Note: This page contains sample records for the topic radionuclide transmutation technology from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Development of long-lived radionuclide transmutation technology -Development of long-lived radionuclide handling technology.  

National Technical Information Service (NTIS)

The final goals of this research are completion of design for construction of wet hot cell and auxiliary facilities, and development of main equipment and technologies for remote operation and near real time monitoring system of radioactivity in solution....

J. H. Park W. M. Jeong K. I. Lee M. S. Woo D. S. Hwang

1996-01-01

2

Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide.  

National Technical Information Service (NTIS)

The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to re...

C. H. Chung K. H. Chung S. H. Hong I. S. Hwang B. G. Park

1996-01-01

3

Optimization of accelerator-driven technology for LWR waste transmutation  

SciTech Connect

The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan.

Bowman, C.D.

1996-12-31

4

Imaging technologies for radionuclide dosimetry  

NASA Astrophysics Data System (ADS)

Targeted radionuclide therapy is becoming an increasingly popular treatment modality as an alternative or as an adjunct to external beam radiotherapy and chemotherapy. The present method of dosimetry based on the MIRD system requires measurements of the concentration of the radionuclide in the target and risk tissues and the effective half-life of the radionuclide in these tissues. Radionuclide imaging techniques including planar scintigraphy, rectilinear scanning, single-photon emission computed tomography and positron emission tomography have all been used to provide data from which this information can be obtained. Additionally anatomical imaging has been used to aid these estimates. This paper reviews the application of imaging technology and methodology to radionuclide dosimetry.

Ott, R. J.

1996-10-01

5

[Separation of the effects of transmutation and radiation after incorporation of radionuclides into DNA (author's transl)].  

PubMed

Among the various methods for studying the relative effects of transmutation and radiation of incorporated nuclides, simulation of beta radiation by external gamma exposure is of practical importance. Self-irradiation and mutual irradiation of the labeled cells cannot be neglected in any case. Furthermore, additional hypothetical and experimental problems may arise from using either external beta radiation or different isotopes of an element. By means of external gamma irradiation on the other hand, this being equivalent to the internal beta radiation from a microdosimetrical point of view, the radiation effect of the nuclide alone can be observed without any modification of other experimental parameters. To determine such equivalent gamma radiation for labeled cell nuclei of Vicia faba roots, the authors applied the Monte Carlo Method to the beta spectra of 32-P, 3-H, 14-C and 131-J, to the energy-dependent LET and to different cell diameters. The existence of secondary particle equilibrium inside the nuclei during gamma exposure was assumed. For certain radionuclides and cell sizes it is possible to calculate gamma spectra which induce energy spectra in the nuclei similar to those caused by the beta particles originating in the nuclear DNA. PMID:1144670

Hamann, H J; Irskens, M

1975-01-01

6

TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL  

EPA Science Inventory

This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

7

Investigation of the feasibility of a small scale transmutation device  

NASA Astrophysics Data System (ADS)

This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long-lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of < 1 year can be achieved with a four orders magnitude increase in the on-target flux; (6) the ideal neutron energy spectra for transmuting actinides is highly dependent on the particular radionuclide and its fission-to-capture ratio as they determine the generationrate of other actinides; and (7) the methodology developed in this dissertation provides a mechanism that can be used for studying the feasibility of transmuting other radionuclides, and its application can be extended to studying the production of radionuclides of interest in a transmutation process. Although large-scale transmutation technology is presently being researched world-wide for spent fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.

Sit, Roger Carson

8

Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system  

SciTech Connect

This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

Williamson, M.A.

1997-12-01

9

SUBCRITICAL TRANSMUTATION REACTORS WITH TOKAMAK FUSION NEUTRON SOURCES BASED ON ITER PHYSICS AND TECHNOLOGY  

Microsoft Academic Search

A series of design scoping and fuel cycle studies for sub-critical fast transmutation reactors driven by tokamak fusion neutron sources has been carried out to determine if the requirements on the tokamak neutron sources are compatible with the fusion physics and technology design database that will exist after the operation of ITER and to determine if there is a significant

W. M. Stacey

10

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01

11

Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)  

NASA Technical Reports Server (NTRS)

The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

1976-01-01

12

Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)  

SciTech Connect

All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current.

Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

1994-09-01

13

Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system  

SciTech Connect

A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

Laidler, J. J.

2000-02-17

14

Accelerator technology for the Los Alamos ATW (accelerator transmutation of nuclear waste) system  

SciTech Connect

The Los Alamos concept for accelerator transmutation of nuclear waste (ATW) employs a high-power proton linear accelerator to generate intense fluxes of thermal neutrons (>10{sup 16} n/cm{sup 2}-s) through spallation on a lead-bismuth target. The nominal beam energy for an ATW accelerator is 1.6 GeV, with average current requirements ranging from 250 mA to 30 mA, depending on application specifics. A recent study of accelerator production of tritium (APT) led to the development of a detailed point design for a 1.6 GeV, 250 mA cw proton linac. The accelerator design was reviewed by the Energy Research Advisory Board (ERAB) and found to be technically sound. The Panel concluded that linac of this power level could now be implemented within the existing technology base, given an adequate component development program and an integrated engineering demonstration of the front end.

Lawrence, G.P.

1991-01-01

15

An intrinsically safe facility for forefront research and training on nuclear technologies — Burnup and transmutation  

NASA Astrophysics Data System (ADS)

The currently dominant open fuel cycles have resulted in the gradual accumulation of (relatively) large quantities of highly radioactive or fertile materials in the form of depleted uranium, plutonium, minor actinides (MA) and long-lived fission products (LLFP). For low-activity wastes a heavily shielded surface repository is required. Spent fuel can be instead directly buried in deep geological repositories or reprocessed in order to separate U and Pu and eventually also MA and LLFP from other materials. These elements can be further burnt by modern reactors but not yet in sufficient quantities to slow down the steady accumulation of these materials in storage. Using ADS, the residual long-lifetime isotopes can be transmuted by nuclear reactions into shorter-lifetime isotopes again storable in surface repositories. However, in order to perform transmutations at a practical level, high-power reactors (and consequently high-power accelerators) are required; particularly, a significant transmutation can be reached not only by increasing the beam current to something of the order of a few tens of mA, but also by increasing the beam energy above 500MeV in order to reach the spallation regime. Such high-power infrastructures require intermediate test facilities with lower power and higher safety level for the investigation of their dynamics and transmutation capabilities: the ADS proposed in this study could accomplish many of these constraints.

Lomonaco, G.; Frasciello, O.; Osipenko, M.; Ricco, G.; Ripani, M.

2014-04-01

16

A repository released-dose model for the evaluation of long-lived fission product transmutation effectiveness  

SciTech Connect

A methodology has been developed to quantify the total integrated dose due to a radionuclide species i emplaced in a geologic repository; the focus is on the seven long-lived fission products (LLFPs). The methodology assumes continuous exposure water contaminated with species i at the accessible environment (i.e., just beyond the geologic barrier afforded by the geologic repository). The dose integration is performed out to a reference post-release time. The integrated dose is a function of the total initial inventory of radionuclide i the repository, the time at which complete and instantaneous failure of the engineered barrier (e.g., waste canister) in, a geologic repository occurs, the fractional dissolution rate (from waste solid form) of radionuclide i in ground water, the ground water travel time to the accessible environment, the retardation factor (sorption on the geologic media) for radionuclide i, the time after radionuclide begins to enter the biosphere. In order to assess relative dose, the ratio of total integrated dose to that for a reference LLFP species j (e.g., {sup 99}Tc) was defined. This ratio is a measure of the relative benefit of transmutation of other LLFPs compared to {sup 99}Tc. This methodology was further developed in order to quantify the integrated dose reduction per neutron utilized for LLFP transmutation in accelerator-driven transmutation technologies (ADTT). This measure of effectiveness is a function of the integrated dose due to LLFP species i, the number of total captures in LLFP species i chain per LLFP nuclide fed to the chain at equilibrium, and the number of total captures in related transmutation product (TP) chains per capture in the LLFP species i chain. To assess relative transmutation effectiveness, the ratio of integrated dose reduction per neutron utilization to that for a reference LLFP species j (e.g., {sup 99}Tc) was defined. This relative measure of effectiveness was evaluated LLFP transmutation strategy.

Davidson, J.W.

1995-07-01

17

A prototype front-end accelerator for Accelerator-Driven Transmutation Technologies  

SciTech Connect

The Accelerator Performance Demonstration Facility is the front-end prototype of a CW accelerator useful for accelerator-driven technologies. Its purpose is for evaluating the reliability, availability, and maintainability of a high-current and high-power machine. In this paper, design and technology development of the facility will be described.

Chan, K.C.D.

1994-08-01

18

Developments of linacs for accelerator-driven transmutation technology in the USA. Revision  

SciTech Connect

Interesting developments in linear accelerators have been attained over the past 45 years. The status of linear accelerators and future possibilities are described in context of demanding applications and technology maturity. Features of industrial or factory-type applications are high availability, economic operations, low investment cost and ease of running a facility. All features have been demonstrated in one manner or another at large operating facilities for the research community; within a different context that has been argued in the past to be not as demanding as for a factory installation. In addition, comments are made relative to intense beam power levels and choices that can be made for power levels below 10 MW, on the assumption that a cw beam is required.

Schriber, S.O. [Los Alamos National Lab., NM (United States). AOT Div.

1997-03-01

19

Imaging Transgene Expression with Radionuclide Imaging Technologies1  

PubMed Central

Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications.

Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

2000-01-01

20

Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine  

SciTech Connect

Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

1993-02-01

21

Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration  

SciTech Connect

This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

1990-10-01

22

Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview  

SciTech Connect

The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

2005-01-14

23

Technology and fabrication of plutonium-238 radionuclide heat sources  

SciTech Connect

This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

Malikh, Y.A.; Aldoshin, A.I. [Production Association Mayak, 31 Lenin Street, Ozyorsk, 456780 (Russia); Danilkin, E.A. [The State Scientific Center of Russia, 5 Rogov Street, Moscow (Russia)

1996-03-01

24

A new approach to nuclear fuel safeguard enhancement through radionuclide profiling  

NASA Astrophysics Data System (ADS)

The United States has led the effort to promote peaceful use of nuclear power amongst states actively utilizing it as well as those looking to deploy the technology in the near future. With the attraction being demonstrated by various countries towards nuclear power comes the concern that a nation may have military aspirations for the use of nuclear energy. The International Atomic Energy Agency (IAEA) has established nuclear safeguard protocols and procedures to mitigate nuclear proliferation. The work herein proposed a strategy to further enhance existing safeguard protocols by considering safeguard in nuclear fuel design. The strategy involved the use of radionuclides to profile nuclear fuels. Six radionuclides were selected as identifier materials. The decay and transmutation of these radionuclides were analyzed in reactor operation environment. MCNPX was used to simulate a reactor core. The perturbation in reactivity of the core due to the loading of the radionuclides was insignificant. The maximum positive and negative reactivity change induced was at day 1900 with a value of 0.00185 +/- 0.00256 and at day 2000 with -0.00441 +/- 0.00249, respectively. The mass of the radionuclides were practically unaffected by transmutation in the core; the change in radionuclide inventory was dominated by natural decay. The maximum material lost due to transmutation was 1.17% in Eu154. Extraneous signals from fission products identical to the radionuclide compromised the identifier signals. Eu154 saw a maximum intensity change at EOC and 30 days post-irradiation of 1260% and 4545%, respectively. Cs137 saw a minimum change of 12% and 89%, respectively. Mitigation of the extraneous signals is cardinal to the success of the proposed strategy. The predictability of natural decay provides a basis for the characterization of the signals from the radionuclide.

Peterson, Aaron Dawon

25

A fusion transmutation of waste reactor  

Microsoft Academic Search

A design concept and the performance characteristics for a fusion transmutation of waste reactor (FTWR)—a sub-critical fast reactor driven by a tokamak fusion neutron source—are presented. The present design concept is based on nuclear, processing and fusion technologies that either exist or are at an advanced stage of development and on the existing tokamak plasma physics database. A FTWR, operating

W. M Stacey; J Mandrekas; E. A Hoffman; G. P Kessler; C. M Kirby; A. N Mauer; J. J Noble; D. M Stopp; D. S Ulevich

2002-01-01

26

Sub-Critical Transmutation Reactors with Tokamak Fusion Neutron Sources  

SciTech Connect

The principal results of a series of design scoping studies of sub-critical fast transmutation reactors (based on the nuclear and processing technology being developed in the USDoE Generation IV, Advanced Fuel Cycle and Next Generation Nuclear Plant programs) coupled with a tokamak fusion neutron source (based on the ITER design basis physics and technology) are presented.

Stacey, W.M. [Georgia Institute of Technology (United States); Mandrekas, J. [Georgia Institute of Technology (United States); Hoffman, E.A. [Argonne National Laboratory (United States)

2005-05-15

27

SubCritical Transmutation Reactors with Tokamak Fusion Neutron Sources  

Microsoft Academic Search

The principal results of a series of design scoping studies of sub-critical fast transmutation reactors (based on the nuclear and processing technology being developed in the USDoE Generation IV, Advanced Fuel Cycle and Next Generation Nuclear Plant programs) coupled with a tokamak fusion neutron source (based on the ITER design basis physics and technology) are presented.

W. M. Stacey; J. Mandrekas; E. A. Hoffman

2005-01-01

28

Radionuclide Generators  

NASA Astrophysics Data System (ADS)

Radionuclide generator systems continue to play a key role in providing both diagnostic and therapeutic radionuclides for various applications in nuclear medicine, oncology, and interventional cardiology. Although many parent/daughter pairs have been evaluated as radionuclide generator systems, there are a relatively small number of generators, which are currently in routine clinical and research use. Essentially every conceivable approach has been used for parent/separation strategies, including sublimation, thermochromatographic separation, solvent extraction, and adsorptive column chromatography. The most widely used radionuclide generator for clinical applications is the 99Mo/99mTc generator system, but recent years have seen an enormous increase in the use of generators to provide therapeutic radionuclides, which has paralleled the development of complementary technologies for targeting agents for therapy and in the general increased interest in the use of unsealed therapeutic radioactive sources. More recently, use of the 68Ge/68Ga generator is showing great potential as a source of positron-emitting 68Ga for positron emission tomography (PET)/CT imaging. Key advantages for the use of radionuclide generators include reasonable costs, the convenience of obtaining the desired daughter radionuclide on demand, and availability of the daughter radionuclide in high specific activity, no-carrier added form.

Rösch, F.; Knapp, F. F. (Russ)

29

Historical perspective, economic analysis, and regulatory analysis of the impacts of waste partitioning-transmutation on the disposal of radioactive wastes  

SciTech Connect

Partitioning-transmutation, sometimes called actinide burning, is an alternative approach to high-level radioactive waste management. It consists of removing long-lived radionuclides from wastes and destroying those radionuclides, thus reducing the long-term hazards of radioactive waste. It was studied in detail in the 1970's. New developments in technology and other factors are resulting in a reexamination of this waste management option. This report consists of three papers which summarize the historical work, update the analysis of the costs of waste disposal, and describe current regulatory requirements which might be impacted by P-T. The papers provide a starting point for future research on P-T. 152 refs., 2 figs., 19 tabs.

Forsberg, C.W.; Croff, A.G.; Kocher, D.C.

1990-10-01

30

Fast neutrons for transmutation research within the EFNUDAT project  

NASA Astrophysics Data System (ADS)

As a Network for research on waste transmutation and on Generation IV nuclear systems within the 6th EU framework program funds are available for EFNUDAT: European effort to exploit up-to-date neutron beam technology for novel research on the transmutation of radioactive waste. They cover joint research activities on n-beams, targets, data collection and quality assurance as well as transnational access to 10 neutron research facilities. We intend to arouse interest in European research groups to approach the EFNUDAT consortium in case of interest in transmutation related research. As an example we give a brief overview of the new neutron beam of the Strahlungsquelle ELBE at Dresden-Rossendorf.

Beyer, R.; Grosse, E.; Junghans, A. R.; Matic, A.; Schilling, K. D.; Schwengner, R.; Wagner, A.; Weiss, F. P.

2009-01-01

31

SABR fusion-fission hybrid transmutation reactor design concept  

Microsoft Academic Search

A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which

Weston Stacey

2009-01-01

32

Transmutation and energy-production with high power accelerators  

SciTech Connect

Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

Lawrence, G.P.

1995-07-01

33

Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550  

SciTech Connect

This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)] [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom)] [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy)] [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)] [Energy Solutions, Richland, WA (United States)

2013-07-01

34

Dual neutral particle transmutation in CINDER2008  

SciTech Connect

A capability has been built for the CINDER2008 (beta) transmutation code that expands the capability from only neutron induced reactions to photon induced reactions. This allows for two incident neutral particles to cause nuclear transmutation in a given material simultaneously. The CINDER2008 code, a modular rewrite of the CINDER'90 transmutation code from Los Alamos National Laboratory, was modified to allow for the dual sets of physics. A photonuclear cross section and photofission product yield library was also created using ENDF-B/VII data and translated neutron fission product yields. The code and library have been combined to create a unique transmutation code. The scope of use is broad; it is capable of modeling the transmutation caused by photons released from the decay of daughter and fission products as well as transmutation in photon rich environments. A brief code description and a verification and validation of the contributions are given. (authors)

Martin, W. J.; De Oliveira, C. R. E. [1 Univ. of New Mexico, MSC01 1120, Albuquerque, NM 87131-0001 (United States)

2012-07-01

35

Industrial research for transmutation scenarios  

NASA Astrophysics Data System (ADS)

This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

2011-04-01

36

Requirements for GNEP Transmutation Fuels  

SciTech Connect

The purpose of this document is to provide a baseline set of requirements to guide fuel fabrication development and irradiation testing performed as part of the AFCRD Transmutation Fuel Development Program. This document can be considered a supplement to the GNEP TRU Fuel Development and Qualification Plan, and will be revised as necessary to maintain a documented set of fuel testing objectives and requirements consistent with programmatic decisions and advances in technical knowledge.

D. C. Crawford; M. K. Meyer; S. L. Hayes

2007-03-01

37

Differential processing to separate radionuclide and VOC from soil and ground water by air-sparged hydrocyclone technology. Final report  

SciTech Connect

There are a wide variety of radioactive, toxic, and heavy metal contaminants in the ground waters and soils at DOE facilities. Some of the most common are uranium, technetium, trichloroethylene, and polychlorinated biphenyls. The project is a challenging task based on several key factors. For the removal of radio nuclide or heavy metal particles, first, on a mass fraction basis there is only a small amount of radionuclide particles in either writer or soil. In this way, a successful separation process must be capable of removing small amount of radio nuclide particles or other heavy metals from a very large quantities of soil or water. This feature poses a significant difficulty for most separation technologies which have a low specific processing capacity. Second, in addition to the need to have a high specific processing capacity, the separation technology must be able to selectively separate fine particles. For example, it is expected that most of radionuclide particles as well as 10-30% of the soil particles (depending on the site) are in the size range of less than 100 microns. Thus, a successful separation process must also be capable of efficiently removing minute quantities of small-sized particles from large quantities of soil of the same fine particle size. These two key factors are of critical importance and pose tremendous difficulties for any conventional technology available today.

Ye Yi

1996-03-29

38

Extension of Studies with 3M Empore TM and Selentec MAG *SEP SM Technologies for Improved Radionuclide Field Sampling  

SciTech Connect

The Savannah River Technology Center is evaluating new field sampling methodologies to more easily determine concentrations of radionuclides in aqueous systems. One methodology studied makes use of 3M EmporeTM disks. The disks are composed of selective resins embedded in a Teflon support. The disks remove the ion of interest from aqueous solutions when the solution is passed through the disk. The disk can then be counted directly to quantify the isotope of interest. Four types of disks were studied during this work: for the extraction of technetium (two types), cesium, plutonium, and strontium. A sampler has been developed for automated, unattended, in situ use of the EmporeTM disks.

Beals, D.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bibler, J.P.; Brooks, D.A.

1996-07-10

39

ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY  

SciTech Connect

This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of objects that could not be analyzed readily by conventional methods demonstrates a powerful application of the instrument. In conclusion, a comparison of costs associated with the analysis on the ISOCS instrument to the costs of conventional sampling and laboratory analysis is presented.

KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

2001-03-01

40

A Review of Transmutation Doping in Silicon  

Microsoft Academic Search

The neutron transmutation doping (NTD) process in silicon is based upon nuclear reactor thermal neutron irradiation which induces the neutron capture reaction 30Si (n,¿) 31Si ¿ 31P + ??-. The transmutation product, phosphorus, becomes electrically active after suitable annealing of the accompanying radiation damage which is caused by a number of displacement processes. Because of the superior doping homogeneity which

J. M. Meese; D. L. Cowan; M. Chandrasekhar

1979-01-01

41

Transmuting coprocessors: dynamic loading of FPGA coprocessors  

Microsoft Academic Search

Field-programmable gates arrays (FPGAs) are increasingly used in general-purpose computing platforms to augment microprocessors, enabling runtime loading of coprocessors customized to speed up some applications. Such transmuting coprocessors create new dynamic management problems involving decisions as to when to load a coprocessor, where to place the coprocessor in the FPGA, or which resident coprocessor to replace. We define a transmuting

Chen Huang; Frank Vahid

2009-01-01

42

The implications of cost-effectiveness analysis of medical technology. Background paper number 2: case studies of medical technologies. Case study number 13: cardiac radionuclide imaging and cost effectiveness  

SciTech Connect

Cardiac radionuclide imaging is a new and rapidly expanding diagnostic technology that promises to make significant contributions to the diagnosis and management of heart disease. Dynamic changes are occurring in the technology at the same time diffusion is taking place. The combination of diffusion and technological development creates an imperative for careful evaluation and prospective planning. Clinical applications of cardiac imaging include the diagnosis of coronary artery disease, evaluation of cardiac function abnormalities, verification of the diagnosis of acute myocardial infarction (heart attack), and monitoring of patients under treatment for establishing cardiac disease. The report describes the dimensions of the technology of cardiac radionuclide imaging. Information is summarized on the industry producing radionuclide imaging equipment, on clinical applications of technology, and on the costs and efficacies of the various techniques. Finally, formulation of some of the issues involved in the assessment of the technology's cost effectiveness is presented.

Not Available

1982-05-01

43

Nuclear data needs for accelerator-driven transmutation systems  

SciTech Connect

The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

Arthur, E.D.; Wilson, W.B.; Young, P.G.

1994-07-01

44

Transmutation doping of silicon solar cells  

NASA Technical Reports Server (NTRS)

Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

1977-01-01

45

Gas core reactors for actinide transmutation and breeder applications  

NASA Technical Reports Server (NTRS)

This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

Clement, J. D.; Rust, J. H.

1978-01-01

46

U.S. Plans for the Next Fast Reactor Transmutation Fuels Irradiation Test  

SciTech Connect

The U.S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Metallic alloy and oxide fuel forms are being developed as the near term options for fast reactor implementation.

B. A. Hilton

2007-09-01

47

The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.  

PubMed

Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. PMID:24462922

Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

2014-03-01

48

Neutron transmutation of nuclear waste  

NASA Astrophysics Data System (ADS)

Two metal fueled sub-critical fast reactor concepts, cooled by PbLi and PbBi, respectively, for a Fusion Transmutation of Waste Reactor (FTWR) were developed. Heat removal, radiation damage, etc. design constraints were applied to the FTWR to ensure a realistic and credible design. The standard linear stability model for critical systems was extended for evaluation of the linear stability of sub-critical systems, and the FTWR was shown to be stable to power excursions even when substantial positive fuel and coolant temperature coefficients exist. The reactor design concepts were calculated to remain subcritical for a wide range of off-normal conditions. Fuel cycle analyses were performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation-resistance of the high-level waste. Storage intact of LWR spent nuclear fuel, a single recycle in a LWR of the plutonium as MOX fuel, and the repeated recycle of the transuranics in critical and sub-critical fast reactors are compared. Sub-critical reactors based on both accelerator and fusion neutron sources were considered. The overall conclusions are that repeated recycling of the transuranics from spent nuclear fuel would significantly increase the capacity of high-level waste repositories per unit of nuclear energy produced, significantly increase the nuclear energy production per unit mass of uranium ore mined, significantly reduce the radio-toxicity of the waste streams per unit of nuclear energy produced, and significantly enhance the proliferation-resistance of the material stored in high-level waste repositories.

Hoffman, Edward Albert

49

Transmutation: The Roots of the Dream.  

ERIC Educational Resources Information Center

Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)

Karpenko, Vladimir

1995-01-01

50

Transmutation missions for fusion neutron sources  

Microsoft Academic Search

There are a number of potential neutron transmutation missions (destruction of long-lived radioisotopes in spent nuclear fuel, ‘disposal’ of surplus weapons-grade plutonium, ‘breeding’ of fissile nuclear fuel) that perhaps best can be performed in sub-critical nuclear reactors driven by a neutron source. The requirements on a tokamak fusion neutron source for such transmutation missions are significantly less demanding than for

W. M. Stacey

2007-01-01

51

Nuclear Wastes: Technologies for Separations and Transmutation.  

National Technical Information Service (NTIS)

Disposal of radioactive waste from nuclear weapons production and power generation has caused public outcry and political consternation. Nuclear Wastes presents a critical review of some waste management and disposal alternatives to the current national p...

1996-01-01

52

Incentives and recent proposals for partitioning and transmutation in the United States  

SciTech Connect

Partitioning and transmutation (P-T) is perhaps the most elegant means of high level waste disposal. Currently, the cost of fuel obtained from reprocessing spent fuel exceeds the cost of fuel obtained by mining. This has resulted in the once through fuel cycle dominating the US nuclear industry. Despite this fact P-T continues to be examined and debated by the US as well as abroad. The US first seriously considered P-T between approximately 1976 and 1982 but rejected the concept in favor of reprocessing. More recently, since about 1989, as a result of the once through fuel cycle and the growing problems of waste disposal, studies concerning P-T have resumed. This essay will seek to outline the incentives and goals of partitioning and transmutation as it would apply to the disposal of spent fuel in the US. Recent proposals by various US national laboratories for implementing partitioning and transmutation as a high level waste management and disposal device will also be discussed. The review will seek to examine the technical concepts utilized in each of the proposals and their feasibility. The major focus of this essay will be the transmutation methods themselves, while the partitioning methods will be discussed only briefly. This is because of the fact that partitioning methods fall under reprocessing as an already fairly well established and accepted technology while feasible methods for transmutation are still being advanced.

Donovan, T.J.

1995-05-01

53

Preliminary assessment of partitioning and transmutation as a radioactive waste management concept  

Microsoft Academic Search

Partitioning (separating) the actinide elements from nuclear fuel cycle wastes and transmuting (burning) them to fission products in power reactors represents a potentially advanced concept of radioactive waste management which could reduce the long-term (greater than 1000 years) risk associated with geologic isolation of wastes. The greatest uncertainties lie in the chemical separations technology needed to recover greater than 99

A. G. Croff; D. W. Tedder; J. P. Drago; J. O. Blomeke; J. J. Perona

1977-01-01

54

Study of (gamma)-ray source for the transmutation.  

National Technical Information Service (NTIS)

PNC is developing high power CW electron linac for various applications, those are the transmutation of the fission products, Free Electron Laser (FEL), the positron source and so on. Especially, the transmutation by the electron linac has been studied fo...

M. Nomura H. Takahashi

1996-01-01

55

Performance of a transmutation advanced device for sustainable energy application  

Microsoft Academic Search

Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas-cooled pebble bed accelerator driven system, TADSEA (Transmutation Advanced Device for Sustainable Energy Application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite

C. García; J. Rosales; L. García; A. Pérez-Navarro; A. Escrivá; A. Abánades

56

Efficiency of preliminary transmutation of actinides before ultimate storage  

Microsoft Academic Search

The concept of preliminary transmutation of minor actinides before placement to the long-term storage is considered. The purpose of such preliminary transmutation before ultimate storage is to incinerate a part of actinides and to transform another part into new actinides providing low level of radiotoxicity accumulated in the storage. Modes of transmutation in reactors of PWR, CANDU, and Superphenix types

B. R. Bergelson; A. S. Gerasimov; G. V. Kiselev; G. V. Tikhomirov

2004-01-01

57

Transmutation Fuels Campaign FY-09 Accomplishments Report  

SciTech Connect

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01

58

Safety characteristics of potential waste transmutation systems  

SciTech Connect

For nuclear waste transmutation to alter significantly the need for geologic disposal of spent fuel from US Light-water reactors (LWRs), about 1.4% of the spent fuel (by mass) must be separated and transmuted. This includes the plutonium, the minor actinides, and four fission products: iodine. technetium, cesium and strontium. Regarding the actinides, fissioning of the plutonium, neptunium, americium, and curium generates a great deal of heat, so much so that most of the plutonium should be used to produce power. However, these actinides have some undesirable neutronic characteristics, and their utilization in reactors or subcritical (proton-accelerator) targets requires either a fast neutronic spectrum or a very high thermal-neutron flux. Transmutation of the fission products is generally by neutron capture, although this is difficult in the case of cesium and strontium. In this paper, various proposed means of transmuting the actinides and fission products are discussed, with the main focus being on the safety characteristics of each approach.

Van Tuyle, G.J.

1993-06-01

59

Brief overview of the long-lived radionuclide separation processes developed in france in connection with the spin program  

NASA Astrophysics Data System (ADS)

To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the design of long-lived radionuclide separation and nuclear incineration processes. The research in progress to define separation processes focused mainly on the minor actinides (neptunium, americium and curium) and some fission products, like cesium and technetium. To separate these long-lived radionuclides, two strategies were developed. The first involves research on new operating conditions for improving the PUREX fuel reprocessing technology. This approach concerns the elements neptunium and technetium (iodine and zirconium can also be considered). The second strategy involves the design of new processes; DIAMEX for the co-extraction of minor actinides from the high-level liquid waste leaving the PUREX process, An(III)/Ln(III) separation using tripyridyltriazine derivatives or picolinamide extracting agents; SESAME for the selective separation of americium after its oxidation to Am(IV) or Am(VI) in the presence of a heteropolytungstate ligand, and Cs extraction using a new class of extracting agents, calixarenes, which exhibit exceptional Cs separation properties, especially in the presence of sodium ion. This lecture focuses on the latest achievements in these research areas.

