Proper disposal of the used processing solutions and the lead foils were done by only 1% and 3%, respectively. Conclusions It can be concluded that the majority of dentists in the study group did not select the proper method, material and equipment in order to minimize the exposure of their patient to unnecessary radiation in dental radiography. PMID:22301640

  8. Insider protection

    SciTech Connect

    Waddoups, I.G.

    1993-07-01

    The government community is broadly addressing the insider threat. The first section of this paper defines protection approaches and the latter sections present various applicable technology developments. The bulk of the paper discusses technology developments applied to (1) personnel and material tracking and inventory, (2) classified document protection, and (3) protecting security systems. The personnel and material tracking system uses a PC based-host to (1) collect information from proximity tags and material movement sensors, (2) apply rules to this input to assure that the ongoing activity meets the site selectable rules and, (3) forward the results to either an automated inventory system or an alarm system. The document protection system uses a PC network to efficiently and securely control classified material which is stored on write-once-read-mostly optical media. The protection of sensor to multiplexer communications in a security system is emphasized in the discussion of protecting security systems.

  9. What does competence entail in interventional radiology?

    PubMed

    Ahmed, Kamran; Keeling, Aoife N; Khan, Reenam S; Ashrafian, Hutan; Arora, Sonal; Nagpal, Kamal; Burrill, Joshua; Darzi, Ara; Athanasiou, Thanos; Hamady, Mohamad

    2010-02-01

    Interventional radiology is a relatively new speciality and may be referred to as "image-guided surgery without a scalpel". Training and accreditation bodies regard interventional radiology training as being "different" from general radiology because of the additional need for dexterity and clinical acumen. Due to the multidimensional role of an interventional radiologist, a practitioner in this discipline must have a number of the competencies of anesthetists, surgeons, and radiologists. The attributes required of an interventional radiologist are akin to those required of a surgeon. This paper gives an overview of the skills required to be a competent interventional radiologist along with a succinct introduction to methods of assessment of technical and non-technical skills. PMID:19915902

  10. Radiology: "killer app" for next generation networks?

    PubMed

    McNeill, Kevin M

    2004-03-01

    The core principles of digital radiology were well developed by the end of the 1980 s. During the following decade tremendous improvements in computer technology enabled realization of those principles at an affordable cost. In this decade work can focus on highly distributed radiology in the context of the integrated health care enterprise. Over the same period computer networking has evolved from a relatively obscure field used by a small number of researchers across low-speed serial links to a pervasive technology that affects nearly all facets of society. Development directions in network technology will ultimately provide end-to-end data paths with speeds that match or exceed the speeds of data paths within the local network and even within workstations. This article describes key developments in Next Generation Networks, potential obstacles, and scenarios in which digital radiology can become a "killer app" that helps to drive deployment of new network infrastructure. PMID:15255516

  11. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  12. What Does Competence Entail in Interventional Radiology?

    SciTech Connect

    Ahmed, Kamran; Keeling, Aoife N.; Khan, Reenam S.; Ashrafian, Hutan; Arora, Sonal; Nagpal, Kamal; Burrill, Joshua; Darzi, Ara; Athanasiou, Thanos; Hamady, Mohamad

    2010-02-15

    Interventional radiology is a relatively new speciality and may be referred to as 'image-guided surgery without a scalpel.' Training and accreditation bodies regard interventional radiology training as being 'different' from general radiology because of the additional need for dexterity and clinical acumen. Due to the multidimensional role of an interventional radiologist, a practitioner in this discipline must have a number of the competencies of anesthetists, surgeons, and radiologists. The attributes required of an interventional radiologist are akin to those required of a surgeon. This paper gives an overview of the skills required to be a competent interventional radiologist along with a succinct introduction to methods of assessment of technical and non-technical skills.

  13. Contracts in radiology practices: breaches and remedies.

    PubMed

    Muroff, Julie A; Muroff, Lawrence R

    2004-08-01

    Contracts between radiology groups and their physician members are often ambiguous. Key clauses may not be precise as to the intent of the contracting parties. For example, the requirements for a group member to achieve shareholder status may be discussed but not reduced to a written form. Other contract provisions, such as termination or noncompete clauses, may be subject to different interpretations. The ambiguities of these provisions often generate disparate expectations regarding the parties' obligations to one another. When this occurs, the results may vary from disappointment to litigation. This paper discusses the causes and consequences of common breaches of radiology contracts. The types of remedies that may be available to the parties of the contract are also enumerated, and case law is cited to illustrate the challenges that radiology groups and their members may encounter. Finally, alternative forms of dispute resolution are discussed. PMID:17411653

  14. Emergency Response Planning for Radiological Releases

    SciTech Connect

    Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Allison, T.; Kamboj, S.; Chen, S.Y.

    2006-07-01

    The emergency management planning tool RISK-RDD was developed to aid emergency response planners and decision makers at all levels of government to better understand and prepare for potential problems related to a radiological release, especially those in urban areas. Radioactive release scenarios were studied by using the RISK-RDD radiological emergency management program. The scenarios were selected to investigate the key aspects of radiological risk management not always considered in emergency planning as a whole. These aspects include the evaluation of both aerosolized and non-aerosolized components of an atmospheric release, methods of release, acute and chronic human health risks, and the concomitant economic impacts as a function of the risk-based cleanup level. (authors)

  15. Interventional Radiology of Male Varicocele: Current Status

    SciTech Connect

    Iaccarino, Vittorio Venetucci, Pietro

    2012-12-15

    Varicocele is a fairly common condition in male individuals. Although a minor disease, it may cause infertility and testicular pain. Consequently, it has high health and social impact. Here we review the current status of interventional radiology of male varicocele. We describe the radiological anatomy of gonadal veins and the clinical aspects of male varicocele, particularly the physical examination, which includes a new clinical and ultrasound Doppler maneuver. The surgical and radiological treatment options are also described with the focus on retrograde and antegrade sclerotherapy, together with our long experience with these procedures. Last, we compare the outcomes, recurrence and persistence rates, complications, procedure time and cost-effectiveness of each method. It clearly emerges from this analysis that there is a need for randomized multicentre trials designed to compare the various surgical and percutaneous techniques, all of which are aimed at occlusion of the anterior pampiniform plexus.

  16. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  17. The impact of tech aides in radiology.

