Science.gov

Sample records for radiometry saber kinetic

  1. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    NASA Technical Reports Server (NTRS)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  2. Sounding of the atmosphere using broadband emission radiometry (SABER): sensor design, performance, and lessons learned

    NASA Astrophysics Data System (ADS)

    Brown, Steven B.; Jensen, Mark; Jensen, Scott; Hansen, Glen; Zollinger, Lorin; Esplin, Roy; Miller, James B.

    2006-08-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, a 10-channel infrared (1.27 - 16.9 μm) radiometer, was launched on the TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) satellite in December 2001 from Vandenburg Air Force Base. SABER is being used to measure earthlimb emissions and to characterize infrared radiation, allowing calculation of cooling rates and determination of composition and temperature profiles in the mesosphere, lower thermosphere, and ionosphere (60-180 km). The SABER telescope is an on-axis Cassegrain design with a picket-fence tuning fork chopper at the first focus and a clamshell re-imager to focus the image on the focal plane. The telescope was designed to reject stray light from the Earth and atmosphere outside the instrument's instantaneous field-of-view (IFOV). The baffle assembly contains a single-axis scan mirror, which permits the 2 km vertical IFOV of each detector to be scanned from the Earth to a 400 km tangent height. The telescope and baffle assembly are cooled to 220 K by a dedicated radiator. The focal plane assembly is cooled to 75 K by a miniature cryogenic refrigerator. Field programmable gate arrays are used to implement state machine algorithms for control and operation of the instrument and subsystems. Although originally designed for a two-year lifetime requirement, the SABER instrument has been in continuous operation since January 2002. This paper discusses the SABER instrument design and innovations developed to achieve the required performance, along with instrument performance and lessons learned from the program.

  3. Kinetic Temperature and Carbon Dioxide from Broadband Infrared Limb Emission Measurements Taken from the TIMED/SABER Instrument

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Xu, Xiaojing

    2008-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.

  4. Off-axis response measurement of the sounding of the atmosphere using broadband emission radiometry (SABER) telescope

    NASA Astrophysics Data System (ADS)

    Stauder, John L.; Bates, Lynne R.; Dyer, James S.; Esplin, Roy W.; Miles, Duane O.

    2002-09-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument is a 10-channel earth limb-viewing sensor that measures atmospheric emissions in the spectral range of 1.27 μm to 16.9 μm. SABER is part of NASA's Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission, which was successfully launched in December 2001. Uncommon among limb-viewing sensors, SABER employs an on-axis telescope design with reimaging optics to allow for an intermediate field stop and a Lyot stop. Additional stray light protection is achieved by an innovative inner Lyot stop, which is placed conjugate to the secondary obscuration and support structure. Presented in this paper is the off-axis response of SABER as measured in the Terrestrial Black Hole off-axis scatter facility at the Space Dynamics Laboratory. The measurement was made at visible wavelengths; thus, the response is only representative of SABER's short wavelength channels. The measurement validated the stray light design and complemented the APART software model, which predicts that mirror scatter is the dominant stray light mechanism at short wavelengths. In addition, estimates of the mirror bi-directional reflectance distribution function (BRDF) were made. The off-axis response measurement indicates that SABER is an exceptional stray light suppression telescope.

  5. Stray light design and analysis of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) telescope

    NASA Astrophysics Data System (ADS)

    Stauder, John L.; Esplin, Roy W.

    1998-11-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument is a 10-channel earth limb- viewing sensor that is to measure atmospheric emissions in the spectral range of 1.27 micrometer to 16.9 micrometer. Presented in this paper is the stray light design and analysis of SABER. Unwanted radiation from the earth and atmosphere are suppressed by the use of stray light features that are critical to mission success. These include the use of an intermediate field stop, an inner and outer Lyot stop, and super-polished mirrors. The point source normalized irradiance transmission (PSNIT) curve, which characterizes the sensor's off-axis response, was computed using the stray light analysis program APART. An initial calculation of the non-rejected radiance (NRR) due to emissions and scatter from the earth and atmosphere was made using the PSNIT data. The results indicate that stray light will not impede the mission objectives.

  6. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  7. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.

    PubMed

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2011-11-01

    Human molars were subjected to demineralization in acid gel followed by incubation in remineralization solutions without or with fluoride (1 or 1000 ppm). Photothermal radiometry (PTR) and modulated luminescence (LUM) frequency scans were performed prior to and during de/remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion to determine mineral loss and lesion depth. The remineralization process illustrated a complex interplay between surface and subsurface mineral deposition, confining the thermal-wave centroid toward the dominating layer. Experimental amplitudes and phases were fitted to a coupled diffuse-photon-density-wave and thermal-wave theoretical model used to quantitatively evaluate evolving changes in thermal and optical properties of de/remineralized enamel lesions. Additional information obtained from the LUM data corroborated the remineralization kinetics affecting the PTR signals. The results pointed to enhanced effectiveness of subsurface lesion remineralization in the presence of fluoride. PMID:21761572

  8. Kinetics of the drying process of an anti-adherent coating using Photothermal Radiometry and Micro-Raman

    NASA Astrophysics Data System (ADS)

    Hurtado-Castañeda, D. M.; Fernández, J.; Velázquez, R.; Estévez, M.; Vargas, S.; Rodríguez, R.; Rodríguez, M. E.

    2005-06-01

    The kinetics of the drying process of a new anti-adherent (anti-graffiti) polymeric coating containing organic solvent was determined using Photothermal Radiometry (PTR) and Micro-Raman (μ-R) Spectroscopy. PTR Spectroscopy was used to study, in real time, the kinetics of the drying process in samples protected with coatings with and without anti-adherent molecules. These were applied on a metal and silicon substrates. The PTR spectrum for coating without anti-adherent, shows a single relaxation time, while for coating containing anti-adherent shows two relaxation times corresponding to two different mechanisms: the solvent evaporation and the molecular re-arrangements of the two different molecular species present in the coating; the kinetic of the solvent evaporation is strongly dependent, as expected, on the solvent concentration.

  9. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence.

    PubMed

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2011-07-01

    Photothermal radiometry and modulated luminescence (PTR-LUM) is an emerging nondestructive methodology applied toward the characterization and quantification of dental caries. We evaluate the efficacy of PTR-LUM in vitro to detect, monitor, and quantify human enamel caries. Artificial caries are created in extracted human molars (n = 15) using an acidified gel system (pH 4.5) for 10 or 40 days. PTR-LUM frequency scans (1 Hz-1 kHz) are performed before and during demineralization. Transverse microradiography (TMR) analysis, the current gold standard, follows at treatment conclusion to determine the mineral loss and depth of the artificially demineralized lesions. A theoretical model is applied to PTR experimental data to evaluate the changes in optothermophysical properties of demineralized enamel as a function of time. Higher optical scattering coefficients and poorer thermophysical properties are characteristic of the growing demineralized lesions, as verified by TMR, where the generated microporosities of the subsurface lesion confine the thermal-wave centroid. Enhanced optical scattering coefficients of demineralized lesions result in poorer luminescence yield due to scattering of both incident and converted luminescent photons. PTR-LUM sensitivity to changes in tooth mineralization coupled with opto-thermophysical property extraction illustrates the technique's potential for nondestructive quantification of enamel caries. PMID:21806252

  10. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T.

    2011-07-01

    Photothermal radiometry and modulated luminescence (PTR-LUM) is an emerging nondestructive methodology applied toward the characterization and quantification of dental caries. We evaluate the efficacy of PTR-LUM in vitro to detect, monitor, and quantify human enamel caries. Artificial caries are created in extracted human molars (n = 15) using an acidified gel system (pH 4.5) for 10 or 40 days. PTR-LUM frequency scans (1 Hz-1 kHz) are performed before and during demineralization. Transverse microradiography (TMR) analysis, the current gold standard, follows at treatment conclusion to determine the mineral loss and depth of the artificially demineralized lesions. A theoretical model is applied to PTR experimental data to evaluate the changes in optothermophysical properties of demineralized enamel as a function of time. Higher optical scattering coefficients and poorer thermophysical properties are characteristic of the growing demineralized lesions, as verified by TMR, where the generated microporosities of the subsurface lesion confine the thermal-wave centroid. Enhanced optical scattering coefficients of demineralized lesions result in poorer luminescence yield due to scattering of both incident and converted luminescent photons. PTR-LUM sensitivity to changes in tooth mineralization coupled with opto-thermophysical property extraction illustrates the technique's potential for nondestructive quantification of enamel caries.

  11. Quantitative evaluation of simulated human enamel caries kinetics using photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T.

    2011-03-01

    Photothermal radiometry and modulated luminescence (PTR-LUM) is a non-destructive methodology applied toward the detection, monitoring and quantification of dental caries. The purpose of this study was to evaluate the efficacy of PTRLUM to detect incipient caries lesions and quantify opto-thermophysical properties as a function of treatment time. Extracted human molars (n=15) were exposed to an acid demineralization gel (pH 4.5) for 10 or 40 days in order to simulate incipient caries lesions. PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. A coupled diffusephoton- density-wave and thermal-wave theoretical model was applied to PTR experimental amplitude and phase data across the frequency range of 4 Hz - 354 Hz, to quantitatively evaluate changes in thermal and optical properties of sound and demineralized enamel. Excellent fits with small residuals were observed experimental and theoretical data illustrating the robustness of the computational algorithm. Increased scattering coefficients and poorer thermophysical properties were characteristic of demineralized lesion bodies. Enhanced optical scattering coefficients of demineralized lesions resulted in poorer luminescence yield due to scattering of both incident and converted luminescent photons. Differences in the rate of lesion progression for the 10-day and 40-day samples points to a continuum of surface and diffusion controlled mechanism of lesion formation. PTR-LUM sensitivity to changes in tooth mineralization coupled with opto-thermophysical property extraction illustrates the technique's potential for non-destructive quantification of enamel caries.

  12. Influence of Solar-Geomagnetic Disturbances on SABER Measurements of 4.3 Micrometer Emission and the Retrieval of Kinetic Temperature and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Winick, Jeremy R.; Picard, Richard H.; Evans, David S.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Xu, Xiaojing; Mlynczak, Martin G.; Russell, James M., III

    2008-01-01

    Thermospheric infrared radiance at 4.3 micrometers is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO(+) (i.e., NO(+)(v)) and subsequent 4.3 micrometer emission in the ionospheric E-region. Large enhancements of nighttime 4.3 m emission were observed by the TIMED/SABER instrument during the April 2002 and October-November 2003 solar storms. Global measurements of infrared 4.3 micrometer emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO(+) concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 micrometer emission observed from SABER and assess the impact of NO(+)(v) 4.3 micrometer emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.

  13. Trap State Effects in PbS Colloidal Quantum Dot Exciton Kinetics Using Photocarrier Radiometry Intensity and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Mandelis, Andreas; Melnikov, Alexander; Sun, Qiming

    2016-06-01

    Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.

  14. Estimated synoptic distributions of SABER data

    NASA Astrophysics Data System (ADS)

    Lingenfelser, G.; Remsberg, E.; Harvey, V.; Grose, W.

    2003-04-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) satellite has been obtaining measurements since January 2002. The Version 1.01 Level 2A LTE temperature data have been compared with temperature data obtained by other satellites, lidars, and falling spheres. The agreement between the SABER temperature profiles and those for other data sets indicate that the Version 1.01 SABER LTE temperature versus pressure distributions are suitable to use in dynamical studies of the middle atmosphere through the calculation of winds and potential vorticity. A first step in the calculation of dynamical parameters is to use a sequential estimation technique to obtain synoptic temperature distributions from the asynoptic SABER satellite data. The algorithm that was used in the LIMS data mapping has been updated and applied to the SABER temperature data to generate Fourier coefficients which are output at noon UT for each day as a function of latitude. From these spectral coefficients, synoptic temperature fields are estimated. The estimated data will be compared with assimilated fields in an attempt to further assess the quality of the SABER data.

  15. SABER instrument design update

    NASA Astrophysics Data System (ADS)

    Esplin, Roy W.; Zollinger, Lorin; Batty, J. Clair; Folkman, Steve; Roosta, Mehrdad; Tansock, Joseph J.; Jensen, Mark; Stauder, John; Miller, Jim; Vanek, Michael; Robinson, Don

    1995-09-01

    This paper describes the design of a 10-channel infrared (1.27 to 16.9 micrometers ) radiometer instrument known as SABER (sounding of the atmosphere using broadband emission radiometry) that will measure earth-limb emissions from the TIMED (thermosphere- ionosphere-mesosphere energetics and dynamics) satellite. The instrument telescope, designed to reject stray light from the earth and the atmosphere, is an on-axis Cassegrain design with a clam shell reimager and a one-axis scan mirror. The telescope is cooled below 210 K by a dedicated radiator. The focal plane assembly (consisting of a filter array, a detector array, a Lyot stop, and a window) is cooled to 75 K by a miniature cryogenic refrigerator. The conductive heat load on the refrigerator is minimized by a Kevlar support system that thermally isolates the focal plane assembly from the telescope. Kevlar is also used to thermally isolate the telescope from the spacecraft. Instrument responsivity drifts due to changes in telescope and focal plane temperatures as well as other causes are neutralized by an in-flight calibration system. The detector array consists of discrete HgCdTe, InSb, and InGaAs detectors. Two InGaAs detectors are a new long wavelength type, made by EG&G, that have a long wavelength cutoff of 2.33 micrometers at 77 K.

  16. Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER

    NASA Astrophysics Data System (ADS)

    Rezac, L.; Jian, Y.; Yue, J.; Russell, J. M.; Kutepov, A.; Garcia, R.; Walker, K.; Bernath, P.

    2015-12-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has been measuring the limb radiance in 10 broadband infrared channels over the altitude range from ~ 400 km to the Earth's surface since 2002. The kinetic temperatures and CO2 volume mixing ratios (VMRs) in the mesosphere and lower thermosphere have been simultaneously retrieved using SABER limb radiances at 15 and 4.3 µm under nonlocal thermodynamic equilibrium (non-LTE) conditions. This paper presents results of a validation study of the SABER CO2 VMRs obtained with a two-channel, self-consistent temperature/CO2 retrieval algorithm. Results are based on comparisons with coincident CO2 measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and simulations using the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). The SABER CO2 VMRs are in agreement with ACE-FTS observations within reported systematic uncertainties from 65 to 110 km. The annual average SABER CO2 VMR falls off from a well-mixed value above ~80 km. Latitudinal and seasonal variations of CO2 VMRs are substantial. SABER observations and the SD-WACCM simulations are in overall agreement for CO2 seasonal variations, as well as global distributions in the mesosphere and lower thermosphere. Not surprisingly, the CO2 seasonal variation is shown to be driven by the general circulation, converging in the summer polar mesopause region and diverging in the winter polar mesopause region.

  17. SABER Optical Design

    SciTech Connect

    Erickson, R.; Bane, K.; Emma, P.; Nosochkov, y.; /SLAC

    2006-07-07

    SABER, the South Arc Beam Experimental Region, is a proposed new beam line facility designed to replace the Final Focus Test Beam at SLAC. In this paper, we outline the optical design features and beam parameters now envisioned for SABER. A magnetic chicane to compress positron bunches for SABER and a bypass line that could transport electrons or positrons from the two-thirds point of the linac to SABER, bypassing the LCLS systems, are also discussed.

  18. On the weighting of SABER temperature profiles for comparison with ground based hydroxyl rotational temperatures.

    NASA Astrophysics Data System (ADS)

    French, William; Mulligan, Frank

    2010-05-01

    Kinetic temperature profiles are retrieved from limb-emission radiance measurements of CO2 at 15 and 4.3 um by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite. Profiles extend from about 20-120km and measurements are available since the spacecraft launch in Dec-2001. Hydroxyl (6-2) band rotational temperatures are measured using a ground-based scanning spectrometer at Davis station, Antarctica (68°S, 78°E). Measurements are available each year since 1995 on nights between early February and late October, when the sun is more than 6° below the horizon. In order to compare temperatures from these two instruments we must derive hydroxyl layer equivalent temperatures for the SABER profiles using a weighting function which represents the hydroxyl layer profile. In this study, we examine a number of different weighting profiles to determine the best equivalent to hydroxyl nightly average temperatures at Davis. These profiles include (1) the customary Gaussian peaked at 87km and width 8km [Baker and Stair, 1988 :Physica Scripta. 37 611-622], (2) the layer profile derived from WINDIIUARS hydroxyl height profiles [She and Lowe, 1998 :JASTP 60, 1573-1583], (3) layer profiles derived from the hydroxyl volume emission rate (VER) from the SABER OH-B channel at 1.6um, which contains the Meinel OH(4-2) and OH(5-3) bands and (4) a Gaussian fitted to the SABER hydroxyl VER peak. The comparison is made with approximately 2500 SABER retrievals from overpasses within 500km of Davis station, and with solar zenith angle >97°, which have coincident hydroxyl temperature measurements over the 8 winters between 2002 and 2009. Due to the satellite 60 day yaw cycle the sampling over Davis has occurred in approximately the same three time intervals each year; between days 75-140, 196-262 and 323-014, however the latter interval is entirely rejected on the solar zenith

  19. Theory of zone radiometry

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Audeh, B. J.

    1973-01-01

    A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry.

  20. Analysis of the February 2002 stratospheric warming using SABER data

    NASA Astrophysics Data System (ADS)

    Grose, W.; Lingenfelser, G.; Remsberg, E.; Harvey, V.

    2003-04-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument began acquiring data in January 2002. Version 1.01 Level 2A LTE temperature data have been compared with various correlative data sources (e.g. satellites, lidar, and falling spheres). These results generally show good agreement in the stratosphere. Synoptic temperature distributions are being generated from the SABER data using a sequential estimation technique which was developed for the use with the Nimbus 7 LIMS data. From these temperature distributions, corresponding synoptic fields of geopotential height and geostrophic winds can be obtained. The evolution of the lower stratosphere of the Northern Hemisphere during the warming of February 2002 will be analyzed using these SABER data and compared with a similar analysis using assimilated data.

  1. Stray-light analysis of the SABER telescope

    NASA Astrophysics Data System (ADS)

    Stauder, John; Esplin, Roy W.; Zollinger, Lorin; Mlynczak, Martin G.; Russell, James M.; Gordley, Larry L.; Marshall, Tom

    1995-09-01

    The stray light analysis of the sounding of the atmosphere using broadband emission radiometry (SABER) instrument on the thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED) mission is discussed. Relevant mission objectives and operating conditions are stated to define the stray light problem. Since SABER is an earth limb viewing sensor, the telescope must be designed for large off-axis rejection. Described are the key design features which make the instrument well suited for its mission. Representative point source transmittance (PST) curves computed using the commercial stray light program APART are presented. Nonrejected radiance (NRR) values computed using APART generated PST curves and LINEPACK generated curves for the total radiance from the earth and the atmosphere are given. A method for computing NRR from the earth and the atmosphere using line-of-sight radiance profiles versus tangent height is described. Computed NRR values demonstrate that the effect of stray light on SABER's measurement capability is negligible.

  2. Fourteen Years of Atomic Hydrogen from SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.

    2015-12-01

    We present results for atomic hydrogen in the mesopause region (80-100 km) derived from measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the TIMED satellite. SABER has been measuring the vertical distribution of infrared radiation emitted by various atmospheric gases for nearly 14 years, providing important information about chemical species, including atomic oxygen, atomic hydrogen, ozone and hydroxyl; temperature; and the radiation budget in the upper atmosphere. The methodology for the derivation of daytime and nighttime concentrations and volume mixing ratios will be presented. Zonal mean and global average daytime and nighttime concentrations of H, which demonstrate excellent agreement between 87 and 95 km, have been calculated and the results are compared with observations from the Solar Mesosphere Explorer (SME) satellite made nearly 30 years ago. Variability over the course of the SABER mission will be shown, including the apparent inverse dependence on the solar cycle, which stems from the temperature dependence of various reaction rate coefficients for H photochemistry. Results for H near solar max will be compared for Solar Cycles 23 and 24.

  3. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; Brown, C.; Gordley, L. L.; Lopez-Gonzalez, M. J.; Lopez-Puertas, M.; She, C.-Y.; Taylor, M. J.; Thompson, R. E.

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  4. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Marshall, B. Thomas; Martin-Torres, F. Javier; Russell, James M.; Thompson, R. Earl; Remsberg, Ellis E.; Gordley, Larry L.

    2007-08-01

    We report observations of the daytime O2(1Δ) airglow emission at 1.27 μm recorded by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The measured limb radiances are inverted to yield vertical profiles of the volume emission rate of energy from the O2 molecule. From these emission rates we subsequently derive the mesospheric ozone concentrations using a nonlocal thermodynamic equilibrium (non-LTE) radiative and kinetic model. Rates of energy deposition due to absorption of ultraviolet radiation in the Hartley band of ozone are also derived, independent of knowledge of the ozone abundance and solar irradiances. Atomic oxygen concentrations are obtained from the ozone abundance using photochemical steady state assumptions. Rates of energy deposition due to exothermic chemical reactions are also derived. The data products illustrated here are from a test day (4 July 2002) of SABER Version 1.07 data which are now becoming publicly available. This test day illustrates the high quality of the SABER O2(1Δ) airglow and ozone data and the variety of fundamental science questions to which they can be applied.

  5. Radiometry spot measurement system

    NASA Technical Reports Server (NTRS)

    Chen, Harry H.; Lawn, Stephen J.

    1994-01-01

    The radiometry spot measurement system (RSMS) has been designed for use in the Diffusive And Radiative Transport in Fires (DARTFire) experiment, currently under development at the NASA Lewis Research Center. The RSMS can measure the radiation emitted from a spot of specific size located on the surface of a distant radiation source within a controlled wavelength range. If the spot is located on a blackbody source, its radiation and temperature can be measured directly or indirectly by the RSMS. This report presents computer simulation results used to verify RSMS performance.

  6. Microwave radiometry and applications

    NASA Astrophysics Data System (ADS)

    Polívka, Jiří

    1995-09-01

    The radiometry in general is a method of detecting the radiation of matter. All material bodies and substances radiate energy in the form of electromagnetic waves according to Planck s Law. The frequency spectrum of such thermal radiation is determined, beyond the properties of a blackbody, by the emissivity of surfaces and by the temperature of a particular body. Also, its reflectivity and dispersion take part. Investigating the intensity of radiation and its spectral distribution, one may determine the temperature and characterize the radiating body as well as the ambient medium, all independently of distance. With the above possibilities, the radiometry represents a base of scientific method called remote sensing. Utilizing various models, temperature of distant bodies and images of observed scenes can be determined from the spatial distribution of radiation. In this method, two parameters are of paramount importance: the temperature resolution, which flows out from the detected energy, and the spatial resolution (or, angular resolution), which depends upon antenna size with respect to wavelength. An instrument usable to conduct radiometric observations thus consists of two basic elements: a detector or radiometer, which determines the temperature resolution, and an antenna which determines the angular or spatial resolution. For example, a photographic camera consists of an objective lens (antenna) and of a sensitive element (a film or a CCD). In remote sensing, different lenses and reflectors and different sensors are employed, both adjusted to a particular spectrum region in which certain important features of observed bodies and scenes are present: frequently, UV and IR bands are used. The microwave radiometry utilizes various types of antennas and detectors and provides some advantages in observing various scenes: the temperature resolution is recently being given in milikelvins, while the range extends from zero to millions of Kelvins. Microwaves also offer

  7. Cementum on Smilodon sabers.

    PubMed

    Riviere, Holliston L; Wheeler, H Todd

    2005-07-01

    The maxillary canines of Smilodon californicus Bovard, 1907 have a deeply curved cementoenamel junction. The gingiva of modern cats is attached to the tooth at the cementoenamel junction and provides tactile and other dental information to the animal. The presence of cementum at the cervix of the maxillary canines, also called sabers, would indicate that the gingiva in Smilodon was attached in this region. Such an attachment would be advantageous, providing stability and sensory input for the large tooth. Also, gingiva at the cervix would impact the manner in which the teeth were used. Previous study using scanning electron microscopy of dental casts was indirect. The purpose of this study was to confirm by direct methods the presence of cementum at the cervix of Smilodon californicus sabers. Parts of three Smilodon californicus sabers were sectioned and examined with light and scanning electron microscopy (EDS). In addition, percent weight of calcium and phosphorus was measured in enamel, dentin, and cementum using electron dispersive spectroscopy. Cementum was identified in the cervical region of each saber. Spectroscopy confirmed that the tissue is calcified and the mineral is hydroxyapatite. Percent calcium and percent phosphorus of individual tissues were highly variable between specimens. However, the ratios of calcium to phosphorus were not significantly different from the hydroxyapatite standard. In the future, bite models will have to take the presence of soft tissues into account. PMID:15942954

  8. Landsat Radiometry Project

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This final report summarizes three years of work characterizing the radiometry of the Landsat 4, 5 and 7 Thematic Mappers. It is divided into six sections that are representative of the major areas of effort: 1) Internal Calibrator Lamp Monitoring; 2) Vicarious Calibration; 3) Relative Gain Analysis; 4) Outgassing; 5) Landsat 4 Absolute Calibration; and 6) Landsat 5 Scene Invariant Analysis. Each section provides a summary overview of the work that has been performed at SDSU. Major results are highlighted. In several cases, references are given to publications that have developed from this work, Several team members contributed to this report: Tim Ruggles, Dave Aaron, Shriharsha Madhavan, Esad Micijevic, Cory Mettler, and Jim Dewald. At the end of the report is a summary section.

  9. Hemispheric Differences and Evolution of the Cold Summer Mesopause Observed by the SABER Experiment on the TIMED Satellite

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Mlynczak, M. G.; Mertens, C. J.; Gordley, L. L.; Picard, R. H.; Winick, J.; Wintersteiner, P.; Garcia, R.; Siskind, D. E.; Lopez-Puertas, M.; Remsberg, E. E.; Baker, D.

    2004-12-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched on December 7, 2001 into a 74.1 degree inclined, 625 km orbit onboard the TIMED satellite. The primary science goal of SABER is to achieve major advances in understanding the structure, energetics, chemistry, and dynamics in the atmospheric region extending from 60 to 180 km altitude. SABER has been operating almost continuously since activation using the space flight proven experiment approach of spectral broadband limb emission radiometry applied in 10 selected infrared spectral bands ranging from 1.27 micrometers to 17 micrometers wavelength. Observed limb emission profiles are being processed on the ground to provide vertical profiles with 2 km altitude resolution of key constituents, energetics parameters and temperature. Measurements are made both night and day over the latitude range from 52 degrees to 83 degrees with alternating hemisphere coverage every 60 days. During the time SABER has been operating, there have been two major solar storms in April 2002 and October 2003. The temporal and geographic coverage provided by SABER has provided path finding observations on the atmospheric effects of these events. In addition, the battery of measurements made by SABER has yielded new information on atmospheric energetics effects including radiative cooling due to the 15 micrometer band of CO2 and the persistence of heating due to exothermic chemical reactions. SABER observations have also provided new information on the mesopause latitudinal structure and evolution and have revealed the presence of a two-day wave in the mesopause region that previously was known only through modeling. Further, the data have shed light on the global distribution of the effects of nitric oxide vertical descent into the upper stratosphere and on the variability of atomic oxygen. This paper summarizes the major scientific results from SABER up to now using illustrative examples.

  10. Digital Receiver for Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Ellingson, Steven W.; Hampson, Grant A.; Johnson, Joel T.

    2005-01-01

    A receiver proposed for use in L-band microwave radiometry (for measuring soil moisture and sea salinity) would utilize digital signal processing to suppress interfering signals. Heretofore, radio frequency interference has made it necessary to limit such radiometry to a frequency band about 20 MHz wide, centered at .1,413 MHz. The suppression of interference in the proposed receiver would make it possible to expand the frequency band to a width of 100 MHz, thereby making it possible to obtain greater sensitivity and accuracy in measuring moisture and salinity

  11. Multibaseline gravitational wave radiometry

    SciTech Connect

    Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit

    2011-03-15

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.

  12. Energetics of the Thermosphere in Polar Regions Observed by SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.

    2015-12-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA's TIMED satellite has been measuring the vertical distribution of infrared radiation emitted by various atmospheric gases for nearly 14 years, providing important information about chemical species, including atomic oxygen, hydrogen, ozone and hydroxyl; temperature; and the radiation budget in the upper atmosphere. From these measurements, the infrared power and energy radiated by nitric oxide (NO) at 5.3 µm and carbon dioxide (CO2) at 15 µm have been computed. These infrared emissions have been shown to be a mechanism for the dissipation of the atmospheric heating that results from geoeffective solar storm energy, serving as a natural thermostat to cool the atmosphere to pre-storm conditions. We present the response in the polar region to several storm events that have occurred during the SABER mission, including the location of maximum response and a comparison of the relative NO and CO2 cooling that occurred, since they are each driven by different factors.

  13. Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements

    NASA Astrophysics Data System (ADS)

    Rezac, L.; Kutepov, A.; Russell, J. M.; Feofilov, A. G.; Yue, J.; Goldberg, R. A.

    2015-08-01

    The kinetic temperature, Tk, and carbon dioxide, CO2 density, are key parameters that characterize the energetics and dynamics of the mesosphere and lower thermosphere (MLT) region. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on-board the Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics (TIMED) satellite has been providing global, simultaneous measurements of limb radiance in 10 spectral channels continuously since late January 2002. In this paper we (1) present a methodology for a self-consistent simultaneous retrieval of temperature/pressure, Tk(p), and CO2 volume mixing ratio (VMR) from the broadband infrared limb measurements in the 15 and 4.3 μm channels, and (2) qualitatively describe the first results on the CO2 VMR and Tk obtained from application of this technique to the SABER 15 and 4.3 μm channels, including issues, which demand additional constraints to be applied. The self-consistent two-channel retrieval architecture updates parameters at all altitudes simultaneously, and it is built upon iterative switching between two retrieval modules, one for CO2 and one for Tk. A detailed study of sensitivity, stability and convergence was carried out to validate the algorithm. The Tk/CO2 VMR distribution can be reliably retrieved without biases connected with this non-linear inverse problem starting with an initial guess as far as ±20% of CO2 VMR and ±15 K from the solution (as global shift, or somewhat larger if only local deviations are considered). In polar summer toward high latitudes the retrieved CO2 VMR profile shows a local peak around 90 km. We discuss details of this feature and show that: (a) it is not an algorithm artifact or instability, (b) additional a priori constraints are needed in order to obtain a physical profile and to remove this peak, and (c) several possibilities are explored as to uncover the real cause of this feature, but no firm conclusion can be reached at this time. This

  14. Conditions for PMC formation in 2002-2008 estimated from TIMED/SABER measurements

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Goldberg, Richard A.; Kutepov, Alexander; Pesnell, William

    In this work, mesospheric temperature, pressure, and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satel-lite are used to estimate the probability of the polar mesospheric ice clouds (PMC) formation for the summer periods of 2002-2008. We show the zonal averages of the PMC probability distri-butions and estimated PMC heights for both hemispheres and compare them to ground-based and satellite observations.

  15. Increasing carbon dioxide concentration in the upper atmosphere observed by SABER

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Russell, James; Jian, Yongxiao; Rezac, Ladislav; Garcia, Rolando; López-Puertas, Manuel; Mlynczak, Martin G.

    2015-09-01

    Carbon dioxide measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument between 2002 and 2014 were analyzed to reveal the rate of increase of CO2 in the mesosphere and lower thermosphere. The CO2 data show a trend of ~5% per decade at ~80 km and below, in good agreement with the tropospheric trend observed at Mauna Loa. Above 80 km, the SABER CO2 trend is larger than in the lower atmosphere, reaching ~12% per decade at 110 km. The large relative trend in the upper atmosphere is consistent with results from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). On the other hand, the CO2 trend deduced from the Whole Atmosphere Community Climate Model remains close to 5% everywhere. The spatial coverage of the SABER instrument allows us to analyze the CO2 trend as a function of latitude for the first time. The trend is larger in the Northern Hemisphere than in the Southern Hemisphere mesopause above 80 km. The agreement between SABER and ACE-FTS suggests that the rate of increase of CO2 in the upper atmosphere over the past 13 years is considerably larger than can be explained by chemistry-climate models.

  16. Large-Scale Waves in the Mesosphere and Lower Thermosphere Observed by SABER.

    NASA Astrophysics Data System (ADS)

    Garcia, Rolando R.; Lieberman, Ruth; Russell, James M., III; Mlynczak, Martin G.

    2005-12-01

    Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.

  17. An Overview and Science Results from the SABER Experiment on the TIMED Satellite

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Mlynczak, M. G.; Gordley, L. L.; Mertens, C. J.; Picard, R.; Lopez-Puertas, M.; Siskind, D. E.; Baker, D.; Ulwick, J.; Remsberg, E. E.; Winick, J.; Wintersteiner, P.; Espy, P.; Garcia, R.; Roble, R. G.; Solomon, S.

    2002-12-01

    TThe Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite by a Delta II rocket at 7:07:35 am PST on December 7, 2001 from the Western Test Range. The satellite was placed in a 74.1°inclined, 625 km orbit. The primary science goal of SABER is to achieve major advances in understanding the structure, energetics, chemistry, and dynamics in the atmospheric region extending from 60 to 180 km altitude. The SABER instrument is a 10-channel limb scanning infrared emission radiometer that provides radiance profiles in selected spectral bands ranging from 1.27 μm to 17 μm wavelength. The observed radiance profiles are processed on the ground to provide vertical profiles with 2 km altitude resolution of the following: temperature, O3, H2O, and CO2 mixing ratios; volume emission rates due to O2 (1 Δ), OH (υ = 3,4,5), OH (υ = 7,8,9), and NO; key atmospheric cooling rates, solar heating rates, chemical heating rates, and airglow losses; atomic oxygen, atomic hydrogen and geostrophic winds. Measurements are made both night and day over the latitude range from 54°S to 87°N with alternating hemispheric coverage every 60 days. This paper provides an experiment overview, orbital performance, example data products, and comparisons with correlative observations. Key science highlights will be described.

  18. Microwave radiometry over Titan's seas and lakes

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Janssen, M. A.; Encrenaz, P.; Lunine, J. I.; Lorenz, R. D.; Hayes, A.; Fernandez, L. I.; Ries, P. A.

    2013-12-01

    In its passive, or radiometry, mode of operation, the Cassini Radar measures the microwave thermal emission from the surface at a wavelength of 2.2 cm. In doing so, it provides unique insight into surface properties of Saturn's largest moon Titan such as physical temperature, overall composition and structure (roughness, heterogeneity...). To date, almost the whole surface of Titan has been mapped by the Cassini Radiometer , whose calibration has been recently refined resulting in an unprecedented accuracy of about 1%. The measured brightness temperatures have also been referenced to the same epoch (i.e. 2005 based on CIRS observations of seasonal surface temperature variations) and to normal incidence. This allows the use of measurements performed at different epochs and with different observational geometries to compare the emissivities of different geological units on Titan. In particular, comparison of radiometry data acquired over Titan's seas and lakes at different places and times should provide clues to their composition and potential seasonal variations. In this paper, we will mainly focus on the radiometry data collected over the northern seas Ligeia Mare and Kraken Mare and the southern lake Ontario Lacus. These three features have been observed several times over the course of the Cassini mission, both in SAR-radiometry and altimetry-radiometry modes of operation. In all cases, assuming no evaporative cooling, radiometry data point to a dielectric constant of about 1.70×0.25, consistent with liquid hydrocarbons. Comparison of radiometry at sea with nearby onshore measurements may allow us to detect evaporative cooling. This will be investigated and further discussed.

  19. Thermodynamic temperature by primary radiometry.

    PubMed

    Anhalt, Klaus; Machin, Graham

    2016-03-28

    Above the freezing temperature of silver (1234.93 K), the International Temperature Scale of 1990 (ITS-90) gives a temperature, T90, in terms of a defining fixed-point blackbody and Planck's law of thermal radiation in ratio form. Alternatively, by using Planck's law directly, thermodynamic temperature can be determined by applying radiation detectors calibrated in absolute terms for their spectral responsivity. With the advent of high-quality semiconductor photodiodes and the development of high-accuracy cryogenic radiometers during the last two decades radiometric detector standards with very small uncertainties in the range of 0.01-0.02% have been developed for direct, absolute radiation thermometry with uncertainties comparable to those for the realization of the ITS-90. This article gives an overview of a number of design variants of different types of radiometer used for primary radiometry and describes their calibration. Furthermore, details and requirements regarding the experimental procedure for obtaining low uncertainty thermodynamic temperatures with these radiometers are presented, noting that such radiometers can also be used at temperatures well below the silver point. Finally, typical results obtained by these methods are reviewed. PMID:26903102

  20. SABER-School Finance: Data Collection Instrument

    ERIC Educational Resources Information Center

    King, Elizabeth; Patrinos, Harry; Rogers, Halsey

    2015-01-01

    The aim of the SABER-school finance initiative is to collect, analyze and disseminate comparable data about education finance systems across countries. SABER-school finance assesses education finance systems along six policy goals: (i) ensuring basic conditions for learning; (ii) monitoring learning conditions and outcomes; (iii) overseeing…

  1. Characterization of the bruise healing process using pulsed photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Randeberg, Lise L.; Majaron, Boris

    2013-06-01

    An analytical model of mass diffusion and biochemical transformation kinetics in bruise development and healing process was recently developed in order to simulate bruised skin color at various time points and enable objective determination of the time of injury. However, parameters of the model were not determined directly. Instead, biologically plausable values were applied in prior analyses. Pulsed photothermal radiometry (PPTR) allows noninvasive determination of the laser-induced temperature depth profile in human skin. We have applied this technique to characterize dynamics of extravasated hemoglobin concentration profile evolution. By applying Monte Carlo simulation of laser energy deposition and simulation of PPTR signal, a more exact comparison with measured temperature profiles is possible. We show that PPTR depth profiling can be used to derive rather accurate estimates of the hemoglobin mass diffusivity, hemoglobin degradation time, as well as approximate skin geometry. This enables assessment of the bruise healing dynamics and could offer a valuable addition to existing bruise age determination techniques.

  2. SABER observations of mesospheric ozone during NH late winter 2002-2009

    NASA Astrophysics Data System (ADS)

    Smith, A. K.; López-Puertas, M.; García-Comas, M.; Tukiainen, S.

    2009-12-01

    Observations from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) satellite show interannual variations of mesospheric ozone in the NH late winter. Ozone in the mid-January to mid-March period is significantly different in 2004, 2006, and 2009 than in other years (2002, 2003, 2005, 2007, 2008). The altitudes of the ozone secondary maximum (˜90-95 km), the minimum (˜80 km) and the tertiary maximum (˜72 km) are all lower by 3-5 km during the three anomalous winters. The ozone anomalies indicate enhanced downward motion and are consistent with other observations of unusual profiles of trace species. The ozone perturbations extend to at least 100 km while temperatures above 90 km are within the range found in the other years.

  3. Revised correlation between Odin/OSIRIS PMC properties and coincident TIMED/SABER mesospheric temperatures

    NASA Astrophysics Data System (ADS)

    Feofilov, A.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-12-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002--2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each coincidence identified within ±1 degree latitude, ±2 degrees longitude and ≤1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1, 3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs, actually located at higher (and colder) altitudes are detected at lower altitudes. S.V. Petelina, D.A. Degenstein, E.J. Llewellyn, N.D. Lloyd, C.J. Mertens, M.G. Mlynczak, and J.M. Russell III, "Thermal conditions for PMC existence derived from Odin/OSIRIS and TIMED/SABER data", Geophys. Res. Lett., 32, L

  4. Pulsed photothermal radiometry of human artery

    SciTech Connect

    Long, F.H.; Deutsch, T.F.

    1987-10-01

    Pulsed photothermal radiometry (PPTR) has been used to measure, in vitro, the optical attenuation coefficients of normal and diseased human artery at four wavelengths (308, 351, 488, 532 nm) in the near UV and visible spectrum. The advantages and limitations of this noncontact method of measuring the optical properties of biological material, as well as other potential applications, are discussed.

  5. SABER Observations of the OH Meinel Airglow Variability Near the Mesopause

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Smith, Anne K.; Mlynczak, Martin G.

    2005-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, observes the OH Meinel emission at 2.0 m that peaks near the mesopause. The emission results from reactions between members of the oxygen and hydrogen chemical families that can be significantly affected by mesopause dynamics. In this study we compare SABER measurements of OH Meinel emission rates and temperatures with predictions from a 3-dimensional chemical dynamical model. In general, the model is capable of reproducing both the observed diurnal and seasonal OH Meinel emission variability. The results indicate that the diurnal tide has a large effect on the overall magnitude and temporal variation of the emission in low latitudes. This tidal variability is so dominant that the seasonal cycle in the nighttime emission depends very strongly on the local time of the analysis. At higher latitudes, the emission has an annual cycle that is due mainly to transport of oxygen by the seasonally reversing mean circulation.

  6. A Comparison of a Photochemical Model with SHIMMER hydroxyl and SABER ozone data

    NASA Astrophysics Data System (ADS)

    Siskind, D. E.; Stevens, M. H.; Englert, C. R.; Marsh, D. R.

    2011-12-01

    Mesospheric ozone photochemistry is primarily dominated by a catalytic loss cycle involving odd hydrogen (HOx). In principal, this comparatively simple chemistry could be tested with simultaneous comparison of a model with ozone and odd hydrogen data. Until recently, such comparisons could not be made because such simultaneous data did not exist. However, with the recent conclusion of the successful 30 month mission of The Spatial Heterodyne Image for Mesospheric Radicals (SHIMMER) on a Space Test Program satellite (STPSat-1) , we now have the data with which to perform these studies. SHIMMER made high quality, high vertical resolution measurements measurements of hydroxyl (OH) from 60-80 km for a wide range of local times. The ozone data comes from measurements made by the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) on the NASA TIMED satellite. Since TIMED and STPSat observed the atmosphere simultaneously but at different local times, these OH and ozone data are studied using a diurnal photochemical model as a "transfer standard" that was sampled for lighting conditions appropriate to each experiment. We have used the eddy diffusion coefficient as a free parameter to be constrained by the model-data comparison. The results suggest very good general agreement with SHIMMER OH, except for a puzzling overestimate by the model of the data in the late afternoon at the highest altitudes. By contrast, the comparison with SABER ozone shows persistent large discrepancies whereby the model falls below the data; reasons for this will be offered.

  7. Cokriging with ground-based radiometry

    NASA Technical Reports Server (NTRS)

    Atkinson, P. M.; Webster, R.; Curran, P. J.

    1992-01-01

    The formulas for cokriging and a coherent coregionalization model are presented. The model is applied to design sampling strategies for surveys using a ground-based radiometer. Results indicate that cokriging based on measured radiation is nine times as efficient as kriging the cover alone. It is concluded that cokriging in conjunction with ground-based radiometry provides an economical and operational technique for using reflectance to estimate the earth surface properties.

  8. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  9. Comparative study of middle atmosphere temperature at Rothera with Lidar and SABER, and the effect of the Antarctic Vortex

    NASA Astrophysics Data System (ADS)

    Tan, B.; Harvey, L.; Chu, X.; Espy, P. J.; Gardner, C. S.

    2009-12-01

    The data collected by Fe Boltzmann lidar from 2003 to 2005 at Rothera, Antarctica (67.5 S, 68.0 W) are used to generate temperature morphology in stratosphere and mesosphere covering an entire year. Satellite temperatures by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) are compared to the lidar data and show good agreements in general. SABER provides near global coverage on a daily basis but yaws toward the Northern Hemisphere resulting in months when comparisons are not available. The lidar measures the temperature profile over Rothera at high vertical resolution while the vertical resolution of SABER is 2-3 km. Large variability in temperature is observed in austral fall and spring around 60 km. In this work, we explore the extent to which the observed variability is due to sampling inside, at the edge, or outside the Antarctic polar vortex. The edge of the vortex is co-located with very large temperature gradient and daily movement of the vortex likely contributes to a geophysical explanation for large temperature variations. The position of the vortex edge, based on GEOS-5 temperatures and winds, is used to aid in the interpretation of the temperature structure as a function of altitude and time. Results will be shown that indicate notable differences between profiles sampled in the different air mass regions.

  10. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  11. Study of photoinduced absorption by the method of modified laser photothermal radiometry

    SciTech Connect

    Skvortsov, L A; Maksimov, E M; Tuchkov, A A

    2008-10-31

    The application of the method of modified laser photothermal radiometry for studying the photoinduced absorption in thin films is considered. The sensitivity of the method is estimated. The mechanism of induced near-IR absorption in titanium dioxide films is proposed and the nature of surface defects responsible for this process is explained. It is shown that kinetic equations describing monomolecular recombination are consistent with the experimental dependences for the thermal activation energy of defects equal to 0.17{+-}0.04 eV. (laser applications and other topics in quantum electronics)

  12. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  13. Investigation of atmospheric blasts by fast radiometry

    NASA Astrophysics Data System (ADS)

    Ben-Dov, R.; Bushlin, Y.; Devir, A. D.; Lessin, A. B.; Mendelewicz, I.; Shvebelman, M.