Madic, Charles; Bourges, Jacques; Dozol, Jean-François

1995-09-01

60

Fusion-Fission Transmutation Scheme- Efficient Destruction of Nuclear Waste  

NASA Astrophysics Data System (ADS)

A fusion-assisted transmutation system for the destruction of transuranic (TRU) waste is presented. Subcritical fusion-fission hybrids burn the intransigent transuranic residues (with most of the long lived bio-hazard) of a new fuel cycle that uses cheap light water reactors (LWRs) for the easily burned majority of the TRU. In the new fuel cycle, the number of hybrids needed to destroy a given amount of original LWR waste is 5-10 times less than the corresponding number of critical fast reactors. (Fast reactors, due to stability constraints, cannot burn the very poor quality TRU residue.) The new system comparably reduces the expensive reprocessing throughput. Realization of these advantages should lead to a great reduction in the cost of transmutation. The time needed for 99% waste destruction would also be reduced from centuries to decades. The centerpiece of the fuel cycle is a high power density compact fusion neutron source (CFNS-100 MW, with major radius + minor radius ˜ 2.5 m), which is made possible by a super-X divertor. The physics and technology requirements of the CFNS are much less than the requirements of a pure fusion power source. Advantages of the system as part of a timely strategy to combat global warming are briefly described.

Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant; Schneider, Erich A.

2009-05-01

61

Nuclear data requirements for accelerator-driven transmutation systems  

SciTech Connect

The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given. The importance of developing neutron and proton cross section libraries in the incident particle energy range of 20 MeV to approximately 200 MeV for transport applications is discussed, and new theoretical methods for developing cross section libraries at higher incident neutron and proton energies are summarized.

Young, P.G.; Wilson, W.B. [Los Alamos National Lab., NM (United States). Nuclear Theory and Applications Group; Chadwick, M.B. [Lawrence Livermore National Lab., CA (United States). Nuclear Data Group

1994-08-01

62

Review of Transmutation Fuel Studies  

Microsoft Academic Search

The technology demonstration element of the Global Nuclear Energy Partnership (GNEP) program is aimed at demonstrating the closure of the fuel cycle by destroying the transuranic (TRU) elements separated from spent nuclear fuel (SNF). Multiple recycle through fast reactors is used for burning the TRU initially separated from light-water reactor (LWR) spent nuclear fuel. For the initial technology demonstration, the

Jon Carmack; Kemal O. Pasamehmetoglu

2008-01-01

63

Quantifying sediment retention by restored wetlands using fallout radionuclide tracer technology (Cs-137 and Be-7): The River Odense, Denmark  

NASA Astrophysics Data System (ADS)

River restoration projects that allow temporary inundations of the floodplain are important for increasing the water storage potential of the landscape which can decrease flood risk to vulnerable downstream urban areas. During inundation, coarse and fine fluvial sediments are deposited on the floodplain leading to reduced organic matter and nutrient flux downstream. In this context, information on sediment accretion rates by floodplain units is required to inform restoration decisions. Sediment traps are widely used to determine contemporary accretion rates in floodplain units but there are questions about the representativeness and resolution of data. Here, we have tested the application of radionuclide tracer technology (Cs-137 and Be-7) for use in Danish river and floodplain monitoring for longer and shorter term quantification of sediment accretion rates. Prior to the wet season, a network of AstroTurf mats was placed along three transects in the study zone of the Odense floodplain. Suspended sediment traps were installed in the channel and samples were collected during period of floodplain inundation to characterise the FRN activity concentrations in deposited material. Following a series of major inundation events, shallow (3 cm) sediment cores were collected to determine Be-7 inventory relative to a non-inundated reference site. Deeper cores (30 cm) were collected, including a section core, to quantify Cs-137 inventories on the floodplain relative to a reference site. All materials were analysed for particle size and a separation experiment was undertaken to characterise the relationship between particle size and FRN concentration. Cs-137 based accretion rates were in accord with long-term direct monitoring and provided a useful context for the contemporary extreme event data. Comparison of Be-7 based accretion estimates to Astro Turf mat deposition indicated that the Be-7 approach offers to provide high resolution retrospective accretion rate data for contemporary overbank events. The quality of the data, however, is highly sensitive to the particle size correction approach taken. The study illustrates the value of FRN-based techniques but also demonstrates the critical need for careful application of particle size correction procedures based on deposited material at each sampling point representative of the study period and a site-specific FRN-particle size relationship.

Kronvang, Brian; Hoffmann, Carl Christian; Taylor, Alex; Blake, William

2013-04-01

64

Statistical transmutation in doped quantum dimer models.  

PubMed

We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families. PMID:23031119

Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

2012-07-01

65

Thermoelectric properties of transmutation doped silicon crystals  

NASA Astrophysics Data System (ADS)

This paper describes a method for determining the anisotropy parameter of thermoelectromotive force of electron–phonon drag (M) by deformation of n-Si in direction [001]; the experimental data on measuring of temperature dependence of the Hall effect, charge carrier lifetime, tensoresistance and tenso-thermoelectromotive force of transmutation doped n-Si crystals, which subjected to high-temperature annealing at T=1473K during 2 and 72 h, and cooled from the annealing temperature to the room one with 1, 15, 1000 K/min rates, were presented. It is shown that the anisotropy of drag thermoelectromotive force is greatly increased in the experiments with the transmutation doped silicon at 85 K, X?//?T//[001](X?0.6GPa) due to the action of high-temperature annealing.

Gaidar, G. P.; Baranskii, P. I.

2014-05-01

66

Sphere-Pac Evaluation for Transmutation  

SciTech Connect

The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.

Icenhour, A.S.

2005-05-19

67

Status of the French Research on Partitioning and Transmutation  

SciTech Connect

The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and pass the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

Warin, Dominique [Nuclear Energy Direction, CEA, CEA/Saclay, DEN/DDIN/Bat 125, Gif Sur Yvette, 91191 (France)

2007-07-01

68

Iodine transmutation studies using metal iodide targets  

NASA Astrophysics Data System (ADS)

This paper describes the preparation, irradiation and the post-irradiation examination of the Project-I iodine transmutation irradiation experiment. Capsules containing pellets of MgI 2, CaI 2, CuI and NaI have been irradiated in the High Flux Reactor (HFR) in Petten for 271.23 full power days. The post-irradiation examination includes neutron metrology, gamma spectrometry, chemical analysis, gas puncturing, gas analysis, metallography and EPMA.

Ichimura, E.; Takaki, N.; Schram, R. P. C.; Klein Meulekamp, R.; Bakker, K.

2004-09-01

69

Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel  

NASA Astrophysics Data System (ADS)

In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this fast fissile quality and also the fact that Pu-238 is transmuted from Np-237 and Am-241, these MAs are regarded as fertile material in the SFR design proposed by this dissertation. This dissertation demonstrates a SFR design which is dedicated to plutonium breeding by targeting Am-241 transmutation. This SFR design uses a moderated axial transmutation target that functions primarily as a pseudo-blanket fuel, which is reprocessed with the active driver fuel in an integrated recycling strategy. This work demonstrates the cost and feasibility advantages of plutonium breeding via MA transmutation by adopting reactor, reprocessing and fuel technologies previously demonstrated for traditional breeder reactors. The fuel cycle proposed seeks to find a harmony between the waste management advantages of transuranic burning SFRs and the resource sustainability of traditional plutonium breeder SFRs. As a result, the enhanced plutonium conversion from MAs decreases the burner SFR's fuel costs, by extracting more fissile value from the initial TRU purchased through SNF reprocessing.

Bays, Samuel Eugene

70

A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source  

SciTech Connect

A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

Stacey, W.M. [Georgia Institute of Technology (United States); Beavers, V.L. [Georgia Institute of Technology (United States); Casino, W.A. [Georgia Institute of Technology (United States); Cheatham, J.R. [Georgia Institute of Technology (United States); Friis, Z.W. [Georgia Institute of Technology (United States); Green, R.D. [Georgia Institute of Technology (United States); Hamilton, W.R. [Georgia Institute of Technology (United States); Haufler, K.W. [Georgia Institute of Technology (United States); Hutchinson, J.D. [Georgia Institute of Technology (United States); Lackey, W.J. [Georgia Institute of Technology (United States); Lorio, R.A. [Georgia Institute of Technology (United States); Maddox, J.W. [Georgia Institute of Technology (United States); Mandrekas, J. [Georgia Institute of Technology (United States); Manzoor, A.A. [Georgia Institute of Technology (United States); Noelke, C.A. [Georgia Institute of Technology (United States); Oliveira, C. de [Georgia Institute of Technology (United States); Park, M. [Georgia Institute of Technology (United States); Tedder, D.W. [Georgia Institute of Technology (United States); Terry, M.R. [Georgia Institute of Technology (United States); Hoffman, E.A. [Argonne National Laboratory (United States)

2005-05-15

71

Diffusion-Thermal Methods for Recovering Radionuclides from Solid Reactor and Cyclotron Targets: An Outlook  

Microsoft Academic Search

Various methods for recovering radionuclides from solid reactor, cyclotron targets wereanalyzed, namely: (a) cocrystallization and adsorption, (b) extraction and chromatography, (c) interphaseexchange in amalgam-solution systems, and (d) high-temperature gas thermal chromatography (sublimation, treatment of irradiated targets in oxygen or hydrogen flow). Major attention was given to diffusion-thermal methods. General dependences of physicochemical behavior of impurity transmutation radionuclides in irradiated metals

I. E. Alekseev

2003-01-01

72

Neutronics analysis of the dual-cooled waste transmutation blanket for the FDS  

Microsoft Academic Search

A preliminary conceptual design of dual-cooled long-lived radioactive waste transmutation blanket for the Fusion-Driven sub-critical hybrid System (FDS) is presented on the basis of feasible plasma physics and technology level i.e. the neutron wall loading is assumed to 0.5 MW\\/m2 with availability of 50%. The concept has the attractive advantages e.g. tritium is self-sustainable, plutonium for the purpose of neutron

Y. C Wu; X. X Zhu; S. L Zheng; Y Ke; Q. Y Huang; X. P Liu; S Wu; D Xu; H Liu

2002-01-01

73

Neutron cross section sensitivity for minor actinide transmutation in energy amplifier systems  

Microsoft Academic Search

The nuclear data sensitivity in 3D Monte Carlo burnup calculations of minor actinide transmutation in Energy Amplifier Systems is assessed. Ansaldo Nucleare’s 80MWth Energy Amplifier Demonstration Facility (EADF) design serves as a technical and geometrical platform for the analysis. The accelerator-driven EADF is a fast, subcritical system based on classical MOX-fuel technology and on molten lead–bismuth eutectic cooling. For Monte

Marcus Dahlfors; Yacine Kadi; Adonai Herrera-Martínez

2007-01-01

74

Why Accelerator-Driven Transmutation of Wastes Enables Future Nuclear Power?  

Microsoft Academic Search

Criticality concerns, decay heat management and radioactive waste handling are perceived as the primary, unsatisfactorily resolved technological problems of nuclear reactors. They all originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials, very strong radioactivity of fission products and very long half-life of some of the radioactive fission and activation products Accelerator-driven transmutation systems

Waclaw Gudowski

2000-01-01

75

Optimal and near-optimal advection-diffusion finite-difference schemes. VII Radionuclide chain transport  

Microsoft Academic Search

Optimally accurate numerical schemes are derived for the concentrations of successive isotopes in a radionuclide chain as they transmute, are sorbed into the rock matrix, are transported and spread out with the groundwater flow. A key step is a change of dependent variables, based on classical work of Bateman (1910). That non-local change of dependent variables can be performed numerically

Ronald Smith

2001-01-01

76

Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor  

Microsoft Academic Search

The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are

W. M. Stacey

2001-01-01

77

Activation cross sections for the generation of long-lived radionuclides of importance in fusion reactor technology. Summary report of the second research coordination meeting held in Del Mar, California, USA, 29 to 30 April 1993.  

National Technical Information Service (NTIS)

The present report contains the Summary of the Second IAEA Research Co-ordination Meeting (RCM) on ''Activation Cross Sections for the Generation of Long-Lived Radionuclides of Importance in Fusion Reactor Technology'' which was hosted by TSI Research at ...

A. B. Pashchenko

1993-01-01

78

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOEpatents

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03

79

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOEpatents

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, Charles D. (Los Alamos, NM)

1992-01-01

80

Brief overview of the long-lived radionuclide separation processes developed in france in connection with the spin program  

Microsoft Academic Search

To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the

Charles Madic; Jacques Bourges

1995-01-01

81

Minor Actinides Transmutation Scenario Studies in PWR with Innovative Fuels  

SciTech Connect

With the innovative fuels (CORAIL, APA, MIX, MOX-UE) in current PWRs, it is theoretically possible to obtain different plutonium and minor actinides transmutation scenarios, in homogeneous mode, with a significant reduction of the waste radio-toxicity inventory and of the thermal output of the high level waste. Regarding each minor actinide element transmutation in PWRs, conclusions are : neptunium : a solution exists but the gain on the waste radio-toxicity inventory is not significant, americium : a solution exists but it is necessary to transmute americium with curium to obtain a significant gain, curium: Cm244 has a large impact on radiation and residual power in the fuel cycle; a solution remains to be found, maybe separating it and keeping it in interim storage for decay into Pu240 able to be transmuted in reactor.

Grouiller, J. P.; Boucher, L.; Golfier, H.; Dolci, F.; Vasile, A.; Youinou, G.

2003-02-26

82

Transmutation of silicon carbide in fusion nuclear environment  

NASA Astrophysics Data System (ADS)

The amount and type of metallic transmutants produced in SiC/SiC when used in magnetic (MFE) and inertial (IFE) confinement fusion systems are determined and compared to those obtained following irradiation in fission reactors. Up to ˜1.3% metallic transmutants are generated at the expected lifetime of the fusion blanket. Irradiation in fission reactors to the same fast neutron fluence produces about an order of magnitude lower metallic transmutation products than in fusion systems. While the dominant component in fusion systems is Mg, P is the main transmutation product in fission reactors. The impact on the SiC/SiC properties is not fully understood. The results of this work will help guide irradiation experiments in fission reactors to properly simulate the conditions in fusion systems by possible ion implantation. In addition, the results represent a necessary input for modeling activities aimed at understanding the expected effects on properties.

Sawan, M. E.; Katoh, Y.; Snead, L. L.

2013-11-01

83

Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electron gamma source  

NASA Astrophysics Data System (ADS)

Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137Cs and 129I is investigated. It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons. The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser. Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons, the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method. Supported by Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-N13), China Postdoctoral Science Foundation, National Natural Science Foundation of China (10475108, 10605036, 10405032), One Hundred Person Project of SINAP, and Shanghai Development Foundation for Science and Technology (06QA14062)

Chen, Jin-Gen; Xu, Wang; Wang, Hong-Wei; Guo, Wei; Ma, Yu-Gang; Cai, Xiang-Zhou; Lu, Guang-Cheng; Xu, Yi; Pan, Qiang-Yan; Yuan, Ren-Yong; Xu, Jia-Qiang; Yan, Zhe; Fan, Gong-Tao; Shen, Wen-Qing

2008-08-01

84

Accelerator driven systems for transmutation: Fuel development, design and safety  

Microsoft Academic Search

European R&D for ADS design and fuel development is driven in the 6th FP of the EU by the EUROTRANS Programme. In EUROTRANS two ADS design routes are followed, the XT-ADS and the EFIT. The XT-ADS is designed to provide the experimental demonstration of transmutation. The EFIT, the European Facility for Industrial Transmutation, aims at a conceptual design of a

W. Maschek; X. Chen; F. Delage; A. Fernandez-Carretero; D. Haas; C. Matzerath Boccaccini; A. Rineiski; P. Smith; V. Sobolev; R. Thetford; J. Wallenius

2008-01-01

85

Transmutation and the Global Nuclear Energy Partnership  

SciTech Connect

In the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper. Commercial spent fuel recycling, pioneered in the U.S., has not been carried out since the nineteen seventies following a decision by President Carter to forego fuel reprocessing and to recommend similar practices by other countries. However, many nations have continued spent fuel reprocessing, generally using the U.S.-developed PUREX process. The latest to do so are Japan, which began operations of an 800 metric tons (tonnes) per year PUREX reprocessing plant at Rokkasho-mura in northern Honshu in 2006 and China, which recently began operations of a separations pilot plant, also using PUREX. Countries using the PUREX process, recycle the separated plutonium to light water reactors (LWRs) in a mixed plutonium/uranium oxide fuel called MOX. Plutonium recycling in LWRs, which are used for electricity production in all nuclear power nations, reduces, somewhat, the uranium ore and enrichment requirements at a given level of power production, but has the disadvantage of producing non-fissile plutonium isotopes and the so-called minor actinides (neptunium, americium and curium), some of which act as neutron poisons, and thus, require increasing uranium enrichment, eventually raising fuel costs beyond practical limits. The French only use one recycle of plutonium in their power reactors. The future 'burning' (transmutation by fission) of used plutonium (and the other transuranics) could, if put into large-scale practice, eliminate one of the more serious proliferation problems in the world today, the accumulation of large quantities of separated civilian plutonium. It is generally accepted by the world's technical community that the effective way to transmute transuranics is by fissioning them in a fast reactor (i.e., reactors not containing light materials used to slow down, by collision fission, neutrons in LWRs to velocities equal to thermal velocities or the media temperature). (author)

Bresee, James [Office of the Asst. Sec. for Nuclear Energy, Global Nuclear Energy Parternship (NE-2.4), U.S. Department of Energy, 1000 Independence Ave. SW, Washington, DC, 20585 (United States)

2007-07-01

86

FISA2009 Conference on Euratom Research and Training Activities: Nuclear Fission – Past, Present and Future (Generation-II, -III and IV + Partitioning and Transmutation)  

Microsoft Academic Search

This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007–2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by

V. Bhatnagar; M. Deffrennes; M. Hugon; P. Manolatos; K. Ptackova; G. Van Goethem; S. Webster

2011-01-01

87

HYPERFUSE: A Hypervelocity Inertial Confinement System for Fusion Energy Production and Fission Waste Transmutation.  

National Technical Information Service (NTIS)

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ...

H. Makowitz J. R. Powell R. Wiswall

1980-01-01

88

HYPERFUSE: A Hypervelocity Inertial Confinement System for Fusion Energy Production and Fission Waste Transmutation.  

National Technical Information Service (NTIS)

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular I...

H. Makowitz J. R. Powell R. Wiswall

1980-01-01

89

Evaluation of (sup 237)Np transmutation characteristics with chemical analysis of Neptunium dosimeter irradiated in 'Joyo'.  

National Technical Information Service (NTIS)

The purpose of this study is to evaluate transmutation characteristics such as dependence of (sup 237)Np transmutation rate to neutron energy spectrum and neutron fluences. Analysis of the Neptunium dosimeter, in which was irradiated in the experimental f...

M. Osaka S. Koyama Y. Otsuka T. Mitsugashira T. Namekawa

1997-01-01

90

Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels  

Microsoft Academic Search

The U. S. Global Nuclear Energy Partnership \\/ Advanced Fuel Cycle Initiative (GNEP\\/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. The AFCI program has irradiated and examined eleven metallic alloy transmutation fuel specimens to evaluate the feasibility of actinide transmutation in advanced

Bruce A. Hilton; Christopher A. McGrath

2008-01-01

91

Radiation Effects on the Sorption and Mobilization of Radionuclide during Transport through the Geosphere  

SciTech Connect

Site restoration activities at DOE facilities and the permanent disposal of nuclear waste inevitably involve understanding the behavior of materials in a radiation field. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance important material properties. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic-scale changes in materials (radiation damage and transmutation).

L.M. Wang; R.C. Eqing; K.F. Hayes

2004-03-14

92

TRU transmutation in thorium-based heterogeneous PWR core  

SciTech Connect

A thorium-based seed and blanket design concept for a conventional pressurized light water reactor (PWR) was proposed to enhance the proliferation resistance potential and fuel cycle economics. The KTF core was satisfied with neutronic and thermal-hydraulic design limit of conventional PWR, APR-1400. In order to evaluate transmutation capability of a thorium-based KTF core, U/Zr seed fuel mixed with 10% TRU which come from 1,000 MWe power reactor after 10 years decay was proposed and analyzed by transmutation indices such as D{sub j}, TEX and SR. KTF core showed an extended fuel cycle burnup; average burnup of seed was 79.5 MWd/kgHM and blanket was 94.6 MWd/kgHM. It means that residence time of TRU in the core could be long enough for transmutation when TRU is mixed in seed fuel. The amount of TRU production from conventional PWR could be transmuted in the KTF-TRU core, especially Am-241 isotope is remarkably transmuted by capture reaction. Even isotopes of curium were cumulated in the core during the burnup, however, KTF-TRU core could reduce the TRU in spent fuel by using well-thermalized neutron spectrum. Proliferation resistance potential of thorium based transmutation fuel is slightly increased. About 31% reduction of TRU amount was measured from reduced plutonium production from U-238. Total amount of Am-241 was reduced significantly, but total amount of minor actinide (MA) was reduced by 28% of its initial loading mass. (authors)

Bae, Kang-Mok; Lim, Jae-Yong; Kim, Myung-Hyun [Department of Nuclear Engineering, Kyung Hee University, YoungIn-shi, Gyeonggi-do, 449-701 (Korea, Republic of)

2004-07-01

93

Accelerator-driven transmutation of high-level waste from the defense and commercial sectors  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches.

Bowman, C.; Arthur, E.; Beard, C. [and others

1996-09-01

94

Experiment on iodine transmutation by laser Compton scattering gamma ray  

NASA Astrophysics Data System (ADS)

A laser Compton scattering gamma-ray based nuclear transmutation is proposed to reduce the hazards of long-lived activity nuclear waste. In accordance with this proposal, a laser Compton scattering gamma-ray facility has been built on NewSUABARU storage ring. The facility provides 17.6 MeV gamma-ray photons, which is applicable to the nuclear transmutation research. In order to investigate the reaction rate of Iodine material, the 23Na127I target is adopted for the irradiation experiment. The results show that the experimental data is close to the simulation result.

Li, D.; Imasaki, K.; Miyamoto, S.; Horikawa, K.; Amano, S.; Mochizuki, T.

2008-05-01

95

Transmutation of {sup 129}I Using an Accelerator-Driven System  

SciTech Connect

A conceptual blanket design for {sup 129}I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from {approx}10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal.

Nishihara, Kenji; Takano, Hideki [Japan Atomic Energy Research Institute (Japan)

2002-01-15

96

Development of silicon doping technique by neutron transmutation.  

National Technical Information Service (NTIS)

This is the interim report for the technique/facility development of neutron transmutation doping (NTD) to be performed at new research reactor, KMRR(30MW) which is under construction at KAERI. The first year's scope and contents of this project include e...

H. J. Kim Y. C. Kim J. D. Kim B. C. Jun C. H. Lee

1989-01-01

97

Linear accelerator for plutonium conversion and transmutation of NPP wastes  

Microsoft Academic Search

The conclusion of an agreement between Russia and the USA for significantly reducing the number of nuclear warheads has made the effective peaceful use of the stockpiles of weapons-grade plutonium, a very urgent problem. Another relevant problem for all advanced countries is the transmutation of long-lived high level NPP wastes. One of the most promising ecologically pure and safe methods

I. M. Kapchinskiy; I. V. Chuvilo; A. A. Kolomiets; N. V. Lazarev; I. M. Lipkin; V. K. Plotnikov; I. A. Vorobjov

1993-01-01

98

Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)  

NASA Technical Reports Server (NTRS)

Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

Clement, J. D.; Rust, J. H.

1977-01-01

99

DETERMINATION OF TRANSMUTATION EFFECTS IN CRYSTALLINE WASTE FORMS  

EPA Science Inventory

The objective of this study is to characterize the effects of transmutation in a candidate waste form for 137Cs by investigating samples of a cesium aluminosilicate mineral, pollucite, that have undergone "natural" decay of the Cs under ambient temperature while isolated from int...

100

Method and apparatus for transmutation of atomic nuclei  

DOEpatents

Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand.

Maenchen, John Eric (Albuquerque, NM); Ruiz, Carlos Leon (Albuquerque, NM)

1998-01-01

101

Method and apparatus for transmutation of atomic nuclei  

DOEpatents

Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.

Maenchen, J.E.; Ruiz, C.L.

1998-12-08

102

Method and apparatus for transmutation of atomic nuclei  

DOEpatents

Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.

Maenchen, J.E.; Ruiz, C.L.

1998-06-09

103

Accelerator-driven transmutation of spent fuel elements  

DOEpatents

An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

Venneri, Francesco (Los Alamos, NM) [Los Alamos, NM; Williamson, Mark A. (Los Alamos, NM) [Los Alamos, NM; Li, Ning (Los Alamos, NM) [Los Alamos, NM

2002-01-01

104

Fusion-Fission Transmutation Scheme-Efficient Destruction of Nuclear Waste  

NASA Astrophysics Data System (ADS)

A fusion-assisted transmutation system for the destruction of transuranic (TRU) waste is presented. Subcritical fusion-fission hybrids burn the intransigent transuranic residues (with most of the long lived bio-hazard) of a new fuel cycle that uses cheap light water reactors (LWRs) for the easily burned majority of the TRU. In the new fuel cycle, the number of hybrids needed to destroy a given amount of original LWR waste is 5-10 times less than the corresponding number of critical fast reactors. (Fast reactors, due to stability constraints, cannot burn the very poor quality TRU residue.) The new system comparably reduces the expensive reprocessing throughput. Realization of these advantages should lead to a great reduction in the cost of transmutation. The time needed for 99% waste destruction would also be reduced from centuries to decades. The centerpiece of the fuel cycle is a high power density compact fusion neutron source (CFNS-100 MW, with major radius + minor radius ˜ 2.5 m), which is made possible by a super-X divertor. The physics and technology requirements of the CFNS are much less than the requirements of a pure fusion power source. Advantages of the system as part of a timely strategy to combat global warming are briefly described.

Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant; Schneider, Erich A.

2009-05-01

105

Fusion transmutation of waste: design and analysis of the in-zinerator concept.  

SciTech Connect

Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

2006-11-01

106

Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products.  

National Technical Information Service (NTIS)

The term ''nuclear transmutation'' means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ''recycling'' means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of t...

K. Abrahams J. H. Bultman E. H. P. Cordfunke H. Gruppelaar A. J. Janssen

1994-01-01

107

Targeted radionuclide therapy  

SciTech Connect

Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.

Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F. [Radiology Division, City of Hope National Medical Center, Duarte, California 91010 (United States); Internal Medicine, University of California Davis Medical Center, 1508 Alhambra Boulevard, Suite 3100, Sacramento, California 95816 (United States); Department of Radiation Oncology, Wallace Tumor Institute WTI No. 117, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States)

2008-07-15

108

Natural Radionuclides in Ground Water.  

ERIC Educational Resources Information Center

Described are the natural trace radionuclides in ground water. Indicates the geologic origin of these radionuclides. Discusses the importance of these radionuclides. Suggests future uses of a number of additional radionuclides. (CW)

Davis, Stanley N.

1988-01-01

109

Separation of Transmutation - and Fission-Produced Radioisotopes from Irradiated Beryllium  

SciTech Connect

The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of 241Am, 239Pu, 85Sr, 60Co, and 137Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The 60Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that greater than 99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to less than 100 nCi/g, and sources of high beta-gamma radiation (60Co, 137Cs, and 90Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario.

Troy J. Tranter; RIchard D. Tillotson; Nick R. Mann; Glen R. Longhurst

2011-11-01

110

Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation  

EPA Science Inventory

Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

111

Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues  

EPA Science Inventory

Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

112

Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor  

NASA Astrophysics Data System (ADS)

The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (Pfus approx 10-100 MW, ?N approx 2-3, Qp approx 2-5, R approx 3-5 m, I approx 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-à-vis a neutron source is reviewed.

Stacey, W. M.

2001-02-01

113

Development of neutron-transmutation-doped germanium bolometer material  

SciTech Connect

The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

Palaio, N.P.

1983-08-01

114

TRU transmutation in thorium-based heterogeneous PWR core  

Microsoft Academic Search

A thorium-based seed and blanket design concept for a conventional pressurized light water reactor (PWR) was proposed to enhance the proliferation resistance potential and fuel cycle economics. The KTF core was satisfied with neutronic and thermal-hydraulic design limit of conventional PWR, APR-1400. In order to evaluate transmutation capability of a thorium-based KTF core, U\\/Zr seed fuel mixed with 10% TRU

Kang-Mok Bae; Jae-Yong Lim; Myung-Hyun Kim

2004-01-01

115

Post-irradiation examinations of THERMHET composite fuels for transmutation  

Microsoft Academic Search

The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl2O4 spinel inert matrix and around 40% weight of UO2 to simulate minor actinide inclusions. The post-irradiation examinations led to a

J. Noirot; L Desgranges; N Chauvin; V Georgenthum

2003-01-01

116

Target\\/blanket design for LANL's accelerator transmutation of waste  

Microsoft Academic Search

The Los Alamos accelerator transmutation concept is directed at the problems associated with high-level wastes stored at several US Department of Energy sites. A more advanced long-term effort is investigating the potential of an accelerator-driven system to produce fission energy with a minimal nuclear waste stream. Both concepts employ a high-energy (1,600-MeV), high-current (25- to 60-mA) proton accelerator as the

M. Cappiello; J. Ireland; W. Rider

1991-01-01

117

Transmutation of Americium in a Heavy-Water Reactor  

Microsoft Academic Search

It is shown that 22.5 metric tons of americium from the spent fuel of 30 VVÉR reactors which operated for 30 yr can be transmuted in a 1 GW(t) heavy-water system in 103 yr using as fuel the plutonium from the same spent VVÉR fuel. This means that 7.5 VVÉR reactors (CUF = 0.85) must be maintained simultaneously for fuel

A. Yu. Kvaratskheli; V. N. Konev; B. P. Kochurov

2003-01-01

118

Radiation and transmutation effects relevant to solid nuclear waste forms  

SciTech Connect

Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite.

