Science.gov

Sample records for radiological sciences department

  1. Risk management in radiology departments

    PubMed Central

    Craciun, Horea; Mankad, Kshitij; Lynch, Jeremy

    2015-01-01

    Medical imaging and interventional radiology sustained prompt changes in the last few years, mainly as a result of technology breakthroughs, rise in workload, deficit in workforce and globalization. Risk is considered to be the chance or possibility of incurring loss or of a negative event happening that may cause injury to patients or medical practitioners. There are various causes of risks leading to harm and injury in radiology departments, and it is one of the objectives of this paper to scrutinize some of the causes. This will drive to consideration of some of the approaches that are used in managing risks in radiology. This paper aims at investigating risk management in radiology, and this will be achieved through a thorough assessment of the risk control measures that are used in the radiology department. It has been observed that the major focus of risk management in such medical setting is to reduce and eliminate harm and injury to patients through integration of various medical precautions. The field of Radiology is rapidly evolving due to technology advances and the globalization of healthcare. This ongoing development will have a great impact on the level of quality of care and service delivery. Thus, risk management in radiology is essential in protecting the patients, radiologists, and the medical organization in terms of capital and widening of the reputation of the medical organization with the patients. PMID:26120383

  2. Radiologic sciences. Faculty needs assessment.

    PubMed

    Powers, Kevin J

    2005-01-01

    A total of 326 programs are represented in the data collected. Based on the average number of full- and part-time faculty members reported per program, this survey represents more than 1500 faculty positions. Based on the forecast of retirement and career change for all faculty members, there will be a turnover of 700 to 800 positions over the next 5 to 10 years. Part-time/adjunct faculty vacancies are expected to create the greatest number of opportunities for technologists to make the transition to education, with approximately one third of current part-time/adjunct educators planning on leaving radiologic sciences education within 5 years. To encourage retention of part-time/adjunct educators, annual evaluations should be modified to recognize the important educational role these instructors play. There is a need to create enthusiasm and interest in education as a career pathway for radiologic technologists. Resources are needed that help radiologic technologists make the transition to teaching. Finally, the retention of educators must be emphasized. Program applicant trends indicate radiologic technology students are older, have prior postsecondary education experience or are making a career change. This data emphasizes the need for educators, both full time and part time, to understand the characteristics and needs of the adult learner. Adult learners bring a wealth of education, experience and life skills that create both opportunities and challenges in the classroom and clinical setting. All categories of respondents indicated that their current salaries were greater than those of program graduates in their firstjob. Of interest is that 1 in 5 (20%) of part-time/adjunct educators indicated the opposite--that program graduates earn more in their firstjob than educators earn. When asked about salaries if working full time in clinical practice, the majority of all groups indicated their salary would be about the same or would decrease. Only 20% of program

  3. Dose tracking and radiology department management.

    PubMed

    Kirova, G; Georgiev, E; Zasheva, C; St Georges, A

    2015-07-01

    The purpose of this work was to review the reasonable measures that should be implemented as part of a routine practice in the process of managing CT radiation risks in a typical average radiology department. Based on 6 y of experience in the management of a general radiology department and the newly implemented supportive software for dose tracking, analysing and reporting, the approach towards radiation risk reduction is presented. Thanks to this approach, some problems have been resolved, and reasonable measures have been introduced into daily practice. PMID:25813480

  4. Internal Controlling of a Radiology Department.

    PubMed

    Frewer, W; Busch, H P

    2015-11-01

    Caused by legal reform initiatives there is a continuous need to increase effectiveness and efficiency in hospitals and surgeries, and thus to improve processes.Consequently the successful management of radiological departments and surgeries requires suitable structures and optimization processes to make optimization in the fields of medical quality, service quality and efficiency possible.In future in the DRG System it is necessary that the organisation of processes must focus on the whole clinical treatment of the patients (Clinical Pathways). Therefore the functions of controlling must be more established and adjusted. On the basis of select Controlling instruments like budgeting, performance indicators, process optimization, staff controlling and benchmarking the target-based and efficient control of radiological surgeries and departments is shown. PMID:26230139

  5. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  6. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  7. Networking of microcomputers in the radiology department.

    PubMed

    Markivee, C R

    1985-10-01

    A microcomputer may be installed in any of several areas in a radiology department or office to automate data processing. Such areas include the reception desk, the transcription office, the quality-control station, and remote or satellite radiography rooms. Independent microcomputers can be interconnected by networking, using small hardware and software packages and cables, to effect communication between them, afford access to a common data base, and share peripheral devices such as hard disks and printers. A network of microcomputers can perform many of the functions of a larger minicomputer system at lower cost and can be assembled in small modules as budgetary constraints allow. PMID:3876011

  8. Strengthening Science Departments

    ERIC Educational Resources Information Center

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  9. A Model Curriculum for Multiskilled Education in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Jensen, Steven C.; Grey, Michael L.

    1995-01-01

    Explains how multiskilled cross-trained health professionals provide cost-effective health care. Outlines a baccalaureate program in radiologic science with specialization in radiology therapy, medical sonography, or advanced imaging. (SK)

  10. A radiology department intranet: development and applications.

    PubMed

    Willing, S J; Berland, L L

    1999-01-01

    An intranet is a "private Internet" that uses the protocols of the World Wide Web to share information resources within a company or with the company's business partners and clients. The hardware requirements for an intranet begin with a dedicated Web server permanently connected to the departmental network. The heart of a Web server is the hypertext transfer protocol (HTTP) service, which receives a page request from a client's browser and transmits the page back to the client. Although knowledge of hypertext markup language (HTML) is not essential for authoring a Web page, a working familiarity with HTML is useful, as is knowledge of programming and database management. Security can be ensured by using scripts to write information in hidden fields or by means of "cookies." Interfacing databases and database management systems with the Web server and conforming the user interface to HTML syntax can be achieved by means of the common gateway interface (CGI), Active Server Pages (ASP), or other methods. An intranet in a radiology department could include the following types of content: on-call schedules, work schedules and a calendar, a personnel directory, resident resources, memorandums and discussion groups, software for a radiology information system, and databases. PMID:9925398

  11. Radiology department management system: technologists' costs.

    PubMed

    McNeil, B J; Sapienza, A; Van Gerpen, J; Sheriff, C R; Gillis, A E; Sack, D J; Komaroff, A L

    1985-07-01

    We developed a series of management reports to compare actual costs against expected costs for radiology departments on a more detailed level than previously available. We first developed labor standards for the most commonly employed diagnostic examinations and showed that increased patient complexity (resulting from, for example, immobility, precautions status, etc.) also increased the examination times up to 2.6-fold compared with the time required for average patients. Using labor standards and budgeted and actual volumes of average and complex patients, we calculated four types of variances: volume variance, examination mix variance, patient complexity variance, and technologist efficiency variance. Monitoring the technologist efficiency variance over time could be one key piece of information for improving departmental productivity. PMID:3923558

  12. Motivation in a multigenerational radiologic science workplace.

    PubMed

    Kalar, Traci

    2008-01-01

    For the first time in history, radiologic science (RS) workplaces consist of 4 generational cohorts. As each cohort possess their own attitudes, values, work habits, and expectations, motivating a generational diverse workplace is challenging. Through the understanding of generational differences, managers are better able to accommodate individual as well as generational needs and help create a more productive and higher performing workplace. The purpose of this paper is to assist managers in the understanding and utilization of generational differences to effectively motivate staff in an RS workplace. Generational cohorts will be defined and discussed along with an in-depth discussion on each of the generations performing in today's RS workplace. Motivators and how they impact the different generational cohorts will be addressed along with how to best motivate a multigenerational RS workplace. PMID:18714760

  13. The impact of a nuclear crisis on a radiology department.

    PubMed

    Weidner, W A; Miller, K L; Latshaw, R F; Rohrer, G V

    1980-06-01

    The experiences of the radiology department at the Milton S. Hershey Medical Center of the Pennsylvania State University College of Medicine during the Three Mile Island Nuclear Power Plant accident are presented. Emergency plans are reviewed. PMID:7384461

  14. Emerging strategic themes for guiding change in academic radiology departments.

    PubMed

    Chan, Stephen; Gunderman, Richard B

    2005-08-01

    Academic radiologists are faced with increasing demands on their time and energy, particularly in the clinical arena, where larger examination volumes and higher service expectations are the norm for most medical centers. These demands are intensified by the continuing shortage of academic radiologists. If academic radiology departments continue to devote most of their resources to the clinical mission at the expense of research and educational missions, then there are potentially serious adverse consequences for long-term viability of the profession of radiology. This dilemma represents a critical strategic problem, not just for academic radiology but also for the entire profession of radiology. In this article, the success and growth of academic radiology during the 20th century are framed as the result of the dogged pursuit of certain key strategic themes. With the concept of paradigm shift, introduced by Kuhn, several new strategic themes are identified that are just emerging from changes in work practices, organizational structure, and mind-sets in radiology departments at academic medical centers. One benefit of this approach is that it facilitates the ability of radiologists to articulate and focus on those strategic themes that will help academic radiology departments to adapt more rapidly and successfully to environmental changes during the 21st century. PMID:15972339

  15. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss

    2008-03-01

    The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment

  16. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul Guss, Robert Augdahl, Bill Nickels, Cassandra Zellers

    2008-04-16

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Aeronautics and Space Administration, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  17. Radiological Contingency Planning for the Mars Science Laboratory Launch

    SciTech Connect

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  18. Nonmedical personnel requirements for a pediatric radiology department.

    PubMed

    Calandrino, C; D'Ambra, P

    1989-01-01

    The primary goal of a successful pediatric radiology department is to arrive at the correct clinical diagnosis as soon as possible. This responsibility is shared by radiologists, technologists, nurses, secretaries and clerks. The goal of this study was to determine the optimum number and type of nonmedical staff required to correctly and efficiently perform these examinations. The secondary purpose of our study was to evaluate the effectiveness of technologists, nurses, secretaries and clerks regarding: 1) patient waiting time, 2) performance of multiple examinations, 3) actual time for completion of examination(s), and 4) time required for the radiology report to be in the patient's medical history. Our study analyzed the number and type of radiological examinations performed for a variety of patients (emergency room patients, outpatients and inpatients) examined in the Radiology Department of Childrens Hospital of Los Angeles, a 345 bed metropolitan pediatric teaching hospital. The results of these evaluations will be discussed in this paper. Our data suggests that the time spent by the technologists in psychological support of the parents and the patient is inversely proportional to the time required to complete the test. Based on our study and the conclusions it presented, significant changes were implemented in our pediatric radiology department; specifically, the number of clerical positions was reduced from three to one with the use of computer-assisted check-in and chart follow-up within the department. Childrens Hospital of Los Angeles is a 345-bed metropolitan pediatric teaching hospital affiliated with the USC School of Medicine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2755745

  19. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  20. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  1. [Informational approach to radiology department by end user computing].

    PubMed

    Yamaguchi, Masaya; Katoh, Tsutomu; Murota, Makiko; Kohchi, Hideyuki; Miura, Shinji; Ishikawa, Midori; Ohhiro, Mika

    2009-04-20

    In recent years, due to the advanced computerization of medical institutions, systems such as radiology information system (RIS) and reporting have been used extensively also at radiology departments. However, the introduction of these systems will need a great amount of money, and the systems are not yet introduced in our hospital. On the contrary, thanks to the sophistication and price reduction of personal computers (PCs), there is now found a rapid expansion of end user computing (EUC) in which users of a system actively build and manage the system of their duties. Under these circumstances, in order to assist the duties at low costs, we worked the computerization of duties done at our Radiology Department by using the EUC. Specifically, we used software of general-purpose database to build the system with functions dealing with records on implementing medical examinations and treatments, examination booking and diagnostic imaging report. This system which has been developed according to details of conventional duties and requests from medical personnel makes it possible to alleviate the duties which were done manually. PMID:19420829

  2. Importance of establishing radiation protection culture in Radiology Department

    PubMed Central

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-01-01

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  3. Importance of establishing radiation protection culture in Radiology Department.

    PubMed

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment. PMID:26981223

  4. US Department of Energy radiological control manual. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

  5. Impact of PACS On The Organization Of Radiology Departments

    NASA Astrophysics Data System (ADS)

    Zielonka, Jason S.

    1983-05-01

    The radiologist serves as a consultant to other physicians in the practice of clinical medicine; the image obtained and the reported interpretation of that image represent the service rendered and are therefore of major importance (medically, legally and economically) to the radiologist. Because many radiology departments are organized along subspecialty lines or (in the case of a single department serving several institutions) along combined institutional and subspecialty lines, many patients may undergo diagnostic evaluation sequences in which several studies are performed and multiple simultaneous consultations may result. In the past, the lack of availability of multiple copies of the study (for multiple interested parties) has prevented the effective tailoring of subsequent examinations until the prior exam results were available; the advent of digital networks for PACS may result in a significant change in this procedure and, accordingly, in the pattern of interpretation, internal referral and organization of radiology departments. In addition, since clinicians may have access to studies directly and, possibly, prior to official interpretation, the nature of the relationship between the clinician and the radiologist may be altered by PACS.

  6. [The balanced scorecard--applications in a radiology department].

    PubMed

    Maurer, M H; Teichgräber, U; Kröncke, T J; Hamm, B; Lemke, A J

    2012-12-01

    The balanced scorecard (BSC) represents a comprehensive management tool for organizations with the aim to focus all activities on a chosen strategy. Targets for various perspectives of the environment such as the customer, financial, process, and potential perspective are linked with concrete measures, and cause-effect relationships between the objectives are analyzed. This article shows that the BSC can also be used for the comprehensive control of a radiology department and thus provides a meaningful contribution in organizing the various diagnostic and treatment services, the management of complex clinical environment and can be of help with the tasks in research and teaching. PMID:23059697

  7. Attitudes of Radiologic Science Students, Technologists, and Clinical Instructors Regarding Their Experiential Learning and Career Capacity

    ERIC Educational Resources Information Center

    Burns, Caroline

    2012-01-01

    Radiologic science is an essential part of the healthcare continuum and preparing radiologic science students with experiential learning is essential. It is from this experience working with the patient that students begin to prepare for entry-level practice. The purpose of the study was to examine the attitudes of current radiologic science…

  8. An integrated picture archiving and communications system-radiology information system in a radiological department.

    PubMed

    Wiltgen, M; Gell, G; Graif, E; Stubler, S; Kainz, A; Pitzler, R

    1993-02-01

    In this report we present an integrated picture archiving and communication system (PACS)--radiology information system (RIS) which runs as part of the daily routine in the Department of Radiology at the University of Graz. Although the PACS and the RIS have been developed independently, the two systems are interfaced to ensure a unified and consistent long-term archive. The configuration connects four computer tomography scanners (one of them situated at a distance of 1 km), a magnetic resonance imaging scanner, a digital subtraction angiography unit, an evaluation console, a diagnostic console, an image display console, an archive with two optical disk drives, and several RIS terminals. The configuration allows the routine archiving of all examinations on optical disks independent of reporting. The management of the optical disks is performed by the RIS. Images can be selected for retrieval via the RIS by using patient identification or medical criteria. A special software process (PACS-MONITOR) enables the user to survey and manage image communication, archiving, and retrieval as well as to get information about the status of the system at any time and handle the different procedures in the PACS. The system is active 24 hours a day. To make the PACS operation as independent as possible from the permanent presence of a system manager (electronic data processing expert), a rule-based expert system (OPERAS; OPERating ASsistant) is in use to localize and eliminate malfunctions that occur during routine work. The PACS-RIS reduces labor and speeds access to images within radiology and clinical departments. PMID:8439578

  9. Implementation of a digital archive center for a radiology department

    NASA Astrophysics Data System (ADS)

    Wong, Albert W. K.; Taira, Ricky K.; Huang, H. K.

    1992-07-01

    A distributed digital archive system configured with dual archive devices (two archive servers, two database servers and two 680-Gbyte optical libraries) that provides fault-tolerant image archival has been implemented for the Radiology Department at UCLA. Digital images from various radiologic imaging devices are transmitted via Ethernet and FDDI networks to archive servers, where images are archived to optical disks and distributed to remote display stations or the print station via 1-Gbit/sec high-speed UltraNet network. The dual configuration of the system provides non-interrupt archive operations in the event of failure of any of the archive components. Once a failed device is detected, the system automatically re-configures itself so that all images are routed to the second equivalent device and archived. The global Ethernet network serves as a backup for the FDDI and UltraNet networks. In the even of FDDI or UltraNet failure, all images can be transmitted across the Ethernet. The system archives 1.5 to 2.0 Gbytes of data per day and provides inter-sectional image referencing throughout the department.

  10. Status of ion sources at National Institute of Radiological Sciences

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  11. Annual report of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The annual report for the activities of the National Institute of Radiological Sciences in Japan in the fiscal year 1990 is presented. The activities are divided into research, technical aids, training, medical services, management affairs at the Nakaminato Laboratory Branch Office, library or editing, international cooperation, and general affairs. Research activities are described under the following sections: (1) special researches covering biological risk evaluation in public exposure and exposure assessment in the environment and the public involved in food chain, medical use of accelerated heavy ions, and survey for the demonstration of dose-response relationships in low dose irradiation; (2) five assigned researches; (3) ordinary researches concerning physics, pharmacochemistry, biology, genetics, pathology and physiology, cell biology, internal exposure, environmental science, clinical research, clinical research for radiation injuries, medical use of heavy particles, environmental radiation ecology, and aquatic radiation ecology; (4) risk estimation of radiation; (5) survey for radiation response phenomena in fish and in immunity associated with low dose irradiation; (6) actual surveys for Bikini victims, population doses of medical and occupational exposure, and thorotrast exposure; (7) project research; (8) integrated atomic energy-based technological research; (9) radioactivity survey; (10) research supported by Science and Technology Agency aids; (11) International research cooperation; and (12) government-private joint cooperative study. Appendices include the personnel list and the bibliography of articles reported by the staff.

  12. Veterinary Science Departments: Their Role in Academia

    ERIC Educational Resources Information Center

    Curtin, Terrence M.

    1977-01-01

    The roles played by veterinary science departments are creditable and important, says this head of a department of veterinary science. Those roles will reflect an absolute increase in participation with veterinary schools on a regional and national basis, and a relative increase in direct involvement in veterinary education. (LBH)

  13. Activities of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    1994-01-01

    This annual report presents activities at the National Institute of Radiological Sciences (NIRS) in Japan during the period April 1992-March 1993. The activities are divided into research, technical aids, training, medical services, management, library or editing, and international cooperation. Research activities are arranged with twelve sections. The first section on special researches deals with continuing research projects entitled: (1) 'Biological Risk Evaluation in Public Exposure'; (2) 'Exposure Assessment in the Environment and the Public Through Food Chain'; (3) 'Medical Use of Accelerated Heavy Ions'; and (4) 'Preliminary Study for the Demonstration of Dose-Response Relationships in Low-Dose Range'. All projects except for project (4) will be finished up to March 1993. The section of assigned researches covers four titles. The section of ordinary researches covers physics (four titles), pharmacochemistry (four), biology (three), genetics (four), physiopathology (four), cytological radiation injuries (three), internal exposure (four), environmental science (four), clinical research (four), clinical research for radiation injuries (three), medical use of heavy particles (three), environmental radiation ecology (three), and aquatic radiation ecology (two). The section on technical aids gives an overview of technical services, radiation safety, animal and plant management, and cyclotron management. Appendices give the information on personnel in NIRS.

  14. A guide to the external review of an academic radiology department.

    PubMed

    Collins, Jannette; Amis, E Stephen; Beauchamp, Norman J; Norbash, Alexander M; Meltzer, Carolyn C

    2014-03-01

    External reviews are used to evaluate a department on a routine basis or prior to reappointment or recruitment of a department chair. The Society of Chairs of Academic Radiology Departments (SCARD) developed a template that outlines important components of an external review report and a table that outlines the objective information that can be requested from the institution/department prior to the reviewer's site visit. The template is meant to facilitate a high-quality review and serve as a guide to a chair who is preparing for his/her first review, chairs who serve as external consultants, and institutional officials seeking review of a radiology department. PMID:24507427

  15. Animal science departments of the future.

    PubMed

    Britt, J H; Aberle, E D; Esbenshade, K L; Males, J R

    2008-11-01

    Departments of animal science were established in agricultural colleges of public universities just over 100 yr ago, shortly before the founding of today's American Society of Animal Science. These departments and colleges have been remarkably resilient, changing little structurally. Yet, the future portends significant changes in these departments and colleges in response to shifts in how public higher education is financed and how society views the roles of animals in providing food and companionship. Funding for public higher education will continue to decline as a percentage of government appropriations. Public universities will garner more funding from gifts, endowments, grants, contracts, and tuition but will be held more accountable than today by public officials. Departments of animal science will retain strong constituencies and will be major units of most agricultural colleges; however, their students and faculty will be more diverse. Departments of animal science will focus on more species of animals and on a greater role of animals in society. Disciplines of faculty members in departments of animal science will become broader, and research projects will be more complex and have longer horizons, ultimately focused more on sustainability. Departments will share more resources across state and national boundaries, and there will be less duplication of effort regionally. Departments of animal science will continue to be important academic units of universities into the 22nd century. PMID:18599667

  16. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity. PMID:22775445

  17. Managing Health and Safety in Science Departments.

    ERIC Educational Resources Information Center

    Borrows, Peter

    2002-01-01

    Discusses strategies for managing health and safety within science departments. Emphasizes the importance of risk assessment for both pupil activities and those carried out by technicians. Stresses the role of training and the need for security. (MM)

  18. Clinical routine operation of a filmless radiology department: three years experience

    NASA Astrophysics Data System (ADS)

    Mosser, Hans M.; Paertan, Gerald; Hruby, Walter

    1995-05-01

    This paper communicates the operational implementation of filmless digital radiology in clinical routine, its feasibility and its effect on the radiology profession, based on the three years clinical experience from the filmless digital radiology department of the Danube Hospital, a major teaching hospital in Vienna, Austria, with currently 850 acute-care beds. Since April 1992 all radiological modalities are reported from the monitors of 16 reporting consoles in the radiology department. Images and reports are distributed by the hospital-wide network (Sienet, Siemens Medical Systems, Erlangen), and can be viewed on 60 display consoles throughout the hospital. Filmless radiology primarily is an efficient hospital-wide infrastructure to deliver radiological services along with other medical information, providing safe and fast access to this information anytime and anywhere, necessary for the conduct of the diagnostic and therapeutic task of patient care. In a comparative study of the Danube Hospital with the film based Rudolfstiftung Hospital in Vienna, we found a significant decrease of the mean patient length of hospital stay (1.99 to 3.72 days) that partially might be attributed to the implementation of filmless radiology.

  19. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  20. Mixed reaction to science department proposal

    NASA Astrophysics Data System (ADS)

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  1. Strategies for establishing a comprehensive quality and performance improvement program in a radiology department.

    PubMed

    Kruskal, Jonathan B; Anderson, Stephan; Yam, Chun S; Sosna, Jacob

    2009-01-01

    To improve the safety and quality of the care that radiologists provide, and to allow radiologists and radiology personnel to remain competitive in an increasingly complex environment, it is essential that all imaging departments establish and maintain managed, comprehensive, and effective performance improvement programs. Although the structure and focus of these programs can vary, a number of common components exist, many of which are now widely mandated by organizations that regulate the field of radiology. Basic components include patient safety, process improvement, customer service, professional staff assessment, and education, each of which requires strategies for implementing continuous programs to monitor performance, analyzing and depicting data, implementing change, and meeting regulatory requirements. All of these components are part of a comprehensive quality management system in a large academic radiology department. For smaller departments or practices, the gradual introduction of one or more of these components is useful in ensuring the safety and quality of their services. PMID:19168762

  2. Preventing tuberculosis in healthcare workers of the radiology department: a Malaysian perspective.

    PubMed

    Tan, Lh; Kamarulzaman, A

    2006-01-01

    Tuberculosis (TB) is a well recognised occupational hazard for healthcare workers (HCWs). Concerns on the safety of healthcare settings in Malaysia was raised following a report of 25 HCWs working in 11 general hospitals in Malaysia who were infected with TB in 2004 being publicised in the media recently. As the disease burden in general is high in Malaysia, due attention should be given to this disease in our healthcare facilities including the radiology department, an often neglected area in TB infection control programmes. This article focuses on the key control measures that can be implemented in radiology departments in a developing country with limited resources. PMID:21614220

  3. Resource Manual Development for Quality Management in the Radiologic Sciences.

    ERIC Educational Resources Information Center

    Collins, Dale E.

    A study determined elements to be included in developing a resource manual to assist radiologic technologists in completing quality management (QM) activities in diagnostic imaging. The study included these parts: a literature review; survey to assess effectiveness, content features, and improvement of six categories of resource materials…

  4. Earth Sciences Department Annual Report, 1984

    SciTech Connect

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  5. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  6. Transitioning process of a film-based radiology department to direct digital imaging

    NASA Astrophysics Data System (ADS)

    Romlein, John R.; Weiser, John C.; Willis, Charles E.; Smith, Suzy; Guinther, Rik; Quillin, Edward

    1994-05-01

    The initial transition of the Radiology Department at Madigan Army Medical Center, the Wright Patterson Air Force Medical Center and the Brooke Army Medical Center from film- based operations to direct digital image capture and display has been completed. This presentation describes the planning process and the impact of the transition on radiology operations and clinical services. PACS implementation requires changes in both the physical plant and the human element of the Radiology departments as well as in the clinical areas where imaging workstations were installed. Equipment retrofit, utility upgrades, space trade- offs, quality control operations, work flow variations, and educational requirements were major considerations. An overview of the scope of departmental transitions is achieved.

  7. A short review of basic head and neck interventional procedures in a general radiology department

    PubMed Central

    Yuen, H.Y.; Lee, Y.Y.P.; Bhatia, K.

    2013-01-01

    Abstract Image-guided interventional procedures provide a safe way to diagnose and treat a variety of head and neck abnormalities. The procedure time is usually short, and most procedures can be performed on an outpatient basis. Knowledge about strengths and weaknesses, efficacy, potential complications, and pitfalls of these procedures allows the best treatment to be chosen for a particular lesion type. This review discusses some of the commonly performed interventional radiology procedures in a general radiology department in the management of patients with neoplastic diseases in the head and neck region. PMID:24334514

  8. Secondary school science department chairs leading change

    NASA Astrophysics Data System (ADS)

    Gaubatz, Julie A.

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders navigate the change process within their departments, this study examined the change stories of six secondary school science department chairs who had led change attempts. In total, these department chairs shared six stories of successful change attempts and four unsuccessful change attempts. The topics of leadership and change were accessed through department chair interviews, document analysis, and a leadership inventory. Department chair leadership was analyzed with Blake and McCanse's (1991) Leadership Grid, and further explored using Yukl, Gordon, and Taber's (2002) detailed characterization of this grid. The change processes described in these department chair stories were analyzed using the frameworks provided by Ely's (1990) conditions of change, and Havelock and Zlotolow (1995) CREATER change stages model. In general, the findings of this study support Havelock and Zlotolow's CREATER model, as well as Ely's conditions of change, with dissatisfaction with the status quo emerging as the essential condition for successful change. This study connects these change process frameworks to specific leadership strategies and behaviors, and uses these connections to illuminate differences between successful and unsuccessful instances of change. These findings, along with other unanticipated findings emerging from department chair stories of change, such as the adverse influence of contentious resistors and the importance of team construction, add both to the literature on change and leadership and to the crucial point where these concepts intersect.

  9. Radiological Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Radiological sciences education in Kentucky and articulation within this field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and resource…

  10. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. PMID:20980666

  11. Assessing the impact of a radiology information management system in the emergency department

    NASA Astrophysics Data System (ADS)

    Redfern, Regina O.; Langlotz, Curtis P.; Lowe, Robert A.; Horii, Steven C.; Abbuhl, Stephanie B.; Kundel, Harold L.

    1998-07-01

    To evaluate a conventional radiology image management system, by investigating information accuracy, and information delivery. To discuss the customization of a picture archival and communication system (PACS), integrated radiology information system (RIS) and hospital information system (HIS) to a high volume emergency department (ED). Materials and Methods: Two data collection periods were completed. After the first data collection period, a change in work rules was implemented to improve the quality of data in the image headers. Data from the RIS, the ED information system, and the HIS as well as observed time motion data were collected for patients admitted to the ED. Data accuracy, patient waiting times, and radiology exam information delivery were compared. Results: The percentage of examinations scheduled in the RIS by the technologists increased from 0% (0 of 213) during the first period to 14% (44 of 317) during the second (p less than 0.001). The percentage of images missing identification numbers decreased from 36% (98 of 272) during the first data collection period to 10% (56 of 562) during the second period (p less than 0.001). Conclusions: Radiologic services in a high-volume ED, requiring rapid service, present important challenges to a PACS system. Strategies can be implemented to improve accuracy and completeness of the data in PACS image headers in such an environment.

  12. Quantitative evaluation of expression difference in report assignments between nursing and radiologic technology departments.

    PubMed

    Nishimoto, Naoki; Yokooka, Yuki; Yagahara, Ayako; Uesugi, Masahito; Ogasawara, Katsuhiko

    2011-01-01

    Our purpose in this study was to investigate the expression differences in report assignments between students in nursing and radiologic technology departments. We have known that faculties could identify differences, such as word usage, through grading their students' assignments. However, there are no reports in the literature dealing with expression differences in vocabulary usage in medical informatics education based on statistical techniques or other quantitative measures. The report assignment asked for students' opinions in the event that they found a rare case of a disease in a hospital after they graduated from professional school. We processed student report data automatically, and we applied the space vector model and TF/IDF (term frequency/inverse document frequency) scoring to 129 report assignments. The similarity-score distributions among the assignments for these two departments were close to normal. We focused on the sets of terms that occurred exclusively in either department. For terms such as "radiation therapy" or "communication skills" that occurred in the radiologic technology department, the TF/IDF score was 8.01. The same score was obtained for terms such as "privacy guidelines" or "consent of patients" that occurred in the nursing department. These results will help faculties to provide a better education based on identified expression differences from students' background knowledge. PMID:20830540

  13. Chemical-biological-radiological (CBR) response: a template for hospital emergency departments.

    PubMed

    Tan, Gim A; Fitzgerald, Mark C B

    2002-08-19

    Chemical, biological and radiological (CBR) incidents have the potential to shut down emergency departments that do not have an adequate CBR response. Secondary contamination also poses a threat to the safety and wellbeing of staff and other patients. On activation of a CBR response, "clean" and "contaminated" areas should be clearly marked, and all patients decontaminated before being allowed into the emergency department or outpatients department. Personal protective equipment (PPE) is needed for all staff. Staff using PPE must be monitored for signs of heat illness. Stocks of coveralls, bags for contaminated clothes, plastic sheeting for radiological incidents, barriers for crowd control, and selected drugs should be obtained. Staff required include medical, nursing, security, clerical, orderlies, patient care assistants and other staff, depending on the type of threat. An on-call roster that allows regular rotation of staff is needed. All hospital personnel should understand the response plan, and recognise that the emergency department and hospital is a community asset that requires protection. PMID:12175324

  14. Experience with a practice quality improvement system in a university radiology department.

    PubMed

    Kouo, Theresa

    2012-11-01

    In 2007, the ABR established and implemented Maintenance of Certification as a way to ensure radiologists' licensure and competency and to promote lifelong learning. Maintenance of Certification was instated for all radiologists receiving diagnostic radiology certificates starting in 2002. The 4 components of Maintenance of Certification are (1) Evidence of Professional Standing, (2) Lifelong Learning and Self-Assessment, (3) Cognitive Expertise, and (4) Practice Quality Improvement (PQI). Creating a PQI program involves establishing basic goals that, when met, will best benefit a department's needs. Developing a PQI system that promotes quality improvement will benefit the individuals involved, the department, and the institution. Much good can come from these projects: improved patient safety, increased efficiency and throughput with resultant cost savings, improved outcomes, and revenue generation. In addition, these efforts ensure that faculty members and trainees understand the importance of quality efforts in daily practice. This article reflects the author's experience setting up a PQI program for the radiology department of a large urban teaching hospital. Six steps are suggested to guide the creation of an effective PQI program. PMID:23122349

  15. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    PubMed

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development. PMID:22323617

  16. Evaluation of PACS at Hammersmith Hospital: assessment of radiology department performance in the intensive care unit

    NASA Astrophysics Data System (ADS)

    Bryan, Stirling; Weatherburn, Gwyneth C.; Taylor, Joanne; Buxton, Martin J.