    2014-06-01

    Blasts and detonations release large amount of energy in short time duration. Some of this energy is released through radiation in the whole optical spectrum. Measurement of this radiation may serve as a base for investigation of the blast phenomena. A fast multispectral radiometer that operates in proper chosen spectral bands provides extensive information on the physical processes that govern the blast. This information includes the time dependence of the temperature, area of the blast as-well-as of the aerosols and gases that are generated. Analysis of this data indicates the order of the detonation and provides good estimation on the masses and types of the high-explosives (HE) materials and their casing. This paper presents the methodology and instrumentation of fast multispectral radiometry in application to the blast measurement and analysis in a Near-ground Explosion Test (NET). In NET, the flash radiation of the blast was measured for two HE materials: TNT and composition B (CB). The investigation includes charges of different masses (0.25 - 20.0 kg) and of various casing materials (steel, Al, PVC), thickness (2 - 6 mm) and various casing type (open on both face ends and hermetically closed). Analysis of the data demonstrates the power of fast radiometry methodology and reveals the governing characteristics of atmospheric blasts.

  14. Viking lander camera radiometry calibration report, volume 1

    NASA Technical Reports Server (NTRS)

    Wolf, M. R.; Atwood, D. L.; Morrill, M. E.

    1977-01-01

    The test methods and data reduction techniques used to determine and remove instrumental signatures from Viking Lander camera radiometry data are described. Gain, offset, and calibration constants are presented in tables.

  15. Frequency domain photothermal radiometry with spherical solids

    SciTech Connect

    Wang, Chinhua; Liu, Yue; Mandelis, Andreas; Shen, Jun

    2007-04-15

    Motivated by increasing practical and industrial applications of photothermal techniques in the measurement of materials of various shapes with curvature, we extend the applications of photothermal diagnostics to solid spheres, in which both theoretical and experimental photothermal radiometry studies on spherical geometries and thermal diffusivity of the sample are discussed. Based on the Green function method, a full thermal-wave field distribution of a spherical solid is obtained. The characteristics of the thermal-wave field with respect to thermophysical properties of the material, the diameter of the solid, the size of the incident laser beam, and the measurement angle are discussed. Experimental results with steel spheres of different diameters exhibit good agreement between the theory and the experiments.

  16. Advances in Solar Radiometry and Metrology

    SciTech Connect

    Myers, D.; Andreas, A.; Reda, I.; Gotseff, P.; Wilcox, S.; Stoffel, T.; Anderberg, M.

    2005-01-01

    The Solar Radiometry and Metrology task at the National Renewable Energy Laboratory (NREL) provides traceable optical radiometric calibrations and measurements to photovoltaic (PV) researchers and the PV industry. Traceability of NREL solar radiometer calibrations to the World Radiometric Reference (WRR) was accomplished during the NREL Pyrheliometer Comparison in October 2003. The task has calibrated 10 spectral and more than 180 broadband radiometers for solar measurements. Other accomplishments include characterization of pyranometer thermal offset errors with laboratory and spectral modeling tools; developing a simple scheme to correct pyranometer data for known responsivity variations; and measuring detailed spectral distributions of the NREL High Intensity Pulsed Solar Simulator (HIPSS) as a function of lamp voltage and time. The optical metrology functions support the NREL Measurement and Characterization Task effort for ISO 17025 accreditation of NREL Solar Reference Cell Calibrations. Optical metrology functions have been integrated into the NREL quality system and audited for ISO17025 compliance.

  17. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  18. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; Russell, J. M., III

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  19. Refinement of Phobos Ephemeris Using Mars Orbiter Laser Altimeter Radiometry

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Bills, B. G.; Smith, D. E.; Zuber, M. T.

    2004-01-01

    Radiometric observations from the Mars Orbiter Laser Altimeter (MOLA) can be used to improve the ephemeris of Phobos, with particular interest in refining estimates of the secular acceleration due to tidal dissipation within Mars. We have searched the Mars Orbiter Laser Altimeter (MOLA) radiometry data for shadows cast by the moon Phobos, finding 7 such profiles during the Mapping and Extended Mission phases, and 5 during the last two years of radiometry operations. Preliminary data suggest that the motion of Phobos has advanced by one or more seconds beyond that predicted by the current ephemerides, and the advance has increased over the 5 years of Mars Global Surveyor (MGS) operations.

  20. Atmospheric Compensation for Uplink Arrays via Radiometry

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Roberto J.

    2010-01-01

    Uplink arrays for communications applications are gaining increased visibility within the NASA and military community due to the enhanced flexibility and reliability they provide. When compared with the conventional large, single aperture antennas currently comprising the Deep Space Network (DSN), for example, smaller aperture antenna arrays have the benefits of providing fault tolerance (reduced single-point failure), reduced maintenance cost, and enhanced capabilities such as electronic beam-steering and multi-beam operation. However, signal combining of antenna array elements spaced many wavelengths apart becomes problematic due to the inherent instability of earth's turbulent atmosphere, particularly at the frequencies of interest to the DSN (i.e., Ka-band). Degradation in the power combining of the individual elements comprising the array arises due to uncorrelated phase errors introduced as the signals propagate through the troposphere. It is well known that the fundamental source of this error is due to the inhomogeneous distribution of water vapor in the atmosphere [1]. Several techniques have been proposed to circumvent this issue, including the use of phase calibration towers and a moon bounce to generate a feedback loop which would provide a means of intermittent calibration of the system phase errors (thermal drifts, atmosphere) [2,3]. However, these techniques require repositioning of the antenna elements to perform this operation which ultimately results in reduced system availability. And, though they are sufficient for compensating for slow varying phase drifts, they are insufficient to compensate for faster varying phase errors, such as those introduced by the atmosphere. In this paper, preliminary radiometry and interferometry measurements collected by the NASA Glenn Research Center are analyzed and indicate that the use of optimized water vapor radiometers as a feedback system in a communications platform could provide the necessary atmospheric

  1. Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Mlynczak, Martin G.; Marshall, Tom; Friedrich, Martin; Gumbel, Jörg

    2015-03-01

    We document the variability in atomic oxygen inferred by the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument on the NASA/TIMED satellite in the lower mesosphere (50-80 km altitude) according to its diurnal, latitudinal, seasonal and solar cycle components. The dominant variation is diurnal and latitudinal. Below 75 km, seasonal and solar cycle effects are less than 5%. Accordingly, we have developed a simple climatology that depends upon local time and latitude and applied it to a model of the D region of the ionosphere. Between 60 and 70 km, atomic oxygen is important in governing the ratio of negative ions to electrons. Using the SABER O climatology along with a previously published climatology of nitric oxide based upon UARS/HALOE data, we compare our model results both to previous calculations and to a profile of electron density [e-] acquired by a rocket launched from Kwajalein Atoll. The model results are shown to be consistent with previously published calculations, but the comparison with the data reveals a dramatic discrepancy whereby the calculated [e-] is over an order of magnitude less than the observations below 65 km. The most plausible explanation involves changing the partition of negative charge between molecules such as O2 which rapidly dissociate in sunlight versus heavier, more stable negative ions. Although observations of [e-] below 70 km are difficult and infrequent, more research should be invested to evaluate the pervasiveness and the seasonal, latitudinal and diurnal morphology of this model [e-] deficit. This may have practical implications as empirical models of the ionosphere predict a secondary maximum in HF radio absorption in the 70 km altitude region.

  2. Precipitating cloud vertical structure derived from passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian D.; Liberti, Gian L.

    1990-01-01

    A procedure for the retrieval of cloud vertical structure from passive microwave radiometry is demonstrated by using passive microwave radiometry observations made during the Tropical Rainfall Measuring Mission. The procedure uses a set of cloud radiative models, with each model consisting of five vertical layers, specifying a distinct cloud vertical structure in terms of the near-surface parameters. The retrieval procedure is separated into two tasks (1) retrieving a set of geophysical parameters for each cloud radiative model and (2) finding which of the cloud radiative models and its associated retrieved parameters best fit the observed geophysical conditions. It is shown that this retrieval technique can detect differences and similarities between precipitating systems.

  3. Thermal mapping of the lunar surface. [using infrared radiometry

    NASA Technical Reports Server (NTRS)

    Raine, W. L.

    1973-01-01

    A program of lunar infrared radiometry which uses large area scanning is described, and procedures for atmospheric attenuation correction and data reduction to temperature by relative radiometry are outlined. Flow charts of the computer data reduction program are shown which contain the astrometric analysis from ephemeral data. The scan data, taken on 10 evenings in 1971 and 1972 in the 10 to 12 micron window, are presented as isothermal contour maps of the lunar disc. More than 160 areas of anomalous thermal emission were found in the lunar darkside data. Eclipse cooling curves, measured in the same wavelength band for 7 lunar regions during the eclipse of February 10, 1971, are also presented. Errors of the scan and eclipse data were calculated from accuracy estimates of the parameters.

  4. SABER: The Searchable Annotated Bibliography of Education Research in Astronomy

    NASA Astrophysics Data System (ADS)

    Bruning, David H.; Bailey, J. M.; Brissenden, G.

    2006-12-01

    Starting a new research project in astronomy education is hard because the literature is scattered throughout many journals. Relevant astronomy education research may be in psychology journals, science education journals, physics education journals, or even in science journals themselves. Tracking the vast realm of literature is difficult, especially since libraries do not carry many of these journals and related abstracting services. SABER is an online resource (http://astronomy.uwp.edu/saber/) that was started in 2001 specifically to reduce this “scatter” by compiling into one place an annotated bibliography of relevant education research articles. The database now includes more than 150 articles specifically addressing astronomy education research. Visit SABER and see what it can do for you.

  5. SABER: The Searchable Annotated Bibliography of Education Research in Astronomy

    NASA Astrophysics Data System (ADS)

    Bruning, David; Bailey, Janelle M.; Brissenden, Gina

    Starting a new research project can be a challenge, but especially so in education research because the literature is scattered throughout many journals. Relevant astronomy education research may be in psychology journals, science education journals, physics education journals, or even in science journals. Tracking the vast realm of literature is difficult, especially because libraries frequently do not subscribe to many of the relevant journals and abstracting services. The Searchable Annotated Bibliography of Education Research (SABER) is an online resource that was started to service the needs of the astronomy education community, specifically to reduce this "scatter" by compiling an annotated bibliography of education research articles in one electronic location. Although SABER started in 2001, the database has a new URL—http://astronom- y.uwp.edu/saber/—and has recently undergone a major update.

  6. Contamination control of the SABER cryogenic infrared telescope

    NASA Astrophysics Data System (ADS)

    Dyer, James S.; Brown, Steven; Esplin, Roy W.; Hansen, Galen; Jensen, Scott M.; Stauder, John L.; Zollinger, Lorin

    2002-09-01

    The SABER instrument (Sounding of the Atmosphere using Broadband Emission Spectroscopy) is a cryogenic infrared sensor on the TIMED spacecraft with stringent molecular and particulate contamination control requirements. The sensor measures infrared emissions from atmospheric constituents in the earth limb at altitudes ranging from 60 to 180 km using radiatively-cooled 240 K optics and a mechanically-refrigerated 75 K detector. The stray light performance requirements necessitate nearly pristine foreoptics. The cold detector in a warm sensor presents challenges in controlling the cryodeposition of water and other condensable vapors. Accordingly, SABER incorporates several unique design features and test strategies to control and measure the particulate and molecular contamination environment. These include internal witness mirrors, dedicated purge/depressurization manifolds, labyrinths, cold stops, and validated procedures for bakeout, cooldown, and warmup. The pre-launch and on-orbit contamination control performance for the SABER telescope will be reviewed.

  7. Chapter 1: An Introduction to the Saber-Tooth Project.

    ERIC Educational Resources Information Center

    Ward, Phillip

    1999-01-01

    Introduces a theme issue on the Saber-Tooth Project, an ongoing reform effort involving a university and school district that collaborate to improve middle school physical education by improving teaching conditions and engaging teachers in professional development emphasizing curriculum improvement. The monograph explains the nature of…

  8. Chapter 3: Design of the Saber-Tooth Project.

    ERIC Educational Resources Information Center

    Ward, Phillip

    1999-01-01

    Used data from interviews, surveys, and document analysis to describe the methods and reform processes of the Saber Tooth Project, examining selection of sites; demographics (school sites, teachers, data sources, and project assumptions); and project phases (development, planning, implementation, and support). The project's method of reform was…

  9. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Horny, Nicolas; Chirtoc, Mihai; Fleming, Austin; Hamaoui, Georges; Ban, Heng

    2016-07-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  10. Low Latitude Gravity Wave Variances in the MLT Derived from Saber Temperature Observation and Compared with Model Simulations of Waves Generated By Deep Tropical Convection

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Christensen, A. B.

    2014-12-01

    Equatorial regions are the scene of prolific generation of gravity waves by deep tropical convection. Waves generated by deep convection have appreciable energy at frequencies and spatial scales that are able to reach altitudes in the Middle Atmosphere and Lower Thermosphere (MLT) and above where they may attain significant amplitudes. A portion of these waves have scales and amplitudes large enough to be detected by space borne instruments. We have analyzed temperature data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite for sub-tidal scale fluctuations. Filtering was applied both vertically and horizontally to extract wave variances. We have examined the variances at equatorial latitudes for the altitude region between 70 and 120 km and have have characterized them as a function of season, local time intervals, geographical location and altitude. We find large variances in locations of where convection is particularly prolific (e.g., western South Pacific) and at altitudes where wave trapping is known to be favored (e.g., the lower thermospheric duct). The locations of significant variances persist from year to year. Variances of on the order of a few tens of degrees are found. We have also performed simulations of the response to deep tropical convection with the The Aerospace Corporation Dynamical Model (ADM). This model is a time dependent, high-resolution fully compressible dynamical model that has been used to examine the MLT wave response to intense cellular convection in northern Australia. The background thermal structure for the present simulations was obtained from TIMED/SABER data averaged over low latitudes by season and local time. Our simulations give wave amplitudes that agree reasonably well with the observed amplitudes and show layering that is consistent with the observations. We will show the results of our analysis of

  11. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  12. Nonintrusive noncontacting frequency-domain photothermal radiometry of caries

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.; Abd-Elwahab, Bassam

    2010-04-01

    Among diffusion methods, photothermal radiometry (PTR) has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, pulsed-laser PTR has been extensively used in turbid media such as biological tissues to study the sub-surface deposition of laser radiation, a task that may be difficult or impossible for many optical methods due to excessive scattering and absorption. In this paper considers the achievements of Pulsed Photothermal Radiometry using IR camera in the investigation of physical properties of biological materials and the diagnostics of the interaction of laser radiation with biological materials. A three-dimensional heat conduction formulation with the use of three-dimensional optical diffusion is developed to derive a turbid frequency-domain PTR model. The present photo-thermal model for frequency-domain PTR may prove useful for non-contact; non-invasive, in situ evaluate the depth profilometric imaging capabilities of FDPTR in monitoring carious and artificial subsurface lesions in human teeth.

  13. Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B. (Principal Investigator)

    1980-01-01

    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included.

  14. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  15. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  16. Fiscal Year 2005 Solar Radiometry and Metrology Task Accomplishments

    SciTech Connect

    Myers, D.; Andreas, A.; Reda, I.; Gotseff, P.; Wilcox, S.; Stoffel, T.; Anderberg, M.; Kay, B.; Bowen, A.

    2005-11-01

    The National Renewable Energy Laboratory (NREL) Solar Radiometry and Metrology task provides traceable optical radiometric calibrations and measurements to photovoltaic (PV) researchers and the PV industry. Traceability of NREL solar radiometer calibrations to the World Radiometric Reference (WRR) was accomplished during Pyrheliometer Comparison at NREL in October 2004. Ten spectral and more than 200 broadband radiometers for solar measurements were calibrated this year. We measured detailed spectral distributions of the NREL and PV industry Pulsed Solar Simulators and are analyzing the influence of environmental variables on radiometer uncertainty. New systems for indoor and outdoor solar radiometer calibrations and ultraviolet (UV) spectral measurements and UV radiometer calibrations were purchased and tested. Optical metrology functions support the NREL Measurement and Characterization Task effort for ISO 17025 accreditation of NREL Solar Reference Cell Calibrations and have been integrated into the NREL quality system and audited for ISO17025 compliance.

  17. Thermal characterization of diamond films through modulated photothermal radiometry.

    PubMed

    Guillemet, Thomas; Kusiak, Andrzej; Fan, Lisha; Heintz, Jean-Marc; Chandra, Namas; Zhou, Yunshen; Silvain, Jean-François; Lu, Yongfeng; Battaglia, Jean-Luc

    2014-02-12

    Diamond (Dia) films are promising heat-dissipative materials for electronic packages because they combine high thermal conductivity with high electrical resistivity. However, precise knowledge of the thermal properties of the diamond films is crucial to their potential application as passive thermal management substrates in electronics. In this study, modulated photothermal radiometry in a front-face configuration was employed to thermally characterize polycrystalline diamond films deposited onto silicon (Si) substrates through laser-assisted combustion synthesis. The intrinsic thermal conductivity of diamond films and the thermal boundary resistance at the interface between the diamond film and the Si substrate were investigated. The results enlighten the correlation between the deposition process, film purity, film transverse thermal conductivity, and interface thermal resistance. PMID:24422442

  18. Pulsed photothermal radiometry of port-wine-stain lesions.

    PubMed

    Jacques, S L; Nelson, J S; Wright, W H; Milner, T E

    1993-05-01

    Pulsed photothermal radiometry is used to map the heat deposition in human skin after a short laser pulse. It uses an IR (HgCdTe) detector for a rapid noncontact measurement of the skin surface temperature based on the blackbody emission in the 8-12-microm spectrum. The heat deposited by the laser pulse in the superficial epidermis causes an immediate temperature jump, and the heat deposited in basal epidermal melanin and deep port wine stains diffuses to the surface before detection. The time course of the surface temperature T(z = 0, t), indicates the initial spatial distribution of heat, T(z, t = 0), deposited by the laser. PMID:20820403

  19. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  20. Modulated photothermal radiometry applied to semitransparent samples: Models and experiments

    NASA Astrophysics Data System (ADS)

    André, S.; Rémy, B.; Maillet, D.; Degiovanni, A.; Serra, J.-J.

    2004-09-01

    Mathematical modeling is presented of the combined conductive and radiative heat transfer occurring in a semitransparent material (STM) subjected to a periodic heat flux. The models rely on the quadrupole method, which is a very powerful tool to obtain analytical solutions in the Fourier or Laplace domain. Photoacoustic or photothermal radiometry techniques are reviewed. Two groups of methods are discussed depending on whether the sample has natural or opaque interfaces to simulate radiative exchanges with the surroundings. The metrological problem of measuring the phonic thermal diffusivity of semitransparent materials is investigated. Theoretical simulations are given. They explain some typical features of the phase-lag signal of temperature responses. Experimental measurements on pure silica validate the results and prove that these methods are efficient for the thermal characterization of STM.

  1. Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose

    2010-05-01

    Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.

  2. Measurement of the body surface temperature by the method of laser photothermal radiometry

    SciTech Connect

    Skvortsov, L A; Kirillov, V M

    2003-12-31

    The specific features of contactless measurements of the body surface temperature by the method of repetitively pulsed laser photothermal radiometry are considered and the requirements to the parameters of the laser and measurement scheme are formulated. The sensitivity of the method is estimated. The advantages of laser photothermal radiometry over the conventional passive radiometric method are discussed. (laser applications and other topics in quantum electronics)

  3. Dielectric Wakefield Accelerator Experiments at the SABER Facility

    SciTech Connect

    Kanareykin, A.; Thompson, M.C.; Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Badakov, H.; Cook, A.M.; Rosenzweig, J.B.; Tikhoplav, R.; Travish, G.; Muggli, P.; /Southern California U.

    2008-01-28

    Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

  4. Familia and Comunidad-Based Saberes: Learning in an Indigenous Heritage Community

    ERIC Educational Resources Information Center

    Urrieta, Luis, Jr.

    2013-01-01

    This article explores how children and youth learned indigenous heritage "saberes" (knowings) through intent community participation in Nocutzepo, Mexico. The "familia" (family) and "comunidad" (community)-based saberes were valuable for skills acquisition, but most important for learning indigenous forms of…

  5. Detecting volcanism on Titan and Venus with microwave radiometry

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Le Gall, Alice; Janssen, Michael A.

    2016-05-01

    The detection by spaceborne instrumentation of infrared thermal emission from volcanic eruptions is well-established on Earth, but is challenged on Venus and Titan by their optically-thick atmospheres. Microwave radiometry in principle offers the ability to detect emission from surface thermal anomalies on these worlds due to greater atmospheric transparency: microwaves also offer the prospect of sensing the shallow subsurface and thus may detect warmth from lava flows for longer than surface infrared emission. However, satellite microwave instruments typically have low spatial resolution (10s of km) so volcanic heat is diluted in the wide instrument footprint. We examine the prospects for the detection of volcanic deposits by microwave, given likely planetary eruption rates and lava flow deposit geometries, using Mt Etna as a template. Nondetection of prominent hotspots in Cassini data may imply that the resurfacing rate is lower than ∼2 km3/yr, five times smaller than the expression of an Earth-like fraction of geothermal heat flow as latent heat in extrusive volcanism.

  6. Tower-Perturbation Measurements in Above-Water Radiometry

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; DAlimonte, Davide; vanderLinde, Dirk; Brown, James W.

    2003-01-01

    This report documents the scientific activities which took place during June 2001 and June 2002 on the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea. The primary objective of these field campaigns was to quantify the effect of platform perturbations (principally reflections of sunlight onto the sea surface) on above-water measurements of water-leaving radiances. The deployment goals documented in this report were to: a) collect an extensive and simultaneous set of above- and in-water optical measurements under predominantly clear-sky conditions; b) establish the vertical properties of the water column using a variety of ancillary measurements, many of which were taken coincidently with the optical measurements; and c) determine the bulk properties of the environment using a diversity of atmospheric, biogeochemical, and meteorological techniques. A preliminary assessment of the data collected during the two field campaigns shows the perturbation in above-water radiometry caused by a large offshore structure is very similar to that caused by a large research vessel.

  7. History of Solar Radiometry and the World Radiometric Reference

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.

    1991-01-01

    The history of solar radiometry since the first pyrheliometer of Pouillet is presented. After the invention of the Ångström and the Smithsonian pyrheliometers around the turn of this century two different "scales" were in use. Comparisons with absolute cavity radiometers developed in America and Europe have been performed since about 1910 which show remarkably accurate measurements in terms of the SI units. However, these results have never been accepted and several rules have been established to reference radiation measurements in the meteorological community and to remedy the unsatisfactory fact of having different "scales". Unfortunately none of these rules led to a reference close to the SI units of irradiance, confusing the issue even more. With the advent of modern absolute radiometers in the late 1960s the situation improved and led to the definition of the World Radiometric Reference in use by the meteorological community since 1981. This reference has an estimated accuracy of 0,3% and guarantees the worldwide homogeneity of radiation measurements within 0,1% precision.

  8. Accuracy of subsurface temperature distributions computed from pulsed photothermal radiometry.

    PubMed

    Smithies, D J; Milner, T E; Tanenbaum, B S; Goodman, D M; Nelson, J S

    1998-09-01

    Pulsed photothermal radiometry (PPTR) is a non-contact method for determining the temperature increase in subsurface chromophore layers immediately following pulsed laser irradiation. In this paper the inherent limitations of PPTR are identified. A time record of infrared emission from a test material due to laser heating of a subsurface chromophore layer is calculated and used as input data for a non-negatively constrained conjugate gradient algorithm. Position and magnitude of temperature increase in a model chromophore layer immediately following pulsed laser irradiation are computed. Differences between simulated and computed temperature increase are reported as a function of thickness, depth and signal-to-noise ratio (SNR). The average depth of the chromophore layer and integral of temperature increase in the test material are accurately predicted by the algorithm. When the thickness/depth ratio is less than 25%, the computed peak temperature increase is always significantly less than the true value. Moreover, the computed thickness of the chromophore layer is much larger than the true value. The accuracy of the computed subsurface temperature distribution is investigated with the singular value decomposition of the kernel matrix. The relatively small number of right singular vectors that may be used (8% of the rank of the kernel matrix) to represent the simulated temperature increase in the test material limits the accuracy of PPTR. We show that relative error between simulated and computed temperature increase is essentially constant for a particular thickness/depth ratio. PMID:9755938

  9. Quantum Tunneling Sb-Heterostructures for Millimeter Wave Radiometry

    NASA Astrophysics Data System (ADS)

    Schulman, Joel N.

    2003-03-01

    Imaging in the millimeter wavelength range has been making rapid progress as high speed electronics increase in frequency. Applications include viewing through adverse visibility conditions (fog, smoke, dust, precipitation) and also the relative transparency of clothing (concealed-weapons-detection) and some building materials (through-the-wall-detection). Atmospheric radiometry (climate assessment and weather prediction) already depend heavily on this wavelength range. Astronomical applications include incorporation in instruments for cosmic microwave background detection. An important ingredient is a diode that "rectifies" in a special way. It must convert input power, i.e., voltage squared, into a DC voltage output -- a "square-law" detector. We have recently found that quantum tunneling through an InAs/AlSb/GaAlSb heterostructure system provides the ideal physical mechanism for this purpose.1,2 We will present our results to date, demonstrating how a close coupling of semiconductor quantum tunneling theory with electrical engineering know-how have brought an "exotic" quantum phenomon to practical and economic application. 1. "Sb-heterostructure interband backward diodes" J.N. Schulman and D.H. Chow. IEEE Electron Device Letters 21, 353-355 (2000). 2. "High-Performance Antimonide-Based Heterostructure Backward Diodes for Millimeter-wave Detection" P. Fay, J. N. Schulman, S. Thomas III, D. H. Chow, Y. K. Boegeman, and K. S. Holabird, IEEE Electron Device Letters 23, 585-587 (2002).

  10. RFI Risk Reduction Activities Using New Goddard Digital Radiometry Capabilities

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Kim, Ed; Young, Peter; Miles, Lynn; Wong, Mark; Morris, Joel

    2012-01-01

    The Goddard Radio-Frequency Explorer (GREX) is the latest fast-sampling radiometer digital back-end processor that will be used for radiometry and radio-frequency interference (RFI) surveying at Goddard Space Flight Center. The system is compact and deployable, with a mass of about 40 kilograms. It is intended to be flown on aircraft. GREX is compatible with almost any aircraft, including P-3, twin otter, C-23, C-130, G3, and G5 types. At a minimum, the system can function as a clone of the Soil Moisture Active Passive (SMAP) ground-based development unit [1], or can be a completely independent system that is interfaced to any radiometer, provided that frequency shifting to GREX's intermediate frequency is performed prior to sampling. If the radiometer RF is less than 200MHz, then the band can be sampled and acquired directly by the system. A key feature of GREX is its ability to simultaneously sample two polarization channels simultaneously at up to 400MSPS, 14-bit resolution each. The sampled signals can be recorded continuously to a 23 TB solid-state RAID storage array. Data captures can be analyzed offline using the supercomputing facilities at Goddard Space Flight Center. In addition, various Field Programmable Gate Array (FPGA) - amenable radiometer signal processing and RFI detection algorithms can be implemented directly on the GREX system because it includes a high-capacity Xilinx Virtex-5 FPGA prototyping system that is user customizable.

  11. Volatile organic compound monitoring by photo acoustic radiometry

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-12-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 {mu}m. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations.

  12. Accurate Radiometry from Space: An Essential Tool for Climate Studies

    NASA Technical Reports Server (NTRS)

    Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma

    2011-01-01

    The Earth s climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a primary standard and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a metrology laboratory in space . Keywords: climate change; Earth observation; satellites; radiometry; solar irradiance

  13. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  14. The Traceable Radiometry Underpinning Terrestrial and Helio Studies (TRUTHS) mission

    NASA Astrophysics Data System (ADS)

    Green, Paul D.; Fox, Nigel P.; Lobb, Daniel; Friend, Jonathan

    2015-10-01

    TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio-Studies) is a proposed small satellite mission to enable a space-based climate observing system capable of delivering data of the quality needed to provide the information needed by policy makers to make robust mitigation and adaptation decisions. This is achieved by embedding trust and confidence in the data and derived information (tied to international standards) from both its own measurements and by upgrading the performance and interoperability of other EO platforms, such as the Sentinels by in-flight reference calibration. TRUTHS would provide measurements of incoming (total and spectrally resolved) and global reflected spectrally and spatially (50 m) solar radiation at the 0.3% uncertainty level. These fundamental climate data products can be convolved into the building blocks for many ECVs and EO applications as envisaged by the 2015 ESA science strategy; in a cost effective manner. We describe the scientific drivers for the TRUTHS mission and how the requirements for the climate benchmarking and cross-calibration reference sensor are both complementary and simply implemented, with a small additional complexity on top of heritage calibration schemes. The calibration scheme components and the route to SI-traceable Earth-reflected solar spectral radiance and solar spectral irradiance are described.

  15. Determination of combustion gas temperatures by infrared radiometry in sooting and nonsooting flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Flame temperatures in nonsooting and sooting environments were successfully measured by radiometry for pre-mixed propane-oxygen laminar flames stabilized on a water-cooled, porous sintered-bronze burner. The measured temperatures in the nonsooting flames were compared with fine-wire thermocouple measurements. The results show excellent agreement below 1700 K, and when the thermocouple measurements were corrected for radiation effects, the agreement was good for even higher temperatures. The benefits of radiometry are: (1) the flow is not disturbed by an intruding probe, (2) calibration is easily done using a blackbody source, and (3) measurements can be made even with soot present. The theory involved in the radiometry measurements and the energy balance calculations used to correct the thermocouple temperature measurements are discussed.

  16. Improved methods for measuring thermal parameters of liquid samples using photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Depriester, Michael; Dadarlat, Dorin; Sahraoui, Abdelhak Hadj

    2013-02-01

    High accuracy, non-contact measuring methods for finding thermal properties of liquid samples using photothermal infrared radiometry (PTR) are presented. The use of transparent windows to confine micro volume liquid samples and the implementation of front and/or back signal detection procedures helped the successful implementation of the PTR technique for measuring liquids with high proficiency. We present two configurations, the so-called back-front photothermal infrared radiometry and back photothermal infrared radiometry to find thermal diffusivity and thermal effusivity of liquid samples. Sensitivity studies and error analyses included prove the robustness of each method. As an illustration of the temperature and electric field varying studies, we have included the experimental results on a 5CB (4-cyano-4‧-pentylbiphenyl) liquid crystal.

  17. Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films

    SciTech Connect

    Apreutesei, Mihai; Lopes, Claudia; Vaz, Filipe; Macedo, Francisco; Borges, Joel

    2014-07-01

    Titanium thin films of different thicknesses were prepared by direct current magnetron sputtering to study modulated infrared (IR) radiometry as a tool for analyzing film thickness. Thickness was varied by regularly increasing the deposition time, keeping all the other deposition parameters constant. The influence of film thickness on morphological, structural, and electrical properties of the titanium coatings also was investigated. The experimental results revealed a systematic grain growth with increasing film thickness, along with enhanced film crystallinity, which led to increased electrical conductivity. Using the results obtained by modulated IR radiometry, the thickness of each thin film was calculated. These thickness values were then compared with the coating thickness measurements obtained by scanning electron microscopy. The values confirmed the reliability of modulated IR radiometry as an analysis tool for thin films and coatings, and for determining thicknesses in the micrometer range, in particular.

  18. Remote Sensing of Atmospheric Water Vapour by Pressure Modulation Radiometry.

    NASA Astrophysics Data System (ADS)

    Davis, G. R.

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The Stratospheric and Mesospheric Sounder (SAMS) was a limb-sounding satellite experiment which used the technique of pressure modulation radiometry to measure the temperature and constituent distributions in the middle atmosphere. Two channels in the SAMS were devoted to the detection of water vapour, but the analysis of these data have produced unexpectedly high mixing ratios in the region of the stratopause. This thesis describes an attempt to resolve the discrepancy between theory and experiment by a laboratory investigation of the pressure modulation of water vapour. The central role of water vapour in the physics and chemistry of the middle atmosphere and previous attempts to measure its abundance are discussed. It is shown that the intercomparison of humidity sensing instruments has not produced a consensus and that the accuracy of the reported measurements is therefore in question. The SAMS water vapour channels are described and the need is shown for a laboratory transmission experiment. The pressure modulation technique is described in chapter 2 and a mathematical formulation is given. The constraints due to contaminant signals and harmonic contributions are considered and the use of the square wave chopping approximation in the interpretation of the measurements is discussed. In chapter 3, the spectroscopy of the H _2O rotation band is considered and it is shown that there are large uncertainties in most aspects of the problem due to the lack of spectroscopic measurements in this spectral region. In particular, the shapes of the collision broadened line wings under both self and foreign broadened conditions are poorly determined, a situation which is especially problematic for pressure modulation radiometry. The pressure modulation of water vapour is investigated in chapter 4 and it is shown by direct measurement of the pressure cycle that the linear model used by previous

  19. Multi-parameter-fitting procedure for photothermal infrared radiometry on multilayered and bulk-absorbing solids

    SciTech Connect

    Dorr, Peter; Gruss, Christian

    2001-06-15

    Photothermal infrared radiometry has been used for the measurement of thermophysical, optical, and geometrical properties of multilayered samples of paint on a metallic substrate. A special data normalization is applied to reduce the number of sensitive parameters which makes the identification task for the remaining parameters easier. The normalization stabilizes the evaluation of the photothermal signal and makes the infrared radiometry more attractive for applications in the industrial environment. It is shown that modeling and multi-parameter-fitting can be applied successfully to the normalized data for the determination of layer thicknesses. As a side product we can calculate some other physical properties of the sample. {copyright} 2001 American Institute of Physics.

  20. Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS)

    USGS Publications Warehouse

    Fox, N.; Aiken, J.; Barnett, J.J.; Briottet, X.; Carvell, R.; Frohlich, C.; Groom, S.B.; Hagolle, O.; Haigh, J.D.; Kieffer, H.H.; Lean, J.; Pollock, D.B.; Quinn, T.; Sandford, M.C.W.; Schaepman, M.; Shine, K.P.; Schmutz, W.K.; Teillet, P.M.; Thome, K.J.; Verstraete, M.M.; Zalewski, E.

    2002-01-01

    The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference targets/standards to support other EO missions. This paper will present the TRUTHS mission and its objectives. TRUTHS will be the first satellite mission to calibrate its instrumentation directly to SI in orbit, overcoming the usual uncertainties associated with drifts of sensor gain and spectral shape by using an electrical rather than an optical standard as the basis of its calibration. The range of instruments flown as part of the payload will also provide accurate input data to improve atmospheric radiative transfer codes by anchoring boundary conditions, through simultaneous measurements of aerosols, particulates and radiances at various heights. Therefore, TRUTHS will significantly improve the performance and accuracy of Earth observation missions with broad global or operational aims, as well as more dedicated missions. The provision of reference standards will also improve synergy between missions by reducing errors due to different calibration biases and offer cost reductions for future missions by reducing the demands for on-board calibration systems. Such improvements are important for the future success of strategies such as Global Monitoring for Environment and Security (GMES) and the implementation and monitoring of international treaties such as the Kyoto Protocol. TRUTHS will achieve these aims by measuring the geophysical variables of solar and lunar irradiance, together with both polarised and un-polarised spectral radiance of the Moon, and the Earth and its atmosphere.

  1. Traceable Radiometry Underpinning Terrestrial - and Helio- Studies (TRUTHS)

    USGS Publications Warehouse

    Fox, N.; Aiken, J.; Barnett, J.J.; Briottet, X.; Carvell, R.; Frohlich, C.; Groom, S.B.; Hagolle, O.; Haigh, J.D.; Kieffer, H.H.; Lean, J.; Pollock, D.B.; Quinn, T.; Sandford, M.C.W.; Schaepman, M.; Shine, K.P.; Schmutz, W.K.; Teillet, P.M.; Thome, K.J.; Verstraete, M.M.; Zalewski, E.

    2003-01-01

    The Traceable Radiometry Underpinning Terrestrial- and Helio- Studies (TRUTHS) mission offers a novel approach to the provision of key scientific data with unprecedented radiometric accuracy for Earth Observation (EO) and solar studies, which will also establish well-calibrated reference targets/standards to support other EO missions. This paper presents the TRUTHS mission and its objectives. TRUTHS will be the first satellite mission to calibrate its EO instrumentation directly to SI in orbit, overcoming the usual uncertainties associated with drifts of sensor gain and spectral shape by using an electrical rather than an optical standard as the basis of its calibration. The range of instruments flown as part of the payload will also provide accurate input data to improve atmospheric radiative transfer codes by anchoring boundary conditions, through simultaneous measurements of aerosols, particulates and radiances at various heights. Therefore, TRUTHS will significantly improve the performance and accuracy of EO missions with broad global or operational aims, as well as more dedicated missions. The provision of reference standards will also improve synergy between missions by reducing errors due to different calibration biases and offer cost reductions for future missions by reducing the demands for on-board calibration systems. Such improvements are important for the future success of strategies such as Global Monitoring for Environment and Security (GMES) and the implementation and monitoring of international treaties such as the Kyoto Protocol. TRUTHS will achieve these aims by measuring the geophysical variables of solar and lunar irradiance, together with both polarised and unpolarised spectral radiance of the Moon, Earth and its atmosphere. Published by Elsevier Ltd of behalf of COSPAR.

  2. Io's heat flow from infrared radiometry: 1983-1993

    NASA Technical Reports Server (NTRS)

    Veeder, Glenn J.; Matson, Dennis L.; Johnson, Torrence V.; Blaney, Diana L.; Goguen, Jay D.

    1994-01-01

    We report the following results from a decade of infrared radiometry of Io: (1) The average global heat flow is more than approx. 2.5 W/sq.m, (2) large warm (less than or equal to 200 K) volcanic regions dominate the global heat flow, (3) smal high-temperature (greater than or = 300 K) 'hotspots' contribute little to the average heat flow, (4) thermal anomalies on the leading hemisphere contribute about half of the heat flow, (5) a substantial amount of heat is radiated during Io's night, (6) high-temperature (greater than or = 600 K) 'outbursts' occurred during approx. 4% of the nights we observed, (7) 'Loki' is the brightest, persistent, infrared emission feature, and (8) some excess emission is always present at the longitude of Loki, but its intensity and other characteristics change between apparitions. Observations of Io at M(4.8 micrometer), 8.7 micrometer, N(10 micrometer), and Q(20 micrometer) with the Infrared Telescope Facility presented here were collected during nine apparitions between 1983 and 1993. These measurements provide full longitudinal coveraged as well as an eclipse observation and the detection of two outbursts. Reflected sunlight, passive thermal emission, and radiation from thermal anomalies all contribute to the observed flux densities. We find that a new thermophysical model is required to match all the data. Two key elements of this model are (1) a 'thermal reservoir' unit which lowers daytime temperatures, and (2) the 'thermal pedestal effect' which shifts to shorter wavelengths the spectral emission due to the reradiation of solar energy absorbed by the thermal anomalies. The thermal anomalies are modeled with a total of 10 source components at five locations. Io's heat flow is the sum of the power from these components.

  3. Ozone and temperature decadal trends in the stratosphere, mesosphere and lower thermosphere, based on measurements from SABER on TIMED

    NASA Astrophysics Data System (ADS)

    Huang, F. T.; Mayr, H. G.; Russell, J. M., III; Mlynczak, M. G.

    2014-08-01

    We have derived ozone and temperature trends from years 2002 through 2012, from 20 to 100 km altitude, and 48° S to 48° N latitude, based on measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. For the first time, trends of ozone and temperature measured at the same times and locations are obtained, and their correlations should provide useful information about the relative importance of photochemistry versus dynamics over the longer term. We are not aware of comparable results covering this time period and spatial extent. For stratospheric ozone, until the late 1990s, previous studies found negative trends (decreasing amounts). In recent years, some empirical and modeling studies have shown the occurrence of a turnaround in the decreasing ozone, possibly beginning in the late 1990s, suggesting that the stratospheric ozone trend is leveling off or even turning positive. Our global results add more definitive evidence, expand the coverage, and show that at mid-latitudes (north and south) in the stratosphere, the ozone trends are indeed positive, with ozone having increased by a few percent from 2002 through 2012. However, in the tropics, we find negative ozone trends between 25 and 50 km. For stratospheric temperatures, the trends are mostly negatively correlated to the ozone trends. The temperature trends are positive in the tropics between 30 and 40 km, and between 20 and 25 km, at approximately 24° N and at 24° S latitude. The stratospheric temperature trends are otherwise mostly negative. In the mesosphere, the ozone trends are mostly flat, with suggestions of small positive trends at lower latitudes. The temperature trends in this region are mostly negative, showing decreases of up to ~ -3 K decade-1. In the lower thermosphere (between ~ 85 and 100 km), ozone and temperature trends are both negative. The ozone trend can

  4. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  5. Photothermal radiometry probing of scars in the internal surface of a thin metal tube.

    PubMed

    Li, P Z; Zhou, G Y

    1992-07-01

    The principle and equipment of photothermal radiometry probing of scars in the internal surface of a thin metal tube are described. By measuring the amplitude frequency characteristics of the photothermal signal, we calculated the depth of the scars in the internal surface of a sample. PMID:20725353

  6. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-06-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection. PMID:21257366

  7. Detection of Vesicoureteral Reflux using Microwave Radiometry – System Characterization with Tissue Phantoms

    PubMed Central

    Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-01-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10–30 mL) and temperatures (40–46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than −10dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection. PMID:21257366

  8. Modeling the detectability of vesicoureteral reflux using microwave radiometry

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Maccarini, Paolo F.; De Luca, Valeria; Bardati, Fernando; Snow, Brent W.; Stauffer, Paul R.

    2010-09-01

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (fc), frequency band (Δf) and aperture radius (ra) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (η). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over fc ± Δf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (δTB) for 15-25 mL urine refluxes at 40-42 °C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum η over 1.1-1.6 GHz for ra = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over fc ± Δf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate δTB >= 0.1 K for the 15 mL urine at 40 °C and 35 mm depth. Higher η and δTB were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study

  9. Modeling the detectability of vesicoureteral reflux using microwave radiometry.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo F; De Luca, Valeria; Bardati, Fernando; Snow, Brent W; Stauffer, Paul R

    2010-09-21

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (f(c)), frequency band (Deltaf) and aperture radius (r(a)) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (eta). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over f(c) +/- Deltaf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (deltaT(B)) for 15-25 mL urine refluxes at 40-42 degrees C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum eta over 1.1-1.6 GHz for r(a) = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over f(c) +/- Deltaf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate deltaT(B) 0.1 K for the 15 mL urine at 40 degrees C and 35 mm depth. Higher eta and deltaT(B) were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement

  10. Modeling the Detectability of Vesicoureteral Reflux using Microwave Radiometry

    PubMed Central

    Arunachalam, Kavitha; Maccarini, Paolo F.; De Luca, Valeria; Bardati, Fernando; Snow, Brent W.; Stauffer, Paul R

    2010-01-01

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as the warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. Radiometer center frequency (fc), frequency band (Δf), and aperture radius (ra) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with circular aperture. Anatomical information extracted from computed tomography (CT) images of children age 4–6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio between the power collected from the target at depth and the total power received by the antenna (η). Power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over fc ± Δf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in antenna brightness temperature (δTB) for 15–25 mL urine refluxes at 40–42°C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum η over 1.1–1.6 GHz for ra = 30–40 mm. Simulations of the 35 mm radius tapered log spiral yielded higher power ratio over fc ± Δf/2 for the 35–40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate δTB ≥ 0.1 K for the 15 mL urine at 40°C and 35 mm depth. Higher η and δTB were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in saline phantom are in agreement with the simulation data. Numerical study suggests

  11. Ultraviolet radiation (UVR) (290-400 nm) radiometry of solar simulation for experimental radiation in drug and chemical photosensitization

    NASA Astrophysics Data System (ADS)

    Young, A. R.; Magnus, I. A.; Gibbs, N. K.

    1982-02-01

    The ultraviolet radiation (UVR) radiometry of solar simulated radiation in a long-term photocarcinogenesis project is described. The methods used were (a) a phototherapy radiometer, (b) an electronic integrating dosimeter, (c) indirect spectroradiometry,and (d) polysulphone and naladixic film badge dosimeters for UV-B (280-315 nm) and UV-A (315-400 nm) radiation, respectively. The merits of the various methods are discussed. The importance of reliable and practical UVR radiometry is emphasised.

  12. Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water.

    PubMed

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR. PMID:22181185

  13. Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry

    SciTech Connect

    Milner, T.E.; Goodman, D.M.; Tanenbaum, B.S.; Nelson, J.S.

    1995-07-01

    A solution method is proposed to the inverse problem of determining the unknown initial temperature distribution in a laser-exposed test material from measurements provided by infrared radiometry. A Fredholm integral equation of the first kind is derived that relates the temporal evolution of the infrared signal amplitude to the unknown initial temperature distribution in the exposed test material. The singular-value decomposition is used to demonstrate the severely ill-posed nature of the derived inverse problem. Three inversion methods are used to estimate solutions for the initial temperature distribution. A nonnegatively constrained conjugate-gradient algorithm using early termination is found superior to unconstrained inversion methods and is applied to image the depth of laser-heated chromophores in human skin. {ital Key} {ital words}: constrained conjugate gradients, ill-posed problem, infrared radiometry, laser surgery, nonnegative, singular-value decomposition.

  14. EBE/ECE Radiometry on COMPASS Tokamak - Design and First Measurements

    SciTech Connect

    Zajac, J.; Preinhaelter, J.; Urban, J.; Sestak, D.; Nanobashvili, S.