Vance, E.R.; Roy, R.; Pillay, K.K.S.

1981-03-15

119

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.  

SciTech Connect

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

2007-09-01

120

The status of nuclear data for transmutation calculations  

SciTech Connect

At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 {le} Z {le} 96 neutron-rich fission products of 22 {le} Z {le} 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table.

Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

1995-12-01

121

Irradiation of Metallic Fuels with Rare Earth Additions for Actinide Transmutation in the ATR. Experiment Description for AFC-2A and AFC-2B  

SciTech Connect

The U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing metallic transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the metallic fuel test series in progress in the ATR. This report documents the experiment description and test matrix of the proposed experiments and the Post Irradiation Examination (PIE) and fabrication schedule.

Irradiation of Metallic Fuels with Rare Earth Addi

2006-12-01

122

Radionuclide Ventriculography or Radionuclide Angiography (MUGA Scan)  

MedlinePLUS

... a radionuclide) and a special camera to take pictures of your heart as it pumps blood. The ... called “multi-gated” because a gamma camera takes pictures at specific times during each heartbeat. The test ...

123

Minor actinides transmutation in SFR depleted uranium radial blanket, neutronic AND THERMAL HYDRAULIC EVALUATION  

SciTech Connect

In the framework of next generation fast reactor design, the management of minor actinides (MA) is one of the fundamental issues. This can be made by either homogeneous or heterogeneous multi-recycling model. In the homogeneous process the minor actinides are diluted in the fuel assembly. In the so-called heterogeneous model, minor actinides are concentrated apart from the core fuel (in special pins within dedicated core fuel assemblies or in axial or radial blankets). Here, we proposed to see the transmutation performances of radial blankets loaded with a mixture of depleted uranium and minor actinides oxide. This particular heterogeneous multi-recycling model allows the loading a significantly higher mass of minor actinides in the core than the homogeneous multi-recycling model. The oxide matrix also allows to reprocess such S/A in the spent fuel standard flow. Starting from a preliminary design of a 3600 MW Sodium Fast Reactor (SFR) in progress at CEA, we investigated the transmutation performances of (U+MA)O{sub 2} fuel in radial blankets assemblies. Among all possibilities, we focused on two scenarios: a realistic case with MA enrichment close to 10% and a more optimistic one, near term technologically achievable, close to 40%. For an equilibrium core, the MA transmutation rate reaches 40% for total fuel life time around 11 years for both enrichments. For this particular heterogeneous model, the minor actinides equilibrium (production=destruction) can be achieved with only 23% of the SFR fleet using such 40% MA radial blankets. It represents a total fabrication of 50 of such S/A per year. Concerning non-proliferation issue, the discharged plutonium of these assemblies is highly degraded (contribution of {sup 238}Pu and {sup 240}Pu around 60%). From this starting point, a coupled neutronic-thermal hydraulic optimization based on a simple iterative process has been carried out to deal with minor actinides specific features: high specific decay heat, swelling and helium production. In this paper, we review the main characteristics of the optimized system complying with GEN IV-like images of sodium fast reactors. (authors)

Buiron, L.; Varaine, F. [CEA/DER/SPRC/LEDC Commissariat a l'Energie Atomique (CEA), Cadarache Centre, 13108 Saint-Paul-lez-Durance Cedex (France); Lorenzo, D.; Palancher, H.; Valentin, B. [CEA/DEC/SESC/LC2I Commissariat a l'Energie Atomique (CEA), Cadarache Centre, 13108 Saint-Paul-lez-Durance Cedex (France)

2007-07-01

124

Economic efficiency of radionuclide neutron sources  

SciTech Connect

Neutron sources based on various radionuclides are widely used in technological monitoring in many branches of industry, geological prospecting and also in medicine. Factors affecting the efficiency of radionuclide neutron sources (RNS) are discussed. The method considered here enables the formulation of comparative economic estimates at the stages of development and application of RNS in the solution of several problems such as: determining the limits of competitiveness of RNS based on different radionuclides; and also of RNS and other types of NS; determining the efficiency of utilization of specific RNS in comparison with conventional methods of performing the work; justifying the nomenclature of RNS manufacture with specific radionuclides as well as other areas described here.

Kirillov, E.V.; Karelin, E.A.; Klinov, A.V.; Konyashova, G.V.; Kudryashov, L.N.; Toporov, Y.G.

1985-11-01

125

HYPERFUSE: A Novel Inertial Confinement System Utilizing Hypervelocity Projectiles for Fusion Energy Production and Fission Waste Transmutation.  

National Technical Information Service (NTIS)

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ...

H. Makowitz J. R. Powell R. Wiswall

1980-01-01

126

Hyper Fuse: A Novel Inertial Confinement System Utilizing Hypervelocity Projectiles for Fusion Energy Production and Fission Waste Transmutation.  

National Technical Information Service (NTIS)

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ...

H. Makowitz J. R. Powell R. Wiswall

1979-01-01

127

Fuel design for the U.S. accelerator driven transmutation system  

Microsoft Academic Search

The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system,

M. K. Meyer; S. L. Hayes; D. C. Crawford; R. G. Pahl; H. Tsai

2002-01-01

128

Comparison of Processes of Transmutation of Long-Lived Actinides in Different Reactors  

SciTech Connect

Efficiency of transmutation of actinides was compared for different types of reactors-transmuters: light water VVER-1000 type reactor, fast breeder BN-600 and Super-Phenix type reactors, as well as high-flux subcritical ADS-800 type facility. Feed with minor actinides extracted from the reactor of VVER-1000 type was supposed. (authors)

Bergelson, B.R.; Gerasimov, A.S.; Kiselev, G.V.; Tikhomirov, G.V. [Institute of Theoretical and Experimental Physics (ITEP), 25, B.Cheremushkinskaya, Moscow, 117259 (Russian Federation)

2002-07-01

129

Hyperfuse: A novel inertial confinement system utilizing hypervelocity projectiles for fusion energy and fission waste transmutation  

Microsoft Academic Search

A new concept for the transmutation of fission products and transuranics is proposed. Termed HYPERFUSE, it involves use of inertial reactors for transmutation. The fission products and transuranics are incorporated into the shell of the fusion pellet and accelerated to the hypervelocity range appropriate to the impact fusion approach. When the fusion microexplosion occurs, a substantial fraction, approximately 10 percent

H. Makowitz; J. Powell; R. Wiswall

1979-01-01

130

Advanced Tokamak Neutron Source for a Fusion Transmutation of Waste Reactor.  

National Technical Information Service (NTIS)

A Fusion Transmutation of Waste Reactor (FTWR) based on Advanced Tokamak (AT) physics has been designed in order to assess the benefits of the AT regime to the design of tokamak reactors used as neutron sources to drive subcritical transmutation reactors....

J. Mandrekas L. A. Cottrill G. C. Hahn

2003-01-01

131

Transmutation facility for weapons-grade plutonium disposition based on a tokamak fusion neutron source  

Microsoft Academic Search

It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade

W. M. Stacey; B. L. Pilger; J. A. Mowrey

1995-01-01

132

Small Reactor for Semiconductor Production by Neutron Transmutation Doping  

SciTech Connect

New concept of small size nuclear reactor is proposed for Neutron Transmutation Doping (NTD). The reactor core consists of conventional PWR type fuel elements with light water moderator/coolant unlike conventional research reactors. Graphite reflector is employed for large neutron irradiation volume. Silicon ingots are put into the reflector region for irradiation. Neutronic analysis results show that this concept has possibility to product large amount of silicon ingots which have large diameter. An optimal reactor design and its performance are shown as a result of analysis in the paper.

Obara, Toru; Hong, Liem Peng [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

2010-06-22

133

Cu-Doping of ZnO by Nuclear Transmutation  

SciTech Connect

Zinc oxide single crystals were doped with copper acceptors by means of the nuclear transmutation doping (NTD) method, which gives highly uniform dopant distributions and has a much higher probability of controlling the dopant locations in the lattice. The Cu doping was confirmed by the infrared absorption signature of Cu2+ at 5780 cm-1. Hall-effect measurements were performed to study the effect of CuZn on the electrical properties of ZnO. These measurements indicated that the Cu acceptor level lies 0.126 eV below the conduction-band minimum.

Selim, F. A. [Washington State University; Tarun, M. C. [Washington State University; Wall, D. E. [Washington State University; Boatner, Lynn A [ORNL; McCluskey, M. D. [Washington State University

2011-01-01

134

Muonic alchemy: Transmuting elements with the inclusion of negative muons  

NASA Astrophysics Data System (ADS)

In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

Moncada, Félix; Cruz, Daniel; Reyes, Andrés

2012-06-01

135

Radionuclide Imaging of Infection  

Microsoft Academic Search

Although our understanding of microorganisms has ad- vanced significantly and antimicrobial therapy has become increasingly available, infection remains a major cause of patient morbidity and mortality. The role of radionuclide imaging in the evaluation of the patient suspected of har- boring an infection varies with the situation. For example, in the postoperative patient, radionuclide imaging is comple- mentary to CT

Charito Love; Christopher J. Palestro

136

Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel  

NASA Astrophysics Data System (ADS)

The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

Stacey, W. M.

2009-09-01

137

EASY-II: a system for modelling of n, d, p, ? and ? activation and transmutation processes  

NASA Astrophysics Data System (ADS)

EASY-II is designed as a functional replacement for the previous European Activation System, EASY-2010. It has extended nuclear data and new software, FISPACT-II, written in object-style Fortran to provide new capabilities for predictions of activation, transmutation, depletion and burnup. The new FISPACT-II code has allowed us to implement many more features in terms of energy range, up to GeV; incident particles: alpha, gamma, proton, deuteron and neutron; and neutron physics: self-shielding effects, temperature dependence, pathways analysis, sensitivity and error estimation using covariance data. These capabilities cover most application needs: nuclear fission and fusion, accelerator physics, isotope production, waste management and many more. In parallel, the maturity of modern general-purpose libraries such as TENDL-2012 encompassing thousands of target nuclides, the evolution of the ENDF format and the capabilities of the latest generation of processing codes PREPRO-2012, NJOY2012 and CALENDF-2010 have allowed the FISPACT-II code to be fed with more robust, complete and appropriate data: cross-sections with covariance, probability tables in the resonance ranges, kerma, dpa, gas and radionuclide production and 24 decay types. All such data for the five most important incident particles are placed in evaluated data files up to an incident energy of 200 MeV. The resulting code and data system, EASY-II, includes many new features and enhancements. It has been extensively tested, and also benefits from the feedback from wide-ranging validation and verification activities performed with its predecessor

Sublet, Jean-Christophe; Eastwood, James; Morgan, Guy; Koning, Arjan; Rochman, Dimitri

2014-06-01

138

Monte Carlo simulations of models for accelerator transmutation of waste  

SciTech Connect

The Los Alamos Accelerator Transmutation of Waste (ATW) program is directed toward the dual goals of alleviating the problems associated with existing high-level radioactive defense wastes, and of developing systems for the generation of fission energy with minimal production of high-level, long-lived nuclear wastes. In the Los Alamos ATW concept, a high-current, high-energy proton accelerator creates and intense flux of neutrons through spallation in heavy metal targets. The high neutron flux levels available in such systems allow the rapid burning even of nuclides with small cross sections, the design of systems with dilute inventories, and the operation of systems far from criticality. A crucial tool for ATW simulations is the LAHET Code System (LCS), which consists of the Los Alamos version of the HETC Monte Carlo code, a special version of the MCNP code, and several tallying and postprocessing utilities. Here we present results for a baseline system designed to transmute technetium. 16 refs.

Hughes, H.G.; Engel, L.N.

1991-01-01

139

LDRD 140639 final report : investigation of transmutation claims.  

SciTech Connect

The Proton-21 Laboratory in the Ukraine has been publishing results on shock-induced transmutation of several elements, including Cobalt 60 into non-radioactive elements. This report documents exploratory characterization of a shock-compressed Aluminum-6061 sample, which is the only available surrogate for the high-purity copper samples in the Proton-21 experiments. The goal was to determine Sandia's ability to detect possible shock-wave-induced transmutation products and to unambiguously validate or invalidate the claims in collaboration with the Proton-21 Laboratory. We have developed a suitable characterization process and tested it on the surrogate sample. Using trace elemental analysis capabilities, we found elevated and localized concentrations of impurity elements like the Ukrainians report. All our results, however, are consistent with the ejection of impurities that were not in solution in our alloy or were deposited from the cathode during irradiation or possibly storage. Based on the detection capabilities demonstrated and additional techniques available, we are positioned to test samples from Proton-21 if funded to do so.

Reich, Jeffrey E.; Van Devender, J. Pace; Mowry, Curtis Dale; Grant, Richard P.; Ohlhausen, James Anthony

2009-11-01

140

Practising alchemy: the transmutation of evidence into best health care.  

PubMed

Alchemy was the synthesis or transmutation of all elements in perfect balance to obtain the philosopher's stone, the key to health. Just as alchemists sought this, so health practitioners always seek the best possible practice for optimal health outcomes for our patients. Best practice requires full knowledge--a little information can be dangerous. We need to serve our apprenticeship before we master our profession. Our profession is about improving health care. While the journey may start at medical school, the learning never ceases. It is not only about practising medicine, it is about the development of the practitioner. Professional practice requires systematic thinking combined with capacity to deal morally and creatively in areas of complexity and uncertainty appropriate to a specific context. It requires exemplary communication skills to interact with patients to facilitate collaborative decision making resulting in best practice. The synthesis of scientific and contextual evidence is a concept which applies to all disciplines where theoretical knowledge needs to be transferred to action to inform best practice. Decisions need to be made which take into account a complex array of factors, such as social and legal issues and resource constraints. Therefore, journey towards best practice involves transmutation of these three elements: scientific knowledge, the context in which it is applied and phronesis, the practical wisdom of the practitioner. All science has its limitations and we can never know all possible contextual information. Hence, like the philosopher's stone, best practice is a goal to which we aspire but never quite attain. PMID:21127021

Goodyear-Smith, Felicity

2011-04-01

141

Radionuclides in US coals  

SciTech Connect

The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

Bisselle, C. A.; Brown, R. D.

1984-03-01

142

Biology of radionuclide therapy  

SciTech Connect

This volume contains the proceedings of a conference entitled Biology of Radionuclide Therapy held in Washington September 29 and 30, 1988. The meeting is part of the Frontiers in Nuclear Medicine Symposium Series.

DeNardo, G.L.; Lewis, J.P. (eds.) (University of California Davis Medical Center, Sacramento, CA (United States)); Raventos, A. (ed.) (Veterans Administration Hospital, Martinez, CA (United States)); Burt, R.W. (ed.) (Indiana Univ., Bloomington, IN (United States))

1989-01-01

143

Radionuclide Small Intestine Imaging  

PubMed Central

The aim of this overview article is to present the current possibilities of radionuclide scintigraphic small intestine imaging. Nuclear medicine has a few methods—scintigraphy with red blood cells labelled by means of 99mTc for detection of the source of bleeding in the small intestine, Meckel's diverticulum scintigraphy for detection of the ectopic gastric mucosa, radionuclide somatostatin receptor imaging for carcinoid, and radionuclide inflammation imaging. Video capsule or deep enteroscopy is the method of choice for detection of most lesions in the small intestine. Small intestine scintigraphies are only a complementary imaging method and can be successful, for example, for the detection of the bleeding site in the small intestine, ectopic gastric mucosa, carcinoid and its metastasis, or inflammation. Radionuclide scintigraphic small intestine imaging is an effective imaging modality in the localisation of small intestine lesions for patients in whom other diagnostic tests have failed to locate any lesions or are not available.

Dolezal, Jiri; Kopacova, Marcela

2013-01-01

144

Distribution of fallout radionuclides  

Microsoft Academic Search

Depth profiles and cumulative deposition of four fallout radionuclides (7Be, 137Cs, 210Pb and 239,240Pu) were determined in presumably undisturbed soils in Taiwan. Inventories of these radionuclides in different areas correlate significantly with each other (except 7Be) and with mean annual rainfall, providing a necessary condition for the development of soil ero- sion studies in Taiwan. However, the data show very

C.-C. Su

145

Method and apparatus for separating radionuclides from non-radionuclides  

DOEpatents

In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

Harp, Richard J. (18746 Viking Way, Cerritos, CA 90701)

1990-01-01

146

Classical dimensional transmutation and renormalization in massive ??4 model  

NASA Astrophysics Data System (ADS)

Recently, Dvali, Gomez, and Mukhanov have investigated a classical ??4 model with external source and without mass and they have clarified that there are underlying renormalization group structure, including the phenomenon of the dimensional transmutation, at purely classical level. Especially when the coupling ? is negative, the classical beta function shows the property of asymptotic freedom as in QCD. In this Letter, we investigate the ??4 model with mass, and clarify the role of the mass. The obtained classical beta function is identical with that of the massless ??4 model up to the corrections of the ratio of the IR cutoff to UV cutoff, and describes the renormalization flow same as the massless theory. We also found that the dynamically generated scale of massive theory is larger than that of massless theory, which could be due to the screening effect of the mass term.

Yoda, Hiroshi; Nojiri, Shin'ichi

2012-12-01

147

Utilization of accelerators for transmutation and energy production  

SciTech Connect

Given the increased concern over reliable, emission-free power, nuclear power has experienced a resurgence of interest. A sub-critical accelerator driven system (ADS) can drive systems that have either safety constraints (waste transmutation) or reduced fissile content (thorium reactor). The goals of ADS are some or all of the following: (1) to significantly reduce the generation or impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, (2) preserve/use the energy-rich component of used nuclear fuel, and (3) reduce proliferation risk. ADS systems have been actively studied in Europe and Asia over the past two decades and renewed interest is occurring in the U.S. This talk will cover some of the history, possible applicable fuel cycle scenarios, and general issues to be considered in implementing ADS systems.

Sheffield, Richard L [Los Alamos National Laboratory

2010-09-24

148

Conceptual study of fusion-driven transmutation reactor with ITER physics and engineering constraints  

NASA Astrophysics Data System (ADS)

A conceptual study of fusion-driven transmutation reactor was performed based on ITER physics and engineering constraints. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor. .

Guen Hong, Bong

2011-11-01

149

System and safety studies of accelerator driven transmutation systems. Annual report 1997.  

National Technical Information Service (NTIS)

In November 1996, SKB started financing of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: (1) Development of a complete code for simulation ...

J. Wallenius J. Carlsson W. Gudowski

1997-01-01

150

Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system 'Energy plus Transmutation' by relativistic protons  

NASA Astrophysics Data System (ADS)

Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with subcritical uranium blanket. In the neutron field outside the blanket, radioactive iodine, neptunium, plutonium and americium samples were irradiated and transmutation reaction yields (residual nuclei production yields) have been determined using g-spectroscopy. Neutron field's energy distribution has also been studied using a set of threshold detectors. Results of transmutation studies of 129I, 237Np, 238Pu, 239Pu and 241Am are presented.

Adam, J.; Katovsky, K.; Balabekyan, A.; Kalinnikov, V. G.; Krivopustov, M. I.; Kumawat, H.; Solnyshkin, A. A.; Stegailov, V. I.; Stetsenko, S. G.; Tsoupko-Sitnikov, V. M.; Westmeier, W.

2007-02-01

151

Possibility of Using of Cold Fusion for the Transmutation of Nuclear Waste Products  

NASA Astrophysics Data System (ADS)

The possibility of using cold fusion for nuclear waste products transmutation is investigated in this paper. In generally a method is based on saturation of the titanium by a mixture of deuterium and air. Possible nuclear fusion reactions are discussed. Their "burning out" sections, effective half-life periods and intensity of neutron beams are evaluated. The applicability of the method for a transmutation of the nuclear waste containing cesium-137 is considered.

Tsvetkov, S. A.

2005-12-01

152

Hyperfuse: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

Microsoft Academic Search

A new concept for the transmutation of fission products and transuranics is studied. This concept, termed HYPERFUSE, allows one inertial reactor to transmute objectionable fission products (¹³⁷Cs and ⁹°Sr) from a large number (e.g., approximately 30) of light water fission reactors, while at the same time generating electric power from the HYPERFUSE plant at a reasonable net plant efficiency (e.g.,

H. Makowitz; J. R. Powell; R. Wiswall

1981-01-01

153

A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source  

Microsoft Academic Search

A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based

W. M. Stacey; V. L. Beavers; W. A. Casino; J. R. Cheatham; Z. W. Friis; R. D. Green; W. R. Hamilton; K. W. Haufler; J. D. Hutchinson; W. J. Lackey; R. A. Lorio; J. W. Maddox; J. Mandrekas; A. A. Manzoor; C. A. Noelke; C. de Oliveira; D. W. Tedder; M. R. Terry; E. A. Hoffman

2005-01-01

154

HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

SciTech Connect

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

Makowitz, H; Powell, J R; Wiswall, R

1980-01-01

155

FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC  

SciTech Connect

Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiC through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.

Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

2013-09-25

156

Transmutation of 129I, 237Np, 238Pu, 239Pu and 241Am Using Neutrons Produced in Target-Blanket System 'Energy and Transmutation' Bombarded by Relativistic Protons  

SciTech Connect

Target-blanket facility 'Energy and Transmutation' was irradiated by a 2 GeV proton beam extracted from the Nuclotron Accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Radioactive samples made from iodine, neptunium, plutonium and americium were irradiated by spallation neutrons produced in the 'E and T' facility. Transmutation reaction yields (residual nuclei production yields) have been determined using methods of {gamma}-spectroscopy. The energy spectrum of the neutron field has been studied by using a set of threshold detectors.

Adam, J. [Joint Institute for Nuclear Research, Dubna near Moscow, 141 980 (Russian Federation); Czech Academy of Science, Nuclear Physics Institute, Rez, 250 68 (Czech Republic); Katovsky, K. [Joint Institute for Nuclear Research, Dubna near Moscow, 141 980 (Russian Federation); Czech Technical University, Department of Nuclear Reactors, Prague, 180 00 (Czech Republic); Balabekyan, A. [Yerevan State University (Armenia); Solnyshkin, A.A.; Kalinnikov, V.G.; Stegailov, V.I.; Tsoupko-Sitnikov, V.M.; Stetsenko, S.G.; Krivopustov, M.I.; Vladimirova, N.M. [Joint Institute for Nuclear Research, Dubna near Moscow, 141 980 (Russian Federation); Pronskikh, V.S. [Joint Institute for Nuclear Research, Dubna near Moscow, 141 980 (Russian Federation); St. Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kumawat, H. [Joint Institute for Nuclear Research, Dubna near Moscow, 141 980 (Russian Federation); HENP Laboratory, Physics Department, University of Rajasthan, Jaipur (India)

2005-05-24

157

Comparative Fuel Cycle Analysis of Critical and Subcritical Fast Reactor Transmutation Systems  

SciTech Connect

Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation resistance of the high-level waste. Storage intact of light water reactor (LWR) spent nuclear fuel, a single recycle in a LWR of the plutonium as mixed-oxide fuel, and the repeated recycle of the transuranics in critical and subcritical fast reactors are compared with the focus on the waste management performance of these systems. Other considerations such as cost and technological challenges were beyond the scope of this study. The overall conclusion of the studies is that repeated recycling of the transuranics from spent nuclear fuel would significantly increase the capacity of high-level waste repositories per unit of nuclear energy produced, significantly increase the nuclear energy production per unit mass of uranium ore mined, significantly reduce the radiotoxicity of the waste streams per unit of nuclear energy produced, and significantly enhance the proliferation resistance of the material stored in high-level waste repositories.

Hoffman, Edward A.; Stacey, Weston M. [Georgia Institute of Technology (United States)

2003-10-15

158

Initial Radionuclide Inventories  

SciTech Connect

The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.

H. Miller

2004-09-19

159

Initial Radionuclide Inventories  

Microsoft Academic Search

The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream

2005-01-01

160

Initial Radionuclide Inventories  

Microsoft Academic Search

The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream

H. Miller

2004-01-01

161

Assessment of radionuclide retardation  

Microsoft Academic Search

Radionuclide migration in the unsaturated and saturated rock zones composing the Yucca Mountain site may be retarded compared with groundwater movement. Predicting the potential for retardation by processes that include sorption, dispersion, and diffusion requires a thorough geologic characterization of this candidate site for the disposal of radioactive waste, augmented by geochemical laboratory experiments and modeling. The retardation phenomenon is

R. J. Herbst; J. A. Canepa

1988-01-01

162

HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

SciTech Connect

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

Makowitz, H.; Powell, J.R.; Wiswall, R.

1980-01-01

163

Post-irradiation examinations of THERMHET composite fuels for transmutation  

NASA Astrophysics Data System (ADS)

The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

2003-07-01

164

Electrical properties of neutron-transmutation-doped germanium  

SciTech Connect

Electrical properties of neutron-transmutation-doped germanium (NTD Ge) and nearly uncompensated gallium-doped germanium have been measured as functions of net-impurity concentration (2 x 10/sup 15/cm/sup -3/ less than or equal to N/sub A/ - N/sub D/ less than or equal to 5 x 10/sup 16/cm/sup -3/) and temperature (0.3 K less than or equal to T less than or equal to 300 K). The method of impurity conduction as a function of carrier concentration and compensation was investigated in the low temperature hopping regime. For nearest neighbor hopping, the resistivity is expected to vary as rho = rho/sub 0/exp(..delta../T) while Mott's theory of variable range hopping predicts that rho = rho/sub 0/exp(..delta../T)/sup 1/4/ in the low temperature limit. In contrast, our results show that the resistivity can best be approximated by rho = rho/sub 0/exp(..delta../T)/sup 1/2/ in the hopping regime down to 0.3 K.

Rodder, M.

1982-08-01

165

Gas core reactors for actinide transmutation. [uranium hexafluoride  

NASA Technical Reports Server (NTRS)

The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

1979-01-01

166

Radionuclide Migration: Prediction Experience  

SciTech Connect

Many different methods of calculating radionuclide migration (transfer) with groundwater-from very simple handmade calculations to use of sophisticated computer models, - exist and are in use. There is no doubt whether we can solve a particular problem in this area; the question is how can we find means of doing this in a fast, precise and economical way. According to practical experience of MosSIA 'Radon' specialists it is useful at the first stage to assess the degree to which various parameters affect the final result. Then the relevance of modeling parameters is usually assessed. SUE MosSIA 'Radon' has applied this complex approach to assessing possible radionuclide transfer from the long term storage facilities located within one of the sites in Moscow. Questions of model verification, computer realization, the analysis of obtained results, a role and a place of these calculations in safety assessment and safety case are beyond the scope of this paper. (authors)

Martianov, V.V.; Sheglov, M.Yu.; Guskov, A.V. [State Unitary Enterprise MosSIA 'Radon', 2/14, 7th Rostovsky pereulok, Moscow 119121 (Russian Federation)

2006-07-01

167

Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix  

SciTech Connect

The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

Fullwood, R.R.; Jackson, R.

1980-01-01

168

Peptides for Radionuclide Therapy  

Microsoft Academic Search

Somatostatin receptor-targeting peptides are widely being used for imaging and therapy of neuroendocrine tumors. Peptide receptor\\u000a radionuclide therapy (PRRT) with e.g. 177Lu labeled somatostatin analogues in neuroendocrine tumor patients has resulted in symptomatic improvement, prolonged survival\\u000a and enhanced quality of life. Yet, much profit can be gained from improving the receptor-targeting strategies available and\\u000a developing new strategies, e.g. targeting other

Marion de Jong; Suzanne M. Verwijnen; Monique de Visser; Dik J. Kwekkeboom; Roelf Valkema; Eric P. Krenning

169

HYPER-FUSE - A novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation  

Microsoft Academic Search

A conservative, simplified analytical model is adapted to carry out the parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR. The principal parameters of interest are mentioned. Other fission products of possible interest for transmutation are analyzed. Possible reactor design for hyper-fuse are examined and the rail gun accelerator is found

H. Hakowitz; J. R. Powell; R. Wiswall

1981-01-01

170

Hyperfuse: A novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation  

Microsoft Academic Search

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy were carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km\\/sec,

H. Makowitz; J. R. Powell; R. Wiswall

1980-01-01

171

Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation  

Microsoft Academic Search

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300

H. Makowitz; J. R. Powell; R. Wiswall

1979-01-01

172

The concept of the volumetric neutron source on the basis of the JUST-T tokamak for minor actinides transmutation  

Microsoft Academic Search

By concept development of the compact volumetric neutron source on the spherical tokamak JUST basis for minor actinides transmutation with aspect ratio A?=?2, some key plasma physics problems are arising: start of discharge; plasma current maintenance in stationary stage; appropriate neutron fluence for transmutation. On the basis of accepted physical and technical preconditions of the concept the combined scenario of

E. A. Azizov; Yu. P. Arefiev; G. G. Gladush; V. N. Dokuka; V. V. Filatov; O. G. Filatov; R. R. Khayrutdinov; V. M. Komarov; V. A. Korotkov; V. A. Krylov; E. G. Kuzmin; A. V. Lopatkin; I. V. Mazul; A. B. Mineev; V. G. Muratov; N. A. Obysov; V. A. Yagnov

2003-01-01

173

Radionuclide therapy beyond radioiodine.  