    1993-09-01

    The hospital-wide PACS installation at Hammersmith Hospital is the subject of an independent technology evaluation exercise. This paper focuses on one aspect of the evaluation: the assessment of the impact of PACS on the performance of the radiology department in the intensive care unit (ICU). A quasi-experimental before and after research design has been adopted and initial baseline measurements have been undertaken of the time intervals between the various events from the radiograph request to the initiation of a subsequent clinical action. The results presented suggest that the radiology department at Hammersmith is currently performing well with an interval of about 10 minutes from the radiograph being taken to it being available for viewing in the ICU for non-routine radiographs (taken after 11.00 and before 9.00). The main findings from this study to date relate to the appropriateness of the research methods used, given the disappointing response rates for specific variables, and thus the potential for bias in the results obtained.

  17. University of California San Francisco automated radiology department system-without picture archival and communication system (PACS)

    NASA Astrophysics Data System (ADS)

    Quintin, June A.; Simborg, Donald W.

    1982-01-01

    A fully automated and comprehensive Radiology Department system was implemented in the Fall of 1980, which highly integrates the multiple functions of a large Radiology Department in a major medical center. The major components include patient registration, film tracking, management statistics, patient flow control, radiologist reporting, pathology coding and billing. The highly integrated design allows sharing of critical files to reduce redundancy and errors in communication and allows rapid dissemination of information throughout the department. As one node of an integrated distributed hospital system, information from central hospital functions such as patient identification are incorporated into the system and reports and other information are available to other hospital systems. The system is implemented on a Data General Eclipse S/250 using the MIIS operating system. The management of a radiology department has become sufficiently complex that the application of computer techniques to the smooth operation of the department has become almost a necessity. This system provides statistics on room utilization, technologist productivity, and radiologist activity. Room utilization graphs are a valuable aid for staffing and scheduling of technologists, as well as analyzing appropriateness of radiologic equipment in a department. Daily reports summarize by radiology section exams not dictated. File room reports indicate which film borrowers are delinquent in returning films for 24 hours, 48 hours and one week. Letters to the offenders are automatically generated on the high speed line printer. Although all radiology departments have similar needs, customization is likely to be required to meet specific priorities and needs at any individual department. It is important in choosing a system vendor that such flexibility be available. If appropriately designed, a system will provide considerable improvements in efficiency and effectiveness.

  18. Science Instructional Leadership: The Role of the Department Chair

    ERIC Educational Resources Information Center

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  19. Bourdieu, Department Chairs and the Reform of Science Education

    ERIC Educational Resources Information Center

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-01-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's "thinking tools" of "field", "habitus" and "capital", we case study the work of two teachers who both actively pursue the teaching and learning of science as…

  20. Webometric Analysis of Departments of Librarianship and Information Science.

    ERIC Educational Resources Information Center

    Thomas, Owen; Willett, Peter

    2000-01-01

    Describes a webometric analysis of linkages to library and information science (LIS) department Web sites in United Kingdom universities. Concludes that situation data are not well suited to evaluation of LIS departments and that departments can boost Web site visibility by hosting a wide range of materials. (Author/LRW)

  1. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  2. [Possibilities for workflow optimization in radiology departments beyond RIS and PACS].

    PubMed

    Treitl, M; Wirth, S; Lucke, A; Nissen-Meyer, S; Villain, S; Trumm, C; Rieger, J; Pfeifer, K-J; Reiser, M

    2005-08-01

    Technological progress and the rising cost pressure on the healthcare system have led to a drastic change in the work environment of radiologists today. The pervasive demand for workflow optimization and increased efficiency of its activities raises the question of whether by employment of electronic systems, such as RIS and PACS, the potentials of digital technology are sufficiently used to fulfil this demand. This report describes the tasks and structures in radiology departments, which so far are only insufficiently supported by commercially available electronic systems but are nevertheless substantial. We developed and employed a web-based, integrated workplace system, which simplifies many daily tasks of departmental organization and administration apart from well-established tasks of documentation. Furthermore, we analyzed the effects exerted on departmental workflow by employment of this system for 3 years. PMID:15959753

  3. Building a Culture of Continuous Quality Improvement in an Academic Radiology Department.

    PubMed

    Katzman, Gregory L; Paushter, David M

    2016-04-01

    As we enter a new era of health care in the United States, radiologists must be adequately prepared to prove, and continually improve, our value to our customers. This goal can be achieved in large part by providing high-quality services. Although quality efforts on the national and international levels provide a framework for improving radiologic quality, some of the greatest opportunities for quality improvement can be found at the departmental level, through the implementation of total quality management programs. Establishing such a program requires not only strong leadership and employee engagement, but also a firm understanding of the multiple total quality management tools and continuous quality improvement strategies available. In this article, we discuss key tools and strategies required to build a culture of continuous quality improvement in an academic department, based on our experience. PMID:26896936

  4. Individual and Collective Leadership in School Science Departments

    NASA Astrophysics Data System (ADS)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-09-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two contrasting school contexts were explored dialectically in this study. The structure ∣ agency and individual∣collective dialectics guided our interpretation of data from lesson observations, interviews and questionnaire responses, especially as they related to teachers' preparation of units of work (i.e., planned curriculum). As well as recognising thin coherence in teachers' responses we identify contradictions in teachers' perceived and enacted leadership roles, and perceptions of influences on curriculum planning and teaming within the two science departments. Throughout the article we disrupt traditional individualistic leadership discourses and suggest possibilities for more widespread application of an individual | collective leadership dialectic in school science departments.

  5. Secondary School Science Department Chairs Leading Change

    ERIC Educational Resources Information Center

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  6. Bourdieu, Department Chairs and the Reform of Science Education

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  7. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology

  8. [Practical implementation of a quality management system in a radiological department].

    PubMed

    Huber, S; Zech, C J

    2011-10-01

    This article describes the architecture of a project aiming to implement a DIN EN ISO 9001 quality management system in a radiological department. It is intended to be a practical guide to demonstrate each step of the project leading to certification of the system. In a planning phase resources for the implementation of the project have to be identified and a quality management (QM) group as core team has to be formed. In the first project phase all available documents have to be checked and compiled in the QM manual. Moreover all relevant processes of the department have to be described in so-called process descriptions. In a second step responsibilities for the project are identified. Customer and employee surveys have to be carried out and a nonconformity management system has to be implemented. In this phase internal audits are also needed to check the new QM system, which is finally tested in the external certification audit with reference to its conformity with the standards. PMID:21879364

  9. A report-coding system for integration into a digital radiology department.

    PubMed

    Bramble, J M; Chang, C H; Martin, N L

    1989-05-01

    Report-coding systems allow the radiologist to generate a typewritten radiographic report with a computer. Typically, the report is generated by selecting bar codes, speaking key words, or selecting items on a screen. MAMM REPORT is a report-coding system for mammography, developed by radiologists, that runs on a microcomputer (Amiga, Commodore Co., West Chester, PA). MAMM REPORT speaks questions to the radiologist, who responds by pressing one of two buttons on a computer mouse, thus generating the report. MAMM REPORT allows labeling of digital images and reduction of data required to store the report in computer memory (data compression). Data compression is useful for improving computer operating speed. Digital image labeling and data compression facilitate use of MAMM REPORT on a future digital radiology workstation for an all-digital radiology department. Sixty mammographic reports, reviewed by a radiologist who is not a specialist in mammography, were entered into MAMM REPORT. The mammography specialists who dictated the original reports then judged whether the reports generated by MAMM REPORT would be acceptable replacements on the basis of descriptions of findings, diagnoses, and recommendations for further study. Data compression was measured by calculating the ratio of the number of bytes for storage of the reports in original form to a standard storage form (Huffman encoding) and to the MAMM REPORT coded form. All 60 coded reports were acceptable replacements for the original reports. For computer storage, MAMM REPORT produced a compression ratio of 135 to 1 and Huffman encoding, 1.1 to 1. Huffman encoding did not compress most reports because of their brevity. The results indicate that report coding can produce data compression of radiographic reports. The standard method of text storage, Huffman encoding, is not suitable for application to mammographic reports, which tend to be brief. PMID:2705345

  10. Radiology of Fractures in Intoxicated Emergency Department Patients: Locations, Mechanisms, Presentation, and Initial Interpretation Accuracy

    PubMed Central

    Morita, Yuka; Nozaki, Taiki; Starkey, Jay; Okajima, Yuka; Ohde, Sachiko; Matsusako, Masaki; Yoshioka, Hiroshi; Saida, Yukihisa; Kurihara, Yasuyuki

    2015-01-01

    Abstract The purpose of this study was to investigate the relationship of alcohol intoxication to time-to-presentation following injury, fracture type, mechanism of injury leading to fracture, and initial diagnostic radiology interpretation performance of emergency physicians versus diagnostic radiologists in patients who present to the emergency department (ED) and are subsequently diagnosed with fracture. Medical records of 1286 patients who presented to the ED and were diagnosed with fracture who also underwent plain film or computed tomography (CT) imaging were retrospectively reviewed. The subjects were divided into intoxicated and sober groups. Patient characteristics, injury-to-presentation time, fracture location, and discrepancies between initial clinical and radiological evaluations were compared. Of 1286 subjects, 181 patients were included in the intoxicated group. Only intoxicated patients presented with head/neck fractures more than 24 hours after injury. The intoxicated group showed a higher rate of head/neck fractures (skull 23.2% vs 5.8%, face and orbit 30.4% vs 9.5%; P < 0.001) and a lower rate of extremity injuries. The rate of nondiagnosis of fractures by emergency physicians later identified by radiologists was the same in both groups (7.7% vs 7.7%, P = 0.984). While the same proportion of intoxicated patients presented more than 24 hours following injury, only intoxicated patients presented with craniofacial and cervical spinal fractures during this period. Alcohol-related injuries are more often associated with head/neck fractures but less extremity injuries. The rate of fractures missed by emergency physicians but later diagnosed by radiologists was the same in intoxicated and sober patients.

  11. PACS workstations in the emergency department: impact on workflow in radiology and emergency medicine

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Kundel, Harold L.; Redfern, Regina O.; Lowe, Robert A.; Nodine, Calvin F.; Abbuhl, Stephanie B.; Phelan, Megan; Arnold, Deborah; Myers, Melissa; Brikman, Inna; Mezrich, Reuben S.

    2000-05-01

    A study of timings of different events from the scheduling of an Emergency Department (ED) examination to the final reporting of it and review by the ED physician showed some expected and unexpected findings. Both computed radiography (CR) on film and CR using PACS were studied. The move of daytime reading of ED radiographs out of the Radiology reading area in the ED to a reading room in Radiology lengthened the time from when the request was sent to the time when the images were reviewed by the ED physician (1.02 hours to 1.29 hours). Despite anecdotal reports of increased reading time at workstations, the radiologists' use of PACS for reading ED radiographs resulted in a slight improvement in the time between the examination completion and report dictation (0.43 hours to 0.3 hours). Recently, we have found that there may be a workload effect on this time and this is presently being analyzed. The time from the sending of the request for an examination to the first review of the images by the ED physician was shortened with implementation of a PACS workstation in the clinical area of the ED (1.35 hours to 0.92 hours). A surprising finding was the impact the change to PACS had on the time between sending the request and the technologist's completion of the requested examination. The time increased with PACS from 0.45 hours for film-based CR to 0.8 hours for PACS. Several studies are ongoing to determine the causes of this increase.

  12. Curriculum Reform and a Science Department: A Bourdieuian Analysis

    ERIC Educational Resources Information Center

    Melville, Wayne

    2010-01-01

    This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu's notions of "habitus" and "the field," the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow several subsidiary…

  13. Examining Prospective Science Teachers' Satisfaction with Their Department

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Usak, Muhammet

    2007-01-01

    The purpose of this study was to explore how satisfied prospective science teachers are with their department (academic staff and administration) at different Faculties of Education in Turkey. For this purpose, Prospective Science Teachers Satisfaction Questionnaire (PSTSQ) was developed by considering related literature. PSTSQ consists of two…

  14. Individual dose monitoring of the nuclear medicine departments staff controlled by Central Laboratory for Radiological Protection.

    PubMed

    Szewczak, Kamil; Jednoróg, Sławomir; Krajewski, Paweł

    2013-01-01

    Presented paper describes the results of the individual doses measurements for ionizing radiation, carried out by the Laboratory of Individual and Environmental Doses Monitoring (PDIS) of the Central Laboratory for Radiological Protection in Warsaw (CLOR) for the medical staff employees in several nuclear medicine (NM) departments across Poland. In total there are48 NM departments in operation in Poland [1] (consultation in Nuclear Atomic Agency). Presented results were collected over the period from January 2011 to December 2011 at eight NM departments located in Krakow, Warszawa (two departments), Rzeszow (two departments), Opole, Przemysl and Gorzow Wielkopolski. For radiation monitoring three kinds of thermo luminescence dosimeters (TLD) were used. The first TLD h collected information about whole body (C) effective dose, the second dosimeter was mounted in the ring (P) meanwhile the third on the wrist (N) of the tested person. Reading of TLDs was performed in quarterly periods. As a good approximation of effective and equivalent dose assessment of operational quantities both the individual dose equivalent Hp(10) and the Hp(0.07) were used. The analysis of the data was performed using two methods The first method was based on quarterly estimations of Hp(10)q and Hp(0.07)q while the second measured cumulative annual doses Hp(10)a and Hp(0.07)a. The highest recorded value of the radiation dose for quarterly assessments reached 24.4 mSv and was recorded by the wrist type dosimeter worn by a worker involved in source preparation procedure. The mean values of Hp(10)q(C type dosimeter) and Hp(0.07)q (P and N type dosimeter) for all monitored departments were respectively 0.46 mSv and 3.29 mSv. There was a strong correlation between the performed job and the value of the received dose. The highest doses always were absorbed by those staff members who were involved in sources preparation. The highest annual cumulative dose for a particular worker in the considered time

  15. District Leadership for Science Education: Using K-12 Departments to Support Elementary Science Education under NCLB

    ERIC Educational Resources Information Center

    Miller, Christopher L.

    2010-01-01

    By contrasting two case studies of school districts, this paper illustrates the effectiveness of K-12 science departments in supporting elementary science education, especially in response to NCLB's push towards the articulation of curriculum across all grades and as a response to the erosion of instructional time on science in elementary schools…

  16. [A survey of information literacy for undergraduate students in the department of radiological technology].

    PubMed

    Ohba, Hisateru; Matsutani, Hideya; Kashiwakura, Ikuo

    2009-01-20

    The purpose of this study was to clarify the information literacy of undergraduate students and problems in information education. An annual questionnaire survey was carried out by an anonymous method from 2003 to 2006. The survey was intended for third-year students in the Department of Radiological Technology. The questionnaire items were as follows: (1) ownership of a personal computer (PC), (2) usage purpose and frequency of PC operation, (3) operation frequency and mechanism of the Internet, and (4) IT terminology. The response rate was 100% in each year. The ratio of PC possession exceeded 80%. The ratio of students who replied "nearly every day" for the use of a PC and the Internet increased twofold and threefold in four years, respectively. More than 70% of students did not understand the mechanism of the Internet, and more than 60% of students did not know about TCP/IP. In the future, we need to consider information literacy education in undergraduate education. PMID:19212075

  17. Best Available Technology (BAT) guidance for radiological liquid effluents at US Department of Energy Facilities

    SciTech Connect

    Wallo, A. III; Peterson, H.T. Jr. ); Ikenberry, T.A. ); Baker, R.E. )

    1993-01-01

    The US Department of Energy (DOE), in DOE Order 5400.5 (1990), directs operators of DOE facilities to apply the Best Available Technology (BAT) to control radiological liquid effluents from these facilities when specific conditions are present. DOE has published interim guidance to assist facility operators in knowing when a BAT analysis is needed and how such an analysis should be performed and documented. The purpose of the guidance is to provide a uniform basis in determining BAT throughout DOE and to assist in evaluating BAT determinations during programmatic audits. The BAT analysis process involves characterizing the effluent source; identifying and selecting candidate control technologies; evaluating the potential environmental, operational, resource, and economic impacts of the control technologies; developing an evaluation matrix for comparing the technologies; selecting the BAT; and documenting the evaluation process. The BAT analysis process provides a basis for consistent evaluation of liquid effluent releases, yet allows an individual site or facility the flexibility to address site-specific issues or concerns in the most appropriate manner.

  18. U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2

    SciTech Connect

    Jakubowski, F.M.

    1998-02-01

    Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

  19. Strategies for Growth in a Young Earth Sciences Department

    NASA Astrophysics Data System (ADS)

    Clement, B. M.; Hickey-Vargas, R.; Draper, G.

    2005-12-01

    The Department of Earth Sciences at Florida International University (FIU) has been fortunate to be part of a rapidly growing university. FIU began offering classes in 1972 with an initial enrollment of 5600 students, and today enrollment exceeds 35,000 students. During this time the Department of Earth Sciences has grown to a faculty of 14 and offers the BA, BS, MS and PhD degrees. Our department, however, has faced the same challenges meeting many Earth Science departments in that our number of undergraduate majors has not grown at the same pace as the university enrollment (or at the same pace as enrollment in our graduate program). Two strategies have proven effective and have helped the department build its program in spite of this challenge. The first strategy was to create tenure-track positions with a 50% assignment in the Earth Sciences Department and 50% in a research center on campus. We currently have two faculty who have half-time appointments in the Southeast Environmental Research Center, and we have a new faculty member joining in the Spring who will have a joint appointment with the International Hurricane Research Center. This strategy has made it possible to gain expertise in, and to offer courses in, critical areas (such as hydrogeology and meteorology) that we otherwise would not be able to offer. The second strategy is to develop strong courses for non-majors that satisfy FIU's University Common Curriculum requirements. A particularly successful example is a new course titled "The History of Life". This course was designed to take advantage of our existing expertise in paleobiology, and offer a class that satisfies the University Common Curriculum requirement that every student take a laboratory course in the life sciences. This class now fills to capacity each semester with more than 200 students. This course not only boosts our department's productivity, but it lets us reach 200 new students each semester with many potential new Earth

  20. Diagnostic radiology 1987

    SciTech Connect

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture.

  1. Spaced education activates students in a theoretical radiological science course: a pilot study

    PubMed Central

    2012-01-01

    Background The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. Methods The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a “traditional group” and a “spaced education group”. Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material. All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann–Whitney-U test. Results The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p < .0005). The spaced education group rated the didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Conclusions Adding spaced

  2. Local Health Department Planning for a Radiological Emergency: An Application of the AHP2 Tool to Emergency Preparedness Prioritization

    PubMed Central

    McKallagat, Chris; Klebesadal, Amy

    2014-01-01

    Objective We tested the Analytical Hierarchy Process tool for its use in public health to identify potential gaps in emergency preparedness by local health departments (LHDs) in California and Hawaii during a radiological emergency. Methods We developed a dedicated tool called All-Hazards Preparedness Squared (AHP2) that can be used by those who are responsible for all-hazards preparedness planning and response to guide them while making strategic decisions both in preparing for and responding to a slow-moving incident while it is unfolding. The tool is an Internet-based survey that can be distributed among teams responsible for emergency preparedness and response. Twenty-eight participants from 16 LHDs in California and Hawaii responsible for coordinating preparedness and response in a radiological emergency participated in using the tool in 2013. We used the data to compare the perceived importance of different elements of preparedness among participants and identify gaps in preparedness of their organizations for meeting the challenges presented by a radiological incident. Results Clarity of information and transfer of information (to and from agency to public, state, and federal partners) were public health officials' dominant concerns while responding to an emergency. Participants also found that there were gaps in the adequacy of training and awareness of the chain of command during a radiological emergency. Conclusion This preliminary study indicates that the AHP2 tool could be used for decision making in all-hazards preparedness planning and response. PMID:25355985

  3. Application of Analytical Hierarchy Process Approach for Service Quality Evaluation in Radiology Departments: A Cross-Sectional Study

    PubMed Central

    Alimohammadzadeh, Khalil; Bahadori, Mohammadkarim; Hassani, Fariba

    2016-01-01

    Background: Radiology department as a service provider organization requires realization of quality concept concerning service provisioning knowledge, satisfaction and all issues relating to the customer as well as quality assurance and improvement issues. At present, radiology departments in hospitals are regarded as income generating units and they should continuously seek performance improvement so that they can survive in the changing and competitive environment of the health care sector. Objectives: The aim of this study was to propose a method for ranking of radiology departments in selected hospitals of Tehran city using analytical hierarchical process (AHP) and quality evaluation of their service in 2015. Materials and Methods: This study was an applied and cross-sectional study, carried out in radiology departments of 6 Tehran educational hospitals in 2015. The hospitals were selected using non-probability and purposeful method. Data gathering was performed using customized joint commission international (JCI) standards. Expert Choice 10.0 software was used for data analysis. AHP method was used for prioritization. Results: “Management and empowerment of human resources’’ (weight = 0.465) and “requirements and facilities” (weight = 0.139) were of highest and lowest significance respectively in the overall ranking of the hospitals. MS (weight = 0.316), MD (weight = 0.259), AT (weight = 0.14), TS (weight = 0.108), MO (weight = 0.095), and LH (0.082) achieved the first to sixth rankings respectively. Conclusion: The use of AHP method can be promising for fostering the evaluation method and subsequently promotion of the efficiency and effectiveness of the radiology departments. The present model can fill in the gap in the accreditation system of the country’s hospitals in respect with ranking and comparing them considering the significance and value of each individual criteria and standard. Accordingly, it can predict an integration of qualitative

  4. Career Preparation and the Political Science Major: Evidence from Departments

    ERIC Educational Resources Information Center

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  5. Affirmative Action in Science Departments: A Challenge for Higher Education.

    ERIC Educational Resources Information Center

    Marcus, Laurence R.

    As part of a study of the implementation of affirmative action in academic affairs at the University of Massachusetts at Amherst, interviews were conducted with the heads of ten of the eleven departments and programs of the Faculty of Natural Sciences and Mathematics (FNSM). The data received were combined with written data available in…

  6. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  7. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  8. SU-E-P-07: Retrospective Analysis of Incident Reports at a Radiology Department: Feedback From Incident Reporting System

    SciTech Connect

    Kakinohana, Y; Toita, T; Heianna, J; Murayama, S

    2015-06-15

    Purpose: To provide an overview of reported incidents that occurred in a radiology department and to describe the most common causal source of incidents. Methods: Incident reports from the radiology department at the University of the Ryukyus Hospital between 2008 and 2013 were collected and analyzed retrospectively. The incident report form contains the following items, causal factors of the incident and desirable corrective actions to prevent recurrence of similar incidents. These items allow the institution to investigate/analyze root causes of the incidents and suggest measures to be taken to prevent further, similar incidents. The ‘causal factors of the incident’ item comprises multiple selections from among 24 selections and includes some synonymous selections. In this study, this item was re-categorized into four causal source types: (i) carelessness, (ii) lack of skill or knowledge, (iii) deficiencies in communication, and (iv) external factors. Results: There were a total of 7490 incident reports over the study period and 276 (3.7%) were identified as originating from the radiology department. The most frequent causal source type was carelessness (62%). The other three types showed similar frequencies (10–14%). The staff members involved in incidents indicate three predominant desirable corrective actions to prevent or decrease the recurrence of similar incidents. These are ‘improvement in communication’ (24%), ‘staff training/education’ (19%), and ‘daily medical procedures’ (22%), and the most frequent was ‘improvement in communication’. Even though the most frequent causal factor was related to carelessness, the most desirable corrective action indicated by the staff members was related to communication. Conclusion: Our finding suggests that the most immediate causes are strongly related to carelessness. However, the most likely underlying causes of incidents would be related to deficiencies in effective communication. At our

  9. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  10. Tenure Standards in Political Science Departments: Results from a Survey of Department Chairs

    ERIC Educational Resources Information Center

    Rothgeb, John M., Jr.; Burger, Betsy

    2009-01-01

    This article presents the results from a survey of political science department chairs regarding the tenure procedures and standards at their colleges or universities. The findings reveal that only a small fraction of the colleges and universities in the United States refuse to offer tenure or are attempting to limit tenure. We also find general…

  11. [Development of a System to Use Patient's Information Which is Required at the Radiological Department].

    PubMed

    Satoh, Akihiro

    2016-04-01

    The purpose of this study is to develop a new system to get and share some data of a patient which are required for a radiological examination not using an electronic medical chart or a radiological information system (RIS), and also to demonstrate that this system is operated on cloud technology. I used Java Enterprise Edition (Java EE) as a programing language and MySQL as a server software, and I used two laptops as hardware for client computer and server computer. For cloud computing, I hired a server of Google App Engine for Java (GAE). As a result, I could get some data of the patient required at his/her examination instantly using this system. This system also helps to improve the efficiency of examination. For example, it has been useful when I want to decide radiographic condition or to create CT images such as multi-planar reconstruction (MPR) or volume rendering (VR). When it comes to cloud computing, the GAE was used experimentally due to some legal restrictions. From the above points it is clear that this system has played an important role in radiological examinations, but there has been still few things which I have to resolve for cloud computing. PMID:27097993

  12. [Marketing mix in a radiology department: challenges for future radiologists in management].

    PubMed

    Claikens, B

    1998-08-01

    Radiology has gained an enviable position among medial specialities. Developments in new technology expand its horizons and the volume of radiologic imaging techniques and procedures increase far more than the overall growth in health care services. In this position radiology has become a prime target for restrictions, cutbacks, controlled financing in an area of managed care and new national health care policy based on partially fixed budgets. Future health care takers have to choose the best available diagnostic and therapeutic techniques. Evidence based medicine, cost-utility analysis, diagnostic performance analysis, patient outcome analysis, technology assessment and guidelines for practice are means to guide us through our obligatory choice. Our major objective is to use the most performant available imaging technique or intervention to achieve the best possible outcome for our patient at lower possible costs. A strategic response from radiologists is required to meet the imperatives of this new management situation. They must do far more than interpret imaging procedures. They must work as efficient managers of imaging resources, organise their practices and define their marketing-strategies using the different, so-called, marketing-mix elements. The challenges will be great but the rewards are worth our best efforts. In this article we highlight the marketing responsibilities of future radiologists and their clinical practice in this new socio-economic environment and we present different useful marketing tools. PMID:9828543

  13. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery. PMID:15652964

  14. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    SciTech Connect

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M. )

    1990-03-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field.

  15. Guide for radiological characterization and measurements for decommissioning of US Department of Energy surplus facilities

    SciTech Connect

    Denahm, D. H.; Barnes, M. G.; Jaquish, R. E.; Corley, J. P.; Gilbert, R. O.; Hoenes, G. R.; Jamison, J. D.; McMurray, B. J.; Watson, E. C.

    1983-08-01

    This Guide describes the elements of radiological characterization at DOE excess facilities in preparation for, during, and subsequent to decommissioning operations. It is the intent of this Guide and accompanying appendices to provide the reader (user) with sufficient information to carry out that task with a minimum of confusion and to provide a uniform basis for evaluating site conditions and verifying that decommissioning operations are conducted according to a specific plan. Some areas of particular interest in this Guide are: the need to involve appropriate staff from the affected states in the early planning stages of decommissioning; the need for and suggested methods of radiological site characterization to complete a decommissioning project, including: historical surveys, environmental pathway analyses, statistical sampling design, and choosing appropriate instrumentation and measurements; the need for and emphasis on quality assurance, documentation and records retention; the establishment of a Design Objective approach to applying site-specific contamination limits based on the ALARA philosophy; the establishment of a ''de minimis'' or minimum dose level of concern for decommissioning operations based on existing standards, experience and ALARA considerations.

  16. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  17. The effectiveness of service delivery initiatives at improving patients' waiting times in clinical radiology departments: a systematic review.

    PubMed

    Olisemeke, B; Chen, Y F; Hemming, K; Girling, A

    2014-12-01

    We reviewed the literature for the impact of service delivery initiatives (SDIs) on patients' waiting times within radiology departments. We searched MEDLINE, EMBASE, CINAHL, INSPEC and The Cochrane Library for relevant articles published between 1995 and February, 2013. The Cochrane EPOC risk of bias tool was used to assess the risk of bias on studies that met specified design criteria. Fifty-seven studies met the inclusion criteria. The types of SDI implemented included extended scope practice (ESP, three studies), quality management (12 studies), productivity-enhancing technologies (PETs, 29 studies), multiple interventions (11 studies), outsourcing and pay-for-performance (one study each). The uncontrolled pre- and post-intervention and the post-intervention designs were used in 54 (95%) of the studies. The reporting quality was poor: many of the studies did not test and/or report the statistical significance of their results. The studies were highly heterogeneous, therefore meta-analysis was inappropriate. The following type of SDIs showed promising results: extended scope practice; quality management methodologies including Six Sigma, Lean methodology, and continuous quality improvement; productivity-enhancing technologies including speech recognition reporting, teleradiology and computerised physician order entry systems. We have suggested improved study design and the mapping of the definitions of patient waiting times in radiology to generic timelines as a starting point for moving towards a situation where it becomes less restrictive to compare and/or pool the results of future studies in a meta-analysis. PMID:24888629

  18. Decision-making and radiological protection at Three Mile Island: response of the Department of Health, Education and Welfare

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    Decision-making by decision-makers during the nuclear accident at Three Mile Island all had to do in some way, and impacted on the public health and safety, the health and safety of the workers, and emergency preparedness and health care. This paper reviews the activities of only one federal agency during the accident, the Department of Health, Education, and Welfare (HEW), and its effectiveness in its role as the leading institution responsible for protecting the public health during the first accident in a nuclear power plant designed for the commerical generation of electricity in the United States. My comments are limited to only three acts dealing with radiological health and protection: the struggle for power and assertion of leadership in response to possible health consequences of the accident; the decisions to evacuate the area during the radiological emergency; and the use of potassium iodide as a means of protecting the public and the workers from the hazards of exposure to radioactive iodine released to the environment.

