Science.gov

Sample records for radionuclide transmutation technology

  1. Separations technology development to support accelerator-driven transmutation concepts

    SciTech Connect

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-10-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems.

  2. ACCELERATOR TRANSMUTATION OF WASTE TECHNOLOGY AND IMPLEMENTATION SCENARIOS

    SciTech Connect

    D. BELLER; G. VAN TUYLE

    2000-11-01

    During 1999, the U.S. Department of Energy, in conjunction with its nuclear laboratories, a national steering committee, and a panel of world experts, developed a roadmap for research, development, demonstration, and deployment of Accelerator-driven Transmutation of Waste (ATW). The ATW concept that was examined in this roadmap study was based on that developed at the Los Alamos National Laboratory (LANL) during the 1990s. The reference deployment scenario in the Roadmap was developed to treat 86,300 tn (metric tonnes initial heavy metal) of spent nuclear fuel that will accumulate through 2035 from existing U.S. nuclear power plants (without license extensions). The disposition of this spent nuclear reactor fuel is an issue of national importance, as is disposition of spent fuel in other nations. The U.S. program for the disposition of this once-through fuel is focused to characterize a candidate site at Yucca Mountain, Nevada for a geological repository for spent fuel and high-level waste. The ATW concept is being examined in the U.S. because removal of plutonium minor actinides, and two very long-lived isotopes from the spent fuel can achieve some important objectives. These objectives include near-elimination of plutonium, reduction of the inventory and mobility of long-lived radionuclides in the repository, and use of the remaining energy content of the spent fuel to produce power. The long-lived radionuclides iodine and technetium have roughly one million year half-lives, and they are candidates for transport into the environment via movement of ground water. The scientists and engineers who contributed to the Roadmap Study determined that the ATW is affordable, doable, and its deployment would support all the objectives. We report the status of the U.S. ATW program describe baseline and alternate technologies, and discuss deployment scenarios to support the existing U.S. nuclear capability and/or future growth with a variety of new fuel cycles.

  3. Superconducting high-intensity RF proton accelerator for transmutation technologies

    SciTech Connect

    Han, K.C.; Garnett, R.; Gentzlinger, R.

    1995-12-31

    Superconducting high-intensity RF proton accelerators with CW power of l00 MW can be used for transmutation technologies. Compared to a normal-conducting, room-temperature RF linac, a superconducting linac could produce substantial savings in operational cost. In this paper, we describe the design of such a linac.

  4. Optimization of accelerator-driven technology for LWR waste transmutation

    SciTech Connect

    Bowman, C.D.

    1996-12-31

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan.

  5. Neutron transmutation doped silicon — technological and economic aspects

    NASA Astrophysics Data System (ADS)

    von Ammon, W.

    1992-01-01

    Neutron transmutation doping of silicon was commercially introduced in 1973. The advent of this technique was a great step ahead in the development of high power semiconductor devices as it allows tight resistivity tolerances and excellent homogeneity of the silicon base material. These properties are indispensible for the functioning of today's power devices and cannot be provided by conventional doping methods. Neutron transmutation doping has become a mature and well established technology and a substantial source of income for numerous research reactors throughout the world. First, this paper will present a brief historical review of the early days of silicon irradiation. Then, the ingot preparation and the irradiation procedure as well as the subsequent ingot annealing and characterization are described. Furthermore, problems related to the irradiation damage of the silicon lattice are discussed. Finally, the market development and economic aspects of NTD silicon are considered and an outlook is given on the available irradiation capacity in the future.

  6. Neutron Production in Semiprototypic Target Assemblies for Accelerator Transmutation Technology

    SciTech Connect

    Morgan, G.L.; Alrick, K.R.; Bowman, D.W.; Cverna, F.C.; King, N.S.P.; Littleton, P.E.; Greene, G.A.; Hanson, A.L.; Snead, C.L. Jr.; Hall, J.M.; Frehaut, J.; Ledoux, X.; Leray, S.; Petibon, E.; Thompson, R.T.; Ferguson, P.D.; Henry, E.A.; Ward, T.E.

    2005-11-15

    Integral neutron production was measured by the manganese-activation technique, on targets semiprototypic of spallation-neutron-driven transmutation systems, after irradiation by 400-MeV to 2.0-GeV protons. The purpose of these experiments was to provide data to benchmark nuclear transport codes for targets irradiated by protons in this energy range, as well as to evaluate design options to maximize the production of spallation neutrons in various targets under consideration. These computer codes are used to design accelerator systems that will utilize spallation neutrons for the generation of tritium, transmutation of nuclear waste, production of radioisotopes, and other scientific investigations. Some of the targets used in this investigation were semiprototypic of the proposed Accelerator Production of Tritium target. Other targets were included to provide data to test the computational models in the codes. Total neutron production is the main factor that determines the economics of transmutation for a particular accelerator design. Comparisons of the data reported here with calculations from computer simulations show agreement to within 15% over the entire energy region for most of the targets.

  7. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  8. Investigation of the feasibility of a small scale transmutation device

    NASA Astrophysics Data System (ADS)

    Sit, Roger Carson

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long-lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of < 1 year can be achieved with a four orders magnitude increase in the on-target flux; (6) the ideal neutron energy spectra for transmuting actinides is highly dependent on the particular radionuclide and its fission-to-capture ratio as they determine the generationrate of other actinides; and (7) the methodology developed in this dissertation provides a mechanism that can be used for studying the feasibility of transmuting other radionuclides, and its application can be extended to studying the production of radionuclides of interest in a transmutation process. Although large-scale transmutation technology is presently being researched world-wide for spent fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.

  9. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    SciTech Connect

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  10. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  11. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  12. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    SciTech Connect

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-09-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current.

  13. Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system

    SciTech Connect

    Laidler, J. J.

    2000-02-17

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

  14. Accelerator-driven transmutation technologies for resolution of long-term nuclear waste concerns

    SciTech Connect

    Bowman, C.D.

    1996-10-01

    The paper provides a rationale for resolution of the long-term waste disposition issue based on complete destruction of fissile material and all higher actinides. It begins with a brief history of geologic storage leading to the present impasse in the US. The proliferation aspects of commercial plutonium are presented in a new light as a further driver for complete destruction. The special problems in Russia and the US of the disposition of the highly enriched spent naval reactor fuel and spent research reactor fuel are also presented. The scale of the system required for complete destruction is also examined and it is shown that a practical system for complete destruction of commercial and defense fissile material must be widely dispersed rather than concentrated at a single site. Central tenants of the US National Academy of Sciences recommendations on waste disposition are examined critically and several technologies considered for waste destruction are described briefly and compared Recommendations for waste disposition based on Accelerator-Driven Transmutation Technology suitable for both the US and Russia are presented.

  15. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  16. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    SciTech Connect

    Bowman, C.D.

    1995-02-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  17. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    NASA Astrophysics Data System (ADS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  18. An intrinsically safe facility for forefront research and training on nuclear technologies — Burnup and transmutation

    NASA Astrophysics Data System (ADS)

    Lomonaco, G.; Frasciello, O.; Osipenko, M.; Ricco, G.; Ripani, M.

    2014-04-01

    The currently dominant open fuel cycles have resulted in the gradual accumulation of (relatively) large quantities of highly radioactive or fertile materials in the form of depleted uranium, plutonium, minor actinides (MA) and long-lived fission products (LLFP). For low-activity wastes a heavily shielded surface repository is required. Spent fuel can be instead directly buried in deep geological repositories or reprocessed in order to separate U and Pu and eventually also MA and LLFP from other materials. These elements can be further burnt by modern reactors but not yet in sufficient quantities to slow down the steady accumulation of these materials in storage. Using ADS, the residual long-lifetime isotopes can be transmuted by nuclear reactions into shorter-lifetime isotopes again storable in surface repositories. However, in order to perform transmutations at a practical level, high-power reactors (and consequently high-power accelerators) are required; particularly, a significant transmutation can be reached not only by increasing the beam current to something of the order of a few tens of mA, but also by increasing the beam energy above 500MeV in order to reach the spallation regime. Such high-power infrastructures require intermediate test facilities with lower power and higher safety level for the investigation of their dynamics and transmutation capabilities: the ADS proposed in this study could accomplish many of these constraints.

  19. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    NASA Astrophysics Data System (ADS)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants

  20. Bioremediation: a genuine technology to remediate radionuclides from the environment

    PubMed Central

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-01-01

    Summary Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of ‘-omics’-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. PMID:23617701

  1. Accelerator transmutation of sup 129 I

    SciTech Connect

    Attrep, M. Jr.

    1992-01-01

    Iodine-129 is one of several long-lived reactor products that is being considered for transmutation by the Los Alamos Accelerator Transmutation of Waste (ATW) program. A reasonable rate of transmutation of 1291 is possible in this system because of the anticipated high neutron flux generated from the accelerator. This report summarizes previous papers dealing with the transmutation of 1291 where reactor technologies have been employed for neutron sources. The transmutation process is considered marginal under these conditions. Presented here are additional information concerning the final products that could be formed from the transmutation process in the ATW blanket. The transmutation scheme proposes the use of solid iodine as the target material and the escape of product xenon from the containers after van Dincklange (1981). Additional developmental plans are considered.

  2. A repository released-dose model for the evaluation of long-lived fission product transmutation effectiveness

    SciTech Connect

    Davidson, J.W.

    1995-07-01

    A methodology has been developed to quantify the total integrated dose due to a radionuclide species i emplaced in a geologic repository; the focus is on the seven long-lived fission products (LLFPs). The methodology assumes continuous exposure water contaminated with species i at the accessible environment (i.e., just beyond the geologic barrier afforded by the geologic repository). The dose integration is performed out to a reference post-release time. The integrated dose is a function of the total initial inventory of radionuclide i the repository, the time at which complete and instantaneous failure of the engineered barrier (e.g., waste canister) in, a geologic repository occurs, the fractional dissolution rate (from waste solid form) of radionuclide i in ground water, the ground water travel time to the accessible environment, the retardation factor (sorption on the geologic media) for radionuclide i, the time after radionuclide begins to enter the biosphere. In order to assess relative dose, the ratio of total integrated dose to that for a reference LLFP species j (e.g., {sup 99}Tc) was defined. This ratio is a measure of the relative benefit of transmutation of other LLFPs compared to {sup 99}Tc. This methodology was further developed in order to quantify the integrated dose reduction per neutron utilized for LLFP transmutation in accelerator-driven transmutation technologies (ADTT). This measure of effectiveness is a function of the integrated dose due to LLFP species i, the number of total captures in LLFP species i chain per LLFP nuclide fed to the chain at equilibrium, and the number of total captures in related transmutation product (TP) chains per capture in the LLFP species i chain. To assess relative transmutation effectiveness, the ratio of integrated dose reduction per neutron utilization to that for a reference LLFP species j (e.g., {sup 99}Tc) was defined. This relative measure of effectiveness was evaluated LLFP transmutation strategy.

  3. Vortex Transmutation

    SciTech Connect

    Ferrando, Albert; Garcia-March, Miguel-Angel

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  4. Developments of linacs for accelerator-driven transmutation technology in the USA. Revision

    SciTech Connect

    Schriber, S.O.

    1997-03-01

    Interesting developments in linear accelerators have been attained over the past 45 years. The status of linear accelerators and future possibilities are described in context of demanding applications and technology maturity. Features of industrial or factory-type applications are high availability, economic operations, low investment cost and ease of running a facility. All features have been demonstrated in one manner or another at large operating facilities for the research community; within a different context that has been argued in the past to be not as demanding as for a factory installation. In addition, comments are made relative to intense beam power levels and choices that can be made for power levels below 10 MW, on the assumption that a cw beam is required.

  5. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    SciTech Connect

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

  6. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  7. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  8. Technology and fabrication of plutonium-238 radionuclide heat sources

    NASA Astrophysics Data System (ADS)

    Malikh, Y. A.; Aldoshin, A. I.; Danilkin, E. A.

    1996-03-01

    This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner ``power'' capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature.

  9. A new concept for accelerator driven transmutation of nuclear wastes

    SciTech Connect

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs.

  10. Technology and fabrication of plutonium-238 radionuclide heat sources

    SciTech Connect

    Malikh, Y.A.; Aldoshin, A.I.; Danilkin, E.A.

    1996-03-01

    This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

  11. Radioanalytical technology for 10 CFR Part 61 and other selected radionuclides: Literature review

    SciTech Connect

    Thomas, C.W.; Thomas, V.W.; Robertson, D.E.

    1996-03-01

    A comprehensive literature review and assessment was conducted to identify and evaluate radioanalytical technology and procedures used for measuring 10CFR61 radionuclides and other long-lived isotopes. This review evaluated radiochemical procedures currently in use at a number of laboratories in the US, as well as identifying new advanced methods and techniques which could be adapted for routine radiochemical analyses of low-level radioactive waste. The 10CFR61 radionuclides include {sup 14}C, {sup 60}Cl, {sup 59,63}Ni, {sup 90}Sr, {sup 94}Nb, {sup 99}Tc, {sup 129}I, {sup 137}Cs, and TRU isotopes with half lives greater than 5 years. Other low-level radionuclides of interest include {sup 7,10}Be, {sup 26}Al, {sup 36}Cl, {sup 93}Mo, {sup 109,113m}Cd, and {sup 121m,126}Sn, which may be present in various types of waste streams from nuclear power stations.

  12. A new approach to nuclear fuel safeguard enhancement through radionuclide profiling

    NASA Astrophysics Data System (ADS)

    Peterson, Aaron Dawon

    The United States has led the effort to promote peaceful use of nuclear power amongst states actively utilizing it as well as those looking to deploy the technology in the near future. With the attraction being demonstrated by various countries towards nuclear power comes the concern that a nation may have military aspirations for the use of nuclear energy. The International Atomic Energy Agency (IAEA) has established nuclear safeguard protocols and procedures to mitigate nuclear proliferation. The work herein proposed a strategy to further enhance existing safeguard protocols by considering safeguard in nuclear fuel design. The strategy involved the use of radionuclides to profile nuclear fuels. Six radionuclides were selected as identifier materials. The decay and transmutation of these radionuclides were analyzed in reactor operation environment. MCNPX was used to simulate a reactor core. The perturbation in reactivity of the core due to the loading of the radionuclides was insignificant. The maximum positive and negative reactivity change induced was at day 1900 with a value of 0.00185 +/- 0.00256 and at day 2000 with -0.00441 +/- 0.00249, respectively. The mass of the radionuclides were practically unaffected by transmutation in the core; the change in radionuclide inventory was dominated by natural decay. The maximum material lost due to transmutation was 1.17% in Eu154. Extraneous signals from fission products identical to the radionuclide compromised the identifier signals. Eu154 saw a maximum intensity change at EOC and 30 days post-irradiation of 1260% and 4545%, respectively. Cs137 saw a minimum change of 12% and 89%, respectively. Mitigation of the extraneous signals is cardinal to the success of the proposed strategy. The predictability of natural decay provides a basis for the characterization of the signals from the radionuclide.

  13. Subcritical transmutation of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sommer, Christopher M.

    2011-07-01

    A series of fuel cycle simulations were performed using CEA's reactor physics code ERANOS 2.0 to analyze the transmutation performance of the Subcritical Advanced Burner Reactor (SABR). SABR is a fusion-fission hybrid reactor that combines the leading sodium cooled fast reactor technology with the leading tokamak plasma technology based on ITER physics. Two general fuel cycles were considered for the SABR system. The first fuel cycle is one in which all of the transuranics from light water reactors are burned in SABR. The second fuel cycle is a minor actinide burning fuel cycle in which all of the minor actinides and some of the plutonium produced in light water reactors are burned in SABR, with the excess plutonium being set aside for starting up fast reactors in the future. The minor actinide burning fuel cycle is being considered in European Scenario Studies. The fuel cycles were evaluated on the basis of TRU/MA transmutation rate, power profile, accumulated radiation damage, and decay heat to the repository. Each of the fuel cycles are compared against each other, and the minor actinide burning fuel cycles are compared against the EFIT transmutation system, and a low conversion ratio fast reactor.

  14. Transmutation Fuel Campaign Description and Status

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series oftechnical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, highlevel schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: • An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. • A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities.

  15. Radionuclide Generators

    NASA Astrophysics Data System (ADS)

    Rösch, F.; Knapp, F. F. (Russ)

    Radionuclide generator systems continue to play a key role in providing both diagnostic and therapeutic radionuclides for various applications in nuclear medicine, oncology, and interventional cardiology. Although many parent/daughter pairs have been evaluated as radionuclide generator systems, there are a relatively small number of generators, which are currently in routine clinical and research use. Essentially every conceivable approach has been used for parent/separation strategies, including sublimation, thermochromatographic separation, solvent extraction, and adsorptive column chromatography. The most widely used radionuclide generator for clinical applications is the 99Mo/99mTc generator system, but recent years have seen an enormous increase in the use of generators to provide therapeutic radionuclides, which has paralleled the development of complementary technologies for targeting agents for therapy and in the general increased interest in the use of unsealed therapeutic radioactive sources. More recently, use of the 68Ge/68Ga generator is showing great potential as a source of positron-emitting 68Ga for positron emission tomography (PET)/CT imaging. Key advantages for the use of radionuclide generators include reasonable costs, the convenience of obtaining the desired daughter radionuclide on demand, and availability of the daughter radionuclide in high specific activity, no-carrier added form.

  16. Experience gained during 10 years transmutation experiments in Dubna

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Krivopustov, M.; Sosnin, A.; Golovatyuk, S.

    2006-05-01

    Transmutation, the procedure of transforming long-lived radioactive isotopes into stable or short-lived, was proposed for reducing the amount of radioactive waste resulting from technological applications of nuclear fission. The Accelerator Driven Systems (ADS) provide the possibility to generate intense neutron spectrum yielding in an effective transmutation of unwanted isotopes. Such experiments are being carried out for the last 10 years in Synchrophasotron / Nuclotron accelerators at the Veksler-Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna, Russia. Thick Pb and Pb-U targets, surrounded by moderators, have been irradiated by protons in the energy range of 0.5-7.4 GeV. Neutron fluence measurements have been performed by different techniques of passive detectors (neutron activation detectors, solid state nuclear track detectors). Transmutation of 129I, 237Np, 239Pu was studied. The results of these experiments are presented and discussed.

  17. Transmutation and energy-production with high power accelerators

    SciTech Connect

    Lawrence, G.P.

    1995-07-01

    Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

  18. Transmutation and energy production with high power accelerators

    SciTech Connect

    Lawrence, G. P.

    1996-01-01

    Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

  19. Historical perspective, economic analysis, and regulatory analysis of the impacts of waste partitioning-transmutation on the disposal of radioactive wastes

    SciTech Connect

    Forsberg, C.W.; Croff, A.G.; Kocher, D.C.

    1990-10-01

    Partitioning-transmutation, sometimes called actinide burning, is an alternative approach to high-level radioactive waste management. It consists of removing long-lived radionuclides from wastes and destroying those radionuclides, thus reducing the long-term hazards of radioactive waste. It was studied in detail in the 1970's. New developments in technology and other factors are resulting in a reexamination of this waste management option. This report consists of three papers which summarize the historical work, update the analysis of the costs of waste disposal, and describe current regulatory requirements which might be impacted by P-T. The papers provide a starting point for future research on P-T. 152 refs., 2 figs., 19 tabs.

  20. Proof-of-Principle Experiment for Compact, Energy Efficient Neutron Source: Enabling Technology for Radioactive Waste Transmutation or Sub-Critical Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady; Roser, Thomas; Santarius, John

    2013-10-01

    A novel neutron source is proposed for radioactive waste transmutation or sub-critical nuclear reactors; it's based on injecting 125 keV deuterium beam through 1-inch tube filled with magnetized tritium plasma to generate 14 MeV D-T neutrons. T target thickness is chosen to slow the D ions to 75 keV. At the opposite end of the tube D ion energy is recovered. Each ion source and tube forms a module. Larger systems can be formed from multiple units. As a D beam propagates through T plasma, it is slowed down by plasma electrons, which are consequently heated. Electron temperature rises until heating is balanced by energy losses. Equilibrium electron temperature is the crucial parameter, since higher temperature, leads to lower drag on the ion beam; therefore, larger target thickness is needed to slow deuterons to 75 keV; with consequently higher neutron yield. A proof of principle experiment, to determine the equilibrium electron temperature, can be perform by injecting 62.5 keV hydrogen beam into hydrogen plasma target and measure the equilibrium electron temperature with Thomson scattering. To reduce electron equilibration with target ions, electron pre-heating can be done rather efficiently with 2.45 GHz microwaves. Supported by USDOE under Contract No. DE-AC02-98CH10886.