PubMed

For decades, Iodine-131 has been used for the treatment of patients with thyroid cancer. In recent years, increasingly, other radiopharmaceuticals are in clinical use in the treatment of various malignant diseases. Although in principle these therapies-as in all applications of radionuclides-special radiation protection measures are required, a separate nuclear medicine therapy department is not necessary in many cases due to the lower or lack of gamma radiation. In the following article, four different radionuclide therapies are more closely presented which are emerging in the last years. One of them is the "Peptide Receptor Radionuclide Therapy," the so-called PRRT in which radiolabeled somatostatin (SST)-receptor(R) ligands are used in patients with neuroendocrine tumors. On the basis of radiolabeled antibodies against CD20-positive cells, the so-called radioimmunotherapy is used in the treatment of certain forms of malignant lymphoma. In primary or secondary liver tumors, the (90)Y-labeled particles can be administered. Last but not the least, the palliative approach of bone-seeking radiopharmaceuticals is noted in patients with painful bone metastases. PMID:22815123

Gabriel, Michael

2012-10-01

174

Waves in a reaction-transport system with memory, long-range interactions, and transmutations.  

PubMed

We develop a theory of wave propagation into an unstable state for a system of integral equations with memory, long-range interactions, and transmutations. In particular we use continuous-time random walk theory to describe the transport and transmutation processes. We use a hyperbolic scaling and Hamilton-Jacobi formalism to derive formulas for the speed of propagation of the traveling wave generated by the system in the long-time large-distance limit. Our theory is valid for arbitrary waiting-time, jump-length and, transmutation probability density functions and the propagation speed can generally be found numerically. However, we illustrate our theory by considering an example where analytic results are possible--that is, for a system of Markovian reaction-transport equations. We derive formulas to determine the propagation speed in both the so-called weakly coupled and strongly coupled cases. PMID:15600591

Fedotov, Sergei; Okuda, Yuki

2004-11-01

175

EBS Radionuclide Transport Abstraction  

SciTech Connect

The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

J.D. Schreiber

2005-08-25

176

Mass Spectrometric Radionuclide Analyses  

SciTech Connect

Measurement of ionized atoms by mass spectrometry is an alternative to radiation detection for measuring radioactive isotopes. These systems are large and complex; they require trained operators and extensive maintenance. They began as research systems but have been developed commercially for measuring amounts of radioactive isotopes and their atom ratios to other isotopes. Several types of mass spectrometer systems are in use. This chapter covers the basics of mass spectrometry and surveys the application of these instruments for radionuclide detection and discusses the circumstances under which use of mass spectrometers is advantageous, the type of mass spectrometer used for each purpose, and the conditions of sample preparation, introduction and analysis.

Wacker, John F.; Eiden, Greg C.; Lehn, Scott A.

2006-02-01

177

Technology  

Microsoft Academic Search

The presence of technology in the hospitality industry is increasing at a rapid rate. Technology has had an effect on the efficiency of many facets of the hospitality industry. Despite the growing number of meetings, conventions, and conferences, there has not been a published needs assessment study of training needs-especially technology needs-of hospitality sales managers. This paper presents the results

Gail Sammons

2000-01-01

178

CONCEPT OF THE DEMONSTRATION MOLTEN SALT UNIT FOR THE TRANSURANIUM ELEMENTS TRANSMUTATIONS  

Microsoft Academic Search

In this report it is considered fluorine reprocessing of spent fuel and fluoride molten salt reactor in critical and subcritical modes for plutonium and minor actinides burning. International collaboration for creation of such system is proposed. It is without any doubt that additional neutron source in the core will have positive influence on the transmutation processes in the reactor. On

P. Alekseev; A. Dudnikov; V. Prusakov; S. Subbotin; R. Zakirov; V. Lelek; I. Peka

179

Preliminary results with 'Cincinnati group cell' on thorium 'transmutation' under 50 Hz AC excitation.  

National Technical Information Service (NTIS)

The Authors give the procedure and the results of experiments performed with a standard (sup C)incinnati Group Cell(sup ,) aimed to observe possible 'transmutation' of Th in other elements via an Ac electrolytic process. Three techniques have been used to...

F. Celani A. Mancini C. Buzzanca M. Achilli A. Battaglia

1998-01-01

180

Comparative Fuel Cycle Analysis of Critical and Sub-Critical Fast Reactor Transmutation Systems  

National Technical Information Service (NTIS)

Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level...

E. A. Hoffman W. M. Stacey

2002-01-01

181

Charles Darwin's biological species concept and theory of geographic speciation: the transmutation notebooks  

Microsoft Academic Search

The common view has been that Darwin regarded species as artificial and arbitrary constructions of taxonomists, not as distinct natural units. However, in his transmutation notebooks he clearly subscribed to the reality of species, on the basis of the criterion of non-interbreeding. A consequence of this biological species concept was his identification of the acquisition of reproductive isolation as the

Malcolm J. Kottler

1978-01-01

182

Reactor-Produced Medical Radionuclides  

NASA Astrophysics Data System (ADS)

The therapeutic use of radionuclides in nuclear medicine, oncology, and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by ?- emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for the production of a number of medical radionuclides in a reactor.

Mirzadeh, S.; Mausner, L. F.; Garland, M. A.

183

Reactor-Produced Medical Radionuclides  

SciTech Connect

The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.

Mirzadeh, Saed [ORNL; Mausner, Leonard [Brookhaven National Laboratory (BNL); Garland, Marc A [ORNL

2011-01-01

184

AFCT\\/TFCT Environmental Assessment Program: waterborne radionuclide concentration and dose calculations for the southeast study basin  

Microsoft Academic Search

In support of the Alternate Fuel Cycle Technology - Thorium Fuel Cycle Technology (AFCT\\/TFCT) Environmental Assessment Program, a methodology was developed and applied for purposes of estimating the radiological impact associated with the transport of waterborne radionuclides. Radionuclide concentration and ingestion dose calculations were performed for a hypothetical source located on the Savannah River Project. A study area of approximately

J. C. Jr. Sonnichsen; J. F. Fletcher; H. A. Carlson; P. D. Charles; L. M. Uhler

1979-01-01

185

Beta-emitting radionuclides for peptide receptor radionuclide therapy.  

PubMed

The paper focuses on the ?-emitting radionuclides which might be useful for peptide receptor radionuclide therapy, PRRT. For the effective design of the radiopharmaceutical, the choice of radionuclide will depend on the purpose for which the radioligand is being used and on the physicochemical properties of the radionuclide. The important factor is also the availability and the cost of production. The physical characteristics of several radionuclides which are currently used or can be considered as potential candidates for PRRT is provided, followed by short description of production methods and chemical aspects of their use in preparation of peptide-based radiopharmaceuticals. Somatostatin analogues labeled with radionuclides have been a successful example of PRRT. For treatment of patients with inoperable or metastasized neuroendocrine tumors, somatostatin analogues labeled with the radioisotopes (111)In, (90)Y and (177)Lu have been used so far. Labeling with (111)In, mainly an Auger electron emitter, resulted in no reduction of tumor size while somatostatin analogues labeled with (90)Y and (177)Lu gave overall positive response and improved the patients' quality of life. These promising results together with the increasing availability of other ?-emitting radionuclides are a good basis for further studies. PMID:23339764

Parus, J L; Mikolajczak, R

2012-01-01

186

Natural radionuclides in groundwaters  

SciTech Connect

The U-234 and Th-230 radionuclides are highly retarded by factors of 10{sup 4} to 10{sup 5} in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na{sup +} and Cl{sup {minus}} ions and RaCl{sub 2} is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs.

Laul, J.C.

1990-01-01

187

Significant Radionuclides Determination  

SciTech Connect

The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

Jo A. Ziegler

2001-07-31

188

Technology.  

ERIC Educational Resources Information Center

Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

Giorgis, Cyndi; Johnson, Nancy J.

2002-01-01

189

Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation.  

National Technical Information Service (NTIS)

The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009...

A. T. Hart J. E. Szecsody L. Zhong M. Oostrom Z. F. Zhang

2009-01-01

190

Radionuclides in groundwaters: contaminants and tracers  

Microsoft Academic Search

As groundwaters serve for drinking-water purposes, radionuclides in groundwater are generally considered as contaminants. Some of the radionuclides contributing to natural radioactivity in groundwater and some of the manmade atmospheric radionuclides, however, have become good tracers for the assessment of residence times (groundwater age) and mixing. Controlled experiments with artificial radionuclides, on the other hand, are restricted to a few

EDUARD HOEHN

191

Safety and design concepts of the 400 MW th-class EFIT accelerator driven transmuter and considerations for further developments  

Microsoft Academic Search

European R&D for ADS design and fuel development is driven in the 6th FP of the EU by the EUROTRANS Programme. In EUROTRANS, the longer-term EFIT development, the european facility for industrial transmutation, aims at a generic conceptual design of a full transmuter. A CERCER U-free fuel core with an MgO matrix and a CERMET core with a Mo-92 matrix

W. Maschek; X.-N. Chen; P. Liu; A. Rineiski; M. Flad; G. Rimpault

2010-01-01

192

Radionuclide Retention in Concrete Wasteforms  

SciTech Connect

Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

2011-09-30

193

Possibility of transmutation of {sup 90}Sr and {sup 137}Cs in a high-intensity photon flux accelerator device  

SciTech Connect

Most of the effort and research on the transmutation of radioactive waste have been focused on the utilization of high neutron flux in advanced power reactors or n hybrid accelerator/subcritical systems. Some of the studies indicated that it might be not so economical to transmute {sup 90}Sr and {sup 137}Cs in these systems. Also these isotopes have a slight effect on the issues of geologic storage time because of their relatively short natural half-life ({approximately} 30 yr), but they might significantly affect the working protocol for a waste management period nearly comparable to the human life span. A novel approach to fission product transmutation is presented in this paper that is based on photon-neutron interaction. The high-energy photon flux accelerator proposed for transmutation of {sup 90}Sr and {sup 137}Cs consumes about an order of magnitude less power than those proposed by Los Alamos National Laboratory (LANL) for the transmutation of nuclear waste in an intense thermal neutron source. Furthermore, this system can be linked to one of the proposed systems and improve the overall transmutation performance of the fission product, especially of these two problematic isotopes.

Shayer, Z.

1994-12-31

194

Drift-Scale Radionuclide Transport  

SciTech Connect

The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the drift. The reason for introducing the fracture-matrix partitioning model is to broaden the conceptual model for flow beneath waste emplacement drifts in a way that does not rely on the specific flow behavior predicted by a dual continuum model and to ensure that radionuclide transport is not underestimated. The fracture-matrix partitioning model provides an alternative method of computing the partitioning of radionuclide releases from drifts without seepage into rock fractures and rock matrix. Drifts without seepage are much more likely to have a significant fraction of radionuclide releases into the rock matrix, and therefore warrant additional attention in terms of the partitioning model used for TSPA.

J. Houseworth

2004-09-22

195

FTRANS. Radionuclide Transport Fractured Rock  

Microsoft Academic Search

FTRANS (Fractured flow and Transport of RAdioNuclideS) is a two-dimensional finite-element code designed to simulate ground-water flow and transport of radioactive nuclides in a fractured porous return medium. FTRANS takes into account fluid interactions between the fractures and porous matrix blocks, advective-dispersive transport in the fractures and diffusion in the porous matrix blocks, and chain reactions of radionuclide components. It

Golis

1984-01-01

196

Radionuclide salivary gland imaging  

SciTech Connect

Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

Mishkin, F.S.

1981-10-01

197

On two-dimensional supersymmetric quantum mechanics, pseudoanalytic functions and transmutation operators  

NASA Astrophysics Data System (ADS)

Pseudoanalytic function theory is considered to study a two-dimensional supersymmetric quantum mechanics system. Hamiltonian components of the superHamiltonian are factorized in terms of one Vekua and one Bers derivative operators. We show that imaginary and real solutions of a Vekua equation and its Bers derivative are ground state solutions for the superHamiltonian. The two-dimensional Darboux and pseudo-Darboux transformations correspond to Bers derivatives in the complex plane. Results on the completeness of the ground states are obtained. Finally, the superpotential is studied in the separable case in terms of transmutation operators. We show how Hamiltonian components of the superHamiltonian are related to the Laplacian operator using these transmutation operators.

Bilodeau, Alex; Tremblay, Sébastien

2013-10-01

198

Progress of nitride fuel cycle research for transmutation of minor actinides  

SciTech Connect

Recent progress of nitride fuel cycle research for transmutation of MA is summarized. Preparation of MA-bearing nitride pellets, such as (Np,Am)N, (Am,Pu)N and (Np,Pu,Am,Cm)N, was carried out. Irradiation behavior of U-free nitride fuel was investigated by the irradiation test of (Pu,Zr)N and PuN+TiN fuels, in which ZrN and TiN were added as a possible diluent material. Further, pyrochemical process of spent nitride fuel was developed by electrorefining in a molten chloride salt and subsequent re-nitridation of actinides in liquid Cd cathode electro-deposits. Nitride fuel cycle for transmutation of MA has been demonstrated in a laboratory scale by the experimental study with MA and Pu. (authors)

Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo [Japan Atomic Energy Agency - JAEA, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

2007-07-01

199

A Thorium/Uranium fuel cycle for an advanced accelerator transmutation of nuclear waste concept  

SciTech Connect

Utilizing the high thermal neutron flux of an accelerator driven transmuter to drive a Thorium-Uranium fuel production scheme, it is possible to produce enough energy in the transmuter not only to power the accelerator, but to have enough excess power available for commercial use. A parametric study has been initiated to determine the ``optimum`` equilibrium operation point in terms of the minimization of the equilibrium actinide inventory and the fuel {alpha} for various residence times in the High Flux Region (HFR) and in the Low Flux Region (LFR). For the cases considered, the ``optimum`` equilibrium operation point was achieved for a HFR residence time of 45 days and a LFR residence time of 60 days. For this case, the total actinide inventory in the system is about 20 tonnes and the fuel {alpha} approximately 1.46.

Truebenbach, M.T.; Henderson, D.L. [Wisconsin Univ., Madison, WI (United States); Venneri, F. [Los Alamos National Lab., NM (United States)

1993-12-31

200

Transmutation of Matter in Byzantium: The Case of Michael Psellos, the Alchemist  

NASA Astrophysics Data System (ADS)

There is thus nothing paradoxical about the inclusion of alchemy in the ensemble of the physical sciences nor in the preoccupation with it on the part of learned men engaged in scientific study. In the context of the Medieval model, where discourse on the physical world was ambiguous, often unclear, and lacking the support of experimental verification, the transmutation of matter, which was the subject of alchemy, even if not attended by a host of occult features, was a process that was thought to have a probable basis in reality. What is interesting in this connection is the utilization of the scientific categories of the day for discussion of transmutation of matter and the attempt to avoid, in most instances in the texts that survive, of methods reminiscent of magic.

Katsiampoura, Gianna

2008-06-01

201

Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications  

NASA Technical Reports Server (NTRS)

Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

Haller, E. E.; Itoh, K. M.; Beeman, J. W.

1996-01-01

202

Hyperfuse: A hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

Microsoft Academic Search

An impact approach termed HYPERFUSE is proposed in which hypervelocity pellets traveling on the order of 300 km\\/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted. The 14-MeV fusion neutrons released during the pellet burn cause

H. Makowitz; J. R. Powell; R. Wiswall

1980-01-01

203

Parametric Studies on Plutonium Transmutation Using Uranium-Free Fuels in Light Water Reactors  

Microsoft Academic Search

To compare the once-through use of U-free fuels for plutonium burnup in light water reactors (LWRs), plutonium transmutation, minor actinide (MA) and long-life fission product (LLFP) buildup and radiotoxicity hazards were compared for PuOâ + ZrOâ (rock-like oxide: ROX) and PuOâ + ThOâ (thorium oxide: TOX) fuels, loaded in a soft-to-hard neutron spectrum LWR core (a moderator-to-fuel volume ratio V{sub

Afroza Shelley; Hiroshi Akie; Hideki Takano; Hiroshi Sekimoto

2000-01-01

204

Transmuted isotopes doped in neutron-irradiated ZnO thin films  

Microsoft Academic Search

Transmuted isotopes doped in neutron-irradiated ZnO thin films were first identified on the basis of nuclear reactions of ZnO with thermal neutrons, and their existence in the ZnO thin films was then confirmed by photoluminescence (PL). ZnO thin films were irradiated by neutron beams at room temperature. The ZnO films consist of eight constituent (Zn and O) isotopes, of which

Hyunsuk Kim; Byungdon Min; Jong Soo Lee; Kyoungah Cho; Sangsig Kim; Hyon Soo Han; Soon Ku Hong; Takafumi Yao

2004-01-01

205

Advanced orient cycle, toward realizing intensified transmutation and utilization of radioactive wastes  

Microsoft Academic Search

To minimize the ecological burden originating in nuclear fuel recycling, a new R and D strategy, Adv.- ORIENT (Advanced Optimization by Recycling Instructive Elements) cycle, was set forth. In this context, mutual separation of f-elements, such as minor actinide (MA)\\/lanthanide (Ln) and Am\\/Cm, are essential to enhance the MA (particularly ²¹Am) burning. Isotope separation before transmutation is inevitably required in

Masaki Ozawa; Shinichi Koyama; Tatsuya Suzuki; Yasuhiko Fujii; Reiko Fujita; Hitoshi Mimura

2007-01-01

206

Comparative Fuel Cycle Analysis of Critical and Subcritical Fast Reactor Transmutation Systems  

Microsoft Academic Search

Fuel cycle analyses are performed to evaluate the impacts of further transmutation of spent nuclear fuel on high-level and low-level waste mass flows into repositories, on the composition and toxicity of the high-level waste, on the capacity of high-level waste repositories, and on the proliferation resistance of the high-level waste. Storage intact of light water reactor (LWR) spent nuclear fuel,

Edward A. Hoffman; Weston M. Stacey

2003-01-01

207

Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste  

SciTech Connect

An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

1993-09-01

208

An accelerator technology legacy  

SciTech Connect

Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production.

Heighway, E.A.

1994-11-01

209

Radionuclide injury to the lung  

SciTech Connect

Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequently observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. 88 references.

Dagle, G.E.; Sanders, C.L.

1984-04-01

210

Radionuclide detection devices and associated methods  

DOEpatents

Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

Mann, Nicholas R. (Rigby, ID); Lister, Tedd E. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID)

2011-03-08

211

(Environmental technology)  

SciTech Connect

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12

212

100 Years of radionuclide metrology.  

PubMed

The discipline of radionuclide metrology at national standards institutes started in 1913 with the certification by Curie, Rutherford and Meyer of the first primary standards of radium. In early years, radium was a valuable commodity and the aim of the standards was largely to facilitate trade. The focus later changed to providing standards for the new wide range of radionuclides, so that radioactivity could be used for healthcare and industrial applications while minimising the risk to patients, workers and the environment. National measurement institutes responded to the changing demands by developing new techniques for realising primary standards of radioactivity. Looking ahead, there are likely to be demands for standards for new radionuclides used in nuclear medicine, an expansion of the scope of the field into quantitative imaging to facilitate accurate patient dosimetry for nuclear medicine, and an increasing need for accurate standards for radioactive waste management and nuclear forensics. PMID:24398412

Judge, S M; Arnold, D; Chauvenet, B; Collé, R; De Felice, P; García-Toraño, E; Wätjen, U

2014-05-01

213

Radionuclides in Chesapeake Bay sediments  

NASA Technical Reports Server (NTRS)

Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

Cressy, P. J., Jr.

1976-01-01

214

Feasibility study of minor actinide transmutation in light-water reactors with various AM/CM separation efficiencies  

NASA Astrophysics Data System (ADS)

Implementing a viable solution for the disposition of used nuclear fuel (UNF) raises concerns due its high radiotoxicity and decay heat generation over long time periods. The major contributors to these are the minor actinides (MA) that are contained in the UNF. The strategy of Partition and Transmutation (P&T) separates the components of UNF to treat each separated stream in the manner that is most appropriate. The MA stream can be reprocessed and fabricated with MOX fuel and recycled in a reactor. Through transmutation, reductions in the radiotoxicity and decay heat of UNF can be achieved, which reduces the length of time that UNF must be sequestered from the environment. Because of the greater fission to capture cross section ratio in a fast neutron spectrum, the transmutation of MA is most effective in fast spectrum systems. However, MA transmutation can be carried out, albeit less effectively, in a thermal spectrum. This work examines MA transmutation in a thermal spectrum because there are no currently operating commercial fast spectrum reactors in the U.S. The goal of this study was to examine the feasibility of americium transmutation in a typical light water reactor. Due to similar chemical properties of americium and curium and the difficulty associated with their chemical separation, the separation efficiency of these two elements was also considered. Three separation efficiencies for the MA content were considered, and these were 99.9%, 99.0%, and 90.0% separation of Cm from Am. In addition, the homogeneous and heterogeneous additions of MA to MOX fuel were considered. Similar to current MOX loading schemes, the study simulated a reactor core with 30% of the fuel assemblies composed of MOX fuel bearing MA. This study measured the feasibility of MA transmutation by the reactivity of individual MOX+MA fuel assemblies and full cores, the coefficients of reactivity such as the Doppler Coefficient, Moderator Temperature Coefficient, and Moderator Void Coefficient, MA transmutation efficiency, and attainable burnup. Results show that the transmutation of MA in a light water reactor is feasible from a reactor safety and operation point of view. The reductions of the Am inventory in the UNF were between 40% and 60%. Despite these reductions, there was a significant increase in the Cm inventory, mostly due to the neutron capture of Am in the thermal spectrum.

Tincher, Daniell

215

Artificial and Natural Radionuclides in Marine Life.  

National Technical Information Service (NTIS)

Contents: Methods of investigation; Karyology of marine fish and the effect of radionuclides on their chromosome apparatus; Accumulation and microdistribution of uranium in marine organisms in nature; Extraction of radionuclides by alginic acid from seawa...

V. G. Tsytsugina N. S. Risik G. E. Lazorenko

1975-01-01

216

Testing For Outliers In Radionuclide Data.  

National Technical Information Service (NTIS)

The problem of monitoring atmospheric radionuclides over time is investigated. Such monitoring is desirable for both natural and anthropogenic radionuclides. The statistical problem is one of testing for a time series outlier, and the problem is complicat...

B. Zhao H. L. Gray M. D. Fisk W. A. Woodward

2000-01-01

217

Radionuclide labeled lymphocytes for therapeutic use  

DOEpatents

Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

1983-05-03

218

Radionuclide labeled lymphocytes for therapeutic use  

DOEpatents

Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

Srivastava, Suresh C. (Setauket, NY); Fawwaz, Rashid A. (Pelham, NY); Richards, Powell (Bayport, NY)

1985-01-01

219

Subclavian steal diagnosed by radionuclide arteriogram.  

PubMed

We report a case of subclavian steal syndrome diagnosed by radionuclide arteriogram and subsequently confirmed by contrast arteriogram. We suggest that radionuclide arteriogram may sometimes be useful as a screening test. PMID:6090049

Cox, W M; Abghari, R

1984-08-01

220

Transfer of radionuclides in the terrestrial environment.  

National Technical Information Service (NTIS)

The transfer of radionuclides in the terrestrial environment have been investigated. The thesis is divided into two parts. Part I; Dynamic model for the transfer of radionuclides in the terrestrial environment. The study comprises the development of a com...

M. Oehlenschlaeger

1991-01-01

221

Measurement of radionuclides in waste packages  

DOEpatents

A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

1984-09-12

222

Measurement of radionuclides in waste packages  

DOEpatents

A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

Brodzinski, Ronald L. (Richland, WA); Perkins, Richard W. (Richland, WA); Rieck, Henry G. (Richland, WA); Wogman, Ned A. (Richland, WA)

1986-01-01

223

Radionuclide daughter inventory generator code: DIG  

Microsoft Academic Search

The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes

D. E. Fields; R. D. Sharp

1985-01-01

224

(Biogeochemical pathways at artificial radionuclides)  

SciTech Connect

Many of the present computer codes used to assist management decisions on hazardous waste management issues have not been verified or tested and, in many instances, are operated by individuals lacking specific expertise about the overall behavior of radionuclides in the environment. BIOMOVS is an international effort to test such codes. SCOPE-RADPATH has been organized to address the data needs for reliable environmental assessment of radionuclides and the data required for code testing. Concern was expressed at both meetings that computer codes are being inadvertently used as a substitute for scientific expertise and are obscuring rather than identifying needs for further research. Efforts to alleviate this situation are apparent among the scientific community funded by the Commission of the European Communities and the Nordic Liason Committee for Atomic Energy. Attempts are also being made to transfer information about the environmental behavior of radionuclides to other types of trace contaminants in the biosphere, using radionuclides as quantitative tracers of major biospheric transport processes. Of particular importance is the assessment of the transfer of radioactive contaminants from watersheds into surface waters and subsequent bioaccumulation into aquatic food chains as well as the long-term remobilization of contaminants initially immobilized in sediment.

Hoffman, F.O.

1989-06-26

225

Sensitvity and Uncertainty Analysis for a Minor-actinide Transmuter with JENDL-4.0  

NASA Astrophysics Data System (ADS)

A sensitivity and uncertainty analysis was performed for the minor-actinide transmuter proposed by the Japan Atomic Energy Agency with JENDL-4.0. Analysis with sensitivity coefficients and the JENDL-4.0 covariance data showed that the covariances of the capture cross sections and fission-related parameters of MAs and Pu isotopes have considerable impact on the uncertainties of reactor physics parameters, and covariances of the inelastic scattering cross section of lead-bismuth eutectic (LBE) materials significantly affect the uncertainty of coolant-void reactivity.

Iwamoto, H.; Nishihara, K.; Sugawara, T.; Tsujimoto, K.

2014-04-01

226

Flowsheet report for baseline actinide blanket processing for accelerator transmutation of waste  

SciTech Connect

We provide a flowsheet analysis of the chemical processing of actinide and fission product materials form the actinide blanket of an accelerator-based transmutation concept. An initial liquid ion exchange step is employed to recover unburned plutonium and neptunium, so that it can be returned quickly to the transmitter. The remaining materials, consisting of fission products and trivalent actinides (americium, curium), is processed after a cooling period. A reverse Talspeak process is employed to separate these trivalent actinides from lanthanides and other fission products.

Walker, R.B.

1992-04-08

227

Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes  

NASA Astrophysics Data System (ADS)

The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

Anikeev, Andrey V.

2012-06-01

228

The key role of off-axis singularities in free-space vortex transmutation  

NASA Astrophysics Data System (ADS)

We experimentally demonstrate the generation of off-axis phase singularities in a vortex transmutation process induced by the breaking of rotational symmetry. The process takes place in free space by launching a highly charged vortex, owning full rotational symmetry, into a linear thin diffractive element presenting discrete rotational symmetry. It is shown that off-axis phase singularities follow straight dark rays bifurcating from the symmetry axis. This phenomenon may provide new routes toward the spatial control of multiple phase singularities for applications in atom trapping and particle manipulation.

Novoa, David; Sola, Iñigo J.; García-March, Miguel Angel; Ferrando, Albert

2014-01-01

229

General Environmental Corporation CURE Electrocoagulation Technology. Innovative Technology Evaluation Report.  

National Technical Information Service (NTIS)

The CURE electrocoagulation system was evaluated for removal of low levels of the radionuclides uranium, plutonium, and americium as well as other contaminants in wastewater. Economic data from the Superfund Innovative Technology Evaluation (SITE) demonst...

1998-01-01

230

Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06  

SciTech Connect

This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

Meier, W R; Moir, R W; Abbott, R

2006-09-19

231

Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro  

NASA Astrophysics Data System (ADS)

Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·?/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

Kim, Myong-Seop; Park, Sang-Jun

2009-08-01

232

Porosity swelling and transmutation contributions to conductivity changes in some neutron-irradiated copper alloys  

SciTech Connect

Fast-neutron irradiation of alloys for fusion-reactor applications produces bulk changes in density and composition via porosity swelling and transmutation which affect the dc volume electrical and thermal conductivities (sigma=1/rho/sub e/ and K). For the Cu materials of our study, neutron fluences of 2 x 10/sup 26/n/m/sup 2/ (E > 0.1 MeV) produced Ni and Zn weight increases of about 0.05 and 0.09%, respectively, and porosity swelling of 0 to 7%; rho/sub e/ accordingly increased as much as 18%. We also determined the individual rho/sub e/ changes due to both swelling and transmutation via use of an appropriate mixing rule and of Matthiessen's law to unmask any residual effects present, e.g., phase or microstructural changes. For four materials - two pure copper and two alumina-dispersion-strengthened (ADS) alloys - subtraction of these deltarho/sub e/'s from the irradiated values yielded or nearly yielded the respective control values. In contrast, the two precipitation-strengthened (PS) alloys studied, MZC and AMZIRC, had relatively large negative residues, apparently indicating effective radiation-induced conductivities.

Frost, H.M.; Kennedy, J.C.

1986-01-01

233

Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of 'Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal'.  

National Technical Information Service (NTIS)

A 'Strategy study on nuclear waste transmutation' by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration ...

K. Abrahams J. L. Kloosterman H. Gruppelaar P. Brusselaers G. Evrard

1995-01-01

234

Natural chelates for radionuclide decorporation  

DOEpatents

This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

Premuzic, E.T.

1983-08-25

235

Radionuclide behavior in the environment  

SciTech Connect

The purpose of this report is to document the results of the following task: Review for quality and consistency the available data on measurements of initial ground contamination of Chernobyl radionuclides in various parts of Norway and subsequent concentrations of these radionuclides in various environmental media as functions of time. Utilize the data obtained to verify the existing models, or to improve them, for describing radionuclide behavior in the environment. Some of the processes standard were: migration into soil; weathering; resuspension; food-chain contamination; and loss or reconcentration by run-off. The task performed within this contract has been to use post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in MACCS. Work has consisted mainly of collecting and evaluating post-Chernobyl information from Norway or other countries when relevant; but has also included experimental work performed specifically for the current task. In most connections the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is faulty or inadequate are, however, pointed out in the report. These should be examined carefully, and appropriate modifications should eventually be made. 14 refs., 12 figs., 22 tabs.

Tveten, U. (Institutt for Energiteknikk, Kjeller (Norway))

1991-09-01

236

Radionuclide daughter inventory generator code: DIG  

SciTech Connect

The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

Fields, D.E.; Sharp, R.D.