  19. DOE (Department of Energy) radiological calibrations intercomparison program: Results of fiscal year 1989

    SciTech Connect

    Murphy, M.K.; McDonald, J.C.

    1990-10-01

    In Fiscal Year 1989, the instrument sets were used to intercompare calibration fields associated with {sup 137}Cs, {sup 60}Co, {sup 90}Sr, {sup 241}AmBe and {sup 252}Cf. The results of the delivered-to-measured exposure rate and absorbed dose rate ratios were 1.00 {plus minus} 0.01 for photon measurements, 1.01 {plus minus} 0.01 for TLD measurements, 1.00 {plus minus} 0.02 for neutron measurements and a ratio of 1.03 for beta measurements. From the excellent agreement shown here it is evident that the radiological calibration intercomparison program is achieving its objective. 12 refs., 3 figs., 8 tabs.

  20. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  1. Bridging the gap between basic and clinical sciences: A description of a radiological anatomy course.

    PubMed

    Torres, Anna; Staśkiewicz, Grzegorz J; Lisiecka, Justyna; Pietrzyk, Łukasz; Czekajlo, Michael; Arancibia, Carlos U; Maciejewski, Ryszard; Torres, Kamil

    2016-05-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images requires the practitioner to not only hone certain technical skills, but to command an excellent knowledge of sectional anatomy and an understanding of the pathophysiology of the examined areas as well. Yet throughout many medical curricula there is often a large gap between traditional anatomy coursework and clinical training in imaging techniques. The authors present a radiological anatomy course developed to teach sectional anatomy with particular emphasis on ultrasonography and computed tomography, while incorporating elements of medical simulation. To assess students' overall opinions about the course and to examine its impact on their self-perceived improvement in their knowledge of radiological anatomy, anonymous evaluation questionnaires were provided to the students. The questionnaires were prepared using standard survey methods. A five-point Likert scale was applied to evaluate agreement with statements regarding the learning experience. The majority of students considered the course very useful and beneficial in terms of improving three-dimensional and cross-sectional knowledge of anatomy, as well as for developing practical skills in ultrasonography and computed tomography. The authors found that a small-group, hands-on teaching model in radiological anatomy was perceived as useful both by the students and the clinical teachers involved in their clinical education. In addition, the model was introduced using relatively few resources and only two faculty members. Anat Sci Educ 9: 295-303. © 2015 American Association of Anatomists. PMID:26599321

  2. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  3. Emergency imaging after a mass casualty incident: role of the radiology department during training for and activation of a disaster management plan.

    PubMed

    Berger, Ferco H; Körner, Markus; Bernstein, Mark P; Sodickson, Aaron D; Beenen, Ludo F; McLaughlin, Patrick D; Kool, Digna R; Bilow, Ronald M

    2016-01-01

    In the setting of mass casualty incidents (MCIs), hospitals need to divert from normal routine to delivering the best possible care to the largest number of victims. This should be accomplished by activating an established hospital disaster management plan (DMP) known to all staff through prior training drills. Over the recent decades, imaging has increasingly been used to evaluate critically ill patients. It can also be used to increase the accuracy of triaging MCI victims, since overtriage (falsely higher triage category) and undertriage (falsely lower triage category) can severely impact resource availability and mortality rates, respectively. This article emphasizes the importance of including the radiology department in hospital preparations for a MCI and highlights factors expected to influence performance during hospital DMP activation including issues pertinent to effective simulation, such as establishing proper learning objectives. After-action reviews including performance evaluation and debriefing on issues are invaluable following simulation drills and DMP activation, in order to improve subsequent preparedness. Historically, most hospital DMPs have not adequately included radiology department operations, and they have not or to a little extent been integrated in the DMP activation simulation. This article aims to increase awareness of the need for radiology department engagement in order to increase radiology department preparedness for DMP activation after a MCI occurs. PMID:26781837

  4. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-01-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own…

  5. Future challenges for nuclear power plant development research, and for radiological protection sciences.

    PubMed

    Lazo, Edward

    2007-11-01

    The promise of the future shines brightly for nuclear energy technology and production, yet also holds many challenges. Focus on new reactor designs is currently aiming at what is termed the fourth generation of reactors, which will come into operation after 2030. The 10 countries participating in the Generation-IV International Forum to develop the new generation of reactors have designated six reactor designs that will be studied. This paper will briefly discuss some of these challenges in new reactor designs in general. In addition to the challenges posed by new reactor designs, radiation protection is also faced with a series of challenges for the future. These are borne from experience with the implementation of the current system of radiological protection, from the evolution of radiation biological research, and from changes in society in the area of radiological risk assessment and management. This paper will address all of these emerging challenges, and point towards approaches to resolve them in the future. PMID:18049234

  6. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.; Noda, K.

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C4+ ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C4+, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  7. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source. PMID:24593538

  8. Basic research supported by the Office of Basic Energy Sciences, U.S. Department of Energy

    SciTech Connect

    Kelley, R.D.

    1995-08-01

    This presentation will outline the basic research activities of the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department`s mission. Of particular focus in the presentation are the research programs, amounting to about $10 million, supported by the Materials Sciences Division and the Chemical Sciences Division which are fairly directly related to electrochemical technologies.

  9. Investigating the Relationship of Sociodemographic and Personality Factors to Faculty Perceptions and Motivations Regarding the Use of Online Instruction in Radiologic and Imaging Sciences

    ERIC Educational Resources Information Center

    Washington, Angela E.

    2012-01-01

    The purpose of this quantitative correlational study was to investigate the relationship of sociodemographic and personality traits to faculty perceptions and motivations regarding the use of online instruction in radiologic and imaging sciences. A faculty perception and motivations survey of online instruction was administered online in order to…

  10. Reinventing Emergency Department Flow via Healthcare Delivery Science.

    PubMed

    DeFlitch, Christopher; Geeting, Glenn; Paz, Harold L

    2015-01-01

    Healthcare system flow resulting in emergency departments (EDs) crowding is a quality and access problem. This case study examines an overcrowded academic health center ED with increasing patient volumes and limited physical space for expansion. ED capacity and efficiency improved via engineering principles application, addressing patient and staffing flows, and reinventing the delivery model. Using operational data and staff input, patient and staff flow models were created, identifying bottlenecks (points of inefficiency). A new flow model of emergency care delivery, physician-directed queuing, was developed. Expanding upon physicians in triage, providers passively evaluate all patients upon arrival, actively manage patients requiring fewer resources, and direct patients requiring complex resources to further evaluation in ED areas. Sustained over time, ED efficiency improved as measured by near elimination of "left without being seen" patients and waiting times with improvement in door to doctor, patient satisfaction, and total length of stay. All improvements were in the setting on increased patient volume and no increase in physician staffing. Our experience suggests that practical application of healthcare delivery science can be used to improve ED efficiency. PMID:25929475

  11. Evaluation of PACS at Hammersmith Hospital: assessment of radiology performance in the accident and emergency department

    NASA Astrophysics Data System (ADS)

    Weatherburn, Gwyneth C.; Bryan, Stirling; Cocks, Robert

    1993-09-01

    In the Accident and Emergency Department (A&E) x-ray images are used to assist in the initial diagnosis and management of the patient. It is therefore expected that the main benefits of PACS in A&E will arise from the ability of clinicians to manipulate the digital image and thus potentially improve their diagnostic performance. In order to evaluate whether this benefit is realized or not a case-study evaluation has been undertaken; this has three components: (a) monitoring the extent of misdiagnosis by A&E clinicians before and after the PACS implementation; (b) an examination of the decision performance of the clinician-image combination for the visualization of the lower cervical spine/upper thoracic spine and of fracture of the head of the radius; and (c) a more general monitoring of the impact of the image archiving and communication aspects of PACS. In this paper the study of the impact of PACS on misdiagnosis by A&E clinicians at the Hammersmith Hospital, London, is described and pre-PACS results for the period 31 March 1992 to 30 September 1992 are presented.

  12. Technology as an Occasion for Structuring: Evidence from Observations of CT Scanners and the Social Order of Radiology Departments.

    ERIC Educational Resources Information Center

    Barley, Stephen R.

    1986-01-01

    New technologies such as the CT scanner are challenging traditional role relations among radiology workers and may be altering the organizational and occupational structure of radiological work. This paper expands recent sociological thought by showing how identical CT scanners occasion similar structuring processes and created divergent forms of…

  13. Using Mathematics in Science: Working with Your Mathematics Department

    ERIC Educational Resources Information Center

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  14. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  15. Evaluating Usability of Radiology Information Systems in Hospitals of Tabriz University of Medical Sciences

    PubMed Central

    Rezaei-Hachesu, Peyman; Pesianian, Esmaeil; Mohammadian, Mohsen

    2016-01-01

    Introduction and purpose: Radiology information system (RIS) in order to reduce workload and improve the quality of services must be well-designed. Heuristic evaluation is one of the methods that understand usability problems with the least time, cost and resources. The aim of present study is to evaluate the usability of RISs in hospitals. Research Method: This is a cross-sectional descriptive study (2015) that uses heuristic evaluation method to evaluate the usability of RIS used in 3 hospitals of Tabriz city. The data are collected using a standard checklist based on 13 principles of Nielsen Heuristic evaluation method. Usability of RISs was investigated based on the number of components observed from Nielsen principles and problems of usability based on the number of non-observed components as well as non-existent or unrecognizable components. Results: by evaluation of RISs in each of the hospitals 1, 2 and 3, total numbers of observed components were obtained as 173, 202 and 196, respectively. It was concluded that the usability of RISs in the studied population, on average and with observing 190 components of the 291 components related to the 13 principles of Nielsen is 65.41 %. Furthermore, problems of usability were obtained as 26.35%. Discussion and Conclusion: The established and visible nature of some components such as response time of application, visual feedbacks, colors, view and design and arrangement of software objects cause more attention to these components as principal components in designing UI software. Also, incorrect analysis before system design leads to a lack of attention to secondary needs like Help software and security issues. PMID:27041810

  16. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  17. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    ERIC Educational Resources Information Center

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  18. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and

  19. User acceptance of a picture archiving and communication system (PACS) in a Saudi Arabian hospital radiology department

    PubMed Central

    2012-01-01

    Background Compared with the increasingly widespread use of picture archiving and communication systems (PACSs), knowledge concerning users’ acceptance of such systems is limited. Knowledge of acceptance is needed given the large (and growing) financial investment associated with the implementation of PACSs, and because the level of user acceptance influences the degree to which the benefits of the systems for healthcare can be realized. Methods A Technology Acceptance Model (TAM) was used to assess the level of acceptance of the host PACS by staff in the radiology department at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. A questionnaire survey of 89 PACS users was employed to obtain data regarding user characteristics, perceived usefulness (PU) (6 items), perceived ease of use (PEU) (4 items), a change construct (4 items), and a behavior (acceptance) construct (9 items). Respondents graded each item in each construct using five-point likert scales. Results Surveyed users reported high levels of PU (4.33/5), PEU (4.15/5), change (4.26/5), and acceptance (3.86/5). The three constructs of PU, PEU, and change explained 41 % of the variation in PACS user acceptance. PU was the most important predictor, explaining 38 % of the variation on its own. The most important single item in the explanatory constructs was that users found PACS to have improved the quality of their work in providing better patient care. Technologists had lower acceptance ratings than did clinicians/radiologists, but no influence on acceptance level was found due to gender, age, or length of experience using the PACS. Although not directly measured, there appeared to be no cultural influence on either the level of acceptance or its determinants. Conclusions User acceptance must be considered when an organization implements a PACS, in order to enhance its successful adoption. Health organizations should adopt a PACS that offers all required functions and which is likely to

  20. Neureiter Increases State Department Science Acumen Through Salesmanship and Outside Experts

    NASA Astrophysics Data System (ADS)

    Dawson, Jim

    2003-07-01

    In an era when many international issues involve science, technology, or the environment, the infusion of scientists into the State Department is leading to better-informed foreign policy decisions. But those decisions are ultimately political, not scientific.

  1. School Subject Departments as Sites for Science Teachers Learning Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    McNicholl, Jane; Childs, Ann; Burn, Katharine

    2013-01-01

    This paper reports a study that explored science teacher learning of pedagogical content knowledge and the factors that facilitated this in their workplace, schools. The research design employed interview and observation in two secondary school science departments in England. A seven part construct of PCK was used to analyse all data and the…

  2. The Effect of a State Department of Education Mentoring Program for Teachers on Science Student Achievement

    ERIC Educational Resources Information Center

    Lyon, Gilda Darlene

    2009-01-01

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where…

  3. Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site

    SciTech Connect

    Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. M.; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

    2011-12-21

    The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environmental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

  4. An Academic Career in a Basic Medical Science Department of Physiology.

    ERIC Educational Resources Information Center

    Saba, Thomas M.

    1981-01-01

    The availability of opportunities and the development of an academic career in a physiology department within a medical school or basic science department by graduates and postgraduates who intend to participate in physiology on a full-time basis are discussed, emphasizing typical background and job responsibilities. (Author/DC)

  5. The Dilemma of Medical Curriculum Innovation for the University Basic Science Departments

    ERIC Educational Resources Information Center

    Weil, William B., Jr.

    1970-01-01

    In his address to the Council of Academic Societies at the 80th Annual Meeting of the Association of American Medical Colleges in Cincinnati, Ohio, November 1969, author re-examines the advantages and disadvantages of a basic science department that is exclusively a medical school department. (IR)

  6. Status of science education in state departments of education: An initial report

    NASA Astrophysics Data System (ADS)

    Dowling, Kenneth W.; Yager, Robert E.

    The past five years have been characterized as times of assessment in science education. One aspect of the profession where little information has been reported is the service and leadership provided by the various Departments of Education that exist as a part of the 50 state governments. Information was collected from the 50 states concerning the professional preparation of state science consultants, the nature of the positions, number of workers employed in such units, changes in support staff, facilities, and budget for each five year interval between 1960-1980. Science consultants are 46 years of age, have completed more than 10 years of classroom teaching, have been supervisors at the last level, have been in state positions for one-eight years, and have a Master's degree (half have the Ph.D.). Science consultants in the state department of education work in local schools, write proposals, assist with other administrative duties, work as members of evaluation teams. They spend two-thirds of their time in science education per se. The duties have become more general with less time spent exclusively on science education duties. The positions have become more involved with regulations, evaluations; the consultants enjoying less flexibility in their jobs. There has been a decline in terms of numbers of consultants, budget for science education; and general support for science education projects in state departments of education during the 20-year period surveyed.

  7. Characteristics Identified for Success by Restorative Dental Science Department Chairpersons.

    PubMed

    Wee, Alvin G; Weiss, Robert O; Wichman, Christopher S; Sukotjo, Cortino; Brundo, Gerald C

    2016-03-01

    The primary aim of this study was to determine the characteristics that current chairpersons in restorative dentistry, general dentistry, prosthodontics, and operative dentistry departments in U.S. dental schools feel are most relevant in contributing to their success. The secondary aim was to determine these individuals' rankings of the importance of a listed set of characteristics for them to be successful in their position. All 82 current chairs of the specified departments were invited to respond to an electronic survey. The survey first asked respondents to list the five most essential characteristics to serve as chair of a department and to rank those characteristics based on importance. Participants were next given a list of ten characteristics in the categories of management and leadership and, without being aware of the category of each individual item, asked to rank them in terms of importance for their success. A total of 39 chairpersons completed the survey (47.6% response rate; 83.3% male and 16.2% female). In section one, the respondents reported that leadership, vision, work ethic, integrity, communication, and organization were the most essential characteristics for their success. In section two, the respondents ranked the leadership characteristics as statistically more important than the management characteristics (p<0.0001) for being successful in their positions. PMID:26933102

  8. Diagnostic radiology

    SciTech Connect

    Leeds, N.E.; Jacobson, H.G.

    1986-10-17

    Developments in the burgeoning field of diagnostic radiology have continued apace. Four areas that represent either subspecialities or technological advances in diagnostic radiology will be considered in this report: ultrasonography, interventional radiology, nuclear radiology, and magnetic resonance. In no sense is the exclusion of other subdisciplines and modalities (eg, pediatric radiology, computed tomography) and indication of their of importance or their failure to include innovative concepts.

  9. A Radiological Image Processing Facility and some of its Three-Dimensional Data Manipulation Capabilities

    PubMed Central

    Huang, H.K.; Mankovich, Nicholas J.; Chuang, K.S.; Papin, Patrick; Lo, S. B.; Wong, C. K.; Hernandez-Armas, Jose

    1983-01-01

    In anticipation of the arrival of a digital radiology department, a dedicated image processing laboratory has been established within the Department of Radiological Sciences, UCLA. This laboratory consists of a multiple user computer, an image processor, a communication system, and an image mass storage device. Three major areas of activities in the laboratory are the development of a radiological image archiving and communication system, installation of a multiple digital viewing station, and research on picture processing techniques to enhance the image diagnostic value. This paper describes the system configuration of the laboratory and some of its capabilities in manipulating three-dimensional medical images. ImagesFigure 2Figure 3Figure 4

  10. The perception of science department chairs regarding the performance of community college science majors transferring to 4-year institutions

    NASA Astrophysics Data System (ADS)

    Ford, Brenda Jordan

    The purpose for conducting the study was to determine the perceptions held by science department chairs toward 2-year college transfer students regarding their ability to succeed in upper level science courses as compared to that of native students. A two-section, researcher-developed questionnaire was utilized to collect data. The first section was related to demographic information about the department chair's institution, such as institution size, number of transfer students at the institution, and the post-graduate plans of students. The second section presented 15 skills that if found in students should lead to academic success. A total of 61 (N = 61) surveys were returned, representing an overall return rate of 54.4%. The mean, the standard deviation, and paired t-tests were used to analyze the data. Results showed that science department chairs perceived significant differences in native and transfer students. The significant differences found between native and transfer students became greater as the size of the institution increased. The significant differences found between native and transfer students became less the greater the number of transfer students attending an institution. Significant differences were found between students planning to attend professional school and students going to jobs after graduation. No significant differences were found between students going to graduate school and those who were undecided about post-graduation plans. Two-year college transfer students were perceived by department chairs as having the ability to be academically successful at 4-year institutions.

  11. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  12. Operations Staff Astronomer - Deputy Head of the Paranal Science Operations Department

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Assignment: The Science Operations Department at ESO's Paranal Observatory (PSO) is responsible for all aspects of the direct support of observing operations of the VLT, the VLTI, and in the future, of the VST and VISTA, so as to optimize the scientific output of this world leading astronomical facility. The department currently comprises 26 operations staff astronomers, 14 telescope instrument operators, and 5 data handling administrators, as well as, for the functional part of their assignment, 15 postdoctoral fellows of ESO's Office for Science. Further recruitment is planned once all auxiliary telescopes of the VLTI, VST and VISTA become operational.

  13. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    SciTech Connect

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  14. Perspective on Department of Energy Geospatial Science: Past, Present, and Future

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    For many decades, the Department of Energy (DOE) has been a leader in basic scientific and engineering research that utilizes geospatial science to advance the state of knowledge in disciplines impacting national security, energy sustainability, and environmental stewardship. DOE recently established a comprehensive Geospatial Science Program that will provide an enterprise geographic information system infrastructure connecting all elements of DOE to critical geospatial data and associated geographic information services (GIServices). The Geospatial Science Program will provide a common platform for enhanced scientific and technical collaboration across DOE's national laboratories and facilities.

  15. A brief history of geospatial science in the Department of Energy

    SciTech Connect

    Bhaduri, Budhendra L

    2007-01-01

    The U.S. Department of Energy (DOE) has a rich history of significant contributions to geospatial science spanning the past four decades. In the early years, work focused on basic research, such as development of algorithms for processing geographic data and early use of LANDSAT imagery. The emphasis shifted in the mid-1970s to development of geographic information system (GIS) applications to support programs such as the National Uranium Resource Evaluation (NURE), and later to issue-oriented GIS applications supporting programs such as environmental restoration and management (mid-1980s through present). Throughout this period, the DOE national laboratories represented a strong chorus of voices advocating the importance of geospatial science and technology in the decades to come. The establishment of a Geospatial Science Program by the DOE Office of the Chief Information Officer in 2005 reflects the continued potential of geospatial science to enhance DOE's science, projects, and operations, as is well demonstrated by historical analysis.

  16. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  17. Department of Library and Information Science Student Handbook, 1998-1999.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Graduate School of Education

    This Handbook is divided into five main sections. Section one provides general information, including the Library and Information Science (LIS) calendar for 1998-99; LIS administration; programs sponsored by the LIS Department; facilities and resources; campus facilities and resources; student support/services; other student facilities;…

  18. Growing Collegial Cultures in Subject Departments in Secondary Schools: Working with Science Staff.

    ERIC Educational Resources Information Center

    Busher, Hugh; Blease, Derek

    2000-01-01

    Considers how particular approaches to leading and managing laboratory technicians in some (British) secondary-school science departments enhanced collegiality. In some schools, lab paraprofessionals are involved in decision-making. Trust, delegation based on ability, cooperative values, inclusive leadership styles, and a sense of belonging were…

  19. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  20. Radiological Assessment for the Vance Road Facility Source Vault, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratories had been used for a broad range of nuclear medicine research involving numerous radionuclides. These radionuclides were stored in the a source vault located on the first floor of the facility. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault after it had been remediated and in preparation for converting the area to office space.

  1. The effect of a state Department of Education mentoring program for teachers on science student achievement

    NASA Astrophysics Data System (ADS)

    Lyon, Gilda Darlene

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where the program had not intervened. The Georgia High School Graduation Test, physical science end-of-course, and biology end-of-course test data, from a three year period, were collected from the Georgia Department of Education website and analyzed using an independent-t test and the Mann-Whitney test. While test score improvements cannot be entirely attributed to the Science Specialist mentoring program, the study revealed state-wide increases in physical science end-of-course tests and the Georgia High School Graduation Test scores over the three-year period in those schools participating in the teacher-mentoring program. Significant increases in students with disabilities populations and economically disadvantaged populations were also noted.

  2. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the ...

  3. Imaging and radiology

    MedlinePlus

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  4. DOC/WSNSO (Department of Commerce/Weather Service Nuclear Support Office) operational support to Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Mueller, P.

    1989-01-01

    The National Weather Service (NWS) is an agency of the Department of Commerce. The NWS has hundreds of weather offices throughout the United States. The Weather Service Nuclear Support Office (WSNSO) is a highly specialized unit of NWS that provides direct support to the U.S. Department of Energy's (DOE's) underground nuclear testing program. The WSNSO has been associated with the DOE for >33 yr. As a result of the unique relationship with the DOE, all WSNSO emergency response meteorologists and meteorological technicians are allowed access to classified material. Meteorological phenomena play a significant role during a Federal Radiological Monitoring and Assessment Center (FRMAC) event, and WSNSO meteorologists provide direct support to ARAC. The marriage of state-of-the-art computer systems together with proven technology provides the on-scene WSNSO meteorologist with essentially a portable fully equipped, fully functional, advanced NWS weather station. The WSNSO's emergency response personnel and hardware are at the ready and can be mobilized within 2 h. WSNSO can provide on-scene weather forecasts and critical weather data collection whenever and wherever necessary.

  5. Medical response to a radiologic/nuclear event: integrated plan from the Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services.

    PubMed

    Coleman, C Norman; Hrdina, Chad; Bader, Judith L; Norwood, Ann; Hayhurst, Robert; Forsha, Joseph; Yeskey, Kevin; Knebel, Ann

    2009-02-01

    The end of the Cold War led to a reduced concern for a major nuclear event. However, the current threats from terrorism make a radiologic (dispersal or use of radioactive material) or nuclear (improvised nuclear device) event a possibility. The specter and enormousness of the catastrophe resulting from a state-sponsored nuclear attack and a sense of nihilism about the effectiveness of a response were such that there had been limited civilian medical response planning. Although the consequences of a radiologic dispersal device are substantial, and the detonation of a modest-sized (10 kiloton) improvised nuclear device is catastrophic, it is both possible and imperative that a medical response be planned. To meet this need, the Office of the Assistant Secretary for Preparedness and Response in the Department of Health and Human Services, in collaboration within government and with nongovernment partners, has developed a scientifically based comprehensive planning framework and Web-based "just-in-time" medical response information called Radiation Event Medical Management (available at http://www.remm.nlm.gov). The response plan includes (1) underpinnings from basic radiation biology, (2) tailored medical responses, (3) delivery of medical countermeasures for postevent mitigation and treatment, (4) referral to expert centers for acute treatment, and (5) long-term follow-up. Although continuing to evolve and increase in scope and capacity, current response planning is sufficiently mature that planners and responders should be aware of the basic premises, tools, and resources available. An effective response will require coordination, communication, and cooperation at an unprecedented level. The logic behind and components of this response are presented to allow for active collaboration among emergency planners and responders and federal, state, local, and tribal governments. PMID:18387707

  6. U.S. State Department urged to beef up science component

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. State Department often comes under pressure to respond to a variety of international emergencies one after another, from the U.S. embassy bombings in Kenya and Tanzania to Hurricane Mitch in Central America to the crisis in Kosovo.Many of the department's priorities include significant science, technology, and health (STH) components: nuclear nonproliferation, global climate change, protecting scientific databases, and international food and water supply safety, including arsenic in drinking water wells in Bangladesh, among other varied issues.

  7. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  8. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  9. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  10. Integrating IT into the radiology environment.

    PubMed

    McDonald, Andrea

    2002-01-01

    Rather than perpetuating the struggle, "who controls the PACS, Radiology or Information Technology (IT)," Community Hospital of the Monterey Peninsula (CHOMP) took the approach of incorporating IT support within the Radiology Department. CHOMP faced the challenge of staffing Radiology computer systems and networks by using a two-pronged approach; promoting and training clinical staff in IT functions and transferring an experienced IT person into the Radiology Department. Roles and responsibilities are divided. CHOMP's IT Department supports the Radiology Department's desktop devices, PCs, printers, and standard peripherals; while the department's DICOM print and archive network, specialized hardware (e.g., Merge DICOM interface computers), and applications are supported by the Radiology Department. The IT Department provides operating system support for multi-user VMS, Unix, and NT-based systems, e.g. Sun Solaris for the DICOM archive, and Windows NT for Mitra PACS Broker, the HL7/DICOM interface engine. IT also supports network communications, i.e., network electronics (routers, switches, etc.), TCP/IP communications, and network traffic analysis; and OS operations support for major Radiology systems, e.g. back-ups and off-site tape storage. Radiology staff provides applications support and troubleshooting, including analyst functions for RIS; and are the first point of contact with the Radiology systems vendors, e.g., GE Medical, or Siemens. The Radiology Department's senior IT person, the Clinical Technology Coordinator, transferred from CHOMP's IT Department after 7 years in that department. She performs analysis and design associated with Radiology's computer systems, coordinates development of the department's strategic plan, evaluates vendor proposals, and assists the department with product and application selection. Her IT experience and growing knowledge of Radiology's clinical tasks enhances communications between the Radiology and IT departments. Formal

  11. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1987-01-01

    This book is an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim is to show radiology as a dynamic subject. Orthopaedic Radiology is divided into two sections with the first part focusing on the principles of diagnostic imaging and interpretation and the second applying this information to practical clinical problems.

  12. Skeletal radiology

    SciTech Connect

    Bowerman, J.W.

    1982-01-01

    The main emphasis of the chapter on skeletal radiology is CAT scanning and its use in the diagnosis of neoplasms. Other topics that are discussed include infections, arthritis, trauma, and metabolic and endocrine diseases as they relate to skeletal radiology. (KRM)

  13. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  14. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    NASA Astrophysics Data System (ADS)

    Pruitt, Stephen L.

    This study analyzed a state department of education's ability to have actual influence over the improvement of science achievement and proficiency by having direct relationships with science teachers in Georgia's lowest performing schools. The study employed a mixed ANOVA analysis of the mean scale scores and proficiency rates of the science portion of the Georgia High School Graduation Test (GHSGT) for the years 2004 through 2007 to determine if the intervention by the Science Mentor Program (SMP) had significant effect on the science achievement and proficiency within the cohort of schools, as compared to a set of schools receiving no intervention, on various subgroups within the schools, and on various levels of intervention within the SMP. All data used in this study are available to the public through the Georgia Department of Education (GaDOE). SMP schools were selected based on their level of intervention for three consecutive years. Non-SMP schools were selected based on demographic similarities in economically disadvantaged, white, African-American, and students with disabilities to ensure a match of pairings for analyses. The results of this study showed significant improvement of scale scores and proficiency rates between 2004 and 2007. The study showed significant increases in all schools regardless of treatment. The study also showed significant differences in performance within the subgroups. Males, white, non-Economically Disadvantaged, and regular education students were all found to have significantly better performance in both achievement and proficiency rate. Economically Disadvantaged students were found to have a significant difference with regard to treatment groups. There was a significant difference between the mean scale score and proficiency rates of Economically Disadvantaged students in schools receiving high-intervention and schools receiving no-intervention. Further analysis showed that the only significant difference was in 2004, the

  15. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  16. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  17. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  18. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  19. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  20. 10 CFR 835.501 - Radiological areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological areas. 835.501 Section 835.501 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.501 Radiological areas. (a) Personnel entry control shall be maintained for each radiological area. (b) The degree of control shall...

  1. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  2. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  3. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  4. 21 CFR 892.1980 - Radiologic table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A...

  5. Handbook of radiologic procedures

    SciTech Connect

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography.

  6. The Role of Geoscience Departments in Developing the Earth Science Teacher Workforce: A Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Karsten, J.

    2003-12-01

    Undergraduate geoscience departments play a critical role in the preparation of future teachers. This workshop sponsored by AGU and NAGT with funding from NSF brought together geoscience faculty known for their work in teacher preparation, Earth Science teachers and representatives from schools of education. Discussion focused on critical contributions of geoscience departments in recruiting, mentoring and advising future teachers; designing research and teaching experiences for future teachers; developing links between education and geoscience departments; supporting alumni in the teaching profession; and the role of introductory courses in teacher preparation. Each participant contributed a short essay describing the strengths of their program for teachers. The essay collection provides a snapshot of the breadth and innovative nature of current practice in geoscience departments around the country (serc.carleton.edu/NAGTWorkshops/teacherprep03). A summary of the program, powerpoint presentations, and discussion highlights are also available on the website. Of special interest are 1) approaches to introductory courses including revision of teaching methods in the general introductory course to demonstrate a range of pedagogy; separate introductory course sections or laboratory sections for pre-service teachers; and an integrated science approach for pre-service elementary teachers; 2) results of brainstorming sessions on mechanisms for recruiting and supporting Earth Science teachers suggesting a range of activities taking place before, during, and after participation in the geoscience program; 3) a summary of why teaching and research experiences are important for pre-service teachers and recommendations for program elements that lead to successful experiences and 4) plenary presentations on lessons learned from the NSF programs (Prival) and effective program design (Ridkey).