  1. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    SciTech Connect

    Not Available

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  2. RADIONUCLIDE REMOVAL

    EPA Science Inventory

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. uring the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium,...

  3. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    SciTech Connect

    Franceschini, F.; Lahoda, E.; Wenner, M.; Lindley, B.; Fiorina, C.; Phillips, C.

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  4. A proposal for a Los Alamos international facility for transmutations (LIFT)

    SciTech Connect

    Venneri, F.; Williamson, M.A.; Li, Ning; Doolen, G.

    1996-11-22

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of `transmutation assemblies`, where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation.

  5. Extension of Studies with 3M Empore TM and Selentec MAG *SEP SM Technologies for Improved Radionuclide Field Sampling

    SciTech Connect

    Beals, D.M.; Bibler, J.P.; Brooks, D.A.

    1996-07-10

    The Savannah River Technology Center is evaluating new field sampling methodologies to more easily determine concentrations of radionuclides in aqueous systems. One methodology studied makes use of 3M EmporeTM disks. The disks are composed of selective resins embedded in a Teflon support. The disks remove the ion of interest from aqueous solutions when the solution is passed through the disk. The disk can then be counted directly to quantify the isotope of interest. Four types of disks were studied during this work: for the extraction of technetium (two types), cesium, plutonium, and strontium. A sampler has been developed for automated, unattended, in situ use of the EmporeTM disks.

  6. Radioactive waste from transmutation of technetium: a model for anticipating characteristics of high level waste from transmutation

    SciTech Connect

    Seitz, M.G.

    2007-07-01

    At this early stage in the conceptualization of fuel treatment and radioisotope transmutation for the disposition of nuclear wastes, it is possible to anticipate some characteristics of the waste stream resulting from the deployment of advanced technologies. Fission products and actinides cannot be completely destroyed by transmutation even with continuous purification and recycle. This is demonstrated for technetium in this analysis, but is true for all radioisotopes. Also, some of the reaction products are themselves long-lived radioactive isotopes. The purification and recycle steps produce nuclear wastes that must be planned for geologic disposal. Five radioisotopes have been identified to be produced in abundance by transmutation of technetium using fast neutrons. Four of these isotopes may be more benign than the original technetium-99 because of their longer half lives. However, one isotope, molybdenum-93 with a half life of four thousand years, may be troublesome. All of the isotopes arising from the transmutation process that end up in high level waste must be examined in terms of their behavior in geologic disposal. In selecting goals for chemical separations, the technologists must consider the entire cycle of separation and transmutation before applying the performance expected in a single separation to implications concerning a repository. A separation efficiency of 0.95 can translate into the disposal of as much as 30 to 60 percent of the technetium in the repository if down stream losses are not controlled. In this case, the treatment may have little impact on anticipated off site radiation from technetium. The destruction of technetium through continuous recycle requires the cost of increased neutron dose and increased space in reactors that must be considered in design of fuel treatment systems. (authors)

  7. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of objects that could not be analyzed readily by conventional methods demonstrates a powerful application of the instrument. In conclusion, a comparison of costs associated with the analysis on the ISOCS instrument to the costs of conventional sampling and laboratory analysis is presented.

  8. The implications of cost-effectiveness analysis of medical technology. Background paper number 2: case studies of medical technologies. Case study number 13: cardiac radionuclide imaging and cost effectiveness

    SciTech Connect

    Not Available

    1982-05-01

    Cardiac radionuclide imaging is a new and rapidly expanding diagnostic technology that promises to make significant contributions to the diagnosis and management of heart disease. Dynamic changes are occurring in the technology at the same time diffusion is taking place. The combination of diffusion and technological development creates an imperative for careful evaluation and prospective planning. Clinical applications of cardiac imaging include the diagnosis of coronary artery disease, evaluation of cardiac function abnormalities, verification of the diagnosis of acute myocardial infarction (heart attack), and monitoring of patients under treatment for establishing cardiac disease. The report describes the dimensions of the technology of cardiac radionuclide imaging. Information is summarized on the industry producing radionuclide imaging equipment, on clinical applications of technology, and on the costs and efficacies of the various techniques. Finally, formulation of some of the issues involved in the assessment of the technology's cost effectiveness is presented.

  9. Radiological indices of technologically enhanced naturally occurring radionuclides: a PIXE approach.

    PubMed

    Olise, Felix Samuel; Owoade, Oyediran Kayode; Olaniyi, Hezekiah Bamidele

    2011-06-01

    This paper reports an assessment of the level of the radionuclides (40)K, (232)Th and (238)U in environmental soil samples (process waste), and hence their calculated dose rates. For this purpose, the radioactivity from three natural radionuclides was determined in tin process-waste samples in Jos, Nigeria. This work is based on the particle induced x-ray emission (PIXE) approach, devoid of the secular equilibrium, and most of the resolution, interference, self-absorption, geometrical and density correction problems inherent in gamma spectrometry. Many potential environmental hazards have been observed and the data would be of use to the government in its remediation plan for the study area. The high hazard indices require taking adequate measures to check exposures, and an underground lining in the waste ponds to prevent direct contact with the waste pile is recommended. The use of the wastes as building materials should be stopped and use of soils around this area in any development projects should be discouraged until detailed studies on indoor radiation doses and the effects on the inhabitants of prolonged exposures have been carried out. PMID:21617293

  10. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  11. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  12. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  13. FCRD Transmutation Fuels Handbook 2015

    SciTech Connect

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling, its primary focus is experimental data. Most of the data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data is presented here for the first time.

  14. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. PMID:24462922

  15. The U.S. accelerator transmutation of waste program

    NASA Astrophysics Data System (ADS)

    Beller, Denis E.; Van Tuyle, Gregory J.; Bennett, Deborah; Lawrence, George; Thomas, Kimberly; Pasamehmetoglu, Kemal; Li, Ning; Hill, David; Laidler, James; Fink, Phillip

    2001-05-01

    A national project to develop a future capability to separate actinides and long-lived fission products from spent fuel, to transmute them, and to dispose off the remaining waste in optimal waste forms has begun in the United States. This project is based on the Accelerator-driven Transmutation of Waste (ATW) program developed during the 1990s at Los Alamos National Laboratory, and has its technological roots in several technologies that have been developed by the multi-mission laboratories of the U.S. Department of Energy (DOE). In the Fiscal Year 1999 Energy and Water Appropriation Act, the U.S. Congress directed the DOE to study ATW and by the end of FY99 to prepare a "roadmap" for developing this technology. DOE convened a steering committee, assembled four technical working groups consisting of members from many national laboratories, and consulted with several individual international and national experts. The finished product, "A Roadmap for Developing ATW Technology - A Report to Congress," recommends a five-year, $281 M, science-based, technical-risk-reduction program. This paper provides an overview of the U.S. Roadmap for developing ATW technology, the organization of the national ATW Project, the critical issues in subsystems and technological options, deployment scenarios, institutional challenges, and academic and international collaboration.

  16. Transmutation: The Roots of the Dream.

    ERIC Educational Resources Information Center

    Karpenko, Vladimir

    1995-01-01

    Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)

  17. IAEA activities in the area of partitioning and transmutation

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2006-06-01

    Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.

  18. Incentives and recent proposals for partitioning and transmutation in the United States

    SciTech Connect

    Donovan, T.J.

    1995-05-01

    Partitioning and transmutation (P-T) is perhaps the most elegant means of high level waste disposal. Currently, the cost of fuel obtained from reprocessing spent fuel exceeds the cost of fuel obtained by mining. This has resulted in the once through fuel cycle dominating the US nuclear industry. Despite this fact P-T continues to be examined and debated by the US as well as abroad. The US first seriously considered P-T between approximately 1976 and 1982 but rejected the concept in favor of reprocessing. More recently, since about 1989, as a result of the once through fuel cycle and the growing problems of waste disposal, studies concerning P-T have resumed. This essay will seek to outline the incentives and goals of partitioning and transmutation as it would apply to the disposal of spent fuel in the US. Recent proposals by various US national laboratories for implementing partitioning and transmutation as a high level waste management and disposal device will also be discussed. The review will seek to examine the technical concepts utilized in each of the proposals and their feasibility. The major focus of this essay will be the transmutation methods themselves, while the partitioning methods will be discussed only briefly. This is because of the fact that partitioning methods fall under reprocessing as an already fairly well established and accepted technology while feasible methods for transmutation are still being advanced.

  19. Target buffer assessment for accelerator driven transmuters.

    SciTech Connect

    Gohar, Y.

    2002-10-08

    Accelerator driven transmuters use a buffer region to protect the structural and the cladding materials of the transmuter from the radiation damage caused by the high-energy spallation neutrons, to accommodate the coolant channels of the self cooled targets, and to have an insignificant effect on the neutron utilization for the transmutation process. These functions are contradicting with respect to the buffer thickness. An extension of the target region in the axial direction (the proton beam direction) is also required to act as a neutron multiplier for the forward component of the high-energy spallation neutrons and a reflector to minimize the neutron leakage. The buffer assessment was performed as a function of its thickness with different proton energies for a self-cooled Lead-Bismuth Eutectic and a sodium-cooled tungsten targets. The analyses show that the number of generated neutrons per proton has a low sensitivity to the buffer thickness. However, the number of neutrons reaching the transmuter is significantly reduced as the buffer thickness is increased. The transmuter neutrons dominate the nuclear responses in the structural material outside the target buffer. The length of the axial target extension is determined as a function of the proton beam energy.

  20. Comparison of accelerator-based with reactor-based waste transmutation schemes

    SciTech Connect

    Sailor, W.C.; Beard, C.A.; Venneri, F.; Davidson, J.W.

    1993-12-01

    Accelerator-based transmutation of waste (ATW) systems for the destruction of commercial LWR spent fuel are compared with systems based on thermal reactors accomplish the same objectives. When the same technology is assumed for the actinide-burning aspect of the two systems, it is seen that the size of the accelerator is determined only by the choice of how many of the long-lived fission products to burn. if none are transmuted, then the accelerator is not necessary. This result is independent of the choice of fluid carrier, and whether the actinides are destroyed in an ATW system or in a separate reactor.

  1. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  2. Plutonium transmutation in thorium fuel cycle

    SciTech Connect

    Necas, Vladimir; Breza, Juraj |; Darilek, Petr

    2007-07-01

    The HELIOS spectral code was used to study the application of the thorium fuel cycle with plutonium as a supporting fissile material in a once-through scenario of the light water reactors PWR and VVER-440 (Russian design). Our analysis was focused on the plutonium transmutation potential and the plutonium radiotoxicity course of hypothetical thorium-based cycles for current nuclear power reactors. The paper shows a possibility to transmute about 50% of plutonium in analysed reactors. Positive influence on radiotoxicity after 300 years and later was pointed out. (authors)

  3. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  4. The physics design of accelerator-driven transmutation systems

    SciTech Connect

    Venneri, F.

    1995-02-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power.

  5. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    SciTech Connect

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-08-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  6. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  7. Transmutation Fuels Campaign FY-09 Accomplishments Report

    SciTech Connect

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  8. Transmutation of Long-Lived Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Oigawa, Hiroyuki

    JAEA is conducting research and development on an Accelerator Driven System (ADS), aiming at reduction of burden for high-level radioactive wastes. To tackle technical challenges on ADS, JAEA is planning to build the Transmutation Experimental Facility as the Phase-2 program of J-PARC. Moreover, JAEA is considering the collaboration with the MYRRHA project proposed by Belgian Nuclear Research Center.

  9. Safety characteristics of potential waste transmutation systems

    SciTech Connect

    Van Tuyle, G.J.

    1993-06-01

    For nuclear waste transmutation to alter significantly the need for geologic disposal of spent fuel from US Light-water reactors (LWRs), about 1.4% of the spent fuel (by mass) must be separated and transmuted. This includes the plutonium, the minor actinides, and four fission products: iodine. technetium, cesium and strontium. Regarding the actinides, fissioning of the plutonium, neptunium, americium, and curium generates a great deal of heat, so much so that most of the plutonium should be used to produce power. However, these actinides have some undesirable neutronic characteristics, and their utilization in reactors or subcritical (proton-accelerator) targets requires either a fast neutronic spectrum or a very high thermal-neutron flux. Transmutation of the fission products is generally by neutron capture, although this is difficult in the case of cesium and strontium. In this paper, various proposed means of transmuting the actinides and fission products are discussed, with the main focus being on the safety characteristics of each approach.

  10. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    SciTech Connect

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation.

  11. Quantifying sediment retention by restored wetlands using fallout radionuclide tracer technology (Cs-137 and Be-7): The River Odense, Denmark

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Hoffmann, Carl Christian; Taylor, Alex; Blake, William

    2013-04-01

    River restoration projects that allow temporary inundations of the floodplain are important for increasing the water storage potential of the landscape which can decrease flood risk to vulnerable downstream urban areas. During inundation, coarse and fine fluvial sediments are deposited on the floodplain leading to reduced organic matter and nutrient flux downstream. In this context, information on sediment accretion rates by floodplain units is required to inform restoration decisions. Sediment traps are widely used to determine contemporary accretion rates in floodplain units but there are questions about the representativeness and resolution of data. Here, we have tested the application of radionuclide tracer technology (Cs-137 and Be-7) for use in Danish river and floodplain monitoring for longer and shorter term quantification of sediment accretion rates. Prior to the wet season, a network of AstroTurf mats was placed along three transects in the study zone of the Odense floodplain. Suspended sediment traps were installed in the channel and samples were collected during period of floodplain inundation to characterise the FRN activity concentrations in deposited material. Following a series of major inundation events, shallow (3 cm) sediment cores were collected to determine Be-7 inventory relative to a non-inundated reference site. Deeper cores (30 cm) were collected, including a section core, to quantify Cs-137 inventories on the floodplain relative to a reference site. All materials were analysed for particle size and a separation experiment was undertaken to characterise the relationship between particle size and FRN concentration. Cs-137 based accretion rates were in accord with long-term direct monitoring and provided a useful context for the contemporary extreme event data. Comparison of Be-7 based accretion estimates to Astro Turf mat deposition indicated that the Be-7 approach offers to provide high resolution retrospective accretion rate data for contemporary overbank events. The quality of the data, however, is highly sensitive to the particle size correction approach taken. The study illustrates the value of FRN-based techniques but also demonstrates the critical need for careful application of particle size correction procedures based on deposited material at each sampling point representative of the study period and a site-specific FRN-particle size relationship.

  12. Review of Transmutation Fuel Studies

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    The technology demonstration element of the Global Nuclear Energy Partnership (GNEP) program is aimed at demonstrating the closure of the fuel cycle by destroying the transuranic (TRU) elements separated from spent nuclear fuel (SNF). Multiple recycle through fast reactors is used for burning the TRU initially separated from light-water reactor (LWR) spent nuclear fuel. For the initial technology demonstration, the preferred option to demonstrate the closed fuel cycle destruction of TRU materials is a sodium-cooled fast reactor (FR) used as burner reactor. The sodium-cooled fast reactor represents the most mature sodium reactor technology available today. This report provides a review of the current state of development of fuel systems relevant to the sodium-cooled fast reactor. This report also provides a review of research and development of TRU-metal alloy and TRU-oxide composition fuels. Experiments providing data supporting the understanding of minor actinide (MA)-bearing fuel systems are summarized and referenced.

  13. Sphere-Pac Evaluation for Transmutation

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.

  14. SCWR Once-Through Calculations for Transmutation and Cross Sections

    SciTech Connect

    ganda, francesco

    2012-07-01

    It is the purpose of this report to document the calculation of (1) the isotopic evolution and of (2) the 1-group cross sections as a function of burnup of the reference Super Critical Water Reactor (SCWR), in a format suitable for the Fuel Cycle Option Campaign Transmutation Data Library. The reference SCWR design was chosen to be that described in [McDonald, 2005]. Super Critical Water Reactors (SCWR) are intended to operate with super-critical water (i.e. H2O at a pressure above 22 MPa and a temperature above 373oC) as a cooling – and possibly also moderating – fluid. The main mission of the SCWR is to generate lower cost electricity, as compared to current standard Light Water Reactors (LWR). Because of the high operating pressure and temperature, SCWR feature a substantially higher thermal conversion efficiency than standard LWR – i.e. about 45% versus 33%, mostly due to an increase in the exit water temperature from ~300oC to ~500oC – potentially resulting in a lower cost of generated electricity. The coolant remains single phase throughout the reactor and the energy conversion system, thus eliminating the need for pressurizers, steam generators, steam separators and dryers, further potentially reducing the reactor construction capital cost. The SCWR concept presented here is based on existing LWR technology and on a large number of existing fossil-fired supercritical boilers. However, it was concluded in [McDonald, 2005], that: “Based on the results of this study, it appears that the reference SCWR design is not feasible.” This conclusion appears based on the strong sensitivity of the design to small deviations in nominal conditions leading to small effects having a potentially large impact on the peak cladding temperature of some fuel rods. “This was considered a major feasibility issue for the SCWR” [McDonald, 2005]. After a description of the reference SCWR design, the Keno V 3-D single assembly model used for this analysis, as well as the calculated results, are presented. Additionally, the follwing information, presented in the appendixes, is intended to provide enough guidance that a researcher repeating the same task in the future should be able to obtain a vector of nuclei and cross sections ready for insertion into the transmutation library without any need for further instructions: (1) Complete TRITON/KENO-V input used for the analysis; (2) Inputs and detailed description of the usage of the OPUS utility, used to postproces and to extract the nuclei concentrations for the transmutation library; (3) Inputs and detailed description of the usage of the XSECLIST utility, used to postproces and to extract the 1-group cross sections for the transmutation library; (4) Details of an ad-hoc utility program developed to sort the nuclei and cross sections for the transmutation library.

  15. Status of the French Research on Partitioning and Transmutation

    SciTech Connect

    Warin, Dominique

    2007-07-01

    The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and pass the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

  16. APT radionuclide production experiment

    SciTech Connect

    Ullmann, J.L.; Gavron, A.; King, J.D.

    1994-07-02

    Tritium ({sup 3}H, a heavy isotope of hydrogen) is produced by low energy neutron-induced reactions on various elements. One such reaction is n+{sup 3}He {yields}>{sup 3}H+{sup 1}H in which {sup 3}He is transmuted to tritium. Another reaction, which has been used in reactor production of tritium, is the n+{sup 6}Li {yields}> {sup 3}H+{sup 4}He reaction. Accelerator Production of Tritium relies on a high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy protons reacting with a heavy nucleus produce a shower of low-energy neutrons and a lower-mass residual nucleus. It is important to quantify the residual radionuclides produced in the spallation target for two reasons. From an engineering point of view, one must understand short-lived isotopes that may contribute to decay heat. From a safety viewpoint, one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects due to accidental dispersion during operation. The authors have performed an experiment to measure the production of radioisotopes in stopping-length W and Pb targets irradiated by a 800 MeV proton beam, and are comparing the results to values obtained from calculations using LAHET and MCNP. The experiment was designed to pay particular attention to the short half-life radionuclides, which have not been previously measured. In the following, they present details of the experiment, explain how they analyzed the data and obtain the results, how they perform the calculations, and finally, how the experimental data agree with the calculations.

  17. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    PubMed

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768

  18. On the Use of a Molten Salt Fast Reactor to Apply an Idealized Transmutation Scenario for the Nuclear Phase Out

    PubMed Central

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768

  19. Heterogeneous sodium fast reactor designed for transmuting minor actinide waste isotopes into plutonium fuel

    NASA Astrophysics Data System (ADS)

    Bays, Samuel Eugene

    2008-10-01

    In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this fast fissile quality and also the fact that Pu-238 is transmuted from Np-237 and Am-241, these MAs are regarded as fertile material in the SFR design proposed by this dissertation. This dissertation demonstrates a SFR design which is dedicated to plutonium breeding by targeting Am-241 transmutation. This SFR design uses a moderated axial transmutation target that functions primarily as a pseudo-blanket fuel, which is reprocessed with the active driver fuel in an integrated recycling strategy. This work demonstrates the cost and feasibility advantages of plutonium breeding via MA transmutation by adopting reactor, reprocessing and fuel technologies previously demonstrated for traditional breeder reactors. The fuel cycle proposed seeks to find a harmony between the waste management advantages of transuranic burning SFRs and the resource sustainability of traditional plutonium breeder SFRs. As a result, the enhanced plutonium conversion from MAs decreases the burner SFR's fuel costs, by extracting more fissile value from the initial TRU purchased through SNF reprocessing.