    2009-11-26

    COMPASS tokamak has started its operation in IPP Prague recently. A new 16-channel radiometry system has been designed and manufactured for the electron Bernstein/cyclotron wave emission (EBE/ECE) experiments. For EBE studies, based on EBW-X-O mode conversion, radiometry in Ka-band (26.5-40 GHz will be used which corresponds to the fundamental EC harmonics for the low-B{sub t}(B{sub o}{approx}1.2 T) tokamak operation. Alternatively, an E-band antenna and front-end (60-73.5/76.5-90 GHz) will be used with the same 16-channel receiver for the conventional second harmonics ECE diagnostics. In the contribution the design of the system is described as well as the initial testing measurements on tokamak COMPASS.

  15. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  16. Study of thermal parameters' temperature dependence in solids using photothermal radiometry.

    PubMed

    Depriester, M; Hus, P; Delenclos, S; Hadj Sahraoui, A

    2007-03-01

    A photothermal radiometry configuration that allows the measurement of the temperature dependence of thermal parameters of solid materials is described. Two procedures are proposed. The first one is based on a combination of phase and amplitude signal data collected at a single frequency and the second one makes use of the information contained in the phase signal data, obtained at two different chopping frequencies. The methods are recommended for calorimetric studies requiring temperature scans at a constant chopping frequency. PMID:17411226

  17. Approach of the measurement of thermal diffusivity of mural paintings by front face photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Candoré, Jean Charles; Bodnar, J. L.; Detalle, Vincent; Remy, B.; Grossel, Philippe

    2010-03-01

    In this paper we present, in an experimental way, the possibilities of front face photothermal radiometry to measure, in situ, the longitudinal thermal diffusivity of mural paintings. First, we present the principle of the method of measurement. Then, we present the experimental device implemented for the study. Finally, we show, using the experimental study of a plaster sample, the photothermal method allows in a particular case, a good approximation of the parameter longitudinal thermal diffusivity.

  18. Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

    1986-01-01

    The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

  19. New methodology for thermal parameter measurements in solids using photothermal radiometry

    SciTech Connect

    Depriester, M.; Hus, P.; Delenclos, S.; Sahraoui, A. Hadj

    2005-07-15

    The photothermal radiometry (PTR) signal is analyzed in order to simultaneously obtain the thermal diffusivity and effusivity of solid materials. Analytical procedures that allow the determination of the thermal parameters via a frequency scan of the amplitude or the phase of the PTR signal are presented. The measurement procedures do not involve a multiparameter-fit optimization algorithm. The methods have been used for the measurement of thermophysical properties of vitreous carbon and lead-itanate-zirconate ceramic samples.

  20. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; The Radar Team

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  1. Studying the MLT by a Combined Analysis of SABER/TIMED and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Zecha, M.; Gerding, M.; Luebken, F. J.; Fiedler, J.; vonZhan, U.; Russell, J. M., III

    2006-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The measurements have been performed continuously since January 25, 2002 to provide excellent coverage for both hemispheres. The Leibniz-Institute of Atmospheric Physics (LAP) at Kuehlungsborn, Germany (54N, 12E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges. The total altitude range of the lidar installation lies from 1 to 105 km. Another instrument used for intercomparison is the ALOMAR RMR lidar, located at Andoya, Norway (69N, 16E). We have searched the SABER and lidar datasets for coincidental common volume measurements within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude and approx. 1 hour in time for the sake of (a) comparison of measured temperatures; (b) validation of the models used in SABER data analysis; and (c) extracting new information about MLT parameters. In this work we applied the non-LTE ALI-ARMS code designed to calculate the nonequilibrium radiance in different viewing geometries to the analysis of measurements which satisfied these search criteria. The results of this analysis (a) support the application of higher value of CO2-O quenching rate (6e-12 cubic centimeters per second) by the non-LTE temperature retrievals from the SABER 15 micrometer limb radiance data, and (b) demonstrate the importance of accounting for the vibrational-vibrational energy exchange among the CO2 isotopes for accurate temperature retrievals. Using temperature profiles obtained in lidar measurements as inputs for the retrieval algorithm we also retrieved the nighttime CO2 densities from the SABER 15 micrometer limb radiances and compared them with the model and climatology CO2 data used in the SABER nighttime temperature retrievals.

  2. The use of photothermal radiometry in assessing leaf photosynthesis: II. Correlation of energy storage to Photosystem II fluorescence parameters.

    PubMed

    Driesenaar, A R; Schreiber, U; Malkin, S

    1994-04-01

    Following the first part of this work (Malkin et al. (1991) Photosynth Res 29: 87-96), where modulated photothermal radiometry (PTR) was used to measure energy storage (ES) in intact leaves as a function of P700 redox state, we report here on simultaneous ES and fluorescence measurements, which characterize the state of PS II. PTR monitors the conversion of modulated light into heat by measuring the modulated infra-red radiation emitted from the sample. The ratio [PTR+-PTR-]/PTR+, where PTR indicates the PTR signal and the subscripts +,- indicate the presence or absence of saturating background light, is used to quantitate ES. We searched carefully for the right conditions where the background light does not introduce a significant rise in the leaf temperature, which influences the PTR signal as such, otherwise the above ratio deviates from the true ES. Under such conditions, ES and the fluorescence parameters, F (momentary fluorescence level) Fm' (fluorescence of fully reduced PS II reaction centers) were measured during the induction phase of photosynthesis and in the steady state. ES and the parameter γ=(Fm'-F)/Fm', considered by Genty et al. ((1989) Biochim Biophys Acta 990: 87-92) to reflect the yield of PS II, had similar kinetics during the induction phase. Both reached a final maximum plateau after about 4-5 min. of illumination. In different experiments, where the measuring light intensities varied, γ was approximately linearly related to ES. This linear relationship was found in the same way also in steady-state measurements, where these parameters varied by using different background light intensities. Extrapolation to an ES value of zero indicates a finite non-zero value of γ. A possible explanation for this may be found in the existence an electron transport cycle around PS II which does not store energy in the range corresponding to the modulation frequency used (ca. 3.6 Hz). PMID:24311213

  3. Chapter 7: Lessons, Conclusions, and Implications of the Saber-Tooth Project.

    ERIC Educational Resources Information Center

    Ward, Phillip; Doutis, Panayiotis; Evans, Sharon A.

    1999-01-01

    Summarizes findings from the Saber-Tooth Project related to systemic change and student learning, concluding that vision is everything; workplace conditions must be addressed at multiple levels; strong relationships exist among planning, teaching, and assessment; and improvement in reform may occur due to the cessation of business as usual. This…

  4. Characterization of a Digital Microwave Radiometry System for Noninvasive Thermometry using Temperature Controlled Homogeneous Test Load

    PubMed Central

    Arunachalam, K; Stauffer, P R; Maccarini, PF; Jacobsen, S; Sterzer, F

    2009-01-01

    Microwave radiometry has been proposed as a viable noninvasive thermometry approach for monitoring subsurface tissue temperatures and potentially controlling power levels of multielement heat applicators during clinical hyperthermia treatments. With the evolution of technology, several analog microwave radiometry devices have been developed for biomedical applications. In this paper, we describe a digital microwave radiometer with built-in electronics for signal processing and automatic self-calibration. Performance of the radiometer with an Archimedean spiral receive antenna is evaluated over a bandwidth of 3.7–4.2GHz in homogeneous and layered water test loads. Controlled laboratory experiments over the range of 30–50°C characterize measurement accuracy, stability, repeatability and penetration depth sensitivity. The ability to sense load temperature through an intervening water coupling bolus of 6mm thickness is also investigated. To assess clinical utility and sensitivity to electromagnetic interference (EMI), experiments are conducted inside standard clinical hyperthermia treatment rooms with no EM shielding. The digital radiometer provided repeatable measurements with 0.075°C resolution and standard deviation of 0.217°C for homogeneous and layered tissue loads at temperatures between 32–45°C. Within the 3.7–4.2GHz band, EM noise rejection was good other than some interference from overhead fluorescent lights in the same room as the radiometer. The system response obtained for ideal water loads suggests that this digital radiometer should be useful for estimating subcutaneous tissue temperatures under a 6mm waterbolus used during clinical hyperthermia treatments. The accuracy and stability data obtained in water test loads of several configurations support our expectation that single band radiometry should be sufficient for sub-surface temperature monitoring and power control of large multielement array superficial hyperthermia applicators. PMID

  5. Interface resistance in copper coated carbon determined by frequency dependent photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Kijamnajsuk, P.; Giuliani, F.; Chirtoc, M.; Horny, N.; Gibkes, J.; Chotikaprakhan, S.; Bein, B. K.; Pelzl, J.

    2010-03-01

    The heat transfer in copper-carbon flat model systems was studied by frequency dependent photothermal radiometry. A novel approach which relies on the frequency dependence of the photothermal signal phase and amplitude at intermediate frequencies was introduced to determine the thermal interface resistance between the Cu-film and the substrate. The frequency dependent amplitude and phase of the photothermal signals were analyzed in the frame of a model of a one- dimensional heat flow perpendicular to the film plane. The interface resistance of the investigated CuC-sample with a Ti-bonding layer was found to increase by a factor two on heat treatment.

  6. Thermal diffusivity measurement by photothermal radiometry under random excitation and parametric analysis

    NASA Astrophysics Data System (ADS)

    Brahim, S.; Bodnar et, J. L.; Grossel, P.

    2010-03-01

    The aim of this work is to approach in an experimental way, the possibilities of diffusivity thermal measurement, under less energy constraints, offered by front face random photothermal radiometry associated to a parametric analysis. First, we present the principle of the random method. Then, we present the experimental device SAMMIR used in our study. In a third stage, we present the studied sample, the experimental conditions selected and the model developed for the study. We show finally, using the experimental study of a sample of nylon 6.6 that the photothermal method allows, in a particular case, a good approximation of the thermal diffusivity parameter.

  7. Measurement of the optical and thermal properties of biliary calculi using pulsed photothermal radiometry

    SciTech Connect

    Long, F.H.; Nishioka, N.S.; Deutsch, T.F.

    1987-01-01

    The optical absorption coefficients for biliary calculi are important in understanding the mechanism of laser-induced stone fragmentation. However, the heterogeneous composition of calculi and difficulties in producing optically thin samples prevent conventional spectrophotometric measurement techniques from being used. To overcome these limitations, we used a pulsed photothermal radiometry system to measure the optical absorption coefficients and thermal diffusivities of various biliary calculi. In the wavelength range examined (350-1060 nm), there was strong optical absorption which was greater for pigment stones than for cholesterol stones. The data support the theory that the initiation of the plasma accompanying laser fragmentation of calculi is a thermal process.

  8. Fiber-optic pulsed photothermal radiometry for fast surface-temperature measurements.

    PubMed

    Eyal, O; Scharf, V; Katzir, A

    1998-09-01

    Temperature measurement based on pulsed photothermal radiometry is described. In this technique a body is irradiated by a laser pulse and its temperature is inferred from the shape of the emitted photothermal-signal curve. A prototypical system based on a pulsed CO(2) laser, an IR detector, and IR-transmitting silver halide optical fibers was constructed and used to evaluate the feasibility of this technique. An important feature of the technique is that changes in sample emissivity or geometric factors do not introduce errors in the temperature determination. Theory, simulation, and experimental results are given and discussed. PMID:18286089

  9. Thickness microscopy based on photothermal radiometry for the measurement of thin films.

    PubMed

    Wang, Liping; Prekel, Helmut; Liu, Hengbiao; Deng, Yanzhuo; Hu, Jiming; Goch, Gert

    2009-03-01

    The photothermal detection technique is an innovative and non-contact method to investigate the properties of films on workpieces. This paper describes a novel experimental set-up for thickness microscopy based on photothermal radiometry. The correlation between the thermal wave signal and the film thickness is deduced and evaluated to determine the film thickness with a lateral resolution of less than 1mm. Results indicate that the thickness microscopy is a useful method to characterize thin films and has the potential to be applied in-process. PMID:19046925

  10. Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue.

    PubMed

    Vitkin, I A; Wilson, B C; Anderson, R R

    1995-06-01

    A model of pulsed photothermal radiometry (PPTR) based on optical diffusion theory is presented for a turbid, two-layer, semi-infinite medium containing a surface layer whose optical absorption and scattering properties differ from that of the underlying layer. Assuming one-dimensional geometry, we develop expressions for the depth-dependent fluence distributions and radiant-energy-density profiles and for the time dependence of the PPTR signal. Experimental tests of the PPTR model in a series of layered phantoms of varying optical properties are described. The results of these tests are consistent with the model predictions. PMID:21052451

  11. The Mars Orbiter Laser Altimeter Archive: Final Precision Experiment Data Record Release and Status of Radiometry

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Lemoine, F. G.; Smith, D. E.; Zuber, M. T.

    2003-01-01

    A final release (Version L) of the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Record (PEDR) has been submitted to the Planetary Data System (PDS). Additional gridded data record products are forthcoming. These products have evolved since their original description, owing in part to improved gravity modeling and cartographic reference frames, and in part to refinements in calibration. An additional component, the 1064 nm narrowband radiometry data, is also being archived. These data will be invaluable for future studies by Mars explorers and scientists.

  12. Non-destructive evaluation of cylindrical composite structures using photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Wang, C.; Mandelis, A.; Liu, Y.

    2005-06-01

    Thermal-wave diagnostics by means of infrared photothermal radiometry (PTR) has been used for quantitative non-destructive evaluation of cylindrical composite structures. To quantitatively evaluate the thermal-wave field of a cylindrical composite material, the Green function corresponding to the composite structure has been developed and subsequently the thermal-wave field has been derived. Furthermore, the characteristics of the thermal-wave field for a cylindrical material with a surface coating are discussed. Experimental results from a stainless steel (AISI 302) tube are used to validate the theoretical model.

  13. Differential radiometry for measuring the net radiative flux in the earth`s atmosphere

    SciTech Connect

    La Delfe, P.C.; Love, S.P.; Weber, P.G.

    1996-11-01

    The Hemispheric Optimized NEt Radiometer (HONER) is very briefly described. HONER was developed to resolve technical issues impeding the accurate measurement of atmospheric radiative flux. HONER uses differential radiometry, chopping the signal from upwelling and downwelling fluxes onto a single AC detector system, allowing true optical differencing as well as measurements of the individual fluxes. Wavelength coverage encompasses ultraviolet to more than 50 micrometers. HONER has been used in a ground-based version and will be tested on the Perseus B Unmanned Aerospace Vehicle.

  14. Comparison of photoacoustic radiometry to gas chromatography/mass spectrometry methods for monitoring chlorinated hydrocarbons

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1996-03-01

    A comparison of two methods of gas chromatography mass spectrometry (GCMS) and a nondispersive infrared technique, photoacoustic radiometry (PAR), is presented in the context of field monitoring a disposal site. First is presented an historical account describing the site and early monitoring to provide an overview. The intent and nature of the monitoring program changed when it was proposed to expand the Radiological Waste Site close to the Hazardous Waste Site. Both the sampling methods and analysis techniques were refined in the course of this exercise.

  15. Ozone and temperature decadal responses to solar variability in the mesosphere and lower thermosphere, based on measurements from SABER on TIMED

    NASA Astrophysics Data System (ADS)

    Huang, F. T.; Mayr, H. G.; Russell, J. M., III; Mlynczak, M. G.

    2016-01-01

    We have derived ozone and temperature responses to solar variability over a solar cycle, from June 2002 through June 2014, 50 to 100 km, 48° S to 48° N, based on data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics (TIMED) satellite. Results with this extent of coverage in the mesosphere and lower thermosphere have not been available previously. A multiple regression is applied to obtain responses as a function of the solar 10.7 cm flux (solar flux units, sfu). Positive responses mean that they are larger at solar maximum than at solar minimum of the solar cycle. From ˜ 80 to 100 km, both ozone and temperature responses are positive for all latitudes and are larger than those at lower altitudes. From ˜ 80 to 100 km, ozone responses can exceed 10 % (100 sfu)-1, and temperature responses can approach 4 °K. From 50 to ˜ 80 km, the ozone responses at low latitudes ( ˜ ±35°) are mostly negative and can approach ˜ negative 3 % (100 sfu)-1. However, they are mostly positive at midlatitudes in this region and can approach ˜ 2 % (100 sfu)-1. In contrast to ozone, from ˜ 50 to 80 km, the temperature responses at low latitudes remain positive, with values up to ˜ 2.5 K (100 sfu)-1, but are weakly negative at midlatitudes. Consequently, there is a systematic and robust relation between the phases of the ozone and temperature responses. They are positively correlated (in phase) from ˜ 80 to 100 km for all latitudes and negatively correlated (out of phase) from ˜ 50 to 80 km, also for all latitudes. The negative correlation from 50 to 80 km is maintained even though the ozone and temperature responses can change signs as a function of altitude and latitude, because the corresponding temperature responses change signs in step with ozone. This is consistent with the idea that dynamics have the larger influence between ˜ 80 and 100 km, while photochemistry is

  16. A laboratory module on radiometry, photometry and colorimetry for an undergraduate optics course

    NASA Astrophysics Data System (ADS)

    Polak, Robert D.

    2014-07-01

    The bachelor's degree in Physics at Loyola University Chicago requires both an upper-division course in Optics as well as a companion Optics Laboratory course. Recently, the laboratory course has undergone dramatic changes. Traditional weekly laboratories have been replaced with three laboratory modules, where students focus on a single topic over several weeks after which the students submit a laboratory report written in the style of a journal article following American Institute of Physics style manual. With this method, students are able to gain a deeper understanding of the specific topic areas of radiometry, photometry and colorimetry, lens design and aberrations, and polarization and interference while using industry-standard equipment and simulation software. In particular, this work will provide the details of the laboratory module on radiometry, photometry and colorimetry where students use a photoradiometer and integrating sphere to characterize the optical properties of an LCD monitor, light bulb and a fiber optic light source calculating properties such as luminous flux, luminous intensity, luminance, CIE color coordinates, NTSC ratio, color temperature and luminous efficacy.

  17. Two-Dimensional Synthetic Aperture Radiometry Over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave radiometry at low frequencies (L-band, 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be ad...

  18. Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea.

    PubMed Central

    Janczewski, D N; Yuhki, N; Gilbert, D A; Jefferson, G T; O'Brien, S J

    1992-01-01

    A method for the successful extraction of sequestered cellular DNA from 14,000-year-old fossil bones was developed and applied to asphalt-preserved specimens of the extinct saber-toothed cat, Smilodon fatalis. Two distinct gene segments, the mitochondrial gene for 12S rRNA and nuclear FLA-I (the feline class I major histocompatibility complex gene), from three different individual fossil specimens were cloned and sequenced after PCR amplification. Comparison of fossil-derived DNA sequences to homologous regions in 15 living carnivorous species, including 9 species of Felidae and 6 nonfelids, affirmed the phylogenetic placement of Smilodon within the modern radiation of Felidae distinct from the Miocene paleofelid (Nimravidae) saber-toothed "cat" species. These results raise the prospect of obtaining genetically informative DNA from preserved bones of extinct fossil species, particularly among the 2 million specimens excavated from the asphaltic sediments at Rancho La Brea in metropolitan Los Angeles. PMID:1409696

  19. Size effect of out-of-plane thermal conductivity of epitaxial YBa2Cu3O7-δ thin films at room temperature measured by photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Ikeda, Tatsuya; Ando, Tetsu; Taguchi, Yoshihiro; Nagasaka, Yuji

    2013-05-01

    The out-of-plane (c-axis) thermal conductivities of high-temperature superconducting thin films (YBa2Cu3O7-δ: YBCO) have been measured by photothermal radiometry (PTR) at room temperature. The YBCO samples are in c-axis-aligned epitaxially grown thin films with thicknesses of 250, 500, and 1000 nm. PTR is a noncontact measurement technique for the thermal conductivity and is based on the detection of infrared radiation emitted from a sample heated by a frequency-modulated laser beam. By changing the modulation frequency up to about 1 MHz, the thermal conductivity of thin film can be determined by a curve-fitting analysis of phase-lag data in the frequency domain. The uncertainty of measured thermal conductivity is estimated to be better than ±7%. The experimental results for thermal conductivity exhibit apparently positive film thickness dependence, and their absolute values are less than half of those for single crystal at the smallest thickness. The results indicate a size effect that cannot be explained by the very short phonon mean free path that the kinetic theory predicts. By employing a simple model taking into account phonon boundary scattering, the possible mean free path to interpret the present results is substantially larger than the prediction. The conclusion supports the validity of quite broad spectral distribution of phonons responsible for the thermal conductivity of YBCO.

  20. REVIEW ARTICLE: Photometry, radiometry and 'the candela': evolution in the classical and quantum world

    NASA Astrophysics Data System (ADS)

    Zwinkels, Joanne C.; Ikonen, Erkki; Fox, Nigel P.; Ulm, Gerhard; Rastello, Maria Luisa

    2010-10-01

    The metrological fields of photometry and radiometry and their associated units are closely linked through the current definition of the base unit of luminous intensity—the candela. These fields are important to a wide range of applications requiring precise and accurate measurements of electromagnetic radiation and, in particular, the amount of radiant energy (light) that is perceived by the human eye. The candela has been one of the base units since the inception of the International System of Units (SI) and is the only base unit that quantifies a fundamental biological process—human vision. This photobiological process spans an enormous dynamic range of light levels from a few-photon interaction involved in triggering the vision mechanism to a level of more than 1015 photons per second that is accommodated by the visual response under bright daylight conditions. This position paper, prepared by members of the Task Group on the SI of the Consultative Committee for Photometry and Radiometry Strategic Planning Working Group (CCPR WG-SP), reviews the evolution of these fields of optical radiation measurements and their consequent impact on definitions and realization of the candela. Over the past several decades, there have been significant developments in sources, detectors, measuring instruments and techniques, that have improved the measurement of photometric and radiometric quantities for classical applications in lighting design, manufacturing and quality control processes involving optical sources, detectors and materials. These improved realizations largely underpin the present (1979) definition of the candela. There is no consensus on whether this radiant-based definition fully satisfies the current and projected needs of the optical radiation community. There is also no consensus on whether a reformulation of the definition of the candela in terms of photon flux will be applicable to the lighting community. However, there have been significant recent

  1. Monitoring local heating around an interventional MRI antenna with RF radiometry

    SciTech Connect

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  2. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    USGS Publications Warehouse

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying

  3. Monitoring local heating around an interventional MRI antenna with RF radiometry

    PubMed Central

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  4. FOREWORD: The 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2011) The 11th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2011)

    NASA Astrophysics Data System (ADS)

    Ikonen, Erkki

    2012-04-01

    The NEWRAD Conferences bring together people from the National Metrology Institutes and the principal user communities of advanced radiometry, including Earth observation and climate communities. The eleventh NEWRAD Conference was held in Hawaii, USA, between 18 and 23 September 2011. The Conference was organized by the Moss Landing Marine Laboratories, Maui, at the Grand Wailea resort. The organization was a joint Pacific effort, where handling of the submitted abstracts and website administration were taken care of by KRISS (Korea Research Institute of Standards and Science) and NIST (National Institute of Standards and Technology), respectively. As satellite activities, the working groups of CCPR (Consultative Committee for Photometry and Radiometry) and the MOBY project arranged meetings at the Grand Wailea before and after the Conference. The Conference was attended by more than a hundred registered participants from five continents, which matches the number of foreign participants of NEWRAD 2008 at KRISS. A total of 153 papers were presented at NEWRAD 2011, of which 10 were invited talks and 100 posters. The poster sessions during the extended lunch breaks created a stimulating atmosphere for lively discussions and exchange of ideas. A technical visit was arranged to the astronomical observatory at the summit of Haleakala volcano, where some of the world's most advanced telescope systems are operated. The relaxed Hawaiian life, nearby ocean and excellent weather conditions gave an unprecedented flavour to this NEWRAD Conference. The abstract classification system was renewed for NEWRAD 2011, consisting of the following categories: EAO: Earth observation SSR: Solar/stellar radiometry SBR: Source-based radiometry OPM: Optical properties of materials/components DBR: Detector-based radiometry SFR: Single/few-photon radiometry. The new system worked well for refereeing and program purposes. Conference proceedings containing two-page extended abstracts were

  5. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  6. Opto-Thermal Transient Emission Radiometry (OTTER) to image diffusion in nails in vivo.

    PubMed

    Xiao, P; Zheng, X; Imhof, R E; Hirata, K; McAuley, W J; Mateus, R; Hadgraft, J; Lane, M E

    2011-03-15

    This work describes the first application of Opto-Thermal Transient Emission Radiometry (OTTER), an infrared remote sensing technique, to probe the extent to which solvents permeate the human nail in vivo. Decanol, glycerol and butyl acetate were selected as model solvents. After application of the solvents, individually, to human volunteers, OTTER was used to depth profile the solvents. The permeation rate of the solvents was ranked as glycerol>decanol>butyl acetate. It is possible that some of the butyl acetate may have evaporated during the experiment. The ability of decanol to extract lipids from biological tissue is also considered. These preliminary results demonstrate the potential of OTTER as a tool to identify optimal excipients with which to target drugs to the nail. PMID:21251961

  7. Remote sensing of snow properties by passive microwave radiometry: GSFC truck experiment

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Rango, A.; Shiue, J.

    1980-01-01

    Recent results indicate that microwave radiometry has the potential for inferring the snow depth and water equivalent information from snowpacks. In order to assess this potential for determining the water equivalent of a snowpack, it is necessary to understand the microwave emission and scattering behavior of the snow at various wavelengths under carefully controlled conditions. Truck-mounted microwave instrumentation was used to study the microwave characteristics of the snowpack in the Colorado Rocky Mountain region during the winters of 1977 to 78 and 7978 to 79. The spectral signatures of C, X, K sub u, and K sub a band radiometers with dual polarization were used, together with measurements of snowpack density, temperature an ram profiles, liquid water content, and rough characterization of the crystal sizes. These data compared favorably with calculated results based on recent microscopic scattering models.

  8. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry.

    PubMed

    Guo, Xinxin; Mandelis, Andreas; Zinman, Bernard

    2012-11-01

    Noninvasive glucose monitoring will greatly improve diabetes management. We applied Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) to noninvasive glucose measurements in human skin in vitro in the mid-infrared range. Glucose measurements in human blood serum diffused into a human skin sample (1 mm thickness from abdomen) in the physiological range (21-400 mg/dl) demonstrated high sensitivity and accuracy to meet wide clinical detection requirements. It was found that the glucose sensitivity could be tuned by adjusting the intensity ratio and phase difference of the two laser beams in the WM-DPTR system. The measurement results demonstrated the feasibility of the development of WM-DPTR into a clinically viable noninvasive glucose biosensor. PMID:23162736

  9. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry

    PubMed Central

    Guo, Xinxin; Mandelis, Andreas; Zinman, Bernard

    2012-01-01

    Noninvasive glucose monitoring will greatly improve diabetes management. We applied Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) to noninvasive glucose measurements in human skin in vitro in the mid-infrared range. Glucose measurements in human blood serum diffused into a human skin sample (1 mm thickness from abdomen) in the physiological range (21-400 mg/dl) demonstrated high sensitivity and accuracy to meet wide clinical detection requirements. It was found that the glucose sensitivity could be tuned by adjusting the intensity ratio and phase difference of the two laser beams in the WM-DPTR system. The measurement results demonstrated the feasibility of the development of WM-DPTR into a clinically viable noninvasive glucose biosensor. PMID:23162736

  10. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    NASA Astrophysics Data System (ADS)

    Hellen, A.; Mandelis, A.; Finer, Y.

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  11. Determination of optical properties of turbid media using pulsed photothermal radiometry.

    PubMed

    Prahl, S A; Vitkin, I A; Bruggemann, U; Wilson, B C; Anderson, R R

    1992-06-01

    Pulsed photothermal radiometry (PPTR) measures blackbody radiation emitted by a sample after absorption of an optical pulse. Three techniques for obtaining the absorption coefficient of absorbing-only, semi-infinite samples are examined and shown to give comparable results. An analytic theory for the time dependence of the PPTR signal in semi-infinite scattering and absorbing media has been derived and tested in a series of controlled gel phantoms. This theory, based on the diffusion approximation of the radiative transport equation, is shown to model the time course of the detected signal accurately. Furthermore, when the incident fluence is known, the theory can be used in a non-linear, two-parameter fitting algorithm to determine the absorption and reduced scattering coefficients of a turbid sample with an accuracy of 10-15% for transport albedos ranging from 0.42-0.88. PMID:1626021

  12. Correlation Between Chemical Composition of Silver Alloys and Photothermal Radiometry Signals

    NASA Astrophysics Data System (ADS)

    Rojas-Rodríguez, I.; Velázquez-Hernández, R.; Jaramillo-Vigueras, D.; Mendoza-López, M. L.; Millan-Malo, M.; Rodíguez-García, M. E.

    2012-12-01

    The development of nondestructive and noncontact techniques for evaluation of metallic materials is invaluable to metal characterization. The photothermal radiometry (PTR) amplitude and phase images of silver alloys were used to study the silver distribution in alloys rich in silver and copper for Ag concentrations between 37 mass% and 92 mass%. The silver concentration was determined using inductively coupled plasma. It was found that for Ag concentrations lower than 50 mass%, the PRT signals are governed by the thermal and optical properties of copper and vice versa. It was possible to establish a good correlation between the PTR amplitude and phase signal with the Ag concentration. This means that after calibration it is possible to determine the Ag concentration using nondestructive evaluation.

  13. Depth determination of chromophores in human skin by pulsed photothermal radiometry.

    PubMed

    Milner, T E; Smithies, D J; Goodman, D M; Lau, A; Nelson, J S

    1996-07-01

    We report on the application of pulsed photothermal radiometry (PPTR) to determine the depth of in-vitro and in-vivo subsurface chromophores in biological materials. Measurements provided by PPTR in combination with a nonnegative constrained conjugate-gradient algorithm are used to determine the initial temperature distribution in a biological material immediately following pulsed laser irradiation. Within the experimental error, chromophore depths (50-450 µm) in 55 in-vitro collagen phantoms determined by PPTR and optical low-coherence reflectometry are equivalent. The depths of port-wine-stain blood vessels determined by PPTR correlate very well with their locations found by computer-assisted microscopic observation of histologic sections. The mean blood-vessel depth deduced from PPTR and histologic observation is statistically indistinguishable (p > 0.94). PMID:21102725

  14. Thermophysical properties of thermal sprayed coatings on carbon steel substrates by photothermal radiometry

    SciTech Connect

    Garcia, J.A.; Mandelis, A.; Farahbakhsh, B.; Lebowitz, C.; Harris, I.

    1999-09-01

    Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermal physical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.

  15. Study of the heat transfer in solids using infrared photothermal radiometry and simulation by COMSOL Multiphysics.

    PubMed

    Suarez, V; Hernández Wong, J; Nogal, U; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the heat transfer through a homogeneous and isotropic solid exited by square periodic light beam on its front surface. For this, we use the Infrared Photothermal Radiometry in order to obtain the evolution of the temperature difference on the rear surface of three samples, silicon, copper and wood, as a function of the exposure time. Also, we solved the heat transport equation for this problem with the boundary conditions congruent with the physical situation, by means of numerical simulation based in finite element analysis. Our results show a good agreement between the experimental and numerical simulated results, which demonstrate the utility of this methodology for the study of the thermal response of solids. PMID:23684428

  16. Pulsed photothermal radiometry in optically transparent media containing discrete optical absorbers.

    PubMed

    Vitkin, I A; Wilson, B C; Anderson, R R; Prahl, S A

    1994-10-01

    A description of heat transport by conduction and radiation in inhomogeneous materials following absorption of a brief optical pulse is presented, and investigated experimentally using pulsed photothermal radiometry (PPTR). The model indicates that the role of radiation as an intramedium heat transfer modality increases with increasing temperatures and decreasing infrared (IR) absorption of the medium. However, for the range of conditions analysed in this study, conductive transfer dominates. Thus, the inclusion of radiation does not significantly perturb the internal temperature profiles, although it does influence the radiometric emission from the sample, and hence the PPTR signal. The thermal confinement effects described in this study may be relevant in photomedicine, for example in pulsed laser irradiation of tissues containing small absorbing targets. PMID:15551541

  17. Depth determination of chromophores in human skin by pulsed photothermal radiometry

    SciTech Connect

    Milner, T.E. |; Smithies, D.J.; Goodman, D.M.; Nelson, J.S. |; Goodman, D.M.; Lau, A.

    1996-07-01

    We report on the application of pulsed photothermal radiometry (PPTR) to determine the depth of {ital in}-{ital vitro} and {ital in}-{ital vivo} subsurface chromophores in biological materials. Measurements provided by PPTR in combination with a nonnegative constrained conjugate-gradient algorithm are used to determine the initial temperature distribution in a biological material immediately following pulsed laser irradiation. Within the experimental error, chromophore depths (50{endash}450 {mu}m) in 55 {ital in}-{ital vitro} collagen phantoms determined by PPTR and optical low-coherence reflectometry are equivalent. The depths of port-wine-stain blood vessels determined by PPTR correlate very well with their locations found by computer-assisted microscopic observation of histologic sections. The mean blood-vessel depth deduced from PPTR and histologic observation is statistically indistinguishable ({ital p}{lt}0.94). {copyright} {ital 1996 Optical Society of America.}

  18. Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry.

    PubMed

    Milner, T E; Goodman, D M; Tanenbaum, B S; Nelson, J S

    1995-07-01

    A solution method is proposed to the inverse problem of determining the unknown initial temperature distribution in a laser-exposed test material from measurements provided by infrared radiometry. A Fredholm integral equation of the first kind is derived that relates the temporal evolution of the infrared signal amplitude to the unknown initial temperature distribution in the exposed test material. The singular-value decomposition is used to demonstrate the severely ill-posed nature of the derived inverse problem. Three inversion methods are used to estimate solutions for the initial temperature distribution. A nonnegatively constrained conjugate-gradient algorithm using early termination is found superior to unconstrained inversion methods and is applied to image the depth of laser-heated chromophores in human skin. PMID:7608789

  19. Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry.

    PubMed

    Choi, Bernard; Majaron, Boris; Nelson, J Stuart

    2004-01-01

    We report on development of an optical-thermal model to evaluate the use of pulsed photothermal radiometry (PPTR) for depth profiling of port wine stain (PWS) skin. In the model, digitized histology sections of a PWS biopsy were used as the input skin geometry. Laser induced temperature profiles were reconstructed from simulated PPTR signals by applying an iterative, non-negatively constrained conjugate gradient algorithm. Accuracy of the following PWS skin characteristics extracted from the reconstructed profiles was determined: (1) average epidermal thickness (z(epi)), (2) maximum epidermal temperature rise (DeltaT(epi,max)), (3) depth of PWS upper boundary (z(PWS)), and (4) depth of maximum PWS temperature rise (z(PWS,max)). Comparison of the actual and reconstructed profiles from PPTR data revealed a good match for all four PWS skin characteristics. Results of this study indicate that PPTR is a viable approach for depth profiling of PWS skin. PMID:15065895

  20. Monte carlo uncertainty analysis for photothermal radiometry measurements using a curve fit process

    NASA Astrophysics Data System (ADS)

    Horne, Kyle; Fleming, Austin; Timmins, Ben; Ban, Heng

    2015-12-01

    Photothermal radiometry (PTR) has become a popular method to measure thermal properties of layered materials. Much research has been done to determine the capabilities of PTR, but with little uncertainty analysis. This study reports a Monte Carlo uncertainty analysis to quantify uncertainty of film diffusivity and effusivity measurements, presents a sensitivity study for each input parameter, compares linear and logarithmic spacing of data points on frequency scans, and investigates the validity of a one-dimensional heat transfer assumption. Logarithmic spacing of frequencies when taking data is found to be unequivocally superior to linear spacing, while the use of a higher-dimensional heat transfer model is only needed for certain measurement configurations. The sensitivity analysis supports the frequency spacing conclusion, as well as explains trends seen in the uncertainty data.

  1. Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry

    PubMed Central

    Guo, Xinxin; Mandelis, Andreas; Liu, Yijun; Chen, Bo; Zhou, Qun; Comeau, Felix

    2014-01-01

    This study describes the potential of wavelength-modulated differential photothermal radiometry (WM-DPTR) for non-invasive in-vehicle alcohol detection which can be of great importance in reducing alcohol-impaired driving. Ethanol content in the range of concern, 0-100 blood alcohol concentration (BAC) in water phantoms and blood serum diffused in human skin in vitro were measured with high sensitivity. The results show that the WM-DPTR system can be optimized for alcohol detection with the combination of two sensitivity-tuning parameters, amplitude ratio R and phase shift ΔP. WM-DPTR has demonstrated the potential to be developed into a portable alcohol ignition interlock biosensor that could be fitted as a universal accessory in vehicles. PMID:25071967

  2. Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry.

    PubMed

    Guo, Xinxin; Mandelis, Andreas; Liu, Yijun; Chen, Bo; Zhou, Qun; Comeau, Felix

    2014-07-01

    This study describes the potential of wavelength-modulated differential photothermal radiometry (WM-DPTR) for non-invasive in-vehicle alcohol detection which can be of great importance in reducing alcohol-impaired driving. Ethanol content in the range of concern, 0-100 blood alcohol concentration (BAC) in water phantoms and blood serum diffused in human skin in vitro were measured with high sensitivity. The results show that the WM-DPTR system can be optimized for alcohol detection with the combination of two sensitivity-tuning parameters, amplitude ratio R and phase shift ΔP. WM-DPTR has demonstrated the potential to be developed into a portable alcohol ignition interlock biosensor that could be fitted as a universal accessory in vehicles. PMID:25071967

  3. Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Randeberg, Lise L.; Majaron, Boris

    2015-02-01

    We apply diffuse reflectance spectroscopy (DRS) and pulsed photothermal radiometry (PPTR) for characterization of the bruise evolution process. While DRS provides information in a wide range of visible wavelengths, the PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin). In this study, we simulate experimental DRS spectra and PPTR signals using the Monte Carlo technique and focus on characterization of a suitable fitting approach for their analysis. We find inverse Monte Carlo to be superior to the diffusion approximation approach for the inverse analysis of DRS spectra. The analysis is then augmented with information obtainable by the fitting of the PPTR signal. We show that both techniques can be coupled in a combined fitting approach. The combining of two complementary techniques improves the robustness and accuracy of the inverse analysis, enabling a comprehensive quantitative characterization of the bruise evolution dynamics.

  4. Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Wang, Chinhua; Mandelis, Andreas; Liu, Yue

    2005-01-01

    In this paper, thermal-wave diagnostics by means of laser infrared photothermal radiometry (PTR) have been used for quantitative nondestructive evaluation of cylindrical composite structures. To quantitatively evaluate the thermal-wave field of a cylindrical composite material, the Green function corresponding to the composite structure and the PTR measurement scheme has been developed and subsequently the thermal-wave field has been derived. Furthermore, the characteristics of the thermal-wave field for two cases of practical interest, i.e., a cylindrical material with a surface coating and a cylindrical tube filled with a low thermal-conductivity fluid medium inside, are discussed. Experimental results from a stainless-steel (AISI 302) cylinder are used to validate the theoretical model.

  5. Capturing a failure of an ASIC in-situ, using infrared radiometry and image processing software

    NASA Technical Reports Server (NTRS)

    Ruiz, Ronald P.

    2003-01-01

    Failures in electronic devices can sometimes be tricky to locate-especially if they are buried inside radiation-shielded containers designed to work in outer space. Such was the case with a malfunctioning ASIC (Application Specific Integrated Circuit) that was drawing excessive power at a specific temperature during temperature cycle testing. To analyze the failure, infrared radiometry (thermography) was used in combination with image processing software to locate precisely where the power was being dissipated at the moment the failure took place. The IR imaging software was used to make the image of the target and background, appear as unity. As testing proceeded and the failure mode was reached, temperature changes revealed the precise location of the fault. The results gave the design engineers the information they needed to fix the problem. This paper describes the techniques and equipment used to accomplish this failure analysis.

  6. Differential thermal wave radiometry for noninvasive blood glucose monitoring: feasibility analysis

    NASA Astrophysics Data System (ADS)

    Telenkov, Sergey A.

    2004-04-01

    Blood glucose monitoring is essential for management of diabetes especially for those patients who requires regular insulin injections. A reliable noninvasive technique may eliminate inconvenience associated with frequent skin puncture to draw blood for measurement by a standard meter. Laser-induced thermal waves in tissue and detection of resulting IR response may provide a valuable approach to development of noninvasive glucose sensor. The present report analyzes radiometric response of tissue at the two wavelengths in mid-IR spectral band with phase-sensitive detection to evaluate feasibility of differential phase radiometry for noninvasive glucose monitoring. Sensitivity of the differential phase method is computed using two models of laser-tissue interaction: homogeneous light absorption and a discrete chromophore heating.

  7. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  8. Diurnal variation of stratospheric and mesospheric ozone observed by ground-based microwave radiometry

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens; Studer, Simone; Kämpfer, Niklaus; Schanz, Ansgar

    2013-04-01

    Knowledge on diurnal ozone variations in the middle atmosphere is of general interest for the estimation of atmospheric tides propagating throughout the whole atmosphere. Another aspect is the important area of ozone trend analysis. Does the ozone layer recover in the next decades? Expected trends are of the order of 1 percent per decade. If the diurnal ozone variation is not considered, avoided, or removed in the observational data sets then an ozone trend detection will be not possible since the amplitude of the diurnal variation of stratospheric ozone is of the same order as the decadal ozone trend. Ground-based microwave radiometry measures the diurnal ozone variation at a certain geographic location at altitudes from 25 to 65 km. Here we discuss the challenges for the measurement technique and the retrieval method. Finally we present characteristics of the diurnal ozone variation above Switzerland, continuously observed since 1994.

  9. Study of Skin Phantoms by Photothermal Radiometry in Frequency Domain and Multivariate Methods

    NASA Astrophysics Data System (ADS)

    Pichardo-Molina, J. L.; Gutiérez-Juárez, G.; Landa-Hernandez, A.; Barbosa-Garcia, O.; Ivanov, R.; Huerta-Franco, M. R.

    2008-12-01

    In this paper the use of the photothermal radiometry technique in the frequency domain (PRTF) and the use of multivariate methods in the study of two types of skin phantoms: (a) one in which skin pigmentation was simulated dyeing the gel phantom and (b) the other consists of exposure of animal skin samples to different degrees of thermal damage. In experiment (a), gel phantoms were prepared with different concentrations of methylene blue (MB). The mean values of the radiometry signal (RS) show significant differences in only those cases in which changes in the concentration of MB were higher than 0.38 mM. This result was confirmed with a t test for independent samples of the data ( p < 0.05). The mean values of the amplitude and phase signal do not permit discrimination between phantoms with changes in pigmentation equal to or lower than this value. However, principal component analysis (PCA) demonstrated that it is possible to discriminate between phantoms with changes in molar concentration equal to 0.38 mM (for the phase signal). In the case of experiment (b), the following four groups of pork skin samples were analyzed: one consists of samples of fresh skin, while the other three consist of samples exposed to thermal damage at 45 °C (the exposure time was 4 s) and 80 °C (exposure times were 4 s and 8 s, respectively). The mean values of the RS for each group of samples did not show a clear visual discrimination. However, the t test for independent samples applied to the data demonstrated significant differences only between fresh skin and skin exposure to thermal damage at 80 °C (with exposure times of 4 s and 8 s). PCA was used to discriminate between the four different skin samples.

  10. Proposed Definitions of Some Technical Terms Frequently Used in Microwave Radiometry for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Shiue, James C.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The use of microwave radiometry for remote sensing is a relatively young field. As a result, there are no standard definitions of many frequently used technical terms; a lot of which are conventional usages carried-over from optical remote sensing, and a lot more are shared with electrical or microwave engineering. Sometimes the divergent notions and assumptions originating from a different field may cause ambiguity or confusions. It is proposed that we establish a list of frequently used terms, together with their 'standard' definitions and hope that they will gradually gain general acceptance by the remote sensing community. It would be even more useful if the IEEE community can set up a standard committee of sort to develop and maintain the standards. To minimize the effort, the existing terms should be kept or reinterpreted as much as possible. For example, the term 'Instantaneous Field of View' (IFOV), originally coming from the optical remote sensing field, is now appearing in microwave remote sensing literature frequently. The IFOV refers to the 'beam width' or the 'diameter' of the beam's geometrical projection on earth surface. Since the definition of 'beam width' is different for an optical system versus a microwave antenna, the use of IFOV in microwave radiometry needed to be clarified. Also, the meaning of the IFOV will be different depending upon whether the beam is scanning or not, and how the scanning takes place, e.g. 'continuous scanning' vs 'stare-and-step scan.' From this one term alone, it is clear that more subtle meanings must be spell out in detail and a 'standard' definition would help in understanding and comparing systems and data in the literature. A selected list of terms with their suggested definitions will be discussed in this presentation.

  11. Kinetic Demonstration.

    ERIC Educational Resources Information Center

    Burgardt, Erik D.; Ryan, Hank

    1996-01-01

    Presents a unit on chemical reaction kinetics that consists of a predemonstration activity, the demonstration, and a set of postdemonstration activities that help students transfer the concepts to actual chemical reactions. Simulates various aspects of chemical reaction kinetics. (JRH)

  12. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  13. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  14. Temperature Trends in the Polar Mesosphere between 2002-2007 using TIMED/SABER Data

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Kutepov, Alexander A.; Pesnell, William Dean; Latteck, Ralph; Russell, James M.