  7. The Perceptions of Globalization at a Public Research University Computer Science Graduate Department

    NASA Astrophysics Data System (ADS)

    Nielsen, Selin Yildiz

    Based on a qualitative methodological approach, this study focuses on the understanding of a phenomenon called globalization in a research university computer science department. The study looks into the participants' perspectives about the department, its dynamics, culture and academic environment as related to globalization. The economic, political, academic and social/cultural aspects of the department are taken into consideration in investigating the influences of globalization. Three questions guide this inquiry: 1) How is the notion of globalization interpreted in this department? 2) How does the perception of globalization influence the department in terms of finances, academics, policies and social life And 3) How are these perceptions influence the selection of students? Globalization and neo-institutional view of legitimacy is used as theoretical lenses to conceptualize responses to these questions. The data include interviews, field notes, official and non-official documents. Interpretations of these data are compared to findings from prior research on the impact of globalization in order to clarify and validate findings. Findings show that there is disagreement in how the notion of globalization is interpreted between the doctoral students and the faculty in the department. This disagreement revealed the attitudes and interpretations of globalization in the light of the policies and procedures related to the department. How the faculty experience globalization is not consistent with the literature in this project. The literature states that globalization is a big part of higher education and it is a phenomenon that causes the changes in the goals and missions of higher education institutions (Knight, 2003, De Witt, 2005). The data revealed that globalization is not the cause for change but more of a consequence of actions that take place in achieving the goals and missions of the department.

  8. Clinical guidelines for responding to chemical, biological, radiological, nuclear and trauma/burn mass casualty incidents: Quick reference guides for emergency department staff.

    PubMed

    Albanese, Joseph; Burich, David; Smith, Deborah; Hayes, Lynn; Paturas, James; Tomassoni, Anthony

    The word 'DISASTER' may be used as a mnemonic for listing the critical elements of emergency response. The National Disaster Life Support Education Foundation's (NDLSEC) DISASTER paradigm emphasises out-of-hospital emergency response and includes the following elements: (1) detect; (2) incident command system; (3) security and safety; (4) assessment; (5) support; (6) triage and treatment; (7) evacuate; and (8) recovery. This paper describes how the DISASTER paradigm was used to create a series of clinical guidelines to assist the preparedness effort of hospitals for mitigating chemical, biological, radiological, nuclear incidents or explosive devices resulting in trauma/burn mass casualty incidents (MCIs) and their initial response to these events. Descriptive information was obtained from observations and records associated with this project. The information contributed by a group of subject matter experts in disaster medicine, at the Yale New Haven Health System Center for Emergency Preparedness and Disaster Response was used to author the clinical guidelines. Akin to the paradigm developed by the NDLSEC for conducting on-scene activities, the clinical guidelines use the letters in the word 'disaster' as a mnemonic for recalling the main elements required for mitigating MCIs in the hospital emergency department. PMID:25416374

  9. Radiological worker training

    SciTech Connect

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  10. Gender Ratios in High School Science Departments: The Effect of Percent Female Faculty on Multiple Dimensions of Students' Science Identities

    ERIC Educational Resources Information Center

    Gilmartin, Shannon; Denson, Nida; Li, Erika; Bryant, Alyssa; Aschbacher, Pamela

    2007-01-01

    To examine how school characteristics are tied to science and engineering views and aspirations of students who are underrepresented in science and engineering fields, this mixed-methods study explores relationships between aspects of students' science identities, and the representation of women among high school science teachers. Quantitative…

  11. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    ERIC Educational Resources Information Center

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  12. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    ERIC Educational Resources Information Center

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  13. Annual Report and Abstracts of Research of the Department of Computer and Information Science, July 1976-June 1977.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    The annual report of the Department of Computer and Information Science includes abstracts of research carried out during the 1976-77 academic year with support from grants by governmental agencies and industry, as well as The Ohio State University. The report covers the department's organizational structure, objectives, highlights of department…

  14. A study of the role expectations of the science supervisor and the fostering of collaboration within the high school science department

    NASA Astrophysics Data System (ADS)

    Hughes, Janet

    2001-07-01

    The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.

  15. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  16. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    SciTech Connect

    Abdallah, I; Aly, A; Al Naemi, H

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  17. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-04-01

    The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.

  18. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    NASA Astrophysics Data System (ADS)

    Biri, S.; Kitagawa, A.; Muramatsu, M.; Drentje, A. G.; Rácz, R.; Yano, K.; Kato, Y.; Sasaki, N.; Takasugi, W.

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  19. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences

    SciTech Connect

    Biri, S.; Rácz, R.; Sasaki, N.; Takasugi, W.

    2014-02-15

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1–18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1–18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode.

  20. Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences.

    PubMed

    Biri, S; Kitagawa, A; Muramatsu, M; Drentje, A G; Rácz, R; Yano, K; Kato, Y; Sasaki, N; Takasugi, W

    2014-02-01

    The two-frequency heating technique was studied to increase the beam intensities of highly charged ions provided by the high-voltage extraction configuration (HEC) ion source at the National Institute of Radiological Sciences (NIRS). The observed dependences on microwave power and frequency suggested that this technique improved plasma stability but it required precise frequency tuning and more microwave power than was available before 2013. Recently, a new, high-power (1200 W) wide band-width (17.1-18.5 GHz) travelling-wave-tube amplifier (TWTA) was installed. After some single tests with klystron and TWT amplifiers the simultaneous injection of the two microwaves has been successfully realized. The dependence of highly charged ions (HCI) currents on the superposed microwave power was studied by changing only the output power of one of the two amplifiers, alternatively. While operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was swept within its full limits (17.1-18.5 GHz), and the effect of this frequency on the HCI-production rate was examined under several operation conditions. As an overall result, new beam records of highly charged argon, krypton, and xenon beams were obtained at the NIRS-HEC ion source by this high-power two-frequency operation mode. PMID:24593510

  1. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  2. Multimedia in the radiology environment

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Ramaswamy, Mohan R.; Arenson, Ronald L.

    1994-05-01

    Accessibility of multimedia information related to radiology in a timely manner is a key to success in practicing radiology in the future. In this paper we describe the concept of multimedia in the radiology environment and its implementation in our department at UCSF. This paper emphasizes the various types of databases related to radiology including HIS, RIS, PACS image database, digital voice dictation system, electronic mail and library information system. A method to interconnect these databases is through a comprehensive network architecture that also is described. As an application, we introduce the concept of a departmental image file server, for any of the 150 Macintosh users in the department to access this multimedia information.

  3. Interventional radiology

    SciTech Connect

    Castaneda-Zuniga, W.R.

    1987-01-01

    This reference gives a step-by-step presentation of the elements of interventional radiology. CONTENTS: Introduction; Radiation protection; Embolotherapy; Interventional techniques in the management of gastrointestinal bleeding; Transluminal angioplasty; Thrombolytic therapy; Foreign body removal; Inferior vena cava filter placement; Percutaneous uroradiologic techniques; Interventional techniques in the biliary tract; Nonvascular gastrointestinal tract dilations; Percutaneous biopsy techniques; Drainage of abscess fluid collections in the abdomen.

  4. Orthopaedic radiology

    SciTech Connect

    Park, W.M.; Hughes, S.P.F.

    1985-01-01

    This book provides an account of the principles of modern diagnostic imaging techniques and their applications in orthopedics. The aim of the book is to show radiology as a dynamic subject which can help clinicians, while at the same time assisting radiologists to understand the needs of the orthopedic surgeon.

  5. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  6. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  7. Subject, Relationships and Identity: The Role of a Science Department in the Professional Learning of a Non-University Science Educated Teacher

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John

    2007-01-01

    This article employs the concept of community to interpret teacher professional learning in the context of the school science department. Using the transcripts of staff meetings, lesson observations and the conversations of school administrators, the departmental community is examined in terms of three metaphors: subject, relationships and…

  8. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  9. TECHNICAL SUPPORT FOR RADIOLOGICAL EMERGENCY PROTECTION ACTION RECOMMENDATIONS

    EPA Science Inventory

    RPD staff provide techical support for other EPA offices, other Federal departments and agencies and to state and local governments in preparing for and responding to radiological and nuclear emergencies under the National Response Framework's Nuclear/Radiological Incident Annex....

  10. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  11. Chest radiology

    SciTech Connect

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case.

  12. Genitourinary radiology

    SciTech Connect

    McClennan, B.L.

    1982-01-01

    A literature review of genitourinary radiology highlights new findings in the field that have occurred in the past year. The physiology of contrast media, and the occasional life-threatening contrast medial reaction are discussed. Common urologic problems such as stones, infection, and obstruction are examined in order to interpret static radiographs in a more meaningful way. The field of interventional uroradiology continues to expand, with new procedures being tried and new indications for old procedures being developed. (KRM)

  13. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  14. The Radiological Research Accelerator Facility

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  15. ASAS Centennial Paper: The future of teaching and research in companion animal biology in departments of animal sciences.

    PubMed

    McNamara, J P

    2009-01-01

    Departments of animal sciences must be relevant to a society in which a small number of people can raise almost all the food animal products needed. The declining number of people involved in animal agriculture has decreased enrollment of students interested in food animals in many departments of animal science. However, several departments welcomed students from a diverse background and began research on animals other than food animals. In many states, the undergraduate enrollment is made up primarily of students interested only in companion animals. A benefit of this is that we have recruited new students into animal agriculture and they have gone on to excellent careers. We have a new challenge now: how to maintain and expand the efforts in teaching, research, and outreach of companion animal science. Departments wishing to expand in teaching have examples of successful courses and curricula from other departments. Some departments have expanded their teaching efforts across their own university to teach about pets to a wider audience than their own majors; other departments can follow. In research, a small number of faculty have been able to establish extramurally funded projects on pets, including horses. But it will be difficult for more than a handful of departments to have a serious research effort in dogs, cats, birds, fish, or exotic animals. Departments will have to make a concerted effort to invest in such endeavors; joint ventures with other universities and colleges of veterinary medicine (or medicine) will probably be required. Funding sources for "traditional" efforts in nutrition, reproduction, and physiology are small and inconsistent; however, with the progress of the equine, canine, and feline genome projects, there should be opportunities from federal funding sources aimed at using animal models for human health. In addition, efforts in animal behavior and welfare can be expanded, perhaps with some funding from private foundations or animal

  16. [Management of pulmonary masses by guided transthoracic fine needle biopsy under computed tomography. Contribution from the Pathology and Radiology Departments of the Percy Military Hospital (Clamart, France) over 10 years].

    PubMed

    Harket, A; Weber-Donat, G; Tériitéhau, C; Saint-Blancard, P

    2010-09-01

    Examining 260 samples of pulmonary nodules obtained by percutaneous biopsy under tomodensitometric control from the departments of radiology and pathology over 10 years, the authors note the advantages and disadvantages of this technique, provide the results of their experience and emphasise the importance of these biopsies in malignant pathology. The results of this series can be superposed with those found in the literature. Malignant tumours account for 75 % of the cases, with a clear prevalence of primitive adenocarcinoma. Benign pathology (approximately, 14 % of the cases) was represented by necrosis without any specificity, fibrous reaction and infectious causes. The act had to be repeated for the false negatives (7 %). PMID:20933168

  17. The Perspectives of Lecturers on the Action Research Journey in the Mathematics and Science Department of Singapore Polytechnic

    ERIC Educational Resources Information Center

    Khiat, Henry; Chia, Hui Teng; Tan-Yeoh, Ah Choo; Kok-Mak, Chew Pheng

    2011-01-01

    The goal of this research was to understand the various aspects of the action research initiative in the Department of Mathematics and Science, Singapore Polytechnic. A total of 55 lecturers took part in this study and data were collected through semi-structured questionnaires, informal conversations with the lecturers, observations of their…

  18. 1970 Guide Book to Departments in the Mathematical Sciences in the United States and Canada, Fourth Edition.

    ERIC Educational Resources Information Center

    Hailpern, Raoul

    This guidebook is intended to provide information about the location, size, staff, library facilities, course offerings, and special features of departments in mathematical sciences in four year colleges and universities in the United States and Canada. The information is presented in two parts: (1) information about colleges offering…

  19. A Glance at Performance Management in Departments for Preparation of Secondary Mathematics, Engineering, Technology and Science Teachers in France

    ERIC Educational Resources Information Center

    Tchibozo, Guy

    2005-01-01

    In France, secondary teachers are public sector employees. Becoming a STEM (Science, Technology, Engineering, and Math) teacher in secondary education is subject to passing public competitive entry examinations. Preparation for these examinations is provided in College Departments, which are essentially assessed on the basis of their success…

  20. Pediatric radiology

    SciTech Connect

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton. (KRM)

  1. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  2. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  3. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  4. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  5. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2013-05-28

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  6. INL@Work Radiological Search & Response Training

    SciTech Connect

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  7. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated...

  8. Radiology Aide. Instructor Key [and] Student Manual.

    ERIC Educational Resources Information Center

    Hartwein, Jon; Dunham, John

    This manual can be used independently by students in secondary health occupations programs or by persons receiving on-the-job training in a radiology department. The manual includes an instructor's key that provides answers to the activity sheets and unit evaluations. The manual consists of the following five units: (1) orientation to radiology;…

  9. 10 CFR 835.4 - Radiological units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiological units. 835.4 Section 835.4 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.4 Radiological units. Unless otherwise specified, the quantities used in the records required by this part shall be clearly indicated in special units of curie, rad, roentgen,...

  10. Monitor displays in radiology: Part 2

    PubMed Central

    Indrajit, IK; Verma, BS

    2009-01-01

    Monitor displays play an important role in modern radiology practice. Practicing radiologists need to be familiar with the various performance parameters of medical-grade displays. A certain amount of technical knowledge is useful when making purchasing decisions since the right choice of equipment can have a great impact on the accuracy, efficiency, and speed in the radiology department. PMID:19881061

  11. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  12. Dental radiology.

    PubMed

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed. PMID:19410234

  13. Informatics in radiology: Render: an online searchable radiology study repository.

    PubMed

    Dang, Pragya A; Kalra, Mannudeep K; Schultz, Thomas J; Graham, Steven A; Dreyer, Keith J

    2009-01-01

    Radiology departments are a rich source of information in the form of digital radiology reports and images obtained in patients with a wide spectrum of clinical conditions. A free text radiology report and image search application known as Render was created to allow users to find pertinent cases for a variety of purposes. Render is a radiology report and image repository that pools researchable information derived from multiple systems in near real time with use of (a) Health Level 7 links for radiology information system data, (b) periodic file transfers from the picture archiving and communication system, and (c) the results of natural language processing (NLP) analysis. Users can perform more structured and detailed searches with this application by combining different imaging and patient characteristics such as examination number; patient age, gender, and medical record number; and imaging modality. Use of NLP analysis allows a more effective search for reports with positive findings, resulting in the retrieval of more cases and terms having greater relevance. From the retrieved results, users can save images, bookmark examinations, and navigate to an external search engine such as Google. Render has applications in the fields of radiology education, research, and clinical decision support. PMID:19564253

  14. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-01-01

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  15. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  16. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    PubMed

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed. PMID:25927511

  17. Battlefield radiology

    PubMed Central

    Graham, R N J

    2012-01-01

    With the increasing tempo of military conflicts in the last decade, much has been learnt about imaging battlefield casualties in the acute setting. Ultrasound in the form of focused abdominal sonography in trauma (FAST) has proven invaluable in emergency triage of patients for immediate surgery. Multidetector CT allows accurate determination of battlefield trauma injuries. It permits the surgeons and anaesthetists to plan their interventions more thoroughly and to be made aware of clinically occult injuries. There are common injury patterns associated with blast injury, gunshot wounds and blunt trauma. While this body of knowledge is most applicable to the battlefield, there are parallels with peacetime radiology, particularly in terrorist attacks and industrial accidents. This pictorial review is based on the experiences of a UK radiologist deployed in Afghanistan in 2010. PMID:22806621

  18. Success With Offering a Diversity of Majors in the Earth Science Department at the University of Northern Colorado

    NASA Astrophysics Data System (ADS)

    Nesse, W. D.; Taber, M. R.; Hoyt, W. H.

    2003-12-01

    Today, the number of geology majors at the University of Northern Colorado (UNC) has declined to just 10 percent of the mid-1980s peak. At issue is the sustainability of a viable geology program, with a minimum of three tenure-track faculty and few graduating geology students. One solution to the sustainability issue is diversity of Earth Science Majors within a given department. At UNC we have five emphasis areas: Environmental Earth Science, General Earth Science, Geology, Meteorology, and Secondary and Middle Level Teaching. We have had the good fortune to add many Meteorology and Environmental Earth Science majors, while the Geology, Middle Level Teaching, and General Earth Science majors have declined in number. As students' academic goals fluctuate in the geosciences (often directly tied to the marketability), the diversity of major offerings allows for the department to maintain a balance in the number of majors. Today, we are close to the number of Earth Science majors we've averaged over the last 20 years (~135 majors). Strong advising is essential for our evolving systems to work for the students and the Department. Another stabilizing factor for the Department is the masters program, which provides graduate student teaching assistants at a low cost to the university-most of our teaching assistants teach General Geology labs, and that course continues to be an effective recruiting mechanism for all of the emphasis areas to some degree. State budget constraints have forced creativity in course offerings. For example, we still require a Geology Field Camp for graduation, but send our students to other university field camps - a cost saving for us. In addition, many of our courses serve multiple emphasis areas, mirroring the nature of earth system science. Moreover, we have managed to combine some upper division courses (mineralogy and earth materials, for example), offered others on an alternate-year basis, reduce the number of upper division electives, and

  19. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  20. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  1. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  2. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  3. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  4. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  5. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  6. 21 CFR 892.1830 - Radiologic patient cradle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle....

  7. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality...

  8. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  9. Current radiology. Volume 5

    SciTech Connect

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular.

  10. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    ERIC Educational Resources Information Center

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  11. Radiological Control Manual

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  12. The top 100 articles in the radiology of trauma: a bibliometric analysis.

    PubMed

    Dolan, Ryan Scott; Hanna, Tarek N; Warraich, Gohar Javed; Johnson, Jamlik-Omari; Khosa, Faisal

    2015-12-01

    The purpose of this study was to identify the 100 top-cited articles in the radiology of trauma, analyze the resulting database to understand factors resulting in highly cited works, and establish trends in trauma imaging. An initial database was created via a Web of Science (WOS) search of all scientific journals using the search terms "trauma" and either "radiology" or a diagnostic modality. Articles were ranked by citation count and screened by two attending radiologists plus a tiebreaker for appropriateness. The following information was collected from each article: WOS all database citations, year, journal, authors, department affiliation, study type and design, sample size, imaging modality, subspecialty, organ, and topic. Citations for the top 100 articles ranged from 82-252, and citations per year ranged from 2.6-37.2. A plurality of articles were published in the 1990s (n = 45) and 1980s (n = 31). Articles were published across 24 journals, most commonly Radiology (n = 31) and Journal of Trauma-Injury, Infection, and Critical Care (n = 28). Articles had an average of five authors and 35 % of first authors were affiliated with a department other than radiology. Forty-six articles had sample sizes of 100 or fewer. Computed tomography (CT) was the most common modality (n = 67), followed by magnetic resonance (MR; n = 22), and X-ray (XR; n = 11). Neuroradiology (n = 48) and abdominal radiology (n = 36) were the most common subspecialties. The 100 top-cited articles in the radiology of trauma are diverse. Subspecialty bibliometric analyses identify the most influential articles of a particular field, providing more implications to clinical radiologists, trainees, researchers, editors, and reviewers than radiology-wide lists. PMID:26377425

  13. [Virtual organization in the digital age of radiology - principle and solution for radiologic research?].

    PubMed

    Leppek, R; Krass, S; Bourquain, H; Lang, M; Wein, B; Mildenberger, P; Schaller, S; Klose, K J; Peitgen, H-O

    2003-11-01

    The research project "VICORA - Virtual Institute for Computer-Assisted Radiology", funded by the German Federal Ministry of Education and Research, was initiated in the year 2000. Its virtual organization brings together physical science, engineering, information technology, clinical radiology and the medical technology industry. In the German radiology research domain VICORA serves as a model for interdisciplinary collaboration for the changing radiology paradigm illustrated by a "radiologycube". The project does not only aim at scientific goals but also considers the infrastructure, components and human resource management within a virtual organization. The common rapid prototyping platform ILAB 4 ensures user-friendly and time-efficient software that assists with the routine radiology work-flow including full DICOM functionality. By offering a new work environment and collaborative culture based on telematics and knowledge exchange in radiology research, VICORA overcomes limitations of traditional research organization. PMID:14610709

  14. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2013-11-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  15. Professional development in person: identity and the construction of teaching within a high school science department

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  16. Radiological sinonasal anatomy

    PubMed Central

    Alrumaih, Redha A.; Ashoor, Mona M.; Obidan, Ahmed A.; Al-Khater, Khulood M.; Al-Jubran, Saeed A.

    2016-01-01

    Objectives: To assess the prevalence of common radiological variants of sinonasal anatomy among Saudi population and compare it with the reported prevalence of these variants in other ethnic and population groups. Methods: This is a retrospective cross-sectional study of 121 computerized tomography scans of the nose and paranasal sinuses of patients presented with sinonasal symptoms to the Department of Otorhinolarngology, King Fahad Hospital of the University, Khobar, Saudi Arabia, between January 2014 and May 2014. Results: Scans of 121 patients fulfilled inclusion criteria were reviewed. Concha bullosa was found in 55.4%, Haller cell in 39.7%, and Onodi cell in 28.9%. Dehiscence of the internal carotid artery was found in 1.65%. Type-1 and type-2 optic nerve were the prevalent types. Type-II Keros classification of the depth of olfactory fossa was the most common among the sample (52.9%). Frontal cells were found in 79.3%; type I was the most common. Conclusions: There is a difference in the prevalence of some radiological variants of the sinonasal anatomy between Saudi population and other study groups. Surgeon must pay special attention in the preoperative assessment of patients with sinonasal pathology to avoid undesirable complications. PMID:27146614

  17. Radiological Illustration of Spontaneous Ovarian Hyperstimulation Syndrome

    PubMed Central

    Mittal, Kartik; Koticha, Raj; Dey, Amit K.; Anandpara, Karan; Agrawal, Rajat; Sarvothaman, Madhva P.; Thakkar, Hemangini

    2015-01-01

    Summary Background The role of radiology is of utmost importance not only in diagnosing s-OHSS but also in ruling out other cystic ovarian diseases and to determine the underlying etiology and course of the disease. We presented a radiological algorithm for diagnosing the various causes of s-OHSS. Case Report A 26-year-old female, gravida one was referred to radiology department with history of lower abdominal pain, nausea and vomiting since 2 days which was gradual in onset and progression. The patient had no significant medical and surgical history. Conclusions This article illustrates and emphasizes that diagnosis of s-OHSS and its etiology can be completely evaluated radiologically. Biochemical markers will confirm the radiological diagnosis. PMID:25960820

  18. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space.

  19. 44 CFR 351.28 - The Department of Commerce.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... requirements for meteorological and hydrological services for radiological emergencies and assist State and... radiological emergency plans. (c) Participate with FEMA in assisting State and local governments in...

  20. 44 CFR 351.27 - The Department of Defense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... weapon storage sites) including distances, time and radiological characteristics. (b) Develop, with FEMA... for use in testing and exercising radiological emergency plans. (c) Assist State and local...

  1. 44 CFR 351.27 - The Department of Defense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... weapon storage sites) including distances, time and radiological characteristics. (b) Develop, with FEMA... for use in testing and exercising radiological emergency plans. (c) Assist State and local...

  2. 44 CFR 351.27 - The Department of Defense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... weapon storage sites) including distances, time and radiological characteristics. (b) Develop, with FEMA... for use in testing and exercising radiological emergency plans. (c) Assist State and local...

  3. 44 CFR 351.27 - The Department of Defense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... weapon storage sites) including distances, time and radiological characteristics. (b) Develop, with FEMA... for use in testing and exercising radiological emergency plans. (c) Assist State and local...

  4. 44 CFR 351.28 - The Department of Commerce.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS RADIOLOGICAL EMERGENCY PLANNING AND PREPAREDNESS Interagency... requirements for meteorological and hydrological services for radiological emergencies and assist State and... radiological emergency plans. (c) Participate with FEMA in assisting State and local governments in...

  5. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  6. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  7. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  8. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  9. Staff Report to the Senior Department Official on Recognition Compliance Issues. Recommendation Page: National Accrediting Commission Of Cosmetology Arts and Sciences

    ERIC Educational Resources Information Center

    US Department of Education, 2010

    2010-01-01

    The National Accrediting Commission of Cosmetology Arts and Sciences (NACCAS) is a national accreditor whose scope of recognition is for the accreditation throughout the United States of postsecondary schools and departments of cosmetology arts and sciences and massage therapy. The agency accredits approximately 1,300 institutions offering…

  10. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    ERIC Educational Resources Information Center

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  11. Perceived Quality and Methodology in Graduate Department Ratings: Sociology, Political Science, and Economics.

    ERIC Educational Resources Information Center

    Paxton, Pamela; Bollen, Kenneth A.

    2003-01-01

    Analyzes graduate school ratings in three related disciplines - sociology, political science, and economics - from two rating sources: the National Research Council and "U.S. News and World Report." Hypothesizes three major components to ratings: perceived departmental quality, systematic error owing to the method of data collection, and random…

  12. The Challenge for Math/Science Departments: Balancing Teaching and Grant Writing.

    ERIC Educational Resources Information Center

    Srivastava, Ravindra M., Ph. D

    1998-01-01

    States that lack of resources in math and science education is forcing faculty to seek external grants. Asserts that such fundraising efforts consume time and energy, and often detract from the teaching, community-service, and other nurturing missions of the college. Suggests that administrators acknowledge the changing role of teachers and offer…

  13. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    ERIC Educational Resources Information Center

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  14. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  15. Capital Middle Schools Science Department, Preliminary List of Behavioral/Performance Objectives.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This monograph provides basic behavioral objectives designed for a middle school science curriculum. Emphasis is placed on the study of the living environment for students in grade five. This includes the study of plants, animals, the human body, and the use of the microscope, classification and the scientific method. Objectives for grade six are…

  16. Mandated Curriculum Change and a Science Department: A Superficial Language Convergence?

    ERIC Educational Resources Information Center

    Melville, Wayne

    2008-01-01

    This article investigates the introduction of a systemic curriculum change, the Essential Learnings curriculum framework, in the Australian state of Tasmania. Using Gee's [(2003). Language in the science classroom: Academic social languages as the heart of school-based literacy. In: R. Yerrick, & W.-M. Roth (Eds.), "Establishing scientific…

  17. A look at the definition, pedagogy, and evaluation of scientific literacy within the natural science departments at a southwestern university

    NASA Astrophysics Data System (ADS)

    Flynn, Deborah Kay

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The results of the research study suggest that participants express their idea of scientific literacy through storytelling, real world connections, technology, and collaboration. Results suggest that diversity in the perception of scientific literacy within these themes did occur, either actually or conceptually. The research used the definition and components set forth by the National Research Council as a benchmark when looking at the participants' own definition, incorporation and evaluation of scientific literacy.

  18. DOE Radiological Control Manual Core Training Program

    SciTech Connect

    Scott, H.L.; Maisler, J.

    1993-12-31

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program.

  19. Common Interventional Radiology Procedures

    MedlinePlus

    ... of common interventional techniques is below. Common Interventional Radiology Procedures Angiography An X-ray exam of the ... into the vertebra. Copyright © 2016 Society of Interventional Radiology. All rights reserved. 3975 Fair Ridge Drive • Suite ...

  20. Mobile computing for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Sharma, Arjun; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Kung, Justin W; Loehfelm, Thomas W; Sherry, Steven J

    2013-12-01

    The rapid advances in mobile computing technology have the potential to change the way radiology and medicine as a whole are practiced. Several mobile computing advances have not yet found application to the practice of radiology, while others have already been applied to radiology but are not in widespread clinical use. This review addresses several areas where radiology and medicine in general may benefit from adoption of the latest mobile computing technologies and speculates on potential future applications. PMID:24200475

  1. Stress management for the radiologic technologist.

    PubMed

    Romano, Jeannine M

    2012-01-01

    Changes in technology in the radiology department and an emphasis on multitasking can lead to stress and burnout, along with the potential for medical errors. A shift in viewpoint and exercises in self-evaluation can help radiologic technologists learn to manage change in a positive manner. Learning to approach change through a series of transitions and positive steps can reduce stress at work and at home. PMID:22988262

  2. A career ladder for radiological technologists.

    PubMed

    Gillan, G D; Pearce, J; Rutherford, M; Walters, L

    1984-03-01

    A career ladder is a mechanism for employee progression within a chosen field. This paper describes the design and implementation of such a system in a large community radiology department. The career ladder system included integrated job descriptions, salary scales and evaluation procedures for radiology technologists. The implementation of this new system had a positive effect on employee morale manifested in decreased turnover, less absenteeism and increased job satisfaction. PMID:10265983

  3. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    ERIC Educational Resources Information Center

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  4. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  5. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    SciTech Connect

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  6. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  7. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    SciTech Connect

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  8. What is the pharmaceutical industry doing, and what does the pharmaceutical industry want from animal science departments?

    PubMed

    Lauderdale, J W

    1999-02-01

    Perceived contemporary issues are 1) food safety and food healthfulness, 2) environment, 3) sustainability, 4) biotechnology, 5) animal well-being, 6) animals as food, and 7) research funding. Food safety is the paramount contemporary issue, and environment and sustainability issues can be considered as a single issue. Biotechnology, animal well-being, and animals as food are addressed in this paper as separate issues, but they can be considered as components of food safety and healthfulness. The pharmaceutical industry addresses these issues by providing safe and effective products to the livestock industry. These products are used to treat and prevent disease and to increase livestock production efficiency. These products contribute to a safe food supply, enhance protection of the environment, and increase the sustainability of animal agriculture through increased efficiency of livestock production. The pharmaceutical industry wants the following from animal science departments: 1) students skilled in deductive and inductive thinking and communicating to peers and the public; 2) regional research on food safety, such as irradiation, steaming of carcasses, E. coli contamination, antibiotic resistance, production facilities, and carcass contamination; 3) improved research to identify the food values of animal products and effective communication of that research to the public; 4) research on topics having the greatest potential to increase efficiency of animal production consistent with a positive impact on the environment and sustainability of animal production; 5) leadership in developing and using technologies such as biotechnology, not only as descriptors of biological processes, but as technologies to test hypotheses leading to new understandings of biology; 6) research on animal well-being and production facilities that foster animal well-being; 7) research and education on ethical and moral aspects of animals as food through encouragement of one or more

  9. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    NASA Astrophysics Data System (ADS)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  10. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  11. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  12. Radiological Scoping Survey of the Scotia Depot Scotia, New York

    SciTech Connect

    E. N. Bailey

    2005-02-05

    At the request of the Defense Logistics Agency, the Oak Ridge Institute for Science and Education conducted radiological scoping surveys of the Scotia Depot during the period of September 24 through 27, 2007. The scoping survey included visual inspections and limited radiological surveys performed in accordance with area classification that included surface scans, total and removable activity measurements, and soil sampling.