  20. Transmutation of Elemental Cesium by a Fusion Neutron Source

    SciTech Connect

    Saito, Masaki; Apse, Vladimir A.; Artisyuk, Vladimir V.; Chmelev, Anatolii N.

    2001-02-15

    Transmutation of radioactive Cs from fission products of nuclear reactors without the potentially dangerous and expensive operation of isotopic separation is addressed. Transmutation is proposed to be performed in the blanket of a fusion neutron source with the plasma performance characteristics inherent in the current research on fusion reactors. The domain of Cs transmutation is quantitatively determined with detailed neutronics analysis of hard and softened neutron spectra, the effect of first wall loading, and two reprocessing modes. One is continuous on-line reprocessing; another one deals with a multicycle option in which a substantially long irradiation period is assumed before reprocessing. Transmutation efficiency is estimated in terms of the effective lifetime of {sup 135}Cs, which is the key characteristic governing the approach to equilibrium and the fraction of power associated with cesium transmutation in a nuclear energy system as a whole. In a contrast to fast reactors and accelerator-driven systems, fusion-driven transmutation reveals time to approach equilibrium that is comparable with the lifetime of transmuter and power associated with transmutation lies well within 5% of the total power of the nuclear energy system composed of fission reactors and transmuters.

  1. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  2. Transmutable nanoparticles with reconfigurable surface ligands

    NASA Astrophysics Data System (ADS)

    Kim, Youngeun; Macfarlane, Robert J.; Jones, Matthew R.; Mirkin, Chad A.

    2016-02-01

    Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

  3. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  4. The DD Cold Fusion-Transmutation Connection

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  5. II. Inhibited Diffusion Driven Surface Transmutations

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    2006-02-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.

  6. Neutronic Analysis for Transmutation of Minor Actinides and Long-Lived Fission Products in a Fusion-Driven Transmuter (FDT)

    NASA Astrophysics Data System (ADS)

    Yapıcı, Hüseyin; Demir, Nesrin; Genç, Gamze

    2006-12-01

    This study presents the transmutations of both the minor actinides (MAs: 237Np, 241Am, 243Am and 244Cm) and the long-lived fission products (LLFPs: 99Tc, 129I and 135Cs), discharged from high burn-up PWR-MOX spent fuel, in a fusion-driven transmuter (FDT) and the effects of the MA and LLFP volume fractions on their transmutations. The blanket configuration of the FDT is improved by analyzing various sample blanket design combinations with different radial thicknesses. Two different transmutation zones (TZMA and TZFP which contain the MA and LLFP nuclides, respectively) are located separately from each other. The volume fractions of the MA and the LLFP are raised from 10 to 20% stepped by 2% and from 10 to 80% stepped by 5%, respectively. The calculations are performed to estimate neutronic parameters and transmutation characteristics per D-T fusion neutron. The conversion ratios (CRs) for the whole of all MAs are about 65-70%. The transmutation rates of the LLFP nuclides increase linearly with the increase of volume fractions of the MA, and the 99Tc nuclide among them has the highest transmutation rate. The variations of their transmutation rate per unit volume in the radial direction are quasi-concave parabolic.

  7. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges

    NASA Astrophysics Data System (ADS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    If nuclear power becomes a sustainable source of energy, a safe, robust, and acceptable solution must be pursued for existing and projected inventories of high-activity, long-lived radioactive waste. Remarkable progress in the field of geological disposal has been made in the last two decades. Some countries have reached important milestones, and geological disposal (of spent fuel) is expected to start in 2020 in Finland and in 2022 in Sweden. In fact, the licensing of the geological repositories in both countries is now entering into its final phase. In France, disposal of intermediate-level waste (ILW) and vitrified high-level waste (HLW) is expected to start around 2025, according to the roadmap defined by an Act of Parliament in 2006. In this context, transmutation of part of the waste through use of advanced fuel cycles, probably feasible in the coming decades, can reduce the burden on the geological repository. This article presents the physical principle of transmutation and reviews several strategies of partitioning and transmutation (P&T). Many recent studies have demonstrated that the impact of P&T on geological disposal concepts is not overwhelmingly high. However, by reducing waste heat production, a more efficient utilization of repository space is likely. Moreover, even if radionuclide release from the waste to the environment and related calculated doses to the population are only partially reduced by P&T, it is important to point out that a clear reduction of the actinide inventory in the HLW definitely reduces risks arising from less probable evolutions of a repository (i.e., an increase of actinide mobility in certain geochemical situations and radiological impact by human intrusion).

  8. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    PubMed

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509

  9. Transmutation of All German Transuranium under Nuclear Phase Out Conditions – Is This Feasible from Neutronic Point of View?

    PubMed Central

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509

  10. Critique of rationale for transmutation of nuclear waste

    SciTech Connect

    Smith, C.F.; Cohen, J.J.

    1980-07-01

    It has been suggested that nuclear transmutation could be used in the elimination or reduction of hazards from radioactive wastes. The rationale for this suggestion is the subject of this paper. The objectives of partitioning-transmutation are described. The benefits are evaluated. The author concludes that transmutation would appear at best to offer the opportunity of reducing an already low risk. This would not seem to be justifiable considering the cost. If non-radiological risks are considered, there is a negative total benefit. (DC)

  11. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    SciTech Connect

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-06-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses.

  12. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  13. Fast reactor core concepts to improve transmutation efficiency

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  14. Statistical Transmutation in Periodically Driven Optical Lattices

    NASA Astrophysics Data System (ADS)

    Sedrakyan, Tigran; Galitski, Victor; Kamenev, Alex

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state. This work was supported by the PFC-JQI (T.S.), USARO and Simons Foundation (V.G.), and DOE Contract DE-FG02-08ER46482 (A.K.).

  15. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    SciTech Connect

    Not Available

    1990-12-31

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee`s review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues.

  16. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  17. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    NASA Astrophysics Data System (ADS)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.

  18. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  19. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  20. Transmutation of planar media singularities in a conformal cloak.

    PubMed

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes. PMID:24322926

  1. Crystalline hosts to accommodate the transmutation of Cs and Sr

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Roy, R.; Pepin, J.; Agrawal, D. K.

    1982-04-01

    Certain deleterious effects on a solid nuclear waste form, though not yet quantitatively defined, could occur due to transmutations such as 137Cs+ yields 137 Ba2+ and 90Sr2+ yields 90Zr4+ (t sub /1/2/ = 30 yr in both cases). The relevant causes of such possible effects are the changes in ionic valence and size. This report explicitly formulates a chemical mitigation strategy: if the transmuting species can be incorporated in a multiple-cation host, in which one of the inert cations is a variable-valence transition metal, the valence change aspect of transmutation can be mitigated by a complementary valence change of the transition metal ion. The present work consisted of chemically simulating the transmutation, the goal being to find a Cs- and Sr-bearing single-phase host that would remain single-phase after the transmutation had occurred. Of several structures tried, perovskite appears to be the most promising, as the A-site can accommodate the approximately 20% size change that occurs when Cs decays to Ba. Ta and Nb were used as the variable-valence ions in the B site. Although not explicity studied here, magnetoplumbite seems likely to accommodate the Cs yields Ba transmutation. The application of the results to unpartitioned and partitioned nuclear wastes is discussed.

  2. Transmutation and the Global Nuclear Energy Partnership

    SciTech Connect

    Bresee, James

    2007-07-01

    In the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper. Commercial spent fuel recycling, pioneered in the U.S., has not been carried out since the nineteen seventies following a decision by President Carter to forego fuel reprocessing and to recommend similar practices by other countries. However, many nations have continued spent fuel reprocessing, generally using the U.S.-developed PUREX process. The latest to do so are Japan, which began operations of an 800 metric tons (tonnes) per year PUREX reprocessing plant at Rokkasho-mura in northern Honshu in 2006 and China, which recently began operations of a separations pilot plant, also using PUREX. Countries using the PUREX process, recycle the separated plutonium to light water reactors (LWRs) in a mixed plutonium/uranium oxide fuel called MOX. Plutonium recycling in LWRs, which are used for electricity production in all nuclear power nations, reduces, somewhat, the uranium ore and enrichment requirements at a given level of power production, but has the disadvantage of producing non-fissile plutonium isotopes and the so-called minor actinides (neptunium, americium and curium), some of which act as neutron poisons, and thus, require increasing uranium enrichment, eventually raising fuel costs beyond practical limits. The French only use one recycle of plutonium in their power reactors. The future 'burning' (transmutation by fission) of used plutonium (and the other transuranics) could, if put into large-scale practice, eliminate one of the more serious proliferation problems in the world today, the accumulation of large quantities of separated civilian plutonium. It is generally accepted by the world's technical community that the effective way to transmute transuranics is by fissioning them in a fast reactor (i.e., reactors not containing light materials used to slow down, by collision fission, neutrons in LWRs to velocities equal to thermal velocities or the media temperature). (author)

  3. Dual neutral particle induced transmutation in CINDER2008

    NASA Astrophysics Data System (ADS)

    Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.

    2014-12-01

    Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.

  4. Proposed partitioning and transmutation of long-lived nuclear wastes

    SciTech Connect

    Van Tuyle, G.J. ); Rawlins, J.A. )

    1991-01-01

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW{sub e}. 14 refs., 10 figs.

  5. Impact of transmutations in fusion environment on Flibe chemistry.

    SciTech Connect

    Sze, D. K.; Sawan, M. E.; Cheng, E. T.

    2000-11-15

    Transmutation rates of Li, Be and F are calculated for a typical flibe blanket. The results concluded that the transmutation rate of F is more than double that of Be. Because of the high destruction rate of fluorine, there will be no free fluorine in the molten salt. Therefore, experimental program to address the chemistry control of flibe does not have to worry about the issues associated with free fluorine. Also, this calculation defines the chemical of flibe after irradiation. This chemical state needs to be simulated closely for the flibe chemistry control experiment.

  6. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    NASA Astrophysics Data System (ADS)

    Klupák, Vít; Viererbl, Ladislav; Lahodová, Zdena; Šoltés, Jaroslav; Tomandl, Ivo; Kudějová, Petra

    2016-02-01

    Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  7. Radiation Effects on the Sorption and Mobilization of Radionuclide during Transport through the Geosphere

    SciTech Connect

    L.M. Wang; R.C. Eqing; K.F. Hayes

    2004-03-14

    Site restoration activities at DOE facilities and the permanent disposal of nuclear waste inevitably involve understanding the behavior of materials in a radiation field. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance important material properties. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic-scale changes in materials (radiation damage and transmutation).

  8. Accelerator-driven transmutation of high-level waste from the defense and commercial sectors

    SciTech Connect

    Bowman, C.; Arthur, E.; Beard, C.

    1996-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches.

  9. DETERMINATION OF TRANSMUTATION EFFECTS IN CRYSTALLINE WASTE FORMS

    EPA Science Inventory

    The objective of this study is to characterize the effects of transmutation in a candidatewaste form for 137Cs by investigating samples of a cesium aluminosilicate mineral,pollucite, that have undergone "natural" decay of the Cs under ambient temperaturewhile isolated from int...

  10. Characterization of nuclear transmutations in materials irradiated test facilities

    SciTech Connect

    Gomes, I.C.; Smith, D.L.

    1994-05-01

    This study presents a comparison of nuclear transmutation rates for candidate fusion first wall/blanket structural materials in available, fission test reactors with those produced in a typical fusion spectrum. The materials analyzed in this study include a vanadium alloy (V-4Cr-4Ti), a reduced activation martensitic steel (Fe-9Cr-2WVTa), a high conductivity copper alloy (Cu-Cr-Zr), and the SiC compound. The fission irradiation facilities considered include the EBR-II fast reactor, and two high flux mixed spectrum reactors, HFIR (High Flux Irradiation Reactor) and SM-3 (Russian reactor). The transmutation and dpa rates that occur in these test reactors are compared with the calculated transmutation and dpa rates characteristic of a D-T fusion first wall spectrum. In general, past work has shown that the displacement damage produced in these fission reactors can be correlated to displacement damage in a fusion spectrum; however, the generation of helium and hydrogen through threshold reactions [(n,x,{alpha}) and (n,xp)] are much higher in a fusion spectrum. As shown in this study, the compositional changes for several candidate structural materials exposed to a fast fission reactor spectrum are very low, similar to those for a characteristic fusion spectrum. However, the relatively high thermalized spectrum of a mixed spectrum reactor produces transmutation rates quite different from the ones predicted for a fusion reactor, resulting in substantial differences in the final composition of several candidate alloys after relatively short irradiation time.

  11. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  12. Method and apparatus for transmutation of atomic nuclei

    DOEpatents

    Maenchen, J.E.; Ruiz, C.L.

    1998-12-08

    Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.

  13. Method and apparatus for transmutation of atomic nuclei

    DOEpatents

    Maenchen, John Eric; Ruiz, Carlos Leon

    1998-01-01

    Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand.

  14. Method and apparatus for transmutation of atomic nuclei

    DOEpatents

    Maenchen, J.E.; Ruiz, C.L.

    1998-06-09

    Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.

  15. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  16. Application of gaseous core reactors for transmutation of nuclear waste

    NASA Technical Reports Server (NTRS)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  17. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    SciTech Connect

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A&M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne; Alajo, A.B.; Johnson, T. R.; El-Guebaly, L. A.; Youssef, M. E.; Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A&M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William; Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  18. Targeted radionuclide therapy

    PubMed Central

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-01-01

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT∕CT and PET∕CT scanners. PMID:18697529

  19. Targeted radionuclide therapy

    SciTech Connect

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-07-15

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.

  20. Natural Radionuclides in Ground Water.

    ERIC Educational Resources Information Center

    Davis, Stanley N.

    1988-01-01

    Described are the natural trace radionuclides in ground water. Indicates the geologic origin of these radionuclides. Discusses the importance of these radionuclides. Suggests future uses of a number of additional radionuclides. (CW)

  1. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  2. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  3. Separation of Transmutation - and Fission-Produced Radioisotopes from Irradiated Beryllium

    SciTech Connect

    Troy J. Tranter; RIchard D. Tillotson; Nick R. Mann; Glen R. Longhurst

    2011-11-01

    The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of 241Am, 239Pu, 85Sr, 60Co, and 137Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The 60Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that greater than 99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to less than 100 nCi/g, and sources of high beta-gamma radiation (60Co, 137Cs, and 90Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario.

  4. Development of neutron-transmutation-doped germanium bolometer material

    SciTech Connect

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

  5. Radiation and transmutation effects relevant to solid nuclear waste forms

    SciTech Connect

    Vance, E.R.; Roy, R.; Pillay, K.K.S.

    1981-03-15

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite.

  6. Possibility of transmutation of 135Cs by ultraintense laser

    NASA Astrophysics Data System (ADS)

    Takashima, R.; Hasegawa, S.; Nemoto, K.; Kato, K.

    2005-01-01

    The possibility of photo-transmutation of long-lived nuclide Cs135 by ultrashort ultraintense laser was analytically evaluated. The yield of Cs135(γ,n) Cs134 was strongly dependent on the laser intensity at around 1020W/cm2. If Cs135 were irradiated by such a laser with the intensity of 1021W/cm2 and 10 Hz for 30 min, characteristic γ-ray counting rate was estimated to be 3 Bq.

  7. Actinide partitioning-transmutation program final report. I. Overall assessment

    SciTech Connect

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  8. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2001-02-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (Pfus approx 10-100 MW, βN approx 2-3, Qp approx 2-5, R approx 3-5 m, I approx 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-à-vis a neutron source is reviewed.

  9. Chemical separations schemes for partitioning and transmutation systems.

    SciTech Connect

    Laidler, J.

    2002-05-02

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, {sup 99}Tc and {sup 129}I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining.

  10. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  11. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  12. Radiotoxicity of Actinides During Transmutation in Final Stage of Atomic Power

    SciTech Connect

    Gerasimov, Aleksander S.; Bergelson, Boris R.; Myrtsymova, Lidia A.; Tikhomirov, Georgy V.

    2002-07-01

    Characteristics of a transmutation mode in final stage of atomic power are analyzed. In this stage, transmutation of actinides accumulated in transmutation reactors is performed without feed by actinides from other reactors. The radiotoxicity during first 20 years of transmutation is caused mainly by {sup 244}Cm. During following period of time, {sup 252}Cf is main nuclide. Contribution of {sup 246}Cm and {sup 250}Cf is 5-7 times less than that of {sup 252}Cf. During 50 years of a transmutation, the total radiotoxicity falls by 50 times. Long-lived radiotoxicity decreases slowly. During the period between T=50 years and T=100 years, long-lived radiotoxicity falls by 3.7 times. For each following 50 years after this period, long-lived radiotoxicity falls by 3.2 times. These results corresponding to neutron flux density 10{sup 14} neutr/(cm{sup 2}s) in transmutation reactor demonstrate that the final stage of a transmutation should be performed with use of high flux transmutation facilities which provide shorter time of transmutation. (authors)

  13. Transmutation of Technetium into stable Ruthenium in high flux conceptual research reactor

    NASA Astrophysics Data System (ADS)

    Amrani, Naïma; Boucenna, Ahmed

    2008-03-01

    The effectiveness of transmutation for the long-lived fission product Technetium-99 in a high flux research reactor is evaluated, taking into account its large capture cross section in the thermal and epithermal regions. Calculation of the evolution of the Ruthenium concentration under irradiation was performed using the ChainSolver 2.20 code. The results on Technetium transmutation suggest an effective use of this kind of research reactors and describes a new concept of multi-recycle Technetium transmutation using HFRTRAN (high flux research reactor for transmutation).

  14. Comparison of Processes of Transmutation of Long-Lived Actinides in Different Reactors

    SciTech Connect

    Bergelson, B.R.; Gerasimov, A.S.; Kiselev, G.V.; Tikhomirov, G.V.

    2002-07-01

    Efficiency of transmutation of actinides was compared for different types of reactors-transmuters: light water VVER-1000 type reactor, fast breeder BN-600 and Super-Phenix type reactors, as well as high-flux subcritical ADS-800 type facility. Feed with minor actinides extracted from the reactor of VVER-1000 type was supposed. (authors)

  15. Small Reactor for Semiconductor Production by Neutron Transmutation Doping

    NASA Astrophysics Data System (ADS)

    Obara, Toru; Hong, Liem Peng

    2010-06-01

    New concept of small size nuclear reactor is proposed for Neutron Transmutation Doping (NTD). The reactor core consists of conventional PWR type fuel elements with light water moderator/coolant unlike conventional research reactors. Graphite reflector is employed for large neutron irradiation volume. Silicon ingots are put into the reflector region for irradiation. Neutronic analysis results show that this concept has possibility to product large amount of silicon ingots which have large diameter. An optimal reactor design and its performance are shown as a result of analysis in the paper.

  16. Muonic alchemy: Transmuting elements with the inclusion of negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2012-06-01

    In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

  17. Possibility of transmutation of {sup 135}Cs by ultraintense laser

    SciTech Connect

    Takashima, R.; Hasegawa, S.; Nemoto, K.; Kato, K.

    2005-01-03

    The possibility of photo-transmutation of long-lived nuclide {sup 135}Cs by ultrashort ultraintense laser was analytically evaluated. The yield of {sup 135}Cs({gamma},n) {sup 134}Cs was strongly dependent on the laser intensity at around 10{sup 20} W/cm{sup 2}. If {sup 135}Cs were irradiated by such a laser with the intensity of 10{sup 21} W/cm{sup 2} and 10 Hz for 30 min, characteristic {gamma}-ray counting rate was estimated to be 3 Bq.

  18. Specific contributions of the Dutch programme 'RAS' towards accelerator-based transmutation

    SciTech Connect

    Abrahams, K.; Franken, W. M. P.; Bultman, J. H.; Heil, J. A.; Koning, A. J.

    1995-09-15

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: 1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, 2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, 3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, 4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, 5) Comparison of several systems on the basis of criteria for successful nuclear waste-management.

  19. Actinide partitioning-transmutation program final report. VII. Long-term risk analysis of the geologic repository

    SciTech Connect

    Logan, S.E.; Conarty, R.L.; Ng, H.S.; Rahal, L.J.; Shirley, C.G.