1985-09-01

237

Neutron-transmuted carbon-14 in neutron-irradiated GaN: Compensation of DX-like center  

NASA Astrophysics Data System (ADS)

The transmuted-C related luminescence and net carrier concentration are studied by combining photoluminescence, liquid scintillation, and Raman scattering. GaN single crystal films grown by metalorganic-vapor-phase epitaxy are irradiated with fast and thermal neutrons at fluxes of 3.9 × 1013 cm-2s-1 and 8.15 × 1013 cm-2s-1, respectively. Irradiation time is 48 hours. The calculated 72Ge and 14C concentrations are 1.24 × 1018 cm-3 and 1.13 × 1018 cm-3, respectively. The transmuted 14C is detected by the liquid scintillation method to survey ?-rays emitted in the process of 14C decays from 14N. Tritium (3H) is also emitted by a (n,t) reaction of 14N due to the neutron irradiation above 4.5 MeV. Photoluminescence relating to C, DX-like center of Ge and yellow luminescence band are observed in 1000 °C annealed NTD-GaN. The free electron concentration estimated from Raman scattering is 4.97 × 1017 cm-3. This value is lower than that from the transmuted Ge concentration, suggesting the compensation due to the transmuted 14C acceptors.

Ida, T.; Oga, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Fukutani, S.

2013-12-01

238

Study of AmO(sub 2)-MgO system for americium target transmutation in fast reactors.  

National Technical Information Service (NTIS)

In frame of the transmutation of the minor actinides, a test of the heterogeneous concept (americium-241 oxide AmO(sub 2) in inert matrix MgO) is planned to be carried out at the periphery of a fast reactor. The study of the basic chemical and physical pr...

C. Prunier, S. Casalta, K. Richter

1994-01-01

239

Methods of separating short half-life radionuclides from a mixture of radionuclides  

DOEpatents

The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

Bray, Lane A. (Richland, WA); Ryan, Jack L. (West Richland, WA)

1998-01-01

240

Methods of separating short half-life radionuclides from a mixture of radionuclides  

DOEpatents

The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

Bray, L.A.; Ryan, J.L.

1998-09-15

241

Microbial Transformations of Actinides and Other Radionuclides  

SciTech Connect

Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

Francis,A.J.; Dodge, C. J.

2009-01-07

242

A SAR-compliant radionuclide inventory management system for a DOE research and development laboratory  

SciTech Connect

The US Department of Energy Complex contains many laboratories that require inventory management and control of large stores of radionuclides. While the overall quantities of radionuclides are bounded by Authorization Basis (AB) documents, the spatial distribution may change rapidly according to facility experimentation and storage limits. Thus, the consequences of postulated accident events may be difficult to quantify as the location of radiological species becomes uncertain. Furthermore, a situation of this nature may be compounded by management of fissile materials in the same laboratory. Although radionuclide inventory management, fissile material control, and compliance with AB limits may be handled individually, a systematic and consistent approach would be to integrate all three functions. A system with these characteristics, an upgraded Radionuclide Inventory and Administrative Control (RI-AC) System, has been implemented for the Savannah River Technology Center (SRTC) located on the Savannah River Site (SRS), and is summarized in this paper.

Blanchard, A.

2000-02-09

243

Colloid labelled with radionuclide and method  

DOEpatents

A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

Atcher, Robert W. (Chicago, IL); Hines, John J. (GlenEllyn, IL)

1990-01-01

244

Method of making colloid labeled with radionuclide  

DOEpatents

A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

Atcher, Robert W. (Chicago, IL); Hines, John J. (Glen Ellyn, IL)

1991-01-01

245

DKPRO: A radionuclide decay and reprocessing code  

SciTech Connect

The DKPRO code solves the general problem of modeling complex nuclear wastes streams using ORIGEN2 radionuclide production files. There is a continuing need for estimates of Hanford radionuclides. Physical measurements are one basis; calculational estimates, the approach represented here, are another. Given a known nuclear fuel history, it is relatively straightforward to calculate radionuclide inventories with codes such as the widely-used Oak Ridge National Laboratory code ORIGEN2.

Wootan, D.; Schmittroth, F.A.

1997-07-14

246

Colloid labelled with radionuclide and method  

DOEpatents

A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

Atcher, R.W.; Hines, J.J.

1990-11-13

247

Therapy for incorporated radionuclides: scope and need  

SciTech Connect

In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain.

Smith, V.H.

1981-03-01

248

Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations  

DOEpatents

The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

Chen, Xiaoyuan (Syracuse, NY); Wai, Chien M. (Moscow, ID); Fisher, Darrell R. (Richland, WA)

2000-01-01

249

Immobilization of interstitial loops by substitutional alloy and transmutation atoms in irradiated metals  

NASA Astrophysics Data System (ADS)

Small platelike clusters of self-interstitial atoms (SIAs) in irradiated metals are extremely mobile. This mobility can be greatly reduced by foreign atoms. Where the plates are large enough to form edge dislocation loops, their immobilization is analysed as a solid solution hardening. The misfitting substitutional solute atoms can significantly reduce the mobility of small SIA loops when in the central cores of their edge dislocation lines. An activation energy is required to unpin a loop from such atoms and this - unlike in conventional solid solution hardening - remains finite even with no applied stress driving the dislocation. In dilute solutions break-away occurs by the thermally activated escape from single atom obstacles on the loops. Application to a proposed fusion power plant alloy (EUROFER 97) shows that the W alloy atoms provide the most severe immobilization, although Mn atoms produced by transmutation run a close second. The contribution of Cr is evaluated.

Cottrell, G. A.; Dudarev, S. L.; Forrest, R. A.

2004-02-01

250

Development of a technique for measuring cross sections of interest to accelerator transmutation of waste (ATW)  

SciTech Connect

It has been suggested that transmutation of actinide waste into fission products could be enhanced by using resonance fission of odd-odd target materials; those of interest are {sup 232}Pa, {sup 238}Np, and {sup 242}Am. Our technique for carrying out the measurement of the resonance fission cross section of short-lived materials has three steps: (1) We produce the sample by the (d,2n) reaction at the Los Alamos Ion Beam Facility. (2) We carry out fast radiochemistry to separate the odd-odd target of interest. (3) We measure the fission rate in a high intensity pulsed neutron beam produced by 800 MeV proton spallation. Using this technique, we have successfully measured the neutron-induced fission cross sections of 1.3 day {sup 232}Pa and 2.1 day {sup 238}Np, from 0.01 eV to 50 keV.

Moore, M.S.; Koehler, P.E.; Littleton, P.E. [and others

1994-05-01

251

Advanced orient cycle, toward realizing intensified transmutation and utilization of radioactive wastes  

SciTech Connect

To minimize the ecological burden originating in nuclear fuel recycling, a new R and D strategy, Adv.- ORIENT (Advanced Optimization by Recycling Instructive Elements) cycle, was set forth. In this context, mutual separation of f-elements, such as minor actinide (MA)/lanthanide (Ln) and Am/Cm, are essential to enhance the MA (particularly {sup 241}Am) burning. Isotope separation before transmutation is inevitably required in the case of some long-lived fission products (LLFPs) like {sup 126}Sn, {sup 135}Cs, etc. The separation and utilization of rare metal fission products (RMFPs: Ru, Rh, Pd, Tc, Se, Te, etc.) can offer a new direction in the partitioning and transmutation (P and T) field. Separation of exothermic nuclides {sup 90}Sr, {sup 137}Cs as well as MA will significantly help to mitigate the repository tasks. A key separation tool is ion exchange chromatography (IXC) by a tertiary pyridine resin having soft donor nitrogen atoms. This method has provided individual recovery of pure Am and Cm products with a Pu/U/Np fraction from irradiated fuel in just a 3-step separation. A catalytic electrolytic extraction (CEE) method by Pd{sub adatom} has been employed to separate, purify and fabricate RMFP catalysts. High separation efficiency of RMFP proved hydrochloric acid as a suitable media for their recovery. Different functioned ion exchangers, e.g., ammonium molybdophosphate (AMP), have been investigated for the separation of Cs{sup +}. Theoretical and laboratory studies on the isotope separation of LLFPs were begun for {sup 79}Se, {sup 126}Sn and {sup 135}Cs. (authors)

Ozawa, Masaki [Japan Atomic Energy Agency (Japan)]|[Tokyo Institute of Technology (Japan); Koyama, Shinichi [Japan Atomic Energy Agency (Japan); Suzuki, Tatsuya; Fujii, Yasuhiko [Tokyo Institute of Technology (Japan); Fujita, Reiko [Toshiba Corporation (Japan); Mimura, Hitoshi [Tohoku University (Japan)

2007-07-01

252

Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2'-deoxyuridine in cellular DNA.  

PubMed Central

HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU.

Teebor, G W; Frenkel, K; Goldstein, M S

1984-01-01

253

Progress on inert matrix fuels for minor actinide transmutation in fast reactor  

SciTech Connect

An extensive irradiation program has been devoted by CEA to the assessment of transmutation using minor actinide bearing inert support targets. A first irradiation experiment was performed in the fast neutron reactor Phenix, in parallel to other experiments carried out in the HFR and Siloe reactors, in order to assess the behavior under fast neutron flux of various materials intended as inert support matrix for transmutation targets. This experiment, which included the two steps MATINA 1 and MATINA 1A, was completed in 2004 and underwent complete post irradiation examinations (PIE) , whose results are presented in this paper. All the pure inert materials showed a satisfactory behavior under fast neutrons except Al{sub 2}O{sub 3} - which exhibits a swelling close to 11 vol. % after irradiation. In presence of UO{sub 2} fissile particles, MgAl{sub 2}O{sub 4} proved to be more stable in term of swelling as inert support than MgO and Al{sub 2}O{sub 3} matrices, under the same irradiation conditions. A second experiment ECRIX H in Phenix involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was completed in 2006. The very first PIE results on ECRIX H are described in this paper. At the light of these first experiments, a second phase dedicated to the design optimization of the target was initiated and three new irradiation experiments - MATINA 2-3, CAMIX COCHIX in Phenix and HELIOS in HFR - were started in 2006 and 2007. (authors)

Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome [CEA Cadarache, Nuclear Energy Direction, Saint-Paul les Durance Cedex 13108 (France); Warin, Dominique; Gosmain, Lionel [CEA Saclay, Nuclear Energy Direction, Gif sur Yvette, 91191 (France)

2007-07-01

254

Partitioning and transmutation: Near-term solution or long-term option?  

SciTech Connect

Starting in 1989, the concept that partitioning and transmuting actinides from spent nuclear fuel could be a {open_quotes}solution{close_quotes} to the apparent lack of progress in the high-level waste disposal program began to be heard from a variety of sources, both in the US and internationally. There have been numerous papers and sessions at scientific conferences and several conferences devoted to this subject in the last three years. At the request of the US Department of Energy, the National Research Council is evaluating the feasibility of this concept. Because either plutonium or highly enriched uranium is needed to startup breeder reactors, there is a sound rationale for using Pu from reprocessing spent light-water reactor fuel to start a conversion to Pu-breeding liquid metal reactors (LMRs), once society makes the determination that adding a large component of LMRs to the electricity-generating grid is desirable. This is the long-term option referred to in the title. It is compatible with the current and likely future high-level waste program, as well as the current nuclear power industry in the US. However, the thesis of this paper is that partitioning and transmutation (P-T) does not offer a near term solution to high-level waste disposal in the US for numerous reasons, the most important of which is that a repository will be needed even with P-T. Other important reasons include: (1) lack of evidence that the public will be more likely to accept a repository that has a reduced inventory, (2) the waste disposal program delays do not result from technical evidence of lack of safety, (3) the economics of reprocessing and/or P-T are unfavorable, and (4) obtaining the benefits from P-T requires a long-term commitment to nuclear power.

Ramspott, L.D. [Lawrence Livermore National Lab., CA (US); Isaacs, T. [USDOE, Washington, DC (US)

1993-02-25

255

Anthropogenic Radionuclides in the Caspian Sea  

Microsoft Academic Search

Analysis and interpretation of the distribution of anthropogenic radionuclides 90Sr, 137Cs, and 239,240Pu in the Caspian Sea water are presented. These radionuclides are shown to be of environmental importance and to be useful for studying water mass dynamics.

B. Oregioni; J. Gastaud; M. K. Pham; P. P. Povinec

2003-01-01

256

Decision Framework for Applying Attenuation Processes to Metals and Radionuclides  

NASA Astrophysics Data System (ADS)

Until recently, there has been little regulatory guidance to support attenuation-based remedies for groundwater contaminated with metals and radionuclides. This has contributed to inconsistent application of those remedies and generally discouraged their consideration. The net result is that many sites face intractable closure problems. The U.S. Environmental Protection Agency (EPA) recently issued a three-volume technical guidance set that specifically addresses monitored natural attenuation (MNA) of inorganic contaminants. These new documents provide technical information related to the dominant attenuation mechanisms, as well as methods for characterization and evaluation of specific inorganic contaminants and radionuclides. Attenuation-based remedies for metals and long-lived radionuclides rely primarily on immobilization of contaminants as stable and/or nontoxic species. This stabilization and toxicity reduction can result from natural processes, geochemical gradients, or biogeochemical manipulation. Except for a few radionuclides, the original contaminant remains in the subsurface so that documentation of the sustainability, or permanence, of stabilization and detoxification is crucial to assessing performance. Another challenge in applying the existing and emerging guidance is the need to simultaneously address multiple contaminants at a target site, as is often the case in actual practice. The Interstate Technology & Regulatory Council (ITRC) has developed a technical and regulatory guidance to facilitate implementation of the new EPA guidance for MNA of metals and radionuclides. To determine the specific approach of this document, ITRC conducted a web-based survey of state regulators and stakeholders to determine the existing state of knowledge and acceptance regarding the application of attenuation processes as a remedy. The document addresses issues identified in the survey and provides examples of state protocols and stakeholder issues related to the application of MNA as a remedy. Significant uncertainties in MNA cleanup efficacy and timelines may conflict with stakeholder expectations. Current federal and state regulatory policy and guidance is summarized and factors crucial to regulatory acceptance are presented. A decision framework in this guidance document provides a consistent basis for states, stakeholders, federal agencies, and site owners to evaluate and implement attenuation-based remedies for metals and radionuclides. In the framework, an enhanced attenuation strategy supports instances where actions may be needed to support long-term sustainability of the MNA mechanisms. The outcome of these efforts is a process that will encourage regulatory cooperation and expedite cleanup.

Nyman, J.; Goswami, D.; Spreng, C.

2010-12-01

257

Sensors and Automated Analyzers for Radionuclides  

SciTech Connect

The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

Grate, Jay W.; Egorov, Oleg B.

2003-03-27

258

Detecting low levels of radionuclides in fluids  

DOEpatents

An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

2000-01-01

259

Accelerator Technology Division annual report, FY 1991  

SciTech Connect

This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; {Phi} Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Not Available

1992-04-01

260

Accelerator Technology Division annual report FY 1990  

SciTech Connect

This report discusses: the Ground Test Accelerator Program; Los Alamos Ground-Based Free-Electron Laser Program; the High-Power Microwave Program; Neutral Particle Beam Power Systems Highlights; Materials Testing Facilities; Accelerator Transmutation of Nuclear Waste; Special Supporting Research Initiative; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Simulation; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; GTA Installation, Commissioning, and Operations.

Not Available

1991-05-01

261

Computational methods in radionuclide dosimetry  

NASA Astrophysics Data System (ADS)

The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

Bardiès, M.; Myers, M. J.

1996-10-01

262

Cosmogenic radionuclides in stone meteorites  

NASA Technical Reports Server (NTRS)

This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

Cressy, P. J., Jr.

1976-01-01

263

Illicit Trafficking of Natural Radionuclides  

SciTech Connect

Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

Friedrich, Steinhaeusler; Lyudmila, Zaitseva [Div. of Physics and Biophysics, University of Salzburg Hellbrunnerstr. 34, A 5020 Salzburg (Austria)

2008-08-07

264

Illicit Trafficking of Natural Radionuclides  

NASA Astrophysics Data System (ADS)

Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s) (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

Friedrich, Steinhäusler; Lyudmila, Zaitseva

2008-08-01

265

High-temperature annealing of electron-irradiated high-voltage diode structures on neutron transmutation-doped Si  

Microsoft Academic Search

High-voltage diode structures were fabricated in high-resistance neutron transmutation-doped (NTD) silicon and irradiated with 6MeV electrons. A non-equilibrium minority charge carrier (NMCC) lifetime was measured in the high-resistance region of p+–n structures and deep-level transient spectroscopy (DLTS) was used to determine the concentration and energy level positions of radiation-induced defects as a function of annealing temperature in the range 300--800°C.

F. P. Korshunov; N. E. Zhdanovich; V. I. Karas; I. G. Marchenko

2005-01-01

266

SOLVENT EXTRACTION PROCESS DEVELOPMENT FOR PARTITIONING AND TRANSMUTATION OF SPENT FUEL  

Microsoft Academic Search

Argonne National Laboratory (ANL), along with other national laboratories, has been developing a solvent extraction process for partitioning of spent fuel constituents to lead to safer and cheaper disposal of high-level waste. The process, known as UREX+, separates key radionuclides from dissolved spent fuel into: (1) uranium for disposal as LLW, (2) technetium for disposal as HLW, (3) iodine for

M. C. Regalbuto; J. M. Copple; R. Leonard; C. Pereira; G. F. Vandegrift

267

Influence of transmutation on microstructure, density change, and embrittlement of vanadium and vanadium alloys irradiated in HFIR  

SciTech Connect

Addition of 1 at.% nickel to vanadium and V-10Ti, followed by irradiation along with the nickel-free metals in HFIR to 2.3 {times} 10{sup 22}n cm{sup {minus}2}, E > 0.1MeV (corresponding to 17.7 dpa) at 400 C, has been used to study the influence of helium on microstructural evolution and embrittlement. Approximately 15.3% of the vanadium transmuted to chromium in these alloys. The {approximately}50 appm helium generated from the {sup 58}Ni(n,{gamma}){sup 59}Ni(n,{alpha}){sup 56}Fe sequence was found to exert much less influence than either the nickel directly or the chromium formed by transmutation. The V-10Ti and V-10Ti-1Ni alloys developed an extreme fragility and broke into smaller pieces in response to minor physical insults during density measurements. A similar behavior was not observed in pure V or V-1Ni. Helium`s role in determination of mechanical properties and embrittlement of vanadium alloys in HFIR is overshadowed by the influence of alloying elements such as titanium and chromium. Both elements have been shown to increase the ductile-to-brittle transition temperature (DBTT) rather rapidly in the region of 10% (Cr + Ti). Since Cr is produced by transmutation of V, this is a possible mechanism for the embrittlement. Large effects on the DBTT may have also resulted from uncontrolled accumulation of interstitial elements such as C, N, and O during irradiation.

Ohnuki, S.; Takahashi, H. [Hokkaido Univ., Sapporo (Japan); Shiba, K.; Hishinuma, A. [Japan Atomic Energy Research Inst., Tokai (Japan); Pawel, J. [Oak Ridge National Lab., TN (United States); Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States)

1994-06-01

268

The Raman spectroscopy of neutron transmutation doping isotope 74Germanium nanocrystals embedded in SiO 2 matrix  

NASA Astrophysics Data System (ADS)

We have succeeded in doping arsenic (As) impurities into isotope germanium nanocrystals (nc- 74Ge) uniformly dispersed in a SiO 2 matrix by using the neutron transmutation doping (NTD) method. The samples' inner structural transmutation is studied by combining Raman scattering, X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS) and Transmission electron microscope (TEM) methods. The Raman spectrum of the doped sample exhibits a relative intensity increase of the low frequency tail, blue shift of the main Raman peak (˜300 cm -1) and a high frequency tail, while the undoped sample does not. Together with the XRF, XPS and TEM, we believe that the relative intensity increase of the low frequency tail arises from an increase of amorphous 74Ge (a- 74Ge) induced by the irradiation damage. The blue shift of the main Raman peak comes from the mismatch of the crystal lattice which arose from the As impurity introduction. And the high frequency tail is due to transmuted-impurities (As) in the nc- 74Ge which was introduced by NTD.

Hu, Youwen; Lu, Tiecheng; Dun, Shaobo; Hu, Qiang; Huang, Ningkang; Zhang, Songbao; Tang, Bin; Dai, Junlong; Resnick, Lev; Shlimak, Issai; Zhu, Sha; Wei, Qiangmin; Wang, Lumin

2007-03-01

269

Natural radionuclides in ground waters and cores  

SciTech Connect

Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

Laul, J.C.; Smith, M.R.; Maiti, T.C.

1988-01-01

270

Radionuclides in the Natural–Anthropogenic System Comprising a Nuclear Power Plant and a Cooling Reservoir  

Microsoft Academic Search

The sources of technological radionuclides coming into the ecosystem of a nuclear power plant (NPP) cooling reservoir are considered and estimated. The information about the volumetric and mass activity in the biotic and abiotic components of the reservoir ecosystem is analyzed. The activity distribution between the components was determined. The activity reserve in the ecosystems of the cooling reservoirs in

Yu. A. Egorov

2002-01-01

271

Determination of transmutation effects in crystalline waste forms. 1997 annual progress report  

SciTech Connect

'A team from two national laboratories is studying transmutation effects in crystalline waste forms. Analyses are being done with 18 year old samples of {sup 137}Cs-bearing pollucite (CsAlSi{sub 2}O{sub 6} \\267 0.5 H{sub 2}O) obtained from a French company. These samples are unique in that the pollucite was made with various amounts of {sup 137}Cs, which was then sealed in welded stainless- steel capsules to be used as tumor irradiation sources. Over the past 18 years, the {sup 137}Cs has been decaying to stable Ba in the capsules, i.e., in the absence of atmospheric effects. This material serves as an analogue to a crystalline waste form in which such a transmutation occurs to possibly disrupt the integrity of the original waste form. Work this year consisted of determining the construction of the capsule and state of the pollucite in the absence of details about these components from the French company. The authors have opened one capsule containing nonradioactive pollucite. The information on the construction of the stainless-steel capsule is useful for the work that the authors are preparing to do on capsules containing radioactive pollucite. Microscopic characterization of the nonradioactive pollucite revealed that there are at least two compounds in addition to pollucite: a Cs-silicate and a Cs-aluminosilicate (CsAlSiO{sub 4}). These findings may complicate the interpretation of the planned experiments using X-ray absorption spectroscopy. Electron energy loss spectroscopy and energy dispersive X-ray spectroscopy (flourescence) have been used to characterize the nonradioactive pollucite. They have investigated the stability of the nonradioactive pollucite to {beta} radiation damage by use of 200 keV electrons in a transmission electron microscope. The samples were found to become amorphous in less than 10 minutes with loss of Cs. This is equivalent to many more years of {beta} radiation damage than under normal decay of the {sup 137}Cs. In fact, the dose was equivalent to several thousand years of normal radiation damage from the decay of {sup 137}Cs. Of course, there would not be any {sup 137}Cs remaining after that length of time because the half-life of {sup 137}Cs is 30 y. Preparations have been started to study the radioactive pollucite samples at the Stanford Synchrotron Radiation Laboratory. The calculations show that by thinning the base of the capsules the authors should be able to obtain about a factor of ten increase in the fluorescence signal. Procedures for thinning capsules containing the radioactive pollucite and examining the samples at the Stanford synchrotron are in place.'

Strachan, D.M.; Buck, E.C.; Fortner, J.A. [Argonne National Lab., IL (US); Hess, N.J. [Pacific Northwest National Lab., Richland, WA (US)

1997-01-01

272

Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency  

SciTech Connect

The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: {sup 27}Al (n, 2n){sup 26}Al, {sup 63}Cu(n,p){sup 63}Ni, {sup 94}Mo(n,p) {sup 94}Nb, {sup 109}Ag(n,2n){sup 108m}Ag, {sup 179}Hf(n,2n) {sup 178m2}Hf, {sup 182}W(n,n{sup `}a){sup 178m2}Hf, {sup 151}Eu(n,2n) {sup 150}gEu, {sup 153}Eu(n,2n){sup 152+m2}Eu, {sup 159}Tb(n, 2n){sup 158}Tb, {sup 158}Dy(n,p){sup 158}Tb, {sup 193}Ir(n,2n) {sup 192m2}Ir, {sup 187}Re(n,2n){sup 186m}Re, {sup 62}Ni(n{gamma}) {sup 63}Ni, {sup 98}Mo(n,{gamma}){sup 99}Mo({beta}-){sup 99}Tc, {sup 165}Ho(n,{gamma}) {sup 166m}Ho and {sup 191}Ir(n,{gamma}){sup 192m2}Ir. this paper documents progress achieved from the start of the program through mid- 1993.

Smith, D.L. [Argonne National Lab., IL (United States); Pashchenko, A.B. [International Atomic Energy Agency, Vienna (Austria)

1994-05-01

273

Radionuclide analysis using solid phase extraction disks  

SciTech Connect

The use of solid phase extraction disks was studied for the quantification of selected radionuclides in aqueous solutions. The extraction of four radionuclides using six types (two commercial, four test materials) of 3M Empore{trademark} RAD disks was studied. The radionuclides studied were: technetium-99 (two types of disks), cesium-137 (two types), strontium-90 (one type), plutonium-238 (one type). Extractions were tested from DI water, river water and seawater. Extraction efficiency, kinetics (flow rate past the disk), capacity, and potential interferences were studied as well as quantification methods.

Beals, D.M; Britt, W.G.; Bibler, J.P.; Brooks, D.A.

1996-12-31

274

2010 LANL radionuclide air emissions report /  

SciTech Connect

The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

Fuehne, David P.

2011-06-01

275

Options to meet the future global demand of radionuclides for radionuclide therapy.  

PubMed

Nuclear medicine continues to represent one of the important modalities for cancer management. While diagnostic nuclear medicine for cancer management is fairly well established, therapeutic strategies using radionuclides are yet to be utilized to their full potential. Even if 1% of the patients undergoing diagnostic nuclear medicine procedures can benefit from subsequent nuclear therapeutic intervention, the radionuclide requirement for nuclear therapeutics would be expected to be in the multi-million Curie levels. Meeting the demand for such high levels of therapeutic radionuclides at an affordable price is an important task for the success of radionuclide therapy. Although different types of particle emitters (beta, alpha, Auger electron etc.) have been evaluated for treating a wide variety of diseases, the use of ?? emitting radionuclides is most feasible owing to their ease of production and availability. Several ?? emitting radionuclides have been successfully used to treat different kind of diseases. However, many of these radionuclides are not suitable to meet the projected demand owing to the non-availability with sufficiently high specific activity and adequate quantity because of high production costs, relatively short half-lives etc. This article describes the advantages and disadvantages for broader uses of some of the well known therapeutic radionuclides. In addition, radioisotopes which are expected to have the potential to meet the growing demand of therapeutic radionuclides are also discussed. PMID:23116551

Das, Tapas; Pillai, M R A

2013-01-01

276

RADionuclide Transport, Removal, and Dose (RADTRAD) code.  

National Technical Information Service (NTIS)

The RADionuclide Transport, Removal, And Dose (RADTRAD) code is designed for US Nuclear Regulatory Commission (USNRC) use to calculate the radiological consequences to the offsite population and to control room operators following a design-basis accident ...

L. A. Miller D. I. Chanin J. Lee

1993-01-01

277

Radionuclides and carrier molecules for therapy  

NASA Astrophysics Data System (ADS)

Although radionuclide therapy has been around for a long time, this modality of cancer treatment has been limited mainly to the use of []-phosphate and []-sodium iodide. The last few years, however, have seen an increased interest in this area due to new developments of radionuclides and carrier molecules that may provide selective targeting of tumour sites. The potential of this technique can be further realized if the radionuclide is carefully selected to match both the localization of the carrier molecule and tumour morphology. This paper briefly reviews radionuclides in current use and potential candidates for targeted therapy. Decay characteristics, production methods and relevant chemical properties are discussed.

Zweit, Jamal

1996-10-01

278

Radionuclide carriers for targeting of cancer  

PubMed Central

This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential.

Sofou, Stavroula

2008-01-01

279

Spallation radiation damage and dosimetry for accelerator transmutation of waste applications  

SciTech Connect

Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ferguson, P.D. [Missouri Univ., Rolla, MO (United States). Dept. of Nuclear Engineering; Sommer, W.F. [Los Alamos National Lab., NM (United States)

1993-10-01

280

Role of the National Nuclear Data Center in the field of nuclear waste transmutation  

SciTech Connect

This report discusses the role of The National Nuclear Data Center (NNDC), formerly the National Neutron Cross Section Center. The NNDC collates and analyzes nuclear physics information for basic and applied research scientists. The NNDC performs functions that are characteristic of an information analysis center, namely bibliographic searches, data compilation, and critical appraisal of available information. Such compilations and searches are of unique importance for investigators in the field of nuclear waste transmutation. In addition, the NNDC issues publications, provides technical support to its sponsors, and conducts seminars on important topics. A primary concern of the NNDC is the timely production and revision of reference nuclear data. The NNDC coordinates the Cross Section Evaluation Working Group (CSEWG), a cooperative effort of over 20 laboratories, and the Nuclear Data Network (NDN), a group of US Nuclear Data Centers involved in the study of nuclear structure. The NNDC also interfaces with similar groups outside the United States in activities contributing to documented computerized reference data files. The Department of Energy has established the NNDC as the Center to service requests from the research community for bibliographic and data retrievals for neutron, charged particle, nuclear structure, and radioactive decay data.

Rose, P.F.