  13. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    SciTech Connect

    Donald Shapero; Timothy I. Meyer

    2007-08-14

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE’s Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee’s final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  14. Health Care Delivery Meets Hospitality: A Pilot Study in Radiology.

    PubMed

    Steele, Joseph Rodgers; Jones, A Kyle; Clarke, Ryan K; Shoemaker, Stowe

    2015-06-01

    The patient experience has moved to the forefront of health care-delivery research. The University of Texas MD Anderson Cancer Center Department of Diagnostic Radiology began collaborating in 2011 with the University of Houston Conrad N. Hilton College of Hotel and Restaurant Management, and in 2013 with the University of Nevada, Las Vegas, William F. Harrah College of Hotel Administration, to explore the application of service science to improving the patient experience. A collaborative pilot study was undertaken by these 3 institutions to identify and rank the specific needs and expectations of patients undergoing imaging procedures in the MD Anderson Department of Diagnostic Radiology. We first conducted interviews with patients, providers, and staff to identify factors perceived to affect the patient experience. Next, to confirm these factors and determine their relative importance, we surveyed more than 6,000 patients by e-mail. All factors considered important in the interviews were confirmed as important in the surveys. The surveys showed that the most important factors were acknowledgment of the patient's concerns, being treated with respect, and being treated like a person, not a "number"; these factors were more important than privacy, short waiting times, being able to meet with a radiologist, and being approached by a staff member versus having one's name called out in the waiting room. Our work shows that it is possible to identify and rank factors affecting patient satisfaction using techniques employed by the hospitality industry. Such factors can be used to measure and improve the patient experience. PMID:25533732

  15. A Design Protocol to Develop Radiology Dashboards

    PubMed Central

    Karami, Mahtab

    2014-01-01

    ABSTRACT Aim: The main objective of this descriptive and development research was to introduce a design protocol to develop radiology dashboards. Material and methods: The first step was to determine key performance indicators for radiology department. The second step was to determine required infrastructure for implementation of radiology dashboards. Infrastructure was extracted from both data and technology perspectives. The third step was to determine main features of the radiology dashboards. The fourth step was to determine the key criteria for evaluating the dashboards. In all these steps, non-probability sampling methods including convenience and purposive were employed and sample size determined based on a persuasion model. Results: Results showed that there are 92 KPIs, 10 main features for designing dashboards and 53 key criteria for dashboards evaluation. As well as, a Prototype of radiology management dashboards in four aspects including services, clients, personnel and cost-income were implemented and evaluated. Applying such dashboards could help managers to enhance performance, productivity and quality of services in radiology department. PMID:25568585

  16. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  17. A Lean Six Sigma journey in radiology.

    PubMed

    Bucci, Ronald V; Musitano, Anne

    2011-01-01

    The department of radiology at Akron Children's Hospital embarked on a Lean Six Sigma mission as part of a hospital wide initiative to show increased customer satisfaction, reduce employee dissatisfaction and frustration, and decrease costs. Three processes that were addressed were reducing the MRI scheduling back-log, reconciling discrepancies in billing radiology procedures, and implementing a daily management system. Keys to success is that managers provide opportunities to openly communicate between department sections to break down barriers. Executive leaders must be engaged in Lean Six Sigma for the company to be successful. PMID:21793459

  18. Research Briefings 1986. For the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This is part of a series on selected areas of science and technology prepared by the Committee on Science, Engineering, and Public Policy, at the request of the Science Advisor to the President of the United States. This volume includes four individual reports. The first is the report of the "Research Briefing Panel on Science of Interfaces and…

  19. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  20. Radiological evaluation of dysphagia

    SciTech Connect

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.; Chen, Y.M.

    1986-11-21

    Dysphagia is a common complaint in patients presenting for radiological or endoscopic examination of the esophagus and is usually due to functional or structural abnormalities of the esophageal body or esophagogastric region. The authors review the radiological evaluation of the esophagus and esophagogastric region in patients with esophageal dysphagia and discuss the roentgenographic techniques used, radiological efficacy for common structural disorders, and evaluation of esophageal motor function. Comparison is made with endoscopy in assessing dysphagia, with the conclusion that the radiological examination be used initially in patients with this complaint.

  1. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    NASA Astrophysics Data System (ADS)

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  2. Radiological design guide

    SciTech Connect

    Evans, R.A.

    1994-08-16

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

  3. Development and maintenance of the Hanford Site Radiological Control Manual

    SciTech Connect

    Munson, L.H.; Selby, J.M; Vargo, G.J.; Clark, D.L.

    1993-04-01

    In June 1992 the US Department of Energy (DOE) issued DOE N5480.6, Radiological Control, which set forth DOE's Radiological Control Program and established the framework for its implementation at sites nationwide. Accompanying the Order was the DOE Radiological Control Manual (DOE RCM), which provided the detailed requirements for the program. The Order also mandated Field Office issuance of site-specific radiological control manuals by December 1, 1992. This paper presents the approach taken to develop, review, approve, implement, and subsequently maintain the site-specific manual for the DOE Richland Field Office (RL) at Hanford Site.

  4. Development and maintenance of the Hanford Site Radiological Control Manual

    SciTech Connect

    Munson, L.H.; Selby, J.M; Vargo, G.J.; Clark, D.L.

    1993-04-01

    In June 1992 the US Department of Energy (DOE) issued DOE N5480.6, Radiological Control, which set forth DOE`s Radiological Control Program and established the framework for its implementation at sites nationwide. Accompanying the Order was the DOE Radiological Control Manual (DOE RCM), which provided the detailed requirements for the program. The Order also mandated Field Office issuance of site-specific radiological control manuals by December 1, 1992. This paper presents the approach taken to develop, review, approve, implement, and subsequently maintain the site-specific manual for the DOE Richland Field Office (RL) at Hanford Site.

  5. Slovenian experience from diagnostic angiography to interventional radiology

    PubMed Central

    Pavcnik, Dusan

    2014-01-01

    Background The purpose of writing this article is to document the important events and people in the first 50 years of diagnostic angiography and interventional radiology in Slovenia. During this period not only did the name of the institutions and departments change, but also its governance. Conclusions This depicted the important roles different people played at various times in the cardiovascular divisions inside and outside of the diagnostic and interventional radiology. Historical data show that Slovenian radiology has relatively immediately introduced the new methods of interventional radiology in clinical practice. PMID:25435857

  6. Radiological Defense. Textbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This textbook has been prepared under the direction of the Defense Civil Preparedness Agency (DCPA) Staff College for use as a student reference manual in radiological defense (RADEF) courses. It provides much of the basic technical information necessary for a proper understanding of radiological defense and summarizes RADEF planning and expected…

  7. Scientific Futures. Selected Areas of Opportunity for the Office of Science and Technology Policy, the National Science Foundation, and Selected Federal Departments and Agencies.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to the President's Office of Science and Technology Policy request to identify promising areas for U.S. research investment in science and technology, this report contains briefings by outstanding researchers in several fields of science. This volume is the fifth in a series of briefings which are used to anticipate important new…

  8. CU’s Department of Geological Sciences - Science Education Initiative Project (GEOL-SEI): A five-year plan for introducing and supporting an evidence-based and scientific approach to teaching

    NASA Astrophysics Data System (ADS)

    Arthurs, L.; Budd, D. A.

    2009-12-01

    The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).

  9. Region 1: Radiological Assistance Program (RAP). Revision 2, Part 1

    SciTech Connect

    Hull, A.P.; Kuehner, A.V.

    1993-10-01

    The Department of Energy`s Radiological Assistance Program (RAP) is established under DOE Order 5530.3 to: (a) Establish and maintain response plans and resources to provide radiological assistance to other Federal agencies, State, local, and tribal governments, and private groups requesting such assistance. (b) Assist State, local, and tribal jurisdictions in preparing for radiological emergencies. (c) In the event of a real, or potential radiological accident, provide resources and monitoring and assessment assistance to other federal agencies, State, local, and tribal Governments. This plan is an integral part of a nationwide program of regionally based radiological assistance which has been established by DOE. The Brookhaven Area Office is the Regional Coordinating Office (RCO) for the Radiological Assistance Program in DOE Region 1, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia.

  10. Self Assessment in Higher Education: An Empirical Evidence from the Department of Business Administration of Shahjalal University of Science and Technology, Bangladesh

    ERIC Educational Resources Information Center

    Islam, Nazrul; Chowdhury, Mohmmad Ashraful Ferdous

    2015-01-01

    The paper aimed to explore the self assessment practices in higher education in Bangladesh with special reference to Department of Business Administration of Shahjalal University of Science and Technology. For self assessment purpose the researchers have collected opinion from students, alumni, employer and faculty members on eight areas. In…

  11. "The Academic Style Construction Committee Is by No Means an Ornament": Interview with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department

    ERIC Educational Resources Information Center

    Aihe, Huang; Xu, Han

    2007-01-01

    The academic style (conduct) of academic circles has become a hot topic in the media. This article presents an interview conducted by "China Newsweek" with Vice Director Yuan Zhenguo of the Ministry of Education, Social Sciences Department. In this interview, Zhenguo talks about the Ministry of Education's plan to set up such institutions as an…

  12. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    SciTech Connect

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.

  13. Hazard control indices for radiological and non-radiological materials

    SciTech Connect

    Boothe, G.F.

    1994-12-21

    This document devises a method of comparing radiological and non-radiological hazard control levels. Such a comparison will be useful in determining the design control features for facilities that handle radioactive mixed waste. The design control features of interest are those that assure the protection of workers and the environment from unsafe airborne levels of radiological or non-radiological hazards.

  14. The disaggregation of radiology.

    PubMed

    Brant-Zawadzki, Michael N; Enzmann, Dieter R

    2008-12-01

    The authors discuss certain market and political forces buffeting the traditional structure of radiology, both in practice and in the academic setting. These forces can be, to a certain degree, disruptive and produce fragmentation of what are now integrated radiology services and specialties. The potential fallout from the current rapidly changing environment of health care, including strategies for delivering care along service lines or within discrete episodes of care, may have a profound impact on the future of radiology. Understanding the dynamics of the current environment may help plan strategies for dealing with the potential impact on our specialty. PMID:19027680

  15. Enhanced radiological work planning

    SciTech Connect

    DECKER, W.A.

    1999-05-21

    The purpose of this standard is to provide Project Hanford Management Contractors (PHMC) with guidance for ensuring radiological considerations are adequately addressed throughout the work planning process. Incorporating radiological controls in the planning process is a requirement of the Hanford Site Radiological Control Manual (HSRCM-I), Chapter 3, Part 1. This standard is applicable to all PHMC contractors and subcontractors. The essential elements of this standard will be incorporated into the appropriate site level work control standard upon implementation of the anticipated revision of the PHMC Administration and Procedure System.

  16. DOE standard: Radiological control

    SciTech Connect

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  17. Global Science.

    ERIC Educational Resources Information Center

    Brophy, Michael

    1991-01-01

    Approaches taken by a school science department to implement a global science curriculum using a range of available resources are outlined. Problems with current curriculum approaches, alternatives to an ethnocentric curriculum, advantages of global science, and possible strategies for implementing a global science policy are discussed. (27…

  18. 3.3 Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.; Moores, B. M.; Stieve, F.-E.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.3 Diagnostic Radiology' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  19. Radiologic Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the radiologic technology program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  20. Society of Interventional Radiology

    MedlinePlus

    ... how interventional radiology research improves patients’ lives at Society of Interventional Radiology’s 2017 Annual Scientific Meeting; read ... comments to CMS on two MACRA coding issues; society is engaged with CMS as they develop codes ...

  1. Interventional Radiology in China

    SciTech Connect

    Teng Gaojun Xu Ke; Ni Caifang; Li Linsun

    2008-03-15

    With more than 3000 members, the Chinese Society of Interventional Radiology (CSIR) is one of the world's largest societies for interventional radiology (IR). Nevertheless, compared to other societies such as CIRSE and SIR, the CSIR is a relatively young society. In this article, the status of IR in China is described, which includes IR history, structure and patient management, personnel, fellowship, training, modalities, procedures, research, turf battle, and insightful visions for IR from Chinese interventional radiologists.

  2. Basic bone radiology

    SciTech Connect

    Griffiths, H.J.

    1987-01-01

    This clinical book surveys the skeletal system as seen through radiological imaging. It emphasizing abnormalities, disease, and trauma, and includes vital information on bones, bone growth, and the cells involved in bone pathology. It covers many bone diseases and injuries which are rarely covered in medical texts, as well as descriptions of radiologic procedures that specifically relate to the skeleton. This edition includes many illustrations, information on MR imaging and CT scanning, and discussions of osteoporosis, dysplasias, and metabolic bone disease.

  3. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    SciTech Connect

    Stillings, Neil; Wenk, Laura

    2009-12-30

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achieves this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is

  4. [Instruction in dental radiology].

    PubMed

    van der Sanden, W J M; Kreulen, C M; Berkhout, W E R

    2016-04-01

    The diagnostic use of oral radiology is an essential part of daily dental practice. Due to the potentially harmful nature of ionising radiation, the clinical use of oral radiology in the Netherlands is framed by clinical practice guidelines and regulatory requirements. Undergraduate students receive intensive theoretical and practical training in practical and theoretical radiology, with the aim of obtaining the 'Eindtermen Stralingshygiëne voor Tandartsen en Orthodontisten'-certificate, which is required for legal permission to use oral radiology in dental practice. It is recommended that the curriculum be expanded to include the areas of knowledge required to qualify for the 'Eindtermen Stralingshygiëne voor het gebruik van CBCT-toestellen door tandartsen' (the certificate for the use of conebeam radiology by dentists). The general dental practitioner is faced with changing laws and regulations in all areas of practice. One of the most significant legal changes in the field of dental radiology was the introduction of the new radiation protection and safety rules in 2014. Moreover, a large group of dentists is also being confronted with the transition from conventional to digital images, with all its challenges and changes in everyday practice. PMID:27073811

  5. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  6. Radiological Assistance Program plan, Region 8. Revision 1

    SciTech Connect

    Webb, D.E.

    1993-09-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the late 1950`s. When a radiological incident occurs and exceeds the capability of the Federal, tribal, State, or local authorities, DOE resources are made available through the RAP to provide assistance to those authorities. The explicit purpose of the RAP is to assist in monitoring and assessing activities associated with radiological incidents or emergencies. The DOE`s philosophy is that assistance wig be provided in radiological accidents and will normally end when the need for assistance is over or if there are other sufficient resources available to handle the situation. The design of RAP is so that DOE`s response to a small incident can smoothly scale up for a major radiological emergency. In the event of a major radiological emergency, the law requires DOE to provide resources through the Federal Radiological Emergency Response Plan (FRERP) (FEMA 1985). The FRERP is a comprehensive Federal plan that describes the overall coordination of a Federal government response to a major radiological emergency. Implementation of RAP is done on a regional basis, with regional coordination between States and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological response elements and those State, local, or other Federal agencies.

  7. Effective radiology dashboards: key research findings.

    PubMed

    Karami, Mahtab; Safdari, Reza; Rahimi, Azin

    2013-01-01

    Innovative organizations have access to information for business intelligence through the objectives displayed in dashboards. In healthcare organizations, where the goal is to improve quality of care along with reducing costs, the radiology department is important from both financial and clinical aspects. Therefore, how to manage this department has critical impact on the effectiveness and efficiency of the organization. Today, since the information in this department not only has different data structure but also is gathered from different data sources, a well defined, comprehensive dashboard can be an effective tool to enhance performance. PMID:23638580

  8. Radiology Undergraduate and Resident Curricula: A Narrative Review of the Literature

    PubMed Central

    Linaker, Kathleen L.

    2015-01-01

    Objective The purpose of this study was to examine the literature regarding radiology curricula for both undergraduates and residents. Methods A review of the literature was performed using relevant key words. Articles were retrieved through December 2012 using PubMed, ScienceDirect, ERIC, Proquest, and ICL databases along with a manual review of references. Results Of the 4716 unique abstracts reviewed by the author, 142 were found to be relevant to the purpose of this study. Undergraduate radiology education, radiology curriculum, and radiology pedagogy vary widely between disciplines and between colleges within disciplines. Formal radiology education is not taught at all medical programs and little radiology training is incorporated into non-radiology residencies. This results in some medical graduates not being taught how to interpret basic radiology images and not learning contraindications and indications for ordering diagnostic imaging tests. There are no definitive studies examining how to incorporate radiology into the curriculum, how to teach radiology to either undergraduates or residents, or how to assess this clinical competency. Conclusions This review shows that radiology education is perceived to be important in undergraduate and residency programs. However, some programs do not include radiology training, thus graduates from those programs do not learn radiology essentials. PMID:26770172

  9. Local area networks for radiology.

    PubMed

    Dwyer, S J; Mankovich, N J; Cox, G G; Bauman, R A

    1988-11-01

    This article is a tutorial on local area networks (LAN) for radiology applications. LANs are being implemented in radiology departments for the management of text and images, replacing the inflexible point-to-point wiring between two devices (computer-to-terminal). These networks enable the sharing of computers and computer devices, reduce equipment costs, and provide improved reliability. Any LAN must include items from the following four categories: transmission medium, topology, data transmission mode, and access protocol. Media for local area networks are twisted pair, coaxial, and optical fiber cables. The topology of these networks include the star, ring, bus, tree, and circuit-switching. Data transmission modes are either analog signals or digital signals. Access protocol methods include the broadcast bus system and the ring system. A performance measurement for a LAN is the throughput rate as a function of the number of active computer nodes. Standards for LANs help to ensure that products purchased from multiple manufacturers will operate successfully. PMID:3154655

  10. DOE Region 6 Radiological Assistance Program plan. Revision 1

    SciTech Connect

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950`s. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety.

  11. Top 10 Ways to Improve Science Achievement: Actions for School Principals, Assistant Principals, Department Chairs and School Improvement Consultants.

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2007

    2007-01-01

    High Schools That Work (HSTW) Assessment data show the need to improve science education in both the middle grades and high school. Science education increases students' critical thinking and problem-solving skills. This publication is designed to help principals, other school leaders and teachers identify rigorous instruction and successfully…

  12. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  13. 78 FR 26795 - Announcement of Requirements and Registration for the National Radiological and Nuclear Detection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... . SUPPLEMENTARY INFORMATION: General The Department of Homeland Security (DHS), Domestic Nuclear Detection Office... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Announcement of Requirements and Registration for the National Radiological and Nuclear...

  14. Westinghouse radiological containment guide

    SciTech Connect

    Aitken, S.B.; Brown, R.L.; Cantrell, J.R.; Wilcox, D.P.

    1994-03-01

    This document provides uniform guidance for Westinghouse contractors on the implementation of radiological containments. This document reflects standard industry practices and is provided as a guide. The guidance presented herein is consistent with the requirements of the DOE Radiological Control Manual (DOE N 5480.6). This guidance should further serve to enable and encourage the use of containments for contamination control and to accomplish the following: Minimize personnel contamination; Prevent the spread of contamination; Minimize the required use of protective clothing and personal protective equipment; Minimize the generation of waste.

  15. Successful Transformational Radiology Leaders.

    PubMed

    Douget, Karen

    2015-01-01

    Transformational radiology leaders elevate subordinates, expand self-awareness, develop lasting relationships, strive to exceed expectations, and uphold the vision and goals of the organization. In order for radiology leaders to become more transformational in their leadership style there are four fundamental elements they must learn: idealized influence, individualized consideration, inspirational motivation, and intellectual stimulation. Leaders can utilize personality and self-assessments to learn more about themselves, identify areas of strengths and weaknesses, and learn to be more effective when leading employees. PMID:26710553

  16. User questionnaire to evaluate the radiological workspace.

    PubMed

    van Ooijen, Peter M A; Koesoema, Allya P; Oudkerk, Matthijs

    2006-01-01

    Over the past few years, an increase in digitalization of radiology departments can be seen, which has a large impact on the work of the radiologists. This impact is not only demonstrated by the increased use of digital images but also by changing demands on the whole reading environment. In this study, we evaluated the satisfaction of our radiologists with our digital Picture Archival and Communication System environment and their workspace. This evaluation was performed by distribution of a questionnaire consisting of a score sheet and some open questions to all radiologists and residents. Out of 25 questionnaires, 12 were adequately answered and returned. Results clearly showed that most problems were present in the area of reading room design and layout and comfort and ergonomics. Based on the results from this study, adaptations were made and the results were also used in the planning of the redesign of the entire department of radiology. PMID:16767350

  17. The impact of tech aides in radiology.

    PubMed

    Sferrella, Sheila M; Story, Cathleen P

    2004-01-01

    As the staffing shortage continues to impact radiology departments and outpatient imaging centers, managers look for ways to solve staffing issues internally. Lehigh Valley Hospital and Health Network investigated the feasibility of adding a position of radiology tech aide. This proposal was driven by a desire to improve retention of staff, improve employee satisfaction and reduce turnover. A 6-month pilot program was conducted at the network's highest-volume facility. One tech aide underwent extensive training and eventually began performing some of the tasks identified in the analysis. Each area within radiology worked with an intern to identify each step in its work process. Each step identified led to the question, "What happens if?" The workflow process provided a detailed look a the number of steps required for a technologist to perform a study from start to finish. In May 2002, the administrator submitted a project proposal to management engineering to evaluate radiologic technologists' workloads and identify tasks that could be performed by a tech aide. Activity-Based Management (ABM)--a process that emphasizes activities over resources--was utilized to study work activities. The analysis identified the appropriate tasks and revealed that 5 FTEs were needed to assist the technologists in all areas of radiology. A workflow was completed for each area within radiology. Some areas identified bottlenecks, which caused delays in the process and some redundant work for the staff. Data were presented to the network administration. Staffing realities, labor pool availability within the existing network staff, and detailed task identifications also were provided. A total of 5 FTE tech aides were approved. The final program included in-depth tech-aide training; effective and open communication between management and technologists; and a collaborative, education-oriented relationship between technologists and tech aides. PMID:15098899

  18. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  19. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the McGee Ranch-Riverlands and North Slope Units of the Hanford Reach National Monument

    SciTech Connect

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-09-21

    The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S. Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the

  20. 324 Building Baseline Radiological Characterization

    SciTech Connect

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  1. Building Partnerships Between Research Institutions, University Academic Departments, Local School Districts, and Private Enterprise to Advance K-12 Science Education in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Ganey-Curry, P.; Fennell, T.

    2003-12-01

    The University of Texas at Austin Institute for Geophysics (UTIG) is engaged in six K-12 education and outreach programs, including two NSF-sponsored projects--GK-12: Linking Graduate Fellows with K-12 Students and Teachers and Cataclysms and Catastrophes--Texas Teachers in the Field, Adopt-a-School, Geoscience in the Classroom, and UT's Science and Engineering Apprenticeship Program. The GK-12 Program is central to UTIG's effort and links the six education projects together. While the specific objectives of each project differ, the broad goals of UTIG's education and outreach are to provide high-quality professional development for teachers, develop curriculum resources aligned with state and national education standards, and promote interaction between teachers, scientists, graduate students, and science educators. To achieve these goals, UTIG has forged funded partnerships with scientific colleagues at UT's Bureau of Economic Geology, Marine Science Institute and Department of Geological Sciences; science educators at UT's Charles A. Dana Center and in the Department of Curriculum and Instruction in the College of Education; teachers in six Texas independent school districts; and 4empowerment.com, a private education company that established the "Cyberways and Waterways" Web site to integrate technology and education through an environmentally-based curriculum. These partnerships have allowed UTIG to achieve far more than would have been possible through individual projects alone. Examples include the development of more than 30 inquiry-based activities, hosting workshops and a summer institute, and participation in local science fairs. UTIG has expanded the impact of its education and outreach and achieved broader dissemination of learning activities through 4empowerment's web-based programs, which reach ethnically diverse students in schools across Texas. These partnerships have also helped UTIG and 4empowerment to secure additional funding for other education

  2. Radiology of thoracic diseases

    SciTech Connect

    Swensen, S.J.; Pugatch, R.D.

    1989-01-01

    This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

  3. Practical interventional radiology

    SciTech Connect

    Von Sonnenberg, E.; Mueller, P.R.

    1988-01-01

    This book describes techniques employed in interventional radiology with emphasis on imaging leading to intervention. Includes the entire array of procedures available to the radiologist, discussing the indications, materials, technique, results, and complications for each. Covers the chest, abdomen, bone, pediatric considerations, and nursing care.

  4. Radiological Safety Handbook.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    Written to be used concurrently with the U.S. Army's Radiological Safety Course, this publication discusses the causes, sources, and detection of nuclear radiation. In addition, the transportation and disposal of radioactive materials are covered. The report also deals with the safety precautions to be observed when working with lasers, microwave…

  5. Radiological Defense Manual.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    Originally prepared for use as a student textbook in Radiological Defense (RADEF) courses, this manual provides the basic technical information necessary for an understanding of RADEF. It also briefly discusses the need for RADEF planning and expected postattack emergency operations. There are 14 chapters covering these major topics: introduction…

  6. Research Training in Radiology.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    Radiology today is a major clinical specialty of medicine in terms of the number and complexity of patient examinations, and the financial resources, physician manpower, and supporting personnel required for performing its functions. It reached its present status because it provides accurate methods of diagnosis for so many diseases. However, this…

  7. Radiology of spinal curvature

    SciTech Connect

    De Smet, A.A.

    1985-01-01

    This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.

  8. PACS for GU radiology

    NASA Astrophysics Data System (ADS)

    Hayrapetian, Alek S.; Barbaric, Zoran L.; Weinberg, Wolfram S.; Chan, Kelby K.; Loloyan, Mansur; Taira, Ricky K.; Huang, H. K.

    1991-07-01

    The authors have developed a PACS module for genito-urinary radiology. This module is based on image acquisition subsystem, database and storage server/cluster controllers, communication networks, display workstation and local database, and dedicated digitizer and printer. The design guideline for this system is generality and flexibility. As such this module serves as a prototype for future PACS module designs.

  9. Radiologic Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a radiologic technology program. The guide contains four major sections. The General Information section contains an introduction giving an overview and defining purpose and objectives; a program description,…

  10. Radiology Technician (AFSC 90370).

    ERIC Educational Resources Information Center

    Sobczak, James

    This five-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for radiology technicians. Covered in the individual volumes are radiographic fundamentals (x-ray production; primary beams; exposure devices; film, film holders, and darkrooms; control of film quality; and environmental safety);…

  11. Ethical problems in radiology: radiological consumerism.

    PubMed

    Magnavita, N; Bergamaschi, A

    2009-10-01

    One of the causes of the increasing request for radiological examinations occurring in all economically developed countries is the active role played by the patient-consumer. Consumerism places the radiologist in an ethical dilemma, between the principle of autonomy on the one hand and the ethical principles of beneficence, nonmaleficence and justice on the other. The choice made by radiologists in moral dilemmas is inspired by an adherence to moral principles, which in Italy and elsewhere refer to the Judaeo-Christian tradition or to neo-Darwinian relativism. Whatever the choice, the radiologist is bound to adhere to that choice and to provide the patient with all the relevant information regarding his or her state of health. PMID:19662338

  12. Radiologic technology educators and andragogy.

    PubMed

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting. PMID:6729091

  13. Science and Mathematics Faculty Responses to a Policy-Based Initiative: Change Processes, Self-Efficacy Beliefs, and Department Culture

    ERIC Educational Resources Information Center

    Ellett, Chad D.; Demir, Kadir; Monsaas, Judith

    2015-01-01

    The purpose of this study was to examine change processes, self-efficacy beliefs, and department culture and the roles these elements play in faculty engagement in working in K-12 schools. The development of three new web-based measures of faculty perceptions of change processes, self-efficacy beliefs, and department culture are described. The…

  14. Poul Erik Andersen's radiological work on Osteochondrodysplasias and interventional radiology

    PubMed Central

    Andersen, Poul Erik

    2011-01-01

    Poul Erik Andersen is a Professor and Interventional Radiologist at the University of Southern Denmark, Odense and Odense University Hospital, Denmark. His innovative and expertise is primarily in vascular interventions where he has introduced and developed many procedures at Odense University Hospital. His significant experience and extensive scientific work has led to many posts in the Danish Society of Interventional Radiology, the European Society of Radiology and the Cardiovascular and Interventional Radiological Society of Europe, where he is a fellow and has passed the European Board of Interventional Radiology - The European qualification in Interventional Radiology. PMID:22022640

  15. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  16. A dental radiologic health laboratory teaching method.

    PubMed

    Hallisey, R M; Darzenta, N C

    1976-07-01

    The School of Dental Medicine at Tufts University has given new direction to the understanding of radiologic health through a program in which all students participate in some laboratory activities directly related to the problems of radiologic health in dental practice. This article presents an explanation of the background of this program and the experiments performed and discusses the interest in the program and its effect on the dental students. The laboratory program described is held for 3 1/2 hours on Wednesday afternoons at the Dental School, since this is a period of minimum patient load in the Radiology Department. The course is presented for third-year dental students who already have takin a lecture course in the fundamentals and techniques of radiology and have received training in the proper procedures for taking radiographs. The program is designed as a series of experiments dealing with machine output, filtration, collimation, exposure factors, scatter radiation, film density, patient protection, and shielding. The students are introduced to various radiation-detection instruments and given the opportunity to use these instruments to measure output and scatter-radiation levels under varying conditions. The laboratory teaching method presented can also be reprogrammed for different group sizes and time schedules. PMID:1065831

  17. Feminist theoretical perspectives on ethics in radiology.

    PubMed

    Condren, Mary

    2009-07-01

    The substantive safety of radiological and other medical procedures can be radically reduced by unconscious factors governing scientific thought. In addition, the historical exclusion of women from these disciplines has possibly skewed their development in directions that now need to be addressed. This paper focuses on three such factors: gendered libidos that privilege risk taking over prevention, fragmented forms of knowledge that encourage displaced forms of responsibility and group dynamics that discourage critique of accepted practices and limit the definition of one's group. The substantive safety of the practice and scientific contribution of radiologists might be considerably enhanced were the focus to switch from radiology to diagnosis. Such enlargement might redefine the brief of radiologists towards preventing as well as curing; evaluating some non-invasive and low-tech options, adopting some inclusive paradigms of clinical ecology and enlarging group identities to include those currently excluded through geography or social class from participating in the benefits of science. PMID:19339300

  18. [Ergonomics of the workplace in radiology].

    PubMed

    García-Lallana, A; Viteri-Ramírez, G; Saiz-Mendiguren, R; Broncano, J; Dámaso Aquerreta, J

    2011-01-01

    The replacement of conventional films and view boxes with digital images and computer monitors managed by PACS has clearly improved the diagnostic imaging workplace. The new setup has many advantages, including increased productivity brought about by decreased overall time required for image interpretation. On the other hand, the implementation of the digital workplace has increased the importance of factors like background lighting and the position of the chair, work table, mouse, keyboard, and monitor to prevent lesions that can disable the radiologist. The influence of these factors is often undervalued in the design and implementation of the radiological workplace. This article provides recommendations for the design of the radiological workplace based on ergonomics, which is the science that studies interactions among humans and other elements of a system. PMID:21944708

  19. Beams-becoming enthusiastic about math and science - A Department of Energy research laboratory/school district partnership program

    SciTech Connect

    Strozak, K.; Gagnon, S.