    1980-09-01

    This report supports the overall assessment by Oak Ridge National Laboratory of actinide partitioning and transmutation by providing an analysis of the long-term risks associated with the terminal storage of wastes from a fuel cycle which incorporates partitioning and transmutation (P-T) and wastes from a cycle which does not. The system model and associated computer code, called AMRAW (Assessment Method for Radioactive Waste), are used for the analysis and are applied to the Los Medanos area in southeastern New Mexico. Because a conservative approach is used throughout, calculated results are believed to be consistently higher than reasonable expectations from actual disruptive incidents at the site and therefore are not directly suited for comparison with other analyses of the particular geologic location. The assessment is made with (1) the probabilistic, or risk, mode that uses combinations of reasonable possible release incidents with their probability of occurrence distributed and applied throughout the assessment period, and (2) the consequence mode that forces discrete release events to occur at specific times. An assessment period of 1 million years is used. The principal results are: (1) In all but the expulsive modes, /sup 99/Tc and /sup 129/I completely dominate cumulative effects based on their transport to man through leaching and movement with groundwater, effecting about 33,000 health effects (deaths) over the 1 million years; (2) P-T has only limited effectiveness in reducing long-term risk from a radionuclide waste repository under the conditions studied, and such effectiveness is essentially confined to the extremely unlikely (probability of occurrence 10/sup -12//year) expulsive events; (3) Removal or immobilization of /sup 99/Tc and /sup 129/I might provide benefits sufficiently tangible to warrant special consideration.

  20. LDRD 140639 final report : investigation of transmutation claims.

    SciTech Connect

    Reich, Jeffrey E.; Van Devender, J. Pace; Mowry, Curtis Dale; Grant, Richard P.; Ohlhausen, James Anthony

    2009-11-01

    The Proton-21 Laboratory in the Ukraine has been publishing results on shock-induced transmutation of several elements, including Cobalt 60 into non-radioactive elements. This report documents exploratory characterization of a shock-compressed Aluminum-6061 sample, which is the only available surrogate for the high-purity copper samples in the Proton-21 experiments. The goal was to determine Sandia's ability to detect possible shock-wave-induced transmutation products and to unambiguously validate or invalidate the claims in collaboration with the Proton-21 Laboratory. We have developed a suitable characterization process and tested it on the surrogate sample. Using trace elemental analysis capabilities, we found elevated and localized concentrations of impurity elements like the Ukrainians report. All our results, however, are consistent with the ejection of impurities that were not in solution in our alloy or were deposited from the cathode during irradiation or possibly storage. Based on the detection capabilities demonstrated and additional techniques available, we are positioned to test samples from Proton-21 if funded to do so.

  1. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  2. Radionuclides in US coals

    SciTech Connect

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  3. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  4. Biology of radionuclide therapy

    SciTech Connect

    DeNardo, G.L.; Lewis, J.P. ); Raventos, A. ); Burt, R.W. )

    1989-01-01

    This volume contains the proceedings of a conference entitled Biology of Radionuclide Therapy held in Washington September 29 and 30, 1988. The meeting is part of the Frontiers in Nuclear Medicine Symposium Series.

  5. Accelerator transmutation studies at Los Alamos with LAHET, MCNP, and CINDER`90

    SciTech Connect

    Wilson, W.B.; England, T.R.; Arthur, E.D.

    1993-09-01

    Versions of the CINDER code have been used over three decades for determination of reactor fuel inventories and aggregate neutron absorption and radioactive decay properties. The CINDER`90 code, an evolving version which requires no predetermined nuclide chain structure, is suitable for a wider range of transmutation problems including those treated with older versions. In recent accelerator transmutation studies, the CINDER`90 code has been linked with the LAHET Code System (LCS) and, for high-energy calculations, with SUPERHET. A description of the nature of these linked calculational tools is given; data requirements for the transmutation studies are described; and, examples of linked calculations are described for some interesting accelerator applications.

  6. Multi-Reactor Transmutation Analysis Utility (MRTAU,alpha1): Verification

    SciTech Connect

    Andrea Alfonsi; Samuel E. Bays; Cristian Rabiti; Steven J. Piet

    2011-02-01

    Multi-Reactor Transmutation Utility (MRTAU) is a general depletion/decay algorithm under development at INL to support quick assessment of off-normal fuel cycle scenarios of similar nature to well studied reactor and fuel cycle concepts for which isotopic and cross-section data exists. MRTAU has been used in the past for scoping calculations to determine actinide composition evolution over the course of multiple recycles in Light Water Reactor Mixed Oxide and Sodium cooled Fast Reactor. In these applications, various actinide partitioning scenarios of interest were considered. The code has recently been expanded to include fission product generation, depletion and isotopic evolution over multiple recycles. The capability was added to investigate potential partial separations and/or limited recycling technologies such as Melt-Refining, AIROX, DUPIC or other fuel recycle technology where the recycled fuel stream is not completely decontaminated of fission products prior to being re-irradiated in a subsequent reactor pass. This report documents the code's solution methodology and algorithm as well as its solution accuracy compared to the SCALE6.0 software suite.

  7. Americium Transmutation Feasibility When Used as Burnable Absorbers - 12392

    SciTech Connect

    Barbaras, Sean A.; Knight, Travis W.

    2012-07-01

    The use of plutonium in Mixed Oxide (MOX) fuel in traditional Pressurized Water Reactor (PWR) assemblies leads to greater americium production which is not addressed in MOX recycling. The transuranic nuclides (TRU) contribute the most to the radiotoxicity of nuclear waste and a reduction of the TRU stockpile would greatly reduce the overall radiotoxicity of what must be managed. Am-241 is a TRU of particular concern because it is the dominant contributor of total radiotoxicity for the first 1000 years in a repository. This research explored the feasibility of transmuting Am-241 by using varying amounts in MOX rods being used in place of burnable absorbers and evaluated with respect to the impact on incineration and transmutation of transuranics in MOX fuel as well as the impact on safety. This research concludes that the addition of americium to a non-uniform fuel assembly is a viable method of transmuting Am-241, holding down excess reactivity in the core while serving as a burnable poison, as well as reducing the radiotoxicity of high level waste that must be managed. The use of Am/MOX hybrid fuel assemblies to transmute americium was researched using multiple computer codes. Am-241 was shown in this study to be able to hold down excess reactivity at the beginning of cycle and shape the power distribution in the core with assemblies of varying americium content loaded in a pattern similar to the traditional use of assemblies with varying amounts of burnable absorbers. The feasibility, safety, and utility of using americium to create an Am/MOX hybrid non-uniform core were also evaluated. The core remained critical to a burnup of 22,000 MWD/MTM. The power coefficient of reactivity as well as the temperature and power defects were sufficiently negative to provide a prompt feedback mechanism in case of a transient and prevent a power excursion, thus ensuring inherent safety and protection of the core. As shown here as well as many other studies, this non-uniform assembly type successfully addresses the concerns of reduced control rod worth within advanced MOX assemblies because the Am/MOX hybrid fuel rods are on the periphery of the assembly. The radiotoxicity of the high level waste that must be managed from a single use of an Am/MOX hybrid batch is reduced for the first 1000 years in comparison to a regular UO{sub 2} batch. However, there is no heat-load advantage without multi-recycling the Am/MOX hybrid assemblies. As shown through numerous studies, the heterogeneous assembly model used as the basis for this research is capable of multiple recycles while still maintaining negative temperature and power coefficients of reactivity. Multi-recycling would provide an even greater reduction to the radiotoxicity of the high level waste as well as provide a heat-load advantage compared to a once through UO{sub 2} fuel cycle. (authors)

  8. Radiation measurements after irradiation of silicon for neutron transmutation doping

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Klupák, V.; Vinš, M.; Lahodová, Z.; Kolmistr, A.; Stehno, J.

    2014-02-01

    Neutron transmutation doping of semiconductors is an important method for applications that require high dopant homogeneity. For silicon, it is based on the conversion of 30Si into 31P through a 30Si (n,γ) 31Si reaction during neutron irradiation following beta decay of 31Si to 31P. Neutron irradiation is usually performed in research reactors. The main characteristics of a doped silicon sample are (1) purity of the original silicon, (2) average phosphorus concentration and (3) phosphorus concentration homogeneity (uniformity). This paper describes measurement methods that utilise radiation induced during doping irradiation to measure these characteristics. The first two parameters can be measured using gamma spectrometry. The main part of the paper deals with homogeneity measurement. It describes a measurement method that is based on the detection of beta radiation from 31Si. Examples of experimental results are given. The experiments were performed in the LVR-15 research reactor.

  9. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo-Ru-Rh-Pd-other, four other specific TM isotopes, and TM-other. Mo-Ru-Rh-Pd are separated because their content constrains the loading of waste in glass, so we have to know the mass of those elements independent of others. • Rules for collapsing long lists of isotopes (~1000) to the 81 items in the library. For each tracked isotope, we define which short-lived isotopes’ mass (at t=0) is included with the mass of the tracked isotope at t=0, which short-lived radioactive progeny must be accounted for when the tracked isotope decays, and to which of the other 80 items the mass of the tracked isotope goes when it decays. • Explanation of where raw data files can be found on the fuel cycle data portal. • Explanation of generic cross section sets • Explanation of isotope-specific parameters such as heat and dose conversion factors • Explanation of the LWR UOX burnup and FR TRU CR correlations.

  10. An omnidirectional retroreflector based on the transmutation of dielectric singularities

    NASA Astrophysics Data System (ADS)

    Ma, Yun Gui; Ong, C. K.; Tyc, Tomáš; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

  11. An omnidirectional retroreflector based on the transmutation of dielectric singularities.

    PubMed

    Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques. PMID:19561598

  12. Utilization of accelerators for transmutation and energy production

    SciTech Connect

    Sheffield, Richard L

    2010-09-24

    Given the increased concern over reliable, emission-free power, nuclear power has experienced a resurgence of interest. A sub-critical accelerator driven system (ADS) can drive systems that have either safety constraints (waste transmutation) or reduced fissile content (thorium reactor). The goals of ADS are some or all of the following: (1) to significantly reduce the generation or impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, (2) preserve/use the energy-rich component of used nuclear fuel, and (3) reduce proliferation risk. ADS systems have been actively studied in Europe and Asia over the past two decades and renewed interest is occurring in the U.S. This talk will cover some of the history, possible applicable fuel cycle scenarios, and general issues to be considered in implementing ADS systems.

  13. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  14. FUEL CYCLE ISOTOPE EVOLUTION BY TRANSMUTATION DYNAMICS OVER MULTIPLE RECYCLES

    SciTech Connect

    Samuel Bays; Steven Piet; Amaury Dumontier

    2010-06-01

    Because all actinides have the ability to fission appreciably in a fast neutron spectrum, these types of reactor systems are usually not associated with the buildup of higher mass actinides: curium, berkelium and californium. These higher actinides have high specific decay heat power, gamma and neutron source strengths, and are usually considered as a complication to the fuel manufacturing and transportation of fresh recycled transuranic fuel. This buildup issue has been studied widely for thermal reactor fuels. However, recent studies have shown that the transmutation physics associated with "gateway isotopes" dictates Cm-Bk-Cf buildup, even in fast burner reactors. Assuming a symbiotic fuel relationship with light water reactors (LWR), Pu-242 and Am-243 are formed in the LWRs and then are externally fed to the fast reactor as part of its overall transuranic fuel supply. These isotopes are created much more readily in a thermal than in fast spectrum systems due to the differences in the fast fission (i.e., above the fission threshold for non-fissile actinides) contribution. In a strictly breeding fast reactor this dependency on LWR transuranics would not exist, and thus avoids the introduction of LWR derived gateway isotopes into the fast reactor system. However in a transuranic burning fast reactor, the external supply of these gateway isotopes behaves as an external driving force towards the creation and build-up of Cm-Bk-Cf in the fuel cycle. It was found that though the Cm-Bk-Cf concentration in the equilibrium fuel cycle is dictated by the fast neutron spectrum, the time required to reach that equilibrium concentration is dictated by recycle, transmutation and decay storage dynamics.

  15. Technical and economic assessment of different options for minor actinide transmutation: the French case

    SciTech Connect

    Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.; Mathonniere, G.; Boullis, B.; Warin, D.; Van Den Durpel, L.; Caron-Charles, M.; Garzenne, C.

    2013-07-01

    Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place in the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.

  16. FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC

    SciTech Connect

    Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

    2013-09-25

    Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiC through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.

  17. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect

    Makowitz, H; Powell, J R; Wiswall, R

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

  18. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.

  19. Targeted Radionuclide Therapy

    PubMed Central

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose. PMID:24213114

  20. High power linear accelerators for tritium production and transmutation of nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1990-01-01

    Proton linacs driving high-flux spallation neutron sources are being considered for transmutation of nuclear waste and production of tritium. Advances in high-current linac technology have provided a basis for the development of credible designs for the required accelerator, which has a nominal 1.6-GeV energy, and a 250-mA cw current. A beam with these parameters incident on a liquid lead-bismuth (Pb-Bi) target can generate a thermal neutron flux of up to 5 {times} 10{sup 16} n/cm{sup 2}-s in a cylindrical blanket surrounding the spallation source. This high flux can produce tritium through the {sup 6}Li(n,{alpha})T or {sup 3}He(n,{gamma})T reactions, or can burn long-lived actinides and fission products from nuclear waste through capture and fission processes. In some system scenarios, waste actinides and/or other fissile materials in the blanket can produce sufficient fission energy to power the accelerator.

  1. Investigations on the partitioning of {sup 129}I from silver-impregnated silica in preparation for future transmutation

    SciTech Connect

    Modolo, G.; Odoj, R.

    1997-01-01

    According to the current state of the art in reprocessing technology, the {sup 129}I contained in spent fuel elements can be completely transferred to the dissolver off-gas and efficiently adsorbed on AgNO{sub 3}-impregnated silica (AC 6120). For future transmutation, the {sup 129}I should again be separated selectively and as completely as possible (>99%) from the AC 6120 adsorption matrix. Experimental studies show that a quantitative recovery of the iodine is possible by wet chemical and thermal processes. Extraction experiments using iodine-loaded AC 6120 with sodium sulfide solution provide recovery rates of 99 {+-} 1%. reduction with hydrogen at 500 C, in which gaseous HI was liberated, provided recovery rates of >99%. After the separation of iodine, the reduced AC 6120 can be used again as an adsorbent for molecular iodine.

  2. Study of radioactive impurities in neutron transmutation doped germanium

    NASA Astrophysics Data System (ADS)

    Mathimalar, S.; Dokania, N.; Singh, V.; Nanal, V.; Pillay, R. G.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2015-02-01

    A program to develop low temperature (mK) sensors with neutron transmutation doped Ge for rare event studies with a cryogenic bolometer has been initiated. For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron flux from Dhruva reactor at Bhabha Atomic Research Centre (BARC), Mumbai. Spectroscopic studies of irradiated samples have revealed that the environment of the capsule used for irradiating the sample leads to significant levels of 65Zn, 110mAg and 182Ta impurities, which can be reduced by chemical etching of approximately ~ 50 μm thick surface layer. From measurements of the etched samples in the low background counting setup, activity due to trace impurities of 123Sb in bulk Ge is estimated to be ~ 1 Bq / g after irradiation. These estimates indicate that in order to use the NTD Ge sensors for rare event studies, a cooldown period of ~ 2 years would be necessary to reduce the radioactive background to ≤ 1 mBq / g.

  3. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  4. Compton Radiation for Nuclear Waste Management and Transmutation

    NASA Astrophysics Data System (ADS)

    Bulyak, E.; Urakawa, J.

    2015-10-01

    Compton inverse radiation is emitted in the process of backscattering of the laser pulses off the relativistic electrons. This radiation possesses high spectral density and high energy of photons--in hard x-ray up to gammaray energy range--with moderate electron energies (hundreds of MeV up to 1 GeV) due to short wavelength of the laser radiation. The Compton radiation is well collimated: emitting within a narrow cone along the electron beam. A distinct property of the Compton inverse radiation is a steep high-energy cutoff of the spectrum and the maximal intensity just below the cutoff. The Compton sources can attain: spectral density up to 1014 gammas/(s 0.1%bandwidth) in MeV range of energies, and spectral brightness up to 1020 gammas/(smm2mr2 0.1% bw). Applicability of Compton sources for nuclear waste management and detection of radioisotopes and fissionable nuclides are discussed in the report. Also application limits of Compton gamma sources for transmutation of radioactive isotopes are estimated. A recently proposed subtracting method, in which two sets of data obtained by irradiating the object by the Compton beams with slightly different maximal energies are compared, will enhance resolution of detection radioactive elements at the 'atomic' (hundreds of keV) and the 'nuclear' (a few MeV) photon energies.

  5. Electrical properties of neutron-transmutation-doped germanium

    SciTech Connect

    Rodder, M.

    1982-08-01

    Electrical properties of neutron-transmutation-doped germanium (NTD Ge) and nearly uncompensated gallium-doped germanium have been measured as functions of net-impurity concentration (2 x 10/sup 15/cm/sup -3/ less than or equal to N/sub A/ - N/sub D/ less than or equal to 5 x 10/sup 16/cm/sup -3/) and temperature (0.3 K less than or equal to T less than or equal to 300 K). The method of impurity conduction as a function of carrier concentration and compensation was investigated in the low temperature hopping regime. For nearest neighbor hopping, the resistivity is expected to vary as rho = rho/sub 0/exp(..delta../T) while Mott's theory of variable range hopping predicts that rho = rho/sub 0/exp(..delta../T)/sup 1/4/ in the low temperature limit. In contrast, our results show that the resistivity can best be approximated by rho = rho/sub 0/exp(..delta../T)/sup 1/2/ in the hopping regime down to 0.3 K.

  6. Consultative committee on ionizing radiation: Impact on radionuclide metrology.

    PubMed

    Karam, L R; Ratel, G

    2016-03-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM's consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. PMID:26688351

  7. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  8. EBS Radionuclide Transport Abstraction

    SciTech Connect

    R. Schreiner

    2001-06-27

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M&O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other elements of the TSPA-SR model. The scope of the EBS RT Abstraction also does not include computational or numerical procedures for solving the process-level equations; rather, it identifies the important processes that must then be evaluated with process-level or component-level software using analytical or numerical solutions.

  9. Digital coincidence counting for radionuclide standardization

    NASA Astrophysics Data System (ADS)

    Keightley, John; Park, Tae Soon

    2007-08-01

    The 4πβ-γ coincidence method for the absolute determination of nuclear disintegration rates has for decades been successfully applied to a variety of radionuclides, via the use of suites of dedicated analogue electronic modules. The high cost of procurement and maintenance of such systems, as well as the requirement for highly experienced technicians to perform the data collection have prompted the design of more flexible data collection techniques. Recent advances in digital signal acquisition technology have facilitated the possibility of storing pulse information from multiple detector systems along with a time stamp for each recorded event, allowing various radionuclide standardization techniques (based on the concept of 4πβ-γ coincidence counting) to be implemented 'offline' via the use of dedicated software routines. This brief paper reviews the progress in the development of such 'digital coincidence counting' systems used in the field of radionuclide metrology and may be viewed as a companion article to other papers (in this issue) on primary methods for radionuclide standardization.

  10. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  11. Transmutation abilities of the SFR low void effect core concept 'CFV' 3600 MWth

    SciTech Connect

    Buiron, L.; Fontaine, B.; Andriolo, L.

    2012-07-01

    This paper presents an evaluation of the potential of minor actinide transmutation in a 3600 MWth SFR core designed with the low void effect core concept (namely 'CFV concept'). This concept is based upon an axially heterogeneous design with an internal fertile zone, and two radial fuel zones with different heights. Two modes of minor actinide transmutation are considered. The homogeneous mode where the minor actinides (MA) are diluted in the fuel is studied considering different options: - MA diluted in the whole core, - MA diluted in the internal and external fuel zone, - MA diluted in the internal fertile zone, for which different isotopic vectors and contents in fuel are analyzed. The heterogeneous mode is also studied with MA placed in external blanket bearings, with contents of 20%. The results are compared to those obtained with a traditional homogenous core concept (SFRV2B type) in terms of transmutation performances. Impacts of the transmutation assumptions on transmutation performances, on fuel cycle and safety parameters (void effect, Doppler) are also presented. (authors)

  12. Osteoid osteoma: radionuclide diagnosis

    SciTech Connect

    Helms, C.A.; Hattner, R.S.; Vogler, J.B. III

    1984-06-01

    The double-density sign, seen on radionuclide bone scans, is described for diagnosing osteoid osteomas and for localizing the nidus. Its use in differentiating the nidus of an osteoid osteoma from osteomyelitis is also described. The utility of computed tomography in localization of the nidus is also illustrated. The double-density sign was helpful in diagnosing seven cases of surgically confirmed osteoid osteoma.

  13. Radionuclide bone imaging

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Webber, M.M.