1980-01-01

281

Radionuclide Geomicrobiology of the Deep Biosphere  

Microsoft Academic Search

This review summarizes research into interactions between microorganisms and radionuclides under conditions typical of a repository for high-level radioactive waste in deep hard rock environments at a depth of approximately 500 m. The cell–radionuclide interactions of strains of two bacterial species (i.e., Shewanella putrefaciens and Desulfovibrio aespoeensis) with Cm, Pm, and Pu were investigated in vitro and the results were

Craig Anderson; Anna Johnsson; Henry Moll; Karsten Pedersen

2011-01-01

282

Natural radionuclides in ground waters and cores  

Microsoft Academic Search

Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water\\/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption\\/desorption parameters for transport models and

J. C. Laul; M. R. Smith; T. C. Maiti

1988-01-01

283

Copper radionuclides and radiopharmaceuticals in nuclear medicine  

Microsoft Academic Search

The chemistry, radiochemistry, radiobiology, and radiopharmacology of radiopharmaceuticals containing copper radionuclides are reviewed. Copper radionuclides offer application in positron emission tomography, targeted radiotherapy, and single photon imaging. The chemistry of copper is relatively simple and well-suited to radiopharmaceutical application. Current radiopharmaceuticals include biomolecules labelled via bifunctional chelators primarily based on cyclic polyaminocarboxylates and polyamines, and pyruvaldehyde-bis(N4-methylthiosemicarbazone) (PTSM) and its analogues.

Philip J. Blower; Jason S. Lewis; Jamal Zweit

1996-01-01

284

Radionuclide transport in fractured granite interface zones  

Microsoft Academic Search

In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study migration paths of radionuclides in fractured granite. In this work, a micro-scale mapping technique was applied by interfacing laser ablation sampling with inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect the small scale

Q. H. Hu; A. Möri

2008-01-01

285

Migration of radionuclides in the enviroment  

Microsoft Academic Search

The mechanisms of transport and retaidation processes, chemistry and migration behaviour of radionuclides of fission products\\u000a and actinides in engineered barriers, especially bentonites, have been summarised. A “critical group of radionuclides” is\\u000a proposed for thorough investigation of their retardation properties in natural sorbents. The evaluation of accessible data\\u000a of retardation and transport parameters relevant for the conditions of underground deep

V. Jedináková-K?ižová

1998-01-01

286

Vertical distribution of natural radionuclides in soils  

NASA Astrophysics Data System (ADS)

Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation counters (LKB Quantulus 1220™) were used in order to determine the activity concentration of 238U, 232Th, 234U, 230Th, 226Ra, and 210Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were selected with different levels of influence from the installation, in such a way that they had different levels of radioactive contamination. The vertical profiles in the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. The possible contamination of subsurface waters depends strongly on vertical migration, and the transfer to plants (herbs, shrubs, and trees) also will depend on the distribution of the radionuclides in the root zone. The study of the activity ratios between radionuclides belonging to the same series allowed us to assess the differing behaviour of the radionuclides involved. The vertical profiles for these radionuclides were different at each sampling point, showing the local impact of the installation. However, the profiles per point were similar for the long-lived radionuclides of the 238TJ series (238U, 234U, 230Th, and 226Ra). Also, a major disequilibrium was observed between 210Pb and 226Ra in the surface layer, due to 222Rn emanation and subsequent surface deposition of 210Pb.

Blanco Rodríguez, P.; Tomé, F. Vera; Lozano, J. C.

2012-04-01

287

Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems  

SciTech Connect

Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

2009-04-08

288

Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.  

SciTech Connect

The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

2006-03-01

289

Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 1, Autopsy and In Vivo Data  

SciTech Connect

This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports were obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.

Watson, David J.; Strom, Daniel J.

2011-02-25

290

A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design  

SciTech Connect

Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

2010-11-01

291

Hardening Neutron Spectrum for Advanced Actinides Transmutation Experiments in the ATR  

SciTech Connect

The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast rest reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas released modelling, needs to be accurately predicted and the hardened neturon spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are peformed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neturon spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

G. S. Chang; R. G. Ambrosek

2004-05-01

292

Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon  

SciTech Connect

Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of /sup 31/P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and /sup 31/P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500/sup 0/C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750/sup 0/C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750/sup 0/C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200/sup 0/C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750/sup 0/C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750/sup 0/C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included.

Cleland, J.W.; Fukuoka, N.

1980-10-01

293

LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels  

SciTech Connect

In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

Bae, G.; Hong, S. G. [Department of Nuclear Engineering, KyungHee University, 1732 Deokyoungdaero, Giheung-gu, Yongin, Gyeonggi-do, 446-701 (Korea, Republic of)] [Department of Nuclear Engineering, KyungHee University, 1732 Deokyoungdaero, Giheung-gu, Yongin, Gyeonggi-do, 446-701 (Korea, Republic of)

2013-07-01

294

Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS  

NASA Astrophysics Data System (ADS)

The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

2011-07-01

295

Summary Report on New Transmutation Analysis for the Evaluation of Homogeneous and Heterogeneous Options in Fast Reactors  

SciTech Connect

A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design was selected as the baseline in this scenario study. Traditional approaches to Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) transuranic waste (TRU) burning in a fast spectrum system have typically focused on the continual homogeneous recycling (reprocessing) of the discharge fast reactor fuel. The effective reduction of transuranic inventories has been quantified through the use of the transuranics conversion ratio (TRU CR). The implicit assumption in the use of this single parameter is a homogeneous fast reactor option where equal weight is given to the destruction of transuranics, either by fission or eventual fission via transmutation. This work explores the potential application of alternative fast reactor fuel cycles in which the minor actinide (MA) component of the TRU is considered ‘waste’, while the plutonium component is considered as fuel. Specifically, a set of potential designs that incorporate radial heterogeneous target assemblies is proposed and results relevant to transmutation and system analysis are presented. In this work we consider exclusively minor actinide-bearing radial targets in a continual reprocessing scenario (as opposed to deep-burn options). The potential use of targets in a deep burn mode is not necessarily ruled out as an option. However, due to work scope constraints and material limit considerations, it was preferred to leave the target assemblies reach either the assumed limit of 200 DPA at discharge or maximum allowable gas pressure caused by helium production from transmutation. The number and specific design of the target assemblies was chosen to satisfy the necessary core symmetry and physical dimensions (available space for a certain amount of mass in an assembly based on an iterated mass density).

R. M. Ferrer; S. Bays; M. Pope; B. Forget; W. Skerjanc; M. Asgari

2008-08-01

296

Radionuclide Mobility at the Nevada Test Site  

SciTech Connect

Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

2003-11-13

297

Radionuclide Retention in Concrete Waste Forms  

SciTech Connect

Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

2010-09-30

298

Radionuclide Retention in Concrete Wasteforms - FY13  

SciTech Connect

Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

2013-10-15

299

Bose-Fermi transmutation in 2 + 1 dimensions; Effect of self-interactions and the Maxwell term  

SciTech Connect

This paper shows that the partition function of self-interacting charged scalar fields coupled with Abelian gauge fields governed by Maxwell-Chern-Simons action is equivalent in the long-wavelength approximation to that of a massive four-Fermi theory. The coupling constants and mass of the fermionic theory is explicitly related to those of the bosonic theory. The gauge invariant charged scalar current is shown to be transmuted to fermion current. The physical mass of the fermion is computed at the mean field level and shown to be finite at large self-coupling.

Shankar, R. (Indian Inst. of Tech., Kanpur (India). Dept. of Physics); Sivakumar, M. (Hyderabad Univ. (India). School of Physics)

1991-08-30

300

Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.  

ERIC Educational Resources Information Center

This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

Center for Occupational Research and Development, Inc., Waco, TX.

301

Radionuclide migration as a function of mineralogy  

SciTech Connect

The migration of radionuclides is studied as a function of mineralogy utilizing batch sorption and column experiments. The transport behavior of alkaline, alkaline-earth, and transition metals, and actinide species is studied in pure mineral separates. The solid phases utilized for these investigations are silicates, alumino-silicates, carbonates, and metal oxides and oxyhydroxides. The results of this effort are utilized to aid in the elucidation of the dominant chemical mechanisms of radionuclide migration, the prediction of radionuclide transport in conditions similar to those expected at the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, and the identification of materials that act as natural geological barriers or that can be utilized as strong sorbers in engineered barriers. 9 refs., 2 figs., 2 tabs.

Triay, I.R.; Mitchell, A.J.; Ott, M.A.

1991-02-01

302

Radionuclide sorption on well construction materials  

SciTech Connect

Laboratory experiments were conducted to measure the extent to which trace concentrations of radioactive materials would sorb on well construction materials and to assess the rapidity with which sorption would occur. The radionuclides employed in these studies were tritium, Cs-137, and Co-57. Solutions with trace concentrations of these radionuclides were contacted with casings of PVC, fiber-glass-epoxy, stainless steel, carbon steel, and steel rods coated with epoxy. The PVC showed no interaction with the tritium or Cs-137 during contact times of two hours to three weeks ; however, it did sorb Co-57. The fiber-glass-epoxy also interacted only with the cobalt. The stainless steel sorbed cesium and cobalt. The epoxy-coated steel rods did not interact measurably with any of the radionuclides so long as the coating was intact. The sorption reactions generally were apparent after a few days of contact; in the case of carbon steel, they were detectable in a few hours.

Thompson, J.L.

1996-11-01

303

Diffusion of Radionuclides in Concrete and Soil  

SciTech Connect

One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

2012-04-25

304

Measuring and Modeling Naturally Occurring Radioactive Material: Interpreting the Relationship Between the Natural Radionuclides Present  

SciTech Connect

The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil and structure radionuclide concentration guidelines are necessarily simplified representations of complex processes. A conceptual site model is often developed to present a reasonable and somewhat conservative representation of the physical and chemical properties of the impacted material. Dose modeling software is then used to estimate resulting dose and/or radionuclide specific acceptance criteria (activity concentrations). When the source term includes any or all of the uranium, thorium or actinium natural decay series radionuclides the interpretation of the relationship between the individual radionuclides of the series is critical to a technically correct and complete assessment of risk and/or derivation of radionuclide specific acceptance criteria. Unlike man-made radionuclides, modeling and measuring naturally occurring radioactive material (NORM) and technologically enhanced NORM (TENORM) source terms involves the interpretation of the relationship between the radionuclide present, e.g., secular equilibrium, enrichment, depletion or transient equilibrium. Isotopes of uranium, radium, and thorium occur in all three natural decay series. Each of the three series also produces a radon gas isotope as one of its progeny. In nature, the radionuclides in the three natural decay series are in a state that is approaching or has achieved secular equilibrium, in which the activities of all radionuclides within each series are nearly equal. However, ores containing the three natural decay series may begin in approximate secular equilibrium, but after processing, equilibrium may be broken and certain elements (and the radioactive isotopes of that element) may be concentrated or removed. Where the original ore may have contained one long chain of natural decay series radionuclides, the resulting TENORM source term may contain several smaller decay chains, each headed by a different longer lived member of the original series. This paper presents the anatomy of common TENORM source terms and the pitfalls of measuring, interpreting and modeling these source terms. Modeling TENORM with common software such as RESRAD is discussed. In summary: RESRAD modeling (dose assessments) to derive single radionuclide, dose based acceptance criteria, requires a good understanding of the physical, chemical and biological factors/input parameters applicable to the selected exposure scenario(s). When NORM or TENORM source terms are modeled, an additional understanding of the status of equilibrium, is necessary to accurately perform a dose assessment in support of dose based acceptance criteria. Historical information about the site processes/ores, selection of appropriate analytical analyses to identify key decay series radionuclide and a comprehensive review of the characterization data are needed to understand the equilibrium status of the decay series present. Once the source term has been characterized (in regards to relative activities of the radionuclides within a decay series) the source term must be input into RESRAD to reflect that status of equilibrium at time zero, or at the time since placement, if the characterization data reflects the equilibrium status of dated material. When the RESRAD output file is reviewed, depending on the time of maximum dose, DCGL values may be artificially high in value. Sum of fraction calculations, based on the status of equilibrium of each decay series, can also be used to assess the RESRAD results and develop an appropriate MARSSIM final status survey protocol. (authors)

Lombardo, A.J.; Mucha, A.F. [Safety and Ecology Corporation, 2800 Solway Road, Knoxville, TN (United States)

2008-07-01

305

Dosimetric Considerations Relative to Radionuclides for Thyroid Diagnosis and Therapy.  

National Technical Information Service (NTIS)

Recent changes have occurred in the radionuclidic approach to the diagnosis and therapy of thyroid diseases. These changes have been directed toward reduction of radiation dose by the use of short-lived radionuclides for imaging and toward better control ...

H. L. Atkins

1976-01-01

306

Assessment of Radionuclides in the Savannah River Site Environment Summary  

SciTech Connect

This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

Carlton, W.H.

1999-01-26

307

An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation  

NASA Astrophysics Data System (ADS)

The high-energy, high-intensity neutron fluxes produced by the fusion plasma will have a significant life-limiting impact on reactor components in both experimental and commercial fusion devices. As well as producing defects, the neutrons bombarding the materials initiate nuclear reactions, leading to transmutation of the elemental atoms. Products of many of these reactions are gases, particularly helium, which can cause swelling and embrittlement of materials. This paper integrates several different computational techniques to produce a comprehensive picture of the response of materials to neutron irradiation, enabling the assessment of structural integrity of components in a fusion power plant. Neutron-transport calculations for a model of the next-step fusion device DEMO reveal the variation in exposure conditions in different components of the vessel, while inventory calculations quantify the associated implications for transmutation and gas production. The helium production rates are then used, in conjunction with a simple model for He-induced grain-boundary embrittlement based on electronic-structure density functional theory calculations, to estimate the timescales for susceptibility to grain-boundary failure in different fusion-relevant materials. There is wide variation in the predicted grain-boundary-failure lifetimes as a function of both microstructure and chemical composition, with some conservative predictions indicating much less than the required lifetime for components in a fusion power plant.

Gilbert, M. R.; Dudarev, S. L.; Zheng, S.; Packer, L. W.; Sublet, J.-Ch.

2012-08-01

308

Thermal-hydraulic analysis of graphite tubes for the non-aqueous system of accelerator transmutation of nuclear waste  

SciTech Connect

Accelerator transmutation of nuclear waste offers exciting possibilities for the disposal of nuclear waste by converting it into more benign Species. The non-aqueous system discussed here contains the materials to be transmuted within a lithium-fluoride salt. The system consists of bundles of graphite tubes containing the salt Solution. The tubes are cooled as lithium flows across their exterior. These circular graphite tubes have an inner circular passage and an outer annulus. Natural convection within the tubes causes the salt to circulate. This paper deals with the thermal-hydraulics of the system; it does not consider the neutronics in detail. Heat transfer and fluid flow were modeled using a custom computer program the system behavior of an graphite tube. Different geometries were tried, while keeping the system volume the same, to determine an optimize graphite tube geometry. I considered both the parallel flow and the counterflow of the lithium coolant, and allowed limited boiling to occur to facilitate circulation. I achieved power densities as high as 200 W/cm{sup 3} for the overall blanket.

Potter, R.C.; Venneri, F.; Trujillo, D.A.

1993-10-01

309

A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.  

PubMed

The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it. PMID:22217735

Lanconelli, N; Pacilio, M; Lo Meo, S; Botta, F; Di Dia, A; Aroche, A Torres; Pérez, M A Coca; Cremonesi, M

2012-01-21

310

Airborne radionuclides of concern and their measurement in monitoring a Comprehensive Test Ban Treaty  

SciTech Connect

The U.S. Department of Energy (DOE) is conducting radioanalytical developmental programs with the goal of providing near-real-time analysis technology for airborne signature radionuclides which are indicative of a nuclear weapons test in any of the earth`s environments. If a test were conducted in the atmosphere or above the atmosphere, then the full spectrum of fission and activation products, together with residues from the device would be dispersed in the atmosphere. However, if a nuclear test were conducted underground or under water, the emission could range from a major to a very minor vent, and the material released would likely consist mainly of noble gas radionuclides and the radioiodines. Since many of the noble gases decay to form particulate radionuclides, these may serve as the more sensitive signatures. For example, Ba-140 is a daughter of Xe-140 (13.6 s), and Cs-137 is a daughter of Xe-137 (3.82 min). Both of these have been observed in large amounts relative to other fission products in dynamic venting of U.S. underground nuclear detonations. Large amounts of radionuclides are produced from even a comparatively small nuclear detonation. For example, a 10-KT fission device will produce approximately a megacurie of Ba-140 and of several other radionuclides with half-lives of days to weeks. If such a device were detonated in the atmosphere at midlatitude, it would easily be observable at downwind monitoring sites during its first and subsequent circumnavigations of the earth. Efficient and practical methods for the near-real-time analysis of both particulate and gaseous radionuclides are important to an effective monitoring and attribution program in support of a Comprehensive Test Ban Treaty (CTBT); methods for this purpose are being pursued.

Perkins, R.W.; Miley, H.S.; Hensley, W.K.; Abel, K.H.

1995-01-01

311

Migration of radionuclides in geologic media: Fundamental research needs  

SciTech Connect

An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes. 64 refs., 1 fig., 1 tab.

Reed, D.T. (Argonne National Lab., IL (USA)); Zachara, J.M.; Wildung, R.E. (Pacific Northwest Lab., Richland, WA (USA)); Wobber, F.J. (USDOE, Washington, DC (USA))

1990-01-01

312

Flibe blanket concept for transmuting transuranic elements and long lived fission products.  

SciTech Connect

A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful, which established the technical bases for this application. This paper provides the technical analyses and the performance of the Flibe blanket concept as an example of this class of blankets.

Gohar, Y.

2000-11-15

313

Thermal-hydraulic modeling and severe accident radionuclide transport  

Microsoft Academic Search

The evaluation of radionuclide transport within a nuclear reactor plant and then to the external environment after an accident that involves severe damage to the fuel rods requires an appropriate evaluation of the thermal-hydraulic conditions that influence both the chemical equilibria among the involved species and the radionuclide retention phenomena. The ENEL Code for the Analysis of Radionuclide Transport (ECART)

F. Oriolo; W. Ambrosini; G. Fruttuoso; F. Parozzi; R. Fontana

1995-01-01

314

Predictions of radionuclide migration rates for a subseabed repository  

Microsoft Academic Search

Data from studies of high temperature interactions between sediments and porewater (seawater), and of sorption and diffusion of radionuclides in oxidized, deep sea sediments were used, along with results from heat transfer studies, to predict migration rates of radionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging fission products with moderate values of

L. H. Brush

1981-01-01

315

Assessment of radionuclide vapor-phase transport in unsaturated tuff  

Microsoft Academic Search

This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection\\/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the

D. M. Smith; C. D. Updegraff; E. J. Bonano; J. D. Randall

1986-01-01

316

Colloid-facilitated radionuclide transport in fractured porous rock  

Microsoft Academic Search

Numerical methods have been applied for the prediction of colloid-facilitated radionuclide transport through water-saturated fractured porous rock. The presence of colloids may enhance the transport of radionuclides in groundwater by reducing retardation effects. The colloids existing in the groundwater act as carriers, adsorbing radionuclides in their large surface area and moving faster than the average water velocity. With colloids present,

I. Baek; W. W. Jr. Pitt

1996-01-01

317

Radionuclide Transport in Fractured Tuff under Episodic Flow Conditions  

Microsoft Academic Search

The current conceptual model of radionuclide transport in unsaturated fractured rock includes water movement in fractures, with migration of the entrained radionuclides being retarded by diffusion into and sorption within the rock matrix. Water infiltration and radionuclide transport through low-permeability unsaturated fractured rock are episodic and intermittent in nature, at least at local scales. Under episodic flow conditions, the matrix

Q. Hu; Y. Sun; R. P. Ewing

2005-01-01

318

Characterization of radionuclide behavior in low level waste sites  

Microsoft Academic Search

This laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey

A. P. Toste; K. H. Abel; L. J. Kirby; R. W. Perkins; D. E. Robertson

1983-01-01

319

Targets and methods for target preparation for radionuclide production  

DOEpatents

The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

2012-10-16

320

Lichens as biomonitors of geothermal radionuclide pollution  

Microsoft Academic Search

The epiphytic lichen Parmelia caperata was used systematically as a bioaccumulator of radionuclides in the Travale-Radicondoli geothermal field (central Italy). The results showed that radioactivity in this area is not different from that of other non-geothermal areas and that the exploitation of geothermal resources should not cause an enrichment in radioactivity. However, the survey also revealed a negative association between

Stefano Loppi; Alberto Malfatti; Mauro Sani; Neil E. Whitehead

1997-01-01

321

[Targeted radionuclide therapy - where should we go ?].  

PubMed

Treatment with radiopharmaceuticals which selectively target lesions is called targeted radionuclide therapy(TRT). These days, the requirement for TRTs such as treatment for differentiated thyroid cancer with radioactive iodine, is on the increase. In addition, a new TRT agent is currently in a clinical trial. Here, current issues regarding TRT and its possible future use are discussed. PMID:23411948

Kinuya, Seigo

2013-02-01

322

RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS  

SciTech Connect

The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

S. Magnuson

2004-11-01

323

Improving cancer treatment with cyclotron produced radionuclides  

SciTech Connect

This new DOE proposal appropriately builds on past developments. The development and application of radionuclides for diagnosis, treatment and research has been a continuing concern for more than the past three decades. A brief description of this development and previous achievements was considered important in order to provide a frame of reference for the evolving program here. Earlier, the use of certain radionuclides, radon progeny and I-131 in particular, and also x-rays, had been developed by the work of such pioneers as Failla, Quimby and Marinelli. In 1952, at the instigation of Dr. C.P. Rhoads, Director of both Memorial Hospital and Sloan-Kettering Institute, the restoration of the Department of Physics and Biophysics was undertaken in response to a perceived need to promote the utilization of radionuclides and of high energy radiations for therapeutic, diagnostic and research purposes. This resulted in several research and developmental projects with close clinical collaboration in areas of radiation treatment; medical studies with radionuclides and labeled compounds; the diagnostic uses of x-rays; and some projects in surgery and other clinical areas. Aspects of some of these projects that have had some relevance for the evolving AEC-DOE projects are outlined briefly. 34 refs.

Laughlin, J.S.; Larson, S.M.

1988-01-01

324

Radionuclide Imaging in Renal Cell Carcinoma  

Microsoft Academic Search

Nowadays, a space-occupying lesion in the kidney is usually discovered with ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI) of the abdomen. The benign or malignant nature of the lesion can usually accurately be assessed with these radiological procedures. Radionuclide imaging techniques do not play a major role in diagnosing kidney cancer, as currently there are no radiopharmaceuticals routinely

A. H. Brouwers; P. L. Jager

325

The IMS radionuclide network of the CTBT  

Microsoft Academic Search

A world-wide radionuclide network consisting of 80 stations is under establishment in the framework of the comprehensive nuclear test-ban treaty (CTBT). These monitoring stations are essential for the verification regime of the treaty and they will be able to monitor the airborne particulate as well as xenon isotopes that are produced by nuclear tests. The equipment, the operation and the

Fausto Medici

2001-01-01

326

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

1982-12-01

327

The Structure of Gelfand-Levitan-Marchenko Type Equations for Delsarte Transmutation Operators of Linear Multi-Dimensional Differential Operators and Operator Pencils. Part 2  

NASA Astrophysics Data System (ADS)

An analog of Gelfand-Levitan-Marchenko integral equations for multi- dimensional Delsarte transmutation operators is constructed by means of studying their differential-geometric structure based on the classical Lagrange identity for a formally conjugated pair of differential operators. An extension of the method for the case of affine pencils of differential operators is suggested.

Golenia, Jolanta; Prykarpatsky, Anatolij K.; Prykarpatsky, Yarema A.

328

Pendopan terma transmutasi neutron - kesan neutron terma dan cepat ke atas kerintangan silikon. (Neutron transmutation doping - the effect of thermal and fast neutron on silicon resistivity).  

National Technical Information Service (NTIS)

The n-type silicon wafers, 15-30 (Omega)m resistivity have been exposed to neutron in the rotary rack irradiation facilities of UTN's TRIGA mark II reactor. This neutron transmutation charging process however, has a serious drawback i.e. structural damage...

Abdul Fatah Awang Mat Mohd Jamal Isa

1990-01-01

329

Biohydrometallurgical technologies  

SciTech Connect

The theme of the International Biohydrometallurgy Symposium held in Jackson Hole, Wyoming, August 22-25, 1993, is Biohydrometallurgy: An Industry Matures.'' This is a developing technology which made important contributions to the minerals industry. Biohydrometallurgical technology was first introduced into the copper industry and subsequently to the uranium industry for the production of metal values from low-grade mineral resources. Currently, biotechnology has advanced a step further. It is now commercially applied for the treatment of high-grade refractory gold ores in aerated stirred reactors to liberate precious metals for cyanidation. In addition, the industrial applications of biotechnology involve bioenhanced tertiary oil recovery processes, which contribute to an increase in oil production from previously exhausted wells. Furthermore, many bioremediation technologies are being developed for the removal of toxic heavy metals and radionuclides from contaminated soils and aqueous mining and industrial effluents. This volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

Torma, A.E.; Wey, J.E.; Lakshmanan, V.I. (eds.)

1993-01-01

330

Labeling of monoclonal antibodies with radionuclides  

SciTech Connect

Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

Bhargava, K.K.; Acharya, S.A. (Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY (USA))

1989-07-01

331

Source inversion for the CTBTO radionuclide network  

NASA Astrophysics Data System (ADS)

In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

2013-12-01

332

2006 LANL Radionuclide Air Emissions Report  

SciTech Connect

This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

David P. Fuehne

2007-06-30

333

Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through geomorphic processes  

NASA Astrophysics Data System (ADS)

After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.

Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.

2012-12-01

334

Fate and Transport of Radionuclides Beneath the Hanford Tank Farms: Unraveling Coupled Geochemical and Hydrological Processes in the Vadose Zone  

Microsoft Academic Search

The overall goal of this research is to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration of radionuclides in the vadose zone beneath the Hanford Tank Farms. The study is motivated by the technological and scientific needs associated with the long-term management of the enormous in-ground inventories of

Philip M. Jardine; Calvin C. Ainsworth; Scott Fendorf

2002-01-01

335

DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.  

EPA Science Inventory

The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

336

Mapping Biological Behaviors by Application of Longer-Lived Positron Emitting Radionuclides  

PubMed Central

With the technological development of positron emission tomography (PET) and the advent of novel antibody-directed drug delivery systems, longer-lived positron-emitting radionuclides are moving to the forefront to take important roles in tracking the distribution of biotherapeutics such as antibodies, and for monitoring biological processes and responses. Longer half-life radionuclides possess advantages of convenient on-site preparation procedures for both clinical and non-clinical applications. The suitability of the long half-life radionuclides for imaging intact monoclonal antibodies (mAbs) and their respective fragments, which have inherently long biological half-lives, has attracted increased interest in recent years. In this review, we provide a survey of the recent literature as it applies to the development of nine-selected longer-lived positron emitters with half-lives of 9–140 hours (e.g., 124I, 64Cu, 86Y and 89Zr), and describe the biological behaviors of radionuclide-labeled mAbs with respect to distribution and targeting characteristics, potential toxicities, biological applications, and clinical translation potentials.

Zhou, Yang; Baidoo, Kwamena E.; Brechbiel, Martin W.

2012-01-01

337

Mapping biological behaviors by application of longer-lived positron emitting radionuclides.  

PubMed

With the technological development of positron emission tomography (PET) and the advent of novel antibody-directed drug delivery systems, longer-lived positron-emitting radionuclides are moving to the forefront to take important roles in tracking the distribution of biotherapeutics such as antibodies, and for monitoring biological processes and responses. Longer half-life radionuclides possess advantages of convenient on-site preparation procedures for both clinical and non-clinical applications. The suitability of the long half-life radionuclides for imaging intact monoclonal antibodies (mAbs) and their respective fragments, which have inherently long biological half-lives, has attracted increased interest in recent years. In this review, we provide a survey of the recent literature as it applies to the development of nine-selected longer-lived positron emitters with half-lives of 9-140h (e.g., (124)I, (64)Cu, (86)Y and (89)Zr), and describe the biological behaviors of radionuclide-labeled mAbs with respect to distribution and targeting characteristics, potential toxicities, biological applications, and clinical translation potentials. PMID:23123291

Zhou, Yang; Baidoo, Kwamena E; Brechbiel, Martin W

2013-07-01

338

Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives  

USGS Publications Warehouse

Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

Landa, Edward

1980-01-01

339

Sludge source term (PUREX process radionuclide dose impact)  

SciTech Connect

This report analyzes the radionuclide dose impact of the PUREX process waste stream. The radionuclide ingestion and inhalation pathways are analyzed. Two spent fuel assemblies processed in the Separation facilities are analyzed, the Mark 31A and Mark 31B. The individual radionuclide significance to dose is evaluated in terms of dose percentage. Comparing the radionuclide individual dose value allows the determination of those radionuclides whose dose impact is significant. The results of this analysis demonstrate that a limited number of radionuclides contribute 1% or more to the total dose and that the major contributor to the sludge source dose is strontium. The results obtained permit reducing the list of radionuclides to be considered in the development of source terms to support the High Level Waste Safety Analysis Report.

Aponte, C.I.

1994-06-28

340

Sodium technology. Progress report, July-September 1980  

SciTech Connect

This report presents a quarterly summary of progress made in the areas of radioactivity control technology and sodium systems technology. Accomplishments during this period include: radionuclide trap operation in EBR-2; a 8000-h test of radionuclide deposition into 304 and 316 ss; radioactivity surveillance in FFTF HTS; inspection of deposition sampler from EBR-2; sodium frost tests; cold trap testing; effects of mesh packing on natural convection in cold trap crystallizer; and fuel failure monitoring in FFTF and EBR-2. (DLC)

Atwood, J.M. (comp.)

1980-12-01

341

Transmutation of {sup 99}Tc in a low lethargy medium as a function of the neutron energy  

SciTech Connect

In the TARC experiment the differential neutron flux {phi}(E,r-vector) of a spallation of 2.5 and 3.5 GeV/c proton in large lead block is measured in the range between 0.1 eV and 1.5 MeV. A new technique, using small quantities (less than 0.1 gram) of material, is used for measuring the transmutation rate as a function of neutron energy in the range between 0.1 eV up to a few keV. The method is applied to a target of 86 mg ({sup 99}Tc) mixed with 1.7 g of Aluminum. From these measurements the energy profile of the capture cross section can be extracted.