    2008-01-01

    The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The TIMED/SABER instrument is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as the temperature of the region. In this study, we have concentrated on the polar mesosphere, to investigate the temperature characteristics as a function of spatial and temporal considerations. We used the recently revised SABER dataset (1.07) that contains improved temperature retrievals in the Earth polar summer regions. Weekly averages are used to make comparisons between the winter and summer, as well as to study the variability in different quadrants of each hemisphere. For each year studied, the duration of polar summer based on temperature measurements compares favorably with the PMSE (Polar Mesospheric Summer Echoes) season measured by radar at the ALOMAR Observatory in Norway (69 N). The PMSE period should also define the summer period suitable for the occurrence of polar mesospheric clouds. The unusual short and relatively warm polar summer in the northern hemisphere

  15. Comparison between the Temperature Measurements by TIMED/SABER and Lidar in the Mid-Latitude

    NASA Technical Reports Server (NTRS)

    Xu, Jiyao; She, C. Y.; Yuan, Wei; Mertens, Chris; Mlynczak, Marty; Russell, James

    2005-01-01

    Comparisons of monthly-mean nighttime temperature profiles observed by the Sodium Lidar at Colorado State University and TIMED/SABER over passes are made. In the altitude range from 85 km to about 100 km, the two observations are in excellent agreement. Though within each other s error bars, important differences occur below 85 km in the entire year and above 100 km in the summer season. Possible reasons for these difference are high photon noise below 85 km in lidar observations, and less than accurate assumptions in the concentration of important chemical species like oxygen (and its quenching rate) in the SABER retrieval above 100 km. However, the two techniques both show the two-level mesopause thermal structure, with the times of change from one level to the other in excellent agreement. Comparison indicates that the high-level (winter) mesopause altitudes are also in excellent agreement between the two observations, though some difference may exist in the low-level (summer) mesopause altitudes between ground-based and satellite-borne data.

  16. IAP RAS microwave radiometry complex: sounding atmospheric thermal structure from the ground up to 55km.

    NASA Astrophysics Data System (ADS)

    Belikovich, Mikhail; Shvetsov, Alexander; Ryskin, Vitaly; Mukhin, Dmitry; Kulikov, Mikhail; Feigin, Alexander

    2016-04-01

    Thermal structure is the key characteristic of the atmosphere. Depending on the altitude, it is measured by different methods. In troposphere a plethora of in-situ techniques exists while in middle atmosphere remote sensing is primary type of measurement. The remote sensing is conducted in different wavelengths: optical, infrared and microwave. Satellite based measurements are the most popular kind of remote sensing measurements as it provides global coverage. Ground based passive microwave remote sensing technique has its place when one need permanent monitoring with high time resolution in order to study short-term local events like gravity waves. Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) develops multi-purpose radiometry complex for constant atmospheric monitoring. For now, it measures temperature profiles from ground to 55km, tropospheric water vapor and ozone. It consists of several radiometers with spectral bands ranging from 20 to 112 GHz. In 2015 two radiometers were added in order to measure thermal structure at surface level and troposphere: scanning device operating in 55-59GHz, and device at 50-55GHz. The change led to modifying the retrieval software. The work presents the description of the radiometry complex and corresponding retrieval software. The main part is devoted to new radiometers and enhancements in retrieval procedure. The retrieval algorithms are described: for each device separately and for the whole temperature retrieval part of the complex. The use of the single procedure for the group of radiometers helps to merge the profile with each other correctly. The main issue of the single procedure (numerical complexity aside) is dealing with the possible difference in calibration of the devices. Error analysis of the procedures is conducted. The characteristics of the complex and the retrieval algorithms are presented. The capabilities of the algorithms are shown on simulated and real data; the last one was

  17. Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-07-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be ∼5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at ∼300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT

  18. Lunar Phase Function at 1064 Nm from Lunar Orbiter Laser Altimeter Passive and Active Radiometry

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-01-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermo- physical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at approximately 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition

  19. Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay

    NASA Technical Reports Server (NTRS)

    Elgered, G.; Davis, J. L.; Herring, T. A.; Shapiro, I. I.

    1991-01-01

    An important source of error in VLBI estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. This paper presents and discusses the method of using data from a water vapor radiomete (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13 percent smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the 'best' minimum elevationi angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass.

  20. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry.

    PubMed

    Pham Tu Quoc, S; Cheymol, G; Semerok, A

    2014-05-01

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r0 and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%-10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r0/100 ≤ L ≤ r0/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement. PMID:24880399

  1. Snow Pack and Lake Ice Pack Remote Sensing using Wideband Autocorrelation Radiometry

    NASA Astrophysics Data System (ADS)

    Mousavi, S.; De Roo, R. D.; Sarabandi, K.; England, A. W.

    2015-12-01

    A novel microwave radiometric technique, wideband autocorrelation radiometry (WiBAR), offers a deterministic method of remotely sensing the propagation time τdelay of microwaves through low loss layers at the bottom of the atmosphere. Terrestrial examples are the snow and lake ice packs. This technique is based on the Planck radiation from the surface beneath the pack which travels upwards through the pack towards the radiometer; such a signal we call a direct signal. On the other hand, part of this radiation reflects back from the pack's upper interface then from its lower interface, before traveling towards the radiometer's antenna. Thus, there are two signals received by the radiometer, the direct signal and a delayed copy of it. The microwave propagation time τdelay through the pack yields a measure of its vertical extent. We report a time series of measurements of the ice pack on Lake Superior from February to April 2014 to demonstrate this technique. The observations are done at frequencies from 7 to 10 GHz. At these frequencies, the volume and surface scattering are small in the ice pack. This technique is inherently low-power since there is no transmitter as opposed to active remote sensing techniques. The results of this paper is to present the WiBAR technique and show that the microwave travel time within a dry snow pack and lake ice pack can be deterministically measured for different thicknesses using this technique.

  2. Passive standoff detection of radiological products by Fourier-transform infrared radiometry

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Thériault, Jean-Marc

    2004-06-01

    A preliminary investigation is made into the possibility of applying the passive standoff detection technique to the identification of radiological and related products. This work is based on laboratory measurements of the diffuse reflectance from a number of products, including U3O8, CsI, SrO, I2O5, and La2O3. These reflectances are incorporated into the MODTRAN4 radiative-transfer model to simulate the nadir radiance from surfaces consisting of these radiological or related materials. The simulations are performed for two situations: at an altitude of 1 m above the ground, to simulate the passive detection of nuclear products with a hand-held instrument, and at an altitude of 1 km, to simulate a passive sensor carried aboard an aircraft. The results of the simulations under idealized conditions, as well as the results of one measurement, show that the passive standoff detection of radiological products by Fourier-transform infrared radiometry may be possible.

  3. Passive standoff detection of radiological products by Fourier-transform infrared radiometry.

    PubMed

    Puckrin, Eldon; Thériault, Jean-Marc

    2004-06-15

    A preliminary investigation is made into the possibility of applying the passive standoff detection technique to the identification of radiological and related products. This work is based on laboratory measurements of the diffuse reflectance from a number of products, including U3O8, CsI, SrO, I2O5, and La2O3. These reflectances are incorporated into the MODTRAN4 radiative-transfer model to simulate the nadir radiance from surfaces consisting of these radiological or related materials. The simulations are performed for two situations: at an altitude of 1 m above the ground, to simulate the passive detection of nuclear products with a hand-held instrument, and at an altitude of 1 km, to simulate a passive sensor carried aboard an aircraft. The results of the simulations under idealized conditions, as well as the results of one measurement, show that the passive standoff detection of radiological products by Fourier-transform infrared radiometry may be possible. PMID:15233440

  4. Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum.

    PubMed

    Guo, Xinxin; Mandelis, Andreas; Zinman, Bernard

    2013-12-01

    Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) has been designed for noninvasive glucose measurements in the mid-infrared (MIR) range. Glucose measurements in human blood serum in the physiological range (20-320 mg/dl) with predicted error <10.3 mg/dl demonstrated high sensitivity and accuracy to meet wide clinical detection requirements, ranging from hypoglycemia to hyperglycemia. The glucose sensitivity and specificity of WM-DPTR stem from the subtraction of the simultaneously measured signals from two excitation laser beams at wavelengths near the peak and the baseline of the strongest interference-free glucose absorption band in the MIR range. It was found that the serum glucose sensitivity and measurement precision strongly depend on the tunability and stability of the intensity ratio and the phase shift of the two laser beams. This level of accuracy was favorably compared to other MIR techniques. WM-DPTR has shown excellent potential to be developed into a clinically viable noninvasive glucose biosensor. PMID:22930666

  5. Tower-Perturbation Measurements in Above-Water Radiometry. Volume 23

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; vanderLinde, Dirk; Brown, James W.

    2003-01-01

    This report documents the scientific activities which took place during June 2001 and June 2002 on the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea. The primary objective of these field campaigns was to quantify the effect of platform perturbations (principally reflections of sunlight onto the sea surface) on above-water measurements of water-leaving radiances. The deployment goals documented in this report were to: a) collect an extensive and simultaneous set of above- and in-water optical measurements under predominantly clear-sky conditions; b) establish the vertical properties of the water column using a variety of ancillary measurements, many of which were taken coincidently with the optical measurements; and c) determine the bulk properties of the environment using a diversity of atmospheric, biogeochemical, and meteorological techniques. A preliminary assessment of the data collected during the two field campaigns shows the perturbation in above-water radiometry caused by a large offshore structure is very similar to that caused by a large research vessel.

  6. Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence.

    PubMed

    Nicolaides, Lena; Feng, Chris; Mandelis, Andreas; Abrams, Stephen H

    2002-02-01

    Modulated (frequency-domain) infrared photothermal radiometry (PTR) is used as a dynamic quantitative dental inspection tool complementary to modulated luminescence (LM) to quantify sound enamel or dentin. A dynamic high-spatial-resolution experimental imaging setup, which can provide simultaneous measurements of laser-induced modulated PTR and LM signals from defects in teeth, has been developed. Following optical absorption of laser photons, the experimental setup can monitor simultaneously and independently the nonradiative (optical-to-thermal) energy conversion by infrared PTR and the radiative deexcitation by LM emission. The relaxation lifetimes (tau1, tau2) and optical absorption, scattering, and spectrally averaged infrared emission coefficients (mu(alpha), mu(s), mu(IR)) of enamel are then determined with realistic three-dimensional LM and photothermal models for turbid media followed by multiparameter fits to the data. A quantitative band of values for healthy enamel with respect to these parameters can be generated so as to provide an explicit criterion for the assessment of healthy enamel and, in a future extension, to facilitate the diagnosis of the onset of demineralization in carious enamel. PMID:11993925

  7. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Pham Tu Quoc, S.; Cheymol, G.; Semerok, A.

    2014-05-01

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r0 and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%-10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r0/100 ≤ L ≤ r0/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement.

  8. Pulsed photothermal radiometry as a method for investigating blood vessel-like structures.

    PubMed

    Schmitz, C H; Oberheide, U; Lohmann, S; Lubatschowski, H; Ertmer, W

    2001-04-01

    Pulsed photothermal radiometry (PPTR) is known to be suitable for in vivo investigations of tissue optical properties. As a noncontact, nondestructive method it is a very attractive candidate for on-line dosimetry of laser treatments that rely on thermal laser-tissue interaction. In this article, we extend the one-dimensional (1D) analytical formalism that has widely been used to describe PPTR signals to a two-dimensional treatment of a simplified model of a blood vessel. This approach leads to quantitative description of a PPTR signal that, unlike in an 1D treatment, not only shows changes in time, but also varies in space. Using this approach, we are able to gain instructive understanding on how target characteristics of a blood vessel-like structure influence such a spatiotemporal PPTR signal. Likewise, the ability of extracting target features from those measurements is evaluated. Subsequently, we present experimental realization of the idealized model of a blood vessel as used in our theory. Comparison of actual PPTR measurements with theoretical predictions allow vessel localization laterally and in depth. Using our setup, we furthermore demonstrate the influence of flow inside the vessel on the measured signal. PMID:11375732

  9. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids

    NASA Astrophysics Data System (ADS)

    Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín

    2011-08-01

    Modulated photothermal radiometry (PTR) has been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector. The amplitude and phase of the PTR voltage is recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we test the ability of modulated PTR to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the PTR signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam, the heat losses, and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, covering the whole range from transparent to opaque, confirm the validity of the method. In Part II of this work, the method is extended to multilayered materials.

  10. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Martan, J.

    2015-01-01

    Measurement of thermal conductivity and volumetric specific heat of optically transparent thin films presents a challenge for optical-based measurement methods like pulsed photothermal radiometry. We present two approaches: (i) addition of an opaque optical layer to the surface and (ii) approximate correction of the mathematical model to incorporate semitransparency of the film. Different single layer and multilayer additive optical layers were tested. The materials of the optical layers were chosen according to analysis and measurement of their optical properties: emissivity and absorption coefficient. Presented are thermal properties' measurement results for 6 different thin films with wide range of thermal conductivity in three configurations of surface: as deposited, added Ti layer, and added Ti/TiAlSiN layer. Measurements were done in dependence on temperature from room temperature to 500 °C. The obtained thermal effusivity evolution in time after the laser pulse shows different effects of the surface layers: apparent effusivity change and time delay. Suitability of different measurement configurations is discussed and results of high temperature testing of different optical layers are presented.

  11. TiO2 coatings with Au nanoparticles analysed by photothermal IR radiometry

    NASA Astrophysics Data System (ADS)

    Macedo, F.; Vaz, F.; Torrell, M.; Faria, R. T., Jr.; Cavaleiro, A.; Barradas, N. P.; Alves, E.; Junge, K. H.; Bein, B. K.

    2012-03-01

    Optically active Au : TiO2 nanocomposite thin films with an amount of gold of about 15 at% were prepared by dc reactive magnetron sputtering. After the deposition, the samples were annealed in vacuum at different constant temperatures between 200 and 800 °C. Depending on the annealing temperature, considerable changes have been found in the films' crystalline structure and for the number, the shape and the dimensions of the Au clusters. Modulated IR Radiometry (MIRR), a non-contact, non-destructive modulation-frequency-dependent photothermal measurement technique, was used for the characterization of the thermo-optical depth profiles of the as-deposited and annealed samples. Based on the results of MIRR, it was possible to establish correlations of the measured thermo-optical depth profiles with various effects: the heat treatment induced progress of crystallization of the TiO2 matrix, the evolution of Au nanoparticles and strong subsurface heat sources related to the surface plasmon resonance (SPR) effect. For the annealing temperature of 800 °C, a diffusion and accumulation of gold just at the surface was found, which contributes to limit the subsurface heat sources and the SPR effect.

  12. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry.

    PubMed

    Martan, J

    2015-01-01

    Measurement of thermal conductivity and volumetric specific heat of optically transparent thin films presents a challenge for optical-based measurement methods like pulsed photothermal radiometry. We present two approaches: (i) addition of an opaque optical layer to the surface and (ii) approximate correction of the mathematical model to incorporate semitransparency of the film. Different single layer and multilayer additive optical layers were tested. The materials of the optical layers were chosen according to analysis and measurement of their optical properties: emissivity and absorption coefficient. Presented are thermal properties' measurement results for 6 different thin films with wide range of thermal conductivity in three configurations of surface: as deposited, added Ti layer, and added Ti/TiAlSiN layer. Measurements were done in dependence on temperature from room temperature to 500 °C. The obtained thermal effusivity evolution in time after the laser pulse shows different effects of the surface layers: apparent effusivity change and time delay. Suitability of different measurement configurations is discussed and results of high temperature testing of different optical layers are presented. PMID:25638108

  13. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  14. Effect of temperature on passive remote sensing of chemicals by differential absorption radiometry

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Krauss, Roland H.; Laufer, Gabriel

    2005-10-01

    Differential absorption radiometry (DAR), using uncooled detectors, is a simple, low-cost method for passive remote sensing of hazardous chemicals for domestic security applications. However, radiometric temperature differences (ΔTeffective) between a target gas species and its background affect detection sensitivity. Two DARs with sensitivities to methanol, diisopropyl methylphosphonate (DIMP), and dimethyl methylphosphonate (DMMP), all spectral or physical simulants of hazardous chemicals, were developed and used to experimentally determine the effect of |ΔTeffective| on detection sensitivity. An analytical model was also developed and compared with the experimental results. With a signal-to-noise ratio (SNR)>5, a |ΔTeffective|≥2 K is sufficient for rapid (≤1 s) detection of methanol at <0.03 atm cm and DMMP and DIMP at <0.001 atm cm. These measured sensitivities suggest that rapid detection of hazardous chemical vapor clouds below lethal dose concentrations can be achieved using room-temperature pyroelectric detectors. Measurements were within 3% of the analytical predictions.

  15. AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Vane, Gregg; Bruegge, Carol J.; Alley, Ronald E.; Curtiss, Brian J.

    1987-01-01

    A field experiment and its results involving Airborne Imaging Spectrometer-2 data are described. The radiometry and spectral calibration of the instrument are critically examined in light of laboratory and field measurements. Three methods of compensating for the atmosphere in the search for ground reflectance are compared. It was found that laboratory determined responsitivities are 30 to 50 percent less than expected for conditions of the flight for both short and long wavelength observations. The combined system atmosphere surface signal to noise ratio, as indexed by the mean response divided by the standard deviation for selected areas, lies between 40 and 110, depending upon how scene averages are taken, and is 30 percent less for flight conditions than for laboratory. Atmospheric and surface variations may contribute to this difference. It is not possible to isolate instrument performance from the present data. As for methods of data reduction, the so-called scene average or log-residual method fails to recover any feature present in the surface reflectance, probably because of the extreme homogeneity of the scene.

  16. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    SciTech Connect

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  17. A Bottom-Up Engineered Broadband Optical Nanoabsorber for Radiometry and Energy Harnessing Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.; Megerian, Krikor G.; Eastwood, Michael; Green, Robert O.; Bandaru, Prabhakar R.

    2013-01-01

    Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs), synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to Au-black from wavelength lamba approximately 350 nm - 2.5 micron. A bi-metallic Co/Ti layer was shown to catalyze a high site density of MWCNTs on metallic substrates and the optical properties of the absorbers were engineered by controlling the bottom-up synthesis conditions using dc plasma-enhanced chemical vapor deposition (PECVD). Reflectance measurements on the MWCNT absorbers after heating them in air to 400deg showed negligible changes in reflectance which was still low, approximately 0.022 % at lamba approximately 2 micron. In contrast, the percolated structure of the reference Au-black samples collapsed completely after heating, causing the optical response to degrade at temperatures as low as 200deg. The high optical absorption efficiency of the MWCNT absorbers, synthesized on metallic substrates, over a broad spectral range, coupled with their thermal ruggedness, suggests they have promise in solar energy harnessing applications, as well as thermal detectors for radiometry.

  18. Development and characterization of integrating sphere for photometry and radiometry measurement

    NASA Astrophysics Data System (ADS)

    Wibawa, Bambang Mukti; Mujahid, Abdul Al; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made; Siregar, Rustam Efendi

    2013-09-01

    Integrating Sphere (IS) is an instrument formed a cavity sphere with its inner surface act as a Lambertian reflector. IS is needed in many optical measurements which involves a high diffused reflection. In addition, IS very essential in photometry and radiometry measurement system. However, currently, IS is still an imported product which considered very expensive. The material for the sphere and inner surface coating affect the performance of the IS systems. Therefore, the main challenges in designing IS are the material engineering for the sphere and the procedure for the inner surface coating. The inner surface was coated using BaSO4 which has a low absorption and high diffuse reflection. Spectral responses of the IS system was characterized using USB2000+ and calibrated using a standard Spectralon from ocean optic. The obtained IS system used an inner surface coating from a mixed 80% Barium Sulfate (BaSO4) and 20% Nippon Elastex paint which yield a reflection factor ρ = 0.955 and amplification factor M=10.69. The validation was conducted using an emitter with known specification from Luxeon of LXHL-DW01 which produced light flux 40.5 lumen with injection current 350 mA and junction temperature Tj 25°C.

  19. Dental diagnostic clinical instrument ("Canary") development using photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Jeon, R. J.; Sivagurunathan, K.; Garcia, J.; Matvienko, A.; Mandelis, A.; Abrams, S.

    2010-03-01

    Since 1999, our group at the CADIFT, University of Toronto, has developed the application of Frequency Domain Photothermal Radiometry (PTR) and Luminescence (LUM) to dental caries detection. Various cases including artificial caries detection have been studied and some of the inherent advantages of the adaptation of this technique to dental diagnostics in conjunction with modulated luminescence as a dual-probe technique have been reported. Based on these studies, a portable, compact diagnostic instrument for dental clinic use has been designed, assembled and tested. A semiconductor laser, optical fibers, a thermoelectric cooled mid-IR detector, and a USB connected data acquisition card were used. Software lock-in amplifier techniques were developed to compute amplitude and phase of PTR and LUM signals. In order to achieve fast measurement and acceptable signal-to-noise ratio (SNR) for clinical application, swept sine waveforms were used. As a result sampling and stabilization time for each measurement point was reduced to a few seconds. A sophisticated software interface was designed to simultaneously record intra-oral camera images with PTR and LUM responses. Preliminary results using this instrument during clinical trials in a dental clinic showed this instrument could detect early caries both from PTR and LUM signals.

  20. Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig; Kuhn, William R.

    1988-01-01

    The fundamental objectives are to test the feasibility of delineating the lateral boundary between frozen and thawed condition in the surface layer of soil from orbital microwave radiometry and secondly to examine the sensitivity of general circulation models to an explicit parameterization of the boundary condition. Physical models were developed to relate emissivity to scene properties and a simulation package was developed to predict brightness temperature as a function of emissivity and physical temperature in order to address issues of heterogeneity, scaling, and scene dynamics. Radiative transfer models were develped for both bare soil surfaces and those obscured by an intervening layer of vegetation or snow. These models relate the emissivity to the physical properties of the soil and to those of the snow or vegetation cover. A SMMR simulation package was developed to evaluate the adequacy of the emission models and the limiting effects of scaling for realistic scenarios incorporating spatially heterogeneous scenes with dynamic moisture and temperature gradients at the pixel scale.

  1. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry

    SciTech Connect

    Martan, J.

    2015-01-15

    Measurement of thermal conductivity and volumetric specific heat of optically transparent thin films presents a challenge for optical-based measurement methods like pulsed photothermal radiometry. We present two approaches: (i) addition of an opaque optical layer to the surface and (ii) approximate correction of the mathematical model to incorporate semitransparency of the film. Different single layer and multilayer additive optical layers were tested. The materials of the optical layers were chosen according to analysis and measurement of their optical properties: emissivity and absorption coefficient. Presented are thermal properties’ measurement results for 6 different thin films with wide range of thermal conductivity in three configurations of surface: as deposited, added Ti layer, and added Ti/TiAlSiN layer. Measurements were done in dependence on temperature from room temperature to 500 °C. The obtained thermal effusivity evolution in time after the laser pulse shows different effects of the surface layers: apparent effusivity change and time delay. Suitability of different measurement configurations is discussed and results of high temperature testing of different optical layers are presented.

  2. Modeling Thermospheric Energetics: Implications of Cooling Rate Measurements by TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Qian, L.; Mlynczak, M. G.

    2012-12-01

    Infrared radiation from the lower thermosphere has a significant effect on thermospheric temperature throughout its altitude range. Energy deposited in the upper thermosphere is conducted downward to altitudes where collisional processes with heterogeneous molecules are effective in exciting radiative transitions. Thus, exospheric temperature is strongly influenced by the infrared cooling rates. Measurements from the SABER instrument on the TIMED satellite have provided the global distribution and temporal variation of the two most important cooling rates, from the 15-micron band of carbon dioxide, and the 5.3-micron band of nitric oxide, both excited in the thermosphere primarily by collisions with atomic oxygen [e.g., Mlynczak et al., JGR, 2010]. Because these measurements are of the cooling rate itself, they are nearly independent of assumptions concerning carbon dioxide or nitric oxide density, atomic oxygen density, temperature, and rate coefficients, and so provide strong constraints on global models. Simulations using the NCAR Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) have obtained reasonable agreement with global nitric oxide cooling rates, on daily and solar-cycle time scales alike [c.f., Qian et al., JGR, 2010; Solomon et al., JGR, 2012]. This may be somewhat surprising, or serendipitous, considering the complexity of the production and chemistry of thermospheric nitric oxide, but is a hopeful indication of the model's ability to describe thermospheric temperature structure and variability. However, initial model simulations of 15-micron carbon dioxide emission have been significantly lower than the SABER measurements. This indicates that there may be issues with the carbon dioxide densities, with the atomic oxygen density, or with the rate coefficient for their interaction. Simply increasing any of these to bring the cooling rate into agreement with SABER measurements will have the additional effect of

  3. Chapter 4: Teachers' and Administrators' Perceptions of the Saber-Tooth Project Reform and of Their Changing Workplace Conditions.

    ERIC Educational Resources Information Center

    Doutis, Panayiotis; Ward, Phillip

    1999-01-01

    Describes changing workplace conditions encountered by middle school physical education teachers and administrators engaged in the Saber-Tooth Project, sharing data from interviews about their perspectives of this project. Findings are organized around the themes of collegiality, planning and assessment, and professionalism, all of which empowered…

  4. A Dedicated Z-Stent for Acquired Saber-Sheath Tracheobronchomalacia

    SciTech Connect

    Kishi, Kazushi; Fujimoto, Hisashi Kobayashi; Sonomura, Tetsuo; Uetani, Kosaku; Nishida, Norifumi; Ohata, Masahiro; Sato, Morio; Yamada, Ryusaku

    1997-11-15

    The tracheobronchial lumen has a continuous horseshoe arch morphology. We formed Z-stents accordingly to support the weakened cartilagenous portions. With this type of stent we treated a patient with acquired saber-sheath type tracheobronchomalacia (TBM), Rayl's type II, Johnson's grade III, whose condition was aggravated even under positive end expiratory pressure (PEEP) therapy. The patient improved gradually. No immediate complication was observed. Bronchofiberscopic examination revealed that the tracheobronchial arcade was closely strut-braced and showed no expiratory collapse. Six months later, when the patient was intubated due to asthmatic attacks, tissue ingrowth through the stent was found and removed. There was no recurrence of TBM. The patient died 2 years later of pneumoconiosis.

  5. Petroscirtes pylei, a new saber-toothed blenny from the Fiji Islands (Teleostei: Blenniidae)

    USGS Publications Warehouse

    Smith-Vaniz, W.F.

    2005-01-01

    Petroscirtes pylei is described from three specimens, 20.3-40.9 mm SL, obtained from a deep-water reef off Suva, Viti Levu, Fiji Islands. It is distinguished from all other congeners by its color pattern, including the presence of two dark body stripes, the lower one broadly extending onto the anal fin, and the dorsal fin with a broad, dark basal stripe, superimposed by a conspicuous white spot centered on the 4th spine. Among Petroscirtes, only the new species and P. springeri typically have 12 dorsal-fin spines but they are not closely related. The holotype was collected in 104-110 m, the second deepest depth record for a species of Petroscirtes. Discovery of this new species, and an apparently second new deep-water Petroscrites (uncollected), at a different Fijian reef indicates that our knowledge of the biodiversity of this habitat and of the saber-toothed blennies is very incomplete. Copyright ?? 2005 Magnolia Press.

  6. Evidence for paleotsunami deposits at Kefret Saber and El Alamein, Mediterranean coast of Egypt

    NASA Astrophysics Data System (ADS)

    Salama, Asem; Meghraoui, Mustapha; El Gabry, Mohamed; Maouche, Said; Hussein, Hichem; Korrat, Ibrahim

    2015-04-01

    Tsunami deposits and dragged large boulders are investigated along the Mediterranean coast of Egypt in the framework of the EC-Funded ASTARTE project (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839) and the French-Egyptian IMHOTEP project. The targeted zones located west of Alexandria are selected according to historical earthquakes and related inundation events as recorded in archives. Field investigations include: 1) Coastal geomorphology along estuaries, wedge-protected and dune-protected lagunas, and terrace-platforms as potential sites for paleotsunami and boulder records and 2) Investigations of paleotsunamis deposits and their spatial distribution using trenching and coring. The two selected sites at Kefret Saber (immediately west of Marsah Matrouh town) and near El Alamein village are inner lagunas protected by 2 to 40-m-high dunes parallel to the shoreline. Five trenches and six cores dug in Kefret Saber and 1 trench in Alamein revealed an almost identical 5 to 10-cm-thick white sand unit with highly reworked fossil-rich and shells at about 20 to 40-cm-depth, intercalated in light brown laminated sandy and sandy-clay deposits. A total of 50 samples of organic deposits and charcoal fragments were collected from both sites, among which 20 samples have been dated. Dated charcoal in deposits above and below the white sand unit lead us to correlate with the 24 June 1870 major earthquake (M 7.5 - 8.0?) that generated a tsunami with the inundation of Alexandria harbor. Major seismic sources being along the Hellenic subduction zone and Cyprus arc, our progress study of paleotsunami deposits and their distribution along the Egyptian coast will help in a better constraint of the size and recurrence of tsunamis, and their propagation over the east Mediterranean regions.

  7. EDITORIAL: The 10th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2008) The 10th International Conference on New Developments and Applications in Optical Radiometry (NEWRAD 2008)

    NASA Astrophysics Data System (ADS)

    Ikonen, Erkki

    2009-08-01

    This special issue of Metrologia contains selected papers from the NEWRAD 2008 Conference, held in Daejeon, Korea, on 12-16 October 2008. NEWRAD 2008 continues a series of conferences on radiometry entitled 'New Developments and Applications in Optical Radiometry', which have taken place as follows: Cambridge, MA, USA (1985) Teddington, UK (1988) Davos, Switzerland (1990) Baltimore, MD, USA (1992) Berlin, Germany (1994) Tucson, AZ, USA (1997) Madrid, Spain (1999) Gaithersburg, MD, USA (2002) Davos, Switzerland (2005) Daejeon, Korea (2008) As the first NEWRAD Conference arranged in Asia, NEWRAD 2008 opened a new era for this series of conferences. The conference was followed by a Workshop on High Temperature Fixed Points and meetings of the Working Groups of the Consultative Committee for Photometry and Radiometry (CCPR). The organizer of all these events was Dr In Won Lee of the Korea Research Institute of Standards and Science (KRISS). The NEWRAD Scientific Committee thanks him and his team for their tremendous efforts which maintained and developed the high standards of previous NEWRAD Conferences. The specific themes of NEWRAD 2008 included optical measurements related to displays, energy and terahertz applications. Furthermore, half a day of sessions was devoted to both remote sensing and to few-photon sources and detectors. A total of 140 papers were presented, including 11 invited and 30 contributed talks. The conference proceedings containing two-page extended abstracts were distributed to the participants as a paper volume and on a USB memory stick. The authors of selected contributions were invited to submit a full paper for this special issue. The submitted papers were handled by the normal reviewing procedures of Metrologia. On behalf of the Scientific Committee, I thank the reviewers and editorial staff of Metrologia for careful processing of the manuscripts. It is evident that this special issue, like its predecessors, will serve as an important

  8. Inverse Kinetics

    Energy Science and Technology Software Center (ESTSC)

    2000-03-20

    Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this prgram determines the time variation of reactivity required to produce the given input of flux-time data.

  9. Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load

    NASA Astrophysics Data System (ADS)

    Arunachalam, K.; Stauffer, P. R.; Maccarini, P. F.; Jacobsen, S.; Sterzer, F.

    2008-07-01

    Microwave radiometry has been proposed as a viable noninvasive thermometry approach for monitoring subsurface tissue temperatures and potentially controlling power levels of multielement heat applicators during clinical hyperthermia treatments. With the evolution of technology, several analog microwave radiometry devices have been developed for biomedical applications. In this paper, we describe a digital microwave radiometer with built-in electronics for signal processing and automatic self-calibration. The performance of the radiometer with an Archimedean spiral receive antenna is evaluated over a bandwidth of 3.7-4.2 GHz in homogeneous and layered water test loads. Controlled laboratory experiments over the range of 30-50 °C characterize measurement accuracy, stability, repeatability and penetration depth sensitivity. The ability to sense load temperature through an intervening water coupling bolus of 6 mm thickness is also investigated. To assess the clinical utility and sensitivity to electromagnetic interference (EMI), experiments are conducted inside standard clinical hyperthermia treatment rooms with no EM shielding. The digital radiometer provided repeatable measurements with 0.075 °C resolution and standard deviation of 0.217 °C for homogeneous and layered tissue loads at temperatures between 32-45 °C. Within the 3.7-4.2 GHz band, EM noise rejection was good other than some interference from overhead fluorescent lights in the same room as the radiometer. The system response obtained for ideal water loads suggests that this digital radiometer should be useful for estimating subcutaneous tissue temperatures under a 6 mm waterbolus used during clinical hyperthermia treatments. The accuracy and stability data obtained in water test loads of several configurations support our expectation that single band radiometry should be sufficient for sub-surface temperature monitoring and power control of large multielement array superficial hyperthermia applicators.

  10. Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load.

    PubMed

    Arunachalam, K; Stauffer, P R; Maccarini, P F; Jacobsen, S; Sterzer, F

    2008-07-21

    Microwave radiometry has been proposed as a viable noninvasive thermometry approach for monitoring subsurface tissue temperatures and potentially controlling power levels of multielement heat applicators during clinical hyperthermia treatments. With the evolution of technology, several analog microwave radiometry devices have been developed for biomedical applications. In this paper, we describe a digital microwave radiometer with built-in electronics for signal processing and automatic self-calibration. The performance of the radiometer with an Archimedean spiral receive antenna is evaluated over a bandwidth of 3.7-4.2 GHz in homogeneous and layered water test loads. Controlled laboratory experiments over the range of 30-50 degrees C characterize measurement accuracy, stability, repeatability and penetration depth sensitivity. The ability to sense load temperature through an intervening water coupling bolus of 6 mm thickness is also investigated. To assess the clinical utility and sensitivity to electromagnetic interference (EMI), experiments are conducted inside standard clinical hyperthermia treatment rooms with no EM shielding. The digital radiometer provided repeatable measurements with 0.075 degrees C resolution and standard deviation of 0.217 degrees C for homogeneous and layered tissue loads at temperatures between 32-45 degrees C. Within the 3.7-4.2 GHz band, EM noise rejection was good other than some interference from overhead fluorescent lights in the same room as the radiometer. The system response obtained for ideal water loads suggests that this digital radiometer should be useful for estimating subcutaneous tissue temperatures under a 6 mm waterbolus used during clinical hyperthermia treatments. The accuracy and stability data obtained in water test loads of several configurations support our expectation that single band radiometry should be sufficient for sub-surface temperature monitoring and power control of large multielement array superficial

  11. Monitoring of amorfization of the oxygen implanted layers in silicon wafers using photothermal radiometry and modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Maliński, M.; Pawlak, M.; Chrobak, Ł.; Pal, S.; Ludwig, A.

    2015-03-01

    This paper presents experimental results that characterize implanted layers in silicon being the result of a high energy implantation of O+6 ions. We propose a simple relation between attenuation of photothermal radiometry and/or modulated free carrier absorption amplitudes, the implanted layer thickness and its optical absorption coefficient. The thickness of the implanted layers was determined from capacitance-voltage characteristics and computations with the TRIM program. The obtained results allowed to estimate changes of the optical absorption coefficient of the oxygen implanted layers indicating the amorfization of the layers.

  12. CoSSIR: A New Instrument for Exploring the Utility of Submillimeter-wave Radiometry for Earth Observation

    NASA Technical Reports Server (NTRS)

    Racette, P. E.; Wang, J. R.; Evans, K. F.; Momosmith, B.; Zhang, Z.

    2004-01-01

    The Conical Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) has been developed to study the application of submillimeter-wave radiometry for remote sensing of cirrus clouds and humidity sounding. Measurements of the global distribution of ice cloud mass and particle size are important for understanding the Earth s energy budget and for evaluating global climate models. The spatial variability and the wide variety of cloud particle shapes and sizes make ice clouds particularly difficult to measure. Ice clouds are essentially undetectable at microwave frequencies due to the low dielectric of ice and small size of the particles relative to wavelength. However, submillimeter wavelengths demonstrate significant response to the presence of ice clouds thus this frequency regime is applicable to measuring ice clouds. Another potentially viable application for submillimeter-wave radiometry is humidity and temperature sounding. The principle of sounding at submillimeter wavelengths is similar to that at microwavelengths. Submillimeter-wave radiometry has the advantage of achieving finer spatial resolution using a smaller antenna aperture which is an important consideration for spaceborne observatories. Submillimeter-wave radiometry also offers the potential of sounding over land and as a surrogate measurement for precipitation. CoSSIR is a new instrument to explore these applications. The CoSSIR is designed to fly aboard the ER-2 aircraft and its modest size (approximately 100 kg) permits it to be configured for other aircraft. A dual-axes gimbals mechanism provides conical, across-track, and along-track scanning capability. In its present configuration CoSSIR has fifteen channels between 183 GHz and 640 GHz. Three channels are centered about the 183 GHz water vapor absorption line, four channels are centered about the 380 GHz water vapor absorption line, and three dual-polarized channels are centered about the 487 GHz oxygen absorption line. Two channels are located

  13. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry

    SciTech Connect

    Pham Tu Quoc, S. Cheymol, G.; Semerok, A.

    2014-05-15

    Modulated photothermal radiometry is a non-destructive and contactless technique for the characterization of materials. It has two major advantages: a good signal-to-noise ratio through a synchronous detection and a low dependence on the heating power and the optical properties of the sample surface. This paper presents a new method for characterizing the thermal diffusivity of a material when the phase shift between a modulated laser power signal and the thermal signal of a plate sample is known at different frequencies. The method is based on a three-dimensional analytical model which is used to determine the temperature amplitude and the phase in the laser heating of the plate. A new simple formula was developed through multi-parametric analysis to determine the thermal diffusivity of the plate with knowledge of the frequency at the minimum phase shift, the laser beam radius r{sub 0} and the sample thickness L. This method was developed to control the variation of the thermal diffusivity of nuclear components and it was first applied to determine the thermal diffusivity of different metals: 304 L stainless steel, nickel, titanium, tungsten, molybdenum, zinc, and iron. The experimental results were obtained with 5%–10% accuracy and corresponded well with the reference values. The present paper also demonstrates the limit of application of this method for plate with thickness r{sub 0}/100 ≤ L ≤ r{sub 0}/2. The technique is deemed interesting for the characterization of barely accessible components that require a contactless measurement.

  14. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay

    SciTech Connect

    Elgered, G.; Davis, J.L.; Herring, T.A.; Shapiro, I.I. )

    1991-04-10

    An important source of error in very-long-baseline interferometry (VLBI) estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. The authors present and discuss the method of using data from a water vapor readiometer (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data of Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The lengths of the baselines range from 919 to 7,941 km. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. The use of WVR data yielded a 13% smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the best minimum elevation angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass. For use of WVR data along with accurate determinations of total surface pressure, the best minimum is about 20{degrees}; for use of a model for the wet delay based on the humidity and temperature at the ground, the best minimum is about 35{degrees}.

  15. Aerosol optical depth derived from solar radiometry observations at northern mid-latitude sites

    SciTech Connect

    Laulainen, N.S.; Larson, N.R.; Michalsky, J.J.; Harrison, L.C.

    1994-01-01

    Routine, automated solar radiometry observations began with the development of the Mobile Automated Scanning Photometer (MASP) and its installation at the Rattlesnake Mountain Observatory (RMO). We have introduced a microprocessor controlled rotating shadowband radiometer (RSR), both the single detector and the multi-filter/detector (MFRSR) versions to replace the MASP. The operational mode of the RSRs is substantially different than the MASP or other traditional sun-tracking radiometers, because, by virtue of the automated rotating shadowband, the total and diffuse irradiance on a horizontal plane are measured and the direct-normal component deduced through computation from the total and diffuse components by the self-contained microprocessor. Because the three irradiance components are measured using the same detector for a given wavelength, the calibration coefficients are identical for each component, thus reducing errors when comparing them. The MFRSR is the primary radiometric instrument in the nine-station Quantitative Links Network (QLN) established in the eastern United States in late 1991. Data from this network are being used to investigate how cloud- and aerosol-induced radiative effects vary in time and with cloud structure and type over a mid-latitude continental region. This work supports the DOE Quantitative Links Program to quantify linkages between changes in atmospheric composition and climate forcing. In this paper we describe the setup of the QLN and present aerosol optical depth results from the on-going measurements at PNL/RMO, as well as preliminary results from the QLN. From the time-series of data at each site, we compare seasonal variability and geographical differences, as well as the effect of the perturbation to the stratosphere by Mt. Pinatubo. Analysis of the wavelength dependence of optical depth also provides information on the evolution and changes in the size distribution of the aerosols.

  16. Electromagnetic optimization of dual-mode antennas for radiometry-controlled heating of superficial tissue

    NASA Astrophysics Data System (ADS)

    Maccarini, Paolo F.; Rolfsnes, Hans O.; Neuman, Daniel G., Jr.; Johnson, Jessi E.; Juang, Titania; Jacobsen, Svein; Stauffer, Paul R.

    2005-04-01

    The large variance of survival in the treatment of large superficial tumors indicates that the efficacy of current therapies can be dramatically improved. Hyperthermia has shown significant enhancement of response when used in combination with chemotherapy and/or radiation. Control of temperature is a critical factor for treatment quality (and thus effectiveness), since the response of tumor and normal cells is significantly different over a range of just a few degrees (41-45°). For diffuse spreading tumors, microwave conformal arrays have been shown to be a sound solution to deposit the power necessary to reach the goal temperature throughout the targeted tissue. Continuous temperature monitoring is required for feedback control of power to compensate for physiologic (e.g. blood perfusion and dielectric properties) changes. Microwave radiometric thermometry has been proposed to complement individual fluoroptic probes to non-invasively map superficial and sub-surface temperatures. The challenge is to integrate the broadband antenna used for radiometric sensing with the high power antenna used for power deposition. A modified version of the dual concentric conductor antenna presented previously is optimized for such use. Several design challenges are presented including preventing unwanted radiating modes and thermal and electromagnetic coupling between the two antennas, and accommodating dielectric changes of the target tissue. Advanced 3D and planar 2D simulation software are used to achieve an initial optimized design, focused on maintaining appropriate radiation efficiency and pattern for both heating and radiometry antennas. A cutting edge automated measurement system has been realized to characterize the antennas in a tissue equivalent material and to confirm the simulation results. Finally, the guidelines for further development and improvement of this initial design are presented together with a preliminary implementation of the feedback program to be used

  17. Influence of Rolling on the Thermal Diffusivity of Metal Alloys by Photothermal Infrared Radiometry

    NASA Astrophysics Data System (ADS)

    Delgadillo-Holtfort, I.; Chirtoc, M.; Gibkes, J.; Bein, B. K.; Pelzl, J.

    2014-12-01

    The thermal diffusivities of metallic foils subjected to cold-rolling processes have been studied by photothermal radiometry in a thermal transmission and reflection configuration. In this work, measurements were conducted on foils of Al, Cu, and stainless steel (V2A) that were subjected stepwise to cold-rolling process, reducing the sample of around 1 mm, as prepared, to approximately 0.1 mm. It was found that the effect of the cold-rolling is manifested as a relationship between the relative diffusivity and the relative thickness, both with respect to their corresponding initial values. This empirical relationship consists of a linear decrease of the relative diffusivity with the negative of the logarithm of the relative thickness of the sample. Within the approximation of small deformations, this behavior is consistent with linear diminishing of the thermal diffusivity with the degree of rolling. An influence of rolling on both the thermal diffusivity and effusivity was previously observed for a polycrystalline NiTi shape memory alloy with a nearly equi-atomic composition. Due to the thermal-diffusivity behavior of metal alloys due to rolling, a simple microscopic model is proposed to explain this influence upon the effective thermal parameters within the framework of a one-dimensional heat flow perpendicular to the foil surface. The model assumes the reduction of grain sizes and the consequent increase of grain interfaces during rolling as responsible for a larger effective thermal resistance. Numerical results are shown using the available polycrystalline NiTi for both the thermal-diffusivity and thermal-effusivity values.

  18. Passive monitoring using a combination of focused and phased array radiometry: a simulation study.

    PubMed

    Farantatos, Panagiotis; Karanasiou, Irene S; Uzunoglu, Nikolaos

    2011-01-01

    Aim of this simulation study is to use the focusing properties of a conductive ellipsoidal reflector in conjunction with directive phased microwave antenna configurations in order to achieve brain passive monitoring with microwave radiometry. One of the main modules of the proposed setup which ensures the necessary beamforming and focusing on the body and brain areas of interest is a symmetrical axis ellipsoidal conductive wall cavity. The proposed system operates in an entirely non-invasive contactless manner providing temperature and/or conductivity variations monitoring and is designed to also provide hyperthermia treatment. In the present paper, the effect of the use of patch antennas as receiving antennas on the system's focusing properties and specifically the use of phased array setups to achieve scanning of the areas under measurement is investigated. Extensive simulations to compute the electric field distributions inside the whole ellipsoidal reflector and inside two types of human head models were carried out using single and two element microstrip patch antennas. The results show that clear focusing (creation of "hot spots") inside the head models is achieved at 1.53GHz. In the case of the two element antennas, the "hot spot" performs a linear scan around the brain area of interest while the phase difference of the two microstrip patch antennas significantly affects the way the scanning inside the head model is achieved. In the near future, phased array antennas with multiband and more elements will be used in order to enhance the system scanning properties toward the acquisition of tomography images without the need of subject movement. PMID:22254358

  19. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.