    1994-12-31

    BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls, have been analyzed.

  20. Data mining in radiology

    PubMed Central

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-01-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  1. Data mining in radiology.

    PubMed

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-04-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  2. Conjoined twins: Radiological experience.

    PubMed

    Watson, Sarah G; McHugh, Kieran

    2015-10-01

    Imaging plays a key role in the management of conjoined twins. Pre-operative multi-modality studies are vital to assess operability and to aid surgical planning. Technical advances in imaging such as high-resolution isovolumetric magnetic resonance imaging (MRI) techniques and three-dimensional modeling now result in extremely accurate anatomical information. Varied information from a comprehensive radiological work-up enables the surgeons to plan the safest possible operative procedure, helps the anesthetic team before and during surgery, and guides the intensive care team in the post-operative phase. This article will review the radiological techniques used in our institution, highlighting potential pitfalls with the various imaging modalities. PMID:26382258

  3. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  4. The role of the Department of Homeland Security, Science and Technology Directorate in the development of vaccines and diagnostics for Transboundary Animal Diseases.

    PubMed

    Colby, M; Coats, M; Brake, D; Fine, J

    2013-01-01

    The development of countermeasures to support an effective response to Transboundary Animal Diseases (TAD) poses a challenge on a global scale and necessitates the coordinated involvement of scientists from government, industry and academia, as well as regulatory entities. The Agricultural Defense Branch under the Chemical and Biological Defense Division (CBD) of the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) supports this important mission within the United States. This article provides an overview of the Agricultural Defense Branch's vaccine and diagnostic TAD project. PMID:23689879

  5. Disabling Radiological Dispersal Terror

    SciTech Connect

    Hart, M

    2002-11-08

    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  6. Rumors and gossip in radiology.

    PubMed

    Dowd, S B; Davidhizar, R

    1997-01-01

    Rumors and gossip have long been popular topics in literature. Social scientists have even studied the topic and defined four main types of rumor: wish rumors; fear or bogey rumors; wedge-driving or aggressive rumors; and anticipatory rumors. In general, people believe rumor and gossip are synonymous. Rumormongering--the spreading of rumors--occurs among all cultures and types of people. Both men and women gossip and women's gossip is not more vindicative than men's, as is often thought. With such new means of communication as the Internet, transmitting rumor is possible beyond the traditional oral and written forms. Rumor is spread in both the higher and lower levels of an organization. Typically, disproving a rumor is more difficult than proving a rumor. The financial impact of a rumor must be considered also. If people believe, for example, that a radiology department does not have its act together or offers poor customer service, the department may lose revenue because people have lost confidence in it. Originally, the word gossip had positive implications. It referred to a family friend or the woman who delivered a child and announced the event to the community. Because well-intentioned gossip often turns into a damaging story, various approaches for stopping rumors have been identified. They include analyzing the grapevine, identifying the habitual spreaders of rumor and keeping employees informed. In most cases, a person of authority who provides facts can stop or at least slow down rumors spreading at the employee level. PMID:10175327

  7. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  8. Power at the Interfaces: The Contested Orderings of Academic Presents and Futures in a Social Science Department

    ERIC Educational Resources Information Center

    Stöckelová, Tereza

    2014-01-01

    The changes in and transformations of academic institutions and practices we are currently witnessing are complex. I argue that there are no clear-cut historical transitions between different regimes of science, such as from the "public knowledge regime" to "academic capitalism". Drawing upon John Law's analysis of…

  9. Relative Evaluation System as an Obstacle to Cooperative Learning: The Views of Lecturers in a Science Education Department

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2008-01-01

    This study attempts to define the contradiction between cooperative learning, which has an important place in science education, and the relative evaluation system. The fixation of the situation which was done with the data obtained from the literature also has been supported with a semi-structured interview study conducted with eighteen science…

  10. ICPP radiological and toxicological sabotage analysis

    SciTech Connect

    Kubiak, V.R.; Mortensen, F.G.

    1995-10-01

    In June of 1993, the Department of Energy (DOE) issued Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} which states that all significant radiological and toxicological hazards at Department facilities must be examined for potential sabotage. This analysis has been completed at the Idaho Chemical Processing Plant (ICPP). The ICPP radiological and toxicological hazards include spent government and commercial fuels, Special Nuclear Materials (SNM), high-level liquid wastes, high-level solid wastes, and process and decontamination chemicals. The analysis effort included identification and assessment of quantities of hazardous materials present at the facility; identification and ranking of hazardous material targets; development of worst case scenarios detailing possible sabotage actions and hazard releases; performance of vulnerability assessments using table top and computer methodologies on credible threat targets; evaluation of potential risks to the public, workers, and the environment; evaluation of sabotage risk reduction options; and selection of cost effective prevention and mitigation options.

  11. Repeat film analysis and its implications for quality assurance in dental radiology: An institutional case study

    PubMed Central

    Acharya, Shruthi; Pai, Keerthilatha M.; Acharya, Shashidhar

    2015-01-01

    Context: The goal of any radiologist is to produce the highest quality diagnostic radiographs, while keeping patient exposure as low as reasonably achievable (ALARA). Aims: The aim of this study was to describe the reasons for radiograph rejections through a repeat film analysis in an Indian dental school. Settings and Design: An observational study conducted in the Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal. Materials and Methods: During a 6-month study period, a total of 9,495 intra-oral radiographs and 2339 extraoral radiographs taken in the Radiology Department were subjected to repeat film analysis. Statistical Analysis Used: SPSS Version 16. Descriptive analysis used. Results: The results showed that the repeat rates were 7.1% and 5.86% for intraoral and extraoral radiographs, respectively. Among the causes for errors reported, positioning error (38.7%) was the most common, followed by improper angulations (26.1%), and improper film placement (11.2%) for intra-oral radiographs. The study found that the maximum frequency of repeats among extraoral radiographs was for panoramic radiographs (49%) followed by lateral cephalogram (33%), and paranasal sinus view (14%). It was also observed that repeat rate of intraoral radiographs was highest for internees (44.7%), and undergraduate students (28.2%). Conclusions: The study pointed to a need for more targeted interventions to achieve the goal of keeping patient exposure ALARA in a dental school setting. PMID:26321841

  12. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  13. Institutional Effectiveness Assessment Process, 1992-93. Executive Summary. Hospitality and Service Occupations Division, Food Sciences Department, Food Production Program, Food Production Management Program, Pastry and Specialty Baking Program.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    In the 1992-93 academic year, the Hospitality and Food Sciences Department at South Seattle Community College conducted surveys of current and former students and local foodservice employers to determine the level of satisfaction with Department programs. Specifically, the surveys focused on four key outcomes: determining the extent to which…

  14. Medical science in the light of the Holocaust: Departing from a post-war paper by Ludwik Fleck.

    PubMed

    Hedfors, Eva

    2008-04-01

    In scholarly debates, Ludwik Fleck's post-war paper 'Problemy naukoznawstwa [Problems of the Science of Science]', published in 1946, has been taken unanimously to illustrate the epistemology expounded in his monograph Genesis and Development of a Scientific Fact. The paper has also been seen to support parts of the received view of Fleck, notably that he manufactured an anti-typhus vaccine while imprisoned in Buchenwald. However, a different narrative emerges when comparing Fleck's paper with other accounts, also published in 1946 and written by other prisoners alluded to by Fleck in his paper. The situation is further complicated by four papers, published in prestigious scientific journals between 1942 and 1945, by the German medical leader of the typhus studies accounted for by Fleck. In addition, a thus-far neglected paper by Fleck, published in 1946 and summarizing his observations on typhus, discloses his role in the Buchenwald studies. Despite the obvious difficulties with tracing the history behind these works, notably the one on Nazi science, the contention is that what was attempted in Buchenwald in the name of science amounted to pseudoscience. This conclusion is amply supported not only by the accounts given by Fleck's fellow prisoners, but also by his own post-war paper on typhus. Based on the above findings, it is suggested that the mythology about Fleck, established in the 1980s, has been accomplished by a selective reading of his papers and also that the role played by Fleck was more complex than has so far been contemplated. PMID:18831133

  15. Validation, clinical trial, and evaluation of a radiology expert system.

    PubMed

    Kahn, C E

    1991-10-01

    The PHOENIX Radiology Consultant is a rule-based expert system which assists physicians in planning radiological work-up strategies. This article describes the methods used to create and validate the system's knowledge base. The feasibility and acceptability of PHOENIX were tested for two years in a clinical trial. During this period, the system was used 1,421 times, an average of 13.7 times per week, primarily by medical students and nonradiologist physicians. Much of the system's use occurred at night and on weekends, when the radiology department was not fully staffed. Several physicians were enlisted to further evaluate the utility of the system. The results of their evaluation indicate that an expert system that helps physicians select diagnostic-imaging studies can serve as a useful and informative component of a radiology information system, and is particularly useful for medical students and physicians in training. PMID:1762580

  16. Nevada National Security Site Radiological Control Manual

    SciTech Connect

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of

  17. Instructional practices among science departments with high, moderate, and low gains on the Connecticut Academic Performance Test

    NASA Astrophysics Data System (ADS)

    Kachergis, Theodora R.

    The purpose of this study was to ascertain whether the instructional practices of performance-based, inquiry-based, and authentic-based learning strategies, and rubric use are related to improvement on the science portion of the Connecticut Academic Performance Test [CAPT], as indicated by CAPT gains from 1995--2001. Data were collected for this study by a survey/interview of 63 Connecticut high schools and their 118 certified biology teachers, who had participated in the science CAPT administration within that same school district during 1995--2001. Results from the analysis of the data indicate a significant relationship between strategy and rubric use and CAPT science score outputs. Those schools having the highest levels of strategy and rubric use also demonstrated high CAPT gains and increasing CAPT scores, over time. It was also determined that a strong relationship exists between the percentage of the ERG's goal for CAPT index and those ERGs, using strategies and/or rubrics proficiently. The major findings of the study reveal that teachers demonstrate a confusion of strategy/rubric meaning, as indicated by the low proficiency levels of their submitted strategy and rubric samples, despite high indicators of use for the three learning strategies and rubrics. In addition, rubrics are rated highly by the sample, but are not employed at the high levels of reported favorability. Further analysis determines that objective forms of assessment are used more frequently than strategy and rubric use, and may be implicated for the decreased use of rubrics. Although survey data indicate that 90% of the sample reported "Satisfactory" to "Excellent" levels of annual score updates within their respective districts, teachers requested a need for increased pre- and in-service professional development in the use of all three strategies and rubrics: particularly non-tenured teachers expressed a need for basic CAPT information and samples of strategy and rubric use, while

  18. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  19. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  20. Radiation protection in pediatric radiology

    SciTech Connect

    Not Available

    1981-01-01

    The purpose of this report is to make available a source of practical information regarding the manner in which radiologic examinations in children should be conducted to reduce the radiation dose to these patients and those responsible for thier care. The report is mainly for the use of pediatricians, radiologists, radiologic technicians, and other personnel who order or use radiological methods in examining children, Appendices contain methods for estimating doses to various organs, and doses from various examinations in pediatric radiology. The Council has adopted some units of the SI system of nomenclature. A glossary of terms is included. (KRM)

  1. Radiological Toolbox User's Manual

    SciTech Connect

    Eckerman, KF

    2004-07-01

    A toolbox of radiological data has been assembled to provide users access to the physical, chemical, anatomical, physiological and mathematical data relevant to the radiation protection of workers and member of the public. The software runs on a PC and provides users, through a single graphical interface, quick access to contemporary data and the means to extract these data for further computations and analysis. The numerical data, for the most part, are stored within databases in SI units. However, the user can display and extract values using non-SI units. This is the first release of the toolbox which was developed for the U.S. Nuclear Regulatory Commission.

  2. Small bowel radiology

    SciTech Connect

    Antes, G.; Eggemann, F.

    1987-01-01

    This book deals mainly with technique, experiences and results of the biphasic small bowel enema (enteroclysis) with barium and methyl cellulose. The method allows the evaluation of both morphology and function of the small bowel. The introduction describes the examination technique, basic patterns, interpretation and indications, while the atlas shows a broad spectrum of small bowel diseases (Crohn's disease, other inflammatory diseases, tumors, motility disorders, obstructions and malformations). The possibilities of small bowel radiology are demonstrated with reference to clinical findings and differential diagnoses.

  3. Characterization of radiological emergencies

    SciTech Connect

    Chester, C.V.

    1985-01-01

    Several severe radiological emergencies were reviewed to determine the likely range of conditions which must be coped with by a mobile teleoperator designed for emergencies. The events reviewed included accidents at TMI (1978), SL-1 (1961), Y-12 (1958), Bethesda (1982), Chalk River (1952 and 1958), Lucens (1969). The important conditions were: radiation fields over 10,000 R/h, severe contamination, possible critical excursion, possible inert atmosphere, temperatures from 50/sup 0/C to -20/sup 0/C, 100% relative humidity, 60-cm-high obstacles, stairs, airlocks, darkness, and lack of electric power.

  4. Smart Radiological Dosimeter

    SciTech Connect

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  5. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  6. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  7. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  8. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  9. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  10. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  11. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Recommendation for quality assurance programs in diagnostic radiology facilities. 1000.55 Section 1000.55 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH GENERAL Radiation Protection Recommendations § 1000.55 Recommendation...

  12. Building Virtual Models by Postprocessing Radiology Images: A Guide for Anatomy Faculty

    ERIC Educational Resources Information Center

    Tam, Matthew D. B. S.

    2010-01-01

    Radiology and radiologists are recognized as increasingly valuable resources for the teaching and learning of anatomy. State-of-the-art radiology department workstations with industry-standard software applications can provide exquisite demonstrations of anatomy, pathology, and more recently, physiology. Similar advances in personal computers and…

  13. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction. PMID:26466190

  14. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  15. A REGIONAL PARTNERSHIP ON RADIOLOGICAL SECURITY

    SciTech Connect

    Morris, Fred A.; Murray, Allan; Dickerson, Sarah; Tynan, Douglas M.; Rawl, Richard R.; Hoo, Mark S.

    2007-07-09

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO) created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP/RSRS partnership is to cooperate with regional neighbors in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports NNSA and IAEA objectives to improve the security of high risk radioactive sources by raising awareness of the need, and developing national programs, to: protect and control such materials; improve the security of such materials and recover and condition the materials no longer in use. To date, agreed upon joint activities have included assistance with the improvement of regulatory infrastructure for the control of radioactive sources, training on the physical protection of radioactive sources, training and assistance with the search, location, identification and securing of orphan radioactive sources and overall assistance with implementing the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. Since the inception of the partnership, ten Southeast Asian nations have participated in a range of activities from receiving general training on the security of radioactive sources to receiving specialized equipment and training to locate orphan or abandoned radioactive sources. By having a shared vision and objectives for radioactive source security in the Southeast Asian region, ANSTO and NNSA have been able to develop a successful partnership which has effectively utilized the technical, financial and political resources of each contributing partner. An example of how this partnership works is the cooperation with the Nuclear Energy Regulatory Agency, Indonesia (BAPETEN) to

  16. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane

  17. Prophylactic Antibiotic Guidelines in Modern Interventional Radiology Practice

    PubMed Central

    Moon, Eunice; Tam, Matthew D.B.S.; Kikano, Raghid N.; Karuppasamy, Karunakaravel

    2010-01-01

    Modern interventional radiology practice is continuously evolving. Developments include increases in the number of central venous catheter placements and tumor treatments (uterine fibroid therapy, radio- and chemoembolization of liver tumor, percutaneous radiofrequency and cryoablation), and new procedures such as abdominal aortic aneurysm stent-graft repair, vertebroplasty, kyphoplasty, and varicose vein therapies. There have also been recent advancements in standard biliary and urinary drainage procedures, percutaneous gastrointestinal feeding tube placement, and transjugular intrahepatic portosystemic shunts. Prophylactic antibiotics have become the standard of care in many departments, with little clinical data to support its wide acceptance. The rise in antibiotic-resistant strains of organisms in all hospitals worldwide have forced every department to question the use of prophylactic antibiotics. The authors review the evidence behind use of prophylactic antibiotics in standard interventional radiology procedures, as well as in newer procedures that have only recently been incorporated into interventional radiology practice. PMID:22550374

  18. Big Data and the Future of Radiology Informatics.

    PubMed

    Kansagra, Akash P; Yu, John-Paul J; Chatterjee, Arindam R; Lenchik, Leon; Chow, Daniel S; Prater, Adam B; Yeh, Jean; Doshi, Ankur M; Hawkins, C Matthew; Heilbrun, Marta E; Smith, Stacy E; Oselkin, Martin; Gupta, Pushpender; Ali, Sayed

    2016-01-01

    Rapid growth in the amount of data that is electronically recorded as part of routine clinical operations has generated great interest in the use of Big Data methodologies to address clinical and research questions. These methods can efficiently analyze and deliver insights from high-volume, high-variety, and high-growth rate datasets generated across the continuum of care, thereby forgoing the time, cost, and effort of more focused and controlled hypothesis-driven research. By virtue of an existing robust information technology infrastructure and years of archived digital data, radiology departments are particularly well positioned to take advantage of emerging Big Data techniques. In this review, we describe four areas in which Big Data is poised to have an immediate impact on radiology practice, research, and operations. In addition, we provide an overview of the Big Data adoption cycle and describe how academic radiology departments can promote Big Data development. PMID:26683510

  19. Public participation in radiological surveillance.

    PubMed

    Hanf, R W; Schreckhise, R G; Patton, G W; Poston, T M; Jaquish, R E

    1997-10-01

    In 1989, Pacific Northwest National Laboratory developed a program, for the U.S. Department of Energy, to involve local citizens in environmental surveillance at the Hanford Site. The Community-Operated Environmental Surveillance Program was patterned after similar community-involvement efforts at the Nevada Test Site and the Three Mile Island nuclear facility. Its purpose is to increase the flow of information to the public, thereby enhancing the public's awareness and understanding of surveillance activities. The program consists of two components: radiological air monitoring at nine offsite locations and agricultural product sampling at selected locations near the site. At each air-monitoring station, two local school teachers collect air particulate samples and operate equipment to monitor ambient radiation levels. Atmospheric tritium samples (as water vapor) are also collected at some locations. Four of the air-monitoring stations include large, colorful informational displays for public viewing. These displays provide details on station equipment, sample types, and sampling purposes. Instruments in the displays also monitor, record, and show real-time ambient radiation readings (measured with a pressurized ionization chamber) and meteorological conditions. Agricultural products, grown primarily by middle-school-aged students, are obtained from areas downwind of the site. Following analysis of these samples, environmental surveillance staff visit the schools to discuss the results with the students and their teachers. The data collected by these air and agricultural sampling efforts are summarized with other routinely collected sitewide surveillance data and reported annually in the Hanford Site environmental report. PMID:9314235

  20. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  1. Lack of security of networked medical equipment in radiology.

    PubMed

    Moses, Vinu; Korah, Ipeson

    2015-02-01

    OBJECTIVE. There are few articles in the literature describing the security and safety aspects of networked medical equipment in radiology departments. Most radiologists are unaware of the security issues. We review the security of the networked medical equipment of a typical radiology department. MATERIALS AND METHODS. All networked medical equipment in a radiology department was scanned for vulnerabilities with a port scanner and a network vulnerability scanner, and the vulnerabilities were classified using the Common Vulnerability Scoring System. A network sniffer was used to capture and analyze traffic on the radiology network for exposure of confidential patient data. We reviewed the use of antivirus software and firewalls on the networked medical equipment. USB ports and CD and DVD drives in the networked medical equipment were tested to see whether they allowed unauthorized access. Implementation of the virtual private network (VPN) that vendors use to access the radiology network was reviewed. RESULTS. Most of the networked medical equipment in our radiology department used vulnerable software with open ports and services. Of the 144 items scanned, 64 (44%) had at least one critical vulnerability, and 119 (83%) had at least one high-risk vulnerability. Most equipment did not encrypt traffic and allowed capture of confidential patient data. Of the 144 items scanned, two (1%) used antivirus software and three (2%) had a firewall enabled. The USB ports were not secure on 49 of the 58 (84%) items with USB ports, and the CD or DVD drive was not secure on 17 of the 31 (55%) items with a CD or DVD drive. One of three vendors had an insecure implementation of VPN access. CONCLUSION. Radiologists and the medical industry need to urgently review and rectify the security issues in existing networked medical equipment. We hope that the results of our study and this article also raise awareness among radiologists about the security issues of networked medical equipment

  2. Common problems in gastrointestinal radiology

    SciTech Connect

    Thompson, W.M.

    1989-01-01

    This book covers approximately 70 common diagnostic problems in gastro-intestinal radiology. Each problem, includes a short illustrated case history, a discussion of the radiologic findings, a general discussion of the case, the differential diagnosis, a description of the management of the problem or procedure used, and, where appropriate, the results of the therapy suggested.

  3. Handbooks in radiology: Nuclear medicine

    SciTech Connect

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine.

  4. Radiological Technology. Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide was designed for use in postsecondary radiological technology education programs in Georgia. Its purpose is to provide for the development of entry level skills in radiological technology in the areas of knowledge, theoretical structure, tool usage, diagnostic ability, related supportive skills, and occupational survival…

  5. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center (ESTSC)

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  6. Assessment of Chemical and Radiological Vulnerabilities

    SciTech Connect

    SETH, S.S.

    2000-05-17

    Following the May 14, 1997 chemical explosion at Hanford's Plutonium Reclamation Facility, the Department of Energy Richland Operations Office and its prime contractor, Fluor Hanford, Inc., completed an extensive assessment to identify and address chemical and radiological safety vulnerabilities at all facilities under the Project Hanford Management Contract. This was a challenging undertaking because of the immense size of the problem, unique technical issues, and competing priorities. This paper focuses on the assessment process, including the criteria and methodology for data collection, evaluation, and risk-based scoring. It does not provide details on the facility-specific results and corrective actions, but discusses the approach taken to address the identified vulnerabilities.

  7. Storage media for computers in radiology

    PubMed Central

    Dandu, Ravi Varma

    2008-01-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  8. Storage media for computers in radiology.

    PubMed

    Dandu, Ravi Varma

    2008-11-01

    The introduction and wide acceptance of digital technology in medical imaging has resulted in an exponential increase in the amount of data produced by the radiology department. There is an insatiable need for storage space to archive this ever-growing volume of image data. Healthcare facilities should plan the type and size of the storage media that they needed, based not just on the volume of data but also on considerations such as the speed and ease of access, redundancy, security, costs, as well as the longevity of the archival technology. This article reviews the various digital storage media and compares their merits and demerits. PMID:19774182

  9. Radiology leadership during a disaster event.

    PubMed

    Stockburger, Wayne T; Hill, Randy J; McCormack, Peter C

    2010-01-01

    The trauma of a mass casualty event in Fort Hood, TX very quickly impacted the imaging departments of 3 healthcare facilities in central Texas. In the aftermath,there was an opportunity to reflect and learn. When a mass casualty event or disaster takes place, radiology administration needs to be visible, lead staff, manage media attention and law enforcement presence,all while maintaining a high level of quality patient care. Issues of particular concern are training, coping mechanisms, and the impact of leadership. Military and civilian healthcare facilities have different capabilities in terms of training and operations when it comes to managing such an event. PMID:22279719

  10. Building a Radiology Service Line: Key Elements and Necessary Actions.

    PubMed

    Hawkins, C Matthew

    2016-01-01

    Building a radiology service line is a challenge. Beyond the science of imaging and pathophysiology of disease, there are a number of key elements and necessary actions-related to personnel, communication, and resources-that must be taken to make the service line successful and sustainable. Although there is no single best way to build an imaging-based service line, there are a number of essential components. The purpose of this article is to delineate these components and describe how ambitious radiologists may successfully build and sustain a radiology service line. PMID:26476845

  11. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Radiologic services. 482.26 Section 482.26 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS OF PARTICIPATION FOR HOSPITALS Basic Hospital Functions § 482.26 Condition...

  12. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Radiologic services. 482.26 Section 482.26 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS OF PARTICIPATION FOR HOSPITALS Basic Hospital Functions § 482.26 Condition...

  13. 42 CFR 482.26 - Condition of participation: Radiologic services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Radiologic services. 482.26 Section 482.26 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS OF PARTICIPATION FOR HOSPITALS Basic Hospital Functions § 482.26 Condition...

  14. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  15. The yearbook of diagnostic radiology. 1987

    SciTech Connect

    Bragg, D.G.

    1987-01-01

    This book contains seven selections. They are: Neuroradiology; Cardiovascular and Interventional Radiology; The Thorax; The Abdomen; The Musculoskeletal System; Pediatric Radiology; and Radiation Physics.

  16. Oak Ridge Institute for Science and Education: A guide to record series supporting epidemiologic studies conducted for the Department of Energy

    SciTech Connect

    1995-07-17

    This guide describes record series that pertain to epidemiologic and health-related studies at the Center for Epidemiologic Research (CER) of the Oak Ridge Institute for Science and Education (ORISE). These records document the health and safety monitoring of employees and contract employees of the Department of Energy (DOE) and its predecessor organizations, the Manhattan Engineer District (MED), the Atomic Energy Commission (AEC), and the Energy Research and Development Administration (ERDA). History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of the DOE and its epidemiologic research program, and the history of the Oak Ridge Reservation and the Oak Ridge Institute for Science and Education. It also furnishes information on the procedures that HAI sued to select, inventory, and describe pertinent records; the methodology used to produce the guide; the arrangement of the record series descriptions; the location of the records; and procedures for accessing records repositories.

  17. Radiology and the mobile device: Radiology in motion.

    PubMed

    Panughpath, Sridhar G; Kalyanpur, Arjun

    2012-10-01

    The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available. PMID:23833412

  18. Priorities for a 21st-century defense: aligning u.s. Army environmental science and engineering officer resources with the department of defense strategic guidance.

    PubMed

    Licina, Derek; Rufolo, Dennis; Story, Mike

    2013-01-01

    The recently published Department of Defense (DoD) strategic guidance highlights the need to ?shape a joint force for the future.? Supporting requirements to shape the joint force while the overall DoD force structure is reduced will be challenging. Fortunately, based on its unique training and experience, the Army Environmental Science and Engineering Officer (ESEO) profession is positioned today to fill anticipated joint public health requirements. Obtaining the U.S. Army Medical Department (AMEDD) approval to meet these requirements will have near-term consequences for the ESEO profession as some existing (albeit antiquated) authorizations may go unfilled. However, long-term dividends for the Medical Service Corps (MSC), AMEDD, Army, and DoD will be achieved by realigning critical resources to future joint and interagency requirements. Assigning ESEOs now to organizations such as the Theater Special Operations Commands (TSOCs), U.S. Agency for International Development (USAID), and the North Atlantic Treaty Organization (NATO) with perceived and real joint force health protection/public health requirements through unique means will ensure our profession remains relevant today and supports the joint force of tomorrow. PMID:23817877

  19. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    SciTech Connect

    Harpring, L; Frank Heckendorn, F

    2007-11-06

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process.