Abanades, A.; Garcia, J.; Perlado, M. [Universidad Politecnica de Madrid, Madrid (Spain); Aleixandre, J.; Bueno, J.; Cerro, E.; Gonzalez, O.; Tamarit, J. [CEDEX, Madrid (Spain); Andriamonje, S.; Arnould, H.; Bompas, C. A.; Del Moral, R.; Lacoste, V. [CEN, Bordeaux-Gradignan (France); Angelopoulous, A.; Apostolakis, A.; Sakelariou, K.; Sakelliou, L.; Zarris, G. [University of Athens, Athens (Greece); Belle, E.; Giorni, A. [ISN, Grenoble (France)] (and others)

1998-10-26

342

Radionuclide partitioning in the modified Unex process  

SciTech Connect

The Universal Extraction (UNEX) process has been developed for simultaneous extraction of long-lived radionuclides (cesium, strontium, actinides, and lanthanides) from acidic solutions in one extraction cycle. Modification of this organic solvent through the use of diamides of dipicolinic acid instead of CMPO increases the extraction capacity of UNEX solvent toward lanthanides and actinide metals, allowing for the processing of spent nuclear fuel. The possibility of radionuclide group separation using the modified UNEX solvent [HCCD (chlorinated cobalt dicarbollide), TBDPA (tetrabutyl-diamide of dipicolinic acid), PEG in FS-1 3 (phenyl-trifluoromethyl-sulfone)] is being investigated. Individual strip products, including a) actinides and lanthanides, b) strontium, and c) cesium, can be obtained by selective stripping from UNEX solvent. Such partitioning will make it possible to transform the Cs/Sr product into the most stable matrices for long-term storage and to further process the actinide/lanthanide product for recycling to a nuclear reactor. (authors)

Babain, V.; Smirnov, I. [Khlopin Radium Institute, St-Petersburg (Russian Federation); Alyapyshev, M. [Khlopin Radium Institute, St-Petersburg (Russian Federation); Oregon State University, Corvallis, OR (United States); Todd, T.A.; Law, J.D.; Herbst, R.S. [Idaho National Laboratory, Idaho Falls, ID (United States); Paulenova, A. [Oregon State University, Corvallis, OR (United States)

2008-07-01

343

Radionuclide production using a fast flux reactor  

PubMed

The production of 89Sr, (32,33)P, 35S via the (n, p)-reaction, and 117mSn, 153Gd via the (n, gamma)-reaction using the BOR-60 fast flux reactor was experimentally studied. Test samples were irradiated in the active core of the BOR-60 reactor with fast neutron flux of 1 x 10(15) cm(-2) s(-1) for 40-100 effective days. Gadolinium-153 was produced in a radial blanket cell, characterized by a modified ("softened") neutron spectrum. Data on target materials, procedure of irradiated target reprocessing, radionuclide yield, and specific activity are summarized in the report. The results of the experiment showed that large-scale production of the radionuclides listed above is possible using a fast-flux reactor. PMID:11003527

Karelin; Efimov; Filimonov; Kuznetsov; Revyakin; Andreev; Zhemkov; Bukh; Lebedev; Spiridonov

2000-10-01

344

Improving cancer treatment with cyclotron produced radionuclides  

SciTech Connect

This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

Larson, S.M. Finn, R.D.

1992-08-04

345

FOREWORD: Special issue on radionuclide metrology  

NASA Astrophysics Data System (ADS)

This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure the improvement in accuracy and precision of measurement as demanded by the stringent requirements of the user community, such as the correct calibration of nuclear instrumentation. This leads into the need for traceability to national measurement standards maintained by the national metrology institutes. As part of the radioactivity traceability chain, as for all areas of metrology, it is vital that systems are in place to ensure that national standards can be checked for worldwide uniformity and measurement equivalence. Many of the resulting areas are covered by the topics in this special issue, although specifically excluded from the scope of the publication are topics that are widely covered in other publications due to their application in applied metrology—for example, radiochemistry, environmental gamma spectrometry and alpha spectrometry. There are three sections to this issue, starting with papers on how the CIPM Mutual Recognition Arrangement has been implemented for radionuclide metrology, following into the bulk of the publication with articles on the `state of the art' in radionuclide metrology and ending with traceability to national/international standards in nuclear medicine, environmental monitoring, radiation protection and decommissioning. This special issue in essence follows on from earlier BIPM Monographies that were published in order to provide the base information for radionuclide metrology. In many respects they complement the special issue since much of their content is still valid today, particularly those published more recently as an aid to ensuring consistency of method and data. The BIPM Monographies are freely available to download from the BIPM website at http://www.bipm.org/en/publications/monographies-ri.html. The papers in the special issue draw on the experience of radionuclide metrologists who have been involved in their area of expertise for many years. The authors give readers an insightful account of the selected topics through in-depth review articles. We are indeed indebted to them for accepting this difficult and t

Simpson, Bruce; Judge, Steven

2007-08-01

346

Radionuclide ventriculography to evaluate myocardial function  

SciTech Connect

Developments over the past decade have allowed one to visualize the right and left ventricles using radionuclide techniques and to study the influence of a wide range of physiologic, pharmacologic and surgical interventions on global and regional ventricular function thereby providing important diagnostic insight and improved therapeutic capabilities. These tests are relatively non-invasive, they can be performed serially, they may be performed in patients that are seriously ill, and they have no recognized risk other than low level radiation exposure. With continued improvement in noninvasive imaging and processing and in the sophistication of associated computer systems, one may expect significant and wide ranging additional contributions in the assessment of myocardial function using radionuclide ventriculographic techniques.

Huxley, R.L.; Corbett, J.R.; Lewis, S.E.; Willerson, J.T.

1983-01-01

347

Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: summary  

SciTech Connect

A Partitioning-Transmutation (PT) fuel cycle is being compared to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the risk, which is RAC code. Routine radiological risks to the public are estimated from the calculated release amounts, also using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. Result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. The nonradiological risk which is about 150 times greater than the radiological risk. If the radiological risk is consdered alone, the ratio of PT to Reference risk is 3, composed as follows: radiological operations affecting the public 5, radiological operations affecting the workers 1.7, and radiological accidents affecting the public 1.4, all in the order of decreasing risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatality/GWe-year for the PT cycle and 0.34 fatality/GWe-year for the reference cycle; this compares with 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

Fullwood, R.; Jackson, R.

1980-03-01

348

Interactions of Fungi and Radionuclides in Soil  

Microsoft Academic Search

Following the development of nuclear weapons and the subsequent evolution of nuclear energy-generating industries, there has\\u000a been considerable concern regarding the safe storage of radionuclide waste. Widescale release, in the aftermath of nuclear\\u000a detonations or as the result of malfunction of atomic energy plants and reprocessing facilities, has also been a preoccupation.\\u000a The International Commission on Radiological Protection recommendations on

John Dighton; Tatyana Tugay; Nelli Zhdanova

349

Quantification of renal haemodynamics with radionuclides  

Microsoft Academic Search

Non-invasive quantification of renal function with radionuclides is an important role of nuclear medicine. With modern commercial preparations of technetium-99m diethylene triamine penta-acetic acid (DTPA), glomerular filtration rate (GFR) can be measured accurately either from the rate of disappearance of the tracer from plasma or from its rate of uptake into the kidneys. Determination of the latter with the gamma

A. M. Peters

1991-01-01

350

Radionuclide Air Emission Report for 2009  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

Wahl, Linnea

2010-06-01

351

Radionuclide Air Emission Report for 2007  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

Wahl, Linnea; Wahl, Linnea

2008-06-13

352

Radionuclide Air Emission Report for 2008  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

Wahl, Linnea

2009-05-21

353

Radionuclide transport in fractured granite interface zones  

NASA Astrophysics Data System (ADS)

In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study migration paths of radionuclides in fractured granite. In this work, a micro-scale mapping technique was applied by interfacing laser ablation sampling with inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect the small scale (micron-range) distribution of actinides in the interface zones between fractures and the granitic rock matrix. Long-lived 234U, 235U, and 237Np were detected in flow channels, as well as in the diffusion accessible rock matrix, using the sensitive, feature-based mapping of the LA-ICP-MS technique. The retarded actinides are mainly located at the fracture walls and in the fine grained fracture filling material as well as within the immediately adjacent wallrock. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. Actinides studied in this work did not penetrate into the mylonite side as much as into the granite matrix, most likely due to the lower porosity, the enhanced sorption capacity and the disturbed diffusion paths of the mylonite region itself. Overall, the maximum penetration depth detected with this technique for 237Np and uranium isotopes over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modelling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results.

Hu, Q. H.; Möri, A.

354

UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS  

SciTech Connect

The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

2006-08-28

355

Concrete Property and Radionuclide Migration Tests  

SciTech Connect

The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

2008-10-01

356

Fukushima's Forgotten Radionuclides: A Review of the Understudied Radioactive Emissions.  

PubMed

In environmental monitoring campaigns for anthropogenic radionuclides released in the course of the Fukushima nuclear accident (2011), most focus had been on gamma-emitting radionuclides. More than 99% of the released activity was due to radionuclides of the elements Kr, Te, I, Xe, and Cs. However, little work had been done on the monitoring of radionuclides other than (131)I, (132)Te, (134)Cs, (136)Cs, and (137)Cs. Radionuclides such as those of less volatile elements (e.g., (89)Sr, (90)Sr, (103)Ru, (106)Ru, plutonium), pure beta-emitters ((3)H, (14)C, (35)S), gaseous radionuclides ((85)Kr, (133)Xe, (135)Xe) or radionuclides with very long half-lives (e.g., (36)Cl, (99)Tc, (129)I, some actinides such as (236)U) have been understudied by comparison. In this review, we summarize previous monitoring work on these "orphan" radionuclides in various environmental media and outline further challenges for future monitoring campaigns. Some of the understudied radionuclides are of radiological concern, others are promising tracers for environmental, geochemical processes such as oceanic mixing. Unfortunately, the shorter-lived nuclides of radioxenon, (103)Ru, (89)Sr and (35)S will no longer exhibit detectable activities in the environment. Activity concentrations of other radionuclides such as tritium, (14)C, or (85)Kr will become blurred in the significant background of previous releases (nuclear explosions and previous accidents). Isotope ratios such as (240)Pu/(239)Pu will allow for the identification of Fukushima plutonium despite the plutonium background. PMID:24754713

Steinhauser, Georg

2014-05-01

357

A Fusion Neutron Source Driven Sub-Critical Nuclear Energy System: A Way for Early Application of Fusion Technology  

NASA Astrophysics Data System (ADS)

This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.

Wu, Yi-can

2001-12-01

358

Colloid-facilitated radionuclide transport: a regulatory perspective  

Microsoft Academic Search

What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport

W. L. Dam; D. A. Pickett; R. B. Codell; T. J. Nicholson

2001-01-01

359

Mathematical simulation of sediment and radionuclide transport in estuaries  

SciTech Connect

The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.

Onishi, Y.; Trent, D.S.

1982-11-01

360

Transuranic radionuclides from resuspension in the environment, a bibliography  

SciTech Connect

The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions. An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is an unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides. This bibliography is a compilation of the references containing studies of plutonium and americium in the environment as a result of resuspension.

Stoker, A.C.; Shinn, J.H.; Noshkin, V.E. [and others

1994-04-01

361

Colloidal forms of radionuclides and their separation from water solution  

Microsoft Academic Search

Colloidal properties of144Ce(III),147Pm(III),91Y(III), and other, radionuclides were determined from the course of their self-diffusion. A reduced self-diffusion indicated\\u000a the formation of colloidal radionuclides. The decrease in the self-diffusion coefficient began from a certain value of pH,\\u000a and a pH region of slowest self-diffusion existed for each of the radionuclides studies. The maximum formation of colloidal\\u000a radionuclides may be assumed to

F. Kepák

1974-01-01

362

Special Analysis: Radionuclides Screening Analysis for E Area  

SciTech Connect

It was recently discovered that waste being disposed of onsite contained radionuclides that had not been analyzed by the Performance Assessment (PA). These radionuclides had been eliminated from the PA in an earlier screening evaluation because they were not expected to be contained in SRS-generated waste or that received from offsite generators. This Special Analysis (SA) is being prepared to establish the screening criteria and level of evaluation for all radionuclides potentially significant to a Low Level Waste PA or Composite Analysis (CA). The screening methodology recommended by the National Council on Radiological Protection and Measurements (NCRP) has been used to identify those radionuclides that require detailed analysis to derive disposal limits. Of the approximately 2800 radionuclides, a total of 826 were considered by the NCRP to be potentially significant. Approximately 686 radionuclides were eliminated from this analysis due to their short half-life or other properties. Approximately 40 of the 140 remaining radionuclides have been analyzed in the existing PA and waste acceptance criteria established. This SA develops the screening criteria and establishes trigger values to be used to determine the level of analysis required for those radionuclides not analyzed in PA. The results of the SA identified 20 radionuclides that will require more detailed groundwater and intruder analysis. This analysis will be documented in a SA for trench disposal.

COOK, JAMES

2004-07-22

363

Effect of chelating agents on the migration of radionuclides  

SciTech Connect

It has been stated that chelate formation of radionuclides with chelating agents such as decontamination reagents (e.g., ethylenediaminetetraacetic acid) and natural organic compounds (e.g., fulvic and humic acids) found in groundwater significantly influence the migration behavior of radionuclides. They form extremely strong chelates with radionuclides and mobilizes these radionuclides from the radioactive waste (especially from low-level waste) repository. In this study, a new retardation factor incorporating a chelation effect is introduced. A general convection-dispersion transport equation that includes a degradation of solute caused by various physicochemical reactions in porous medium is used and solved by an analytical method.

Min Hoon Baik; Kun Jai Lee

1991-11-01

364

Transuranic radionuclides dispersed into the aquatic environment, a bibliography  

SciTech Connect

The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

Noshkin, V.E.; Stoker, A.C.; Wong, Kai M. [and others

1994-04-01

365

Protection from radioaerosols and volatile radionuclides  

SciTech Connect

Increasing the safety of nuclear power plants is a problem of the utmost importance in the nuclear energy industry. Particular attention is given to severe accidents at nuclear reactors. Although the probability of these accidents is low (< 10{sup {minus}5}), their consequences are the most disastrous. Severe accidents result in the release of tens of thousands of curies of radioactive products into the area under the containment. Modern protective systems for the localization of radioactive aerosols and volatile radionuclides are based mainly on the filtration of gas flow, using various solid and liquid sorbents. The main principle of these filters is based on the precipitation of suspended particles on any surface (grids, liquid drops, or film, fiber, and electrode surfaces). In these processes, physical phenomena such as gravitation, inertia, diffusion, electricity, magnetism, and supersonics are used. A disadvantage of the available systems is that they may not trap radioaerosols present in the vapor-gas mixture in the form of finely dispersed (much smaller than 0.1 {micro}m) hydrophobic particles. A new concept of protection from radioaerosols and volatile radionuclides has been suggested. A basically new method of the localization of radioactive aerosols and volatile radionuclides is based on the physicochemical process occurring in the gas phase. The proposed concept of protection from radioaerosols and volatile fission products uses unconventional approaches based not on the filtration of vapor-gas flow but on the extraction of radioaerosols and radioiodine from them by the formation of mixed micelles with manufactured hydrophilic aerosols, such as MoO{sub 3} and NH{sub 4}Cl-(NH{sub 4}){sub 2}SO{sub 3}, and the cocrystallization of ionic iodine with them. The new concept may be used for protection from radioaerosols at various types of nuclear reactors.

Mikheev, N.B.; Kulyukhin, S.A.; Kamenskaya, A.N.; Rumer, I.A. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

1996-04-01

366

SALTSTONE AND RADIONUCLIDE INTERACTIONS: RADIONUCLIDE SORPTION AND DESORPTION, AND SALTSTONE REDUCTION CAPACITY  

Microsoft Academic Search

The overall objective of this study was to measure a number of key input parameters quantifying geochemical processes in the subsurface environment of the Savannah River Site's (SRS's) Saltstone Facility. For the first time, sorption (K{sub d}) values of numerous radionuclides were measured with Saltstone and Vault 2 concrete. Particular attention was directed at understanding how Tc adsorbs and desorbs

D Kaplan; K Kimberly Roberts; S Steven Serkiz; M Matthew Siegfried

2008-01-01

367

Method of separating short half-life radionuclides from a mixture of radionuclides  

DOEpatents

The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

Bray, L.A.; Ryan, J.L.

1999-03-23

368

Preparation of radiopharmaceuticals labeled with metal radionuclides  

SciTech Connect

We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

Welch, M.J.

1992-06-01

369

Unilateral breast uptake on radionuclide ventriculography.  

PubMed

Gated equilibrium radionuclide ventriculography is frequently used to measure the left ventricular ejection fraction. We report a case of unilateral breast activity resulting in significant underestimation of the left ventricular ejection fraction, which mimicked a left ventricular aneurysm, pseudoaneurysm, or an intrathoracic vascular mass. Unilateral breast uptake, in the absence of gastric activity, was presumed because of increased blood pool in the lactating breast, a finding not previously reported in the literature. This case is also presented to emphasize the importance of localizing abnormalities based on a review of tomographic images or images taken in at least 2 orthogonal projections. PMID:24662654

Pelletier-Galarneau, Matthieu; Sogbein, Oyebola O; Pham, Xuan H; Zuckier, Lionel S

2014-07-01

370

Subtraction of simultaneously acquired dual radionuclide images  

SciTech Connect

The physical aspects of a simultaneous dual radionuclide technique incorporating computer subtraction for the diagnosis of infection using /sup 67/Ga citrate and /sup 99m/Tc methylene diphosphonate (MDP) or sulfur colloid are considered. The efficacy of the data acquisition protocol and the interpretation of the subtracted images are shown to depend significantly on fundamental imaging system parameters. Measurement of these parameters using simple phantoms and their role in elucidating the technique is detailed. Subtracted images produced by three variations of the basic method arising from different normalization algorithms in current usage are compared. Simple phantoms are again used in assessing the accuracy of each variation. Clinical results are reported elsewhere.

Sloboda, R.S.

1986-09-01

371

Specific features of transmutational doping of {sup 30}Si-enriched silicon crystals with phosphorus: Studies by the method of electron spin resonance  

SciTech Connect

Electron spin resonance (ESR) is used to study the neutron transmutation doping of silicon crystals enriched with {sup 30}Si isotope: phosphorus donors and radiation defects produced in the course of transmutational doping are observed. The ESR signals related to the phosphorus uncontrolled impurity in {sup 30}Si before transmutational doping (the P concentration is {approx}10{sup 15} cm{sup -3}) and phosphorus introduced by neutron irradiation with doses {approx}1 x 10{sup 19} cm{sup -2} and {approx}1 x 10{sup 20} cm{sup -2} (the P concentrations are {approx}5 x 10{sup 16} and {approx}7 x 10{sup 17} cm{sup -3}, respectively) are studied. As a result of drastic narrowing of the phosphorus ESR lines in {sup 30}Si, the intensity of lines increased appreciably, which made it possible to measure the phosphorus concentration in the samples with a small volume (down to 10{sup -6} mm{sup -3}). The methods for determining the concentration of P donors from hyperfine structure in the ESR spectra of isolated P atoms, exchange-related pairs, and clusters that consist of three, four, and more P donors are developed. In the region of high concentrations of P donors, in which case the hyperfine structure disappears, the concentration of P donors was estimated from the exchange-narrowed ESR line.

Baranov, P. G.; Ber, B. Ya. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Godisov, O. N. [Centrotech Research Center (Russian Federation); Il'in, I. V., E-mail: Ivan.ilyin@mail.ioffe.ru; Ionov, A. N. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Kaliteevskii, A. K. [Centrotech Research Center (Russian Federation); Kaliteevskii, M. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Lazebnik, I. M. [Konstantinov Institute of Nuclear Physics (Russian Federation); Safronov, A. Yu. [Centrotech Research Center (Russian Federation); Pohl, H.-J. [VITCON Projectconsult Gmbh (Germany); Riemann, H.; Abrosimov, N. V. [Leibniz Institute of Crystal Growth (Germany); Kop'ev, P. S. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Bulanov, A. D.; Gusev, A. V. [Russian Academy of Sciences, Institute of Chemistry of High-Purity Substances (Russian Federation)

2006-08-15

372

Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms  

SciTech Connect

This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

1981-01-01

373

The effect of gravel size fraction on the distribution coefficients of selected radionuclides radionuclides  

SciTech Connect

This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (Kd) construct can be estimated from laboratory tests on < 2mm fraction of sediments. As shown within the use of this common assumption can lead to inaccurate estimates of the mobility and sorption capacity of key radionuclides (Tc, U, and Np) at the Hanford Site where gravel dominates the lower Hanford formation and upper Ringold Formation. Batch sorption and column experiments showed that the distribution coefficient measured using only < 2mm fraction were not in agreement with those obtained from the bulk sediments depending on the radionuclide. The least reactive radionuclide, Tc showed the lowest effects from the presence of gravel. However, differences between measured Kds using < 2mm fractions of the sediment and the Kds measured on the bulk sediment were significant for strongly reactive radionuclides such as Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxides coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the Kd,<2 mm and Kd,>2 mm values to estimate the Kd for the bulk sediment were found to best describe Kds for radionuclides on the bulk sediment. However, more detailed characterization of gravel surfaces should be also conducted to identify those gravels with higher reactive sorbents, if present. Gravel correction factors should be considered to predict precisely the sorption capacity of bulk sediments that contain more than 10% gravel and to estimate the mobility of contaminants in subsurface environments.

Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Glossbrenner, Ellwood T.

2009-06-26

374

Radionuclide imaging of bone marrow disorders  

PubMed Central

Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed.

Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

2010-01-01

375

Radionuclide release from research reactor spent fuel  

NASA Astrophysics Data System (ADS)

Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO 2 fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in 235U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO 2-fuel (LWR fuel, enrichment in 235U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Jülich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl 2-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl x-Al and U 3Si 2-Al) was studied in 400 mL MgCl 2-rich salt brine in the presence of Fe 2+ under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH) 3(s) and Eu(OH) 3(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu(IV) oxyhydroxides species due to radiolytic effects cannot completely be ruled out. Solution concentrations of U were within the range of the solubility limits of the solid phase U(OH) 4(am). The determined concentrations of U and Am in solution were about one order of magnitude higher for the U 3Si 2-Al fuel sample. Here, the formation of U/Si containing secondary phase components and their influence on radionuclide solubility cannot be ruled out. Results of this work show that the U 3Si 2-Al and UAl x-Al dispersed research reactor spent fuel samples dissolved completely within the test period of 3.5 years in MgCl 2-rich brine in the presence of Fe 2+. In view of final disposal this means that these fuel matrices represent no barrier. The radionuclides will be released instantaneously. Cs (the long-lived isotope 135Cs is of special concern with respect to final disposal) and Sr were classified as mobile radionuclide species. For U, Am, Pu and Eu, a reimmobilization was observed. Sorption is the process which is assumed to be responsible for the reimmobilization of the long-lived actinide Am and the lanthanide Eu. Solution concentrations of U and Pu seem to be controlled by their solubility controlling solid phases.

Curtius, H.; Kaiser, G.; Müller, E.; Bosbach, D.

2011-09-01

376

Activity Estimates of Various Radionuclides in Saltstone Vapor Phase  

Microsoft Academic Search

Savannah River National Laboratory estimated activities of various radionuclides in vapor phase associated with saltstone. These radionuclides, as well as the estimated activity and concentration of each in the gases phase are listed. Some of the activities are so low they should be considered zero. In particular, activity of the antimony and tin isotopes in the gas phase correspond to

2005-01-01

377

Natural Radionuclide Activity Concentrations In Spas Of Argentina  

SciTech Connect

Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

Gnoni, G.; Czerniczyniec, M.; Canoba, A.; Palacios, M. [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, Ciudad de Bs. As. (1429) (Argentina)

2008-08-07

378

Selection and manipulation of immunoglobulins for radionuclide delivery  

SciTech Connect

This report describes a collection of monoclonal antibodies that are candidates for use in radioimmunotherapy towards neoplasms of the gastrointestinal tract, breast, or of astrocytomas. In addition a large series of candidate radionuclides to conjugate to antibodies for therapeutic uses are discussed with respect to potential therapeutic utility and to means of radionuclide production.

Steplewski, Z.; Curtis, P. [The Wistar Institute, Philadelphia, PA (United States); Hainfeld, J.; Mausner, L.; Mease, R.; Srivastava, S. [Brookhaven National Lab., Upton, NY (United States)

1992-12-31

379

Geomorphic control of radionuclide diffusion in desert soils  

Microsoft Academic Search

Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137Cs profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather

Jon D. Pelletier; Charles D. Harrington; John W. Whitney; Michael Cline; Stephen B. DeLong; Gordon Keating; K. Teryn Ebert

2005-01-01

380

Radionuclide correlations at TMI2 for 10 CFR 61 compliance  

Microsoft Academic Search

A detailed review and evaluation of all radionuclide analysis results from the TMl-2 waste has helped develop scaling factors for difficult to measure radionuclides. Analytic procedures and results from this research are applicable to waste classification for other sites involving higher-than-normal fuel leakage. Individual utilities and industry organizations, including EPRI, are developing waste classification programs to comply with NRC regulation

C. P. Deltete; K. J. Hofstetter

1989-01-01

381

Artificial Radionuclides in the Western North Pacific: A Review  

Microsoft Academic Search

Artificial radionuclides in the marine environment pose a significant concern along various political, health and environmental aspects since they were introduced as a by-product from the nuclear weapon testing, particularly in the northwestern Pacific Ocean. While radiological concern is confined only in special cases, the introduction of artificial radionuclides has been proven to be very useful tracers for the ocean

G. H. HONG; M. BASKARAN; P. P. POVINEC

2004-01-01

382

Preliminary assessment of radionuclide vapor phase transport in unsaturated tuff  

Microsoft Academic Search

The possibility of radionuclide migration in the vapor phase for unsaturated tuff has been investigated. Radionuclide movement could be the result of either aerosol migration or convection\\/diffusion of volatile species. A diffusion model for supersaturation of air in tuff groundwater indicates that there is no possibility of aerosol formation under expected repository conditions. An assessment of migration due to convection\\/diffusion

D. M. Smith; C. D. Updegraff; E. J. Bonano

1985-01-01

383

Diffusion of sorbing and non-sorbing radionuclides  

Microsoft Academic Search

Diffusion is considered one of the most important retardation mechanisms in fractured media. The diffusion experiments conducted involved solid tuff and groundwater from Yucca Mountain. The uptake of radionuclides by the tuff was studied utilizing containers made of tuff in the form of beakers. The solution containing the radionuclides of interest was placed in the tuff beaker cavity and the

I. R. Triay; K. H. Birdsell; A. J. Mitchell; M. A. Ott

1993-01-01

384

Diffusion of radionuclide chains through an adsorbing medium  

Microsoft Academic Search

The diffusion of radionuclide chains from an underground nuclear waste disposal site through the surrounding geologic medium to the surface is investigated for impulse and band releases. Numerical calculation of the analytical solutions shows that differences in adsorption characteristics among chain members and radioactive decay during transit reduce radionuclide discharges to the biosphere. Results suggest that molecular diffusion is unlikely

H. C. Burkholder; C. DeFigh-Price

1977-01-01

385

21 CFR 892.5730 - Radionuclide brachytherapy source.  

...radionuclide brachytherapy source is a device that consists of a radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a...

2014-04-01

386

Radionuclide site survey report, Melbourne, Florida (RN-72). Final report  

SciTech Connect

The format and content of this report are based on guidance provided by the Preparatory Commission for the CTBT Organization for conducting and documenting radionuclide site surveys (see GTBT/PC/IV/WGB/1) ``Requirements of Site Surveys for Radionuclide Stations``, (30 September 1997). The purpose of this report is to validate that the Melbourne site will fulfill the requirements for treaty compliance.

Walker, F.; Lucas, J.; Owen, M.; McKethan, E.M.; MacCartney, J.

1998-11-16

387

WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY  

SciTech Connect

One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.

K.C. Holt

2006-03-13

388

A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolute emission intensities and various query modes for our developmental CLL are described.

Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.; Aalseth, Craig E.; Miley, Harry S.

2003-10-01

389

Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides  

PubMed Central

There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and ? particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use.

Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.

2012-01-01

390

Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961  

SciTech Connect

The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ({sup 238}Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

Young, J.A.; Thomas, C.W.

1981-03-01

391

Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961  

SciTech Connect

The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ([sup 238]Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

Young, J.A.; Thomas, C.W.

1981-03-01

392

Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems  

SciTech Connect

Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

2012-04-01

393

Resonance enhancement in the accelerator transmutation of 1.3-day 232Pa and 2.1-day 238Np  

NASA Astrophysics Data System (ADS)

The suggestion that the transmutation of actinide waste into fission products might best be done with thermalized spallation neutrons and odd-odd target materials such as 238Np has been studied. During the 1993 LAMPF/PSR cycle, we measured the fission cross section of 1.3-day 232Pa and 2.1-day 238Np from 0.01 eV to 40 keV at the LANSCE facility, and have carried out a preliminary resonance analysis of the observed structure and of the thermal region, with a 1/v representation above a few eV. In the present study, we calculate the reaction rates of these two species and 247Cm in a ``resonance reactor,'' an accelerator-driven assembly whose slowing-down properties are well known. Our model is a 1.8 m3 block of lead with a helium-cooled tungsten target in the center, i.e., the Rensselaer Intense Neutron Source (RINS). We include the effects of adding moderator outside an idealized lead slowing-down assembly, giving resonance enhancement factors for 232Pa and 238Np, and present parameters for the accelerator required to drive such an assembly to accomplish actinide burnup of these species.

Moore, M. S.; Danon, Y.