    2016-03-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal

  20. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    NASA Technical Reports Server (NTRS)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  1. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  2. The effect of tropospheric fluctuations on the accuracy of water vapor radiometry

    NASA Technical Reports Server (NTRS)

    Wilcox, J. Z.

    1992-01-01

    Line-of-sight path delay calibration accuracies of 1 mm are needed to improve both angular and Doppler tracking capabilities. Fluctuations in the refractivity of tropospheric water vapor limit the present accuracies to about 1 nrad for the angular position and to a delay rate of 3x10(exp -13) sec/sec over a 100-sec time interval for Doppler tracking. This article describes progress in evaluating the limitations of the technique of water vapor radiometry at the 1-mm level. The two effects evaluated here are: (1) errors arising from tip-curve calibration of WVR's in the presence of tropospheric fluctuations and (2) errors due to the use of nonzero beamwidths for water vapor radiometer (WVR) horns. The error caused by tropospheric water vapor fluctuations during instrument calibration from a single tip curve is 0.26 percent in the estimated gain for a tip-curve duration of several minutes or less. This gain error causes a 3-mm bias and a 1-mm scale factor error in the estimated path delay at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor column density present in the troposphere during the astrometric observation. The error caused by WVR beam averaging of tropospheric fluctuations is 3 mm at a 10-deg elevation per 1 g/cm(sup 2) of zenith water vapor (and is proportionally higher for higher water vapor content) for current WVR beamwidths (full width at half maximum of approximately 6 deg). This is a stochastic error (which cannot be calibrated) and which can be reduced to about half of its instantaneous value by time averaging the radio signal over several minutes. The results presented here suggest two improvements to WVR design: first, the gain of the instruments should be stabilized to 4 parts in 10(exp 4) over a calibration period lasting 5 hours, and second, the WVR antenna beamwidth should be reduced to about 0.2 deg. This will reduce the error induced by water vapor fluctuations in the estimated path delays to less than 1 mm for the elevation range

  3. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  4. Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Westwater, Ed R.; Han, Yong; Gasiewski, Albin J.; Klein, Marian; Cimini, Domenico; Jones, David C.; Manning, WIll; Kim, Edward J.; Wang, James R.

    2003-01-01

    Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as as 1-2 mm commonly occur in high-latitude regions during the winter months. While such atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget - both directly through modulation of longwave radiation and indirectly through the formation of clouds - are considerable. Accurate measurements of precipitable water vapor (PWV) during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water vapor absorption at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-year radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near the 183 GHz line, together with established microwave (MW) measurements at the 22.235 GHz water vapor line and -3 1 GHz atmospheric absorption window can be used to determine within 5% uncertainty the full range of PWV expected in the Arctic. This unique collective capability stands in spite of accuracy limitations stemming from uncertainties due to the sensitivity of the vertical distribution of temperature and water vapor at MMW channels. In this study the potential of MMW radiometry using the 183 GHz line for measuring low amounts of PWV is demonstrated both theoretically and experimentally. The study uses data obtained during March 1999 as part of an experiment conducted at the Department of Energy s Cloud and Radiation Testbed (CART) near Barrow, Alaska. Several radiometers from both NOAA and NASA were deployed during the experiment to provide the first combined MMW and MW ground-based data set during dry arctic conditions. Single-channel retrievals

  5. Remote Sensing of Methane in the Martian Atmosphere using Infrared Laser Heterodyne Radiometry

    NASA Astrophysics Data System (ADS)

    Passmore, R. L.; Bowles, N. E.; Weidmann, D.; Smith, K.

    2011-12-01

    In the last few years, several research teams have reported the detection of methane in the atmosphere of Mars, measuring 10 ppb on average [1][2][3]. The source of the methane is still unknown, but its identification is important as its presence could imply a biological origin. However, the detection limits of current instruments lie below the requirements for an unambiguous determination of concentration mapping and distribution. We investigate the viability of detecting methane in the Martian atmosphere via a high sensitivity remote sensing technique known as passive mid-infrared laser heterodyne radiometry. Although heterodyne spectroscopy is not a new idea, recent advancements in local oscillator technology [4] offer the possibility of significant instrument miniaturisation relevant to space deployment. We present our current work on a laser heterodyne radiometer (LHR) which involves adapting an existing 10 μm laser breadboard design, which was used with much success to study stratospheric ozone [5], to operate at 7.7 μm in order to target the ν4 fundamental band of methane. The core of the LHR consists of a distributed-feedback quantum cascade laser (QCL) operating in continuous-wave mode, which acts as the local oscillator. QCLs are ideal local oscillators for this type of instrument as they emit with high spectral purity and the necessary optical power in the mid-infrared region where characteristic spectral lines of interest lie. Atmospheric modelling of the Martian atmosphere and instrument sensitivity studies enabled simulated methane spectral features to be studied in detail, which subsequently determined the focus for experimental efforts in the laboratory. Testing of the LHR was initially carried out on small gas cells containing pure methane gas, but in order to test the instrument more rigorously for atmospheric studies a larger gas cell was constructed that approximates the Martian atmosphere in the laboratory. Trace quantities of methane were

  6. X-Band Microwave Radiometry as a Tool for Understanding the Deep Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, P. G.; Devaraj, K.; Butler, B. J.

    2013-12-01

    Understanding the composition, structure, and spatial variability of the deep Venus atmosphere, including the boundary layer, is a key future direction identified in the Decadal Review. While only Mariner 2 carried a microwave radiometer for the expressed purpose of evaluating the Venus atmosphere, subsequent missions to Venus and other planets have used radar receivers in a "passive mode" to map the microwave emission from both surfaces and atmospheres. Additionally, successful mapping of microwave emissions from the atmospheres of Venus and the outer planets using earth-based antenna arrays have given unique insights into the composition and variability of such atmospheres. In the past two decades, multiple observations of Venus have been made at X band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus. Since the emission morphology is related both to surface features and to the deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler et al., Icarus 154, 2001), emission measurements can be used to give unique information regarding the deep atmosphere, once surface effects are removed. Since surface emissivities measured at the 12.6 cm wavelength by the Magellan mission can be extrapolated to 3.6 cm (see, e.g., Tryka and Muhleman, JGR(Planets) 197, 1992), the residual effects due to deep atmospheric variability can potentially be detected, as they were for higher altitudes at shorter wavelengths (1.3 cm and 2.0 cm, Jenkins et.al., Icarus 158, 2002). As results from this study show, the limited resolution and sensitivity of earth-based measurements make detection of moderate atmospheric variability somewhat difficult. However, the higher sensitivity and resolution provided by an orbiting X-Band radiometer can provide important insights into the variability and structure of the Venus boundary layer. As shown in the figure, the vertical resolution of X-Band radiometry compares well with IR sounding

  7. Detection of greenbug infestation on wheat using ground-based radiometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiming

    Scope of methods of study. The purpose of this greenhouse study was to characterize stress in wheat caused by greenbugs using ground-based radiometry. Experiments were conducted to (a) identify spectral bands and vegetation indices sensitive to greenbug infestation; (b) differentiate stress caused due to greenbugs from water stress; (c) examine the impacts of plant growth stage on detection of greenbug infestation; and (d) compare infestations due to greenbug and Russian wheat aphid. Wheat (variety-TAM 107) was planted (seed spacing 1 in. x 3 in.) in plastic flats with dimension 24 in. x 16 in. x 8.75 in. Fifteen days after sowing, wheat seedlings were infested with greenbugs (biotype-E). Nadir measurement of canopy reflectance started the day after infestation and lasted until most infested plants were dead. Using a 16-band Cropscan radiometer, spectral reflectance data were collected daily (between 13:00--14:00 hours) and 128 vegetation indices were derived in addition to greenbug counts per tiller. Using SAS PROC MIXED, sensitivity of band and vegetation indices was identified based on Threshold Day. Subsequent to Threshold Day there was a consistent significant spectral difference between control and infested plants. Sensitivity of band and vegetation indices was further examined using correlation and relative sensitivity analyses. Findings and conclusions. Results show that it is possible to detect greenbug-induced stress on wheat using hand-held radiometers, such as Cropscan. Band 694 nm and the ratio-based vegetation index (RVI) derived from the band 694 nm and 800 nm were identified as most sensitive to greenbug infestation. Landsat TM bands and their derived vegetation indices also show potential for detecting wheat stress caused by greenbug infestation. Also, RVIs particularly derived using spectral band 694 nm and 800 nm were found useful in differentiating greenbug infestation from water stress. Furthermore, vegetation indices such as Normalized total

  8. On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry

    NASA Astrophysics Data System (ADS)

    Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.; Wilson, E. L.

    2015-11-01

    The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (∼10-9 partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm-1 from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm-1) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of ∼10 ppbv and ∼2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured

  9. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature

    PubMed Central

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-01-01

    Background There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3–5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  10. Scanning Microwave Radiometry for Investigating Water Vapor and Cloud Distributions (Invited)

    NASA Astrophysics Data System (ADS)

    Crewell, S.; Kneifel, S.; Löhnert, U.; Schween, J.

    2010-12-01

    Ground-based microwave radiometry (MWR) is one of the most promising methods for observing cloud liquid, humidity and temperature as it is a robust, highly automated technique for nearly all weather conditions. Typically, multi-frequency observations between 20 and 90 GHz are performed in zenith direction. The major limitation of such MWR observations is the limited vertical resolution providing only 2-3 independent pieces of information for water vapor and temperature (Löhnert et al., 2009). For cloud liquid the situation is worse due to the relatively low dependance of cloud emissivity on temperature. In principal only the total column - the liquid water path (LWP) can be retrieved. Elevation scanning is commonly used to improve the vertical resolution of temperature profiles in the boundary layer assuming its horizontal homogeneity. Volume scanning, i.e. azimuth and elevation scanning has the potential to investigate the 3D distribution of water vapor and clouds. During the deployment of the ARM Mobile Facility in the Murg Valley, Black Forest, Germany routine azimuth scanning MWR could reveal the increase in average LWP above hill crests compared to the standard zenith observations within the valley. Recently, we could demonstrate the feasibility of detecting horizontal humidity gradients from a single scanning MWR (Schween et al., 2010). Another interesting application of scanning MWR is the use of azimuthal water vapor variability as a proxy for convective activity. For example during fair weather conditions the increase in turbulent mixing after sunrise building up the boundary layer can be detected well from the azimuthal water vapor variations at low elevation angles. The presentation will provide an overview of the capabilities of MWR for the detection of 3D structures by analyzing the information content of the measurements and deriving retrieval methods. In addition, examples from multi-year scanning observations at different locations will be shown to

  11. Comparative Biomechanical Modeling of Metatherian and Placental Saber-Tooths: A Different Kind of Bite for an Extreme Pouched Predator

    PubMed Central

    Wroe, Stephen; Chamoli, Uphar; Parr, William C. H.; Clausen, Philip; Ridgely, Ryan; Witmer, Lawrence

    2013-01-01

    Questions surrounding the dramatic morphology of saber-tooths, and the presumably deadly purpose to which it was put, have long excited scholarly and popular attention. Among saber-toothed species, the iconic North American placental, Smilodon fatalis, and the bizarre South American sparassodont, Thylacosmilus atrox, represent extreme forms commonly forwarded as examples of convergent evolution. For S. fatalis, some consensus has been reached on the question of killing behaviour, with most researchers accepting the canine-shear bite hypothesis, wherein both head-depressing and jaw closing musculatures played a role in delivery of the fatal bite. However, whether, or to what degree, T. atrox may have applied a similar approach remains an open question. Here we apply a three-dimensional computational approach to examine convergence in mechanical performance between the two species. We find that, in many respects, the placental S. fatalis (a true felid) was more similar to the metatherian T. atrox than to a conical-toothed cat. In modeling of both saber-tooths we found that jaw-adductor-driven bite forces were low, but that simulations invoking neck musculature revealed less cranio-mandibular stress than in a conical-toothed cat. However, our study also revealed differences between the two saber-tooths likely reflected in the modus operandi of the kill. Jaw-adductor-driven bite forces were extremely weak in T. atrox, and its skull was even better-adapted to resist stress induced by head-depressors. Considered together with the fact that the center of the arc described by the canines was closer to the jaw-joint in Smilodon, our results are consistent with both jaw-closing and neck musculature playing a role in prey dispatch for the placental, as has been previously suggested. However, for T. atrox, we conclude that the jaw-adductors probably played no major part in the killing bite. We propose that the metatherian presents a more complete commitment to the already

  12. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  13. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  14. Photothermal Radiometry Characterization of Limestone Rocks from the Península of Yucatán

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Martínez-Torres, P.; Alvarado-Gil, J. J.; Quintana, P.; Vilca-Quispe, L.

    2012-11-01

    Limestone is a sedimentary rock composed of calcium carbonate with minor amounts of silica, iron oxide, clay, dolomite, and organic material. These types of stones have been used extensively as building materials. Due to this, determination of their thermal properties is of the utmost importance. These properties depend on the microstructure and composition of each type of rock. In this study, the effect of the thermal treatment of three different limestone rocks from the Peninsula of Yucatán were studied, in the range from 100 °C up to 600 °C, using photothermal radiometry. These studies were complemented by the characterization of the crystalline phases using X-ray diffraction and effective porosity measurements performed by the saturation technique. It is shown that the thermal diffusivity, thermal conductivity, and specific heat of the limestone decrease as the temperature increases. This behavior can be related to increases in microcracks and effective porosity due to thermal treatments.

  15. Temperature-dependent thermal characterization of Ge2Sb2Te5 and related interfaces by the photothermal radiometry technique

    NASA Astrophysics Data System (ADS)

    Battaglia, Jean-Luc; Cappella, Andrea; Varesi, Enrico; Schick, Vincent; Kusiak, Andrzej; Wiemer, Claudia; longo, Massimo; Gotti, Andrea; Hay, Bruno

    2010-03-01

    The thermal conductivity of Ge2Sb2Te5 (GST) layers, as well as the thermal boundary resistance at the interface between the GST and amorphous SiO2, were measured using a PhotoThermal Radiometry experiment. The two phase-changes of the Ge2Sb2Te5 were retrieved, starting from the amorphous and sweeping to the fcc crystalline state at 130 °C and then to the hcp crystalline state at 310 °C. The thermal conductivity resulted to be constant in the amorphous phase, whereas it evolved between the two crystalline states. The thermal boundary resistance at the GST-SiO2 interface was estimated to be higher for the hcp phase than for the amorphous and fcc ones.

  16. Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry.

    PubMed

    Li, Bincheng; Majaron, Boris; Viator, John A; Milner, Thomas E; Chen, Zhongping; Zhao, Yonghua; Ren, Hongwu; Nelson, J Stuart

    2004-01-01

    We report on application of pulsed photothermal radiometry (PPTR) to determine the depth of port wine stain (PWS) blood vessels in human skin. When blood vessels are deep in the PWS skin (>100 microm), conventional PPTR depth profiling can be used to determine PWS depth with sufficient accuracy. When blood vessels are close or partially overlap the epidermal melanin layer, a modified PPTR technique using two-wavelength (585 and 600 nm) excitation is a superior method to determine PWS depth. A direct difference approach in which PWS depth is determined from a weighted difference of temperature profiles reconstructed independently from two-wavelength excitation is demonstrated to be appropriate for a wider range of PWS patients with various blood volume fractions, blood vessel sizes, and depth distribution. The most superficial PWS depths determined in vivo by PPTR are in good agreement with those measured using optical Doppler tomography (ODT). PMID:15447017

  17. Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry.

    PubMed

    Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen

    2009-06-10

    The thermal and optical properties of multilayered dental tissue structure, the result of the surface-grown prismless layer on enamel, were evaluated simultaneously using multiparameter fits of photothermal radiometry frequency responses. The photothermal field generated in a tooth sample with near-infrared laser excitation was described using a coupled diffuse-photon-density and thermal wave model. The optical (absorption and scattering) coefficients and thermal parameters (spectrally averaged infrared emissivity, thermal diffusivity and conductivity) of each layer, as well as the thickness of the upper prismless enamel layer, were fitted using a multiparameter simplex downhill minimization algorithm. The results show that the proposed fitting approach can increase robustness of the multiparameter estimation of tissue properties in the case of ill-defined multiparameter fits, which are unavoidable in in vivo tissue evaluation. The described method can readily be used for noninvasive in vitro or in vivo characterization of a wide range of layered biological tissues. PMID:19516364

  18. Thermal diffusivity in thin films measured by noncontact single-ended pulsed-laser-induced thermal radiometry. Technical report

    SciTech Connect

    Tam, A.C.; Leung, W.P.

    1983-11-22

    A pulsed nitrogen laser is used to induce a sharp thermal gradient in a thin film, and the thermal radiation (infrared) transient from the irradiated region is monitored from the same side as the excitation beam (ie.e, single-ended detection). We show that this pulsed photothermal radiometry lineshape can be analyzed to provide the thermal diffusivity or thickness of the sample, as well as information on subsurface modifications or the degree of thermal contact with a substrate. We present data for several important classes of films, including metal, polymer and paper (e.g., in currency) and show the important features of the present technique for thin-film characterization, namely nondestructive, fast and remote sensing.

  19. Thermal diffusivity in thin films measured by noncontact single-ended pulsed-laser-induced thermal radiometry

    SciTech Connect

    Leung, W.P.; Tam, A.C.

    1984-03-01

    A pulsed nitrogen laser is used to induce a sharp thermal gradient in a thin film, and the infrared thermal radiation from the irradiated region is monitored from the same side as the excitation beam (i.e., single-ended detection). We show that the profile of this pulsed photothermal radiometry signal can be analyzed to provide the thermal diffusivity or thickness of the sample as well as information on subsurface modifications or the degree of thermal contact with a substrate. We present data for several important classes of film, including metal, polymer, and paper (e.g., in currency) and show the important features of the present technique for thin-film characterization, namely, nondestructive, fast, and remote sensing.

  20. In vivo stratum corneum over-hydration and water diffusion coefficient measurements using opto-thermal radiometry and TEWL Instruments.

    PubMed

    Xiao, P; Wong, W; Cottenden, A M; Imhof, R E

    2012-08-01

    Skin over-hydration is a common problem that affects many people who wear incontinence pads or diapers. The aim of this study is to develop a new method for stratum corneum (SC) over-hydration and SC water diffusion coefficient measurements using opto-thermal transient emission radiometry (OTTER) and evaporimetry. With OTTER, we can measure the SC surface hydration and hydration gradient. With evaporimetry, we can measure the time-dependent evaporative drying curves of water vapour flux density (WVFD). The combination of hydration results and WVFD results can yield information on the SC water diffusion coefficient and how it depends on the SC surface hydration level. The results show that SC water diffusion coefficient is non-linearly proportional to the SC surface hydration level. The results also show strong correlations between evaporative drying flux measured using the Evaporimeter and surface hydration estimated from OTTER measurements. PMID:22515301

  1. Passive standoff detection of SF6 at a distance of 5.7 km by differential Fourier transform infrared radiometry.

    PubMed

    Lavoie, Hugo; Puckrin, Eldon; Thériault, Jean-Marc; Bouffard, François

    2005-10-01

    Recent results are presented on the passive detection, identification, and quantification of a vapor cloud of SF6 measured at a horizontal standoff distance of 5.7 km using a dual-beam interferometer optimized for background signal suppression. The measurements were performed at Defense Research and Development Canada (DRDC)-Valcartier during a number of recent open-air experiments. The measurement approach is based on the differential passive standoff detection method that has been developed by DRDC Valcartier during the past few years. This work represents the first such measurement reported in the open literature for a standoff distance as large as 5.7 km. These results clearly demonstrate the capability of the differential radiometry approach to the detection, identification, and quantification of chemical vapor clouds located at long distances from the sensor. PMID:16274529

  2. Quantitative Carrier Density Wave Imaging in Silicon Solar Cells Using Photocarrier Radiometry and Lock-in Carrierography

    NASA Astrophysics Data System (ADS)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2016-04-01

    InGaAs camera-based low-frequency homodyne and high-frequency heterodyne lock-in carrierographies (LIC) are introduced for spatially resolved imaging of optoelectronic properties of Si solar cells. Based on the full theory of solar cell photocarrier radiometry (PCR), several simplification steps were performed aiming at the open circuit case, and a concise expression of the base minority carrier density depth profile was obtained. The model shows that solar cell PCR/LIC signals are mainly sensitive to the base minority carrier lifetime. Both homodyne and heterodyne frequency response data at selected locations on a mc-Si solar cell were used to extract the local base minority carrier lifetimes by best fitting local experimental data to theory.

  3. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving. PMID:26628164

  4. Detection of Dental Secondary Caries Using Frequency-Domain Infrared Photothermal Radiometry (PTR) and Modulated Luminescence (LUM)

    NASA Astrophysics Data System (ADS)

    Kim, J.; Mandelis, A.; Matvienko, A.; Abrams, S.; Amaechi, B. T.

    2012-11-01

    The ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries is presented. Signal behavior upon sequential demineralization and remineralization of a spot (diameter ~1 mm) on a vertical wall of sectioned tooth samples was investigated experimentally. From these studies, it was found that PTR-LUM signals change, showing a certain pattern upon progressive demineralization and remineralization. PTR amplitudes slightly decreased upon progressive demineralization and slightly increased upon subsequent remineralization. The PTR phase increased during both demineralization and remineralization. LUM amplitudes exhibit a decreasing trend at excitation/probe distances larger than 200 μm away from the edge for both demineralization and remineralization; however, at locations close to the edge (up to ~200 μm), LUM signals slightly decrease upon demineralization and slightly increase during subsequent remineralization.

  5. Integrative algorithm of determining ice conditions in Polar Regions by data of satellite microwave radiometry (VASIA2)

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Repina, I. A.; Raev, M. D.; Sharkov, E. A.; Boyarskii, D. A.; Komarova, N. Yu.

    2015-12-01

    In this paper, a new algorithm for determining the concentration of the ice cover in Polar Regions by data of satellite microwave radiometry is considered. The technique of its construction is described in detail; it cardinally differs from the technique of creating present-day algorithms. The new algorithm demonstrates good results in determining the concentration of the ice cover in Polar Regions. The algorithm permits one not only to obtain maps of ice concentration, but also to determine areas of puddles covering the ice-cover surface in summer months. The algorithm is easy-to-use and requires no additional or fitting parameters. At the end of the work, advantages and disadvantages of the new algorithm are discussed.

  6. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  7. TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio- Studies): A Mission to Achieve "Climate Quality" Data

    NASA Astrophysics Data System (ADS)

    Fox, N. P.

    2007-12-01

    Over recent years the debate as to whether climate change is real has largely subsided, however there is still significant controversy over its cause and most importantly the scale of its impact and means of mitigation. Much of the latter relies upon the predictive capabilities of sophisticated, but highly complex models. Such models need globally sampled measurements of a variety of key indicative physical parameters, and in some cases proxies of others, as input data and whilst generally predicting similar things the detail of their outputs in the decadal time scales can be highly variable. Clearly the quality of the input data is crucial to such models. However, since the key indicators of climate change may only vary by a few percent per decade, the absolute accuracy of such data also needs to be very small to allow detection and provide some means of validating/discriminating and improving the models. At the present time, the accuracy of currently measured data from space is rarely, if ever, adequate to meet this requirement. Instead, high risk strategies are developed which rely upon overlapping and renormalizing data sets from consecutive flights of similar instruments to establish a long-term trend. Such a strategy is doomed to failure!. The only means of achieving robust data sets of sufficient quality and accuracy with a guarantee of long term reproducibility sufficient to detect the subtle indicators of climate change and its cause (anthropogenic from natural) is through traceability to SI units. Such traceability needs to be regularly re-established and guaranteed throughout the lifetime of a mission. However, given that most sensors degrade in performance during launch, and most importantly whilst in orbit, this is difficult to achieve with sufficient accuracy, since such sensors cannot easily be retrieved and taken back to a national standards laboratory for recalibration. TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio- Studies) is a

  8. A new application of hyperspectral radiometry: the characterization of painted surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Salvatici, Teresa; Camaiti, Mara; Del Ventisette, Chiara; Moretti, Sandro

    2016-04-01

    Hyperspectral sensors, working in the Visible-Near Infrared and Short Wave Infrared (VNIR-SWIR) regions, are widely employed for geological applications since they can discriminate many inorganic (e.g. mineral phases) and organic compounds (i.e. vegetations and soils) [1]. Their advantage is to work in the portion of the solar spectrum used for remote sensors. Some examples of application of the hyperspectral sensors to the conservation of cultural heritage are also known. These applications concern the detection of gypsum on historical buildings [2], and the monitoring of organic protective materials on stone surfaces [3]. On the contrary, hyperspectral radiometry has not been employed on painted surfaces. Indeed, the characterization of these surfaces is mainly performed with sophisticated, micro-destractive and time-consuming laboratory analyses (i.e. SEM-EDS, FTIR and, GC-MS spectroscopy) or through portable and non-invasive instruments (mid FTIR, micro Raman, XRF, FORS) which work in different spectral ranges [4,5]. In this work the discrimination of many organic and inorganic components from paintings was investigated through a hyperspectral spectroradiometer ,which works in the 350-2500 nm region. The reflectance spectra were collected by the contact reflectance probe, equipped with an internal light source with fixed geometry of illumination and shot. Several standards samples, selected among the most common materials of paintings, were prepared and analysed in order to collect reference spectra. The standards were prepared with powders of 7 pure pigments, films of 5 varnishes (natural and synthetic), and films of 3 dried binding media. Monochromatic painted surfaces have also been prepared and investigated to verify the identification of different compounds on the surface. The results show that the discrimination of pure products is possible in the VNIR-SWIR region, except for compounds with similar composition (e.g. natural resins such as dammar and

  9. Satellite Altimetry And Radiometry for Inland Hydrology, Coastal Sea-Level And Environmental Studies

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin

    In this study, we demonstrate three environmental-related applications employing altimetry and remote sensing satellites, and exemplify the prospective usage underlying the current progressivity in mechanical and data analyzing technologies. Our discussion starts from the improved waveform retracking techniques in need for altimetry measurements over coastal and inland water regions. We developed two novel auxiliary procedures, namely the Subwaveform Filtering (SF) method and the Track Offset Correction (TOC), for waveform retracking algorithms to operationally detect altimetry waveform anomalies and further reduce possible errors in determination of the track offset. After that, we present two demonstrative studies related to the ionospheric and tropospheric compositions, respectively, as their variations are the important error sources for satellite electromagnetic signals. We firstly compare the total electron content (TEC) measured by multiple altimetry and GNSS sensors. We conclude that the ionosphere delay measured by Jason-2 is about 6-10 mm shorter than the GPS models. On the other hand, we use several atmospheric variables to study the climate change over high elevation areas. Five types of satellite data and reanalysis models were used to study climate change indicators. We conclude that the spatial distribution of temperature trend among data products is quite different, which is probably due to the choice of various time spans. Following discussions about the measuring techniques and relative bias between data products, we applied our improved altimetry techniques to three environmental science applications with helps of remote sensing imagery. We first manifest the detectability of hydrological events by satellite altimetry and radiometry. The characterization of one-dimensional (along-track) water boundary using former Backscattering Coefficient (BC) method is assisted by the two-dimensional (horizontal) estimate of water extent using the Moderate

  10. Implications of Diet for the Extinction of Saber-Toothed Cats and American Lions

    PubMed Central

    DeSantis, Larisa R. G.; Schubert, Blaine W.; Scott, Jessica R.; Ungar, Peter S.

    2012-01-01

    The saber-toothed cat, Smilodon fatalis, and American lion, Panthera atrox, were among the largest terrestrial carnivores that lived during the Pleistocene, going extinct along with other megafauna ∼12,000 years ago. Previous work suggests that times were difficult at La Brea (California) during the late Pleistocene, as nearly all carnivores have greater incidences of tooth breakage (used to infer greater carcass utilization) compared to today. As Dental Microwear Texture Analysis (DMTA) can differentiate between levels of bone consumption in extant carnivores, we use DMTA to clarify the dietary niches of extinct carnivorans from La Brea. Specifically, we test the hypothesis that times were tough at La Brea with carnivorous taxa utilizing more of the carcasses. Our results show no evidence of bone crushing by P. atrox, with DMTA attributes most similar to the extant cheetah, Acinonyx jubatus, which actively avoids bone. In contrast, S. fatalis has DMTA attributes most similar to the African lion Panthera leo, implying that S. fatalis did not avoid bone to the extent previously suggested by SEM microwear data. DMTA characters most indicative of bone consumption (i.e., complexity and textural fill volume) suggest that carcass utilization by the extinct carnivorans was not necessarily more complete during the Pleistocene at La Brea; thus, times may not have been “tougher” than the present. Additionally, minor to no significant differences in DMTA attributes from older (∼30–35 Ka) to younger (∼11.5 Ka) deposits offer little evidence that declining prey resources were a primary cause of extinction for these large cats. PMID:23300674

  11. The variability of nonmigrating tides detected from TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Li, Xing; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Ning, Baiqi

    2015-12-01

    This paper deals with the variability of the nonmigrating tides detected from the observation of the SABER instrument on board the TIMED satellite during the 11 year solar period from 2002 to 2012. The longitudinal wave number spectra with 1 day resolution were first estimated from the temperature data measured at the MLT altitudes (70-110 km) and at the lower midlatitudes and low latitudes (between ±45°). Then we used the wave number 4 component to obtain the nonmigrating tides in which the dominant component DE3 was further analyzed in detail. We found that the properties of the spatial distribution and large time scale variation of the DE3 component are similar to those of the previous works, which used the interpolated data with 2 month resolution. These properties are that the DE3 component occurs mainly at the low latitudes within ±30° and at the altitudes from 90 to 110 km; the tidal amplitude is larger during boreal summer and early autumn, smaller in spring and almost tends to disappear in winter; the component is slightly stronger during the eastward wind QBO phase than the westward phase. Practically, the higher-resolution data were used to reveal the day-to-day variability of the DE3 component. It is found that (1) the variability occurs mainly at the altitudes from 100 to 110 km with a peak at 106 km; (2) it is strong at the low latitudes and peaks around the equator, as well, slightly stronger in the Southern Hemisphere than in northern one; (3) it is considerably larger around solstitial months than equinoctial months; and (4) it would not experience an obvious interannual variation. The day-to-day variability of the DE3 component may be explained by the variance of the absolute amplitudes and the contribution of the wave phases, and the later seems to play more important role.

  12. Ray-tracing simulation and SABER satellite observations of convective gravity waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Silvio; Eckermann, Stephen; Ern, Manfred; Preusse, Peter; Riese, Martin; Trinh, Quang Thai; Kim, Young-Ha; Chun, Hye-Yeong

    Gravity waves (GWs) are known as a coupling mechanism between different atmospheric layers. They contribute to the wave-driving of the QBO and are also responsible for driving large scale circulations like the Brewer-Dobson circulation. One major and highly variable source of GWs is convection. Deep convection in the tropics excites GWs with prominent amplitudes and horizontal phase speeds of up to 90 m/s. These GWs propagate upward and, when breaking, release the wave's momentum, thus accelerate the background flow. Direction and magnitude of the acceleration strongly depends on wind filtering between the convective GW source and the considered altitude. Both, the generation mechanism of GWs close to the top of deep convective towers and the wind filtering process during GW propagation largely influence the GW spectrum found in the tropical middle atmosphere and therefore magnitude and direction of the acceleration. We present the results of GW ray-tracing calculations from tropospheric (convective) sources up to the mesosphere. The Gravity wave Regional Or Global RAy-Tracer (GROGRAT) was used to perform the GW trajectory calculations. The convective GW source scheme from Yonsei University (South Korea) served as the lower boundary condition to quantify the GW excitation from convection. Heating rates, cloud top data, and atmospheric background data were provided by the MERRA dataset for the calculation of convective forcing from deep convection and for the atmospheric background of the ray-tracing calculations afterwards. In order to validate our ray-tracing simulation results, we compare them to satellite measurements of temperature amplitudes and momentum fluxes from the SABER instrument. Therefore, observational constrains from limb-sounding instruments have been quantified. Influences of orbit geometry, the instrument's observational filter, and the wavelength shift in the observed GW spectrum are discussed. Geographic structures in the observed global

  13. Implications of diet for the extinction of saber-toothed cats and American lions.

    PubMed

    Desantis, Larisa R G; Schubert, Blaine W; Scott, Jessica R; Ungar, Peter S

    2012-01-01

    The saber-toothed cat, Smilodon fatalis, and American lion, Panthera atrox, were among the largest terrestrial carnivores that lived during the Pleistocene, going extinct along with other megafauna ∼12,000 years ago. Previous work suggests that times were difficult at La Brea (California) during the late Pleistocene, as nearly all carnivores have greater incidences of tooth breakage (used to infer greater carcass utilization) compared to today. As Dental Microwear Texture Analysis (DMTA) can differentiate between levels of bone consumption in extant carnivores, we use DMTA to clarify the dietary niches of extinct carnivorans from La Brea. Specifically, we test the hypothesis that times were tough at La Brea with carnivorous taxa utilizing more of the carcasses. Our results show no evidence of bone crushing by P. atrox, with DMTA attributes most similar to the extant cheetah, Acinonyx jubatus, which actively avoids bone. In contrast, S. fatalis has DMTA attributes most similar to the African lion Panthera leo, implying that S. fatalis did not avoid bone to the extent previously suggested by SEM microwear data. DMTA characters most indicative of bone consumption (i.e., complexity and textural fill volume) suggest that carcass utilization by the extinct carnivorans was not necessarily more complete during the Pleistocene at La Brea; thus, times may not have been "tougher" than the present. Additionally, minor to no significant differences in DMTA attributes from older (∼30-35 Ka) to younger (∼11.5 Ka) deposits offer little evidence that declining prey resources were a primary cause of extinction for these large cats. PMID:23300674

  14. The variability of nonmigrating tides detected from TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Li, Xing; Liu, Libo; Ning, Baiqi; Ren, Zhipeng; Wan, Weixing

    2016-07-01

    This work deals with the variability of the nonmigrating tides detected from the observation of the SABER instrument on board the TIMED satellite during the 11 year solar period from 2002 to 2012. The longitudinal wave number spectra with 1 day resolution were first estimated from the temperature data measured at the MLT altitudes (70-110 km) and at the lower midlatitudes and low latitudes (between ±±45°°). Then we used the wave number 4 component to obtain the nonmigrating tides in which the dominant component DE3 was further analyzed in detail. We found that the properties of the spatial distribution and large time scale variation of the DE3 component are similar to those of the previous works, which used the interpolated data with 2 month resolution. These properties are that the DE3 component occurs mainly at the low latitudes within ±30° and at the altitudes from 90 to 110 km; the tidal amplitude is larger during boreal summer and early autumn, smaller in spring and almost tends to disappear in winter; the component is slightly stronger during the eastward wind QBO phase than the westward phase. Practically, the higher-resolution data were used to reveal the day-to-day variability of the DE3 component. It is found that (1) the variability occurs mainly at the altitudes from 100 to 110 km with a peak at 106 km; (2) it is strong at the low latitudes and peaks around the equator, as well, slightly stronger in the Southern Hemisphere than in northern one; (3) it is considerably larger around solstitial months than equinoctial months; and (4) it would not experience an obvious interannual variation. The day-to-day variability of the DE3 component may be explained by the variance of the absolute amplitudes and the contribution of the wave phases, and the later seems to play more important role.

  15. Busulfan kinetics.

    PubMed

    Ehrsson, H; Hassan, M; Ehrnebo, M; Beran, M

    1983-07-01

    Busulfan kinetics were studied in patients with chronic myelocytic leukemia after oral doses of 2, 4, and 6 mg. The plasma concentration-time data could be fitted to a zero-order absorption one-compartment open model. The elimination rate constant averaged 0.27 +/- 0.05 hr-1 (SD). The plasma AUC was linearly related to the dose. The lag time for the start of absorption, the time absorption ends, and the absorption rate constant showed some interindividual variations. About 1% of busulfan is excreted unchanged in urine over 24 hr. PMID:6574831

  16. Tolrestat kinetics

    SciTech Connect

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-10-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total /sup 14/C were measured after dosing normal subjects and subjects with diabetes with /sup 14/C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of /sup 14/C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate.

  17. CO2(ν2)-O Quenching Rate Coefficient Derived From Coincidental Fort Collins Lidar and SABER Measurements

    NASA Astrophysics Data System (ADS)

    Feofilov, A.; Kutepov, A.; She, C.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2009-12-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(ν2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2-O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2-O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we combine temperature data from a ground based lidar with limb radiances from a satellite infrared radiometer to estimate k(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado (41N, 255E) as ground truth of the SABER/TIMED nearly simultaneous (±10 minutes ) and common volume (within ±1 degree in latitude, ±2 degrees in longitude) observations. We used ALI-ARMS non-LTE research code designed to calculate the non-equilibrium radiance in planetary atmospheres to retrieve the product of k(CO2-O) x [O] from 15 μm CO2 limb radiance measured by SABER. The values retrieved for all overlapping measurements were then used to estimate the k(CO2-O) rate coefficient and its possible variation range by utilizing the [O] values measured by the SABER and other instruments.

  18. Study of optical properties of Zn1-xBexTe mixed crystals by means of combined modulated IR radiometry and photoacoustics

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Gibkes, J.; Fotsing, J. L.; Zakrzewski, J.; Malinski, M.; Bein, B. K.; Pelzl, J.; Firszt, F.; Marasek, A.

    2004-10-01

    Photothermal experiments using photoacoustic, IR radiometric and piezoelectric detection have been conducted on semiconductors and on metal samples as reference. For the metal samples the IR emissivity has been determined for differently treated surfaces by comparing the photoacoustic and the IR radiometry response. For semiconductor mixed crystals consisting of Zn1-xBexTe information on the composition dependence and depth variation of the IR optical properties has been deduced from combined measurements based on modulated IR radiometry and photoacoustics performed as a function of modulation frequency at one selected excitation wavelength. For the semiconductor mixed crystals, additionally, the optical absorption in the spectral range 350 nm to 900 nm has been determined.

  19. Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.; Pawlak, M.

    2014-11-01

    This paper presents a method of the measurement of the optical absorption coefficient of the Ar8+ ions implanted layers in the p-type silicon substrate. The absorption coefficient is calculated using a value of the attenuation of amplitudes of a photothermal radiometry (PTR) and/or a modulation free carrier absorption (MFCA) signals and the implanted layer thickness calculated by means of the TRIM program. The proposed method can be used to indicate the amorphization of the ions implanted layers.

  20. Inter-Hemispheric Coupling During Northern Polar Summer Periods of 2002-2010 using TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, A. G.; Pesnell, W. D.; Kutepov, A. A.

    2012-01-01

    It has been found that for more than one polar summer season between 2002-2010, the northern polar mesospheric region near and above about 80 km was warmer than normal. The strongest warming effect of this type was observed to occur during northern summer 2002. Theoretical studies have implied that these "anomalies" were preceded by unusual dynamical processes in the southern hemisphere. We have analyzed temperature distributions measured by the SABER limb scanning infrared radiometer aboard the NASA TIMED satellite between 2002-2010 at altitudes from 15 to 110 km and for latitudes between 83 S to 83 N. We describe the approach to trace the inter-hemispheric temperature correlations demonstrating the global features that were unique for the "anomalous" northern polar summers. From our analysis of SABER data from 2002-2010, the anomalous heating for the northern mesopause region during northern summer was accompanied by stratospheric heating in the equatorial region. In the winter hemisphere it is accompanied by heating in the lower stratosphere and mesopause region, and cooling in the stratopause region. Also, all the elements of the temperature anomaly structure appear to develop and fade away nearly simultaneously, thereby suggesting either a global influence or a rapid exchange.

  1. C02(nu2)-0 Quenching Rate Coefficient Derived from Coincidental Fort Collins Lidar and SABER Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; She, C. Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments.

  2. The European saber-toothed cat (Homotherium latidens) found in the "Spear Horizon" at Schöningen (Germany).

    PubMed

    Serangeli, Jordi; Van Kolfschoten, Thijs; Starkovich, Britt M; Verheijen, Ivo

    2015-12-01

    The 300,000 year old Lower Paleolithic site Schöningen 13 II-4 became world famous with the discovery of the oldest well-preserved and complete wooden spears. Through ongoing excavations, new archaeological discoveries of scientific importance are still being made from the same archaeological layer where the spears were found. In this context, remains of a rare carnivore species, the European saber-toothed cat (Homotherium latidens), were recovered. Here we present five teeth and one humerus fragment that are unambiguously from two individual saber-toothed cats. The humerus is a unique specimen; it shows evidence of hominin impacts and use as a percussor. The Homotherium remains from Schöningen are the best documented finds of this species in an archaeological setting and they are amongst the youngest specimens of Homotherium in Europe. The presence of this species as a carnivore competitor would certainly have impacted the lives of late Middle Pleistocene hominins. The discovery illustrates the possible day-to-day challenges that the Schöningen hominins would have faced and suggests that the wooden spears were not necessarily only used for hunting, but possibly also as a weapon for self-defense. PMID:26505304

  3. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere

    NASA Astrophysics Data System (ADS)

    John, Sherine Rachel; Kumar, Karanam Kishore

    2012-09-01

    The present study for the first time reports the global gravity wave activity in terms of their potential energy derived from TIMED/SABER observations right from the stratosphere to the mesosphere lower thermosphere (MLT) region. The potential energy profiles obtained from SABER temperature are validated by comparing them with ground based LIDAR observations over a low latitude site, Gadanki (13.5° N, 79.2° E). The stratospheric and mesospheric global maps of gravity wave energy showed pronounced maxima over high and polar latitudes of the winter hemisphere. The interannual variability of the stratospheric gravity wave activity exhibited prominent annual oscillation over mid-latitudes. The equatorial gravity wave activity exhibited quasi-biennial oscillation in the lower stratosphere and semi-annual oscillation in the upper stratosphere. The MLT region maps revealed summer hemispheric maxima over polar latitudes and secondary maxima over the equatorial region. The results are discussed in the light of present understanding of global gravity wave observations. The significance of the present study lies in emphasizing the importance of satellite measurements in elucidating gravity waves, which is envisaged to have profound impact on parameterizing these waves.

  4. Progress in theoretical, experimental, and computational investigations in turbid tissue phantoms and human teeth using laser infrared photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2002-03-01

    This paper reviews and describes the state-of-the-art in the development of frequency-domain infrared photothermal radiometry (FD-PTR) for biomedical and dental applications. The emphasis is placed on the measurement of the optical and thermal properties of tissue-like materials using FD-PTR. A rigorous three-dimensional thermal-wave formulation with three-dimensional diffuse and coherent photon-density-wave sources is presented, and is applied to data from model tissue phantoms and dental enamel samples. The combined theoretical, experimental and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared to PPTR, which exhibits uniqueness problems. From data sets obtained with calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, from the independently derived values using Mie scattering theory and spectrophotometric measurements. Furthermore, the state-of-the-art and recent developments in applications of laser infrared FD-PTR to dental caries research is described, with examples and histological studies from carious dental tissue. The correlation of PTR signals with modulated dental luminescence is discussed as a very promising potential quantitative methodology for the clinical diagnosis of sub-surface incipient dental caries. The application of the turbid-medium thermal-wave model to the measurement of the optical absorption and scattering coefficients of enamel is also presented.

  5. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    PubMed

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity. PMID:15065708

  6. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    PubMed

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments. PMID:21639528

  7. Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2016-04-01

    Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of 0.006 Ω {\\cdot } {cm} to 38 Ω {\\cdot } {cm}. It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.

  8. Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Absolute Radiometry and Stability During the First Year

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.

    2002-01-01

    The absolute radiometry of the Advanced Land Imager during the first year on orbit (November 21,2000 - November 21, 2001) is presented. Results derived from solar, lunar, ground truth, and internal reference lamp measurements are presented. An 18% drop in the radiometric response of the Band 1p data since preflight calibration at Lincoln Laboratory is observed using all techniques. This decrease cannot be accounted for by preflight calibration errors, stray light, or contamination of the focal plane. A slight drooping of the VNIR response toward the blue and a 5-12% increase in the Band 5 response is also apparent in all the data. Radiometric response correction factors have been calculated and preflight calibration coefficients have been updated in order to provide +/- 5% agreement between the measured solar, lunar, and ground truth data and the expected values. The radiometric stability of the ALI during the first year of operation is also presented for each spectral band. Internal reference lamp data indicate the focal plane has been stable to within 1% for bands 1p, 1, 2, 5p, 5, 7, pan and 3% for Bands 3,4, 4p since launch. Solar, lunar, and ground truth measurements indicate the optical train and solar diffuser of the instrument has been stable to within 1% since initial measurements on orbit in late December 2000.

  9. Comparison of pulsed photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue phantoms.

    PubMed

    Wang, Tianyi; Mallidi, Srivalleesha; Qiu, Jinze; Ma, Li L; Paranjape, Amit S; Sun, Jingjing; Kuranov, Roman V; Johnston, Keith P; Milner, Thomas E

    2011-05-01

    Melanoma accounts for 75% of all skin cancer deaths. Pulsed photothermal radiometry (PPTR), optical coherence tomography (OCT) and ultrasound (US) are non-invasive imaging techniques that may be used to measure melanoma thickness, thus, determining surgical margins. We constructed a series of PDMS tissue phantoms simulating melanomas of different thicknesses. PPTR, OCT and US measurements were recorded from PDMS tissue phantoms and results were compared in terms of axial imaging range, axial resolution and imaging time. A Monte Carlo simulation and three-dimensional heat transfer model was constructed to simulate PPTR measurement. Experimental results show that PPTR and US can provide a wide axial imaging range (75 μm-1.7 mm and 120-910 μm respectively) but poor axial resolution (75 and 120 μm respectively) in PDMS tissue phantoms, while OCT has the most superficial axial imaging range (14-450 μm) but highest axial resolution (14 μm). The Monte Carlo simulation and three-dimensional heat transfer model give good agreement with PPTR measurement. PPTR and US are suited to measure thicker melanoma lesions (>400 μm), while OCT is better to measure thin melanoma lesions (<400 μm). PMID:20954204

  10. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence.