    PubMed

    Sferrella, Sheila M; Story, Cathleen P

    2004-01-01

    As the staffing shortage continues to impact radiology departments and outpatient imaging centers, managers look for ways to solve staffing issues internally. Lehigh Valley Hospital and Health Network investigated the feasibility of adding a position of radiology tech aide. This proposal was driven by a desire to improve retention of staff, improve employee satisfaction and reduce turnover. A 6-month pilot program was conducted at the network's highest-volume facility. One tech aide underwent extensive training and eventually began performing some of the tasks identified in the analysis. Each area within radiology worked with an intern to identify each step in its work process. Each step identified led to the question, "What happens if?" The workflow process provided a detailed look a the number of steps required for a technologist to perform a study from start to finish. In May 2002, the administrator submitted a project proposal to management engineering to evaluate radiologic technologists' workloads and identify tasks that could be performed by a tech aide. Activity-Based Management (ABM)--a process that emphasizes activities over resources--was utilized to study work activities. The analysis identified the appropriate tasks and revealed that 5 FTEs were needed to assist the technologists in all areas of radiology. A workflow was completed for each area within radiology. Some areas identified bottlenecks, which caused delays in the process and some redundant work for the staff. Data were presented to the network administration. Staffing realities, labor pool availability within the existing network staff, and detailed task identifications also were provided. A total of 5 FTE tech aides were approved. The final program included in-depth tech-aide training; effective and open communication between management and technologists; and a collaborative, education-oriented relationship between technologists and tech aides. PMID:15098899

  18. 1987 year book of diagnostic radiology

    SciTech Connect

    Bragg, D.G.; Keats, T.E.; Kieffer, S.A.; Kirkpatrick, J.A. Jr.; Koehler, P.R.

    1987-01-01

    The book is divided into seven sections, which cover neuroradiology, the thorax, the abdomen, the musculoskeletal system, pediatric radiology, radiation physics, and cardiovascular and interventional radiology. Each of the seven editors was responsible for one section. These editors gleaned what they thought were the most important articles from 78 medical journals worldwide, wrote abstracts, and then commented on their relevance. For each journal article, the heading lists the title of the paper, the authors, the authors' affiliations, and the journal name. If an article contained an important table or figure, it was reproduced for the review.

  19. Dose tracking and radiology department management.

    PubMed

    Kirova, G; Georgiev, E; Zasheva, C; St Georges, A

    2015-07-01

    The purpose of this work was to review the reasonable measures that should be implemented as part of a routine practice in the process of managing CT radiation risks in a typical average radiology department. Based on 6 y of experience in the management of a general radiology department and the newly implemented supportive software for dose tracking, analysing and reporting, the approach towards radiation risk reduction is presented. Thanks to this approach, some problems have been resolved, and reasonable measures have been introduced into daily practice. PMID:25813480

  20. A Lean Six Sigma journey in radiology.

    PubMed

    Bucci, Ronald V; Musitano, Anne

    2011-01-01

    The department of radiology at Akron Children's Hospital embarked on a Lean Six Sigma mission as part of a hospital wide initiative to show increased customer satisfaction, reduce employee dissatisfaction and frustration, and decrease costs. Three processes that were addressed were reducing the MRI scheduling back-log, reconciling discrepancies in billing radiology procedures, and implementing a daily management system. Keys to success is that managers provide opportunities to openly communicate between department sections to break down barriers. Executive leaders must be engaged in Lean Six Sigma for the company to be successful. PMID:21793459

  1. Cricopharyngeal muscle hypertrophy: radiologic-anatomic correlation.

    PubMed

    Torres, W E; Clements, J L; Austin, G E; Knight, K

    1984-05-01

    There is a divergence of opinion concerning the cricopharyngeal muscle defect commonly seen in the pharyngoesophageal area on barium esophagram. Some observers believe this defect is the result of neuromuscular dysfunction with the demonstration of the unrelaxed muscle bundle; however, others believe it is the result of actual hypertrophy of the cricopharyngeal muscle. Radiologic and pathologic study of 24 unselected autopsy cases revealed cricopharyngeal hypertrophy in 13 cases by radiologic criteria. Histologic examination revealed that the cricopharyngeal muscle thickness was uniformly greater in these cases than in the radiographically normal cases. The cricopharyngeal muscle defect is associated with actual hypertrophy of the cricopharyngeal muscle in many cases. PMID:6609574

  2. Interventional radiology in living donor liver transplant

    PubMed Central

    Cheng, Yu-Fan; Ou, Hsin-You; Yu, Chun-Yen; Tsang, Leo Leung-Chit; Huang, Tung-Liang; Chen, Tai-Yi; Hsu, Hsien-Wen; Concerjero, Allan M; Wang, Chih-Chi; Wang, Shih-Ho; Lin, Tsan-Shiun; Liu, Yueh-Wei; Yong, Chee-Chien; Lin, Yu-Hung; Lin, Chih-Che; Chiu, King-Wah; Jawan, Bruno; Eng, Hock-Liew; Chen, Chao-Long

    2014-01-01

    The shortage of deceased donor liver grafts led to the use of living donor liver transplant (LDLT). Patients who undergo LDLT have a higher risk of complications than those who undergo deceased donor liver transplantation (LT). Interventional radiology has acquired a key role in every LT program by treating the majority of vascular and non-vascular post-transplant complications, improving graft and patient survival and avoiding, in the majority of cases, surgical revision and/or re-transplant. The aim of this paper is to review indications, diagnostic modalities, technical considerations, achievements and potential complications of interventional radiology procedures after LDLT. PMID:24876742

  3. Dento-maxillofacial radiology as a specialty.

    PubMed

    Kamburoğlu, Kıvanç

    2015-05-28

    This editorial discusses a relatively new specialty in dental and medical field namely dentomaxillofacial radiology. As a relatively newborn specialty it is obvious that there is a long way to go before dentomaxillofacial radiology is commonly known and respected by the society. All over the world, assigned committees work on the development of the training curriculum, determination of scientific and physical standards for institutions offering specialty training and arrangement of dental codes for reimbursement issues. Furthermore, adjustment of educational, scientific and legal regulations and prospective benefits are expected to boost this specialty's attractiveness to colleagues' worldwide. PMID:26029350

  4. Trauma: Conventional radiologic study in spine injury

    SciTech Connect

    Dosch, J.

    1985-01-01

    This book includes a discussion of the anatomy of the spinal cord and descriptions of methods for tailored radiologic investigation of spine trauma. Most of the text is devoted to the analysis and classification of spinal injury by radiologic signs and mode of injury. The author addresses injury to the entire spine but emphasizes the cervical spine. Plain radiography and conventional tomography are the only imaging methods discussed. The author stresses the active role of the attending radiologist in directing every phase of the x-ray study. Many subtle variations in patient positioning plus beam direction and angulation are described.