1995-09-01

394

Predicting thermo-mechanical behaviour of high minor actinide content composite oxide fuel in a dedicated transmutation facility  

NASA Astrophysics Data System (ADS)

The European Facility for Industrial Transmutation (EFIT) of the minor actinides (MA), from LWR spent fuel is being developed in the integrated project EUROTRANS within the 6th Framework Program of EURATOM. Two composite uranium-free fuel systems, containing a large fraction of MA, are proposed as the main candidates: a CERCER with magnesia matrix hosting (Pu,MA)O 2-x particles, and a CERMET with metallic molybdenum matrix. The long-term thermal and mechanical behaviour of the fuel under the expected EFIT operating conditions is one of the critical issues in the core design. To make a reliable prediction of long-term thermo-mechanical behaviour of the hottest fuel rods in the lead-cooled version of EFIT with thermal power of 400 MW, different fuel performance codes have been used. This study describes the main results of modelling the thermo-mechanical behaviour of the hottest CERCER fuel rods with the fuel performance code MACROS which indicate that the CERCER fuel residence time can safely reach at least 4-5 effective full power years.

Lemehov, S. E.; Sobolev, V. P.; Verwerft, M.

2011-09-01

395

Spallation Neutron Energy Spectrum Determination with Yttrium as a Threshold Detector on U/Pb-assembly "Energy plus Transmutation"  

NASA Astrophysics Data System (ADS)

Results of two experiments with Yttrium-89 samples on U/Pb-assembly "Energy plus Transmutation" [1] are presented. The assembly is a lead cylindrical target (8.4 cm diameter, 45.6 cm length) with natural uranium blanket (206.4 kg). The lead target was irradiated with JINR Dubna NUCLOTRON with 1.60 and 2.52 GeV deuteron beam. The final purpose of the experiments was to measure neutron field inside the assembly. Yttrium-89 activation detectors were located throughout the entire U/Pb-assembly. Irradiated sample gamma activity was measured with HPGe spectrometer. The gamma spectra were analyzed and the net peak areas were calculated using the DEIMOS program [2]. After short presentation of the activation results neutron spectrum determination method is proposed and its results presented. Assuming reaction model through compound nucleus and using some mathematical tricks Yttrium isotope "k " production rate discrete formula I_k = Nintlimits_{E_{thr,k} }^infty {? left( E right)? _k left( {E,E_{thr} } right)} dE was transformed into Volterra's integral equation of the first kind and then solved. The method and its applicability still to be discussed. The results as the preliminary ones are for illustrative purpose only.

Kilim, S.; Bielewicz, M.; Strugalska-Gola, E.; Szuta, M.; Wojciechowski, A.; Krivopustov, M. I.; Kovalenko, A. D.; Adam, I.; Krasa, A.; Majerle, M.; Wagner, V.

396

Spallation Neutron Energy Spectrum Determination with Yttrium as a Threshold Detector on U/Pb-assembly ``Energy plus Transmutation''  

NASA Astrophysics Data System (ADS)

Results of two experiments with Yttrium-89 samples on U/Pb-assembly “Energy plus Transmutation” [1] are presented. The assembly is a lead cylindrical target (8.4 cm diameter, 45.6 cm length) with natural uranium blanket (206.4 kg). The lead target was irradiated with JINR Dubna NUCLOTRON with 1.60 and 2.52 GeV deuteron beam. The final purpose of the experiments was to measure neutron field inside the assembly. Yttrium-89 activation detectors were located throughout the entire U/Pb-assembly. Irradiated sample gamma activity was measured with HPGe spectrometer. The gamma spectra were analyzed and the net peak areas were calculated using the DEIMOS program [2]. After short presentation of the activation results neutron spectrum determination method is proposed and its results presented. Assuming reaction model through compound nucleus and using some mathematical tricks Yttrium isotope “k ” production rate discrete formula I_k = Nintlimits_{E_{thr,k} }^infty {? left( E right)? _k left( {E,E_{thr} } right)} dE was transformed into Volterra's integral equation of the first kind and then solved. The method and its applicability still to be discussed. The results as the preliminary ones are for illustrative purpose only.

Kilim, S.; Bielewicz, M.; Strugalska-Gola, E.; Szuta, M.; Wojciechowski, A.; Krivopustov, M. I.; Kovalenko, A. D.; Adam, I.; Krasa, A.; Majerle, M.; Wagner, V.

397

Accumulation of radionuclides by plants as a monitor system.  

PubMed

The accumulation of radionuclides by plants acting as a monitoring system in the environment may occur by two modes; foliar absorption by the leaves and shoot of the plant, or by root uptake from the soil. Data on plant accumulation of radionuclides may be obtained from studies of fission product radionuclides deposited as worldwide fallout, and from tracer studies of plant physiology. The epidermal features of plant foliage may exert an effect upon particle retention by leaves, and subsequent uptake of radionuclides from the surface. The transport of radionuclides across the cuticle and epidermis of plant leaves is determined in part by the anatomy of the leaf, and by physiological factors. The foliar uptake of fallout radionuclides, 99Sr, 131I, and 137Cs, is described with examples from the scientific literature. The environmental half-life of 131I, for example, is considerably shorter than its physical half-life because of physical and biological factors which may produce a half-life as short as 0.23/day. 99Sr and 137Cs are readily taken up by the leaf, but 137Cs undergoes more translocation into fruit and seeds than 99Sr which tends to remain in the plant part in which it was initially absorbed. Soil-root uptake is conditioned primarily by soil chemical and physical factors which may selectively retain a radionuclide, such as 137Cs. The presence of organic matter, inorganic colloids (clay), and competing elements will strongly affect the uptake of 99Sr and 137Cs by plants from the soil. The role of plants as monitors of radionuclides is twofold: as monitors of recent atmospheric releases of radionuclides; and as indicators of the long-term behavior of aged deposits of radionuclides in the soil. PMID:367767

Koranda, J J; Robison, W L

1978-12-01

398

Radionuclide Decay and In-growth Technical Basis Document  

SciTech Connect

The purpose of this report is to assess the decay and in-growth of radionuclides from the radionuclide source term (RST) deposited by underground nuclear weapons tests conducted at the NTS from 1951 through 1992. A priority of the Underground Test Area (UGTA) project, administered by the Environmental Restoration Division of NNSA/NV, was to determine as accurately as possible a measure of the total radionuclide inventory for calculation of the RST deposited in the subsurface at the Nevada Test Site (NTS). The motivation for the development of a total radionuclide inventory is driven by a need to calculate the amount of radioactivity that will move away from the nuclear test cavities over time, referred to as the hydrologic source term (HST). The HST is a subset of the RST and must be calculated using knowledge of the geochemistry and hydrology of the subsurface environment. This will serve the regulatory process designed to protect human health from exposures to contaminated groundwater. Following the detonation of an underground nuclear test, and depending on the presence of water at the location of the detonation, the residual radionuclides may be found in aqueous or gaseous states, precipitated or chemically sorbed states, or incorporated in melt glass produced by the nuclear test. The decay and in-growth of radionuclides may have geochemical implications for the migration of radionuclides away from underground nuclear test cavities. For example, in the case of a long-lived mobile parent decaying to a shorter-lived and less mobile daughter, the geochemical properties of the parent element may control the migration potential of the daughter nuclide. It becomes important to understand the evolution of the RST in terms of effects on the mobility, solubility, or abundance of radionuclides in the HST that are created by decay and in-growth processes. The total radionuclide inventory and thus the RST changes with time due to radioactive decay. The abundance of a specific radionuclide at any given time is a function of the initial amount of radioactivity, the decay rate and in-growth from parent radionuclides. The in-growth of radioactivity is the additional amount of radioactivity for a given radionuclide that comes from the decay of the parent isotopes. In this report, decay and in-growth of radionuclides from the RST are evaluated over the 1000-year time frame in order to determine whether coupled in-growth and decay affect the relative abundance of any RST radionuclide. In addition, it is also necessary to identify whether any new derivative radionuclides not initially produced by the nuclear test but exist now as a result of in-growth from a parent radionuclide One of the major goals of this report is to simplify the transport modeler's task by pointing out where in-growth is unimportant and where it needs to be considered. The specific goals of this document are to evaluate radionuclide decay chains and provide specific recommendations for incorporating radionuclide daughters of concern in the calculation of the radionuclide inventory.

Kersting, A B; Finnegan, D L; Tompson, A F B; Esser, B K; Smith, D K; Zavarin, M; Bruton, C J; Pawloski, G A

2003-07-01

399

Radionuclides deposition and fine sediment transport in a forested watershed, central Japan  

NASA Astrophysics Data System (ADS)

We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

2011-12-01

400

Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.  

PubMed

Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets. PMID:16891894

Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto

2006-09-01

401

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

Microsoft Academic Search

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction

Y. Onishi; S. B. Yabusaki; C. T. Kincaid; R. L. Skaggs; W. H. Walters

1982-01-01

402

Fusion of radionuclide and waveform information at CTBTO in support of the NPE12  

NASA Astrophysics Data System (ADS)

Different technologies constitute the pillars of the system which monitors compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Each of the four technologies exploited by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has a monitoring network of its own which together constitute the International Monitoring System (IMS). CTBTO and its State Signatories make an effort to achieve synergy between the complementary information provided by the distinct networks in a process called data fusion. Seismic, infrasound and hydroacoustic monitoring technologies are based on detections of mechanical waves and referred to as waveforms. In an analysis process performed at the International Data Centre (IDC) those detections are subsequently associated to build events from which the mechanical waves originated. The association is more challenging in case of airborne radionuclide monitoring technology. A support in form of the computational results of atmospheric transport modelling is necessary in this case. But even with such a support, due to turbulent processes in the atmosphere, the events emanating the detected radionuclides are not easily identified. In fact, atmospheric transport modelling indicates the regions where a source could have been located rather than point-like events. However, if this information is appropriately merged with the waveform events, it could support evidence of their nuclear character or lack thereof. National Data Centres of State Signatories, which are responsible for the CTBT monitoring and verification at the national level, design and conduct annual exercises in order to test performance of the monitoring system and analysis of its detections. Exercise scenario, mixing real and fictitious components, is designed to ensure as broad a national expert involvement as possible. At the same time it offers a framework for testing and advancing data fusion capacity. In this presentation we propose to address data fusion as a component of the National Data Centre Preparedness Exercise 2012 (NPE12). We will present a part of the exercise scenario, namely a series of fictitious detections of radionuclides at the IMS network, and its analysis in terms of atmospheric transport modelling performed at the IDC. We will address the problem of retrieving source information from this fictitious scenario of radionuclide detections and how to subsequently combine it with the waveform events. We will present a list of waveform events which constitute potential sources and which are then subject to analysis by the waveform experts. Furthermore, illustration of a similar analysis performed using the atmospheric transport modelling results provided by the Regional Specialised Meteorological Centres of WMO will be shown. Finally, we will discuss the tools used to perform data fusion analysis and give an account of the on-going developments in this domain at the IDC.

Krysta, Monika; Kusmierczyk-Michulec, Jolanta; Kushida, Noriyuki

2013-04-01

403

Radioimmunotherapy of malignancy using antibody targeted radionuclides.  

PubMed Central

Antibodies directed against tumour associated antigens provide a means for delivering preferentially cytotoxic radionuclides to the cells of primary and secondary tumours. The factors that influence the effectiveness of the radiation in the tumour compared with its effect on the radiosensitive normal tissues include the specificity of the antibody, the distribution of targeted energy within the tumour and the host's response to the injected foreign antibody. Recently some encouraging results from clinical trials of radioimmunotherapy have been reported in the literature. There is a continual search for more avid and specific antibodies, and the techniques of genetic engineering are being applied to the problem of reducing the antigenicity and mass of the carrier antibody. The improved efficiency of the labelled antibody needs to be supplemented by an identification of those tumours most likely to respond to this form of therapy.

Cobb, L. M.; Humm, J. L.

1986-01-01

404

Radionuclide localization of lower gastrointestinal hemorrhage  

SciTech Connect

The authors prospectively evaluated the usefulness of abdominal radionuclide scintigraphy using /sup 99m/Tc-labeled red cells as a means of monitoring for intermittent gastrointestinal bleeding over a 24-hour period in both control and actively bleeding populations. Of 32 patients with documented hemorrhage, 29 had positive scintiscans (sensitivity, 91%; 9% false negatives). Of 18 nonbleeding patients, 17 had negative scintiscans (specificity, 95%; 5% false positives). 12 of 29 patients bled from 6 to 24 hours after the study was begun. Scintiscans were positive in patient with transfusion requirements of greater than or equal to 500 ml/24 hr. The authors conclude that abdominal scintigraphy with /sup 99m/Tc-labeled red cells is an effective method of detecting gastrointestinal bleeding.

Winzelberg, G.G.; Froelich, J.W.; McKusick, K.A.; Waltman, A.C.; Greenfield, A.J.; Athanasoulis, C.A.; Strauss, H.W.

1981-05-01

405

Radionuclide localization of lower gastrointestinal hemorrhage  

SciTech Connect

The authors prospectively evaluated the usefulness of abdominal radionuclide scintigraphy using 99mTc-labeled red cells as a means of monitoring for intermittent gastrointestinal bleeding over a 24-hour period in both control and actively bleeding populations. Of 32 patients with documented hemorrhage, 29 had positive scintiscans (sensitivity, 91%; 9% false negatives). Of 18 nonbleeding patients, 17 had negative scintiscans (specificity, 95%; 5% false positives). 12 of 29 patients bled from 6 to 24 hours after the study was begun. Scintiscans were positive in patients with transfusion requirements of greater than or equal to 500 ml/24 hr. The authors conclude that abdominal scintigraphy with 99mTc-labeled red cells is an effective method of detecting gastrointestinal bleeding.

Winzelberg, G.G.; Froelich, J.W.; McKusick, K.A.; Waltman, A.C.; Greenfield, A.J.; Athanasoulis, C.A.; Strauss, H.W.

1981-05-01

406

Graphene oxide for effective radionuclide removal.  

PubMed

Here we show the efficacy of graphene oxide (GO) for rapid removal of some of the most toxic and radioactive long-lived human-made radionuclides from contaminated water, even from acidic solutions (pH < 2). The interaction of GO with actinides including Am(III), Th(IV), Pu(IV), Np(V), U(VI) and typical fission products Sr(II), Eu(III) and Tc(VII) were studied, along with their sorption kinetics. Cation/GO coagulation occurs with the formation of nanoparticle aggregates of GO sheets, facilitating their removal. GO is far more effective in removal of transuranium elements from simulated nuclear waste solutions than other routinely used sorbents such as bentonite clays and activated carbon. These results point toward a simple methodology to mollify the severity of nuclear waste contamination, thereby leading to effective measures for environmental remediation. PMID:23296256

Romanchuk, Anna Yu; Slesarev, Alexander S; Kalmykov, Stepan N; Kosynkin, Dmitry V; Tour, James M

2013-02-21

407

Natural radionuclides in drinking waters in Serbia.  

PubMed

Gross alpha and beta activities, (3)H, (226)Ra, (232)Th and (40)K activities were measured in bottled mineral water produced in Serbia in order to assess its radiological quality. In 11 samples of tap water and in 1 sample of spring waters gross alpha and beta activity were determined. The natural activity concentration of alpha and beta emitting radionuclides are within the range recommended by World Health Organization. The tritium concentration in bottled mineral waters ranged from 0.023 ± 0.012 to 0.046 ± 0.006 Bq l(-1). The activity of (226)Ra, (232)Th and (40)K were below the minimum detectable activity. In order to evaluate the annual effective dose for different classes of age, a conservative dosimetric calculation was carried out. PMID:23041389

Jankovi?, Marija M; Todorovi?, Dragana J; Todorovi?, Nataša A; Nikolov, Jovana

2012-12-01

408

Radionuclide evaluation of spontaneous femoral osteonecrosis  

SciTech Connect

Spontaneous osteonecrosis of the femoral condyle in 40 knees was followed by sequential radiographs and three-phase bone scans using /sup 99//sup m/Tc-methylene diphosphonate. The characteristic bone scan appearance of focal increased uptake by the medial femoral condyle in blood flow, blood pool, and delayed images helped to make the specific diagnosis in 11 knees that had no characteristic radiographic findings at the time of presentation. The three phases of the bone scan demonstrated a pattern that was useful in determining the activity of the process. There was a gradual loss of hyperemia as healing progressed. Late bone scans were normal or showed nonspecific findings. Radionuclide bone scans were able to confirm or exclude this disease and were superior to radiographs in demonstrating the disease in the acute phase.

Greyson, N.D. (St. Michael's Hospital, Toronto, Ontario, Canada); Lotem, M.M.; Gross, A.E.; Houpt, J.B.

1982-03-01

409

Anthropogenic radionuclides in sediment in the Japan Sea: distribution and transport processes of particulate radionuclides.  

PubMed

Distributions of anthropogenic radionuclides ((90)Sr, (137)Cs and (239+240)Pu) in seabed sediment in the Japan Sea were collected during the period 1998-2002. Concentration of (90)Sr, (137)Cs and (239+240)Pu in seabed sediment was 0.07-1.6 Bq kg(-1), 0.4-9.1 Bq kg(-1) and 0.002-1.9 Bq kg(-1), respectively. In the northern basin of the sea (Japan Basin), (239+240)Pu/(137)Cs ratios in seabed sediment were higher and their variation was smaller compared to that in the southeastern regions of the sea. The higher (239+240)Pu/(137)Cs ratios throughout the Japan Basin were considered to reflect production of Pu-enriched particles in the surface layer and substantial sinking of particulate materials in this region. In the southern regions of the Japan Sea (<38 degrees N), both inventories and (239+240)Pu/(137)Cs ratios in sediment were larger than those in the other regions. In the southern Japan Sea, observations suggested that supply of particulate radionuclides by the Tsushima Warm Current mainly enhanced accumulation of the radionuclides in this region. PMID:17049416

Otosaka, S; Amano, H; Ito, T; Kawamura, H; Kobayashi, T; Suzuki, T; Togawa, O; Chaykovskaya, E L; Lishavskaya, T S; Novichkov, V P; Karasev, E V; Tkalin, A V; Volkov, Y N

2006-01-01

410

Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM  

Microsoft Academic Search

Transfer of radionuclides (232Th and 238U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium (232Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM)

Jelena Mrdakovic Popic; Brit Salbu; Lindis Skipperud

411

Global radionuclide monitoring in near-real time for verification of the Comprehensive Nuclear Test Ban Treaty  

Microsoft Academic Search

A global radionuclide monitoring system is being engineered as part of a multi-technology verification system for the Comprehensive\\u000a Nuclear Test Ban Treaty. The system detects airborne radioactive aerosols and gases that can indicate nuclear weapons test\\u000a debris. The backbone of the system is a network of 80 remote detection stations that utilize high-volume air sampling and\\u000a high-resolution gamma spectrometry to

L. R. Mason; J. D. Bohner; D. L. Williams

1998-01-01

412

Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 2, Methods and Dose Calculations  

SciTech Connect

This paper is part two of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Assumptions about equilibrium with long-lived parents are made for the 28 other radionuclides in these series lacking data. This paper describes the methods developed to group the collected data into source regions described in the Radiation Dose Assessment Resource (RADAR) dosimetric methodology. Methods for converting the various units of data published over 50 years into a standard form are developed and described. Often, meaningful values of uncertainty of measurements were not published so that variability in data sets is confounded with measurement uncertainty. A description of the methods developed to estimate variability is included in this paper. The data described in part one are grouped by gender and age to match the RADAR dosimetric phantoms. Within these phantoms, concentration values are grouped into source tissue regions by radionuclide, and they are imputed for source regions lacking tissue data. Radionuclide concentrations are then imputed for other phantoms’ source regions with missing concentration values, and the uncertainties of the imputed values are increased. The content concentrations of hollow organs are calculated, and activities are apportioned to the bone source regions using assumptions about each radionuclide’s bone-seeking behavior. The data sets are then ready to be used to estimate equivalent doses to target tissues from these source regions. The target tissues are then mapped to lists of tissues with International Commission on Radiation Protection (ICRP) tissue weighting factors, or they are mapped to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue weighting factors recommended in 1977, 1990, and 2007, are calculated from tissue and organ equivalent doses.

Watson, David J.; Strom, Daniel J.

2011-02-25

413

Identification of radionuclides of concern in Hanford Site environmental cleanup  

SciTech Connect

The purpose of this document is to consider which radionuclides should be included in conducting environmental surveys relative to site remediation at Hanford. During the operation of the Hanford site, the fission product radionuclides and a large number of activation products including the transuranic radionuclides were formed. The reactor operations and subsequent chemical processing and metallurgical operations resulted in the environmental release of gaseous and liquid effluents containing some radionuclides; however, the majority of the radionuclides were stored in waste tanks or disposed to trenches and cribs. Since some contamination of both soils and subsurface waters occurred, one must decide which radionuclides still remain in sufficient amounts to be of concern at the time when site remediation is to be complete. Many of the radionuclides which have constituted the principal hazard during site operation have half-lives on the order of a year or less; therefore, they will have decayed to insignificant amounts by the year 2030, a possible date for completion of the remediation process.

Perkins, R.W.; Jenquin, U.P.

1994-08-01

414

[Dependence of uniformity on the radionuclide in SPECT: test methods].  

PubMed

The aim of this study was to investigate test methods to clarify whether the non-uniformity of a gamma camera depends on individual radionuclides, and whether it is necessary to measure a separate correction matrix for each radionuclide used in single photon emission computed tomography (SPECT). Two methods were devised to verify the nuclide-dependence of the gamma camera. In order to test the energy correction of the detectors, the first approach was based on the evaluation of the intrinsic non-uniformity and on the production of images with asymmetrical energy window. The second method was based on the production of correction matrices for different radionuclides, as well as on the subsequent application to phantom data that were also generated with different radionuclides. The investigation of a dualhead gamma camera produced the same results with both methods. One detector head was found to be weakly dependent on the radionuclide, due to the insufficient quality of energy correction. In this case, the phantom or patient data should be corrected using a uniformity correction matrix measured with the same radionuclide. The second detector remained nuclide-independent; in this case the uniformity correction matrix acquired for only one radionuclide was sufficient. PMID:15462416

Kalnischke, Heiko; Grebe, Gerhard; Zander, Andreas; Munz, Dieter Ludwig; Geworski, Lilli

2004-01-01

415

Radionuclide transport through engineered barrier system alteration products  

SciTech Connect

The primary rationale for studying the transport behavior of radionuclides through the Engineered Barrier system / Near Field Environment (EBS/NFE) is to ascertain whether the material properties of the introduced and altered host rock can significantly affect the transport of radionuclides from the waste container to the far field. The intent of this report is to present data and modeling results that can be used to assess the importance of canister corrosion products and cementitious materials to transport of radionuclides to the far field.

Viani, B.E.; Torretto, P.C.; Matzen, S.L.

1997-12-01

416

TREATMENT TECHNOLOGY TO MEET THE INTERIM PRIMARY DRINKING WATER REGULATIONS FOR INORGANICS: PART 5  

EPA Science Inventory

The fifth in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations, this report describes current methods for removing barium and radionuclides from drinking water....

417

Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect

The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

2005-10-01

418

MEASUREMENT OF RADIONUCLIDES USING ION CHROMATOGRAPHY AND FLOW-CELL SCINTILLATION COUNTING WITH PULSE SHAPE DISCRIMINATION  

SciTech Connect

Radiological characterization and monitoring is an important component of environmental management activities throughout the Department of Energy complex. Gamma-ray spectroscopy is the technology most often used for the detection of radionuclides. However, radionuclides which cannot easily be detected by gamma-ray spectroscopy, such as pure beta emitters and transuranics, pose special problems because their quantification generally requires labor intensive radiochemical separations procedures that are time consuming and impractical for field applications. This project focused on a technology for measuring transuranics and pure beta emitters relatively quickly and has the potential of being field deployable. The technology combines ion exchange liquid chromatography and on-line alpha/beta pulse shape discriminating scintillation counting to produce simultaneous alpha and beta chromatograms. The basic instrumentation upon which the project was based was purchased in the early 1990's. In its original commercial form, the instrumentation was capable of separating select activation/fission products in ionic forms from relatively pure aqueous samples. We subsequently developed the capability of separating and detecting actinides (thorium, uranium, neptunium, plutonium, americium, and curium) in less than 30 minutes (Reboul, 1993) and realized that the potential time savings over traditional radiochemical methods for isolating some of these radionuclides was significant. However, at that time, the technique had only been used for radionuclide concentrations that were considerably above environmental levels and for aqueous samples of relatively high chemical purity. For the technique to be useful in environmental applications, development work was needed in lowering detection limits; to be useful in applications involving non-aqueous matrices such as soils and sludges or complex aqueous matrices such as those encountered in waste samples, development work was needed in sample preparation and processing. The general goal of this project was to address the issues mentioned above, and in so doing transform an interesting laboratory technique of limited applicability into a robust field instrument suitable for environmental restoration and waste management applications. The project consisted of the following tasks: (1) development of a low background, flow-cell detector, (2) identification of sample chemical and radiological interferences, (3) development of protocols for processing waste and/or environmental samples, and (4) integration and testing of the prototype system. The scope of work associated with these tasks has been completed and the report for Tasks 1-3 was submitted previously. Presented here are the results for Task 4.

R. A. Fjeld; T.A. DeVol; J.D. Leyba

2000-03-30

419

Particle identification with time-of-flight and pulse-shape discrimination in neutron-transmutation-doped silicon detectors  

NASA Astrophysics Data System (ADS)

A method for the identification of energetic charged particles has been investigated based on the employment of pulse-shape discrimination (PSD) in a silicon detector in addition to conventional time-of-flight (ToF) techniques. The method makes use of the fact that, at fixed energy, the particle's velocity, or ToF, is a measure of the particle's mass A while the time structure of the current pulse in a silicon energy detector, used as the ToF stop, permits identification of nuclear charges Z. In the measurements presented here, ToF and PSD methods were applied simultaneously. We used micro-channel plate (MCP) detectors as fast time pick-offs and surface-barrier (SB) n-type Si detectors made from homogeneously neutron-transmutation-doped (n-TD) silicon. As the particles, products from the reactions of a 400 MeV 20Ne beam impinging on 12C, 27Al and 208Pb targets were employed. With using fast current-sensitive pre-amplifiers for the 250 and 800 ?m SB detectors a major progress in particle identification with respect to both, mass A and charge Z was achieved. In addition, using a stack of two closely mounted n-TD SB detectors, a timing measurement between the two detectors permitted to study PSD in the rear detector with the time trigger derived from the foremost one. Finally, the internal PSD method was implemented which determines pulse rise-time in single detectors from analyzing differentiated preamplifier timing signals.

Mutterer, M.; Trzaska, W. H.; Kopatch, Yu. N.; Sillanpää, M.; von Kalben, J.; Khlebnikov, S. V.; Schrieder, G.; Tyurin, G. P.

2009-09-01

420

Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing  

NASA Astrophysics Data System (ADS)

We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n?1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

2002-02-01

421

Synergy among international monitoring system technologies  

SciTech Connect

This paper describes the results of an International Monitoring System synergy study using Sandia National Laboratory`s IVSEM (Integrated Verification System Evaluation Model). The study compares individual subsystem performance (seismic, infrasound, radionuclide, and hydroacoustic) with integrated system performance. The integrated system exhibits synergy because different sensor technologies cover different locations; thus, the integrated system covers more locations than can any individual subsystem. Energy and system performance can be further enhanced by allowing mixed technology detection and location.

Edenburn, M.W.; Bunting, M.L.; Payne, A.C.; Preston, R.R.; Trost, L.C.

1996-08-01

422

Compositions and Methods for Removal of Toxic Metals and Radionuclides.  

National Technical Information Service (NTIS)

The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin ...

D. S. McKay R. G. Cuero

2007-01-01

423

21 CFR 892.1420 - Radionuclide test pattern phantom.  

Code of Federal Regulations, 2010 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom. (a) Identification. A...

2010-04-01

424

21 CFR 892.5730 - Radionuclide brachytherapy source.  

Code of Federal Regulations, 2012 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A...

2012-04-01

425

21 CFR 892.5650 - Manual radionuclide applicator system.  

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator system. (a) Identification....

2014-04-01

426

21 CFR 892.5740 - Radionuclide teletherapy source.  

Code of Federal Regulations, 2012 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source. (a) Identification. A...

2012-04-01

427

21 CFR 892.5700 - Remote controlled radionuclide applicator system.  

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled radionuclide applicator system. (a)...

2014-04-01

428

21 CFR 892.5750 - Radionuclide radiation therapy system.  

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification....

2014-04-01

429

21 CFR 892.5750 - Radionuclide radiation therapy system.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification....

2011-04-01

430

21 CFR 892.1420 - Radionuclide test pattern phantom.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom. (a) Identification. A...

2011-04-01

431

21 CFR 892.5650 - Manual radionuclide applicator system.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator system. (a) Identification....

2011-04-01

432

21 CFR 892.1360 - Radionuclide dose calibrator.  

Code of Federal Regulations, 2012 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a) Identification. A...

2012-04-01

433

21 CFR 892.1420 - Radionuclide test pattern phantom.  

Code of Federal Regulations, 2012 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom. (a) Identification. A...

2012-04-01

434

21 CFR 892.5650 - Manual radionuclide applicator system.  

Code of Federal Regulations, 2012 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator system. (a) Identification....

2012-04-01

435

21 CFR 892.5700 - Remote controlled radionuclide applicator system.  

Code of Federal Regulations, 2010 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled radionuclide applicator system. (a)...

2010-04-01

436

21 CFR 892.5730 - Radionuclide brachytherapy source.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A...

2011-04-01

437

21 CFR 892.5700 - Remote controlled radionuclide applicator system.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled radionuclide applicator system. (a)...

2011-04-01

438

21 CFR 892.1390 - Radionuclide rebreathing system.  

Code of Federal Regulations, 2011 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing system. (a) Identification. A...

2011-04-01

439

21 CFR 892.5740 - Radionuclide teletherapy source.  

Code of Federal Regulations, 2010 CFR

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source. (a) Identification. A...

2010-04-01

440

21 CFR 892.1390 - Radionuclide rebreathing system.  

... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing system. (a) Identification. A...

2014-04-01