    PubMed

    Jeon, Raymond J; Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen H; Amaechi, Bennett T; Kulkarni, Gajanan

    2007-01-01

    Frequency-domain photothermal radiometry (FD-PTR or PTR) is used to detect mechanical holes and demineralized enamel in the interproximal contact area of extracted human teeth. Thirty-four teeth are used in a series of experiments. Preliminary tests to detect mechanical holes created by dental burs and 37% phosphoric acid etching for 20 s on the interproximal contact points show distinct differences in the signal. Interproximal contact areas are demineralized by using a partially saturated acidic buffer system. Each sample pair is examined with PTR before and after micromachining or treating at sequential treatment periods spanning 6 h to 30 days. Dental bitewing radiographs showed no sign of demineralized lesion even for samples treated for 30 days. Microcomputer tomography (micro-CT), transverse microradiography (TMR), and scanning electron microscopy (SEM) analyses are performed. Although micro-CT and TMR measured mineral losses and lesion depths, only SEM surface images showed visible signs of treatment because of the minimal extent of the demineralization. However, the PTR amplitude increased by more than 300% after 80 h of treatment. Therefore, PTR is shown to have sufficient contrast for the detection of very early interproximal demineralized lesions. The technique further exhibits excellent signal reproducibility and consistent signal changes in the presence of interproximal demineralized lesions, attributes that could lead to PTR as a reliable probe to detect early interproximal demineralization lesions. Modulated luminescence is also measured simultaneously, but it shows a lower ability than PTR to detect these interproximal demineralized lesions. PMID:17614736

  11. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence.

    PubMed

    Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H; Vu, Jaclyn T; Amaechi, Bennett T

    2012-12-01

    The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples. PMID:23203324

  12. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence.

    PubMed

    Jeon, Raymond J; Hellen, Adam; Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen H; Amaechi, Bennett T

    2008-01-01

    Artificially created demineralized and remineralized carious lesions on the root and enamel of human teeth were examined by photothermal radiometry (PTR) and modulated luminescence (LUM). Fourteen extracted human teeth were used and a lesion was created on a 1 mmx4 mm rectangular window, spanning root to enamel, using a lactic acid-based acidified gel to demineralize the tooth surface. The lesion was then exposed to a remineralization solution. Each sample was examined with PTR/LUM on the root and enamel before and after treatment at times from 1 to 10 (5 on root) days of demineralization and 2 to 10 days of remineralization. Ten-day (5 on root) demineralized samples were remineralized. After completing all the experiments, transverse microradiography (TMR) analysis was performed to compare and correlate the PTR/LUM signals to the depth of lesions and mineral losses. The PTR and LUM amplitudes and phases showed gradual and consistent changes with treatment time. In this study, TMR showed good correlation coefficients with PTR and LUM. It was also found that the length of the treatment time did not correlate very well to any technique, PTR/LUM or TMR, which implies a significant degree of inhomogeneity of the demireralization and remineralization rates in each and every tooth. PMID:18601570

  13. Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth.

    PubMed

    Jeon, Raymond J; Mandelis, Andreas; Sanchez, Victor; Abrams, Stephen H

    2004-01-01

    Nonintrusive, noncontacting frequency-domain photothermal radiometry (FD-PTR or PTR) and frequency-domain luminescence (FD-LUM or LUM) have been used with 659-nm and 830-nm laser sources to detect artificial and natural subsurface defects in human teeth. The major findings of this study are (1) PTR is sensitive to very deep (>5 mm) defects at low modulation frequencies (5 Hz). Both PTR and LUM amplitudes exhibit a peak at tooth thicknesses of ca. 1.4 to 2.7 mm. Furthermore, the LUM amplitude exhibits a small trough at ca. 2.5 to 3.5 mm. (2) PTR is sensitive to various defects such as a deep carious lesion, a demineralized area, an edge, a crack, and a surface stain, while LUM exhibits low sensitivity and spatial resolution. (3) PTR frequency scans over the surface of a fissure into demineralized enamel and dentin show higher amplitude than those for healthy teeth, as well as a pronounced curvature in both the amplitude and phase signal channels. These can be excellent markers for the diagnosis of subsurface carious lesions. (4) PTR amplitude frequency scans over the surface of enamels of variable thickness exhibit strong thickness dependence, thus establishing depth profilometric sensitivity to subsurface interfaces such as the dentin/enamel junction. PMID:15250769

  14. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence.

    PubMed

    Jeon, R J; Han, C; Mandelis, A; Sanchez, V; Abrams, S H

    2004-01-01

    Non-intrusive, non-contacting frequency-domain photothermal radiometry (FD-PTR or PTR) and frequency-domain luminescence (FD-LUM or LUM) have been used with 659- and 830-nm laser sources to assess the pits and fissures on the occlusal surfaces of human teeth. Fifty-two human teeth were examined with simultaneous measurements of PTR and LUM and were compared to conventional diagnostic methods including continuous (dc) luminescence (DIAGNOdent), visual inspection and radiographs. To compare each method to the others, sensitivities and specificities were calculated by using histological observations as the gold standard. With the combined criteria of four PTR and LUM signals (two amplitudes and two phases), it was found that the sensitivity of this method was much higher than any of the other methods used in this study, whereas the specificity was comparable to that of dc luminescence diagnostics. Therefore, PTR and LUM, as a combined technique, has the potential to be a reliable tool to diagnose early pit and fissure caries and could provide detailed information about deep lesions. Using the longer wavelength (830-nm) laser source, it has been shown that detection of deeper subsurface lesions than the 659-nm probe provides is possible. PMID:15528904

  15. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry

    SciTech Connect

    McCloy, J. S.; Sundaram, S. K.; Matyas, J.; Woskov, P. P.

    2011-01-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. Finally, these results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  16. Stratospheric ozone isotopes observed by air-borne and space-borne submillimeter-wave heterodyne radiometry: A sensitivity study

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Urban, J.; Takahashi, C.; Smiles Mission Team

    2003-04-01

    The variation of the isotopic composition of a species in the Earth atmosphere provides us the information on the history of the air masses, because the isotope enrichment or depletion reflects the chemical and physical processes. Since the discovery of the heavy isotope enrichment of ozone in the stratosphere in 1981 considerable progress has been made in understanding the processes that control the isotope enrichment based on atmospheric observations, laboratory experiments, and so on. However, the exact mechanism for the effect remains uncertain and accurate sequentially observations of ozone isotopomer at global scale are still very sparse. Further improvements of measurement precision can be obtained by making use of the new technological development of high-precision submillimeter-wave heterodyne radiometry based on sensitive SIS detector technology. The airborne ASUR instrument (Airborne SUb-millimeter SIS Radiometer) observed lines of asymmetric-18 ozone in the frequency region of 645 GHz with this technology since ~1994. The JEM/SMILES instrument (Japaneses Experiment Module / Superconducting sub-MIllimeter Limb Emission Sounder), to be installed on the International Space Station in 2007, will measure several ozone isotopomer in the stratosphere at global scale from space using very similar frequency bands. An error analysis including the most typical systematic errors is performed.

  17. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H.; Vu, Jaclyn T.; Amaechi, Bennett T.

    2012-12-01

    The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples.

  18. The Relationship of Safe and Participatory School Environments and Supportive Attitudes toward Violence: Evidence from the Colombian Saber Test of Citizenship Competencies

    ERIC Educational Resources Information Center

    Diazgranados, Silvia; Noonan, James

    2015-01-01

    In Colombia, reducing levels of interpersonal and community violence is a key component of the country's approach to citizenship education. In this study, we use data collected during the 2005 Saber test of Citizenship Competencies to examine the relationship of school environments and individual students' supportive attitudes toward…

  19. Tracing the Inter-Hemispheric Coupling During Polar Summer Periods of 2002-2010 Using TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard; Feoflow, Artem; Pesnell, Dean; Kutepov, Alexander

    2010-01-01

    It has been found that for more than one polar summer season between 2002-2010, the northern polar mesospheric region near and above the mesospheric maximum was warmer than normal. The strongest warming effect of this type was observed to occur during northern summer 2002. Theoretical studies have implied that these "anomalies" were preceded by unusual dynamical processes occurring in the southern hemisphere. We have analyzed temperature distributions measured by the SABER limb scanning infrared radiometer aboard the NASA TIMED satellite between 2002-2010 at altitudes from 15 to 110 km and for latitudes between 83 deg. S to 83 deg. N. We describe the approach to trace the inter-hemispheric temperature correlatoins and to identify the global features that were unique for the "anomalous" northern polar summers.

  20. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; Wintersteiner, Peter; Thompson, R. Earl; Gordley, Larry L.

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  1. Primary Radiometry for the Mise-en-Pratique for the Definition of the Kelvin: The Hybrid Method

    NASA Astrophysics Data System (ADS)

    Woolliams, E. R.; Dury, M. R.; Burnitt, T. A.; Alexander, P. E. R.; Winkler, R.; Hartree, W. S.; Salim, S. G. R.; Machin, G.

    2011-01-01

    A task group of CCT-WG5 (radiation thermometry) was established in May 2008 to write text for the mise-en-pratique for the definition of the kelvin ( MeP-K) for high temperatures. This task group reviewed and gave summaries for the existing techniques for filter radiometry as a means of determining the absolute radiance, and hence the thermodynamic temperature of a blackbody source. Three approaches were described—the radiance method, which calibrates the radiation thermometer for radiance responsivity, the irradiance method, which calibrates a filter radiometer for irradiance responsivity and then measures the source through two apertures, and the hybrid method that introduces a lens to the irradiance method. In the "hybrid method" the radiation thermometer consists of a filter radiometer, a double aperture system, and a lens. The lens allows the instrument to view a small area blackbody source. The system is calibrated "in parts"—i.e., the filter radiometer is calibrated for irradiance responsivity, and the transmittance of the lens and the geometric factor are determined separately. The main drawbacks of this single lens instrument are its high size-of-source effect (~0.2 %), and that this effect has to be determined in an "absolute" sense—relative to a theoretical infinite source. However, although the correction is large, with careful evaluation, the associated uncertainty can be made sufficiently small to measure the temperature of fixed-point cell transitions with low uncertainties. This article reviews the hybrid method and gives a comprehensive discussion of the associated uncertainty components.

  2. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  3. First results from ground-based CO2 remote sounding using high-resolution thermal IR laser heterodyne radiometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Alex; Huebner, Marko; Macleod, Neil; Weidmann, Damien

    2016-04-01

    Over the course of the last decade, the Laser Spectroscopy Group at RAL Space has considerably furthered the passive remote sensing technique of thermal IR Laser Heterodyne Radiometry (LHR), and applied it successfully to the ground-based sounding of atmospheric profiles of a variety of trace gases, including methane. LHR is underpinned by coherent detection technology and ideally shot noise-limited, which can significantly enhance the signal-to-noise ratio of acquired atmospheric spectra over conventional direct detection spectrometers when high spectral (>500,000 resolving power) and high spatial resolutions are needed. These benefits allow probing optimized narrow spectral windows (1 cm-1) with full absorption lineshape information, useful for trace gas vertical profiling. Furthermore, LHR has a high potential for miniaturization into a rugged, unprecedentedly compact package, through hollow waveguide optical integration, facilitating its deployment in ground-based observation networks, as well as on a variety of airborne and spaceborne platforms, whilst retaining its high specifications. This makes LHR well-suited to the remote sounding of key greenhouse gases, in particular carbon dioxide, as observations with high precision and accuracy are crucial to discriminate trends and small variations over a substantial background concentration, and in order to contribute to flux estimations in top-down carbon cycle inversion approaches and anthropogenic emission monitoring. Here, we present a new optical bench-based LHR prototype that has been specifically built to demonstrate CO2 sounding in the thermal IR. The instrument has been coupled to a new permanently installed solar tracker to take a long-term measurement series in solar occultation mode, and to assess the performance of the instrument. We discuss its theoretical performance modelled using an Observation System Simulator, and showcase first results from a 6 months' archive, with observations undergoing

  4. A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Lang, Roger H.; O'Neill, Peggy E.; Joseph, Alicia T.; Jackson, Thomas J.; Cosh, Michael H.

    2011-01-01

    In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic Tau-Omega model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. The first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. This model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the . model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The model is tested against 1.4-GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data, and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the . model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the incidence angle and polarization of the microwave observation. Index Terms Emission,microwave radiometry, scattering, soil, vegetation.

  5. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2015-12-01

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1-0.2 Ω.cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  6. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  7. Analyse du potentiel de la radiometrie infrarouge thermique pour la caracterisation des nuages de glace en Arctique

    NASA Astrophysics Data System (ADS)

    Blanchard, Yann

    An important goal, within the context of improving climate change modelling, is to enhance our understanding of aerosols and their radiative effects (notably their indirect impact as cloud condensation nuclei). The cloud optical depth (COD) and average ice particle size of thin ice clouds (TICs) are two key parameters whose variations could strongly influence radiative effects and climate in the Arctic environment. Our objective was to assess the potential of using multi-band thermal radiance measurements of zenith sky radiance for retrieving COD and effective particle diameter (Deff) of TICs in the Arctic. We analyzed and quantified the sensitivity of thermal radiance on many parameters, such as COD, Deff, water vapor content, cloud bottom altitude and thickness, size distribution and shape. Using the sensitivity of IRT to COD and Deff, the developed retrieval technique is validated in comparison with retrievals from LIDAR and RADAR. Retrievals were applied to ground-based thermal infrared data acquired for 100 TICs at the high-Arctic PEARL observatory in Eureka, Nunavut, Canada and were validated using AHSRL LIDAR and MMCR RADAR data. The results of the retrieval method were used to successfully extract COD up to values of 3 and to separate TICs into two types : TIC1 characterized by small crystals (Deff < 30 mum) and TIC2 by large ice crystals (Deff > 30 mum, up to 300 mum). Inversions were performed across two polar winters. At the end of this research, we proposed different alternatives to apply our methodology in the Arctic. Keywords : Remote sensing ; ice clouds ; thermal infrared multi-band radiometry ; Arctic.

  8. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  9. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  10. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry.

    PubMed

    Nicolaides, L; Chen, Y; Mandelis, A; Vitkin, I A

    2001-10-01

    In this work, the optical and thermal properties of tissuelike materials are measured by using frequency-domain infrared photothermal radiometry. This technique is better suited for quantitative multiparameter optical measurements than the widely used pulsed-laser photothermal radiometry (PPTR) because of the availability of two independent signal channels, amplitude and phase, and the superior signal-to-noise ratio provided by synchronous lock-in detection. A rigorous three-dimensional (3-D) thermal-wave formulation with a 3-D diffuse and coherent photon-density-wave source is applied to data from model phantoms. The combined theoretical, experimental, and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared with PPTR, which exhibits uniqueness problems. From data sets obtained by using calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, of the values independently derived by using Mie theory and spectrophotometric measurements. PMID:11583272

  11. Global Distribution of CO2 Volume Mixing Ratio in the Mesosphere and Lower Thermosphere and Long-Term Changes Observed By Saber

    NASA Astrophysics Data System (ADS)

    Russell, J. M., III; Rezac, L.; Yue, J.; Jian, Y.; Kutepov, A. A.; Garcia, R. R.; Walker, K. A.; Bernath, P. F.

    2014-12-01

    The SABER 10-channel limb scanning radiometer has been operating onboard the TIMED satellite nearly continuously since launch on December 7, 2001. Beginning in late January, 2002 and continuing to the present day, SABER has been measuring limb radiance profiles used to retrieve vertical profiles of temperature, volume mixing ratios (VMRs) of O3, CO2, H2O, [O], and [H], and volume emission rates of NO, OH(2.1μm), OH(1.6μm) and O2(singlet delta). The measurements extend from the tropopause to the lower thermosphere, and span from 54S to 84N or 54N to 84S daily with alternating latitude coverage every ~ 60 days. Currently more than six million profiles of each parameter have been retrieved. The CO2 VMR is a new SABER data product that just became available this year. The temperature and CO2 VMRs are simultaneously retrieved in the ~65 km to 110 km range using limb radiances measured at 4.3 and 15 micrometers. Results will be presented of CO2 validation studies done using comparisons with coincident ACE-FTS CO2 data and SD-WACCM model simulations. The CO2 VMRs agree with ACE-FTS observations to within reported measurement uncertainties and they are in good agreement with SD-WACCM seasonal and global distributions. The SABER observed CO2 VMR departure from uniform mixing tends to start above ~80 km which is generally higher than what the model calculates. Variations of CO2 VMR with latitude and season are substantial. Seasonal zonal mean cross sections and CO2 time series for selected latitudes and altitudes over the 12.5-year time period, will also be shown. The CO2 VMR increase rate at 100 km is in close agreement with in situ results measured at the Mauna Loa Observatory.

  12. Inter-Hemispheric Coupling During Recent North Polar Summer Periods as Predicted by MaCWAVE/MIDAS Rocket Data and Traced by TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem G.; Kutepov, Alexander A.; Pesnell W. Dean; Schmidlin, Francis J.

    2011-01-01

    In July, 2002, the MaCWAVE-MIDAS Rocket Program was launched from Andoya Rocket Range (ARR) in Norway. Data from these flights demonstrated that the polar summer mesosphere during this period was unusual, at least above ARR. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite to study these characteristics and compare them with the features observed in the ensuing eight years. For background, the TIMED Satellite was launched on December 7,2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The SABER instrument is a limb scanning infrared radiometer designed to measure temperature of the region as well as a large number of minor constituents. In this study, we review the MaCWAVE rocket results. Next, we investigate the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07). Weekly averages are used to make comparisons between the winter and summer hemispheres. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous dynamical events in the southern hemisphere. The findings discussed here clearly show the value of scientific rocket flights used in a discovery mode.

  13. Inter-Hemispheric Coupling During Recent North Polar Summer Periods as Predicted by MaCWAVE/MIDAS Rocket Data and Traced by TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem G.; Kutepov, Alexander A.; Pesnell, W. Dean; Schmidlin, Francis J.

    2011-01-01

    In July, 2002, the MaCWAVE-MIDAS Rocket Program was launched from And0ya Rocket Range (ARR) in Norway. Data from these flights demonstrated that the polar summer mesosphere during this period was unusual, at least above ARR. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA TIMED Satellite to study these characteristics and compare them with the features observed in the ensuing eight years. For background, the TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The SABER instrument is a limb scanning infrared radiometer designed to measure temperature of the region as well as a large number of minor constituents. In this study, we review the MaCWAVE rocket results. Next, we investigate the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07). Weekly averages are used to make comparisons between the winter and summer hemispheres. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous dynamical events in the southern hemisphere. The findings discussed here clearly show the value of scientific rocket flights used in a discovery mode.

  14. Uncertainty of Passive Imager Cloud Optical Property Retrievals to Instrument Radiometry and Model Assumptions: Examples from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Meyer, Kerry; Amarasinghe, Nandana; Arnold, G. Thomas; Zhang, Zhibo; King, Michael D.

    2013-01-01

    The optical and microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS on the NASA EOS Terra and Aqua platforms, simultaneous global-daily 1 km retrievals of cloud optical thickness (COT) and effective particle radius (CER) are provided, as well as the derived water path (WP). The cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate retrieval datasets for various two-channel retrievals, typically a VISNIR channel paired with a 1.6, 2.1, and 3.7 m spectral channel. The MOD06 forward model is derived from on a homogeneous plane-parallel cloud. In Collection 5 processing (completed in 2007 with a modified Collection 5.1 completed in 2010), pixel-level retrieval uncertainties were calculated for the following non-3-D error sources: radiometry, surface spectral albedo, and atmospheric corrections associated with model analysis uncertainties (water vapor only). The latter error source includes error correlation across the retrieval spectral channels. Estimates of uncertainty in 1 aggregated (Level-3) means were also provided assuming unity correlation between error sources for all pixels in a grid for a single day, and zero correlation of error sources from one day to the next. I n Collection 6 (expected to begin in late summer 2013) we expanded the uncertainty analysis to include: (a) scene-dependent calibration uncertainty that depends on new band and detector-specific Level 1B uncertainties, (b) new model error sources derived from the look-up tables which includes sensitivities associated with wind direction over the ocean and uncertainties in liquid water and ice effective variance, (c) thermal emission uncertainties in the 3.7 m band associated with cloud and surface temperatures that are needed to extract reflected solar radiation from the total radiance signal, (d) uncertainty in the solar spectral irradiance at 3.7 m, and

  15. Lidar observations of the middle atmospheric thermal structure over North China and comparisons with TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Wang, Jihong; Yang, Guotao; Du, Lifang; Yue, Chuan; Wang, Zelong; Jiao, MS. Jing

    According to the observational data for over 120 nights of the Rayleigh/Na lidar located in Beijing, China (40.5N, 116.2E), the middle atmospheric thermal structure over North China was obtained. Lidar observation results show good agreements with SABER temperature data sets, which justify that both the two instruments are reliable. Lidar results show significant difference with the NRLMSISE-00 empirical model and negative deviations (lidar minus model) hold most of the observational time. which may be due to the associations of high level of solar activity, greenhouse gases and the haze weather in North China. To characterize the seasonal variations of the temperature structure over Beijing, the amplitude and phase profiles of the annual, semi-annual and 3-month sinusoidal oscillations were extracted by multi-parameter sinusoidal regression. A stratospheric warming event and a long-term mesospheric temperature inversion are observed in the early winter of 2012/2013. These temperature anomalies may be mainly due to anomalous propagations of planetary waves and gravity waves.

  16. Troposphere-Thermosphere Tidal Coupling as Measured by the SABER Instrument on TIMED during July-September, 2002

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.; Russell, J.; Miyahara, S.; Zhang, X.; Palo, S.; Mlynczak, M.; Mertens, C. J.; Hagan, M. E.

    2005-01-01

    Coupling between the troposphere and lower thermosphere due to upward-propagating tides is investigated using temperatures measured from the SABER instrument on the TIMED satellite. The data analyzed here are confined to 20-120 km altitude and +/-40 deg latitude during 20 July 20 September, 2002. Apart from the migrating (sun-synchronous) tidal components, the predominant feature seen (from the satellite frame) during this period is a wave-4 structure in longitude with extrema of up to +/-40-50 K at 110 km. Amplitudes and longitudes of maxima of this structure evolve as the satellite precesses in local time, and as the wave(s) responsible for this structure vary with time. The primary wave responsible for the wave-4 pattern is the eastward-propagating diurnal tide with zonal wavenumber s=3 (DE3). Its average amplitude distribution over the interval is quasi-symmetric about the equator, similar to that of a Kelvin wave, with maximum of about 20 K at 5 deg S and 110 km. DE3 is primarily excited by latent heating due to deep tropical convection in the troposphere. It is demonstrated that existence of DE3 is intimately connected with the predominant wave-4 longitude distribution of topography and land-sea difference at low latitudes, and an analogy is drawn with the strong presence of DE1 in Mars atmosphere, the predominant wave-2 topography on Mars, and the wave-2 patterns that dominate density measurements from the Mars Global Surveyor (MGS) spacecraft near 130 km. Additional diurnal, semidiurnal and terdiurnal nonmigrating tides are also revealed in the present study. These tidal components are most likely excited by nonlinear interactions between their migrating counterparts and the stationary planetary wave with s=1 known to exist in the Southern Hemisphere during this period just prior to the austral mid-winter stratospheric warming of 2002.

  17. Characterization of hardened cylindrical C1018 steel rods (0.14%-0.2% C, 0.6%-0.9% Mn) using photothermal radiometry.

    PubMed

    Wang, Chinhua; Mandelis, Andreas

    2007-05-01

    Frequency-domain photothermal radiometry has been used for the evaluation of the hardened case depth and the measurement of the thermophysical properties (thermal conductivity and diffusivity) of cylindrical C1018 heat-treated steel rods. The measurement results of several steel cylinders nominally hardened identically during a common heat-treating process were consistent with each other and also with mechanical indentation hardness test results. The application of the two-layer composite cylinder thermal-wave theory yielded an effective case depth within the discrete two-layer thermal-wave approximation. This technique provides a relatively simple noncontact and nondestructive method for evaluating the thermophysical parameters of layered cylindrical samples. The good fit of the experimental frequency scans to the two-layer thermal-wave model was shown to constitute a reasonable method for calibrating actual continuously decreasing hardness depth profiles by means of abrupt two-layer-equivalent profiles. PMID:17552852

  18. Noncontact measurement of the thermal diffusivity of IR semi-transparent and semiconducting n-CdMgSe mixed crystals by means of the photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.

    2014-05-01

    In this paper we present results of noncontact measurements of the thermal diffusivity of infrared semi-transparent n-CdMgSe mixed semiconductor crystals by means of the photothermal radiometry (PTR) in a transmission configuration. In order to overcome an influence of the infrared semi-transparency and plasma waves on the PTR signal from n-CdMgSe mixed crystals the samples were covered by thin aluminum foils on both sides. The thermal diffusivities of n-CdMgSe mixed crystals were estimated from PTR phase frequency characteristics using a well-known formula. It was found that the obtained results are underestimated in comparison to thermal diffusivities estimated from the PPE (photopyro-electric) measurements. A three layer model of a PTR signal was applied in order to estimate an error in determination of the thermal diffusivity of a sample caused by aluminum foils.

  19. Minority carrier recombination lifetimes in n-type CdMgSe mixed crystals measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.

    2014-03-01

    Minority recombination lifetimes of n-type CdMgSe mixed crystals were estimated by using infrared photothermal radiometry (PTR) amplitude and phase frequency spectra. The results obtained by the PTR method indicate that the lifetimes of optically generated carriers in CdSe and CdxMg1-xSe crystals are about 0.1 μs. The diffusion length of minority carrier in n-type CdSe single crystal was found to be 4.42 μm and it is in a good agreement with the literature value. It was found that with the increasing thermal-to-plasma component coefficient A the carrier concentration increases as expected from PTR theory.

  20. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  1. Carrier-density-wave transport and local internal electric field measurements in biased metal-oxide-semiconductor n-Si devices using contactless laser photo-carrier radiometry

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Pawlak, Micha; Shaughnessy, Derrick

    2004-11-01

    Laser infrared photo-carrier radiometry was used with an n-type Si metal-oxide-semiconductor (MOS) diode and with a Si-SiO2 structure with a transparent electrode and under external bias. Application of three-dimensional PCR theory yielded values of the minority carrier (hole) transport properties in the presence of the thus created local internal electric field at fixed frequencies. Furthermore, the internal electric field at fixed applied voltage was calculated. Under the combination of increased temperature and voltage, the sub-interface position of the carrier-density-wave centroid was found to depend on a trade-off between increased recombination lifetime and decreased ambipolar (conductivity) mobility. The ability of PCR to measure local internal electric fields by combining applied bias sweeps and frequency scans appears to pave the way towards the contactless reconstruction of depth profiles of these fields in active devices.

  2. Solar extinction radiometry

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1981-01-01

    Work on the spectral line parameters of hydroxyl radical band was completed. The UV-visible data obtained during 1977 balloon flights were used for zone quantification. The region between from 3100 A to 3500 A appears to be the best region to use for determining ozone columns with the three wavelength method. Ozone volume mixing ratios determined for the 1977 data were compared with standard middle latitude ozone profiles. Numerous high and low Sun scans were obtained during ascent and from float altitude (1981 balloon flight) at 0.003 A resolution in the 3068 A to 3089 A region. The spectra are being studied for OH identification and quantification.

  3. Radiometry in military applications

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof

    2001-08-01

    Missiles guided using optoelectronic methods, optoelectronic imaging systems (thermal imaging systems, night vision devices, LLLTV cameras, TV cameras), and optoelectronic countermeasures (smoke screens, camouflage paints and nets, IR flares, decoys, jamming systems, warning systems) are one of the most important components of modern military armament. There are numerous military standards, some of them secret, that precise radiometric parameters to be measured and the testing methods to be used. There is also much literature on the subject of testing of the systems mentioned above, although mostly on subject of testing of the thermal imaging systems. In spite of this apparently numerous literature, there still significant confusion in this area due to secrecy of some parameters and testing methods, differences in recommendations of different military standards, fast progress in military optoelectronics, and also due to enormous number of different types of optoelectronics systems used in the military armament. A review of testing methods of the three basic groups of optoelectronics systems used in modern military armament: the missiles guided using optoelectronics methods, the optoelectronic imaging systems, and the optoelectronic countermeasures is presented in this paper. Trends in the measuring sets.

  4. Comparison of high-latitude mesopause OH(6,2) temperature over Yakutia with the measurements from TIMED/SABER v1.07 and v2.0

    NASA Astrophysics Data System (ADS)

    Ammosova, Anastasiia; Gavrilyeva, Galina; Ammosov, Petr; Koltovskoi, Igor

    2016-07-01

    The rotational temperature of OH (6-2) measured with a digital infrared spectrograph installed at Maimaga station (63 °N, 129.5 °E) with the temperature at an altitude of 87 km measured with v1.07 and v2.0 SABER radiometer are compared. The data of the observations measurements coincident in time and space from 2002 to 2014 have been analyzed. An analysis of 997 cases indicated the difference between the SABER temperature and the temperature measured with the ground-based device has a seasonal character and varies from 4-5 K in spring months to almost zero in autumn-winter seasons. SABER new and improved version 2.0 data from 2013 to 2014 in good agreement with the temperature measured with a spectrograph.

  5. Chemical Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  6. A "Stationery" Kinetics Experiment.

    ERIC Educational Resources Information Center

    Hall, L.; Goberdhansingh, A.

    1988-01-01

    Describes a simple redox reaction that occurs between potassium permanganate and oxalic acid that can be used to prepare an interesting disappearing ink for demonstrating kinetics for introductory chemistry. Discusses laboratory procedures and factors that influence disappearance times. (CW)

  7. Enzyme Kinetics in Microgravity

    NASA Astrophysics Data System (ADS)

    Liu, C. C.; Licata, V. J.

    2010-04-01

    The kinetics of some enzymes have been found to be enhanced by the microgravity environment. This is a relatively small effect, but is sufficient to have physiological effects and to impact pharmaceutical therapy in microgravity.

  8. Beyond saber rattling.

    PubMed

    O'Hare, Patrick K; Hyatt, Thomas K

    2005-02-01

    New legislative proposals are threatening aggressive regulation of tax-exempt healthcare providers. The proposals pertain to operations, governance, additional tax filing requirements, and enforcement. The proposals signal the determination of Congress to eliminate any perceived abuses among exempt healthcare organizations through increased scrutiny and regulation. Healthcare financial managers should monitor any developments related to the proposed legislation and participate in hearings and lobbying regarding these issues. PMID:15770839

  9. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  10. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic

    PubMed Central

    Kampel, Milton; Lorenzzetti, João A.; Bentz, Cristina M.; Nunes, Raul A.; Paranhos, Rodolfo; Rudorff, Frederico M.; Politano, Alexandre T.

    2009-01-01

    Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL) and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3MRAD), Ocean Chlorophyll 4 bands (OC4v4RAD), and Ocean Chlorophyll 2 bands (OC2v4RAD). The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS) with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3MSAT, and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01SAT), and CarderSAT. In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg/m3. In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m3 (OC2v4RAD). The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m3) than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m3, respectively). We find that rmsd values between MODIS relative to the in situ radiometric measurements are < 26%, i.e., there is a trend towards overestimation of RRS by MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed reflectance due to

  11. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. PMID:26051088

  12. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  13. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    NASA Astrophysics Data System (ADS)

    Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy M.

    2016-04-01

    Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, the rotational level populations have to be in local thermodynamic equilibrium (LTE). However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-LTE contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1), which peaks at about 94 to 95 km, and O2a(0-0) with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0) emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0)-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v', showed significant excesses with a maximum of more than 10 K for v' = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly for high v'. The amplitude of these variations can be about 2 K

  14. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    NASA Astrophysics Data System (ADS)

    Noll, S.; Kausch, W.; Kimeswenger, S.; Unterguggenberger, S.; Jones, A. M.

    2015-11-01

    Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, a corresponding Boltzmann distribution of the rotational level populations has to be achieved. However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-local thermodynamic equilibrium (non-LTE) contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1), which peaks at about 94 to 95 km, and O2a(0-0) with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0) emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0)-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v', showed significant excesses with a maximum of more than 10 K for v' = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly for high v'. The

  15. Kinetic theory viscosity

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Pringle, J. E.

    2004-07-01

    We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, secondly, the geometry of the mean flow.

  16. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Chirtoc, M.; Horny, N.; Pelzl, J.

    2016-03-01

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency ftc which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz-1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient βeff, and the bulk carrier lifetime τc. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2-11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n0. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  17. Depth profile reconstructions of electronic transport properties in H{sup +} MeV-energy ion-implanted n-Si wafers using photocarrier radiometry

    SciTech Connect

    Tai, Rui; Wang, Chinhua Hu, Jingpei; Mandelis, Andreas

    2014-07-21

    A depth profiling technique using photocarrier radiometry (PCR) is demonstrated and used for the reconstruction of continuously varying electronic transport properties (carrier lifetime and electronic diffusivity) in the interim region between the ion residence layer and the bulk crystalline layer in H{sup +} implanted semiconductor wafers with high implantation energies (∼MeV). This defect-rich region, which is normally assumed to be part of the homogeneous “substrate” in all existing two- and three-layer models, was sliced into many virtual thin layers along the depth direction so that the continuously and monotonically variable electronic properties across its thickness can be considered uniform within each virtual layer. The depth profile reconstruction of both carrier life time and diffusivity in H{sup +} implanted wafers with several implantation doses (3 × 10{sup 14}, 3 × 10{sup 15}, and 3 × 10{sup 16} cm{sup −2}) and different implantation energies (from 0.75 to 2.0 MeV) is presented. This all-optical PCR method provides a fast non-destructive way of characterizing sub-surface process-induced electronic defect profiles in devices under fabrication at any intermediate stage before final metallization and possibly lead to process correction and optimization well before electrical testing and defect diagnosis becomes possible.

  18. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    SciTech Connect

    Zhang, Y.; Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.; Zhu, R.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  19. Measurement of thermal properties of thin films up to high temperatures--pulsed photothermal radiometry system and Si-B-C-N films.

    PubMed

    Martan, J; Čapek, J; Chalhoub, E Amin

    2010-12-01

    A new arrangement of two-detector pulsed photothermal radiometry measurement system has been developed enabling temperature dependence measurement of thermal properties of thin films up to high temperatures. Only a few methods are available in this temperature range for thin films' thermal properties investigation, but there is a need for their knowledge in the fields of high-temperature electronics and high-speed machining. The present system enables simultaneous determination of the thin film effusivity, thermal conductivity, and volumetric specific heat in the temperature range from room temperature to 600 °C. The samples are placed in a vacuum chamber. The temperatures in the system were verified by an independent measurement and the system was tested on known bulk samples. Advantages and shortcomings of the method when used at higher temperatures and in the vacuum are described and discussed. Furthermore, Si-B-C-N thin films were studied. These amorphous ceramic materials possess an interesting set of mechanical and thermal properties. In particular, the films of the investigated chemical composition exhibit an excellent thermal stability at temperatures of up to 1700 °C. In the studied temperature range, from 20 to 600 °C, the thermal conductivity increased with increasing temperature from 1.72 to 1.89 W m(-1) K(-1) and volumetric specific heat increased from 2.65 to 3.76 × 10(6) J  m(-3) K(-1). PMID:21198042

  20. Defect detection in multi-layered, plasma sprayed zirconia by time resolved infrared radiometry: A comparison between analytical and experimental methods

    SciTech Connect

    Happoldt, P.G.; Ellingson, W.A.; Gardiner, T.; Krueger, J.

    1994-04-01

    Analytical and experimental methods were used to study a series of test specimens consisting of plasma sprayed layers of NiCrA1Y/ZrO{sub 2} of various compositions.The coatings were seeded with artificial defects and were sprayed on steel disks. Two types of defects were used: flat bottomed holes drilled in the steel substrate and patches of room temperature vulcanizing silicone within the coatings. Defect sizes ranged from 0.1 to 10 mm and were at depths below the coating surface from 0.6 to 3.6 min. The method of time resolved infrared radiometry was used with two different heat sources, an acetylene torch and a high intensity lamp, to inspect the coatings. The torch allowed excellent sensitivity at depths of less than 2 mm and the lamp revealed flaws through the full coating thickness. Two analytical models were developed to study beat flow in the test specimens: a finite element model and an electrical analog model. Results from the two models were compared to check consistency and the finite element model results were compared with experimental results. The finite element code was chosen for further development due to its greater flexibility and ease of use.

  1. Measurement of thermal properties of thin films up to high temperatures-Pulsed photothermal radiometry system and Si-B-C-N films

    NASA Astrophysics Data System (ADS)

    Martan, J.; Čapek, J.; Chalhoub, E. Amin

    2010-12-01

    A new arrangement of two-detector pulsed photothermal radiometry measurement system has been developed enabling temperature dependence measurement of thermal properties of thin films up to high temperatures. Only a few methods are available in this temperature range for thin films' thermal properties investigation, but there is a need for their knowledge in the fields of high-temperature electronics and high-speed machining. The present system enables simultaneous determination of the thin film effusivity, thermal conductivity, and volumetric specific heat in the temperature range from room temperature to 600 °C. The samples are placed in a vacuum chamber. The temperatures in the system were verified by an independent measurement and the system was tested on known bulk samples. Advantages and shortcomings of the method when used at higher temperatures and in the vacuum are described and discussed. Furthermore, Si-B-C-N thin films were studied. These amorphous ceramic materials possess an interesting set of mechanical and thermal properties. In particular, the films of the investigated chemical composition exhibit an excellent thermal stability at temperatures of up to 1700 °C. In the studied temperature range, from 20 to 600 °C, the thermal conductivity increased with increasing temperature from 1.72 to 1.89 W m-1 K-1 and volumetric specific heat increased from 2.65 to 3.76 × 106 J m-3 K-1.

  2. Influence of the Sampling Rate and Noise Characteristics on Prediction of the Maximal Safe Laser Exposure in Human Skin Using Pulsed Photothermal Radiometry

    NASA Astrophysics Data System (ADS)

    Vidovič, L.; Milanič, M.; Majaron, B.

    2013-09-01

    Pulsed photothermal radiometry (PPTR) allows for noninvasive determination of the laser-induced temperature depth profile in strongly scattering samples, including human skin. In a recent experimental study, we have demonstrated that such information can be used to derive rather accurate predictions of the maximal safe radiant exposure on an individual patient basis. This has important implications for efficacy and safety of several laser applications in dermatology and aesthetic surgery, which are often compromised by risk of adverse side effects (e.g., scarring, and dyspigmentation) resulting from nonselective absorption of strong laser light in epidermal melanin. In this study, the differences between the individual maximal safe radiant exposure values as predicted from PPTR temperature depth profiling performed using a commercial mid-IR thermal camera (as used to acquire the original patient data) and our customized PPTR setup are analyzed. To this end, the latter has been used to acquire 17 PPTR records from three healthy volunteers, using 1 ms laser irradiation at 532 nm and a signal sampling rate of 20 000 . The laser-induced temperature profiles are reconstructed first from the intact PPTR signals, and then by binning the data to imitate the lower sampling rate of the IR camera (1000 fps). Using either the initial temperature profile in a dedicated numerical model of heat transfer or protein denaturation dynamics, the predicted levels of epidermal thermal damage and the corresponding are compared. A similar analysis is performed also with regard to the differences between noise characteristics of the two PPTR setups.

  3. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-09-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I-V characteristics. The theoretically predicted short-circuit current density (Jsc), and open-circuit voltage (Voc) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of Jsc and Voc of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  4. Photocarrier Radiometry for Noncontact Evaluation of Monocrystalline Silicon (c-Si) Solar Cell Irradiated by 1 MeV Electron Beams

    NASA Astrophysics Data System (ADS)

    Song, P.; Liu, J. Y.; Yuan, H. M.; Wang, F.; Wang, Y.

    2016-08-01

    In this paper, the monocrystalline silicon (c-Si) solar cell irradiated by 1 MeV electron beams was investigated using noncontact photocarrier radiometry (PCR). A theoretical 1D two-layer PCR model including the impedance effect of the p-n junction was used to characterize the transport properties (carrier lifetime, diffusion coefficient, and surface recombination velocities) of c-Si solar cells irradiated by 1 MeV electron beams with different fluences. The carrier transport parameters were derived by the best fit through PCR measurements. Furthermore, an Ev+0.56 eV trap was introduced into the band gap based on the minority carrier lifetime reduction. An I-V characteristic was obtained by both AFORS-HET simulation and experimental study, and the simulation results shows in good agreement with the experimental results. Moreover, the simulation and experiment results also indicate that the increase of fluences of electron beams results in the reduction of short-circuit current and open-circuit voltage.

  5. Ionospheric E-Region Response to Solar-Geomagnetic Storms Observed by TIMED/SABER and Application to IRI Storm-Model Development

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Mast, Jeffrey C.; Winick, Jeremy R.; Russell, James M., III; Mlynczak, Martin G.; Evans, David S.

    2007-01-01

    The large thermospheric infrared radiance enhancements observed from the TIMED/SABER experiment during recent solar storms provide an exciting opportunity to study the influence of solar-geomagnetic disturbances on the upper atmosphere and ionosphere. In particular, nighttime enhancements of 4.3 um emission, due to vibrational excitation and radiative emission by NO+, provide an excellent proxy to study and analyze the response of the ionospheric E-region to auroral electron dosing and storm-time enhancements to the E-region electron density. In this paper we give a status report of on-going work on model and data analysis methodologies of deriving NO+ 4.3 um volume emission rates, a proxy for the storm-time E-region response, and the approach for deriving an empirical storm-time correction to International Reference Ionosphere (IRI) E-region NO+ and electron densities.

  6. Empirical Storm-Time Correction to the International Reference Ionosphere Model E-Region Electron and Ion Density Parameterizations Using Observations from TIMED/SABER

    NASA Technical Reports Server (NTRS)

    Mertens, Christoper J.; Winick, Jeremy R.; Russell, James M., III; Mlynczak, Martin G.; Evans, David S.; Bilitza, Dieter; Xu, Xiaojing

    2007-01-01

    The response of the ionospheric E-region to solar-geomagnetic storms can be characterized using observations of infrared 4.3 micrometers emission. In particular, we utilize nighttime TIMED/SABER measurements of broadband 4.3 micrometers limb emission and derive a new data product, the NO+(v) volume emission rate, which is our primary observation-based quantity for developing an empirical storm-time correction the IRI E-region electron density. In this paper we describe our E-region proxy and outline our strategy for developing the empirical storm model. In our initial studies, we analyzed a six day storm period during the Halloween 2003 event. The results of this analysis are promising and suggest that the ap-index is a viable candidate to use as a magnetic driver for our model.

  7. Kinetic tetrazolium microtiter assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Inventor); Stowe, Raymond P. (Inventor); Koeing, David W. (Inventor)

    1992-01-01

    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined.

  8. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  9. Using a Novel Absolute Ontogenetic Age Determination Technique to Calculate the Timing of Tooth Eruption in the Saber-Toothed Cat, Smilodon fatalis

    PubMed Central

    Wysocki, M. Aleksander; Feranec, Robert S.; Tseng, Zhijie Jack; Bjornsson, Christopher S.

    2015-01-01

    Despite the superb fossil record of the saber-toothed cat, Smilodon fatalis, ontogenetic age determination for this and other ancient species remains a challenge. The present study utilizes a new technique, a combination of data from stable oxygen isotope analyses and micro-computed tomography, to establish the eruption rate for the permanent upper canines in Smilodon fatalis. The results imply an eruption rate of 6.0 millimeters per month, which is similar to a previously published average enamel growth rate of the S. fatalis upper canines (5.8 millimeters per month). Utilizing the upper canine growth rate, the upper canine eruption rate, and a previously published tooth replacement sequence, this study calculates absolute ontogenetic age ranges of tooth development and eruption in S. fatalis. The timing of tooth eruption is compared between S. fatalis and several extant conical-toothed felids, such as the African lion (Panthera leo). Results suggest that the permanent dentition of S. fatalis, except for the upper canines, was fully erupted by 14 to 22 months, and that the upper canines finished erupting at about 34 to 41 months. Based on these developmental age calculations, S. fatalis individuals less than 4 to 7 months of age were not typically preserved at Rancho La Brea. On the whole, S. fatalis appears to have had delayed dental development compared to dental development in similar-sized extant felids. This technique for absolute ontogenetic age determination can be replicated in other ancient species, including non-saber-toothed taxa, as long as the timing of growth initiation and growth rate can be determined for a specific feature, such as a tooth, and that growth period overlaps with the development of the other features under investigation. PMID:26132165

  10. Multidimensional reactor kinetics modeling

    SciTech Connect

    Diamond, D.J.