  5. Patient Dose In Diagnostic Radiology: When & How?

    NASA Astrophysics Data System (ADS)

    Lassen, Margit; Gorson, Robert O.

    1980-08-01

    Different situations are discussed in which it is of value to know radiation dose to the patient in diagnostic radiology. Radiation dose to specific organs is determined using the Handbook on Organ Doses published by the Bureau of Radiological Health of the Food and Drug Administration; the method is applied to a specific case. In this example dose to an embryo is calculated in examinations involving both fluoroscopy and radiography. In another example dose is determined to a fetus in late pregnancy using tissue air ratios. Patient inquiries about radiation dose are discussed, and some answers are suggested. The reliability of dose calculations is examined.

  6. Automated classification of radiology reports to facilitate retrospective study in radiology.

    PubMed

    Zhou, Yihua; Amundson, Per K; Yu, Fang; Kessler, Marcus M; Benzinger, Tammie L S; Wippold, Franz J

    2014-12-01

    Retrospective research is an import tool in radiology. Identifying imaging examinations appropriate for a given research question from the unstructured radiology reports is extremely useful, but labor-intensive. Using the machine learning text-mining methods implemented in LingPipe [1], we evaluated the performance of the dynamic language model (DLM) and the Naïve Bayesian (NB) classifiers in classifying radiology reports to facilitate identification of radiological examinations for research projects. The training dataset consisted of 14,325 sentences from 11,432 radiology reports randomly selected from a database of 5,104,594 reports in all disciplines of radiology. The training sentences were categorized manually into six categories (Positive, Differential, Post Treatment, Negative, Normal, and History). A 10-fold cross-validation [2] was used to evaluate the performance of the models, which were tested in classification of radiology reports for cases of sellar or suprasellar masses and colloid cysts. The average accuracies for the DLM and NB classifiers were 88.5% with 95% confidence interval (CI) of 1.9% and 85.9% with 95% CI of 2.0%, respectively. The DLM performed slightly better and was used to classify 1,397 radiology reports containing the keywords "sellar or suprasellar mass", or "colloid cyst". The DLM model produced an accuracy of 88.2% with 95% CI of 2.1% for 959 reports that contain "sellar or suprasellar mass" and an accuracy of 86.3% with 95% CI of 2.5% for 437 reports of "colloid cyst". We conclude that automated classification of radiology reports using machine learning techniques can effectively facilitate the identification of cases suitable for retrospective research. PMID:24874407

  7. Duty to Inform and Informed Consent in Diagnostic Radiology: How Ethics and Law can Better Guide Practice.

    PubMed

    Doudenkova, Victoria; Bélisle Pipon, Jean-Christophe

    2016-03-01

    Although there is consensus on the fact that ionizing radiation used in radiological examinations can affect health, the stochastic (random) nature of risk makes it difficult to anticipate and assess specific health implications for patients. The issue of radiation protection is peculiar as any dosage received in life is cumulative, the sensitivity to radiation is highly variable from one person to another, and between 20 % and 50 % of radiological examinations appear not to be necessary. In this context, one might reasonably assume that information and patient consent would play an important role in regulating radiological practice. However, there is to date no clear consensus regarding the nature and content of-or even need for-consent by patients exposed to ionizing radiation. While law and ethics support the same principles for respecting the dignity of the person (inviolability and integrity), in the context of radiology practice, they do not provide a consistent message to guide clinical decision-making. This article analyzes the issue of healthcare professionals' duty to inform and obtain patient consent for radiological examinations. Considering that both law and ethics have as one of their aims to protect vulnerable populations, it is important that they begin to give greater attention to issues raised by the use of ionizing radiation in medicine. While the situation in Canada serves as a backdrop for a reflective analysis of the problem, the conclusions are pertinent for professional practice in other jurisdictions because the principles underlying health law and jurisprudence are fairly general. PMID:25749428

  8. 76 FR 2131 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on January 20, 2011 in....greten@dhs.gov . SUPPLEMENTARY INFORMATION: The role and functions of the Federal...

  9. Comparison of toxicological and radiological aspects of K basins sludge

    SciTech Connect

    RITTMANN, P.D.

    1999-10-27

    The composition of various K Basins sludge is evaluated for its toxicological and radiological impacts downwind from accidents. It is shown that the radiological risk evaluation guidelines are always more limiting than the toxicological risk evaluation guidelines.

  10. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  11. A new approach to a site radiological control manual.

    PubMed

    Farrell, Linda M

    2002-02-01

    The Pantex Plant significantly revised its Radiological Control Manual to improve its usability, streamline plant procedures, and clarify conflicting guidance. This article overviews the process used to develop the new Radiological Control Manual. PMID:11797900

  12. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  13. Interventional radiology. Application to family practice.

    PubMed Central

    Asch, M.; Law, P. K.; Jaffer, N.

    1996-01-01

    New minimally invasive interventional radiologic procedures are being developed and refined. These alternatives to standard surgical treatments have fewer complications, shorter hospital stays, and lower costs. A variety of procedures that assist in both benign and malignant diseases are particularly suited for palliative care in end-stage malignancy. Images Figure 1, Figure 2 Figure 3, Figure 4 Figure 5 PMID:8792020

  14. 2K radiological image display station

    NASA Astrophysics Data System (ADS)

    Lou, Shyhliang A.; Huang, H. K.; Taira, Ricky K.; Breant, Claudine M.

    1993-09-01

    We intend to design a 2K display station which can be used in most of the radiology sections. This paper describes how we collected the basic viewing requirements and defined the criteria for designing the 2K display station. Based on the design criteria, hardware components are selected and software modules are implemented. The hardware components in the display station consist of a SUN 470 computer, two 21' diagonal 2K MegaScan monitors, and a 2.6- Gbyte formatted storage concepts parallel transfer disk. The software modules include a communication software module, a local database module, a local storage management module, and an image display module. The station provides features such as dual-cine, region- of-interest, caliper measurement, image retrieval, and diagnostic report. Four stations have been used in genitourinary radiology, pediatric radiology in-patient and out-patient, and neuroradiology since January 1992. The stations are used for morning and afternoon radiology rounds and frequently for consultations between radiologists and clinicians.