    1981-12-01

    Radionuclide bone imaging of the skeleton, now well established as the most important diagnostic procedure in detecting bone metastases, is also a reliable method for the evaluation of the progression or regression of metastatic bone disease. The article concentrates on the technetium-99m agents and the value of these agents in the widespread application of low-dose radioisotope scanning in such bone diseases as metastasis, osteomyelitis, trauma, osteonecrosis, and other abnormal skeletal conditions.

  14. Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase-out scenario

    SciTech Connect

    Fazion, C.; Rineiski, A.; Salvatores, M.; Schwenk-Ferrero, A.; Romanello, V.; Vezzoni, B.; Gabrielli, F.

    2013-07-01

    Most Partitioning and Transmutation (PT) studies implicitly presuppose the continuous use of nuclear energy. In this case the development of new facilities or the modification of the fuel cycle can be justified in the long-term as an important feature in order to improve sustainability by minimizing radioactive waste and reducing the burden at waste disposal. In the case of a country with nuclear energy phase-out policy, the PT option might have also an important role for what concerns the final disposal strategies of the spent fuel. In this work three selected scenarios are analyzed in order to assess the impact of PT implementation in a nuclear energy phase out option. The scenarios are: -) Scenario 1: Identification of Research/Development activities needs for a technological development of PT while postponing the decision of PT implementation; -) Scenario 2: Isolated application of PT in a phase-out context; and -) Scenario 3: Implementation of PT in a European context. In order to facilitate the discrimination among the 3 scenarios, a number of figures of indicators have been evaluated for each scenario. The selected indicators are: the mass of High Level Waste (HLW), Uranium inventory, thermal output of HLW, Radiotoxicity, Fuel cycle secondary waste associated to the PT operation, and Facility capacity/number requirements. The reduction, due to PT implementation, of high level wastes masses and their associated volumes can be significant. For what concerns the thermal output and radiotoxicity a significant impact can be also expected. However, when assessing these two indicators the contribution coming from already vitrified waste should also not be neglected. Moreover, an increase of secondary waste inventory is also expected. On the contrary, the increase of fission product inventories due to the operation of the transmutation system has a relatively limited impact on the fuel cycle.

  15. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: appendix

    SciTech Connect

    Fullwood, R.R.; Jackson, R.

    1980-01-01

    The Chemical Technology Division of the Oak Ridge National Laboratory has prepared a set of documents that evaluate a Partitioning-Transmutation (PT) fuel cycle relative to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks they present to the public and to workers. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the CRAC code appropriately modified for the material composition. Routine radiological risks to the public are estimated from the calculated release amounts; the effects are calculated using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. The result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. This conclusion is strongly dominated by the nonradiological risk, which is about 150 times greater than the radiological risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatalities/GWe-year for the PT cycle and 0.34 fatalities/GWe-year for the Reference cycle. This should be compared with Inhaber's estimate of 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

  16. The Minor Actinide Transmutation-Incineration Potential Studies in High Intensity Neutron Fluxes

    SciTech Connect

    Letourneau, A.; Chabod, S.; Foucher, Y.; Marie, F.; Ridikas, D.; Veyssiere, Ch.; Blandin, Ch.

    2005-05-24

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of Minor Actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of irradiated samples and the development of fission micro-chambers could gather both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. Cross sections of selected actinides (241Am, 242Am, 242Pu, 237Np, 238Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent experimental data.

  17. Boson-fermion and fermion-boson transmutations induced by supergravity backgrounds in superstring theory

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Medrano, M. Ramon; Sanchez, N.

    1992-07-01

    We investigate the physical implications and particle content of superstring scattering in the supergravity shock-wave background recently found by us. The amplitudes for the different particle transmutation processes taking place in this geometry are explicitly computed for Gree-Schwarz superstring, including the new phenomena of fermion to boson and boson to fermion transmutations. Transition amplitudes among the ground states, first and second excited states are obtained. Particularly interesting are the amplitudes within the massless particle sector, which lead to physical massive particles upon supersymmetry breaking at low energies.

  18. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  19. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2005-09-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest.

  20. THE VALUE OF HELIUM-COOLED REACTOR TECHNOLOGIES OF NUCLEAR WASTE

    SciTech Connect

    C. RODRIGUEZ; A. BAXTER

    2001-03-01

    Helium-cooled reactor technologies offer significant advantages in accomplishing the waste transmutation process. They are ideally suited for use with thermal, epithermal, or fast neutron energy spectra. They can provide a relatively hard thermal neutron spectrum for transmutation of fissionable materials such as Pu-239 using ceramic-coated transmutation fuel particles, a graphite moderator, and a non-fertile burnable poison. These features (1) allow deep levels of transmutation with minimal or no intermediate reprocessing, (2) enhance passive decay heat removal via heat conduction and radiation, (3) allow operation at relatively high temperatures for a highly efficient generation of electricity, and (4) discharge the transmuted waste in a form that is highly resistant to corrosion for long times. They also offer the possibility for the use of epithermal neutrons that can interact with transmutable materials more effectively because of the large atomic cross sections in this energy domain. A fast spectrum may be useful for deep burnup of certain minor actinides. For this application, helium is essentially transparent to neutrons, does not degrade neutron energies, and offers the hardest possible neutron energy environment. In this paper, we report results from recent work on materials transmutation balances, safety, value to a geological repository, and economic considerations.

  1. Systematic method for optimizing plutonium transmutation in LWRs

    NASA Astrophysics Data System (ADS)

    Sorensen, Reuben T.

    We have developed the Systematic Reactor Optimization in 2-Dimensions (SRO2D) code to maximize the transmutation of plutonium in light water reactors (LWRs). The necessary conditions for optimal fuel and burnable absorber loadings are obtained with Pontryagin's maximum principle and a direct adjoining approach to explicitly account for a power peaking inequality constraint. The resulting set of coupled system, Euler-Lagrange (E-L), and optimality equations are solved iteratively with the method of conjugate gradients until no further improvement is achieved in the objective function. To satisfy the power peaking inequality constraint throughout the operating cycle we have employed a backwards diffusion theory (BDT) technique as part of the conjugate gradient optimization package. The BDT approach establishes a relationship between the burnable absorber loading and the power distribution during the cycle, such that constraint violations are reduced with each conjugate gradient iteration and eventually eliminated. Our in-core optimization methodology has been implemented in the SRO2D code, assuming two-group, two-dimensional neutron diffusion theory. The system equations are solved in a quasi-static fashion forward in time from beginning-of-cycle (BOC) to end-of-cycle (EOC), while the E-L equations are solved backwards in time from EOC to BOC to reflect the adjoint nature of the Lagrange multipliers. Cycle length extension calculations of a first cycle AP600 plant verify our implementation effort, yielding a nearly identical loading pattern to that issued by Westinghouse in the AP600 Safety Analysis Report. Utilizing a self-generated Pu recycling mode, our in-core optimization methodology is coupled with an equilibrium cycle methodology to arrive at an optimized asymptotic Pu inventory and composition. Beginning with a poor loading pattern, our LWR optimization package improves the core performance by reducing the maximum power peaking factor from 2.0 to 1.4, yielding a net increase of 7 days from the initial cycle length. Our LWR optimization package also improves the path to Pu inventory stabilization by yielding a 7% lower Pu inventory at equilibrium for our optimized case.

  2. EASY-II: a system for modelling of n, d, p, γ and α activation and transmutation processes

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe; Eastwood, James; Morgan, Guy; Koning, Arjan; Rochman, Dimitri

    2014-06-01

    EASY-II is designed as a functional replacement for the previous European Activation System, EASY-2010. It has extended nuclear data and new software, FISPACT-II, written in object-style Fortran to provide new capabilities for predictions of activation, transmutation, depletion and burnup. The new FISPACT-II code has allowed us to implement many more features in terms of energy range, up to GeV; incident particles: alpha, gamma, proton, deuteron and neutron; and neutron physics: self-shielding effects, temperature dependence, pathways analysis, sensitivity and error estimation using covariance data. These capabilities cover most application needs: nuclear fission and fusion, accelerator physics, isotope production, waste management and many more. In parallel, the maturity of modern general-purpose libraries such as TENDL-2012 encompassing thousands of target nuclides, the evolution of the ENDF format and the capabilities of the latest generation of processing codes PREPRO-2012, NJOY2012 and CALENDF-2010 have allowed the FISPACT-II code to be fed with more robust, complete and appropriate data: cross-sections with covariance, probability tables in the resonance ranges, kerma, dpa, gas and radionuclide production and 24 decay types. All such data for the five most important incident particles are placed in evaluated data files up to an incident energy of 200 MeV. The resulting code and data system, EASY-II, includes many new features and enhancements. It has been extensively tested, and also benefits from the feedback from wide-ranging validation and verification activities performed with its predecessor

  3. Radionuclides in nephrology

    SciTech Connect

    Lausanne, A.B.D.

    1987-01-01

    In 47 expert contributions, this volume provides a summary of the latest research on radionuclides in nephro-urology together with current and new clinical applications especially in renovascular hypertension, kidney transplantation, and metabolic and urological diseases. In addition, attention is given to aspects of basic renal physiology and function and possible applications of nuclear magnetic resonance and spectroscopy in nephro-urology. New testing procedures which promise to improve diagnosis, and new radiopharmaceuticals are described. The reports are divided into eight sections, the first of which features studies on the renin-angiotensin system, cisplatin, atrial natriuretic factor and determining plasma oxalate. Four papers describe a number of new radiopharmaceuticals which have the potential to replace hippuran. In the third section, radionuclide methods for the measurement of renal function parameters are discussed. The book then focuses on the potential role of captopril in the improved diagnosis of renovascular hypertension. Applications of nuclear magnetic resonance and spectroscopy are demonstrated in the diagnosis of acute pyelonephritis, kidney assessment after lithotripsy, kidney evaluation prior to transplantation, and in monitoring renal ischemia during hypotension.

  4. Transmutation behaviour of Eurofer under irradiation in the IFMIF test facility and fusion power reactors

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Simakov, S. P.; Wilson, P. P. H.

    2004-08-01

    The transmutation behaviour of the low activation steel Eurofer was analysed for irradiation simulations in the high flux test module (HFTM) of the International Fusion Material Irradiation Facility (IFMIF) neutron source and the first wall of a typical fusion power reactor (FPR) employing helium cooled lithium lead (HCLL) and pebble bed (HCPB) blankets. The transmutation calculations were conducted with the analytical and laplacian adaptive radioactivity analysis (ALARA) code and IEAF-2001 data for the IFMIF and the EASY-2003 system for the fusion power reactor (FPR) irradiations. The analyses showed that the transmutation of the main constituents of Eurofer, including iron and chromium, is not significant. Minor constituents such as Ti, V and Mn increase by 5-15% per irradiation year in the FPR and by 10-35% in the IFMIF HFTM. Other minor constituents such as B, Ta, and W show a different transmutation behaviour resulting in different elemental compositions of the Eurofer steel after high fluence irradiations in IFMIF and fusion power reactors.

  5. Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors

    NASA Astrophysics Data System (ADS)

    Noda, Tetsuji; Fujita, Mitsutane; Okada, Masatoshi

    1998-10-01

    The transmutation and induced activity of W in the armor and first wall of a fusion reactor were calculated for various blanket compositions, taking account of multiple step reactions. Neutron spectra calculated with ANISN showed that the flux of low energy neutrons at both armor and first wall using water coolant is fairly high compared to liquid Li, He gas and FliBe coolants. About 4% of W transmutes to Re for the W armor of all blankets after 10 MWy/m 2 irradiation and is not affected by the difference in blanket composition. On the other hand, W in the first wall substantially transmutes to Re followed by Os for the water cooled blanket. For the longer irradiation, W was predicted to transmute to Os base alloy. The induced activity of the W armor is hardly influenced by the neutron spectrum. The formation of 186mRe and 186Re controlling the induced activity of the armor for long cooling times is not significant from the viewpoint of the safety level.

  6. Scent Transmutation: A New Way to Teach on Chemical Equilibrium, Distillation, and Dynamic Combinatorial Chemistry

    ERIC Educational Resources Information Center

    Ji, Qing; El-Hamdi, Nadia S.; Miljanic, Ognjen S?.

    2014-01-01

    Esters are volatile and pleasantly smelling compounds, commonly used as food additives. Using Ti(OBu)[subscript 4]-catalyzed acyl exchange, we demonstrate a scent transmutation experiment, in which two fragrant esters swap their acyl and alkoxy substituents and are, during the course of a reactive distillation, quantitatively converted into two

  7. Scent Transmutation: A New Way to Teach on Chemical Equilibrium, Distillation, and Dynamic Combinatorial Chemistry

    ERIC Educational Resources Information Center

    Ji, Qing; El-Hamdi, Nadia S.; Miljanic´, Ognjen S?.

    2014-01-01

    Esters are volatile and pleasantly smelling compounds, commonly used as food additives. Using Ti(OBu)[subscript 4]-catalyzed acyl exchange, we demonstrate a scent transmutation experiment, in which two fragrant esters swap their acyl and alkoxy substituents and are, during the course of a reactive distillation, quantitatively converted into two…

  8. Rapid Transmutation of High-Level Nuclear Wastes in a Catalyzed Fusion-Driven System

    NASA Astrophysics Data System (ADS)

    Demir, Nesrin; Genç, Gamze; Altunok, Taner; Yapıcı, Hüseyin

    2009-03-01

    The aim of this study is to investigate the high-level waste (HLW) transmutation potential of fusion-driven transmuter (FDT) based on catalyzed D-D fusion plasma for various fuel fractions. The Minor actinide (MA) (237Np, 241Am, 243Am and 244Cm) and long-lived fission product (LLFP) (99Tc, 129I and 135Cs) nuclides discharged from high burn-up pressured water reactor-mixed oxide spent fuel are considered as the HLW. The volume fractions of the MA and LLFP are raised from 10 to 20% stepped by 2% and 10 to 80% stepped by 5%, respectively. The transmutation analyses have been performed for an operation period (OP) of up to 6 years by 75% plant factor ( η) under a first-wall neutron load ( P) of 5 MW/m2 by using two different computer codes, the XSDRNPM/SCALE4.4a neutron transport code and the MCNP4B Monte Carlo code. The numerical results bring out that the considered FDT has a high neutronic performance for an effective and rapid transmutation of MA and LLFP as well as the energy generation along the OP.

  9. Reactor-Produced Medical Radionuclides

    NASA Astrophysics Data System (ADS)

    Mirzadeh, S.; Mausner, L. F.; Garland, M. A.

    The therapeutic use of radionuclides in nuclear medicine, oncology, and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by β- emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for the production of a number of medical radionuclides in a reactor.

  10. Reactor-Produced Medical Radionuclides

    SciTech Connect

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chapter is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.

  11. Significant Radionuclides Determination

    SciTech Connect

    Jo A. Ziegler

    2001-07-31

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  12. The fast-spectrum transmutation experimental facility FASTEF: Main design achievements (Part 1: Core and primary system) within the FP7-CDT collaborative project of the European Commission

    SciTech Connect

    De Bruyn, D.; Fernandez, R.; Mansani, L.; Woaye-Hune, A.; Sarotto, M.; Bubelis, E.

    2012-07-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK CEN in replacement of its material testing reactor BR2. SCK CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest configuration of the reactor core and primary system. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1 2. If it remains a small-scale facility, the core power amounts now up to 100 MWth in critical mode. In a companion paper 3, we present the concept of the reactor building and the plant layout. (authors)

  13. Simulation of radionuclide transport in U. S. agriculture

    SciTech Connect

    Sharp, R.D.; Baes, C.F. III

    1982-01-01

    Because of the recent concern about the impact of energy technologies on man and related health effects, there has emerged a need for models to calculate or predict the effects of radionuclides on man. A general overview is presented of a model that calculates the ingrowth of radionuclides into man's food chain. The FORTRAN IV computer program TERRA, Transport of Environmentally Released Radionuclides in Agriculture, simulates the build-up of radionuclides in soil, four plant food compartments, in meat and milk from beef, and in the livestock food compartments that cause radionuclide build-up in milk and meat from beef. A large data set of spatially oriented parameters has been developed in conjunction with TERRA. This direct-access data set is called SITE, Specific Information on the Terrestrial Environment, and contains 35 parameters for each of 3525 half-degree longitude-latitude cells which define the lower 48 states. TERRA and SITE are used together as a package for determining radionuclide concentrations in man's food anywhere within the conterminous 48 states due to atmospheric releases.

  14. Radionuclides' Content Speciation and Fingerprinting of Nigerian Tin Mining Tailings

    NASA Astrophysics Data System (ADS)

    Olise, F. S.; Oladejo, O. F.; Owoade, O. K.; Almeida, S. M.; Ho, M. D.; Olaniyi, H. B.

    2012-04-01

    Sediment and process-waste samples rich in cassiterite, monazite and zircon, which are of industrial interest, were analysed for the natural series radionuclides, 232Th and 238U and the non-series radionuclide, 40K using instrumental neutron activation analysis (INAA) technique. The natural radionuclides' radioactivity in the samples from the tin-rich areas of Jos, Nigeria was determined using K0-INAA. The obtained results have a high degree of reliability judging from the techniqués accuracy, precision and its non-dependence on secular equilibrium and density correction problems inherent in gamma spectrometry as well as rigorous contamination-prone sample preparation requirements of other methods. Radionuclides speciation and ratios, giving radionuclide fingerprinting of the tin mining tailings is reported. The measured radionuclides activity levels are several orders of magnitude higher than UNSCEAR reference values, revealing the pollution potential of the tin mining and process activities on the surrounding areas, vis-à-vis heavy particulate matter load, leaching into various water channels and direct exposure to gamma rays emitted from the houses and facilities built from the generated wastes. The observed activity levels reflects possible worst scenario situation and the data would not only be of use to the government in its remediation plan for the study area but will also serve as important information for the nuclear science and technology programme about to be embarked upon. Methods of checking exposure have also been suggested.

  15. Radionuclide therapy for arthritic knees

    SciTech Connect

    Doepel, L.K.

    1985-02-08

    A new radionuclide therapeutic approach for rheumatoid arthritis of the knee is described. This therapy combines a short-lived radionuclide with a carrier whose physical and chemical characteristics aid retention of the radioactive particles within the joint. Joining a radionuclide to a particulate carrier had not been explored previously as a potential method for inhibiting radiation leakage. The treatment couples the rare earth element dysprosium 165 to ferric hydroxide in macroaggregate form (size range: 3 to 10 ..mu..m). After the relatively inert iron complex penetrates the synovium, it causes cell death. Macrophages and phagocytes clear away the cellular debris, essentially eliminating the synovium.

  16. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    SciTech Connect

    Davidson, J.W.; Battat, M.E.

    1993-07-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies.

  17. 4.4 Physical Properties of the Most Important Radionuclides

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.4 Physical Properties of the Most Important Radionuclides' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  18. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    NASA Astrophysics Data System (ADS)

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244 production with the highest rate of plutonium transmutation.

  19. The influence of transmutation, void swelling, and flux/spectra uncertainties on the electrical properties of copper and copper alloys

    SciTech Connect

    Edwards, D.J.; Garner, F.A.; Greenwood, L.R.

    1993-09-01

    A comparison of the predicted and measured electrical conductivities of MARZ copper and two copper alloys irradiated in FFTF shows that the calculated transmutation rates agree within 15% with those required to produce the observed changes. It also appears that the contribution of transmutants and void swelling to conductivity changes are directly additive. Of the three models studied, Euken`s model has been found to best describe the contribution of void swelling to conductivity loss.

  20. Biology of radionuclide therapy. Proceedings

    SciTech Connect

    DeNardo, G.L.; Lewis, J.P.; Raventos, A.; Burt, R.W.

    1989-12-31

    This volume contains the proceedings of a conference entitled Biology of Radionuclide Therapy held in Washington September 29 and 30, 1988. The meeting is part of the Frontiers in Nuclear Medicine Symposium Series.

  1. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  2. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the drift. The reason for introducing the fracture-matrix partitioning model is to broaden the conceptual model for flow beneath waste emplacement drifts in a way that does not rely on the specific flow behavior predicted by a dual continuum model and to ensure that radionuclide transport is not underestimated. The fracture-matrix partitioning model provides an alternative method of computing the partitioning of radionuclide releases from drifts without seepage into rock fractures and rock matrix. Drifts without seepage are much more likely to have a significant fraction of radionuclide releases into the rock matrix, and therefore warrant additional attention in terms of the partitioning model used for TSPA.

  3. Radionuclide salivary gland imaging

    SciTech Connect

    Mishkin, F.S.