    1996-11-01

    There is general agreement that for many light water reactor transient calculations, it is-necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model for satisfactory results. These calculations are needed for a variety of applications for licensing safety analysis, probabilistic risk assessment (PRA), operational support, and training. The latter three applications have always required best-estimate models, but in the past applications for licensing could be satisfied with relatively simple models. By using more sophisticated best-estimate models, the consequences of these calculations are better understood, and the potential for gaining relief from restrictive operating limits increases. Hence, for all of the aforementioned applications, it is important to have the ability to do best-estimate calculations with multidimensional neutron kinetics models. coupled to sophisticated thermal-hydraulic models. Specifically, this paper reviews the status of multidimensional neutron kinetics modeling which would be used in conjunction with thermal-hydraulic models to do core dynamics calculations, either coupled to a complete NSSS representation or in isolation. In addition, the paper makes recommendations as to what should be the state-of-the-art for the next ten years. The review is an update to a previous review of the status as of ten years ago. The general requirements for a core dynamics code and the modeling available for such a code, discussed in that review, are still applicable. The emphasis in the current review is on the neutron kinetics assuming that the necessary thermal-hydraulic capability exists. In addition to discussing the basic neutron kinetics, discussion is given of related modeling (other than thermal- hydraulics). The capabilities and limitations of current computer codes are presented to understand the state-of-the-art and to help clarify the future direction of model development in this area.

  11. Learning Chemical Kinetics with Spreadsheets.

    ERIC Educational Resources Information Center

    Blickensderfer, Roger

    1990-01-01

    Presented are several simple kinetic systems together with the spreadsheets used to solve them. A set of exercises in chemical kinetics appropriate for an introductory course in physical chemistry is given. Error propagation calculations with experimental data are illustrated. (CW)

  12. LLNL Chemical Kinetics Modeling Group

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  13. An Introductory Level Kinetics Investigation.

    ERIC Educational Resources Information Center

    McGarvey, J. E. B.; Knipe, A. C.

    1980-01-01

    Provides a list of the reactions commonly used for introductory kinetics studies. These reactions illustrate the kinetics concepts of rate law, rate constant, and reaction order. Describes a kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid which offers many educational advantages. (CS)

  14. Kinetic Tetrazolium Microtiter Assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  15. A satellite-based multichannel infrared radiometer to sound the atmosphere

    NASA Technical Reports Server (NTRS)

    Esplin, Roy W.; Batty, J. Clair; Jensen, Mark; McLain, Dave; Jensen, Scott; Stauder, John; Stump, Charles W.; Roettker, William A.; Vanek, Michael D.

    1995-01-01

    This paper describes a 12-channel infrared radiometer with the acronym SABER (Sounding of the Atmosphere using Broadband Emission radiometry) that has been selected by NASA to fly on the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) mission.

  16. Rapid mixing kinetic techniques.

    PubMed

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution. PMID:23729251

  17. Airborne infrared video radiometry as a low-cost tool for remote sensing of the environment, two mapping examples from Israel of urban heat islands and mineralogical site

    SciTech Connect

    Ben-Dor, E.; Saaroni, H.; Ochana, D.

    1996-10-01

    In this study we examined the capability of a laboratory infrared video camera for use in remote sensing of the environment. The instrument used, INFRAMETRICS 760, was mounted onboard a Bell 206 helicopter. Under the flight conditions examined, the radiometer proved itself to be very stable and produced high-quality thermal images in a real-time mode. We studied two different environmental aspects, as follows: (1) Urban heat island of the most dense city in Israel, Tel-Aviv- and (2) lithological distribution of a well-known mineralogical site in Israel, Makhtesh Ramon. The radiometer used in both studies was able to produce a temperature presentation, rather than a gray scale from an altitude of 7,000 and 10,000 feet and at 70 knots air speed. The instrument produced a high-quality set of data in terms of signal-to-noise, stability, temperature accuracy and spatial resolution. In the Tel-Aviv case, the results showed that the urban heat island of the city can be depicted in a very high spatial and thermal resolutions domain and that a significant correlation exists between ground objects and the surrounding air temperature values. Based on the flight results, we could generated an isotherm map of the city that, for the first time, located the urban heat island of the city both in meso- and microscales. In the case of Makhtesh Ramon, we found that under field conditions, the radiometer, coupled with a VIS-CCD camera can provide significant ATI parameters of typical rocks that characterize tile study area. Although more study is planned and suggested based on the current data, it was concluded that the airborne thermal video radiometry, is a promising, inexpensive tool for monitoring the environment on a real-time basis. 10 refs., 5 figs., 1 tab.

  18. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  19. Kinetics of Reactive Wetting

    SciTech Connect

    YOST, FREDERICK G.

    1999-09-09

    The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. The wide diversity of processes, such as diffusion, chemical reaction, and fluxing, and their possible combinations suggest that various rate laws should be expected for wetting kinetics depending on the controlling processes. These rate laws are expected to differ crucially from the standard fluid controlled wetting models found in the literature. Voitovitch et al. and Mortensen et al. have shown data that suggests diffusion control for some systems and reaction control for others. They also presented a model of wetting kinetics controlled by the diffusion of a constituent contained by the wetting fluid. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time

  20. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    NASA Astrophysics Data System (ADS)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  1. Kinetics of reactive wetting

    SciTech Connect

    Yost, F.G.

    2000-04-14

    The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line, and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.

  2. Efficient kinetic macrocyclization.

    PubMed

    Feng, Wen; Yamato, Kazuhiro; Yang, Liuqing; Ferguson, Joseph S; Zhong, Lijian; Zou, Shuliang; Yuan, Lihua; Zeng, Xiao Cheng; Gong, Bing

    2009-02-25

    In this article, the highly efficient formation of a series of recently discovered aromatic oligoamide macrocycles consisting of six meta-linked residues is first discussed. The macrocycles, with their backbones rigidified by three-center hydrogen bonds, were found to form in high yields that deviate dramatically from the theoretically allowed value obtained from kinetic simulation of a typical kinetically controlled macrocyclization reaction. The folding of the uncyclized six-residue oligomeric precursors, which belong to a class of backbone-rigidified oligoamides that have been demonstrated by us to adopt well-defined crescent conformations, plays a critical role in the observed high efficiency. Out of two possible mechanisms, one is consistent with experimental results obtained from the coupling of crescent oligoamides of different lengths, which suggests a remote steric effect that discourages the formation of oligomers having lengths longer than the backbone of the six-residue precursors. The suggested mechanism is supported by the efficient formation of very large aromatic oligoamide macrocycles consisting of alternating meta- and para-linked residues. These large macrocycles, having H-bond-rigidified backbones and large internal lumens, are formed in high (>80%) yields on the basis of one-step, multicomponent macrocyclization reactions. The condensation of monomeric meta-diamines and a para-diacid chloride leads to the efficient formation of macrocycles with 14, 16, and 18 residues, corresponding to 70-, 80-, and 90-membered rings that contain internal cavities of 2.2, 2.5, and 2.9 nm across. In addition, the condensation between trimeric or pentameric diamines and a monomeric diacid chloride had resulted in the selective formation of single macrocyclic products with 16 or 18 residues. The efficient formation of the macrocycles, along with the absence of other noncyclic oligomeric and polymeric byproducts, is in sharp contrast to the poor yields associated

  3. Chemical kinetics modeling

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  4. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  5. MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    NASA Astrophysics Data System (ADS)

    García-Comas, M.; Funke, B.; Gardini, A.; López-Puertas, M.; Jurado-Navarro, A.; von Clarmann, T.; Stiller, G.; Kiefer, M.; Boone, C. D.; Leblanc, T.; Marshall, B. T.; Schwartz, M. J.; Sheese, P. E.

    2014-11-01

    We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11) are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy). Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06) is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1-2 K warmer stratopause and middle mesosphere, and a 6-10 K colder mesopause (except in high-latitude summers) and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50-80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50-65 km and 5 K at 65-80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high-latitude summers, when it is within 5-10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger vertical gradients.

  6. MIPAS temperature from the stratosphere to the lower thermosphere: comparison of version vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    NASA Astrophysics Data System (ADS)

    García-Comas, M.; Funke, B.; Gardini, A.; López-Puertas, M.; Jurado-Navarro, A.; von Clarmann, T.; Stiller, G.; Kiefer, M.; Boone, C. D.; Leblanc, T.; Marshall, B. T.; Schwartz, M. J.; Sheese, P. E.

    2014-07-01

    We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the Middle Atmosphere, Upper Atmosphere and NoctiLucent Cloud modes during its lifetime. i.e., from January 2005 to March 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11) are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement of important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy). Additionally, an updated version of ESA calibrated L1b spectra (5.02/5.06) is used. The vM21 temperatures correct the main systematic errors of the previous version because they on average provide a 1-2 K warmer stratopause and middle mesosphere, and a 6-10 K colder mesopause (except in high latitude summers) and lower thermosphere. These lead to a remarkable improvement of MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, that, with few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50-80 km in spring, autumn, winter at all latitudes, and summer at low to mid-latitudes. Differences in the high latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50-65 km and 5 K at 65-80 km. Differences with the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high latitude summers, where it is within 5-10 K of the other instruments, being warmer than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, where MIPAS usually exhibits larger vertical gradients.

  7. On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER

    NASA Astrophysics Data System (ADS)

    Kowalewski, S.; von Savigny, C.; Palm, M.; McDade, I. C.; Notholt, J.

    2014-09-01

    The mesospheric OH Meinel emissions are subject of many theoretical and observational studies devoted to this part of the atmosphere. Depending on the initial vibrational level of excitation the altitude of the considered OH Meinel emission is systematically shifted, which has important implications for the intercomparison of different studies considering different transition bands. Previous model studies suggest that these vertical shifts are essentially caused by the process of collisional quenching with atomic oxygen. Following this hypothesis, a recent study found experimental evidence of a coherent seasonality at tropical latitudes between vertical shifts of different OH Meinel bands and changes in atomic oxygen concentrations. Despite the consistent finding of the above mentioned hypothesis, it cannot be excluded that the actual temporal variability of the vertical shifts between different OH Meinel bands may in addition be controlled or even dominated by other processes. It remains an open question whether the observed temporal evolution is indeed mainly controlled by the modulation of the collisional quenching process with atomic oxygen. By means of a sensitivity study which employs a quenching model to simulations made with the SD-WACCM4 chemistry climate model, we aim at assessing this question. From this study we find that the observed seasonality of vertical OH Meinel shifts is only partially controlled by temporal changes in atomic oxygen concentrations, while molecular oxygen has another noticeable impact on the vertical OH Meinel shifts. This in particular becomes evident for the diurnal variability of vertical OH Meinel shifts, which reveal only a poor correlation with the atomic oxygen species. Furthermore, changes in the H + O3 source gases provide another mechanism that can potentially affect the diurnal variability in addition. By comparison with limb radiance observations from the SABER/TIMED satellite this provides an explanation for the less

  8. Quantum efficiency and metastable lifetime measurements in solid state laser materials via lock-in rate-window photothermal radiometry: Technique and application to ruby (Cr[sup 3+]:Al[sub 2]O[sub 3])

    SciTech Connect

    Mandelis, A.; Chen, Zhuo-Hui; Bleiss, R. )

    1993-09-01

    The newly developed photothermal detection technique of rate-window infrared radiometry is applied to the measurement of the metastable state deexcitation parameters of a ruby laser rod. The technique employs a square laser pulse and monitors the infrared photothermal radiometric response of the sample. By applying the photothermal lock-in rate-window concept, the radiative lifetime and quantum efficiency of Cr[sup 3+]:Al[sub 2]O[sub 3] are measured with optimal SNR and simple, unambiguous interpretation from the extremum in the lock-in analyzer in-phase rate-window signal. This technique simplifies significantly the experimental methodology; optimizes the photothermal SNR, which is inherently low in conventional frequency or time-domain photothermal measurements; and offers extended measurement dynamic range for both radiative quantum efficiency and lifetime in laser materials, as compared to frequency-scanned harmonic detection. Therefore, rate-window infrared photothermal radiometry may prove a valuable tool for the combined measurement of metastable lifetime and nonradiative energy conversion efficiency in laser materials with fast deexcitation rates.

  9. Self-consistent retrieval of MLT pressure/temperature and CO2 densities from SABER/TIMED limb radiances in the 15 and 4.3 μm channels

    NASA Astrophysics Data System (ADS)

    Kutepov, A. A.; Rezac, L.; Feofilov, A.; Goldberg, R. A.; Russell, J. M.

    2013-12-01

    SABER/TIMED broadband infrared limb observations of the mesosphere and lower thermosphere (MLT) are providing important information about the temperature, composition and energy budget of this atmospheric region. Prior to the current processing using the v2.0 algorithm, pressure and temperature were retrieved using radiances measured in the 15 μm CO2 band in combination with the WACCM model CO2 distribution. The v2.0 operational processing uses a rigorous non-LTE, self consistent, two-channel, simultaneous retrieval of pressure, temperature and CO2 density from SABER daytime broadband limb 15 and 4.3 μm radiances. Three years of simultaneous temperature/CO2 profiles have been produced thus far in a post processing mode where the two-channel methodology is applied to radiances that have been registered in altitude space. Results from these retrievals for various latitudes and seasons as well as their comparisons with model results are discussed. The line-by-line radiative transfer calculations and iterations that must be performed for the retrieval are very time consuming. An optimized version of the algorithm, that greatly increases the processing speed needed for large data volumes, has been developed that uses a look-up-table (LUT) technique. This general approach has been successfully applied for many years to process lower atmosphere observations based on the LTE assumption. We have adapted this method for SABER simultaneous temperature/CO2 processing by applying an empirical orthogonal function (EOF) technique to generate a database of independent atmospheric profiles on which the LUT retrieval technique operates. The technique also has been configured for application in the non-LTE MLT environment. This report presents an overview of the work to provide an efficient multi-channel, non-LTE MLT limb retrieval technique suitable for processing the large volume of data collected by SABER/TIMED over its nearly 12-year highly successful mission.

  10. Kinetics of fiber solidification

    PubMed Central

    Mercader, C.; Lucas, A.; Derré, A.; Zakri, C.; Moisan, S.; Maugey, M.; Poulin, P.

    2010-01-01

    Many synthetic or natural fibers are produced via the transformation of a liquid solution into a solid filament, which allows the wet processing of high molecular weight polymers, proteins, or inorganic particles. Synthetic wet-spun fibers are used in our everyday life from clothing to composite reinforcement applications. Spun fibers are also common in nature. Silk solidification results from the coagulation of protein solutions. The chemical phenomena involved in the formation of all these classes of fibers can be quite different but they all share the same fundamental transformation from a liquid to a solid state. The solidification process is critical because it governs the production rate and the strength that fibers can sustain to be drawn and wound. An approach is proposed in this work to investigate the kinetics of fiber solidification. This approach consists in circulating solidifying fibers in the extensional flow of a surrounding liquid. Such as polymers in extensional flows, the fibers break if resultant drag forces exceed the fiber tensile strength. The solidification kinetics of nanotube composite fibers serves as a validation example of this approach. The method could be extended to other systems and advance thereby the science and technology of fiber and textile materials. It is also a way to directly visualize the scission of chain-like systems in extensional flows. PMID:20937910

  11. Kinetics of fiber solidification.

    PubMed

    Mercader, C; Lucas, A; Derré, A; Zakri, C; Moisan, S; Maugey, M; Poulin, P

    2010-10-26

    Many synthetic or natural fibers are produced via the transformation of a liquid solution into a solid filament, which allows the wet processing of high molecular weight polymers, proteins, or inorganic particles. Synthetic wet-spun fibers are used in our everyday life from clothing to composite reinforcement applications. Spun fibers are also common in nature. Silk solidification results from the coagulation of protein solutions. The chemical phenomena involved in the formation of all these classes of fibers can be quite different but they all share the same fundamental transformation from a liquid to a solid state. The solidification process is critical because it governs the production rate and the strength that fibers can sustain to be drawn and wound. An approach is proposed in this work to investigate the kinetics of fiber solidification. This approach consists in circulating solidifying fibers in the extensional flow of a surrounding liquid. Such as polymers in extensional flows, the fibers break if resultant drag forces exceed the fiber tensile strength. The solidification kinetics of nanotube composite fibers serves as a validation example of this approach. The method could be extended to other systems and advance thereby the science and technology of fiber and textile materials. It is also a way to directly visualize the scission of chain-like systems in extensional flows. PMID:20937910

  12. Kinetics of coal pyrolysis

    SciTech Connect

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  13. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets. PMID:24664912

  14. Spatial kinetics in fast reactors

    NASA Astrophysics Data System (ADS)

    Seleznev, E. F.; Belov, A. A.; Panova, I. S.; Matvienko, I. P.; Zhukov, A. M.

    2013-12-01

    The analysis of the solution to the spatial nonstationary equation of neutron transport is presented by the example of a fast reactor. Experiments in spatial kinetics conducted recently at the complex of critical assemblies (fast physical stand) and computations of their data using the TIMER code (for solving the nonstationary equation in multidimensional diffusion approximation for direct and inverse problems of reactor kinetics) have shown that kinetics of fast reactors substantially differs from kinetics of thermal reactors. The difference is connected with influence of the delayed neutron spectrum on rates of the process in a fast reactor.

  15. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  16. Monitoring the Exchange of Heat and Moisture Between the Land Surface and the Atmosphere in a Field of Corn with Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Hornbuckle, B. K.; Hornbuckle, B. K.; England, A. W.; England, A. W.

    2001-05-01

    Soil-vegetation-atmosphere transfer (SVAT) models can be used to produce estimates of plant-available water as well as the fluxes of energy and moisture across the land-atmosphere interface. These estimates could be greatly improved by using independent measurements of key state variables to force the model back to its true state. This process is called data assimilation. Microwave radiometry is sensitive to one of these key state variables, the water content of the top few centimeters of the soil. Although several different SVAT models have been developed in the past, they are not suitable for use with current models of microwave emission. We are integrating high-fidelity biophysically-based SVAT and microwave emission models together into comprehensive point-scale Land Surface Process / Radiobrightness (LSP/R) models. LSP/R models will provide the climate modeling community with the physical insight needed to create accurate yet operational land surface parameterizations which can assimilate radiobrightness observations made by current and future microwave remote sensing satellites. We present an overview of data collected during the Seventh Radiobrightness and Energy Balance EXperiment (REBEX-7) held during the summer of 2000. This data will be used to test the SVAT portion of a LSP/R model for field corn. The experiment site in southeastern Michigan was unusually ideal in terms of crop and soil homogeneity and flat terrain with fetches of more than 400 m in the direction of prevailing winds. Detailed measurements of global short- and long-wave radiation, upwelling short-wave radiation, net radiation, precipitation, wind speed, air temperature, relative humidity, air temperature and water vapor pressure gradients, soil temperature, soil moisture, soil heat flux, vegetation biomass and plant-area index, infrared vegetation and soil temperatures, and soil surface roughness were recorded for mature corn. Estimates of sensible and latent heat flux made using the

  17. A disordered kinetic superinductor

    NASA Astrophysics Data System (ADS)

    Hays, M.; de Lange, G.; Serniak, K.; Wang, Z.; Vool, U.; Frunzio, L.; Devoret, M. H.

    The superinductance is a superconducting circuit element whose reactance exceeds the resistance quantum at the relevant microwave operation frequencies of quantum circuits. It must also be as non-dissipative as possible. Such an element is key to the fluxonium artificial atom, a highly anharmonic, charge insensitive superconducting qubit that has been proposed as the detection circuit for Majorana Fermions. So far fluxonium qubits are made exclusively from arrays of Al-AlOx-Al Josephson junctions. However, aluminium is difficult to employ in conjunction with the strong magnetic fields required in Majorana Fermion experiments. The large kinetic inductance of highly resistive disordered superconducting alloys, such as NbTiN, is currently explored as an alternative material for superinductance in quantum electronic circuits. We report the results of measurement of quality factors and phase-slip rates of high-impedance resonators made from thin-film NbTiN. Work supported by: ARO, ONR, AFOSR and YINQE.

  18. Kinetic inductance magnetometer

    NASA Astrophysics Data System (ADS)

    Luomahaara, Juho; Vesterinen, Visa; Grönberg, Leif; Hassel, Juha

    2014-09-01

    Sensing ultra-low magnetic fields has various applications in the fields of science, medicine and industry. There is a growing need for a sensor that can be operated in ambient environments where magnetic shielding is limited or magnetic field manipulation is involved. To this end, here we demonstrate a new magnetometer with high sensitivity and wide dynamic range. The device is based on the current nonlinearity of superconducting material stemming from kinetic inductance. A further benefit of our approach is of extreme simplicity: the device is fabricated from a single layer of niobium nitride. Moreover, radio frequency multiplexing techniques can be applied, enabling the simultaneous readout of multiple sensors, for example, in biomagnetic measurements requiring data from large sensor arrays.

  19. Kinetics of Social Contagion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-01

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.

  20. Kinetics of Deliquescence

    NASA Astrophysics Data System (ADS)

    McGraw, R. L.; Lewis, E.

    2009-12-01

    We examine deliquescence phase transformation for inorganic salt particles ranging from bulk down to several nanometers in size. Thermodynamic properties of the particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion is introduced to define a limiting deliquescence relative humidity (DRH). Nano-size particles are predicted to deliquesce at relative humidity just below the DRH on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the DRH defined by the criterion. For a population of particles, the inherent random nature of the nucleation process is predicted to result in a distribution of RH values over which deliquescence will be seen to occur. Measurement of this (apparent) non-abrupt deliquescence of the population should provide both a validation of the nucleation mechanism and a quantitative determination of nucleation rate. This paper presents calculations of crossing (i.e. deliquescence) rate using the theory of mean first passage times (MFPT). MFPT theory is shown to provide a generalization of Becker-Döring nucleation kinetics especially useful for barrier heights much lower than those typically encountered in vapor-liquid nucleation. Barrier heights for deliquescence depend on the concentration of pre-deliquesced particles and observation time, but are typically in the 5-15kT range. Calculations use the tandem nano-differential mobility analyzer setup of Biskos et al. [1] as a model framework. In their experiment, a concentration of dry salt particles is subject to a higher RH for some observation time, after which is measured the (well-separated) populations of un-deliquesced particles and those that have deliquesced. Theoretical estimates for the conversion kinetics are presented as a function of dry particle size, DRH, and salt properties. [1] G. Biskos, A. Malinowski, L. M. Russell, P. R. Buseck, and S. T. Martin

  1. Fulvenallene decomposition kinetics.

    PubMed

    Polino, Daniela; Cavallotti, Carlo

    2011-09-22

    While the decomposition kinetics of the benzyl radical has been studied in depth both from the experimental and the theoretical standpoint, much less is known about the reactivity of what is likely to be its main decomposition product, fulvenallene. In this work the high temperature reactivity of fulvenallene was investigated on a Potential Energy Surface (PES) consisting of 10 wells interconnected through 11 transition states using a 1 D Master Equation (ME). Rate constants were calculated using RRKM theory and the ME was integrated using a stochastic kinetic Monte Carlo code. It was found that two main decomposition channels are possible, the first is active on the singlet PES and leads to the formation of the fulvenallenyl radical and atomic hydrogen. The second requires intersystem crossing to the triplet PES and leads to acetylene and cyclopentadienylidene. ME simulations were performed calculating the microcanonical intersystem crossing frequency using Landau-Zener theory convoluting the crossing probability with RRKM rates evaluated at the conical intersection. It was found that the reaction channel leading to the cyclopentadienylidene diradical is only slightly faster than that leading to the fulvenallenyl radical, so that it can be concluded that both reactions are likely to be active in the investigated temperature (1500-2000 K) and pressure (0.05-50 bar) ranges. However, the simulations show that intersystem crossing is rate limiting for the first reaction channel, as the removal of this barrier leads to an increase of the rate constant by a factor of 2-3. Channel specific rate constants are reported as a function of temperature and pressure. PMID:21819060

  2. Local reaction kinetics by imaging

    NASA Astrophysics Data System (ADS)

    Suchorski, Yuri; Rupprechter, Günther

    2016-01-01

    In the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics.

  3. Local reaction kinetics by imaging☆

    PubMed Central

    Suchorski, Yuri; Rupprechter, Günther

    2016-01-01

    In the present contribution we present an overview of our recent studies using the “kinetics by imaging” approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics. PMID:26865736

  4. Kinetic distance and kinetic maps from molecular dynamics simulation.

    PubMed

    Noé, Frank; Clementi, Cecilia

    2015-10-13

    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets. PMID:26574285

  5. Inclusion Kinetics of Polyrotaxanes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Takahashi, Shoko; Ito, Kohzo; Yamada, Norifumi

    Inclusion complex (IC) formation of α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG) brush in water was investigated by Surface Plasmon Resonance Spectroscopy(SPR), neutron reflectometry(NR) and grazing incident wide angle X-ray scattering(GISANS). Spontaneous IC formation of α-CD with PEG (polyrotaxanes) is believed to be due to hydrophobic interaction between the hydrophobic interior of α-CD and PEG; however, the detail of the IC formation kinetics has not been observed because IC formation results in aggregation and precipitation of the complex. SPR revealed that IC formation occurs after induction period, which often appears in crystallization. When concentration of α-CD solution is 10%, IC consisting randomly oriented α-CD polycrystal appeared. In contrast, when the concentration of α-CD solution is 5%, a uniform 10-nm-thick IC layer with α-CD stacked perpendicular to the substrate appeared. 10-nm-thick IC was also found in the diluted PEG brush in contact with a 10% α-CD solution. The characteristic 10-nm-thick layer is related to the folded crystalline structure of α-CD on PEG brush. Such crystallization was proved to be the main driving force for IC formation.

  6. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  7. Kinetics of Social Contagion.

    PubMed

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-20

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters. PMID:26636878

  8. Stochastic kinetic mean field model

    NASA Astrophysics Data System (ADS)

    Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.

    2016-07-01

    This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on

  9. Nuclear Reactor Kinetics and Control.

    SciTech Connect

    JEFFERY,; LEWINS, D.

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computing Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)

  10. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE PAGESBeta

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the

  11. On the relationships between Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.

    2015-09-01

    The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis-Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis-Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis-Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile

  12. Quantum Cloning for Absolute Radiometry

    SciTech Connect

    Sanguinetti, Bruno; Pomarico, Enrico; Sekatski, Pavel; Zbinden, Hugo; Gisin, Nicolas

    2010-08-20

    In the quantum regime information can be copied with only a finite fidelity. This fidelity gradually increases to 1 as the system becomes classical. In this Letter we show how this fact can be used to directly measure the amount of radiated power. We demonstrate how these principles can be used to build a practical primary standard.

  13. Radiometry of water turbidity measurements

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    An examination of a number of measurements of turbidity reported in the literature reveals considerable variability in the definitions, units, and measurement techniques used. Many of these measurements differ radically in the optical quantity measured. The radiometric basis of each of the most common definitions of turbidity is examined. Several commercially available turbidimeters are described and their principles of operation are evaluated radiometrically. It is recommended that the term turbidity be restricted to measurements based upon the light scattered by the sample with that scattered by standard suspensions of known turbidity. It is also recommended that the measurement procedure be standardized by requiring the use of Formazin as the turbidity standardizing material and that the Formazin Turbidity Unit (FTU) be adopted as the standard unit of turbidity.

  14. Modelling Heart Rate Kinetics

    PubMed Central

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  15. Degradation Kinetics of VX

    SciTech Connect

    Gary S. Groenewold

    2010-12-01

    O-ethyl S-(2-diisopropylaminoethyl)phosphonothiolate (VX) is the most toxic of the conventional chemical warfare agents. It is a persistent compound, an attribute derived from its relative involatility and slow rates of hydrolysis. These properties suggest that VX can linger in an exposed environment for extended periods of time long after the air has cleared. Concern over prolonged risk from VX exposure is exacerbated by the fact that it poses a dermal contact hazard. Hence a detailed understanding of volatilization rates, and degradation pathways and rates occurring in various environments is needed. Historically, volatilization has not been considered to be an important mechanism for VX depletion, but recent studies have shown that a significant fraction of VX may volatilize, depending on the matrix. A significant body of research has been conducted over the years to unravel VX degradation reaction pathways and to quantify the rates at which they proceed. Rigorous measurement of degradation rates is frequently difficult, and thus in many cases the degradation of VX has been described in terms of half lives, while in fewer instances rate constants have been measured. This variable approach to describing degradation kinetics reflects uncertainty regarding the exact nature of the degradation mechanisms. In this review, rates of VX degradation are compared on the basis of pseudo-first order rate constants, in order to provide a basis for assessing likelihood of VX persistence in a given environment. An issue of specific concern is that one VX degradation pathway produces S-2-(diisopropylaminoethyl) methylphosphonothioic acid (known as EA2192), which is a degradation product that retains much of the original toxicity of VX. Consequently degradation pathways and rates for EA2192 are also discussed.

  16. Modelling heart rate kinetics.

    PubMed

    Zakynthinaki, Maria S

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  17. Chemical kinetics of geminal recombination

    SciTech Connect

    Levin, P.P.; Khudyakov, I.V.; Brin, E.F.; Kuz'min, V.A.

    1988-09-01

    The kinetics of geminal recombination of triplet radical pairs formed in photoreduction of benzophenone by p-cresol in glycerin solution was studied by pulsed laser photolysis. The experiments were conducted at several temperatures and in a constant magnetic field of H = 0.34 T. The parameters in six kinetic equations describing geminal recombination were determined with a computer. The values of the sums of the squares of the residual deviations of the approximation were obtained. It was found that the kinetics are best described by the functions proposed by Noyes and Shushin. It was shown that it is necessary to use the mutual diffusion coefficient of the radicals, which is significantly smaller than the sum of the estimations of the experimental values of the radical diffusion coefficients, for describing the kinetics due to the correlations of the molecular motions of the radicals in the cage.

  18. Kinetic Equations for Economic Sciences

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Brugna, C.

    2010-04-01

    We discuss, both from the analytical and the numerical point of view, a kinetic model for wealth distribution in a simple market economy which models, besides binary trade interactions, also taxation and redistribution of collected wealth.

  19. Computer Simulation in Chemical Kinetics

    ERIC Educational Resources Information Center

    Anderson, Jay Martin

    1976-01-01

    Discusses the use of the System Dynamics technique in simulating a chemical reaction for kinetic analysis. Also discusses the use of simulation modelling in biology, ecology, and the social sciences, where experimentation may be impractical or impossible. (MLH)

  20. Kinetic models of hydrocarbon generation

    SciTech Connect

    Burnham, A.K.; Sweeney, J.J.

    1990-10-25

    We are carrying out an integrated program of laboratory experiments, kinetics modeling, and basin thermal history modeling in order to better understand the natural breakdown of organic matter into oil and gas. Our kinetic models of organic maturation are being used to better understand the coupling of generation, cracking, expulsion, and overpressuring in both the laboratory and geologic setting. Currently we are carrying out chemical experiments and developing more efficient chemical kinetic modeling schemes to obtain a better understanding of expulsion and cracking from lean source rocks and from hydrogen-poor (terrestrial) organic source material. We verify the chemical kinetic models by integrating them with thermal history models of hydrocarbon-producing sediments and comparing predicted and observed characteristics of the hydrocarbon occurrence in a variety of settings. We intend to apply this approach to evaluate the potential for deep gas resources in the Pacific Northwest and in the Louisiana Gulf Coast. 11 refs., 4 figs.

  1. Kinetic parameters from thermogravimetric analysis

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  2. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  3. A Kinetic-fluid Model

    SciTech Connect

    First Author = C.Z. Cheng; Jay R. Johnson

    1998-07-10

    A nonlinear kinetic-fluid model for high-beta plasmas with multiple ion species which can be applied to multiscale phenomena is presented. The model embeds important kinetic effects due to finite ion Larmor radius (FLR), wave-particle resonances, magnetic particle trapping, etc. in the framework of simple fluid descriptions. When further restricting to low frequency phenomena with frequencies less than the ion cyclotron frequency the kinetic-fluid model takes a simpler form in which the fluid equations of multiple ion species collapse into single-fluid density and momentum equations and a low frequency generalized Ohm's law. The kinetic effects are introduced via plasma pressure tensors for ions and electrons which are computed from particle distribution functions that are governed by the Vlasov equation or simplified plasma dynamics equations such as the gyrokinetic equation. The ion FLR effects provide a finite parallel electric field, a perpendicular velocity that modifies the ExB drift, and a gyroviscosity tensor, all of which are neglected in the usual one-fluid MHD description. Eigenmode equations are derived which include magnetosphere-ionosphere coupling effects for low frequency waves (e.g., kinetic/inertial Alfven waves and ballooning-mirror instabilities).

  4. Kinetic Modeling of Divertor Plasma

    NASA Astrophysics Data System (ADS)

    Ishiguro, Seiji; Hasegawa, Hiroki; Pianpanit, Theerasarn

    2015-11-01

    Particle-in-Cell (PIC) simulation with the Monte Carlo collisions and the cumulative scattering angle coulomb collision can present kinetic dynamics of divertor plasmas. We are developing two types of PIC codes. The first one is the three dimensional bounded PIC code where three dimensional kinetic dynamics of blob is studied and current flow structures related to sheath formation are unveiled. The second one is the one spatial three velocity space dimensional (1D3V) PIC code with the Monte Carlo collisions where formation of detach plasma is studied. First target of our research is to construct self-consistent full kinetic simulation modeling of the linear divertor simulation experiments. This work is performed with the support and under the auspices of NIFS Collaboration Research program (NIFS15KNSS059, NIFS14KNXN279, and NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Science at NINS.

  5. Stochastic Parallel PARticle Kinetic Simulator

    Energy Science and Technology Software Center (ESTSC)

    2008-07-01

    SPPARKS is a kinetic Monte Carlo simulator which implements kinetic and Metropolis Monte Carlo solvers in a general way so that they can be hooked to applications of various kinds. Specific applications are implemented in SPPARKS as physical models which generate events (e.g. a diffusive hop or chemical reaction) and execute them one-by-one. Applications can run in paralle so long as the simulation domain can be partitoned spatially so that multiple events can be invokedmore » simultaneously. SPPARKS is used to model various kinds of mesoscale materials science scenarios such as grain growth, surface deposition and growth, and reaction kinetics. It can also be used to develop new Monte Carlo models that hook to the existing solver and paralle infrastructure provided by the code.« less

  6. Nuclear Reactor Kinetics and Control.

    Energy Science and Technology Software Center (ESTSC)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computingmore » Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)« less

  7. Adsorption kinetics of diatomic molecules.

    PubMed

    Burde, Jared T; Calbi, M Mercedes

    2014-05-01

    The adsorption dynamics of diatomic molecules on solid surfaces is examined by using a Kinetic Monte Carlo algorithm. Equilibration times at increasing loadings are obtained, and explained based on the elementary processes that lead to the formation of the adsorbed film. The ability of the molecules to change their orientation accelerates the overall uptake and leads to competitive kinetic behaviour between the different orientations. The dependence of the equilibration time on coverage follows the same decreasing trend obtained experimentally for ethane adsorption on closed-end carbon nanotube bundles. The exploration of molecule-molecule interaction effects on this trend provides relevant insights to understand the kinetic behaviour of other species, from simpler molecules to larger polyatomic molecules, adsorbing on surfaces with different binding strength. PMID:24654004

  8. Kinetic study on biomass gasification

    SciTech Connect

    Bingyan, X.; Chuangzhi, W.; Zhengfen, L.; Guang, Z.X. )

    1992-09-01

    An experimental apparatus, with the features of fast heating rate and continuous record of reaction parameters, was developed to study kinetics of fast pyrolysis. The temperature effects, at a range of 400 C to 900 C, on pyrolysis rate, products profile, gas quality and quantity, and so on, were studied and the results are listed and analyzed. The effect of secondary reaction of gas phase at 700 C was tested and the regression result is expressed in an experimental formula. Based on the experimental results, the three-stage-reaction mechanism module is suggested. The kinetic expression to calculate gas formation rate is concluded as: d{alpha}/dt = A exp({minus}E/RT)(1 {minus} {alpha}){sup n}. The kinetic parameters of A, E, and n at different temperatures are given in the paper.

  9. Kinetic theory of vehicular traffic

    NASA Astrophysics Data System (ADS)

    Iannini, M. L. L.; Dickman, Ronald

    2016-02-01

    We review the kinetic theory of traffic proposed by Prigogine and Herman in which the Boltzmann equation is adapted to vehicular traffic. The kinetic equation and its solution are discussed, and a novel distribution of desired velocities that is more suitable for describing real traffic conditions is analyzed. We also study the stationary velocity distribution at the transition between individual and collective flow patterns. At this transition, the distribution splits into a smoothly varying regular part, in which vehicles have nonzero velocities, and a singular one, corresponding to stopped vehicles. Computational methods for obtaining the stationary velocity distribution and the full space-time evolution of the vehicular distribution are explained.

  10. Chemical kinetics and combustion modeling

    SciTech Connect

    Miller, J.A.

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  11. Chemical Kinetics Laboratory Discussion Worksheet

    PubMed Central

    Demoin, Dustin Wayne; Jurisson, Silvia S.

    2013-01-01

    A laboratory discussion worksheet and its answer key provide instructors and students a discussion model to further the students’ understanding of chemical kinetics. This discussion worksheet includes a section for students to augment their previous knowledge about chemical kinetics measurements, an initial check on students’ understanding of basic concepts, a group participation model where students work on solving complex-conceptual problems, and a conclusion to help students connect this discussion to their laboratory or lecture class. Additionally, the worksheet has a detailed solution to a more advanced problem to help students understand how the concepts they have put together relate to problems they will encounter during later formal assessments. PMID:24092948

  12. Solving Simple Kinetics without Integrals

    ERIC Educational Resources Information Center

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  13. Macromolecular Crowding Modulates Actomyosin Kinetics.

    PubMed

    Ge, Jinghua; Bouriyaphone, Sherry D; Serebrennikova, Tamara A; Astashkin, Andrei V; Nesmelov, Yuri E

    2016-07-12

    Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase. PMID:27410745

  14. Reciprocal relations between kinetic curves

    NASA Astrophysics Data System (ADS)

    Yablonsky, G. S.; Gorban, A. N.; Constales, D.; Galvita, V. V.; Marin, G. B.

    2011-01-01

    We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, \\dot{x}=Kx , the kinetic operator K is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, exp(Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if we start the process from the i-th pure state and measure the probability pj(t) of the j-th state (j≠i), and, similarly, measure pi(t) for the process, which starts at the j-th pure state, then the ratio of these two probabilities pj(t)/pi(t) is constant in time and coincides with the ratio of the equilibrium probabilities. We study similar and more general reciprocal relations between the kinetic curves. The experimental evidence provided as an example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer excellent confirmation within the experimental error.

  15. Mass Conservation and Chemical Kinetics.

    ERIC Educational Resources Information Center

    Barbara, Thomas M.; Corio, P. L.

    1980-01-01

    Presents a method for obtaining all mass conservation conditions implied by a given mechanism in which the conditions are used to simplify integration of the rate equations and to derive stoichiometric relations. Discusses possibilities of faulty inference of kinetic information from a given stoichiometry. (CS)

  16. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  17. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  18. Synchronous Parallel Kinetic Monte Carlo

    SciTech Connect

    Mart?nez, E; Marian, J; Kalos, M H

    2006-12-14

    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm provides an exact generalization of any standard serial kMC model and is trivially implemented in parallel architectures. We demonstrate the mathematical validity and parallel performance of the method by solving several well-understood problems in diffusion.

  19. Disco Dancing and Kinetic Theory

    ERIC Educational Resources Information Center

    Karakas, Mehmet

    2010-01-01

    This paper provides an example of an innovative science activity used in a science methods course for future elementary teachers at a small university in northeastern Turkey. The activity aims to help prospective elementary teachers understand kinetic-molecular theory in a simple way and to expose these preservice teachers to an innovative…

  20. Efficiency in nonenzymatic kinetic resolution.

    PubMed

    Vedejs, Edwin; Jure, Mara

    2005-06-27

    The Walden memorial at the Technical University in Riga is pictured in the frontispiece to mark the recent centennial of the Walden inversion. This is a rare public monument to key events from the first era of exploration in stereocontrolled synthesis, and may be the only such monument to use the language of organic chemistry expressed at the molecular level. The reaction of racemic substrates with chiral nucleophiles is one of many methods currently known to achieve kinetic resolution, a phenomenon that ranks as the oldest and most general approach for the synthesis of highly enantioenriched substances. The first nonenzymatic kinetic resolutions as well as the original forms of the Walden inversion were studied in the 1890s. All of these investigations were conducted within the first generation following the demonstration that carbon is tetrahedral, and provided abundant evidence that the principles and importance of enantiocontrolled syntheses were understood. However, a reliable, rapid technique to quantify results and guide the optimization process was still lacking. Many decades passed before this problem was solved by the advent of HPLC and GLPC assays on chiral supports, which stimulated explosive growth in the synthesis of nonracemic substances by kinetic resolution. The Walden monument is accessible to passers-by for hands-on inspection as well as for contemplation and learning. In a similar way, kinetic resolution is experimentally accessible and can be thought-provoking at several levels. We follow the story of kinetic resolution from the early discoveries through fascinating historical milestones and conceptual developments, and close with a focus on modern techniques that maximize efficiency. PMID:15942973

  1. Extracting kinetic information from literature with KineticRE.

    PubMed

    Freitas, Ana Alão; Costa, Hugo; Rocha, Miguel; Rocha, Isabel

    2015-01-01

    To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents. PMID:26673933

  2. Transient state kinetics tutorial using the kinetics simulation program, KINSIM.

    PubMed Central

    Wachsstock, D H; Pollard, T D

    1994-01-01

    This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-scale processes in ecology and evolution. Completion of the tutorial takes students 6-10 h. This investment is rewarded by a deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to solve everyday problems in the laboratory. PMID:7811941

  3. Kinetic models of conjugated metabolic cycles

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.

    2016-01-01

    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  4. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  5. Relativistic kinetic theory of magnetoplasmas

    SciTech Connect

    Beklemishev, Alexei; Nicolini, Piero; Tessarotto, Massimo

    2005-05-16

    Recently, an increasing interest in astrophysical as well as laboratory plasmas has been manifested in reference to the existence of relativistic flows, related in turn to the production of intense electric fields in magnetized systems. Such phenomena require their description in the framework of a consistent relativistic kinetic theory, rather than on relativistic MHD equations, subject to specific closure conditions. The purpose of this work is to apply the relativistic single-particle guiding-center theory developed by Beklemishev and Tessarotto, including the nonlinear treatment of small-wavelength EM perturbations which may naturally arise in such systems. As a result, a closed set of relativistic gyrokinetic equations, consisting of the collisionless relativistic kinetic equation, expressed in hybrid gyrokinetic variables, and the averaged Maxwell's equations, is derived for an arbitrary four-dimensional coordinate system.

  6. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon). PMID:22181304

  7. Kinetic theory of relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1981-01-01

    The thermalization of particle kinetic motion by binary collisions is considered for a plasma with a Boltzmann constant-temperature product approximately equal to 10 to 100 times the product of the electron mass with the square of the speed of light. At this temperature, the principal mechanism for relaxation of electron motion is via radiationless electron-electron collisions (Moller scattering). Ions are nonrelativistic, but are energetic enough so that their Coulomb scattering can be treated in the Born approximation. Relaxation times are computed and Boltzmann-equation Fokker-Planck operators are derived for the various binary-collision processes. The expression for the rate of kinetic energy exchange between electron and ion gases is derived for the case where the gases are at different temperatures.

  8. Unfolding Kinetics of Egg Protein

    NASA Astrophysics Data System (ADS)

    Sharma, Dipti

    2011-03-01

    This study explores denaturing kinetics of egg white using high resolution calorimetric technique. Fresh egg was scanned fro heating and cooling to see the thermodynamics 10circ; C to 100circ; C at different heating ramp rates varying from 1 to 20circ; C/min. An endothermic peak was found on heating scan showing denaturing of protein which was found absent at the cooling indicating the absence of any residue after heating. The denature peak shifted towards higher temperature as ramp rate increases following Arrhenius behavior and shows an activated denaturing kinetics of the egg protein. This peak was also compared with the water to avoid water effects. Behavior of denaturing peak can be explained in terms of Arrhenius theory.

  9. Population kinetics in dense plasmas

    SciTech Connect

    Schlanges, M.; Bornath, T.; Prenzel, R.; Kremp, D.

    1996-07-01

    Starting from quantum kinetic equations, rate equations for the number densities of the different atomic states and equations for the energy density are derived which are valid for dense nonideal plasmas. Statistical expressions are presented for the rate coefficients taking into account many-body effects as dynamical screening, lowering of the ionization energy and Pauli-blocking. Based on these generalized expressions, the coefficients of impact ionization, three-body recombination, excitation and deexcitation are calculated for nonideal hydrogen and carbon plasmas. As a result, higher ionization and recombination rates are obtained in the dense plasma region. The influence of the many-body effects on the population kinetics, including density and temperature relaxation, is shown then for a dense hydrogen plasma. {copyright} {ital 1996 American Institute of Physics.}

  10. Acetaminophen kinetics in the elderly.

    PubMed

    Divoll, M; Abernethy, D R; Ameer, B; Greenblatt, D J

    1982-02-01

    Thirty-two healthy men and women, 23 to 78 yr old, received single 650-mg intravenous doses of acetaminophen and the drug's kinetics were determined from multiple plasma samples drawn over the next 8 to 12 hr. Acetaminophen elimination half-life averaged 2.7 hr (range, 1.9 to 4.3 hr) and was not related to age or sex. Volume of distribution (corrected for weight) was larger in men than in women (0.99 and 0.86 l/kg) and declined with age in both sexes. This probably reflects increased fat per kilogram body weight in women and in the elderly, together with incomplete distribution of this nonlipophilic drug into body fat. Acetaminophen clearance tended to decline with age in both sexes, but differences were of borderline significance. On the basis of kinetics data alone, adjustment of acetaminophen dosage for the elderly is generally not necessary. PMID:7056022

  11. On fast reactor kinetics studies

    SciTech Connect

    Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.