  15. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  16. Sedation/anaesthesia in paediatric radiology

    PubMed Central

    Arlachov, Y; Ganatra, R H

    2012-01-01

    Objectives In this article we will give a comprehensive literature review on sedation/general anaesthesia (S/GA) and discuss the international variations in practice and options available for S/GA for imaging children. Methods The key articles were obtained primarily from PubMed, MEDLINE, ERIC, NHS Evidence and The Cochrane Library. Results Recently, paediatric radiology has seen a surge of diagnostic and therapeutic procedures, some of which require children to be still and compliant for up to 1 h. It is difficult and sometimes even impossible to obtain quick and high-quality images without employing sedating techniques in certain children. As with any medical procedure, S/GA in radiological practice is not without risks and can have potentially disastrous consequences if mismanaged. In order to reduce any complications and practice safety in radiological units, it is imperative to carry out pre-sedation assessments of children, obtain parental/guardian consent, monitor them closely before, during and after the procedure and have adequate equipment, a safe environment and a well-trained personnel. Conclusion Although the S/GA techniques, sedative drugs and personnel involved vary from country to country, the ultimate goal of S/GA in radiology remains the same; namely, to provide safety and comfort for the patients. Advances in knowledge Imaging children under general anaesthesia is becoming routine and preferred by operators because it ensures patient conformity and provides a more controlled environment. PMID:22898157

  17. Radiological Monitoring for Instructors. Student Workbook. Revised.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    This student workbook includes the necessary materials and some of the references needed by each student during the conduct of the Radiological Monitoring for Instructors (RMI) course. The contents include a radiation exposure record, instrument exercise materials, fallout forecasting problems, dose and dose rate problems, source handling…

  18. External funding sources for radiology equipment.

    PubMed

    Rayburn, J D

    1988-01-01

    External funding sources are available to your organization for the purchase of radiology equipment, yet they often remain untapped because organizations do not believe they are eligible. This article provides an introduction to the procedure for seeking such funds. Basic terminology, the three major sources for funding, and some examples of foundation awards are presented. PMID:3357928

  19. Monitor displays in radiology: Part 1

    PubMed Central

    Indrajit, IK; Verma, BS

    2009-01-01

    Monitor displays are an integral part of today's radiology work environment, attached to workstations, USG, CT/MRI consoles and PACS terminals. For each modality and method of use, the correct display monitor needs to be deployed. It helps to have a basic understanding of how monitors work and what are the issues involved in their selection. PMID:19774135

  20. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  1. Curriculum Guidelines for Predoctoral Oral Radiology.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1987

    1987-01-01

    The American Association of Dental Schools' guidelines for oral radiology curricula give an overview of the field and its interrelationships with other fields and outline the primary educational objectives, prerequisites, core content, specific behavioral objectives, sequencing, faculty, facilities, and occupational hazards to be considered in…

  2. Initial experiences in radiology e-learning.

    PubMed

    Sparacia, Gianvincenzo; Cannizzaro, Floreana; D'Alessandro, Donna M; D'Alessandro, Michael P; Caruso, Giuseppe; Lagalla, Roberto

    2007-01-01

    The use of two different educator-centric learning management systems (LMSs), Moodle and Manila, for radiology e-learning was formatively evaluated and the implications of the future use of LMSs in radiology education were explored. NeuroRAD, a neuroradiologic digital library and learning community, is implemented with Moodle, one of the most popular open-source educator-centric LMSs. Pediatric-Education.org, a pediatric digital library and learning community, is implemented with Manila, a commercial educator-centric LMS. Quantitative and qualitative analyses of these LMSs were performed with World Wide Web server log file statistical programs and user-submitted comment forms. In 2005, NeuroRAD was used by 9959 visitors, who read 98,495 pages of information, whereas PediatricEducation .org was used by 91,000 visitors, who read 186,000 pages of information. Visitors represented a wide spectrum of medical learners and used the sites to answer clinical questions; to prepare for lectures, conferences, and informal teaching sessions; and to stay up-to-date and prepare for examinations. Early results indicate that radiology learning communities can be implemented with educator-centric LMSs relatively easily and at low cost by radiologists with minimal computer expertise, and can find receptive and appreciative audiences. Online radiology learning communities could play a significant role in providing education to radiologists the world over throughout their careers. PMID:17374871

  3. [Irreversible image compression in radiology. Current status].

    PubMed

    Pinto dos Santos, D; Jungmann, F; Friese, C; Düber, C; Mildenberger, P

    2013-03-01

    Due to increasing amounts of data in radiology methods for image compression appear both economically and technically interesting. Irreversible image compression allows markedly higher reduction of data volume in comparison with reversible compression algorithms but is, however, accompanied by a certain amount of mathematical and visual loss of information. Various national and international radiological societies have published recommendations for the use of irreversible image compression. The degree of acceptable compression varies across modalities and regions of interest.The DICOM standard supports JPEG, which achieves compression through tiling, DCT/DWT and quantization. Although mathematical loss due to rounding up errors and reduction of high frequency information occurs this results in relatively low visual degradation.It is still unclear where to implement irreversible compression in the radiological workflow as only few studies analyzed the impact of irreversible compression on specialized image postprocessing. As long as this is within the limits recommended by the German Radiological Society irreversible image compression could be implemented directly at the imaging modality as it would comply with § 28 of the roentgen act (RöV). PMID:23456043

  4. [Data processing in radiology: summary and prospects].

    PubMed

    Heilmann, H P; Tiemann, J

    1985-12-01

    The technical aspects of radiology are particularly suitable for electronic data processing. In addition to automation of radiological apparatus and tumour registration, there are three areas in radiology particularly suitable for electronic data processing: treatment planning, dose calculations and supervision of radiotherapy techniques in radio-oncology. It can be used for word processing in the office and for documentation, both in diagnostic and therapeutic radiology, and digital techniques can be employed for image transmission, storage and manipulation. Computers for treatment planning and dose calculation are standard techniques and suitable computers allow one to spot occasional and systematic errors during radiation treatment and to eliminate these. They also provide for the automatic generation of the required protocols. Word processors have proved particularly valuable in private practice. They are valuable for composing reports from their basic elements, but less valuable for texts that are stereotypes. The most important developments are in digital imaging, image storage and image transmission. The storage of images on video discs, transmission through fibre-optic cables and computer manipulation of images are described and the consequences and problems, which may affect the radiologist, are discussed. PMID:3001861

  5. U.S.-CHINA RADIOLOGICAL SOURCE SECURITY PROJECT: CONTINUING AND EXPANDING BILATERAL COOPERATION

    SciTech Connect

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-10-07

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy’s National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  6. Radiological status report for the EBWR containment building. Volume 1: Summary and analysis

    SciTech Connect

    Murdoch, B.T.