    1981-10-01

    Salivary gland imaging with 99mTc as pertechnetate provides functional information concerning trapping and excretion of the parotid and submandibular glands. Anatomic information gained often adds little to clinical evaluation. On the other hand, functional information may detect subclinical involvement, which correlates well with biopsy of the minor labial salivary glands. Salivary gland abnormalities in systemic disease such as sarcoidosis, rheumatoid arthritis, lupus erythematosus, and other collagenvascular disorders may be detected before they result in the clinical manifestaions of Sjoegren's syndrome. Such glands, after initially demonstrating increased trapping in the acute phase, tend to have decreased trapping and failure to discharge pertechnetate in response to an appropriate physiologic stimulus. Increased uptake of gallium-67 citrate often accompanies these findings. Inflammatory parotitis can be suspected when increased perfusion is evident on radionuclide angiography with any agent. The ability of the salivary gland image to detect and categorize mass lesions, which result in focal areas of diminished activity such as tumors, cysts, and most other masses, is disappointing, while its ability to detect and categorize Warthin's tumor, which concentrates pertechnetate, is much more valuable, although not specific.

  4. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  5. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  6. Application of neutron transmutation doping method to initially p-type silicon material.

    PubMed

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established. PMID:19318259

  7. Hydrogen bond disruption in DNA base pairs from (14)C transmutation.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A

    2014-09-01

    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C ? N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication. PMID:25127298

  8. Separation of technetium from ruthenium after the accelerator transmutation of technetium

    SciTech Connect

    Abney, K.D.; Schroeder, N.C.; Kinkead, S.A.; Attrep, M. Jr.

    1992-01-01

    Both civilian and defense related waste must be processed with a strategy for dealing with Tc. One solution is to remove the Tc from the waste steam and transmute the Tc to stable Ru in either a reactor or an accelerator. Before any processing of waste streams can be performed (even if transmutation is not performed) the separations chemistry from the spent fuels or the stored wastes containing Tc must be developed. This report details some of the separation schemes possible for the separation of Tc and Ru, which include the baseline ion exchange process of Roberts, Smith and Wheelwright, ozonolysis, filtration, magnetic separation, solvent extraction, electrodeposition, fluorination, and pyrolysis. 5 figs, 4 refs. (DLC)

  9. Transmutation of Matter in Byzantium: The Case of Michael Psellos, the Alchemist

    NASA Astrophysics Data System (ADS)

    Katsiampoura, Gianna

    2008-06-01

    There is thus nothing paradoxical about the inclusion of alchemy in the ensemble of the physical sciences nor in the preoccupation with it on the part of learned men engaged in scientific study. In the context of the Medieval model, where discourse on the physical world was ambiguous, often unclear, and lacking the support of experimental verification, the transmutation of matter, which was the subject of alchemy, even if not attended by a host of occult features, was a process that was thought to have a probable basis in reality. What is interesting in this connection is the utilization of the scientific categories of the day for discussion of transmutation of matter and the attempt to avoid, in most instances in the texts that survive, of methods reminiscent of magic.

  10. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    SciTech Connect

    Bringer, O.; Blandin, C.; Oriol, L.

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  11. The Italy-Japan Project - Fundamental Research on Cold Transmutation Process for Treatment of Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Celani, Francesco; Iwamura, Yasuhiro

    The IJ Project proposes, as the first phase of research, that confirmation of the cold transmutation using radioactive isotopes such as 137Cs, 90Sr, and 135Cs to non-radioactive elements will be implemented based on the Mitsubishi Heavy Industries, Ltd. (MHI) method. A theoretical background has been given by the TSC-induced nuclear reactions (Proc. ICCF 10). Charge-neutral pseudo-particle of 4d/TSC can become as small as 10 fm radius in its minimum state of squeezing motion, and will make 4D-capture reaction with host metal (or added metal) nuclei in the surface region of permeation (Proc. ICCF 9, 10) samples. Major reaction will be: [ M(A, Z) + 4d/TSCto M(A + 8, Z + 4) + Q . ] Theoretical modeling of the process is briefly explained and resulting reaction products, their decays and final stable isotopes are predicted for 137Cs, 90Sr, and 135Cs transmutation.

  12. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  13. Production and transmutation of FP in FBR and s-process in star.

    NASA Astrophysics Data System (ADS)

    Ohsaki, T.

    In cores of fast breeder reactors (FBRs), fission products (FPs) are produced by fission reactions, and are transmuted by high neutron flux. On the other hand, in stars in the He-burning stage, there is also high neutron flux produced by the 13C(α,n)16O or 22Ne(α,n)25Mg reaction. In this type of stars, a nucleosynthesis process called the slow neutron capture process (s-process), proceeds by sequential neutron capture reactions and beta decay processes from seed nuclei Fe, which are produced by the last generation stars. There are some similarities between the production and transmutation of FPs in FBRs and the s-process in stars. In a core of FBR, an averaged energy of the neutron flux is about 100 keV, and the number density of the neutron is about 2×106/cm3.

  14. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  15. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)

  16. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  17. Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste

    SciTech Connect

    Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

    1993-09-01

    An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

  18. A potential photo-transmutation of fission products triggered by Compton backscattering photons

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Xu, W.; Wang, H. W.; Guo, W.; Ma, Y. G.; Cai, X. Z.; Lu, G. C.; Xu, Y.; Pan, Q. Y.; Fan, G. T.; Shen, W. Q.

    2009-02-01

    We investigated the transmutation of some fission product nuclides I129, Cs135, Sn126, Zr93, Pd107, Cs137 and Sr90, induced by the Compton backscattering (CBS) photons generated from the future Shanghai Laser Electron Gamma Source (SLEGS) facility. The evaluated photo-transmutation rates for I129, Cs135, Sn126, Zr93, Pd107, Cs137 and Sr90 can achieve 2. 5×106, 1.3×106, 4.8×106, 2.7×106, 9.4×106, 1.3×106 and 1.6×106 per second, respectively, improving 4-5 orders of magnitude compared with those via the bremsstrahlung photons by a 1020 W/cm2 laser. The maximum transmutation coupling efficiencies of the CBS photons were estimated to be 1.36% for I129, 1.70% for Cs135, 2.02% for Sn126, 1.03% for Zr90, 1.52% for Pd107, 1.62% for Cs137 and 1.72% for Sr90, which are 2-6 times as those via the bremsstrahlung method by the 1020 W/cm2 laser. Moreover, we presented a possible experimental method for the future SLEGS facility to check the estimated results.

  19. Modification of PROMETHEUS Reactor as a Fusion Breeder and Fission Product Transmuter

    NASA Astrophysics Data System (ADS)

    Yapıcı, Hüseyin; Özışık, Gülşah

    2008-12-01

    This study presents the analyses of the fissile breeding and long-lived fission product (LLFP) transmutation potentials of PROMETHEUS reactor. For this purpose, a fissile breeding zone (FBZ) fueled with the ceramic uranium mono-carbide (UC) and a LLFP transmutation zone (TZ) containing the 99TC and 129I and 135Cs isotopes are separately placed into the breeder zone of PROMETHEUS-H design. The neutronic calculations are performed by using two different computer codes, the XSDRNPM/SCALE4.4a neutron transport code and the MCNP4B Monte Carlo code. A range of analyses are examined to determine the effects of the FF, the fraction of 6Li in lithium (Li) and the theoretical density (TD) of Li2O in the tritium breeder zone (TBZ) on the neutronic parameters. It is observed that the numerical results obtained from both codes are consistent with each other. It is carried out that the profiles of fission power density (FPD) are flattened individually for each FF (from 3 to 10%). Only, in the cases of FF ≥ 8%, the system is self sufficient from the point of view of tritium generation. The results bring out that the modified PROMETHEUS fusion reactor has capabilities of effective fissile breeding and LLFP transmutation, as well as the energy generation.

  20. Hydroponic phytoremediation of heavy metals and radionuclides

    SciTech Connect

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  1. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-06-29

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  2. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2003-06-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  3. Radionuclide Sensors for Water Monitoring

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2001-06-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem requiring monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to the analytical laboratory where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as {sup 90}Sr, {sup 99}Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector, using automated microfluidics for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field analytical chemistry.

  4. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    SciTech Connect

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-07-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit Electricity Cost (LUEC). A diminished concentration at 10% of MA, reduces the size of the external storage and the cooling time of the assemblies becomes compatible with the management of the irradiated fuel. Even with a low allowable power for the washing device, the economic impact on the capital cost is less than 2.5%. (authors)

  5. Inverse problem in radionuclide transport

    SciTech Connect

    Yu, C.

    1988-01-01

    The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab.

  6. Radionuclide injury to the lung

    SciTech Connect

    Dagle, G.E.; Sanders, C.L.

    1984-04-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequently observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. 88 references.

  7. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  8. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  9. Method of preparing radionuclide doses

    SciTech Connect

    Kuperus, J.H.

    1987-01-27

    A method is described of preparing aliquot dosea of a tracer material useful in diagnostic nuclear medicine comprising: storing discrete quantities of a lyophilized radionuclide carrier in separate tubular containers from which air and moisture is excluded, selecting from the tubular containers a container in which is stored a carrier appropriate for a nuclear diagnostic test to be performed, interposing the selected container between the needle and the barrel of a hypodermic syringe, and drawing a predetermined amount of a liquid containing a radionuclide tracer in known concentration into the hypodermic syringe barrel through the hypodermic needle and through the selected container to dissolve the discrete quantity of lyophilized carrier therein to combine the carrier with the radionuclide tracer to form an aliquot dose of nuclear diagnostic tracer material, as needed.

  10. (Environmental technology)

    SciTech Connect

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  11. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  12. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  13. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  14. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  15. RADIONUCLIDE SENSORS FOR WATER MONITORING

    EPA Science Inventory

    We propose a research program directed toward developing novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. In order to meet the requirements for isotope specific detection at ultra-low re...

  16. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  17. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  18. Tumor immunotargeting using innovative radionuclides.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  19. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  20. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  1. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    SciTech Connect

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  2. RF system considerations for accelerator production of tritium and the transmutation of nuclear waste

    SciTech Connect

    Tallerico, P.J.; Lynch, M.T.

    1993-11-01

    RF driven proton accelerators for the transmutation of nuclear waste (ATW) or for the production of tritium (APT) require unprecedented amounts of CW RF power at UHF frequencies. For both systems, the baseline design is for 246 MW at 700 MHz and 8,5 MW at 350 MHz. The main technical challenges are how to design and build such a large system so that it has excellent reliability, high efficiency, and reasonable capital cost. The issues associated with the selection of the RF amplifier and the sizes of the power supplies are emphasized in this paper.

  3. Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Anikeev, Andrey V.

    2012-06-01

    The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

  4. Robert Boyle, Transmutation, and the History of Chemistry before Lavoisier: A Response to Kuhn.

    PubMed

    Newman, William R

    2014-01-01

    In an influential article of 1952, Thomas Kuhn argued that Robert Boyle had little or no influence on the subsequent development of chemistry. This essay challenges Kuhn's view on two fronts. First, it shows that Johann Joachim Becher developed his hierarchical matter theory under the influence of Boyle and then transmitted it to the founder of the phlogiston theory, G. E. Stahl. Second, this essay argues that transmutational matter theories were not necessarily opposed to the existence of stable chemical species, pace Kuhn. Boyle's corpuscular theory descended largely from the tradition of "chymical atomism," which often advocated both chrysopoeia and the reality of robust chemical substances. PMID:26103748

  5. Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides

    NASA Astrophysics Data System (ADS)

    Gotcu-Freis, P.; Hiernaut, J.-P.; Colle, J.-Y.; Nästrén, C.; Carretero, A. Fernandez; Konings, R. J. M.

    2011-04-01

    The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.

  6. Neutron transmutation doped (Ntd) germanium thermistors for sub-Mm bolometer applications

    SciTech Connect

    Haller, E.E. |; Itoh, K.M.; Beeman, J.W.

    1996-09-01

    The authors report on recent advances in the development of Neutron Transmutation Doped (NTD) semiconductor thermistors fabricated from germanium of natural and controlled isotopic composition. The near ideal doping uniformity which can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor (FET) preamplifiers have led to the widespread acceptance of these thermal sensors in many radiotelescopes operating on the ground, on high altitude aircraft and on spaceborne satellites. These features also have made possible the development of efficient bolometer arrays which are beginning to produce exciting results.

  7. Synthesis of (Zr, Y, Am)O2-x transmutation targets

    NASA Astrophysics Data System (ADS)

    Nästren, C.; Staicu, D.; Somers, J.; Fernandez, A.

    2013-02-01

    A process consisting of sol gel external gelation and infiltration steps has been developed for the synthesis of oxide fuels and targets for the transmutation of minor actinides, in this case americium. Carbon has been introduced into the sol gel produced beads, removal of which leads to higher porosity. In addition, the beads are softer enabling better pressing characteristics and most importantly an optimised microstructure devoid of lenticular pores. This microstructure improvement has a strong positive effect on the thermal conductivity, which is increased by 40%. Thus, the margin between operating temperature and melting temperature of the fuel is increased, improving significantly safety aspects of the fuel in the reactor.

  8. Transuranic Transmutation and Criticality Calculation Sensitivity to Heterogeneous Lattice Effects - 12391

    SciTech Connect

    Barbaras, Sean A.; Knight, Travis W.

    2012-07-01

    Using Mixed Oxide (MOX) fuel in traditional Pressurized Water Reactor (PWR) assemblies has been researched at length and has shown to provide the benefit of transmutation and targets the amount and toxicity of high level waste needed to be managed. Advanced MOX concepts using enriched Uranium Dioxide (UO{sub 2}) are required for multiple recycling of plutonium. The use of MOX and ordinary UO{sub 2} fuel in the same assembly as well as unfueled rods and assembly edge effects contrasts with the unit cell computational assumption of a uniform infinite array of rods. While a deterministic method of calculating the Dancoff factor has traditionally been employed in fuel assembly analysis due to the lighter computational and modeling requirements, this research seeks to determine the validity of the uniform, infinite lattice assumption with respect to Dancoff factor and determine the magnitude of the impact of nonuniform lattice effects on fuel assembly criticality calculations as well as transuranic isotope production and transmutation. This research explored the pin-to-pin interaction in a non-uniform lattice of MOX fuel rods and UO{sub 2} fuel rods through the impact of the calculated Dancoff factors from the deterministic method used in SCALE versus the Monte Carlo method used in the code DANCOFF-MC. Using the Monte Carlo method takes into account the non-uniform lattice effects of having neighboring fuel rods with different cross-sectional spectra whereas the Dancoff factor calculated by SCALE assumes a uniform, infinite lattice of one fuel rod type. Differences in eigenvalue calculations as a function of burnup are present between the two methods of Dancoff factor calculation. The percent difference is greatest at low burnup and then becomes smaller throughout the cycle. Differences in the transmutation rate of transuranic isotopes in the MOX fuel are also present between the Dancoff factor calculation methods. The largest difference is in Pu-239, Pu-242, and Am-241 composition whereas U-238, Pu-242, and Pu-238 composition was not changed by taking into account the non-homogenous lattice effects. Heterogeneous lattice effects do change the calculated eigenvalue and transmutation rate in a non-uniform lattice of MOX fuel rods and UO{sub 2} fuel. However, the uncertainty in the ENDF data used by SCALE in these calculations is large enough that the infinite lattice assumption remains valid. (authors)

  9. Safety-related neutronics parameters of a molten salt actinide recycler and transmuter

    SciTech Connect

    Rineiski, A.; Ignatiev, V.; Da Cruz, D.; Dulla, S.; Feinberg, O.; Malambu, E.; Maschek, W.; Stanculescu, A.; Szieberth, M.; Wang, S.

    2006-07-01

    This paper describes studies on reactivity coefficients and kinetics parameters in a fertile-free molten salt reactor. This reactor concept originated at RRC-KI for burning and transmutation of LWR spent fuel. The studies are performed at several institutions in the framework of a Coordinated Research Project initiated by the IAEA. The participants investigated the influence of different codes, computation techniques and nuclear data libraries on the neutronics parameters. It is shown that the reactivity coefficients are favorable for reactor safety. (authors)

  10. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    SciTech Connect

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-07-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  11. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    SciTech Connect

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  12. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. PMID:24661430

  13. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  14. Chernobyl radionuclide distribution, migration, and environmental and agricultural impacts.

    PubMed

    Alexakhin, R M; Sanzharova, N I; Fesenko, S V; Spiridonov, S I; Panov, A V

    2007-11-01

    The distribution and migration of radionuclides released into the environment following the Chernobyl accident in 1986 are described. The Chernobyl disaster resulted in the consumption of farm products containing radionuclides as a source of irradiation of the population due to the prevalence of a rural type of human nutrition in the affected region. Economic and radiologic importance of countermeasures for reducing the impacts of the accident are described. The basic radioecological problem is described in which the area where direct radiation contamination of biota was observed is considerably smaller than the zone where concentrations of radionuclides through the food chain exceeded the permissible standards. The radiation-induced effects in biota in the affected area are described. In the long-term post-accident period, the radionuclide distribution between components of ecosystems (including humans) and doses are considered in comparison to a technologically normal situation of nuclear power plant operation. This analysis demonstrates that if radiation standards protect humans, then biota are also adequately protected against ionizing radiation. PMID:18049218

  15. Reuse of Material Containing Natural Radionuclides - 12444

    SciTech Connect

    Metlyaev, E.G.; Novikova, N.J.

    2012-07-01

    Disposal of and use of wastes containing natural radioactive material (NORM) or technologically enhanced natural radioactive material (TENORM) with excessive natural background as a building material is very important in the supervision body activity. At the present time, the residents of Octyabrsky village are under resettlement. This village is located just near the Priargunsky mining and chemical combine (Ltd. 'PPGHO'), one of the oldest uranium mines in our country. The vacated wooden houses in the village are demolished and partly used as a building material. To address the issue of potential radiation hazard of the wooden beams originating from demolition of houses in Octyabrsky village, the contents of the natural radionuclides (K-40, Th-232, Ra-226, U- 238) are being determined in samples of the wooden beams of houses. The NORM contents in the wooden house samples are higher, on average, than their content in the reference sample of the fresh wood shavings, but the range of values is rather large. According to the classification of waste containing the natural radionuclides, its evaluation is based on the effective specific activity. At the effective specific activity lower 1.5 kBq/kg and gamma dose rate lower 70 μR/h, the material is not considered as waste and can be used in building by 1 - 3 classes depending upon A{sub eff} value. At 1.5 kBq/kg < A{sub eff} ≤ 4 kBq/kg (4 class), the wooden beams might be used for the purpose of the industrial building, if sum of ratios between the radionuclide specific activity and its specific activity of minimum significance is lower than unit. The material classified as the waste containing the natural radionuclides has A{sub eff} higher 1.5 kBq /kg, and its usage for the purpose of house-building and road construction is forbidden. As for the ash classification and its future usage, such usage is unreasonable, because, according to the provided material, more than 50% of ash samples are considered as radioactive waste containing natural radionuclides. All materials originated from demolition of houses in Octyabrsky village are subjected to the obligatory radiation control. The decision to use the wooden beams shall enter into force after agreement with the State Sanitary and Epidemiological Supervision bodies. Conclusions: 1 - The wooden beam originated from the house demolition in Octyabrsky village might be used as the construction material only in case of compliance with the requirements of the regulatory documents, as well as under approval of the authorities responsible for the state sanitary and epidemiological supervision in this area. 2 - The industrial control is introduced to verify the compliance with the current regulations. 3 - The material originated from the house demolition might be used only if such usage does not cause increasing radiation exposure to the public. (authors)

  16. On the transmutation of Am in a fast lead-cooled system

    NASA Astrophysics Data System (ADS)

    Kochurov, B. P.; Konev, V. N.; Kwaretzkheli, A. Yu

    2007-02-01

    Characteristics of the equilibrium fuel cycle for the core or a blanket of ADS having the structure of the core of a fast lead-cooled reactor of type BREST (Russian abbreviation for `Bystryy Reaktor so Svintsovym Teplonositelem') in a mode of americium transmutation are calculated. Americium loading was taken 5% of heavy atoms. Keeping the average multiplication factor the same as in a standard equilibrium cycle, reactivity swing over 1 year's microcycle is about 1%, that demands partial fuel reloading with a periodicity of about one month. For one year of operation, 61 kg of americium is destroyed, and due to increased 238Pu content, americium is mainly converted to fission products. Thus in a system of 1 GWt (thermal), 87 kg of americium can be transmuted yearly. The estimate of the reactivity void effect has shown that it increases to 0.6% almost linearly with the void fraction increasing up to 25% and reaches its maximum of 0.7% at a void fraction of about 50%. Application of similar strategy for ADS with a sub-criticality level 0.96-0.98 can essentially relax safety problems related to positive void effects.