    2012-07-01

    The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

  12. Kinetic model of HIV infection

    SciTech Connect

    Zhdanov, V. P.

    2007-10-15

    Recent experiments clarifying the details of exhaustion of CD8 T cells specific to various strains of human immunodeficiency virus (HIV) are indicative of slow irreversible (on a one-year time scale) deterioration of the immune system. The conventional models of HIV kinetics do not take this effect into account. Removing this shortcoming, we show the likely influence of such changes on the escape of HIV from control of the immune system.

  13. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  14. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R. T.; Buksa, John; Houts, Michael

    1995-09-15

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  15. Kinetic studies of ICF implosions

    SciTech Connect

    Kagan, Grigory; Herrmann, H. W.; Kim, Y. -H.; Schmitt, M. J.; Hakel, P.; Hsu, S. C.; Hoffman, N. M.; Svyatsky, D.; Baalrud, S. D.; Daligault, J. O.; Sio, H.; Zylstra, A. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Albright, B. J.; Taitano, W.; Kyrala, G. A.; Bradley, P. A.; Huang, C. -K.; McDevitt, C. J.; Chacon, L.; Srinivasan, B.; McEvoy, A. M.; Joshi, T. R.; Adams, C. S.

    2016-01-01

    Here, kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.

  16. Kinetic studies of ICF implosions

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Herrmann, H. W.; Kim, Y.-H.; Schmitt, M. J.; Hakel, P.; Hsu, S. C.; Hoffman, N. M.; Svyatsky, D.; Baalrud, S. D.; Daligault, J. O.; Sio, H.; Zylstra, A. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Albright, B. J.; Taitano, W.; Kyrala, G. A.; Bradley, P. A.; Huang, C.-K.; McDevitt, C. J.; Chacon, L.; Srinivasan, B.; McEvoy, A. M.; Joshi, T. R.; Adams, C. S.

    2016-05-01

    Kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.

  17. Multiflow approach to plasma kinetics

    SciTech Connect

    Ignatov, A. M.

    2015-10-15

    Instead of the commonly used Vlasov equation, one is able to treat kinetic phenomena in collisionless plasma with the help of the infinite set of hydrodynamic equations. The present paper deals with the linear approximation of multiflow hydrodynamics. It is shown that single-particle and collective excitations analogous to Van Kampen waves are explicitly separated. Expressions for the energy of all eigenmodes are obtained.

  18. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. PMID:27116341

  19. Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics

    SciTech Connect

    Waltz, R. E.; Deng Zhao

    2013-01-15

    A nonlinear theory of drift-cyclotron kinetics (termed cyclo-kinetics here) is formulated to test the breakdown of the gyro-kinetic approximations. Six dimensional cyclo-kinetics can be regarded as an extension of five dimensional gyro-kinetics to include high-frequency cyclotron waves, which can interrupt the low-frequency gyro-averaging in the (sixth velocity grid) gyro-phase angle. Nonlinear cyclo-kinetics has no limit on the amplitude of the perturbations. Formally, there is no gyro-averaging when all cyclotron (gyro-phase angle) harmonics of the perturbed distribution function (delta-f) are retained. Retaining only the (low frequency) zeroth cyclotron harmonic in cyclo-kinetics recovers both linear and nonlinear gyro-kinetics. Simple recipes are given for converting continuum nonlinear delta-f gyro-kinetic transport simulation codes to cyclo-kinetics codes by retaining (at least some) higher cyclotron harmonics.

  20. Kinetic Algorithms for Harbour Management

    NASA Astrophysics Data System (ADS)

    Gold, C. M.; Goralski, R. I.

    2012-07-01

    Modern harbour management for a busy port needs to resolve a variety of simultaneous problems. Harbour traffic may be busy and the waterways congested, both by the major shipping and by the attendant harbour tugs. The harbour channel may be narrow and tortuous, and rapidly changing tides may require frequent course adjustments. Navigation aids must be clearly specified and immediately identifiable, in order to permit safe passage for the vessels. This requires a GIS with attributes not easily available with traditional products. The GeoVS system is a kinetic GIS with full three-dimensional visualisation, so that ships, bathymetry and landscape may be viewed in a form that is immediately understandable to both harbour pilots and the harbour authority. The system is kinetic because the data structures used to preserve the topological relationships between ships, seafloor and coastline are able to be maintained on a real-time basis, taking account of ship movement recorded on the compulsory AIS (Automatic Information System) beacons. Maintenance of this real-time topology allows for easy detection of potential collisions, as well as real-time bathymetric estimations, necessary to prevent ship grounding in highly tidal environments. The system, based on previous research into kinetic Voronoi diagrams, as well as development of a completely new graphical engine, is now in commercial production, where its advantages over simpler twodimensional models without automatic collision and grounding detection are becoming evident. Other applications are readily envisaged, and will be addressed in the near future.

  1. Nucleation and growth transformation kinetics

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, V.; Baram, J.

    1995-03-01

    As a result of the reassessment of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the kinetics of nucleation and growth transformations, an integral-equation formulation has been developed instead of the well-known and widely used Avrami equation. The presented formulation considers interfacial and diffusional growths, in one, two, and three dimensions, with both time-dependent and time-invariant nucleation and growth rates. The integral-equation model corrects reported inadequacies of the KJMA theory when applied in numerous experiments and various solid-state transformations. It is shown that in the example cases examined in this paper, crystallization from the amorphous state in melt-spun ribbons, isothermal aging of CuAlZn, pearlitic transition in an eutectoid steel, and crystallization in a PEKK polymer, the thermodynamic and kinetic interpretation and parameters extracted from best fits of the Avrami equations to the experimental data are erroneous. The KJMA formulation is a simplification of the real physical conditions. The main limitation of the new model is that almost all the integral equations representing the kinetics of solid-state transformations have no analytical solutions.

  2. Oxidation kinetics of aluminum diboride

    SciTech Connect

    Whittaker, Michael L.; Sohn, H.Y.; Cutler, Raymond A.

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  3. Oxidation kinetics of aluminum diboride

    NASA Astrophysics Data System (ADS)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  4. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  5. Kinetics of photoacclimation in corals.

    PubMed

    Anthony, Kenneth R N; Hoegh-Guldberg, Ove

    2003-01-01

    Traditional models describing the relationship between photosynthesis (P) and irradiance (I) do not account for photoacclimation to short-term variation in irradiance. Here we develop and test a model that predicts the rate of photosynthesis under fluctuating irradiances at the scale of days to weeks. Using oxygen respirometry, we measured the rates of change in the P-I model parameters P(max) (maximum rate of gross photosynthesis) and I(k) (sub-saturation irradiance) of the photo-symbiotic coral Turbinaria mesenterina (Lamarck) following large and small increases and decreases in growth irradiance. We analyse the behaviour of the dynamic P-I model in turbid-water conditions using a dataset of 3-month continuous irradiance as the input variable. In response to upward or downward changes in experimental growth irradiance, I(k) values decreased or increased exponentially, reaching new and stable levels within 5-10 days. I(k) responded 4 times stronger than P(max) to changes in growth irradiance. The kinetics of I(k) did not show hysteresis, and changed in similar ways when irradiance was increased or decreased in small or large amounts. This suggests that mechanisms associated with photo-protection during increases in irradiance, and the maximisation of photosynthetic efficiency during decreases in irradiance, are equally potent. On the scale of months, the dynamic P-I model did not predict higher rates of photosynthesis than the static P-I model, but buffered the variation in photosynthesis during periods of reduced irradiance. Fourier analysis indicated that the kinetics of I(k) closely matches the main periodicities in daily irradiance (1-2 weeks). The recorded kinetics of photoacclimation in the Turbinaria-zooxanthella symbiosis is comparable to that of free-living phytoplankton and faster than that of higher plants. PMID:12647175

  6. Kinetic Modeling of Microbiological Processes

    SciTech Connect

    Liu, Chongxuan; Fang, Yilin

    2012-08-26

    Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

  7. Damage kinetics in silicon carbide

    NASA Astrophysics Data System (ADS)

    Pickup, I. M.; Barker, A. K.

    1998-07-01

    Three silicon carbides of similar density and grain size but manufactured via different routes (reaction bonded, pressureless sintered and pressure assisted densification) have been investigated. High speed photography in conjunction with Hopkinson pressure bar compression tests has revealed that not only does the manufacturing route confer a significant difference in failure kinetics but also modifies the phenomenology of failure. Plate impact experiments using lateral and longitudinal manganin stress gauges have been used to study shear strength behaviour of damaged material. Failure waves have been observed in all three materials and characteristically different damaged material shear strength relationships with pressure have been observed.

  8. Variance Anisotropy in Kinetic Plasmas

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi N.; Oughton, Sean; Matthaeus, William H.; Wan, Minping

    2016-06-01

    Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solar wind observations.

  9. Freezing Kinetics in Overcompressed Water

    SciTech Connect

    Bastea, M; Bastea, S; Reaugh, J; Reisman, D

    2006-09-27

    We report high pressure dynamic compression experiments of liquid water along a quasi-adiabatic path leading to the formation of ice VII. We observe dynamic features resembling Van der Waals loops and find that liquid water is compacted to a metastable state close to the ice density before the onset of crystallization. By analyzing the characteristic kinetic time scale involved we estimate the nucleation barrier and conclude that liquid water has been compressed to a high pressure state close to its thermodynamic stability limit.

  10. Collisions in Chiral Kinetic Theory.

    PubMed

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  11. Kinetic Profiles in NSTX Plasmas

    SciTech Connect

    R.E. Bell; B.P. LeBlanc; C. Bourdelle; D.R. Ernst; E.D. Fredrickson; D.A. Gates; J.C. Hosea; D.W. Johnson; S.M. Kaye; R. Maingi; S. Medley; J.E. Menard; D. Mueller; M. Ono; F. Paoletti; M. Peng; S.A. Sabbagh; D. Stutman; D.W. Swain; E.J. Synakowski; and J.R. Wilson

    2001-07-10

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio (R/a approximately 1.3) device with auxiliary heating from neutral-beam injection (NBI) and high-harmonic fast-wave heating (HHFW). Typical NSTX parameters are R(subscript ''0'') = 85 cm, a = 67 cm, I(subscript ''p'') = 0.7-1.4 MA, B(subscript ''phi'') = 0.25-0.45 T. Three co-directed deuterium neutral-beam sources have injected P(subscript ''NB'') less than or equal to 4.7 MW. HHFW plasmas typically have delivered P(subscript ''RF'') less than or equal to 3 MW. Important to the understanding of NSTX confinement are the new kinetic profile diagnostics: a multi-pulse Thomson scattering system (MPTS) and a charge-exchange recombination spectroscopy (CHERS) system. The MPTS diagnostic currently measures electron density and temperature profiles at 30 Hz at ten spatial locations. The CHERS system has recently become available to measure carbon ion temperature and toroidal flow at 17 radial positions spanning the outer half of the minor radius with 20 msec time resolution during NBI. Experiments conducted during the last year have produced a wide range of kinetic profiles in NSTX. Some interesting examples are presented below.

  12. Kinetically guided colloidal structure formation

    PubMed Central

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The self-organization of colloidal particles is a promising approach to create novel structures and materials, with applications spanning from smart materials to optoelectronics to quantum computation. However, designing and producing mesoscale-sized structures remains a major challenge because at length scales of 10–100 μm equilibration times already become prohibitively long. Here, we extend the principle of rapid diffusion-limited cluster aggregation (DLCA) to a multicomponent system of spherical colloidal particles to enable the rational design and production of finite-sized anisotropic structures on the mesoscale. In stark contrast to equilibrium self-assembly techniques, kinetic traps are not avoided but exploited to control and guide mesoscopic structure formation. To this end the affinities, size, and stoichiometry of up to five different types of DNA-coated microspheres are adjusted to kinetically control a higher-order hierarchical aggregation process in time. We show that the aggregation process can be fully rationalized by considering an extended analytical DLCA model, allowing us to produce mesoscopic structures of up to 26 µm in diameter. This scale-free approach can easily be extended to any multicomponent system that allows for multiple orthogonal interactions, thus yielding a high potential of facilitating novel materials with tailored plasmonic excitation bands, scattering, biochemical, or mechanical behavior. PMID:27444018

  13. Conformational kinetics of aliphatic tails

    NASA Astrophysics Data System (ADS)

    Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi

    The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.

  14. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  15. Kinetics of Propargyl Radical Dissociation.

    PubMed

    Klippenstein, Stephen J; Miller, James A; Jasper, Ahren W

    2015-07-16

    Due to the prominent role of the propargyl radical for hydrocarbon growth within combustion environments, it is important to understand the kinetics of its formation and loss. The ab initio transition state theory-based master equation method is used to obtain theoretical kinetic predictions for the temperature and pressure dependence of the thermal decomposition of propargyl, which may be its primary loss channel under some conditions. The potential energy surface for the decomposition of propargyl is first mapped at a high level of theory with a combination of coupled cluster and multireference perturbation calculations. Variational transition state theory is then used to predict the microcanonical rate coefficients, which are subsequently implemented within the multiple-well multiple-channel master equation. A variety of energy transfer parameters are considered, and the sensitivity of the thermal rate predictions to these parameters is explored. The predictions for the thermal decomposition rate coefficient are found to be in good agreement with the limited experimental data. Modified Arrhenius representations of the rate constants are reported for utility in combustion modeling. PMID:25871530

  16. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  17. Kinetic Chain Rehabilitation: A Theoretical Framework

    PubMed Central

    Sciascia, Aaron; Cromwell, Robin

    2012-01-01

    Sequenced physiologic muscle activations in the upper and lower extremity result in an integrated biomechanical task. This sequencing is known as the kinetic chain, and, in upper extremity dominant tasks, the energy development and output follows a proximal to distal sequencing. Impairment of one or more kinetic chain links can create dysfunctional biomechanical output leading to pain and/or injury. When deficits exist in the preceding links, they can negatively affect the shoulder. Rehabilitation of shoulder injuries should involve evaluation for and restoration of all kinetic chain deficits that may hinder kinetic chain function. Rehabilitation programs focused on eliminating kinetic chain deficits, and soreness should follow a proximal to distal rationale where lower extremity impairments are addressed in addition to the upper extremity impairments. A logical progression focusing on flexibility, strength, proprioception, and endurance with kinetic chain influence is recommended. PMID:22666599

  18. Kinetic undercooling in Hele-Shaw flows

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Dias, Eduardo O.; Miranda, José A.

    2015-10-01

    A central topic in Hele-Shaw flow research is the inclusion of physical effects on the interface between fluids. In this context, the addition of surface tension restrains the emergence of high interfacial curvatures, while consideration of kinetic undercooling effects inhibits the occurrence of high interfacial velocities. By connecting kinetic undercooling to the action of the dynamic contact angle, we show in a quantitative manner that the kinetic undercooling contribution varies as a linear function of the normal velocity at the interface. A perturbative weakly nonlinear analysis is employed to extract valuable information about the influence of kinetic undercooling on the shape of the emerging fingered structures. Under radial Hele-Shaw flow, it is found that kinetic undercooling delays, but does not suppress, the development of finger tip-broadening and finger tip-splitting phenomena. In addition, our results indicate that kinetic undercooling plays a key role in determining the appearance of tip splitting in rectangular Hele-Shaw geometry.

  19. Boltzmann kinetic equation for filtered fluid turbulence.

    PubMed

    Girimaji, Sharath S

    2007-07-20

    We develop a kinetic Boltzmann equation for describing filtered fluid turbulence applicable for continuum and noncontinuum effects. The effect of unresolved turbulent motion on the resolved distribution function is elucidated and closure modeling issues of kinetic Boltzmann and Navier-Stokes descriptions are reconciled. This could pave the way for unifying turbulence modeling at kinetic and continuum levels and the development of numerical methods that are valid over a wide range of flow physics. PMID:17678288

  20. Spectral method for a kinetic swarming model

    SciTech Connect

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-04-28

    Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.

  1. Spectral method for a kinetic swarming model

    NASA Astrophysics Data System (ADS)

    Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien

    2015-09-01

    In this paper we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. We observe that the kinetic model captures key features such as vortex formation and traveling waves.

  2. Kinetic Alfven waves on auroral field lines

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1984-01-01

    It is suggested on the basis of several observations of Alfven waves near auroral arcs that kinetic Alfven waves play a significant role in the process of particle acceleration. The characteristic properties of kinetic Alfven waves are summarized according to the theoretical classifications provided by Hasegawa and Mima (1979). The resonant coupling of large-scale surface waves to kinetic Alfven waves is also discussed. It is shown that kinetic Alfven waves can explain observations of what have previously been known as 'electrostatic' shocks.

  3. A linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.; Firszt, F.; Pelzl, J.; Ludwig, A.; Marasek, A.

    2014-03-01

    In this work we demonstrate the ability to measure the effective infrared absorption coefficient in semiconductors by a photothermal infrared radiometry (PTR) experiment, and its correlation with the Hall carrier concentration. The amplitude and phase of the PTR signal were measured for Cd1-xMgxSe mixed crystals, with the magnesium content varying from x = 0 to x = 0.15. The PTR experiments were performed at room temperature in thermal reflection and transmission configurations using a mercury cadmium telluride infrared detector. The PTR data were analyzed in the frame of the one-dimensional heat transport model for infrared semi-transparent crystals. Based on the variation of the normalized PTR phase and amplitude on the modulation frequency, the thermal diffusivity and the effective infrared absorption coefficient were obtained by fitting the theoretical expression to experimental data and compared with the Hall carrier concentration determined by supplementary Hall experiments. A linear relationship between the effective infrared absorption coefficient and the Hall carrier concentration was found which is explained in the frame of the Drude theory. The uncertainty of the measured slope was 6%. The value of the slope depends on (1) the sample IR absorption spectrum and (2) the spectral range of the infrared detector. It has to be pointed out that this method is suitable for use in an industrial environment for a fast and contactless carrier concentration measurement. This method can be used for the characterization of other semiconductors after a calibration procedure is carried out. In addition, the PTR technique yields information on the thermal properties in the same experiment.

  4. The Kinetic Drawing System: A Review and Integration of the Kinetic Family and School Drawing Techniques.

    ERIC Educational Resources Information Center

    Knoff, Howard M.; Prout, H. Thompson

    1985-01-01

    Presents the Kinetic Drawing System as a logical integration of the Kinetic Family Drawing and Kinetic School Drawing techniques. Reviews the literature of these two projective techniques and provides a rationale and process toward their combination into a single approach. (LLL)

  5. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  6. CMD kinetics and regenerative medicine

    PubMed Central

    Anjamrooz, Seyed Hadi

    2016-01-01

    The author’s theory of the cell memory disc (CMD) offers a radical and holistic picture of the cell from both functional and structural perspectives. Despite all of the attention that has been focused on different regenerative strategies, several serious CMD-based obstacles still remain that make current cell therapies inherently unethical, harmful, and largely ineffective from a clinical viewpoint. Accordingly, unless there is a real breakthrough in finding an alternative or complementary approach to overcome these barriers, all of the discussion regarding cell-based therapies may be fruitless. Hence, this paper focuses on the issue of CMD kinetics in an attempt to provide a fresh perspective on regenerative medicine. PMID:27186287

  7. Kinetically modified nonminimal chaotic inflation

    NASA Astrophysics Data System (ADS)

    Pallis, Constantinos

    2015-06-01

    We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the ϕn potential with 2 ≤n ≤6 . We show that the coexistence of a nonminimal coupling to gravity fR=1 +cRϕn /2 with a kinetic mixing of the form fK=cKfRm can accommodate inflationary observables favored by the Bicep2/Keck Array and Planck results for 0 ≤m ≤4 and 2.5 ×10-4≤rR K=cR/cKn /4≤1 , where the upper limit is not imposed for n =2 . Inflation can be attained for sub-Planckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.

  8. Katrina Kinetics: The Physician Supply.

    PubMed

    Heckle, Mark R; Askari, Raza; Morsy, Mohamed; Ibebuogu, Uzoma N

    2016-01-01

    In the aftermath of Hurricane Katrina 10 years ago, acute changes were recognized and reported; acute kinetic destruction and desperation. Physicians performed heroically, but after the flood and the closing of hospitals, most left at least briefly. The chronic recovery began with spirit, but was uncharted and unplanned with the recognition that individual decisions were a necessity. The documentation of physician numbers of practicing doctors, residents and fellows, from the AMA as related to geography, population, and other circumstances tells an additional story of renewal, more objectively without the hype. The fall and rise of the physician population occurred, and was and is remarkable in its consistency, smaller than expected variations. Its effect generated promise for continuous chronic conditions of recovery and positive change. PMID:27598896

  9. Imbibition kinetics of spherical aggregates

    NASA Astrophysics Data System (ADS)

    Hébraud, Pascal; Lootens, Didier; Debacker, Alban

    The imbibition kinetics of a millimeter-sized aggregate of 300 nm diameter colloidal particles by a wetting pure solvent is studied. Three successive regimes are observed : in the first one, the imbibition proceeds by compressing the air inside the aggregate. Then, the solvent stops when the pressure of the compressed air is equal to the Laplace pressure at the meniscus of the wetting solvent in the porous aggregate. The interface is pinned and the aggregate slowly degases, up to a point where the pressure of the entrapped air stops decreasing and is controlled by the Laplace pressure of small bubbles. Depending on the curvature of the bubble, the system may then be in an unstable state. The imbibition then starts again, but with an inner pressure in equilibrium with these bubbles. This last stage leads to the complete infiltration of the aggregate.

  10. Dissolution Kinetics of Alumina Calcine

    SciTech Connect

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  11. Quantum logics and chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ivanov, C. I.

    1981-06-01

    A statistical theory of chemical kinetics is presented based on the quantum logical concept of chemical observables. The apparatus of Boolean algebra B is applied for the construction of appropriate composition polynomials referring to any stipulated arrangement of the atomic constituents. A physically motivated probability measure μ( F) is introduced on the field B of chemical observables, which considers the occurrence of the yes response of a given F ɛ B. The equations for the time evolution of the species density operators and the master equations for the corresponding number densities are derived. The general treatment is applied to a superposition of elementary substitution reactions (AB) α + C ⇄ (AC) β + B. The expressions for the reaction rate coefficients are established.

  12. Infiltration kinetics of fibrous preform

    SciTech Connect

    Yamauchi, Toshio; Nishida, Yoshinori

    1994-12-31

    The infiltration kinetics of fibrous preform was investigated in the case of aluminum matrix composites by pressure infiltration method. Pressure was applied mechanically by a punch, and the pressure change and the punch speed were measured during the infiltration of molten aluminum into SiC whisker preforms. To analyze the correlation between applied pressure and infiltration front in the preform, the distribution of hardness along the infiltration direction in the composites was measured and the distribution of volume fraction was calculated from the hardness. A theoretical expression is derived to describe fluid flow in the preform during the infiltration, on the condition that the pressure on the preform surface starts to rise from zero and when the applied pressure exceeds the compressive strength of preform, deformation starts. The starting point of deformation and the distribution of volume fraction in the composites can be calculated by the theory and proved by experiments.

  13. Kinetic modelling of mitochondrial translation.

    PubMed

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    Mitochondrial genome contains 13 protein coding genes, all being part of the oxidative phosphorylation complexes. The process of translation of these protein coding mRNAs in mitochondrial matrix is a good miniature model of translation in cytoplasm. In this work, we have simulated three phases of mitochondrial translation viz. initiation, elongation and termination (including ribosome recycling). The kinetic equations for these phases have been deduced based on the information available in literature. Various factors involved in the process have been included explicitly. Kinetic simulation was done using Octave, open source software. Scripts were written individually for each phase. Initiation begins with mitoribosome, mRNA, fMet-tRNA and initiation factors. The final product of the initiation script, the initiation complex, was introduced as the start point in the successive step, i.e. elongation. Elongation is a particular extensive process where the various aminoacyl-tRNAs already present in the matrix check for matching with the triplet codon in A-site of mitoribosome. This script consists of two parts: one with the time behaviour of the factors involved in the molecular process (using ordinary differential equation solver) and the other including the reading of triplet codon on the mRNA and incorporating the corresponding aminoacyl-tRNA, and then at each step elongating the peptide chain (using loops and conditions). The peptide chain thus formed in the elongation step (in the loops and conditions segment) was released in the termination step. This was followed by mitoribosome recycling where the mitoribosome reached the native state and was ready for the next cycle of translation. PMID:24028553

  14. Clobazam kinetics in the elderly.

    PubMed Central

    Greenblatt, D J; Divoll, M; Puri, S K; Ho, I; Zinny, M A; Shader, R I

    1981-01-01

    1 The effects of age and sex on the disposition of clobazam (CBZ), a 1.5-benzodiazepine derivative, were evaluated in a series of 29 healthy volunteers aged 18 to 72 years, who ingested single 20 mg oral doses. CBZ kinetics were determined from multiple plasma concentrations measured during 7 days after the dose. 2 CBZ was rapidly absorbed, with peak levels reached an average of 1.5 h after dosing (range 0.5--2.5 h). Mean absorption half-life was 19.7 min. Absorption kinetics were not influenced by age of sex. 3 Elimination half-life ranged from 11 to 77 h, and was significantly longer in elderly v young males (48 v 17 h, P less than 0.01). In women, half-life also increased with age, but differences between young and elderly women were less striking (31 v 49 h, P less than 0.05). 4 Volume of distribution (Vd) was influenced by age and sex. Vd became larger with age regardless of sex, and within each age group was larger in women than in men. Total clearance was unrelated to age in women, but declined significantly with age in men (P less than 0.01). 5 The mean free fraction for CBZ in plasma was 11.5% (range 8.6--15.0%), and tended to increase with age, partly due to a significant age-related decline in plasma albumin concentration (r = -0.68, P less than 0.001). Correction of Vd and clearance for individual differences in binding did not alter their relation to age and sex. 6 As in the case of other benzodiazepines biotransformed by oxidative pathways, the capacity for N-demethylation of CBZ declines with age in men, but age has a minimal effect on CBZ clearance in women. PMID:6120710

  15. Nanoparticle shape, thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Marks, L. D.; Peng, L.

    2016-02-01

    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review.

  16. Lean body mass estimation by creatinine kinetics.

    PubMed

    Keshaviah, P R; Nolph, K D; Moore, H L; Prowant, B; Emerson, P F; Meyer, M; Twardowski, Z J; Khanna, R; Ponferrada, L; Collins, A

    1994-01-01

    A new technique for estimating lean body mass (LBM) from creatinine kinetics has been developed. It is based on the principle that creatinine production is proportional to LBM and that, in the steady state, creatinine production is equal to the sum of creatinine excretion (urinary and dialytic) and metabolic degradation. This technique was applied to 17 normal subjects, 26 stable, chronic hemodialysis (HD) patients, and 71 stable, chronic peritoneal dialysis (PD) patients. In the HD group, LBM was also determined by bioimpedance in 11 patients and calculated from total body water, measured as the volume of urea distribution of a sterile urea infusion, in 15 patients. In normal subjects and in the PD group, LBM was assessed by creatinine kinetics as well as by bioimpedance, near infrared, and anthropometric techniques. In the HD patients, LBM by creatinine kinetics correlated significantly with LBM from total body water and the bioimpedance technique. There was no statistical difference between the total body water and creatinine kinetics techniques, but the bioimpedance values were systematically higher than those obtained by the kinetic technique. In the PD group and in normal volunteers, LBM values by creatinine kinetics correlated significantly with the other methods but were lower. Forty-seven percent of the HD patients and 66% of the PD patients had significantly lower LBM by creatinine kinetics than expected for their sex and age. Estimation of LBM by creatinine kinetics is proposed as a simple and convenient technique for the routine nutritional assessment of dialysis patients. PMID:8161729

  17. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    ERIC Educational Resources Information Center

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  18. Inflation Rates, Car Devaluation, and Chemical Kinetics.

    ERIC Educational Resources Information Center

    Pogliani, Lionello; Berberan-Santos, Mario N.

    1996-01-01

    Describes the inflation rate problem and offers an interesting analogy with chemical kinetics. Presents and solves the car devaluation problem as a normal chemical kinetic problem where the order of the rate law and the value of the rate constant are derived. (JRH)

  19. Microcomputer Simulation of Enzyme Kinetic Behaviour.

    ERIC Educational Resources Information Center

    Gill, R. A.

    1984-01-01

    Describes a program which simulates the kinetic behavior of a "typical" enzyme. Program objectives, background to the kinetic model used in the simulation, major program features, typical results obtained, and a note on the availability of the program (written in BASIC for Commodore microcomputer) are included. (JN)

  20. A Kinetic Chain Approach for Shoulder Rehabilitation

    PubMed Central

    McMullen, John; Uhl, Timothy L.

    2000-01-01

    Objective: To introduce an approach to shoulder rehabilitation that integrates the kinetic chain throughout the rehabilitation program while providing the theoretical rationale for this program. Background: The focus of a typical rehabilitation program is to identify and treat the involved structures. However, in activities of sport and daily life, the body does not operate in isolated segments but rather works as a dynamic unit. Recently, rehabilitation programs have emphasized closed kinetic chain exercises, core-stabilization exercises, and functional programs. These components are implemented as distinct entities and are used toward the end of the rehabilitation program. Description: Kinetic chain shoulder rehabilitation incorporates the kinetic link biomechanical model and proximal-to-distal motor-activation patterns with proprioceptive neuromuscular facilitation and closed kinetic chain exercise techniques. This approach focuses on movement patterns rather than isolated muscle exercises. Patterns sequentially use the leg, trunk, and scapular musculature to activate weakened shoulder musculature, gain active range of motion, and increase strength. The paradigm of kinetic chain shoulder rehabilitation suggests that functional movement patterns and closed kinetic chain exercises should be incorporated throughout the rehabilitation process. Clinical Advantages: The exercises in this approach are consistent with biomechanical models, apply biomechanical and motor control theory, and work toward sport specificity. The exercises are designed to stimulate weakened tissue by motion and force production in the adjacent kinetic link segments. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8. PMID:16558646

  1. Enhancing Thai Students' Learning of Chemical Kinetics

    ERIC Educational Resources Information Center

    Chairam, Sanoe; Somsook, Ekasith; Coll, Richard K.

    2009-01-01

    Chemical kinetics is an extremely important concept for introductory chemistry courses. The literature suggests that instruction in chemical kinetics is often teacher-dominated at both the secondary school and tertiary levels, and this is the case in Thailand--the educational context for this inquiry. The work reported here seeks to shift students…

  2. Chemical kinetics and oil shale process design

    SciTech Connect

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  3. Conformational Diffusion and Helix Formation Kinetics

    SciTech Connect

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  4. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  5. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  6. Center for Environmental Kinetic Synthesis (CEKA)

    SciTech Connect

    Lichtner, Peter .

    2006-06-01

    CEKA, as an Environmental Molecular Science Institute, is a joint research initiative of the National Science Foundation and U.S. Department of Energy, Biological and Environmental Research (BER). DOE collaborators are from DOE facilities at Los Alamos National Lab, Lawrence Berkeley National Lab and Pacific Northwest National Lab. The chief goals for CEKA are to 1) collect and synthesize molecular-level kinetic data into a coherent framework that can be used to predict time evolution of environmental processes over a range of temporal and spatial scales; 2) train a cohort of talented and diverse students to work on kinetic problems at multiple scales; 3) develop and promote the use of new experimental techniques in environmental kinetics; 4) develop and promote the use of new modeling tools to conceptualize reaction kinetics in environmental systems; and 5) communicate our understanding of issues related to environmental kinetics and issues of scale to the broader scientific community and to the public.

  7. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  8. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-05-05

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. Our activation energies are about 10% lower than those derived from data supplied by the University of Utah, which we consider the best previous work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  9. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  10. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  11. Kinetics of DNA tile dimerization.

    PubMed

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259

  12. Kinetic Processes in Solar Physics

    NASA Astrophysics Data System (ADS)

    MacKinnon, A.

    2008-09-01

    Non-maxwellian particle distributions seem to occur commonly in the collisionless conditions of the corona and solar wind. The most extreme examples accompany the events of solar flares, when we find ions on occasions attaining energies in the 10 GeV range. In the denser atmosphere, temperature scale lengths comparable to mean free paths will induce strongly non-maxwellian distributions. Even when there is no direct evidence for their presence, we must expect these to be present in low density plasmas. How do we account for these distributions? What roles must they play in energy transport, in equilibrium and stability, in the interpretation of diagnostics? We first review some textbook ideas on the situations that demand kinetic descriptions, and the extent to which this can be achieved via moment descriptions. We next consider some key problems in solar physics: thermal conductivity in steep temperature gradients; energy release and particle acceleration in solar flares; the origin of non-maxwellian velocity distributions in the solar wind; coherent radio emission. In each case we try to characterise the problem in a general way, then discuss some recent advances in understanding. We conclude with some comments on the implications of such distributions in situations where their presence is at first not recognised.

  13. Pyrolysis kinetics of lignocellulosic materials

    SciTech Connect

    Balci, S.; Dogu, T.; Yuecel, H. . Dept. of Chemical Engineering)

    1993-11-01

    Pyrolysis kinetics of almond and hazelnut shells and beech wood were carried out using a thermogravimetric technique. Experiments were repeated for different final pyrolysis temperatures ranging from 300 to 850 C. Approximately 90% of the pyrolysis reactions were completed up to 450 C. The initial values of the activation energy of pyrolysis reaction were found to be around 22 kcal/mol for shells of almond and hazelnut. On the other hand, initial activation energy of beech wood pyrolysis was found as 29.4 kcal/mol. Results indicated that a first-order decomposition in terms of volatile content of the reactant showed good agreement with the data only at the initial stages of the reaction. The reaction rate constant was found to decrease with reaction extent due to the changes in the chemical and physical structure of the solid. Among several models proposed, a model which predicted an increase of activation energy with reaction extent gave the best agreement with the experimental data.

  14. Splanchnic free fatty acid kinetics.

    PubMed

    Jensen, Michael D; Cardin, Sylvain; Edgerton, Dale; Cherrington, Alan

    2003-06-01

    These studies were conducted to assess the relationship between visceral adipose tissue free fatty acid (FFA) release and splanchnic FFA release. Steady-state splanchnic bed palmitate ([9,10-(3)H]palmitate) kinetics were determined from 14 sampling intervals from eight dogs with chronic indwelling arterial, portal vein, and hepatic vein catheters. We tested a model designed to predict the proportion of FFAs delivered to the liver from visceral fat by use of hepatic vein data. The model predicted that 15 +/- 2% of hepatic palmitate delivery originated from visceral lipolysis, which was greater (P = 0.004) than the 11 +/- 2% actually observed. There was a good relationship (r(2) = 0.63) between the predicted and observed hepatic palmitate delivery values, but the model overestimated visceral FFA release more at lower than at higher palmitate concentrations. The discrepancy could be due to differential uptake of FFAs arriving from the arterial vs. the portal vein or to release of FFAs in the hepatic circulatory bed. Splanchnic FFA release measured using hepatic vein samples was strongly related to visceral adipose tissue FFA release into the portal vein. This finding suggests that splanchnic FFA release is a good indicator of visceral adipose tissue lipolysis. PMID:12736157

  15. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  16. Kinetic model for erythrocyte aggregation.

    PubMed

    Bertoluzzo, S M; Bollini, A; Rasia, M; Raynal, A

    1999-01-01

    It is well known that light transmission through blood is the most widely utilized method for the study of erythrocyte aggregation. The curves obtained had been considered empirically as exponential functions. In consequence, the process becomes characterized by an only parameter that varies with all the process factors without discrimination. In the present paper a mathematical model for RBC aggregation process is deduced in accordance with von Smoluchowski's theory about the kinetics of colloidal particles agglomeration. The equation fitted the experimental pattern of the RBC suspension optical transmittance closely and contained two parameters that estimate the most important characteristics of the aggregation process separately, i.e., (1) average size of rouleaux at equilibrium and (2) aggregation rate. The evaluation of the method was assessed by some factors affecting erythrocyte aggregation, such as temperature, plasma dilutions, Dextran 500, Dextran 70 and PVP 360, at different media concentrations, cellular membrane alteration by the alkylating agent TCEA, and decrease of medium osmolarity. Results were interpreted considering the process characteristics estimated by the parameters, and there were also compared with similar studies carried out by other authors with other methods. This analysis allowed us to conclude that the equation proposed is reliable and useful to study erythrocyte aggregation. PMID:10660481

  17. The evolution of enzyme kinetic power.

    PubMed Central

    Keleti, T; Welch, G R

    1984-01-01

    Evolution of the kinetic potential of enzyme reactions is discussed. Quantitative assessment of the evolution of enzyme action has usually focused on optimization of the parametric ratio kcat./Km, which is the apparent second-order rate constant for the reaction of free substrate with free enzyme to give product. We propose that the general form kcat.[E]T/Km (where [E]T is total enzyme concentration), which is designated the 'kinetic power', is the real measure of kinetic/catalytic potential in situ. The standard paradigm of 'perfection' dictates the evolutionary maximum of 'kinetic power' to be k+s[E]T/2, where k+s is the diffusion-controlled rate constant for formation of the ES complex (and, hence, for the overall enzyme reaction). We discuss the role of protein conformational mobility in determining this state of 'perfection', via gating of substrate binding and determination of the catalytic configuration. Going beyond the level of the individual enzyme, we indicate the manner by which the organizational features of enzyme action in vivo may enhance the 'kinetic power'. Through evolutionary 'perfection' of the microenvironment, one finds that the 'kinetic power' of enzymes can be affected by alteration of [E]T as well as the unitary rate constants. At this level of complexity, we begin to realize that the 'kinetic' description of cell metabolism must be supplemented with thermodynamic concepts. PMID:6497848

  18. Kinetics of coal pyrolysis and devolatilization

    SciTech Connect

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M.

    1991-01-01

    The objective of these coordinated experimental and modeling studies is to develop an improved understanding of the kinetics of coal devolatilization which are relevant to suspension firing of powdered coal. These fundamental kinetic studies address several topics related to an improved understanding of pulverized coal combustion and includes both homogeneous and hetergeneous reactions. The principal topics include: (a) the pyrolysis and devolatilization of coal; and (b) the formation of char. Research activities include small-scale experimentation, interpretation of experimental results in terms of mechanistic understanding and the development and validation of kinetic models of fundamental processes. 6 refs., 20 figs., 7 tabs.

  19. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    SciTech Connect

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V.

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  20. Kinetics of transformation on ZIF-67 crystals

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui; Carreon, Moises A.

    2015-05-01

    Herein we report the structural evolution of ZIF-67 as a function of time at room temperature. We have identified the different stages of ZIF-67 formation (nucleation, crystallization, growth, and steady state periods) and elucidated its kinetics of transformation. It was found that the nucleation and growth of ZIF-67 crystals followed the classic Avrami's kinetics. Fundamental studies on the kinetics of formation of porous crystals demonstrated here should facilitate the preparation of MOF phases with controlled crystal size and extent of crystallinity.

  1. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE PAGESBeta

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration

  2. On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.

    2015-12-01

    The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme-substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steady state for the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis-Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis-Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis-Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration [S

  3. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  4. Kinetic versus Energetic Discrimination in Biological Copying

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2013-05-01

    We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and cannot be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the other hand, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Polγ, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway.

  5. KINETIC STUDIES OF SIMULATED POLLUTED ATMOSPHERES

    EPA Science Inventory

    The kinetics and reaction mechanisms of several important atmospheric contaminants - SO2, formaldehyde, nitrous acid, and the nitrosamines - were assessed to help quantify some key aspects of the chemistry of polluted atmospheres. The reactions and lifetimes of excited sulfur dio...

  6. Radiographic Kinetics of Sarcomatoid Renal Cell Carcinoma.

    PubMed

    Syed, Ali; Raval, Amar; Pridjian, Andrew; Birbe, Ruth; Trabulsi, Edouard J

    2016-07-01

    Renal cell carcinoma is a common entity often managed surgically with excellent survival benefits. We report a rare case of sarcomatoid renal cell carcinoma with aggressive growth kinetics after palliative resection captured radiographically. PMID:27041470

  7. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  8. The Kinetics of Isotopic Exchange Reactions.

    ERIC Educational Resources Information Center

    Logan, S. R.

    1990-01-01

    Discussed are the kinetic interactions of these chemical processes and the determination of the actual order of such reactions. Included are multiple exchange, catalytic exchange with deuterium, and depletion of the original substrate. (CW)

  9. Principle of Detailed Balance in Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2004-01-01

    The effects of the detailed balance on chemical kinetics on the chemical monomolecular triangle reactions are illustrated. A simple experiment that illustrates oscillations, limit cycles, bifurcations and noise are illustrated along with the oscillating reactions.

  10. A Course in Kinetics and Catalysis.

    ERIC Educational Resources Information Center

    Bartholomew, C. H.

    1981-01-01

    Describes a one-semester, three-credit hour course integrating the fundamentals of kinetics and the scientific/engineering principles of heterogeneous catalysis. Includes course outline, list of texts, background readings, and topical journal articles. (SK)

  11. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    ERIC Educational Resources Information Center

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  12. The Kinetics of Nitrogen Atom Recombination

    ERIC Educational Resources Information Center

    Brown, G. Ronald; Winkler, C. A.

    1977-01-01

    Describes a study of the kinetics of the recombination of nitrogen atoms in which concentration-time relations are determined directly by utilizing visual observations of emissions to make gas phase titrations of N atoms with NO. (MLH)

  13. An Introductory Chemistry Synthesis and Kinetics Experiment

    ERIC Educational Resources Information Center

    Crumbliss, A. L.; And Others

    1976-01-01

    Presents an inorganic oxidation-reduction kinetics experiment, and describes a low cost (less than $50) modification of the Bausch and Lomb Spectronic 20 Colorimeter which will provide a linear output in absorbance. (MLH)

  14. Polycondensation kinetics of furfuryl alcohol solutions

    NASA Astrophysics Data System (ADS)

    Zherebtsov, D. A.; Galimov, D. M.; Zagorul'ko, O. V.; Frolova, E. V.; Bol'shakov, O. I.; Zakharov, V. G.; Mikhailov, G. G.

    2016-01-01

    Changes in the viscosity, electrical conductivity, monomer concentration, and the size of growing molecules of polycondensed furfuryl alcohol are studied in solutions containing triethylene glycol and isooctylphenyldecaethylene glycol. The effect the solution compositions have on the condensation kinetics is considered.

  15. How ambiguous is the local kinetic energy?

    PubMed

    Anderson, James S M; Ayers, Paul W; Hernandez, Juan I Rodriguez

    2010-08-26

    The local kinetic energy and the closely related local electronic stress tensor are commonly used to elucidate chemical bonding patterns, especially for covalent bonds. We use three different approaches-transformation properties of the stress tensor, quasiprobability distributions, and the virial theorem from density-functional theory-to clarify the inherent ambiguity in these quantities, discussing the implications for analyses based on the local kinetic energy and stress tensor. An expansive-but not universal-family of local kinetic energy forms that includes the most common choices and is suitable for both chemical-bonding and atoms-in-molecule analysis is derived. A family of local electronic stress tensors is also derived. Several local kinetic energy functions that are mathematically justified, but unlikely to be conceptually useful, are derived. The implications of these forms for atoms-in-molecule analysis are discussed. PMID:20586467

  16. The Early Development of Kinetic Theory.

    ERIC Educational Resources Information Center

    Whitaker, Robert D.

    1979-01-01

    A review of the work of Bernoulli and other early contributors to kinetic theory. One significant point is that the most outstanding work in this early period was done by a little-known Scotsman, John J. Waterston. (BB)

  17. Ozone mass transfer and kinetics experiments

    SciTech Connect

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction.

  18. NLTE4 Plasma Population Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 159 NLTE4 Plasma Population Kinetics Database (Web database for purchase)   This database contains benchmark results for simulation of plasma population kinetics and emission spectra. The data were contributed by the participants of the 4th Non-LTE Code Comparison Workshop who have unrestricted access to the database. The only limitation for other users is in hidden labeling of the output results. Guest users can proceed to the database entry page without entering userid and password.

  19. Modulated inflation from the kinetic term

    SciTech Connect

    Matsuda, Tomohiro

    2008-05-15

    We study modulated inflation from the kinetic term. Using the Mukhanov-Sasaki variable, it is possible to determine how mixing induced by the kinetic term feeds the curvature perturbation with the isocurvature perturbation. We show explicitly that the analytic result obtained from the evolution of the Mukhanov-Sasaki variable is consistent with the {delta}N-formula. From our results, we find analytic conditions for the modulated fluctuation and the non-Gaussianity parameter.

  20. Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis.

    PubMed

    Lee, Semin; Yang, Anna; Moneypenny, Timothy P; Moore, Jeffrey S

    2016-02-24

    In dynamic covalent synthesis, kinetic traps are perceived as disadvantageous, hindering the system from reaching its thermodynamic equilibrium. Here we present the near-quantitative preparation of tetrahedral cages from simple tritopic precursors using alkyne metathesis. While the cages are the presumed thermodynamic sink, we experimentally demonstrate that the products no longer exchange their vertices once they have formed. The example reported here illustrates that kinetically trapped products may facilitate high yields of complex products from dynamic covalent synthesis. PMID:26854552