    1996-02-01

    At the conclusion of the EBWR D and D process, ANL Health Physics conducted a release survey to determine the radiological status of the facility. The primary goal of the survey was to verify that residual activities on building surfaces met DOE and ANL guidelines for downposting of a Radiologically Contaminated Area to a Radiologically Controlled Area. The resultant area was to bear no contamination designation, with no requirements for radiological personnel monitoring or protective clothing. ANL Health Physics designed a survey procedure, using a graded approach considering the building history, the D and D process, and the intended future use. The survey followed the general guidance of NRC NUREG/CR-5849, but simplified and reduced in scope to match the release goal. The building interior surfaces were divided into 15 principal survey units and one special survey unit. Each of the principal survey units had to meet the controlled release guidelines. The procedure consisted of dual full floor scans for beta/gamma activity, sampling measurements of total and removable alpha and beta/gamma activities, and background gamma exposure surveys. In the 15 principal survey units, surface activities were measured at a total of 444 locations. With the exception of certain excluded contaminated areas and mechanical equipment, the building interior meets the limited release guidelines.

  7. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    SciTech Connect

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  8. Environmental implementation plan: Chapter 7, Groundwater protection

    SciTech Connect

    Wells, D.

    1994-08-10

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities.

  9. Good relationships between computational image analysis and radiological physics

    SciTech Connect

    Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen

    2015-09-30

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  10. Good relationships between computational image analysis and radiological physics

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Kamezawa, Hidemi; Jin, Ze; Nakamoto, Takahiro; Soufi, Mazen

    2015-09-01

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  11. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  12. 42 CFR 415.120 - Conditions for payment: Radiology services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Conditions for payment: Radiology services. 415.120... Services to Beneficiaries in Providers § 415.120 Conditions for payment: Radiology services. (a) Services to beneficiaries. The carrier pays for radiology services furnished by a physician to a...

  13. 76 FR 35902 - Federal Radiological Preparedness Coordinating Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... SECURITY Federal Emergency Management Agency Federal Radiological Preparedness Coordinating Committee... Radiological Preparedness Coordinating Committee (FRPCC) is holding a public meeting on July 11, 2011 in... Radiological Preparedness Coordinating Committee (FRPCC) are described in 44 CFR parts 351.10(a) and...

  14. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic quality assurance instrument. 892.1940... instrument. (a) Identification. A radiologic quality assurance instrument is a device intended for medical purposes to measure a physical characteristic associated with another radiologic device. (b)...

  15. An Overview of Dental Radiology. NCHCT Monograph Series.

    ERIC Educational Resources Information Center

    Manny, Edward F.; And Others

    This overview of dental radiology contains sections on demographics, equipment, dental radiology quality assurance, efficacy, dental radiology education curricula, professional organizations' guidelines for training and use, and state activities. In section 1 dental personnel, population of dental personnel, employment and earning prospects,…

  16. 42 CFR 415.120 - Conditions for payment: Radiology services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Conditions for payment: Radiology services. 415.120... Services to Beneficiaries in Providers § 415.120 Conditions for payment: Radiology services. (a) Services to beneficiaries. The carrier pays for radiology services furnished by a physician to a...

  17. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  18. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  19. 42 CFR 415.120 - Conditions for payment: Radiology services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Conditions for payment: Radiology services. 415.120... Physician Services to Beneficiaries in Providers § 415.120 Conditions for payment: Radiology services. (a) Services to beneficiaries. The carrier pays for radiology services furnished by a physician to...

  20. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  1. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  2. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  3. 42 CFR 415.120 - Conditions for payment: Radiology services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Conditions for payment: Radiology services. 415.120... Physician Services to Beneficiaries in Providers § 415.120 Conditions for payment: Radiology services. (a) Services to beneficiaries. The carrier pays for radiology services furnished by a physician to...

  4. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  5. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  6. 42 CFR 415.120 - Conditions for payment: Radiology services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Conditions for payment: Radiology services. 415.120... Physician Services to Beneficiaries in Providers § 415.120 Conditions for payment: Radiology services. (a) Services to beneficiaries. The carrier pays for radiology services furnished by a physician to...

  7. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  8. Medical Student Perceptions of Radiology Use in Anatomy Teaching

    ERIC Educational Resources Information Center

    Murphy, Kevin P.; Crush, Lee; O'Malley, Eoin; Daly, Fergus E.; Twomey, Maria; O'Tuathaigh, Colm M. P.; Maher, Michael M.; Cryan, John F.; O'Connor, Owen J.

    2015-01-01

    The use of radiology in the teaching of anatomy to medical students is gaining in popularity; however, there is wide variation in how and when radiology is introduced into the curriculum. The authors sought to investigate students' perceptions regarding methods used to depict and teach anatomy and effects of integrated radiology instruction on…

  9. Operation Aqueduct: Onsite radiological safety report for announced nuclear tests, October 1989--September 1990

    SciTech Connect

    Hernandez, G.M.; Jacklin, A.K.

    1992-01-01

    Aqueduct was the name assigned to the series of underground nuclear weapons tests conducted at the Nevada Test Site (NTS) from October 1, 1989, through September 30, 1990. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear event by a telemetry system. Reynolds Electrical & Engineering Co., Inc. (REECO) Health Protection Department (HPD) Radiation Protection Technicians (RPTS) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene (IH) coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  10. Operation Aqueduct: Onsite radiological safety report for announced nuclear tests, October 1989--September 1990

    SciTech Connect

    Hernandez, G.M.; Jacklin, A.K.

    1992-01-01

    Aqueduct was the name assigned to the series of underground nuclear weapons tests conducted at the Nevada Test Site (NTS) from October 1, 1989, through September 30, 1990. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear event by a telemetry system. Reynolds Electrical Engineering Co., Inc. (REECO) Health Protection Department (HPD) Radiation Protection Technicians (RPTS) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene (IH) coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  11. Emergency radiological monitoring and analysis United States Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Thome, D.J.

    1994-09-01

    The United States Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. Following a major radiological incident the FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted states and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis and quality assurance. This program includes: (1) Aerial Radiological Monitoring - Fixed Wing and Helicopter, (2) Field Monitoring and Sampling, (3) Radioanalysis - Mobile and Fixed Laboratories, (4) Radiation Detection Instrumentation - Calibration and Maintenance, (5) Environmental Dosimetry, and (6) An integrated program of Quality Assurance. To assure consistency, completeness and the quality of the data produced, a methodology and procedures handbook is being developed. This paper discusses the structure, assets and operations of FRMAC monitoring and analysis and the content and preparation of this handbook.

  12. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  13. Protective Eyewear

    MedlinePlus

    ... Whether you’re on the basketball court, in chemistry class, or sitting by the pool, wearing protective ... remember to wear safety goggles. Using chemicals in chemistry class? Look like a real scientist by wearing ...