  17. Transmutation and activation analysis for divertor materials in a HCLL-type fusion power reactor

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Pereslavtsev, P.; Möslang, A.; Rieth, M.

    2009-04-01

    The activation and transmutation of tungsten and tantalum as plasma facing materials was assessed for a helium cooled divertor irradiated in a typical fusion power reactor based on the use of Helium-cooled Lithium Lead (HCLL) blankets. 3D activation calculations were performed by applying a programme system linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. Special attention was given to the proper treatment of the resonance shielding of tungsten and tantalum by using reaction rates provided directly by MCNP on the basis of continuous energy activation cross-section data. It was shown that the long-term activation behaviour is dominated by activation products of the assumed tramp material while the short-term behaviour is due to the activation of the stable Ta and W isotopes. The recycling limit for remote handling of 100 mSv/h can be achieved after decay times of 10 and 50 years for Ta and W, respectively. The elemental transmutation rates of Ta and W were shown to be on a moderate level for the HCLL-type fusion power reactor.

  18. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-07-01

    Electrochemical separation techniques are not widely used in radionuclide generator technology and only a few studies have been reported [1-4]. Nevertheless, this strategy is useful when other parent-daughter separation techniques are not effective or not possible. Such situations are frequent when low specific activity (LSA) parent radionuclides are used for instance with adsorption chromatographic separations, which can result in lower concentration of the daughter radionuclide in the eluent. In addition, radiation instability of the column matrix in many cases can affect the performance of the generator when long lived parent radionuclides are used. Intricate knowledge of the chemistry involved in the electrochemical separation is crucial to develop a reproducible technology that ensures that the pure daughter radionuclide can be obtained in a reasonable time of operation. Crucial parameters to be critically optimized include the applied potential, choice of electrolyte, selection of electrodes, temperature of electrolyte bath and the time of electrolysis in order to ensure that the daughter radionuclide can be reproducibly recovered in high yields and high purity. The successful electrochemical generator technologies which have been developed and are discussed in this paper include the (90)Sr/(90)Y, (188)W/(188)Re and (99)Mo/(99m)Tc generators. Electrochemical separation not only acts as a separation technique but also is an effective concentration methodology which yields high radioactive concentrations of the daughter products. The lower consumption of reagents and minimal generation of radioactive wastes using such electrochemical techniques are compatible with 'green chemistry' principles. PMID:22642386

  19. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  20. Chernobyl radionuclide distribution and migration.

    PubMed

    Izrael, Yury A

    2007-11-01

    The accident at Unit No. 4 of the Chernobyl Nuclear Power Plant on 26 April 1986 presented severe challenges in radiation protection. Early activity measurements defined the contaminated areas in order to determine what persons should be evacuated on the basis of the exposure limit at that time of 100 mSv (10 rem) for accidents. The immediate definition of these areas was accomplished with specially equipped aircraft capable of measuring external gamma-exposure rate and radionuclide spectra. Over time, maps of 137Cs contamination (the most important long-lived radionuclide) have become more and more sophisticated and have been used for further determinations of the control of the consequences of the accident. About 70% of the total release of 137Cs was deposited in Belarus, the Russian Federation, and Ukraine; but there was also widespread deposition throughout the countries of Western Europe. Two atlases of contamination throughout Europe were prepared, and the Russian atlas included data on other radionuclides and on external gamma-exposure rates. The radiocesiums behaved as volatile radionuclides because of the volatility of cesium. In contrast to the typical pattern after nuclear weapons tests, 90Sr behaved only as a refractory element, as its volatile precursors krypton and rubidium had already decayed within the reactor. Nearly all of the refractory elements (strontium, plutonium, etc.) released by the accident were confined to the 30-km zone around the reactor. A proposal is made to develop a more complete atlas of 137Cs deposition from the accident that would include the entire Northern Hemisphere. Water was not an important vector of exposure to human beings following the accident. PMID:18049217

  1. Radionuclide behavior in the environment

    SciTech Connect

    Tveten, U. )

    1991-09-01

    The purpose of this report is to document the results of the following task: Review for quality and consistency the available data on measurements of initial ground contamination of Chernobyl radionuclides in various parts of Norway and subsequent concentrations of these radionuclides in various environmental media as functions of time. Utilize the data obtained to verify the existing models, or to improve them, for describing radionuclide behavior in the environment. Some of the processes standard were: migration into soil; weathering; resuspension; food-chain contamination; and loss or reconcentration by run-off. The task performed within this contract has been to use post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in MACCS. Work has consisted mainly of collecting and evaluating post-Chernobyl information from Norway or other countries when relevant; but has also included experimental work performed specifically for the current task. In most connections the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is faulty or inadequate are, however, pointed out in the report. These should be examined carefully, and appropriate modifications should eventually be made. 14 refs., 12 figs., 22 tabs.

  2. [Radionuclide study of acupuncture points].

    PubMed

    Wu, C C; Jong, S B

    1990-12-01

    During recent years, upon investigation of the meridian which is an important part of the traditional concept in Chinese medicine, we have obtained several significant findings using radionuclide: 1. By subcutaneous injection (SC) of Tc-99m pertechnetate at acupuncture points K-3 and B-60, it was found that certain acupuncture points may be closely related to the venous drainage. 2. A new technique of radionuclide venography, namely SC-RNV of the lower limbs, was established through the above study. The SC-RNV subsequently proved to be clinically available in diagnosis of DVT and calf varicose veins. By SC injection of Tc-99m pertechnetate at various acupuncture points (APP) and nonacupuncture points (non-APP) it seemed that not every APP is closely related to venous drainage, and so is not the non-APP. As for the mechanism of SC-RNV, through SC injection of T1-201 chloride and Ga-67 citrate at K-3 respectively, it was found that the Na-K pumping system may play a major role in the drainage of soft tissue fluid from the APP into th venous flow. We now continue to investigate the meridian with radionuclide and hope to understand more clearly the physiological function of the APP, especially its relationship with the veins. PMID:2176243

  3. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  4. Preliminary neutronics design of china lead-alloy cooled demonstration reactor (CLEAR-III) for nuclear waste transmutation

    SciTech Connect

    Chen, Z.; Chen, Y.; Bai, Y.; Wang, W.; Chen, Z.; Hu, L.; Long, P.

    2012-07-01

    China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjusted to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)

  5. Neutron-transmuted carbon-14 in neutron-irradiated GaN: Compensation of DX-like center

    SciTech Connect

    Ida, T.; Oga, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Fukutani, S.

    2013-12-04

    The transmuted-C related luminescence and net carrier concentration are studied by combining photoluminescence, liquid scintillation, and Raman scattering. GaN single crystal films grown by metalorganic-vapor-phase epitaxy are irradiated with fast and thermal neutrons at fluxes of 3.9 × 10{sup 13} cm{sup −2}s{sup −1} and 8.15 × 10{sup 13} cm{sup −2}s{sup −1}, respectively. Irradiation time is 48 hours. The calculated {sup 72}Ge and {sup 14}C concentrations are 1.24 × 10{sup 18} cm{sup −3} and 1.13 × 10{sup 18} cm{sup −3}, respectively. The transmuted {sup 14}C is detected by the liquid scintillation method to survey β-rays emitted in the process of {sup 14}C decays from {sup 14}N. Tritium ({sup 3}H) is also emitted by a (n,t) reaction of {sup 14}N due to the neutron irradiation above 4.5 MeV. Photoluminescence relating to C, DX-like center of Ge and yellow luminescence band are observed in 1000 °C annealed NTD-GaN. The free electron concentration estimated from Raman scattering is 4.97 × 10{sup 17} cm{sup −3}. This value is lower than that from the transmuted Ge concentration, suggesting the compensation due to the transmuted {sup 14}C acceptors.

  6. Design and parameter optimization of a small-scale electron-based ADS for radioactive waste transmutation

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2015-05-01

    This paper presents the design and feasibility of an electron-LINAC-based small-scale system (ADS) for nuclear waste transmutation. FLUKA simulations have been performed to evaluate the photoneutron yield in high- Z metallic targets such as silver, tungsten, lead, tantalum and uranium irradiated by electron beams of 20-200MeV. The parameters involved in the photoneutron production mechanism including electron beam energy, target material and target shape have been investigated in order to obtain maximum photoneutron production. The neutron reflectors of the ADS, in particular, beryllium, lead and beryllium oxide (BeO) with various thicknesses have been studied. The results show that a combination of an internal reflector of Pb with a thickness of 3cm and an external reflector of BeO with a thickness of 10cm improves the fluence rate. The photoneutron energy spectrum, photoneutron fluence distribution and heat deposition in the electron target have also been presented. At incident electron beam energy of 155MeV, a neutron source of ˜ 4.6 × 1010 (n/cm2/s/mA) has been achieved, which is highly applicable for using in nuclear waste transmutation. The designed ADS has the ability to transmute ˜ 1.5 × 1022 (atoms/y/mA). The obtained results are promising and could lead to the development of a small-scale ADS based on electron LINAC for radioactive waste transmutation and for numerous applications when employed as a photoneutron source.

  7. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  8. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  9. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  10. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  11. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  12. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  13. AFCI Transmutation Fuel Processes and By-Products Planning: Interim Report

    SciTech Connect

    Eric L. Shaber

    2005-09-01

    The goals of the Advanced Fuel Cycle Initiative (AFCI) Program are to reduce high-level waste volume, reduce long-lived and radiotoxic elements, and reclaim valuable energy content of spent nuclear fuel. The AFCI chartered the Fuel Development Working Group (FDWG) to develop advanced fuels in support of the AFCI goals. The FDWG organized a phased strategy of fuel development that is designed to match the needs of the AFCI program: Phase 1 - High-burnup fuels for light-water reactors (LWRs) and tri-isotopic (TRISO) fuel for gas-cooled reactors Phase 2 – Mixed oxide fuels with minor actinides for LWRs, Am transmutation targets for LWRs, inert matrix fuels for LWRs, and TRISO fuel containing Pu and other transuranium for gas-cooled reactors Phase 3 – Fertile free or low-fertile metal, ceramic, ceramic dispersed in a metal matrix (CERMET), and ceramics dispersed in a ceramic matrix (CERCER) that would be used primarily in fast reactors. Development of advanced fuels requires the fabrication, assembly, and irradiation of prototypic fuel under bounding reactor conditions. At specialized national laboratory facilities small quantities of actinides are being fabricated into such fuel for irradiation tests. Fabrication of demonstration quantities of selected fuels for qualification testing is needed but not currently feasible, because existing manual glovebox fabrication approaches result in significant radiation exposures when larger quantities of actinides are involved. The earliest demonstration test fuels needed in the AFCI program are expected to be variants of commercial mixed oxide fuel for use in an LWR as lead test assemblies. Manufacture of such test assemblies will require isolated fabrication lines at a facility not currently available in the U.S. Such facilities are now being planned as part of an Advanced Fuel Cycle Facility (AFCF). Adequate planning for and specification of actinide fuel fabrication facilities capable of producing transmutation fuels dictates the need for detailed process flows, mass balances, batch size data, and radiological dose estimates. Full definition of the materials that will need to be handled in the facility as feed material inputs, in-process fuel, scrap recycle, scrap requiring recovery, and by-product wastes is required. The feed material for demonstrating transmutation fuel fabrication will need to come from the separations of actinides from spent nuclear fuel processed in the same AFCF.

  14. Phytoremediation of soils contaminated with toxic elements and radionuclides

    SciTech Connect

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.

  15. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  16. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  17. DKPRO: A radionuclide decay and reprocessing code

    SciTech Connect

    Wootan, D.; Schmittroth, F.A.

    1997-07-14

    The DKPRO code solves the general problem of modeling complex nuclear wastes streams using ORIGEN2 radionuclide production files. There is a continuing need for estimates of Hanford radionuclides. Physical measurements are one basis; calculational estimates, the approach represented here, are another. Given a known nuclear fuel history, it is relatively straightforward to calculate radionuclide inventories with codes such as the widely-used Oak Ridge National Laboratory code ORIGEN2.

  18. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  19. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  20. Therapy for incorporated radionuclides: scope and need

    SciTech Connect

    Smith, V.H.

    1981-03-01

    In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain.

  1. Acute gangrenous cholecystitis: radionuclide diagnosis

    SciTech Connect

    Brachman, M.B.; Tanasescu, D.E.; Ramanna, L.; Waxman, A.D.

    1984-04-01

    Radionuclide hepatobiliary imaging with Tc-99m IDA is a useful procedure for the diagnosis of acute cholecystitis. Visualization of the gallbladder essentially rules out acute cholecystitis. Nonvisualization suggest acute cholecystitis but may also be associated with chronic gallbladder disease or other conditions. The authors recently observed five patients in whom a rim of increased parenchymal liver activity was seen adjacent to the gallbladder fossa. All five patients had acute gangrenous cholecystitis. The rim of increased activity appears to be a useful secondary sign of acute cholecystitis.

  2. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    SciTech Connect

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-07-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)

  3. Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects. [Transport; fuel fabrication; decay; policy; economics

    SciTech Connect

    Alexander, C.W.; Croff, A.G.

    1980-09-01

    This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T.

  4. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  5. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect

    Jagannadham, K.; Verghese, K.; Butler, J. E.

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup −2} s{sup −1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup −2} s{sup −1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14} cm{sup −2} s{sup −1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  6. Progress on inert matrix fuels for minor actinide transmutation in fast reactor

    SciTech Connect

    Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome; Warin, Dominique; Gosmain, Lionel

    2007-07-01

    An extensive irradiation program has been devoted by CEA to the assessment of transmutation using minor actinide bearing inert support targets. A first irradiation experiment was performed in the fast neutron reactor Phenix, in parallel to other experiments carried out in the HFR and Siloe reactors, in order to assess the behavior under fast neutron flux of various materials intended as inert support matrix for transmutation targets. This experiment, which included the two steps MATINA 1 and MATINA 1A, was completed in 2004 and underwent complete post irradiation examinations (PIE) , whose results are presented in this paper. All the pure inert materials showed a satisfactory behavior under fast neutrons except Al{sub 2}O{sub 3} - which exhibits a swelling close to 11 vol. % after irradiation. In presence of UO{sub 2} fissile particles, MgAl{sub 2}O{sub 4} proved to be more stable in term of swelling as inert support than MgO and Al{sub 2}O{sub 3} matrices, under the same irradiation conditions. A second experiment ECRIX H in Phenix involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was completed in 2006. The very first PIE results on ECRIX H are described in this paper. At the light of these first experiments, a second phase dedicated to the design optimization of the target was initiated and three new irradiation experiments - MATINA 2-3, CAMIX COCHIX in Phenix and HELIOS in HFR - were started in 2006 and 2007. (authors)

  7. Advanced orient cycle, toward realizing intensified transmutation and utilization of radioactive wastes

    SciTech Connect

    Ozawa, Masaki |; Koyama, Shinichi; Suzuki, Tatsuya; Fujii, Yasuhiko; Fujita, Reiko; Mimura, Hitoshi

    2007-07-01

    To minimize the ecological burden originating in nuclear fuel recycling, a new R and D strategy, Adv.- ORIENT (Advanced Optimization by Recycling Instructive Elements) cycle, was set forth. In this context, mutual separation of f-elements, such as minor actinide (MA)/lanthanide (Ln) and Am/Cm, are essential to enhance the MA (particularly {sup 241}Am) burning. Isotope separation before transmutation is inevitably required in the case of some long-lived fission products (LLFPs) like {sup 126}Sn, {sup 135}Cs, etc. The separation and utilization of rare metal fission products (RMFPs: Ru, Rh, Pd, Tc, Se, Te, etc.) can offer a new direction in the partitioning and transmutation (P and T) field. Separation of exothermic nuclides {sup 90}Sr, {sup 137}Cs as well as MA will significantly help to mitigate the repository tasks. A key separation tool is ion exchange chromatography (IXC) by a tertiary pyridine resin having soft donor nitrogen atoms. This method has provided individual recovery of pure Am and Cm products with a Pu/U/Np fraction from irradiated fuel in just a 3-step separation. A catalytic electrolytic extraction (CEE) method by Pd{sub adatom} has been employed to separate, purify and fabricate RMFP catalysts. High separation efficiency of RMFP proved hydrochloric acid as a suitable media for their recovery. Different functioned ion exchangers, e.g., ammonium molybdophosphate (AMP), have been investigated for the separation of Cs{sup +}. Theoretical and laboratory studies on the isotope separation of LLFPs were begun for {sup 79}Se, {sup 126}Sn and {sup 135}Cs. (authors)

  8. Therapeutic radionuclides: production and decay property considerations.

    PubMed

    Volkert, W A; Goeckeler, W F; Ehrhardt, G J; Ketring, A R

    1991-01-01

    The development of effective therapeutic radiopharmaceuticals requires careful consideration in the selection of the radionuclide. The in vivo targeting and clearance properties of the carrier molecule must be balanced with the decay properties of the attached radionuclide. Radionuclides for therapeutic applications fall into three general categories: beta-particle emitters, alpha-particle emitters, and Auger and Coster-Kronig-electron emitters following electron capture. Alpha particles and Auger electrons deposit their energy over short distances with a high LET that limits the ability of cells to repair damage to DNA. Despite their high levels of cytotoxicity, the relatively short range of alpha particles requires binding of the carrier molecule to most cancer cells within a tumor in order to be effective. Because of the extremely short range of Auger electrons, the radionuclide must be carried directly into the nucleus to elicit high radiotoxicity, making it necessary to deliver the radionuclide to every cell within a tumor cell population. These characteristics impose rigid restrictions on the nature of the carrier molecules for these types of particle emitters but successful targeting of these types of radionuclides could result in high therapeutic ratios. Most beta-emitting radionuclides are produced in nuclear rectors via neutron capture reactions; however, a few are produced in charged-particle accelerators. For radionuclides produced by direct neutron activation, the quantities and specific activities that can be produced are determined in large part by the cross-section of the target isotope and the flux of the reactor. Many applications (e.g., therapeutic bone agents, radiolabeled microspheres, radiocolloids) do not require high-specific activities and can therefore utilize the wide range of radionuclides that can be produced in sufficient quantity by direct neutron activation. Other applications (e.g., MAb labeling) require high-specific activity radionuclides in order to deliver a sufficient number of radionuclide atoms to the target site without saturating the target or compromising the integrity of the carrier molecule. Most radionuclides, produced at NCA levels in reactors, are produced via indirect reactions. High-specific activity beta emitters can also be obtained from radionuclide generator systems where the longer-lived parent radionuclide may be obtained from direct neutron activation, as a fission product, or from charged-particle accelerators. It is essential that the half-life of a radionuclide used in RNT be compatible with the rates of localization in target tissues and clearance of the carrier molecule from normal tissues. This consideration is especially important for the various MAbs and their fragments that are currently under investigation as carrier molecules to RIT.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1988628

  9. Hysterosalpingo-radionuclide scintigraphy (HERS)

    SciTech Connect

    Iturralde, M.; Venter, P.F.

    1981-10-01

    A radionuclide procedure, hysterosalpingo-radionuclide scintigraphy (HERS), was designed to evaluate the migration of a particulate radioactive tracer from the vagina to the peritoneal cavity and ovaries as well as to image and functionally outline the patency of the pathways between these two extremes of the female reproductive system. Technetium-99m human albumin microspheres (99mTc-HAM) were deposited in the posterior fornices of patients who were divided into two specific groups. Group I consisted of patients who were to undergo different elective gynecologic operations, in which besides obtaining sequential images, radioactivity levels were measured in the removed organs and tissues. Group II consisted of patients referred by the Infertility Clinic for evaluation of their reproductive system pathways patency. In this latter group, HERS was compared with contrast hysterosalpingography (HSG) and peritoneoscopy (PCP). The results obtained from measurements of radioactivity levels on the removed surgical specimens and comparison with other conventional gynecologic diagnostic procedures provide accurate evidence of the migration of 99mTc-HAM from the vagina, through the uterus and tubes, to the peritoneal cavity and ovaries, and show that HERS is a simple noninvasive method for functionally imaging and assessing the patency of the female reproductive system pathways.