  20. Emergency medical preparedness for radiological/nuclear incidents in the United States.

    PubMed

    Coleman, C Norman; Lurie, Nicole

    2012-03-01

    The Office of the Assistant Secretary for Preparedness and Response in the Department of Health and Human Services develops health and medical response plans for all hazards--natural and human caused. While a nuclear power plant (NPP) incident will take time to evolve, a terrorist incident will have 'no-notice' so that extensive preparation and planning are essential. For radiological/nuclear (rad/nuc) incidents we have developed and continue to refine detailed plans and tools for medical responders for a nuclear detonation and a radiological dispersal device, which also serve for any type of rad/nuc incident. The plans are based on the best available basic science with the goal of providing planners and responders with just-in-time information and tools. There is much in common across the range of hazards, so that the products developed for rad/nuc incidents have helped overall preparedness. A major consideration in the development of new diagnostics, medical treatment and countermeasures for radiation injury is that of 'dual utility' with potential for routine medical use for cancer care. Participation and collaboration among nations helping the Japanese response to the Fukushima earthquake, tsunami and NPP disaster demonstrated the benefit of preparation and ongoing worldwide cooperation among experts. PMID:22395159

  1. Nuclear and Radiological Forensics and Attribution Overview

    SciTech Connect

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

  2. Hanford Radiological Protection Support Services Annual Report for 1998

    SciTech Connect

    DE Bihl; JA MacLellan; ML Johnson; RK Piper; TP Lynch

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  3. Hanford Radiological Protection Support Services Annual Report for 2000

    SciTech Connect

    Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

    2001-05-07

    During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

  4. The radiologically isolated syndrome.

    PubMed

    Lebrun, C

    2015-10-01

    Even prior to the introduction of criteria defining the radiologically isolated syndrome (RIS), longitudinal clinical data from individuals with incidentally identified T2 lesions suggestive of multiple sclerosis (MS) were described. Healthy individuals who do not exhibit signs of neurological dysfunction may have a brain MRI performed for a reason other than suspicion of MS that reveals unexpected anomalies highly suggestive of demyelinating plaques given their size, location, and morphology. These healthy subjects lack a history or symptomatology suggestive of MS and fulfill formal criteria for RIS, a recently described MS subtype that shares the phenotype of at-risk individuals for future demyelinating events. A formal description of RIS was first introduced in 2009 by Okuda et al., and defines a cohort of individuals who are at risk for future demyelinating events. European or North American observational studies have found that up to 30-45% of patients presenting with RIS will present with neurological symptoms, either acute or progressive. The median time to clinical conversion differs between studies. It was 2.3 years for a series of French patients and 5.4 years for an American cohort. Most patients who developed clinical symptoms had prior radiological progression. The presence of asymptomatic lesions in the cervical cord indicated an increased risk of progression, either to relapsing or to progressive MS. The consortium studying the epidemiology of RIS worldwide (RISC) presented their first retrospective cohort last year. Data were available for 451 RIS subjects (F: 354 [78.5%]). The mean age at RIS diagnosis was 37.2 years with a mean clinical follow-up time of 4.4 years. The observed 5-year conversion rate to the first clinical event was 34%. Of the converters within this time period, 9.6% fulfilled criteria for primary progressive MS. In the multivariate model, age, sex (male), and lesions within the cervical or thoracic spinal cord were identified as

  5. Vision and benefits of a virtual radiology environment for the U.S. Army

    NASA Astrophysics Data System (ADS)

    Chacko, Anna K.; Griffin, Robert; Cook, Jay F.; Martinez, Ralph; Lollar, H. William; Perez, Guadalupe

    1998-07-01

    The changes that have overtaken the U.S. healthcare industry in the last five years could be best characterized as tectonic shifts. Every aspect of the healthcare market has been affected by the changes in Government policy and the attitude of society to issues in Healthcare. Most of these changes have been viewed as adversarial both to the health care provider and to the consumer. Healthcare reform was to have made healthcare more affordable and more available. Although healthcare reform was not passed, attempts have been made nationwide to address the ills of the system. These attempts have been largely half-hearted and weak-kneed. In most instances, only half a solution has been provided. There has been no improvement in the quality of care. In fact, in many instances, there has been degradation in quality and it has not become more available. We are faced with seemingly conflicting mandates -- providing quality care making it more available working under severe capitation constraints and attracting and retaining a quality workforce. How do we address these problems? We have to change. We have to adopt the military paradigm of agility, adaptability and flexibility applicable to military science to our field of endeavor. We have to consider achieving all our goals without sacrificing any aspect. The most obvious step is to improve efficiency. This can be done best by incorporating the advantages that information technology has bestowed on other fields of endeavor. Properly applied information technology will provide the answer to improving efficiency in the Healthcare field. In the Department of Defense (DoD), we are now embarking on an extremely exciting new idea -- rendering the entire Virtual Radiology Environment (VRE). The business of radiology in the military therefore, is being re-engineered on several fronts. This is achieved in several sequential steps: (1) Equipping every radiology department to become digital and PACS-network capable. (2) Information

  6. Radiologic diagnosis of explosion casualties.

    PubMed

    Eastridge, Brian J; Blackbourne, Lorne; Wade, Charles E; Holcomb, John B

    2008-01-01

    The threat of terrorist events on domestic soil remains an ever-present risk. Despite the notoriety of unconventional weapons, the mainstay in the armament of the terrorist organization is the conventional explosive. Conventional explosives are easily weaponized and readily obtainable, and the recipes are widely available over the Internet. According to the US Department of State and the Federal Bureau of Investigation, over one half of the global terrorist events involve explosions, averaging two explosive events per day worldwide in 2005 (Terrorism Research Center. Available at www.terrorism.com. Accessed April 1, 2007). The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads, published by the Institute of Medicine, states that explosions were the most common cause of injuries associated with terrorism (Institute of Medicine Report: The Future of Emergency Care in the United States Health System: Emergency Medical Services at the Crossroads. Washington DC: National Academic Press, 2007). Explosive events have the potential to inflict numerous casualties with multiple injuries. The complexity of this scenario is exacerbated by the fact that few providers or medical facilities have experience with mass casualty events in which human and material resources can be rapidly overwhelmed. Care of explosive-related injury is based on same principles as that of standard trauma management paradigms. The basic difference between explosion-related injury and other injury mechanisms are the number of patients and multiplicity of injuries, which require a higher allocation of resources. With this caveat, the appropriate utilization of radiology resources has the potential to impact in-hospital diagnosis and triage and is an essential element in optimizing the management of the explosive-injured patients. PMID:19069034

  7. Radiology system evolution in the new millennium.

    PubMed

    Nauert, R C

    2001-01-01

    For many decades the practice of radiology grew slowly in America and was largely a secondary function under the control of hospitals. In more recent times it has vastly expanded its array of diagnostic, interventional, and therapeutic abilities. There is increasing consumer logic for direct access. Motivations have grown to create large independent entities with broadly diverse capabilities in order to succeed in the new millennium. Most regional markets are evolving rapidly in terms of managed care penetration, health system formation, physician practice consolidation and aggressive purchaser behavior by employers and consumers. To understand the enormity of healthcare evolution, it is useful to look at the industry's paradigm shifts in recent decades. Virtually every aspect of organizational infrastructure, delivery approaches, and the business environment has evolved markedly during the past fifty years. These changes will accelerate. To succeed financially, radiology groups must strengthen their market positions, technical capabilities, continuums of care and geographic dominance. Equally important is the wisdom of diversifying incomes into related services and businesses that provide additional related revenues. Key factors for successful development include facility market growth, full coverage of managed care contracts, high efficiency and aggressive diversification. A fully evolved system generates significant revenues and profitability by protecting and strengthening its financial position in this environment. That is accomplished through the development of strategically located radiology groups, aggressive alliances with medical practices in allied disciplines, and managed radiology departments and facilities for partner health systems. Organizational success ultimately depends on the ability to accept capitated payments under risk-bearing arrangements. The strategic business plan should be organized with the appropriate levels of detail needed to

  8. Self-citation: comparison between Radiología, European Radiology and Radiology for 1997-1998.

    PubMed

    Miguel, Alberto; Martí-Bonmatí, Luis

    2002-01-01

    Self-citation, considered as the number of times a paper cites other papers in the same journal, is an important criteria of journal quality. Our objective is to evaluate the self-citation in the official journal of the Spanish Society of Radiology (Radiología), and to compare it with the European Radiology and Radiology journals. Papers published in Radiología, European Radiology, and Radiology during 1997 and 1998 were analyzed. The Self Citation Index, considered as the ratio between self-references and total number of references per article, for the journals Radiología (SCIR), European Radiology (SCIER), and Radiology (SCIRY), were obtained and expressed as percentages. Also, the number of references to Radiología in European Radiology and Radiology papers were calculated. Stratification of the index per thematic area and article type was also performed. Mean SCIR, SCIER, and SCIRY values were compared with the ANOVA and the Student-Newman-Keuls tests. The self-citation index was statistically higher in Radiology (23.2%; p<0.0001) than in Radiología (1.8%) and European Radiology (0.8%). There were no statistically significant differences between SCIR and SCIER indexes ( p=0.25). In the stratification per thematic areas and article type, self-citation in Radiology was statistically higher ( p<0.0001), with the only exception of "Radioprotection" area ( p=0.2), to SCIR and SCIER. Although there were no statistically significant differences, by thematic areas SCIR was always larger than SCIER, with the only exception of the "Genitourinary imaging" area, and by article type SCIR also went greater to SCIER, except in review articles. Radiología, The Spanish official radiological journal, although not included in Index Medicus and its database Medline, had a larger number of self-citing than European Radiology in the period 1997-1998. PMID:11868105

  9. 5.3 Applied Radiological Protection

    NASA Astrophysics Data System (ADS)

    Almén, A.; Valentin, J.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '5.3 Applied Radiological Protection' of the Chapter '5 Medical Radiological Protection' with the contents:

  10. Radiological Society of North America

    MedlinePlus

    ... Plan your RSNA 2016 experience as you discover programming options, add courses to your agenda, and plan ... the future of ethics and professionalism in radiology. One Year After ICD-10: The Conversion Went Well, ...

  11. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (ESTSC)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  12. Environmental Tools and Radiological Assessment

    EPA Science Inventory

    This presentation details two tools (SADA and FRAMES) available for use in environmental assessments of chemicals that can also be used for radiological assessments of the environment. Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporate...

  13. Radiological cleanup of Enewetak Atoll

    SciTech Connect

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  14. Negotiating the radiologically isolated syndrome.

    PubMed

    Cummings, A; Chataway, J

    2014-10-01

    Multiple sclerosis, always challenging, hands down a particular gauntlet with the concept of the radiologically isolated syndrome. This article discusses what it is, recent developments in the field and how these patients should be managed. PMID:25291606

  15. Radiological instrument. Patent Application

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1985-10-10

    This patent application discloses a radiological measuring instrument including an angularly variable radiation-sensitive structure comprised of two blocks of material having a different index of refraction with one of the materials comprising a radiochromic substance whose refractive index changes through anomolous dispersion as a result of being exposed to radiation. The ratio of the two indices of refraction is selected to be close to unity, with the radiation-sensitive structure being pivotally adjusted so that light is directed into one end of the block comprising the material having the greater index of refraction. This element, moreover, is selected to be clear and transparent with the incident angle being close to the critical angle where total reflection of all incident light occurs. A portion of the incident light is furthermore projected through the clear transparent block without reflection, with the two beams emerging from the other end of the block, where they are detected. Exposure to radiation changes the index of refraction of the radiochromic block and accordingly the reflected energy emerging therefrom. Calibrated readjustment of the angle of incidence provides a measure of the sensed radiation.

  16. [Controlling in outpatient radiology].

    PubMed

    Baum, T

    2015-12-01

    Radiology is among the medical disciplines which require the highest investment costs in the healthcare system. The need to design efficient workflows to ensure maximum utilization of the equipment has long been known. In order to be able to establish a sound financial plan prior to a project or equipment purchase, the costs of an examination have to be broken down by modality and compared with the reimbursement rates. Obviously, the same holds true for operative decisions when scarce human resources have to be allocated. It is the task of controlling to review the economic viability of the different modalities and ideally, the results are incorporated into the management decision-making processes. The main section of this article looks at the recognition and allocation of direct and indirect costs in a medical center (Medizinisches Versorgungszentrum - MVZ) in the German North Rhine region. The profit contribution of each examination is determined by deducting the costs from the income generated by the treatment of patients with either private or statutory health insurance. PMID:26538134

  17. Evolution of the Radiological Protection System and its Implementation.

    PubMed

    Lazo, Edward

    2016-02-01

    The International System of Radiological Protection, developed, maintained, and elaborated by the International Commission on Radiological Protection (ICRP) has, for the past 50 y, provided a robust framework for developing radiological protection policy, regulation, and application. It has, however, been evolving as a result of experience with its implementation, modernization of social awareness of a shrinking world where the Internet links everyone instantly, and increasing public interest in safety-related decisions. These currents have gently pushed the ICRP in recent years to focus more sharply on particular aspects of its system: optimization, prevailing circumstances, the use of effective dose and aspects of an individual's risk, and consideration of the independent implementation of the international system's elements. This paper will present these issues and their relevance to the ICRP system of protection and its evolution. The broader framework of radiological protection (e.g., science, philosophy, policy, regulation, implementation), of which the ICRP is an important element, will provide a global, equally evolving context for this characterization of the changing ICRP system of radiological protection. PMID:26717167

  18. Radiological training for tritium facilities

    SciTech Connect

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  19. Financial accounting for radiology executives.

    PubMed

    Seidmann, Abraham; Mehta, Tushar

    2005-03-01

    The authors review the role of financial accounting information from the perspective of a radiology executive. They begin by introducing the role of pro forma statements. They discuss the fundamental concepts of accounting, including the matching principle and accrual accounting. The authors then explore the use of financial accounting information in making investment decisions in diagnostic medical imaging. The paper focuses on critically evaluating the benefits and limitations of financial accounting for decision making in a radiology practice. PMID:17411806

  20. Radiology of congenital heart disease

    SciTech Connect

    Amplatz, K.

    1986-01-01

    This is a text on the radiologic diagnosis of congenital heart disease and its clinical manifestations. The main thrust of the book is the logical approach which allows an understanding of the complex theory of congenital heart disease. The atlas gives a concise overview of the entire field of congenital heart disease. Emphasis is placed on the understanding of the pathophysiology and its clinical and radiological consequences. Surgical treatment is included since it provides a different viewpoint of the anatomy.

  1. Radiological Features of Hepatocellular Carcinoma

    PubMed Central

    Shah, Samir; Shukla, Akash; Paunipagar, Bhawan

    2014-01-01

    Present article is a review of radiological features of hepatocellular carcinoma on various imaging modalities. With the advancement in imaging techniques, biopsy is rarely needed for diagnosis of hepatocellular carcinoma (HCC), unlike other malignancies. Imaging is useful not only for diagnosis but also for surveillance, therapy and assessing response to treatment. The classical and the atypical radiological features of HCC have been described. PMID:25755613

  2. FDH radiological design review guidelines

    SciTech Connect

    Millsap, W.J.

    1998-09-29

    These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

  3. Evaluating a voice recognition system: finding the right product for your department.

    PubMed

    Freeh, M; Dewey, M; Brigham, L

    2001-06-01

    The Department of Radiology at the University of Utah Health Sciences Center has been in the process of transitioning from the traditional film-based department to a digital imaging department for the past 2 years. The department is now transitioning from the traditional method of dictating reports (dictation by radiologist to transcription to review and signing by radiologist) to a voice recognition system. The transition to digital operations will not be complete until we have the ability to directly interface the dictation process with the image review process. Voice recognition technology has advanced to the level where it can and should be an integral part of the new way of working in radiology and is an integral part of an efficient digital imaging department. The transition to voice recognition requires the task of identifying the product and the company that will best meet a department's needs. This report introduces the methods we used to evaluate the vendors and the products available as we made our purchasing decision. We discuss our evaluation method and provide a checklist that can be used by other departments to assist with their evaluation process. The criteria used in the evaluation process fall into the following major categories: user operations, technical infrastructure, medical dictionary, system interfaces, service support, cost, and company strength. Conclusions drawn from our evaluation process will be detailed, with the intention being to shorten the process for others as they embark on a similar venture. As more and more organizations investigate the many products and services that are now being offered to enhance the operations of a radiology department, it becomes increasingly important that solid methods are used to most effectively evaluate the new products. This report should help others complete the task of evaluating a voice recognition system and may be adaptable to other products as well. PMID:11442123

  4. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  5. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  6. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  7. Home-based radiology transcription and a productivity pay plan.

    PubMed

    Kerr, K

    1997-01-01

    Shands Hospital in Gainesville, Fla., decided to evaluate the way it provided transcription services in its radiology department. It identified four goals: increased productivity, decreased operating expense, finding much needed space in the radiology department and increasing employee morale. The department performs 165,000 procedures annually, with 66 radiologists, 29 faculty, and 37 residents and fellows on staff. Six FTEs comprised the transcription pool in the radiology department, with transcription their only duty. Transcriptionists were paid an hourly rate based on their years of service, not their productivity. Evaluation and measurement studies were undertaken by the hospital's management systems engineering department. The transcriptionists' hours were then changed to provide coverage during the periods of heaviest dictation. The productivity level of the transcription staff was also measured and various methods of measurement reviewed. The goal was a pure incentive pay plan that would reward employees for every increase in productivity. The incentive pay plan was phased in over a three-month period. Transcriptionists were paid for work performed, with no base pay beyond minimum wage. The move to home-based transcription was planned. The necessary equipment was identified and various issues specific to working at home were addressed. Approximately six months later, the transcriptionists were set up to work at home. The astounding results achieved are presented: 28% increase in productivity, operational cost savings exceeding $25,000 and a space savings of 238 square feet. PMID:10164979

  8. Filmless radiology at Brooke Army Medical Center

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis L.

    1997-05-01

    The hospital at Brooke Army Medical Center in San Antonio, Texas has an essentially filmless radiology department. Mammography is one of the few services still using film. The radiology department at Brooke takes advantage of a very capable Lockheed Martin PACS to achieve the filmless operation. The old hospital has been replaced by a new hospital, the new Brooke Army Medical Center. As a basis for predictions of activity at new Brooke, the activities at the old Brooke Army Medical Center were examined. The heart of the PACS at Brooke is the image server with an associated database. The image server has the performance required to keep the radiologist from returning to film for diagnosis. A directly connected workstation can present a full screen of images in less than two seconds, even during the busiest hour of the day for this large hospital. In addition the database is used to organize the workflow for the radiology examinations through the hospital. Information about the activity at the new Brooke hospital is used to predict the utilization of the short term storage and the long term storage. In particular, the time that an examination will be retained on the new Brooke short term storage is measured. The Brooke medical complex generates 384.8 exams per day on a typical weekday. The number of exams on a weekend is 40 percent of the exams on the weekday. The storage required is 18.3 gigabytes per day in the short term storage of the Image Storage Unit (ISU) and 9.7 gigabytes per day in the archive. The 256 gigabytes of the ISU will hold 11.7 weeks or about 2.5 months of exams. The archive will hold four years of exams in tow jukeboxes. A working year will have an effective 300 days of equivalent weekday radiology load. By ten years from now the hospital complex can be expected to handle to load that is estimated to be about 160 percent of the current load. With the changes in the storage of disks and archive media that will have occurred by that time, the

  9. Coping in a calamity: Radiology during the cloudburst at Leh

    PubMed Central

    Sen, Debraj

    2013-01-01

    The service hospital at Leh is a multispeciality hospital situated at an altitude of 11000 feet above mean sea level. On the nights of 4 and 5 Aug 2010, Leh was struck by a cloudburst leading to mudslides and consequently extensive damage to life and property. Being the only functional hospital, over a period of about 48 hours, 331 casualties were received. 549 casualties were received over the week with 108 admissions, 16 major surgeries and 138 minor surgeries. 178 radiographs, 17 CT scans and 09 ultrasound-colour Doppler examinations were performed on an urgent basis over 48 hours apart from the routine radiological investigations. Apart from chronicling the event, we hope that sharing the unique experience of the Radiology Department in dealing with the large influx of patients would provide an insight into the role of Radiology during the disaster and help in planning and developing management protocols during other calamities. PMID:23986626

  10. Radiology practice models: the 2008 ACR Forum.

    PubMed

    Gunderman, Richard B; Weinreb, Jeffrey C; Van Moore, Arl; Hillman, Bruce J; Neiman, Harvey L; Thrall, James H

    2008-09-01

    The 2008 ACR Forum brought together a diverse group of participants from clinical radiology, radiology leadership and practice management, managed care, economics, law, and entrepreneurship in Washington, DC, in January 2008 to discuss current models of radiology practice and anticipate new ones. It addressed what forces shape the practice of radiology, how these forces are changing, and how radiology practices can most effectively respond to them in the future. PMID:18755435

  11. Bayer Facts of Science Education XV: A View from the Gatekeepers--STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority Undergraduate STEM Students

    ERIC Educational Resources Information Center

    Journal of Science Education and Technology, 2012

    2012-01-01

    Diversity and the underrepresentation of women, African-Americans, Hispanics and American Indians in the nation's science, technology, engineering and mathematics (STEM) fields are the subjects of the XV: A View from the Gatekeepers--STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority…

  12. Cost accounting of radiological examinations. Cost analysis of radiological examinations of intermediate referral hospitals and general practice.

    PubMed

    Lääperi, A L

    1996-01-01

    The purpose of this study was to analyse the cost structure of radiological procedures in the intermediary referral hospitals and general practice and to develop a cost accounting system for radiological examinations that takes into consideration all relevant cost factors and is suitable for management of radiology departments and regional planning of radiological resources. The material comprised 174,560 basic radiological examinations performed in 1991 at 5 intermediate referral hospitals and 13 public health centres in the Pirkanmaa Hospital District in Finland. All radiological departments in the hospitals were managed by a specialist in radiology. The radiology departments at the public health care centres operated on a self-referral basis by general practitioners. The data were extracted from examination lists, inventories and balance sheets; parts of the data were estimated or calculated. The radiological examinations were compiled according to the type of examination and equipment used: conventional, contrast medium, ultrasound, mammography and roentgen examinations with mobile equipment. The majority of the examinations (87%) comprised conventional radiography. For cost analysis the cost items were grouped into 5 cost factors: personnel, equipment, material, real estate and administration costs. The depreciation time used was 10 years for roentgen equipment, 5 years for ultrasound equipment and 5 to 10 years for other capital goods. An annual interest rate of 10% was applied. Standard average values based on a sample at 2 hospitals were used for the examination-specific radiologist time, radiographer time and material costs. Four cost accounting versions with varying allocation of the major cost items were designed. Two-way analysis of variance of the effect of different allocation methods on the costs and cost structure of the examination groups was performed. On the basis of the cost analysis a cost accounting program containing both monetary and

  13. [Radiologic medical desktop conferences--clinical evaluation of the KAMEDIN teleradiology system in routine practice of a radiologic institute].

    PubMed

    Bolte, R; Lehmann, K J; Walz, M; Loose, R; Lütgemeier, J; Seibert, F; Busch, C; Schinkmann, M; Georgi, M

    1996-07-01

    KAMEDIN is a teleradiology project of "Deutsche Telekom". ISDN based image transfer, visualisation and online-presentation of digital radiological images is performed. In this study the suitability of the KAMEDIN-system has been tested in a clinical environment. The software has been adapted to the requirements of radiological image visualisation. During 6 months over 50 conferences took place with an average of 36 CT-slices per patient. The amount of time was approximately 10 min for conference preparation, 20 min for image transfer and 8 min for conferencing. Software problems occurred and were solved. Image quality on the monitor as well as online presentation including "simultaneous cursors" showed high performance and achieved high acceptance by the clinicians. Thus KAMEDIN is a useful teleradiology system, especially if the system is adapted to the requirements of radiology departments. PMID:8924455

  14. Federal Radiological Monitoring and Assessment Center Analytical Response

    SciTech Connect

    E.C. Nielsen

    2003-04-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local government s, in the event of a major radiological emergency in the United States. The FRMAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant from the incident, which will increase sample management challenges. This paper addresses emergency radioanalytical capability and capacity and its utilization during FRMAC operations.

  15. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    SciTech Connect

    D. R. Bowman

    2002-10-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability.

  16. Survey of UK radiology trainees in the aftermath of ‘Modernising Medical Careers’

    PubMed Central

    2012-01-01

    Background Following implementation of Modernising Medical Careers (MMC) in the UK, potential radiology trainees must decide on their career and apply sooner than ever before. We aimed to determine whether current trainees were sufficiently informed to make an earlier career decision by comparing the early radiology experiences of Traditional and Foundation Trainees. Methods 344 radiology trainees were appointed through MMC in 2007/08. This cohort was surveyed online. Results Response rate was 174/344 (51%). Traditional Trainees made their career decision 2.6 years after graduation compared with 1.2 years for Foundation Trainees (57/167, 34%). Nearly half of responders (79/169, 47%) experienced no formal radiology teaching as undergraduates. Most trainees regularly attended radiology meetings, spent time in a radiology department and/or performed radiology research. Many trainees received no career advice specific to radiology (69/163, 42%) at any point prior to entering the specialty; this includes both formal and informal advice. Junior doctor experiences were more frequently cited as influencing career choice (98/164, 60%). An earlier career decision was associated with; undergraduate radiology projects (-0.72 years, p = 0.018), career advice (-0.63 years, p = 0.009) and regular attendance at radiology meetings (-0.65 years, p = 0.014). Conclusion Early experience of radiology enables trainees to make an earlier career decision, however current radiology trainees were not always afforded relevant experiences prior to entering training. Radiologists need to be more proactive in encouraging the next generation of trainees. PMID:23031228

  17. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  18. Pharmacotherapy of Traumatic Brain Injury: State of the Science and the Road Forward: Report of the Department of Defense Neurotrauma Pharmacology Workgroup

    PubMed Central

    Kochanek, Patrick M.; Bergold, Peter; Kenney, Kimbra; Marx, Christine E.; Grimes, Col. Jamie B.; Loh, LTC Yince; Adam, LTC Gina E.; Oskvig, Devon; Curley, Kenneth C.; Salzer, Col. Wanda

    2014-01-01

    Abstract Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI. PMID:23968241

  19. Radiological Work Planning and Procedure

    SciTech Connect

    KURTZ, J.E.

    2000-01-01

    Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

  20. Multiple communication networks for a radiological PACS

    NASA Astrophysics Data System (ADS)

    Wong, Albert W. K.; Stewart, Brent K.; Lou, Shyhliang A.; Chan, Kelby K.; Huang, H. K.

    1991-07-01

    The authors have implemented a communication network connecting multiple buildings for their picture archiving and communication system (PACS) in the Radiology Department at UCLA. The network consists of three types of local area networks (LANs) and a 1.0-km fiber-optic link connecting the outpatient and inpatient facilities. Images from radiologic imaging devices (4 CT scanners, 5 MR scanners, 4 CR units and 5 film digitizers) are transmitted to the acquisition computers via the Ethernet LAN. The fiber distributed data interface (FDDI) LAN then provides data communication among the cluster controllers, the acquisition computers, and the database servers. A 1-gigabit UltraNet LAN is used to route images from the cluster controllers to remote display workstations. All inter-building connections are through fiber-optic cables. Among these multiple networks, Ethernet offers multi-access to the multimodal PACS in image acquisition, FDDI controls a fast data flow so that all acquired images have a shorter residence time on local disks, and UltraNet provides high-speed transfer of images from the cluster controllers to the display workstations. The three-tiered functionality of Ethernet, FDDI, and UltraNet eliminates network traffic bottlenecks and hence provides high performance in image communication. The delay time of a 2K X 2K X 8-bit CR image (4 MBytes) from acquisition to display is less than 5 minutes. In addition, the standard Ethernet serves as a backup to guarantee network connectivity of the entire PACS.

  1. [Vocal recognition in dental and oral radiology].

    PubMed

    La Fianza, A; Giorgetti, S; Marelli, P; Campani, R

    1993-10-01

    Speech reporting benefits by units which can recognize sentences in any natural language in real time. The use of this method in the everyday practice of radiology departments shows its possible application fields. We used the speech recognition method to report orthopantomographic exams in order to evaluate the advantages the method offers to the management and quality of reporting the exams which are difficult to fit in other closed computed reporting systems. Both speech recognition and the conventional reporting method (tape recording and typewriting) were used to report 760 orthopantomographs. The average time needed to make the report, the legibility (or Flesch) index, as adapted for the Italian language, and finally a clinical index (the subjective opinion of 4 odontostomatologists) were evaluated for each exam, with both techniques. Moreover, errors in speech reporting (crude, human and overall errors) were also evaluated. The advantages of speech reporting consisted in the shorter time needed for the report to become available (2.24 vs 2.99 minutes) (p < 0.0005), in the improved Flesch index (30.62 vs 28.9) and in the clinical index. The data obtained from speech reporting in odontostomatologic radiology were useful not only to reduce the mean reporting time of orthopantomographic exams but also to improve report quality by reducing both grammar and transmission mistakes. However, the basic condition for such results to be obtained is the speaker's skills to make a good report. PMID:8248577

  2. Quantitative Evaluation of Iranian Radiology Papers and Its Comparison with Selected Countries

    PubMed Central

    Ghafoori, Mahyar; Emami, Hasan; Sedaghat, Abdolrasoul; Ghiasi, Mohammad; Shakiba, Madjid; Alavi, Manijeh

    2014-01-01

    Background: Recent technological developments in medicine, including modern radiology have promoted the impact of scientific researches on social life. The scientific outputs such as article and patents are products that show the scientists’ attempt to access these achievements. Objectives: In the current study, we evaluate the current situation of Iranian scientists in the field of radiology and compare it with the selected countries in terms of scientific papers. For this purpose, we used scientometric tools to quantitatively assess the scientific papers in the field of radiology. Materials and Methods: Radiology papers were evaluated in the context of medical field audit using retrospective model. We used the related databases of biomedical sciences for extraction of articles related to radiology. In the next step, the situation of radiology scientific products of the country were determined with respect to the under study regional countries. Results: Results of the current study showed a ratio of 0.19% for Iranian papers in PubMed database published in 2009. In addition, in 2009, Iranian papers constituted 0.29% of the Scopus scientific database. The proportion of Iranian papers in the understudy region was 7.6%. Conclusion: To diminish the gap between Iranian scientific radiology papers and other competitor countries in the region and achievement of document 2025 goals, multifold effort of the society of radiology is necessary. PMID:24693301

  3. Radiological control manual. Revision 1

    SciTech Connect

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  4. [Radiological examinations that have disappeared].

    PubMed

    Puylaert, Carl B A J; Puylaert, Julien B C M

    2011-01-01

    If a radiologist from 1950 could travel in time to 2011, he or she would be baffled to see how few of the radiological examinations he was familiar with, remain. We review the radiological examinations that have disappeared since X-rays were discovered, and include the causes of their disappearance. Barium studies have mainly been replaced by endoscopy, oral cholecystography by ultrasound, and intravenous urography by CT-scan. Angiography by means of a direct puncture of carotid artery and aorta has been replaced by Seldinger angiography. Pneumencephalography and myelography have been replaced by CT and MRI. Bronchography has been replaced by bronchoscopy and CT-scan, arthrography by MRI and arthroscopy. Many other radiological examinations have been replaced by ultrasound, CT or MRI. PMID:21447222

  5. How to Start Interventional Radiology

    PubMed Central

    Ghanaati, Hossein; Firouznia, Kavous; Jalali, Amir Hossein; Shakiba, Madjid

    2013-01-01

    Interventional techniques aim to find safer and better ways to treat vascular diseases even in many instances, the interventional radiology solutions has been considered the only treatment option for the patients. Interventional radiologists are specialists who perform minimally invasive procedures instead of surgery or other treatments. These procedures apply various imaging and catheterization procedures in order to diagnose and treat diseases. In each country, interventional radiology practice establishment of varies according to local factors, but following a standard strategy seems better to set up this facility. According to above mentioned points, we decided to establish this specialty in our hospital since 2001 as the pioneer center in Iran. In this presentation we will discuss about our experience for start interventional radiology. PMID:24693402

  6. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  7. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  8. Managing Generational Differences in Radiology.

    PubMed

    Eastland, Robin; Clark, Kevin R

    2015-01-01

    Diversity can take many forms. One type of recent focus is generational differences and intergenerational issues. Much research exists regarding generational differences in the workplace and in healthcare as a whole. Very little has been done on generational differences within the field of radiology. An analysis of current research of generational differences within radiology, nursing, and healthcart in general was performed to identify current trends and establish similarities and discordance in available studies. An emphasis was placed on how generational differences influence education, teamwork, and patient care, along with what challenges and opportunities exist for managers, leaders, and organizations. PMID:26314182

  9. Commit to Sit in Radiology.

    PubMed

    Pittsenbargar, Jared; Amos, Gwendolyn; Gaudet, Jo-Anne

    2015-01-01

    At Houston Methodist Hospital, Commit to Sit is a program that encourages radiology professionals to communicate with patients in a way that demonstrates compassion, respect, empathy, and competence in order to foster a trusting relationship. Using active and empathic listening, dialogue is received and understood in the way it was intended, creating a patient centric environment resulting in high quality, safe patient care with improved outcomes. The implicit understanding derived from results and outcomes confirms the fact that patients prefer the radiology staff to sit while communicating with them. This understanding allows the voice of the patient to be heard and should be a consistent practice among all staff. PMID:26485897

  10. Interventional Radiology in Liver Transplantation

    SciTech Connect

    Karani, John B. Yu, Dominic F.Q.C.; Kane, Pauline A.

    2005-04-15

    Radiology is a key specialty within a liver transplant program. Interventional techniques not only contribute to graft and recipient survival but also allow appropriate patient selection and ensure that recipients with severe liver decompensation, hepatocellular carcinoma or portal hypertension are transplanted with the best chance of prolonged survival. Equally inappropriate selection for these techniques may adversely affect survival. Liver transplantation is a dynamic field of innovative surgical techniques with a requirement for interventional radiology to parallel these developments. This paper reviews the current practice within a major European center for adult and pediatric transplantation.

  11. Analysis of radiology business models.

    PubMed

    Enzmann, Dieter R; Schomer, Donald F

    2013-03-01

    As health care moves to value orientation, radiology's traditional business model faces challenges to adapt. The authors describe a strategic value framework that radiology practices can use to best position themselves in their environments. This simplified construct encourages practices to define their dominant value propositions. There are 3 main value propositions that form a conceptual triangle, whose vertices represent the low-cost provider, the product leader, and the customer intimacy models. Each vertex has been a valid market position, but each demands specific capabilities and trade-offs. The underlying concepts help practices select value propositions they can successfully deliver in their competitive environments. PMID:23245438

  12. [Radiological media and modern supporting tools in radiology].