  14. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  15. Airborne radiological sampling of Mount St. Helens plumes

    SciTech Connect

    Andrews, V.E.

    1981-04-01

    Particulate and gaseous samples for radiologial analyses were collected from the plumes created by eruptions of Mount St. Helens. The sampling aircraft and equipment used are routinely employed in aerial radiological surveillance at the Nevada Test Site by the Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada. An initial sample set was collected on April 4, 1980, during the period of recurring minor eruptions. Samples were collected again on May 19 and 20 following the major eruption of May 18. The Environmental Protection Agency's Office of Radiation Programs analyzed the samples for uranium and thorium isotopes, radium-226, lead-210, polonium-210, and radon-222. Other laboratories analyzed samples to determine particle size distribution and elemental composition. The only samples containing radioactivity above normal ambient levels were collected on May 20. Polonium-210 concentrations in the plume, determined from a sample collected between 5 and 30 km from the crater, were approximately an order of magnitude above background. Radon-222 concentrations in samples collected from the plume centerline at a distance of 15 km averaged approximately four times the average surface concentrations. The small increases in radioactivity would cause no observable adverse health effects.

  16. Paint for detection of radiological or chemical agents

    DOEpatents

    Farmer, Joseph C.; Brunk, James L.; Day, Sumner Daniel

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  17. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  18. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss

    2008-03-01

    The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment

  19. Risk of melanoma among radiologic technologists in the United States.

    PubMed

    Freedman, D Michal; Sigurdson, Alice; Rao, R Sowmya; Hauptmann, Michael; Alexander, Bruce; Mohan, Aparna; Morin Doody, Michele; Linet, Martha S

    2003-02-10

    Our study examines the risk of melanoma among medical radiation workers in the U.S. Radiologic Technologists (USRT) study. We evaluated 68,588 white radiologic technologists (78.8% female), certified during 1926-1982, who responded to a baseline questionnaire (1983-1989) and were free of cancer other than nonmelanoma skin at that time. Participants were followed through completion of a second questionnaire (1994-1998). We identified 207 cases, 193 subjects who reported first primary melanoma and 14 decedents with melanoma listed as an underlying or contributory cause of death. We examined risks of occupational radiation exposures using work history information on practices, procedures, and protective measures reported on the baseline questionnaire. Based on Cox proportional hazards regression, melanoma was significantly associated with established risk factors, including constitutional characteristics (skin tone, eye and hair color), personal history of nonmelanoma skin cancer, family history of melanoma and indicators of residential sunlight exposure. Melanoma risk was increased among those who first worked before 1950 (RR = 1.8, 95% CI = 0.6-5.5), particularly among those who worked 5 or more years before 1950 (RR = 2.4; 0.7-8.7; p (trend) for years worked before 1950 = 0.03), when radiation exposures were likely highest. Risk was also modestly elevated among technologists who did not customarily use a lead apron or shield when they first began working (RR = 1.4; 0.8-2.5). Clarifying the possible role of exposure to chronic ionizing radiation in melanoma is likely to require nested case-control studies within occupational cohorts, such as this one, which will assess individual radiation doses, and detailed information about sun exposure, sunburn history and skin susceptibility characteristics. PMID:12478675

  20. Ecological risk assessment for radionuclides and metals: A radiological and chemical approach

    SciTech Connect

    Mahini, X.; Mahini, R.; Fan, A.

    1995-12-31

    In response to the regulatory concern over the adverse effects of depleted uranium (DU) on ecological receptors at two sites contaminated with DU and metals, an ecological risk assessment (ERA) was performed, in conjunction with a radiological/chemical human health risk assessment (HRA). To date, most research on the harmful effects of radiation has focused only on humans. With regard to radiation protection of the environment, national and international radiation protection advisory committees have concluded that levels protecting human health should be sufficient to protect the environment as well. To select chemicals of potential ecological concern, a qualitative ERA was first performed by comparing chemical stressor concentrations in abiotic media with various benchmarked criteria. The results indicate that, as with the case of human health, DU was the ecological risk-driving chemical at these sites. Both radiological and chemical effects posed by DU were then estimated for the bald eagle, an endangered species that represents the assessment end point of the quantitative ERA. Abiotic media and food webs evaluated were: soils, surface water, plants, terrestrial (both mammalian and avian) species, and aquatic species. The results of the quantitative ERA indicate that the decision to cleanup DU contamination at these sites can solely be based on human health effects as limiting criteria. The risk assessments were well received by the regulatory agencies overseeing the project.

  1. Feminist theoretical perspectives on ethics in radiology.

    PubMed

    Condren, Mary

    2009-07-01

    The substantive safety of radiological and other medical procedures can be radically reduced by unconscious factors governing scientific thought. In addition, the historical exclusion of women from these disciplines has possibly skewed their development in directions that now need to be addressed. This paper focuses on three such factors: gendered libidos that privilege risk taking over prevention, fragmented forms of knowledge that encourage displaced forms of responsibility and group dynamics that discourage critique of accepted practices and limit the definition of one's group. The substantive safety of the practice and scientific contribution of radiologists might be considerably enhanced were the focus to switch from radiology to diagnosis. Such enlargement might redefine the brief of radiologists towards preventing as well as curing; evaluating some non-invasive and low-tech options, adopting some inclusive paradigms of clinical ecology and enlarging group identities to include those currently excluded through geography or social class from participating in the benefits of science. PMID:19339300

  2. [Ergonomics of the workplace in radiology].

    PubMed

    García-Lallana, A; Viteri-Ramírez, G; Saiz-Mendiguren, R; Broncano, J; Dámaso Aquerreta, J

    2011-01-01

    The replacement of conventional films and view boxes with digital images and computer monitors managed by PACS has clearly improved the diagnostic imaging workplace. The new setup has many advantages, including increased productivity brought about by decreased overall time required for image interpretation. On the other hand, the implementation of the digital workplace has increased the importance of factors like background lighting and the position of the chair, work table, mouse, keyboard, and monitor to prevent lesions that can disable the radiologist. The influence of these factors is often undervalued in the design and implementation of the radiological workplace. This article provides recommendations for the design of the radiological workplace based on ergonomics, which is the science that studies interactions among humans and other elements of a system. PMID:21944708

  3. Knee bone tumors: findings on conventional radiology*

    PubMed Central

    Andrade Neto, Francisco; Teixeira, Manuel Joaquim Diógenes; Araújo, Leonardo Heráclio do Carmo; Ponte, Carlos Eduardo Barbosa

    2016-01-01

    The knee is a common site for bone tumors, whether clinically painful or not. Conventional radiology has been established as the first line of investigation in patients with knee pain and can reveal lesions that often generate questions not only for the generalist physician but also for the radiologist or general orthopedist. History, image examination, and histopathological analysis compose the essential tripod of the diagnosis of bone tumors, and conventional radiology is an essential diagnostic tool in patients with knee pain. This pictorial essay proposes to depict the main conventional radiography findings of the most common bone tumors around the knee, including benign and malignant tumors, as well as pseudo-tumors. PMID:27403019

  4. Interventional radiology: a half century of innovation.

    PubMed

    Baum, Richard A; Baum, Stanley

    2014-11-01

    The evolution of modern interventional radiology began over half century ago with a simple question. Was it possible to use the same diagnostic imaging tools that had revolutionized the practice of medicine to guide the real-time treatment of disease? This disruptive concept led to rapid treatment advances in every organ system of the body. It became clear that by utilizing imaging some patients could undergo targeted procedures, eliminating the need for major surgery, while others could undergo procedures for previously unsolvable problems. The breadth of these changes now encompasses all of medicine and has forever changed the way we think about disease. In this brief review article, major advances in the field, as chronicled in the pages of Radiology, will be described. PMID:25340439

  5. Internal Controlling of a Radiology Department.

    PubMed

    Frewer, W; Busch, H P

    2015-11-01

    Caused by legal reform initiatives there is a continuous need to increase effectiveness and efficiency in hospitals and surgeries, and thus to improve processes.Consequently the successful management of radiological departments and surgeries requires suitable structures and optimization processes to make optimization in the fields of medical quality, service quality and efficiency possible.In future in the DRG System it is necessary that the organisation of processes must focus on the whole clinical treatment of the patients (Clinical Pathways). Therefore the functions of controlling must be more established and adjusted. On the basis of select Controlling instruments like budgeting, performance indicators, process optimization, staff controlling and benchmarking the target-based and efficient control of radiological surgeries and departments is shown. PMID:26230139

  6. 200-UP-2 operable unit radiological surveys

    SciTech Connect

    Wendling, M.A.

    1994-04-30

    This report summarizes and documents the results of the radiological surveys conducted from August 17 through December 16, 1993 over a partial area of the 200-UP-2 Operable Unit, 200-W Area, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology of the Mobile Surface Contamination Monitor 11 (MSCM-II) and the Ultra Sonic Ranging And Data System (USRADS). The radiological survey of the 200-UP-2 Operable Unit was conducted by the Site Investigative Surveys/Environmental Restoration Health Physics Organization of the Westinghouse Hanford Company. The survey methodology for the majority of area was based on utilization of the MSCM-II or the USRADS for automated recording of the gross beta/gamma radiation levels at or near six (6) inches from the surface soil.

  7. Joubert syndrome: the clinical and radiological findings.

    PubMed

    Karakas, Ekrem; Cullu, Nesat; Karakas, Omer; Calik, Mustafa; Boyaci, Fatima Nurefsan; Yildiz, Sema; Cece, Hasan; Akal, Ali

    2014-01-01

    Joubert syndrome is a rare disease characterised by clinical and radiological findings. Among the classic clinical findings of JS are hypotonia, ataxia, mental-motor retardation, respiratory and opthalmological findings. The paediatric cases included in the study comprised nine patients. There was familial consanguinty in seven cases. Clinically, all cases had mental-motor retardation and hypotonia. Episodic hyperpnoea attacks were observed in one case. Facial dysmorphism was the most common additional systemic anomaly and four cases had additional opthalmic findings. Brain MRI examination revealed that all cases had molar tooth sign, bat-wing appearance and vermian cleft. The majority of cases also had vermian hypoplasia. Cerebellar folial disorganisation was observed in approxiamtely half of the cases. Three cases had corpus callosum anomaly and atretic occipital encephalocoele. No pathology was determined in other organs. This study aimed to evaluate the clinical and radiological findings of 9 patients diagnosed with Joubert syndrome. PMID:24605724

  8. [Automatic segmentation and annotation in radiology].

    PubMed

    Dankerl, P; Cavallaro, A; Uder, M; Hammon, M

    2014-03-01

    The technical progress and broader indications for cross-sectional imaging continuously increase the number of radiological images to be assessed. However, as the amount of image information and available resources (radiologists) do not increase at the same pace and the standards of radiological interpretation and reporting remain consistently high, radiologists have to rely on computer-based support systems. Novel semantic technologies and software relying on structured ontological knowledge are able to "understand" text and image information and interconnect both. This allows complex database queries with both the input of text and image information to be accomplished. Furthermore, semantic software in combination with automatic detection and segmentation of organs and body regions facilitates personalized supportive information in topographical accordance and generates additional information, such as organ volumes. These technologies promise improvements in workflow; however, great efforts and close cooperation between developers and users still lie ahead. PMID:24522625

  9. Radiological evaluation of post-tracheostomy lesions

    PubMed Central

    Macmillan, Alexander S.; James, A. Everette; Stitik, Frederick P.; Grillo, Hermes C.

    1971-01-01

    Post-tracheostomy lesions are becoming more commonplace and surgical techniques for definitive repair of these abnormalities are being developed. These lesions, in general, occur at two sites, the proximal lesions at the tracheostomy incision and the distal lesions 1·5 to 2·5 cm inferior in the area of the tracheostomy balloon cuff. Granuloma formation, stenosis, tracheomalacia, and perforation of the tracheal wall have been encountered in our experience. Clinical symptoms depend upon the type and location of the lesion as well as on the patient's awareness and physical activity. Radiological evaluation offers an accurate method to depict the anatomical and physiological alterations. This radiological assessment should begin with routine postero-anterior and lateral chest radiographs followed by fluoroscopy. Laminograms and special oblique views are often helpful. Contrast tracheograms using powdered tantalum allow good mucosal detail as well as excellent delineation of structural and physiological abnormalities. Images PMID:5144647

  10. Knee bone tumors: findings on conventional radiology.

    PubMed

    Andrade Neto, Francisco; Teixeira, Manuel Joaquim Diógenes; Araújo, Leonardo Heráclio do Carmo; Ponte, Carlos Eduardo Barbosa