    PubMed

    Sachs, A; Pokieser, P

    2014-01-01

    Radiology is a field with a high demand on information. Nowadays, a huge variety of electronic media and tools exists in addition to the classical media. Asynchronous and synchronous e-learning are constantly growing and support radiology with case collections, webinars and online textbooks. Various internet resources, social media and online courses have been established. Dynamic websites show a variety of interactive elements and it is easier and faster to access large amounts of data. Social media have an exponentially growing number of users and enable an efficient collaboration as well as forming professional networks. Massive open online courses (MOOCs) complete the offer of education and increase the opportunity to take part in educational activities. Apart from the existing variety of resources it is essential to focus on a critical selection for using these radiological media. It is reasonable to combine classical and electronic media instead of a one-sided use. As dynamic as the progress in the field of radiological media and its tools may be, the personal contact remains and should be maintained. PMID:24449282

  13. Survey of radiologic practices among dental practitioners

    SciTech Connect

    Goren, A.D.; Sciubba, J.J.; Friedman, R.; Malamud, H. )

    1989-04-01

    The purpose of this study was to determine the factors that influence and contribute to patient exposure in radiologic procedures performed in the offices of 132 staff members within the dental department of a teaching hospital. A questionnaire was prepared in which data were requested on brands of film used, type of x-ray unit used, processing, and use of leaded apron, cervical shield, and film holder. Offices were also visited to evaluate performance of existing dental x-ray equipment. Both the Dental Radiographic Normalizing and Monitoring Device and the Dental Quality Control Test Tool were evaluated. The average exposure was equivalent to the class D film (220 mR), but only 13% of those surveyed used the faster class E film, which would reduce patient exposure in half. The survey indicates that dentists are not using the newer low-exposure class E film in their practices.

  14. CP-50 calibration facility radiological safety assessment document

    SciTech Connect

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  15. Radiological survey results at Beverly Harbor, Beverly, Massachusetts (VB025)

    SciTech Connect

    Foley, R.D.; Johnson, C.A.

    1992-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Beverly Harbor, Beverly, Massachusetts. The survey was performed in may 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to the harbor and neighboring areas. The survey included a surface gamma scan and the collection of soil and biological samples for radionuclide analyses.

  16. Implementation of DICOM Modality Worklist at Patient Registration Systems in Radiology Unit

    NASA Astrophysics Data System (ADS)

    Kartawiguna, Daniel; Georgiana, Vina

    2014-03-01

    Currently, the information and communication technology is developing very rapidly. A lot of hospitals have digital radiodiagnostic modality that supports the DICOM protocol. However, the implementation of integrated radiology information system with medical imaging equipment is still very limited until now, especially in developing countries like Indonesia. One of the obstacles is high prices for radiology information system. Whereas the radiology information systems can be widely used by radiologists to provide many benefit for patient, hospitals, and the doctors themselves. This study aims to develop a system that integrates the radiology administration information system with radiodiagnostic imaging modalities. Such a system would give some benefits that the information obtained is more accurate, timely, relevant, and accelerate the workflow of healthcare workers. This research used direct observation method to some hospital radiology unit. Data was collected through interviews, questionnaires, and surveys directly to some of the hospital's radiology department in Jakarta, and supported by the literature study. Based on the observations, the prototype of integrated patient registration systems in radiology unit is developed and interfaced to imaging equipment radiodiagnostic using standard DICOM communications. The prototype of radiology patient registration system is tested with the modality MRI and CT scan.

  17. Radiologic Technology Occupations. Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide delineates the tasks and performance standards for radiologic technology occupations. It includes job seeking skills, work attitudes, energy conservation practices, and safety. The guide is centered around the three domains of learning: psychomotor, cognitive, and affective. For each duty, the following are provided: task, standard of…

  18. Radiological Defense Officer. Student Workbook.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Washington, DC.

    This student workbook includes the necessary administrative materials, briefs, exercises and answer sheets for the quizzes and final course examination as needed by the students during the conduct of the Radiological Defense Officer course. Among the briefs included are the following: (1) Reporting Forms; (2) Forecasting Dose Rates; (3) Dose…

  19. 100-DR-1 radiological surveys

    SciTech Connect

    Naiknimbalkar, N.M.

    1994-01-28

    This report summarizes and documents the results of the radiological surveys conducted over the surface of the 100-DR-1 Operable Unit, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 100-DR-1 radiological survey field task consisted of two activities: characterization of the operable unit-specific background conditions and the radiological survey of the operable unit surface area. The survey methodology was based on utilization of USRADS for automated recording of the gross gamma radiation levels at or near 6 in. and at 3 ft from the surface soil. The purpose of the survey is to identify the location of unidentified subsurface radioactive material areas and any surface contamination associated with these areas. The radiological surveys were conducted using both a digital count rate meter with a NaI detector reporting in counts per minute (CPM) and a dose rate meter reporting micro-Roentgen per hour (uR) connected to a CHEMRAD Tennessee Corp. Series 2000 USRADS. The count rate meter was set for gross counting, i.e., Window ``out``. The window setting allows detection of low, intermediate, and high energy photons. The USRADS equipment is used to record the detector readings verses the location of the readings, generate a map of the survey area, and save the data on computer storage media.

  20. International Data on Radiological Sources

    SciTech Connect

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  1. Counseling in radiologic technology programs.

    PubMed

    Warner, S L

    1975-01-01

    Rarely do radiologic technology programs have adequate faculty to provide full-time counselors for the student's personal, professional, and academic problems. The problems of using educational or administrative personnel as part-time couselors are discussed and the utilization of interested staff technologists in the role of student counselor is recommended. PMID:1188083

  2. Radiological image transfer and communication within the BERKOM/RADKOM project

    NASA Astrophysics Data System (ADS)

    Langer, Matthias; Hunger, J.; Zendel, W.; Zwicker, C.; Felix, Roland; Pack, G.; Kuritke, D.

    1990-08-01

    In this radiologic communication project two PAC-systems were installed in two locations of one radiologic department of the Rudolf Virchow University Clinic lying about 10 km apart. The realisation of a well-operating PACS-to-PACS communication is related to a fast image- and video- data transfer and a command processing technic. The PACS-workstation has to enable the manipulation and post-processing technics known from CT-, MR- and DSA- imaging.

  3. PUREX environmental radiological surveillance - preoperational and operational support program conducted by Pacific Northwest Laboratory

    SciTech Connect

    Sula, M.J.; Price, K.R.

    1983-10-01

    This report describes the radiological environmental sampling program that is being conducted at the US Department of Energy's (DOE) Hanford Site in support of resumed operation of the PUREX fuel processing plant. The report also summarizes preoperational radiological environmental data collected to date. The activities described herein are part of the ongoing Hanford Environmental Surveillance Program, operated by the Pacific Northwest Laboratory (PNL) for the DOE.

  4. Is Your Interventional Radiology Service Ready for SARS?: The Singapore Experience

    SciTech Connect

    Lau, Te-Neng; Teo, Ngee; Tay, Kiang-Hiong; Chan, Ling-Ling; Wong, Daniel; Lim, Winston E.H.; Tan, Bien-Soo

    2003-09-15

    The recent epidemic of severe acute respiratory syndrome caught many by surprise. Hitherto, infection control has not been in the forefront of radiological practice. Many interventional radiology (IR) services are therefore not equipped to deal with such a disease. In this review, we share our experience from the interventional radiologist's perspective, report on the acute measures instituted within our departments and explore the long-term effects of such a disease on the practice of IR.

  5. PACS implementation dramatically impacts people and radiology work processes

    NASA Astrophysics Data System (ADS)

    Ouvry, Ann

    1997-05-01

    The technology is not the bottleneck anymore in PACS implementation, it has become clear that the key to the success of PACS is understanding the current process, the end-user requirements, and how these processes will change with the introduction of PACS. We will discuss how implementation of PACS changed the working procedures in the Radiology department of Visby Hospital. Visby Hospital in Gotland, Sweden has approximately 160 beds. The Radiology department performs approximately 33,000 examinations per year and is capable of offering a broad range of diagnostic imaging services including CT and MRI. When a new facility was built in 1994, the decision was made to go for filmless operation and a modern information infrastructure. The new facility went operational by the end of 1994, in August 1995 almost filmless operation was reached. Continuing effort and attention is being paid to further simplify the workflow and working procedures in the Radiology department, and to improve the services offered to referring physicians. Although the project aimed at filmless operation, the main goal was to organize for efficient operation and excellent service, thereby maintaining high quality standards and employee satisfaction.

  6. The 1985 year book of diagnostic radiology

    SciTech Connect

    Bragg, D.G.

    1984-01-01

    This book provides reviews of 343 significant articles from 79 journals. Topics include the following: expanding use of nuclear magnetic resonance imaging; sonography and pediatric radiology; radiographic evaluation of skeletal stress injuries; cost effectiveness of radiographic procedures; radiologic manifestations of iatrogenic complications; breast cancer diagnosis; interventional radiology and underutilization; and computed tomography in diagnosis and staging of neoplasms.

  7. University Curriculums and Fellowships in Radiological Health.

    ERIC Educational Resources Information Center

    Villforth, John C.

    This booklet describes the academic programs funded through the Radiological Health Training Grants Program. Graduate Programs for the training of radiological health specialists at 28 universities and undergraduate (two year and four year) radiological technical programs at seven institutions are described. Program descriptions include degree(s)…

  8. Teacher Opinions Concerning Science Projects and Science Fairs.

    ERIC Educational Resources Information Center

    Grote, Michael

    1995-01-01

    Surveys about science projects and science fairs of (n=191) high school science department chairpersons found strong support for preservice training in structuring independent science research projects, belief that doing science research projects taught lessons that could not be duplicated by classroom instruction, and a slight majority agreement…

  9. Instrumentation Needs of Academic Departments of Chemistry: A Survey Study. Report of a Joint Task Force of the Committee on Science and Committee on Chemistry and Public Affairs.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…

  10. U.S. national response assets for radiological incidents.

    PubMed

    Remick, Alan L; Crapo, John L; Woodruff, Charles R

    2005-11-01

    The federal government has had the ability to respond to incidents of national significance for decades. Since 11 September 2001, there have been enhancements to existing federal assets and the creation of new federal assets. This presentation will provide an overview of the more significant federal assets. Pivotal to a response of national significance is the U.S. Department of Energy (DOE) Federal Radiological Monitoring and Assessment Center, which organizes and coordinates federal agency monitoring activities during an emergency. DOE manages the Federal Radiological Monitoring and Assessment Center during the emergency phase, and the Environmental Protection Agency (EPA) manages the response during the recovery phase once the emergency is terminated. EPA monitoring teams provide support during both the emergency and recovery phases of an emergency. Other DOE teams are available to respond to major nuclear power plant events, transportation accidents, or terrorism events involving the use of radiological materials, including the Radiological Assistance Program, the Aerial Measuring System, the National Atmospheric Release Advisory Center, and the Radiation Emergency Assistance Center/Training Site. For incidents involving a nuclear weapon, an improvised nuclear device, or a radiological dispersal device, DOE assets such as the Nuclear Emergency Support Team and the Accident Response Group could provide capabilities for weapon or device search, recovery, and removal. The Radiological Triage System harnesses the weapons scientists and engineers at the DOE national laboratories to provide gamma spectroscopy interpretation for agencies responding to an incident. In recent years, National Guard Weapons of Mass Destruction-Civil Support Teams have been created to support state and local response to terrorism events. The Civil Support Teams normally come under direct control of the state and can respond without requiring authorization from the U.S. Department of

  11. Radiological/toxicological sabotage assessments at the Savannah River Site

    SciTech Connect

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-11-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, {open_quotes}Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,{close_quotes} and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC`s approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs).

  12. Research education in Europe: an opinion paper by the European Society of Radiology.

    PubMed

    2015-04-01

    Research is a major positive driver for radiology. Therefore, research education needs to be a major topic for the radiology leadership, including the research committee of the ESR. Professional (radiological and non-radiological) and scientific publications as well as Research Committee questionnaires provide the basis for this opinion paper. Although radiology is well-positioned to deal with current and future challenges, there are still some gaps, such as the presence of radiology in basic research, radiology-specific research versus research services for other disciplines, need of adaptation to new research topics, general attitude towards research, issues of career planning, lack of incentives for researchers, gender issues with loss of women from the researcher pipeline, limited financing of research education and variability between countries and institutions. There is no easy answer to such challenges. However, all stakeholders, from the ESR to subspecialty societies, university departments, general radiology departments and the individual radiologist must recognise and promote research within their competencies. Many means and structures are already available but need to be used more extensively and systematically. Additional means need to be developed, scientific and professional trends must be actively followed, and minimal standards in research education should be maintained throughout Europe. Main Messages • Radiology research includes a broad spectrum, from basic to health services research. • Research education needs to be widely available and systematically promoted. • Existing means such as the European Institute for Biomedical Imaging Research (EIBIR) need to be advanced. • New developments in research topics and professional life must be continuously monitored and evaluated. PMID:25763995

  13. Political Science's Responsibility to the Community: A Promise Fulfilled? Anniversary Sessions of the Department of Political Science, University of Illinois (75th, Urbana-Champaign, Illinois, November 20-21, 1981). The Edmund James James Lecture.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Dept. of Political Science.

    This report contains the keynote speech, the panel discussions, and questions (with responses) from the audience for each of two major sessions on the responsibility of political science to the community. The focus of the first session was academic political science and public service. The keynote speaker was William N. Cassella. Panelists were…

  14. Radiological impact of composite food served at PINSTECH.

    PubMed

    Jabbar, T; Akhter, P; Khan, K; Jabbar, A; Saleem, K

    2009-06-01

    To determine radiological impact of composite food served at Pakistan Institute of Nuclear Science and Technology (PINSTECH) on its worker, cooked meals were collected during 2000-2007 and analysed by gamma and beta radiometry techniques for naturally occurring radionuclides and fission fragments. The only measurable radionuclide was naturally occurring (40)K. Its activity range was 40+/-1.5 to 182.4+/-3.8 Bq kg(-1) with cumulative average value of 89.4+/-35.1 Bq kg(-1). Based on annual meals taken by the worker in cafeteria, the measured value gives committed effective dose of 74 microSv and estimated cancer risk factor of 1.5 x 10(-4) that is a minor fraction of the total risk of 5 x 10(-3). It depicts that food served at PINSTECH cafeteria is radiologically safe for consumption. PMID:19233243

  15. Calculating Contrast Stretching Variables in Order to Improve Dental Radiology Image Quality

    NASA Astrophysics Data System (ADS)

    Widodo, Haris B.; Soelaiman, Arief; Ramadhani, Yogi; Supriyanti, Retno

    2016-01-01

    Teeth are one of the body's digestive tract that serves as a softener food that can be digested easily. One branch of science that was instrumental in the treatment and diagnosis of teeth is Dental Radiology. However, in reality many dental radiology images has low resolution, thus inhibiting in making diagnosis of dental disease perfectly. This research aims to improve low resolution dental radiology image using image processing techniques. This paper discussed the use of contrast stretching method to improve the dental radiology image quality, especially relating to the calculation of the variable contrast stretching method. The results showed that contrast stretching method is promising for use in improving the image quality in a simple but efficient.

  16. [Radiation protection in interventional radiology].

    PubMed

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses. PMID:26913507

  17. Radiology applications of financial accounting.

    PubMed

    Leibenhaut, Mark H

    2005-03-01

    A basic knowledge of financial accounting can help radiologists analyze business opportunities and examine the potential impacts of new technology or predict the adverse consequences of new competitors entering their service area. The income statement, balance sheet, and cash flow statement are the three basic financial statements that document the current financial position of the radiology practice and allow managers to monitor the ongoing financial operations of the enterprise. Pro forma, or hypothetical, financial statements can be generated to predict the financial impact of specific business decisions or investments on the profitability of the practice. Sensitivity analysis, or what-if scenarios, can be performed to determine the potential impact of changing key revenue, investment, operating cost or financial assumptions. By viewing radiology as both a profession and a business, radiologists can optimize their use of scarce economic resources and maximize the return on their financial investments. PMID:17411807

  18. Interventional radiology in the elderly

    PubMed Central

    Katsanos, Konstantinos; Ahmad, Farhan; Dourado, Renato; Sabharwal, Tarun; Adam, Andreas

    2009-01-01

    Interventional radiological percutaneous procedures are becoming all the more important in the curative or palliative management of elderly frail patients with multiple underlying comorbidities. They may serve either as alternative primary minimally invasive therapies or adjuncts to traditional surgical treatments. The present report provides a concise review of the most important interventional radiological procedures with a special focus on the treatment of the primary debilitating pathologies of the elderly population. The authors elaborate on the scientific evidence and latest developments of thermoablation of solid organ malignancies, palliative stent placement for gastrointestinal tract cancer, airway stenting for tracheobronchial strictures, endovascular management of aortic and peripheral arterial vascular disease, and cement stabilization of osteoporotic vertebral fractures. The added benefits of high technical and clinical success coupled with lower procedural mortality and morbidity are highlighted. PMID:19503761

  19. Predictive Radiological Background Distributions from Geochemical Data

    NASA Astrophysics Data System (ADS)

    Haber, D.; Burnley, P. C.; Marsac, K.; Malchow, R.

    2014-12-01

    Gamma ray surveys are an important tool for both national security interests as well as industry in determininglocations of both anthropogenic radiological sources and natural occurrences of radiologic material. The purpose ofthis project is to predict the radiologic exposure rate of geologic materials by creating a model using publishedgeochemical data, geologic data, GIS software, and freely available remote sensing data sets. If K, U, and Thabundance values are known for a given geologic unit, the expected radiation exposure rate can be calculated. Oneof the primary challenges surrounding this project is that alluvial units are classified by age rather than rock type. Itis therefore important to determine sediment sources and estimate their relative contribution to alluvial units.ASTER data from the Terra satellite can differentiate between surface mineralogies and can aid us in calculating therelative percentage of sediment from each source and by extension the geochemical concentrations of challengingsurfaces such as alluvium. An additional problem is that U and Th do not directly contribute to the measuredradiation exposure rate. Instead, daughter isotopes of these radioelements emit detectable gamma rays and may nothave reached equilibrium in younger surfaces. U can take up to 1.5 Ma to come to equilibrium with its daughterisotopes while Th takes only about 40 years. Further modeling with software such as Monte Carlo N-ParticleTransport from Los Alamos National Laboratory, will help us correct for this disequilibrium in our models. Once the predicted exposure rate is calculated for a geologic unit, it can then be assigned to a geographic area basedon geologic and geomorphic trends. This prediction will be subtracted from data collected through aerial surveys,effectively ignoring geology, and allowing areas of interest to be narrowed down considerably. The study areasinclude the alluvium on the west shore of Lake Mohave and Government Wash north of Lake Mead

  20. Peer Review: Lessons Learned in A Pediatric Radiology Department.

    PubMed

    Stanescu, A Luana; Parisi, Marguerite T; Weinberger, Edward; Ferguson, Mark R; Otto, Randolph K; Iyer, Ramesh S

    2016-01-01

    The purpose of this article is to illustrate types of diagnostic errors and feedback given to radiologists, using cases to support and clarify these categories. A comment-enhanced peer review system may be leveraged to generate a comprehensive feedback categorization scheme. These include errors of observation, errors of interpretation, inadequate patient data gathering, errors of communication, interobserver variability, informational feedback, and compliments. Much of this feedback is captured through comments associated with interpretative agreements. PMID:26489791

  1. Differential diagnosis in pediatric radiology

    SciTech Connect

    Grunebaum, M.

    1986-01-01

    This work presents 415 tables of differential diagnosis applicable to pediatric radiology, emphasizing clinical presentation and the findings of conventional radiographs. The six chapters cover the respiratory, cardiovascular, urinary, gastrointestinal, and skeletal systems, and the head. The first few tables in each chapter cover major clinical signs, the next few deal with the newborn period only, and the remainder deal with radiographic differential diagnoses seen in children. An index and brief reference list complete the book.

  2. Radiology of occupational chest disease

    SciTech Connect

    Solomon, A. ); Kreel, L.

    1989-01-01

    Radiologic manifestations of occupational lung disease are summarized and classified in this book according to the ILO system. The interpretation of chest roentgenograms outlines the progression of each disease and is accompanied with clinically-oriented explanations. Some of the specific diseases covered include asbestosis, coal worker's pneumoconiosis, silicosis, non-mining inhalation of silica and silicates, beryllium induced disease, inhalation of organics and metallics, and occupationally induced asthma.

  3. Core curriculum for medical physicists in radiology. Recommendations from an EFOMP/ESR working group.

    PubMed

    Geleijns, Jacob; Breatnach, Eamann; Cantera, Alfonso Calzado; Damilakis, John; Dendy, Philip; Evans, Anthony; Faulkner, Keith; Padovani, Renato; Van Der Putten, Wil; Schad, Lothar; Wirestam, Ronnie; Eudaldo, Teresa

    2012-06-01

    Some years ago it was decided that a European curriculum should be developed for medical physicists professionally engaged in the support of clinical diagnostic imaging departments. With this in mind, EFOMP (European Federation of Organisations for Medical Physics) in association with ESR (European Society of Radiology) nominated an expert working group. This curriculum is now to hand. The curriculum is intended to promote best patient care in radiology departments through the harmonization of education and training of medical physicists to a high standard in diagnostic radiology. It is recommended that a medical physicist working in a radiology department should have an advanced level of professional expertise in X-ray imaging, and additionally, depending on local availability, should acquire knowledge and competencies in overseeing ultrasound imaging, nuclear medicine, and MRI technology. By demonstrating training to a standardized curriculum, medical physicists throughout Europe will enhance their mobility, while maintaining local high standards of medical physics expertise. This document also provides the basis for improved implementation of articles in the European medical exposure directives related to the medical physics expert. The curriculum is divided into three main sections: The first deals with general competencies in the principles of medical physics. The second section describes specific knowledge and skills required for a medical physicist (medical physics expert) to operate clinically in a department of diagnostic radiology. The final section outlines research skills that are also considered to be necessary and appropriate competencies in a career as medical physicist. PMID:22696082

  4. Art Meets Science

    ERIC Educational Resources Information Center

    Rohs, C. Renee

    2007-01-01

    Numerous connections between the visual arts and sciences are evident if we choose to look for them. In February 2006, students and faculty from the Art and Geol/Geog departments at NW Missouri State University put together an exhibit at a local art gallery featuring works that were born out of science, inspired by science, or exploring the…

  5. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  6. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  7. Radiology uses of the Internet.

    PubMed

    Krug, H; Cheng, D

    1995-01-01

    The Internet promises to be an essential resource for radiology administrators. In addition to offering remarkable access to colleagues all over the world, the Internet offers specialized information resources for radiology, many of which are described in this article. The Internet is many networks that communicate with each other and whose general purpose is to share information. Although there are several consortium organizations that support and regulate it, no single body or organization "owns" the Internet. Many employees and students at large teaching centers already have access to the Internet through their institution's connection. Individuals and small institutions can contract with independent service providers for Internet access. Internet functions covered in this article include: e-mail, listservs, newsgroups, file transfer protocols, Gopher, and the World Wide Web. The rapid pace of information exchange is making the world of radiology smaller and more intimate. Communication and knowledge are becoming so accessible that individuals are privy to the most minute happenings in the industry. Sharing information on the Internet will benefit not only individual users and the industry, but also patients. PMID:10161227

  8. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  9. A Snake in the Nest or in a Snake's Nest: What Counts as Peer Review for a Female Science Educator in a Chemistry Department?

    ERIC Educational Resources Information Center

    Scantlebury, Kathryn

    2002-01-01

    Discusses the process and the cultural and social capital garnered through external funding of research projects and publications. Ponders questions on who should be considered a peer for a feminist science educator. (DDR)

  10. The Examination of Post-Graduate Theses: A Discussion of Requirements for Post-Graduate Theses in the Department of Computer Science, Monash University.

    ERIC Educational Resources Information Center

    Montgomery, A. Y.

    1980-01-01

    Degree requirements in computer science at Monash University are summarized, problems relating to them are discussed, and suggestions for improving them are offered that stress a clearer definition of expectations. (JSR)

  11. Release criteria and pathway analysis for radiological remediation

    SciTech Connect

    Subbaraman, G.; Tuttle, R.J.; Oliver, B.M. . Rocketdyne Div.); Devgun, J.S. )

    1991-01-01

    Site-specific activity concentrations were derived for soils contaminated with mixed fission products (MFP), or uranium-processing residues, using the Department of Energy (DOE) pathway analysis computer code RESRAD at four different sites. The concentrations and other radiological parameters, such as limits on background-subtracted gamma exposure rate were used as the basis to arrive at release criteria for two of the sites. Valid statistical parameters, calculated for the distribution of radiological data obtained from site surveys, were then compared with the criteria to determine releasability or need for further decontamination. For the other two sites, RESRAD has been used as a preremediation planning tool to derive residual material guidelines for uranium. 11 refs., 4 figs., 3 tabs.

  12. Hanford radiological protection support services annual report for 1988

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1989-06-01

    The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

  13. Hanford radiological protection support services annual report for 1987

    SciTech Connect

    Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

    1988-08-01

    This report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1987 by Pacific Northwest Laboratory in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standards or industry committees are also discussed. The programs covered provide services in the areas of: external dosimetry, internal dosimetry, in vivo measurements, instrument calibration and evaluation, calibration of radiation sources traceable to the National Bureau of Standards, and radiological records. 21 refs., 10 figs., 12 tabs.

  14. Academic Radiology in the New Healthcare Delivery Environment

    PubMed Central

    Qayyum, Aliya; Yu, John-Paul J.; Kansagra, Akash P.; von Fischer, Nathaniel; Costa, Daniel; Heller, Matthew; Kantartzis, Stamatis; Plowman, R. Scooter; Itri, Jason

    2014-01-01

    Ongoing concerns over the rising cost of health care are driving large-scale changes in the way that health care is practiced and reimbursed in the United States. To effectively implement and thrive within this new health care delivery environment, academic medical institutions will need to modify financial and business models and adapt institutional cultures. In this paper, we review the expected features of the new health care environment from the perspective of academic radiology departments. Our review will include background on Accountable Care Organizations, identify challenges associated with the new managed care model, and outline key strategies—including expanding the use of existing information technology infrastructure, promoting continued medical innovation, balancing academic research with clinical care, and exploring new roles for radiologists in efficient patient management—that will ensure continued success for academic radiology. PMID:24200477

  15. Comparison between student rating, faculty self-rating and evaluation of faculty members by heads of respective academic departments in the school of medicine in Birjand University of Medical Sciences in Iran

    PubMed Central

    Taheri, Mohammad Mehdi Hassanzadeh; Ryasi, Hamid Reza; Afshar, Mohammad; Mofatteh, Mohammad Reza

    2014-01-01

    Introduction: University teachers are one of the main pillars of university and the quality of their performance must continuously and systematically be evaluated. This evaluation can be carried out in various ways. The aim of the present study was to survey and to compare the evaluation of faculty members in the medical school in Birjand University of Medical Sciences by three different sources: Student rating, self-assessment, and evaluation by head of related department. Materials and Methods: This descriptive analytical cross-sectional study was conducted in the academic year 2009-2010. Sampling was drawn from all students studying basic science and clinical training in the first and the second semesters. All heads of departments in basic science and clinical training and their faculty members took part in this study. Means of data collection were four different questionnaires designed in the education development center (EDC) and their validity and reliability had been verified by the center. These questionnaires were based on student rating, self-assessment, and evaluation of faculty members by heads of clinical and basic sciences academic departments. After the questionnaires were filled out, the obtained data was analyzed by Statistical Package for the Social Sciences (SPSS) software (version 13), independent t-test, and Pearson's correlation coefficient at the significant level of α = 0.05. Results: In the present study, 2417 students completed the questionnaires regarding 63 faculty members, 87 faculty members completed the self-assessment form, and for 60 faculty members, 48 members in clinical and 12 members in basic science, the questionnaires were completed by heads of respective departments. Mean and standard deviation of student evaluation, self-assessment, and teachers evaluation by heads of departments were 3.23 ± 0.38, 3.51 ± 0.33, and 3.60 ± 0.32, respectively, and the difference between student rating and self-assessment was significant (P

  16. Virtual management of radiology examinations in the virtual radiology environment using common object request broker architecture services.

    PubMed

    Martinez, R; Rozenblit, J; Cook, J F; Chacko, A K; Timboe, H L

    1999-05-01

    In the Department of Defense (DoD), US Army Medical Command is now embarking on an extremely exciting new project--creating a virtual radiology environment (VRE) for the management of radiology examinations. The business of radiology in the military is therefore being reengineered on several fronts by the VRE Project. In the VRE Project, a set of intelligent agent algorithms determine where examinations are to routed for reading bases on a knowledge base of the entire VRE. The set of algorithms, called the Meta-Manager, is hierarchical and uses object-based communications between medical treatment facilities (MTFs) and medical centers that have digital imaging network picture archiving and communications systems (DIN-PACS) networks. The communications is based on use of common object request broker architecture (CORBA) objects and services to send patient demographics and examination images from DIN-PACS networks in the MTFs to the DIN-PACS networks at the medical centers for diagnosis. The Meta-Manager is also responsible for updating the diagnosis at the originating MTF. CORBA services are used to perform secure message communications between DIN-PACS nodes in the VRE network. The Meta-Manager has a fail-safe architecture that allows the master Meta-Manager function to float to regional Meta-Manager sites in case of server failure. A prototype of the CORBA-based Meta-Manager is being developed by the University of Arizona's Computer Engineering Research Laboratory using the unified modeling language (UML) as a design tool. The prototype will implement the main functions described in the Meta-Manager design specification. The results of this project are expected to reengineer the process of radiology in the military and have extensions to commercial radiology environments. PMID:10342205

  17. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  18. Activation and implementation of a Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Doyle, J.F. III

    1989-01-01

    The Nevada Operations Office of the U.S. Department of Energy (DOE/NV) has been assigned the primary responsibility for responding to a major radiological emergency. The initial response to any radiological emergency, however, will probably be conducted under the DOE regional radiological assistance plan (RAP). If the dimensions of the crisis demand federal assistance, the following sequence of events may be anticipated: (1) DOE regional RAP response, (2) activation of the Federal Radiological Monitoring and Assistance Center (FRMAC) requested, (3) aerial measuring systems and DOE/NV advance party respond, (4) FRMAC activated, (5) FRMAC responds to state(s) and cognizant federal agency (CFA), and (6) management of FRMAC transferred to the Environmental Protection Agency (EPA). The paper discusses activation channels, authorization, notification, deployment, and interfaces.

  19. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  20. The impact of nonphysician providers on diagnostic and interventional radiology practices: regulatory, billing, and compliance perspectives.

    PubMed

    Hawkins, C Matthew; Bowen, Michael A; Gilliland, Charles A; Walls, D Gail; Duszak, Richard

    2015-08-01

    The numbers of nurse practitioners and physician assistants are increasing throughout the entire health care enterprise, and a similar expansion continues within radiology. Some practices have instead embraced radiologist assistants. The increased volume of services rendered by this growing nonphysician provider subset of the health care workforce within and outside of radiology departments warrants closer review. The authors evaluate the recent literature and offer recommendations to radiology practices regarding both regulatory and scope-of-practice issues related to these professionals. Additionally, billing and compliance issues for care provided by nurse practitioners, physician assistants, and radiologist assistants are detailed. An analysis of the integration of these professionals into interventional and diagnostic radiology practices, as well as potential implications for medical education, is provided in the second part of this series. PMID:26006744