    2016-01-01

    The knee is a common site for bone tumors, whether clinically painful or not. Conventional radiology has been established as the first line of investigation in patients with knee pain and can reveal lesions that often generate questions not only for the generalist physician but also for the radiologist or general orthopedist. History, image examination, and histopathological analysis compose the essential tripod of the diagnosis of bone tumors, and conventional radiology is an essential diagnostic tool in patients with knee pain. This pictorial essay proposes to depict the main conventional radiography findings of the most common bone tumors around the knee, including benign and malignant tumors, as well as pseudo-tumors. PMID:27403019

  11. User questionnaire to evaluate the radiological workspace.

    PubMed

    van Ooijen, Peter M A; Koesoema, Allya P; Oudkerk, Matthijs

    2006-01-01

    Over the past few years, an increase in digitalization of radiology departments can be seen, which has a large impact on the work of the radiologists. This impact is not only demonstrated by the increased use of digital images but also by changing demands on the whole reading environment. In this study, we evaluated the satisfaction of our radiologists with our digital Picture Archival and Communication System environment and their workspace. This evaluation was performed by distribution of a questionnaire consisting of a score sheet and some open questions to all radiologists and residents. Out of 25 questionnaires, 12 were adequately answered and returned. Results clearly showed that most problems were present in the area of reading room design and layout and comfort and ergonomics. Based on the results from this study, adaptations were made and the results were also used in the planning of the redesign of the entire department of radiology. PMID:16767350

  12. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  13. Safety Issues of HG and PB as IFE Target Materials: Radiological Versus Chemical Toxicity

    SciTech Connect

    Reyes, S; Latkowski, J F; Cadwallader, L C; Moir, R W; Rio, G. D; Sanz, J

    2002-11-11

    We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the USDOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.

  14. Radiology of orthopedic procedures, problems and complications

    SciTech Connect

    Gelman, M.I.; Saunders, W.B.

    1984-01-01

    This work is volume 24 in a series on clinical radiology. Eight sections cover fractures in general, thoracolumbar spine, upper extremities, hand and wrist, trauma to pelvis, hip and femur, knee and lower leg, and ankle and foot. These sections vary from 15 to 36 pages and contain adequate text, 18 to 54 x-ray films per section, and appropriate references (306 in sum). There are 275 radiographs, most of which are well printed, some with accompanying line sketches.

  15. Current radiological status of Utirik Atoll

    SciTech Connect

    Robison, W L

    1998-08-01

    A preliminary radiological survey was conducted at Utirik Atoll in 1978 as part of the Northern Marshall Islands Radiological Survey (NMIRS). A dose assessment based on these limited data indicated a relatively low dose of about 0.12 mSv to people living on Utirik in 1978 (Robison et al., 1982). A much more detailed radiological survey was conducted in April of both 1993 and 1994. Aerial photos of the islands of Utirik Atoll were taken as part of the 1978 NMIRS. The sampling grids for the 1993 and 1994 surveys are shown overlaid on these aerial photos in Figures 1, 2, 3, and 4. External gamma measurements and a collection of either drinking coconuts or copra coconuts were made at each location. Pandanus, breadfruit, lime, and banana were collected where available. Ground water was collected in 1993/94 from four wells on Utirik Island and two wells on Aon Island. Surface soil and soil profiles were collected at some of the grid points on each of the islands at the atoll in 1993/94. A comparison of the number of samples collected in 1978 and 1993/94 are shown in Table 1. A detailed listing of the samples collected in the 1993/94 radiological survey at Utirik Atoll is given in Table 2. The number of vegetation samples collected in 1993/94 is nearly a factor of 7 greater than in 1978. Soil samples collected in 1993/94 exceeded the number collected in 1978 by more than a factor of 4. Consequently, extensive data are now available for the islands at Utirik Atoll and form the basis for the current dose assessment for the atoll.

  16. Pediatric urologic radiology. Intervention and endourology

    SciTech Connect

    Mandell, V.S.; Mandell, J.; Gaisie, G.

    1985-02-01

    Over the past 10 years new imaging and interventional techniques have drastically changed the ease and scope of urologic diagnosis and treatment. It is both rewarding and exciting to approach each clinical problem with a broad armamentarium of available studies, always seeking the most efficient and direct route to diagnosis. Similarly, radiologic interventional techniques are potentially applicable to a multitude of problems and should be innovatively considered in the urologic patient including patients in the pediatric age group.

  17. Interventional radiology in bone and joint

    SciTech Connect

    Bard, M.; Laredo, J.D.

    1988-01-01

    Recent radiologic procedures in bone and joints, some of which eliminate the need for surgery are exposed, including: trephine biopsies of the thoracic and lumbar spine, sacro-iliac joints, peripheral bones synovial membrane and soft tissues, using either fluoroscopic echographic or CT guidance - chemonucleolysis - vascular embolization of skeletal tumors and management of vertebral hemangiomas - selective steroid injection in a broad spectrum of diseases including vertebral facet syndrome, cervicobrachial nerve root pain, rotator cuff calcium deposit, bone cysts.

  18. Use of Process Improvement Tools in Radiology.

    PubMed

    Rawson, James V; Kannan, Amogha; Furman, Melissa

    2016-01-01

    Process improvement techniques are common in manufacturing and industry. Over the past few decades these principles have been slowly introduced in select health care settings. This article reviews the Plan, Do, Study, and Act cycle, Six Sigma, the System of Profound Knowledge, Lean, and the theory of constraints. Specific process improvement tools in health care and radiology are presented in the order the radiologist is likely to encounter them in an improvement project. PMID:26684577

  19. [Teaching medical radiology to foreign students].

    PubMed

    Kochergin, V N; Domanskiĭ, V Iu; Sorokin, Iu K; Shevchenko, V A

    1985-02-01

    The paper is concerned with activities aimed at improvement of teaching medical radiology to foreign students. To overcome language difficulties and differences in the national secondary school educational systems, summary lectures with schemes are proposed enabling foreign students to rapidly orientate in the studied material during their independent work. Reference materials for foreign students contribute to the motivation of foreign students' cognition and drawing the teaching process near conditions of the students' future working activities. PMID:3969005

  20. Sternocostoclavicular hyperostosis: rheumatologic, radiologic, and dermatologic characteristics.

    PubMed

    Resnik, C S; Waters, B K; Wilkin, J K

    1987-05-01

    Two recently observed patients with sternocostoclavicular hyperostosis exemplify the characteristic presentation of this rheumatologic disorder. We describe its manifestations, review the literature on this subject, and discuss clinical and radiologic aspects, including the frequently associated dermatologic disorder palmoplantar pustulosis. Sternocostoclavicular hyperostosis is an increasingly common diagnosis, and practicing physicians should be aware of the distinctive features that allow accurate differentiation from psoriatic arthritis and other diseases. PMID:3554532