  10. Inventory of radionuclides for the Great Lakes

    SciTech Connect

    1997-12-31

    This report uses a material balance approach to describe the quantities and composition of reported releases of radionuclides to air and water, and the distribution of these nuclides in atmospheric, aquatic, and biotic compartments of the Great Lakes ecosystem. The primary sources considered are discharges from nuclear fuel cycle facilities in the Great Lakes Basin. Other sources include commercial, industrial, medical, and research institutions. Radionuclide inventories are first presented by source, both natural and anthropogenic, then by geographical and environmental distribution. The concluding section discusses the adequacy of radionuclide monitoring, the need for a reassessment of environmental monitoring of nuclear facilities, radionuclide data reporting, harmonization of monitoring and data reporting, biological transfer factors for lake systems, and radionuclides of concern. A glossary is included.

  11. Sensors and Automated Analyzers for Radionuclides

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.

    2003-03-27

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

  12. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  13. Radionuclide production for therapeutic radiopharmaceuticals.

    PubMed

    Neves, M; Kling, A; Lambrecht, R M

    2002-11-01

    A fundamental task within the framework of a project searching for new radiopharmaceuticals for systemic therapy was the evaluation of the capabilities of the Portuguese Research Reactor (RPI) for the production of several important radionuclides. The feasibility of producing 64Cu, 77As, 153Sm, 165Dy, 166Ho, 170Tm, 177Lu, 186Re, 199Au and 111Ag in useful quantities was evaluated for the present RPI operation schedule (12 h cycles) and for continuous operation. The main evaluation criteria are expressed in terms of specific activity for continuous irradiation and/or 12 h cycle and the use of natural or enriched targets if necessary. Selected samples were irradiated and a comparison between measured activities and values calculated according to the irradiation schedule and using the same software was performed. PMID:12433039

  14. Radionuclide diagnosis of allograft rejection

    SciTech Connect

    George, E.A.

    1982-10-01

    Interaction with one or more anatomical and physiopathological characteristics of the rejecting renal allograft is suggested by those radioagents utilized specifically for the diagnosis of allograft rejection. Rejection, the most common cause of declining allograft function, is frequently mimicked clinically or masked by other immediate or long term post transplant complications. Understanding of the anatomical pathological features and kinetics of rejection and their modification by immunosuppressive maintenance and therapy are important for the proper clinical utilization of these radioagents. Furthermore, in selecting these radionuclides, one has to consider the comparative availability, preparatory and procedural simplicity, acquisition and display techniques and the possibility of timely report. The clinical utilities of radiofibrinogen, /sup 99m/Tc sulfur colloid and /sup 67/Ga in the diagnosis of allograft rejection have been evaluated to a variable extent in the past. The potential usefulness of the recently developed preparations of /sup 111/In labeled autologous leukocytes and platelets are presently under investigation.

  15. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  16. Cosmogenic radionuclides in stone meteorites

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

  17. Targeted Radionuclide Therapy of Melanoma.

    PubMed

    Norain, Abdullah; Dadachova, Ekaterina

    2016-05-01

    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies within the next few years. PMID:27067506

  18. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  19. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  20. Increasing the Acceptance of Spent Nuclear Fuel Disposal by the Transmutation of Minor Actinides Using an Accelerator

    NASA Astrophysics Data System (ADS)

    Sheffield, Richard L.

    2010-02-01

    The main challenge in nuclear fuel cycle closure is the reduction of the potential radiotoxicity of spent LWR nuclear fuel, or the length of time in which that potential hazard exists. Partitioning and accelerator-based transmutation in combination with geological disposal can lead to an acceptable societal solution for the nuclear spent fuel management problem. Nuclear fuel seems ideally suited for recycling. Only a small fraction of the available energy in the fuel is extracted in a single pass and the problem isotopes, consisting of the transuranic elements plutonium, neptunium, americium, curium and the long-lived fission products iodine and technetium, could be burned in fast-neutron spectrum reactors or sub-critical accelerator driven transmuters. Most of the remaining wastes have half-lives of a few hundred years and can be safely stored in man-made containment structures (casks or glass). The very small amount of remaining long-lived waste could be safely stored in a small geologic repository. The problem for the next 100 years is that a sufficient number of fast reactors are unlikely to be built by industry to burn its own waste and the waste from existing and new light water reactors (LWRs). So an interim solution is required to transition to a fast reactor economy. The goals of accelerator transmutation are some or all of the following: 1) to significantly reduce the impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, 2) preserve/use the energy-rich component of used nuclear fuel, and 3) reduce proliferation risk. Accelerator-based transmutation could lead to a greater percentage of our power coming from greenhouse-gas emission-free nuclear power and provide a long-term strategy enabling the continuation and growth of nuclear power in the U.S. )

  1. Accelerator Technology Division annual report, FY 1991

    SciTech Connect

    Not Available

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; {Phi} Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  2. HELIOS: Irradiation Of U-Free Fuels And Targets For Americium Transmutation

    SciTech Connect

    Scaffidi-Argentina, F.; Haas, D.; Somers, J.; Klaassen, F.; Schram, R.; Warin, D.

    2006-07-01

    Americium is one of the radioactive elements that contributes to a large part of the radiotoxicity of nuclear spent fuel. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of the mass and radiotoxicity of nuclear waste. The analysis of previous irradiation experiments which were carried out with targets of MgAl{sub 2}O{sub 4}+11wt%{sup 241}Am showed that the release/trapping of helium is the key issue for target design. In fact, in those experiments a significant volume swelling was observed which was partly attributed to the production of helium, which is characteristic for {sup 241}Am transmutation. These findings led to the conclusion, that a new experiment should be designed in such a way that helium shall be released from the target already during irradiation. Such release of helium might be achieved either with a fuel temperature kept sufficiently high during the whole irradiation or with release paths for helium created by inclusion of tailored open porosity in the targets. A new irradiation experiment called HELIOS is currently being designed and will be carried out in the High Flux Reactor (HFR) in Petten (The Netherlands) in the frame of the 4-year project EUROTRANS of the EURATOM 6. Framework Programme (FP6). The main objective of the HELIOS irradiation is to study the in-pile behaviour of U-free fuels and targets such as CerCer (Pu, Am, Zr)O{sub 2} and Am{sub 2}Zr{sub 2}O{sub 7}+MgO or CerMet (Pu, Am)O{sub 2}+Mo in order to gain knowledge on the role of the microstructure and of the temperature on the gas release and on fuel swelling. The irradiation temperature will be high enough to be able to tune the release of a significant fraction of helium produced so that the material swelling can be minimised as much as reasonably possible. Besides, the irradiation duration has been chosen as a compromise such to ensure that the central temperature in the (Pu,Am,Zr,Y)O{sub 2} pellets be always higher than that of the (Am,Zr,Y)O{sub 2} pellets in order to be able to investigate, during the Post-Irradiation Examinations (PIE), the influence of the higher irradiation temperature on the helium release. The HELIOS irradiation experiment is planned to be carried out in the HFR core and shall last 300 full power days starting in the first quarter of 2007. The proposed irradiation position is a high flux position of the HFR core, which has a thermal flux of about 1*10{sup 18} m{sup -2}s{sup -1} and a total neutron flux of about 6*10{sup 18} m{sup -2}s{sup -} {sup 1}. The use of a high flux position is required in order to transmute a substantial fraction of the {sup 241}Am, within the planned duration of the HFR irradiation. In the present paper the fabrication procedure and the development of the HELIOS irradiation, its rationales and objectives are described and discussed. (authors)

  3. Natural radionuclides in ground waters and cores

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  4. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    NASA Astrophysics Data System (ADS)

    Zavorka, L.; Adam, J.; Baldin, A. A.; Caloun, P.; Chilap, V. V.; Furman, W. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalova, J.

    2015-04-01

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies.

  5. Determination of transmutation effects in crystalline waste forms. 1997 annual progress report

    SciTech Connect

    Strachan, D.M.; Buck, E.C.; Fortner, J.A.; Hess, N.J.

    1997-01-01

    'A team from two national laboratories is studying transmutation effects in crystalline waste forms. Analyses are being done with 18 year old samples of {sup 137}Cs-bearing pollucite (CsAlSi{sub 2}O{sub 6} \\267 0.5 H{sub 2}O) obtained from a French company. These samples are unique in that the pollucite was made with various amounts of {sup 137}Cs, which was then sealed in welded stainless- steel capsules to be used as tumor irradiation sources. Over the past 18 years, the {sup 137}Cs has been decaying to stable Ba in the capsules, i.e., in the absence of atmospheric effects. This material serves as an analogue to a crystalline waste form in which such a transmutation occurs to possibly disrupt the integrity of the original waste form. Work this year consisted of determining the construction of the capsule and state of the pollucite in the absence of details about these components from the French company. The authors have opened one capsule containing nonradioactive pollucite. The information on the construction of the stainless-steel capsule is useful for the work that the authors are preparing to do on capsules containing radioactive pollucite. Microscopic characterization of the nonradioactive pollucite revealed that there are at least two compounds in addition to pollucite: a Cs-silicate and a Cs-aluminosilicate (CsAlSiO{sub 4}). These findings may complicate the interpretation of the planned experiments using X-ray absorption spectroscopy. Electron energy loss spectroscopy and energy dispersive X-ray spectroscopy (flourescence) have been used to characterize the nonradioactive pollucite. They have investigated the stability of the nonradioactive pollucite to {beta} radiation damage by use of 200 keV electrons in a transmission electron microscope. The samples were found to become amorphous in less than 10 minutes with loss of Cs. This is equivalent to many more years of {beta} radiation damage than under normal decay of the {sup 137}Cs. In fact, the dose was equivalent to several thousand years of normal radiation damage from the decay of {sup 137}Cs. Of course, there would not be any {sup 137}Cs remaining after that length of time because the half-life of {sup 137}Cs is 30 y. Preparations have been started to study the radioactive pollucite samples at the Stanford Synchrotron Radiation Laboratory. The calculations show that by thinning the base of the capsules the authors should be able to obtain about a factor of ten increase in the fluorescence signal. Procedures for thinning capsules containing the radioactive pollucite and examining the samples at the Stanford synchrotron are in place.'

  6. 2010 LANL radionuclide air emissions report /

    SciTech Connect

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  7. 2009 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  8. 2008 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  9. Radionuclide analysis using solid phase extraction disks

    SciTech Connect

    Beals, D.M; Britt, W.G.; Bibler, J.P.; Brooks, D.A.

    1996-12-31

    The use of solid phase extraction disks was studied for the quantification of selected radionuclides in aqueous solutions. The extraction of four radionuclides using six types (two commercial, four test materials) of 3M Empore{trademark} RAD disks was studied. The radionuclides studied were: technetium-99 (two types of disks), cesium-137 (two types), strontium-90 (one type), plutonium-238 (one type). Extractions were tested from DI water, river water and seawater. Extraction efficiency, kinetics (flow rate past the disk), capacity, and potential interferences were studied as well as quantification methods.

  10. Gastroesophageal reflux in children: radionuclide gastroesophagography.

    PubMed

    Blumhagen, J D; Rudd, T G; Christie, D L

    1980-11-01

    Sixty-five symptomatic infants and children underwent radionuclide gastroesophagography, acid reflux testing, and barium esophagography with water-siphon testing to evaluate the clinical efficacy of the scintigraphic technique in detecting gastroesophageal reflux. After ingesting 99mTc sulfur colloid in fruit juice, patients rested beneath the gamma camera for 30-60 min while esophageal activity was monitored continuously. By using the acid reflux test as a standard of comparison, the sensitivity of radionuclide gastroesophagography was 75%. Because of its physiologic nature, low radiation exposure, and convenience, radionuclide gastroesophagography warrants further evaluation as a screening test for gastroesophageal reflux. PMID:6778139

  11. Radiological Assessment of Target Materials for Accelerator Transmutation of Waste Applications

    SciTech Connect

    Vickers, Linda D

    2003-11-15

    This paper provides the radiation absorbed dose rates (rad-h{sup -1}) to a tissue-equivalent torus ring at 1 meter from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rates (rad-h{sup -1}) to tissue from activated targets for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of (a) spallation neutron yield (neutrons/proton), (b) spallation products yield (nuclides/proton), (c) energy-dependent spallation neutron fluence distribution (n-cm{sup -2} MeV{sup -1}), and (d) identification of the optimal target dimensions to yield the maximum radial spallation neutron leakage from the target. A beneficial characteristic of these target materials (Ta, W, Pb, Bi, and LBE) is they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition controls. In addition, these activated, spent targets are not considered high-level radioactive waste for disposal purposes such as spent fuel from a nuclear power reactor.

  12. Numerical and Statistical Analysis of FR Spent Fuel Transmutation in a Thorium Fusion Breeder

    NASA Astrophysics Data System (ADS)

    Acır, Adem

    2009-09-01

    In this study, a numerical analysis and an analysis of variance (ANOVA) are applied to find the best suitable neutronic parameters for the performance analysis in a thorium fusion rector. The numerical and ANOVA approach are employed to investigate the neutronic characteristics of a fusion reactor using ThO2 90% + FR spent fuel 10% fuel mixtures. Three different neutronic parameters for the ANOVA and numerical approach, namely, moderator/fuel volume fractions (Vm/Vf), plasma chamber dimensions (PCD) and neutron wall loading (NWLs) as time dependent are selected for neutronic performance characteristics including tritium breeding ratio (TBR), multiplication factor (M), total fission rate (Σf), 232Th(n,γ) reaction, burn up and/or transmutation (B/T) and fissile fuel breeding (FFBR). Moreover, effects of the NWLs, Vm/Vf fractions and PCD in the B/T of FR spent fuel mixed thorium are investigated. Numerical and statistics approach results are evaluated for TBR, M, Σf fission rate, 232Th(n,γ) reaction, B/T and FFBR.

  13. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    SciTech Connect

    Wechsler, M.S.; Lin, C.; Ferguson, P.D.; Sommer, W.F.

    1993-10-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

  14. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  15. Radionuclide carriers for targeting of cancer

    PubMed Central

    Sofou, Stavroula

    2008-01-01

    This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential. PMID:18686778

  16. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  17. Dosimetry and Case Studies for Selected Radionuclides

    SciTech Connect

    Leggett, Richard Wayne

    2009-01-01

    This is a comprehensive review and analysis of biokinetic and dosimetric information for those radionuclides most likely to be involved in accidental exposures to workers or members of the public or used in radiological terrorism.

  18. (Radiological assessments of radionuclide releases)

    SciTech Connect

    Hoffman, F.O.

    1990-12-28

    As a consequence of the Chernobyl accident, data have been obtained throughout the Northern Hemisphere on the concentrations of radionuclides in air, vegetation, soil, water, and foodstuffs that could be important means of human exposure. At the IAEA's invitation, the traveler reviewed recently published data and handbook summaries. The traveler evaluated the need for revising the default values recommended in Chapter 5, Terrestrial and Aquatic Food Chain Transport,'' of IAEA Safety Series No. 57. All attempts at revision were made to keep the mathematical complexity of the models to a minimum without substantial underestimation of dose to critical population subgroups. The traveler also served as chairman of the Multiple Pathways Working Group of the Coordinated Research Program on VAMP. This group has been established to test predictions of models assessing multiple exposure pathways potentially leading to human exposure to {sup 137}Cs. Testing is carried out for major components of assessment models that predict deposition, environmental transport, food chain bioaccumulation, and subsequent uptake and retention in the human body and dose due to exposure to external gamma radiation.

  19. Radionuclides in an underground environment

    SciTech Connect

    Thompson, J.L.

    1996-08-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ``experiments`` conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes.

  20. Radionuclide scintigraphy of bacterial nephritis

    SciTech Connect

    Conway, J.J.; Weiss, S.C.; Shkolnik, A.; Yogev, R.; Firlit, C.; Traisman, E.S.

    1984-01-01

    Pyelonephritis is a leading cause of renal failure and is expected to cost as much as three billion dollars in 1984. The diagnosis of urinary tract infection is usually not difficult. However, localization of the infection within the renal parenchyma as opposed to the collecting system is much more difficult. Flank pain, fever, bacteiuria and evidence of parenchymal involvement by intravenous urography may be absent or unrecognized particularly in the infant. Ultrasound and Nuclear Medicine are advocated as better methods to define parenchymal involvement. Such definition is important in the consideration of treatment since parenchymal involvement of the kidney carries a much more ominous potential outcome than infection restricted to within the collecting system. 38 children with a clinical diagnosis of urinary tract infection were studied. 26 of the patients demonstrated abnormal renal parenchymal findings with Gallium-67 Citrate or Tc-99m Glucoheptonate scintigraphy. Intravenous urography was notably ineffective with only 5 of the 20 interpreted as abnormal due to parenchymal disease or decreased function. 11 were entirely normal while only 5 demonstrated scars or hydronephrosis. Only 10 of 17 patients demonstrated intranvesicoureteral reflux on x-ray or nuclear cystography. Ultrasound depicted 6 of 20 patients as having parenchymal abnormalities. Seven were normal. Nonspecific findings such as dilitation of the renal pelvis or renal enlargement was noted in 11 of the 20 patients. Radionuclide Scintigraphy is the most efficacious modality to detect since acute bacterial nephritis.

  1. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  2. Vertical distribution of natural radionuclides in soils

    NASA Astrophysics Data System (ADS)

    Blanco Rodríguez, P.; Tomé, F. Vera; Lozano, J. C.

    2012-04-01

    Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation counters (LKB Quantulus 1220™) were used in order to determine the activity concentration of 238U, 232Th, 234U, 230Th, 226Ra, and 210Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were selected with different levels of influence from the installation, in such a way that they had different levels of radioactive contamination. The vertical profiles in the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. The possible contamination of subsurface waters depends strongly on vertical migration, and the transfer to plants (herbs, shrubs, and trees) also will depend on the distribution of the radionuclides in the root zone. The study of the activity ratios between radionuclides belonging to the same series allowed us to assess the differing behaviour of the radionuclides involved. The vertical profiles for these radionuclides were different at each sampling point, showing the local impact of the installation. However, the profiles per point were similar for the long-lived radionuclides of the 238TJ series (238U, 234U, 230Th, and 226Ra). Also, a major disequilibrium was observed between 210Pb and 226Ra in the surface layer, due to 222Rn emanation and subsequent surface deposition of 210Pb.

  3. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    SciTech Connect

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  4. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    SciTech Connect

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  5. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Dudarev, S. L.; Nguyen-Manh, D.; Zheng, S.; Packer, L. W.; Sublet, J.-Ch.

    2013-11-01

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the 'next-step' fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant compared to a previous study, while at the same time indicating that helium embrittlement remains one of the most significant factors controlling the structural integrity of fusion power plant components. The MCNP calculations conducted with the conceptual CCFE design of a DEMO fusion reactor show that the neutron irradiation conditions can vary significantly as a function of position within the reactor. Even in the same component, the flux can change dramatically over short distances. As a function of distance from the plasma-facing surface of the FW, the flux drops by several orders of magnitude and the energy spectrum becomes considerably softer. The FISPACT-inventory calculations reveal how the variation in conditions alters the rates of production of impurities from transmutation reactions. In particular, helium concentrations fall by many orders of magnitude from the thin FW-armor layer to the outer regions of the vessel, such as the shield. In Fe, for example, the production of He of up to 140 appm per fpy in the FW-armor is likely to be significant because concentrations in the range of 400 appm are known to cause a change in the fracture behavior of neutron-irradiated steels compared to those exposed to neutrons alone [22]. However, such considerations will quickly become unimportant in regions further from the plasma, since even within the blanket the He production rate in Fe falls below 10 appm per fpy. Furthermore, in some materials, such as W, the He production levels in the bulk (as opposed to direct implantation at the plasma-facing surface) are probably too low to have any impact on component lifetime. An integrated quantity, such as dpa, can sometimes obscure the true variation in irradiation environment, and the sensitivity of these dpa calculations to nuclear data, as highlighted in this work, casts doubt on the suitability of dpa as the ubiquitous measure of material damage under irradiation. The model for He-induced embrittlement of grain-boundaries described in [1] and presented here with revised critical time estimates, while extremely simple and subject to significant assumptions (including grain size and an absence of migration barriers), suggests that He production should not be ignored when designing components for fusion devices. While accepting the limitations of the materials modeling, the integrated approach in the present study demonstrates the potential to produce engineering relevant predictions - starting from a reactor design and using a variety of computational tools for modeling of material properties at the atomic-scale. Lethargy interval is a commonly used measure for spectra of this type, and is equal to the natural logarithm of the ratio of a given energy-interval's upper bound to its lower bound.

  6. Determination of transmutation effects in crystalline waste forms. 1998 annual progress report

    SciTech Connect

    Strachan, D.M.; Hess, N.J.; Fortner, J.A.; Buck, E.C.

    1998-06-01

    'In this report, the authors summarize the research that has taken place during the second year of the 3-year project. This project is being carried out at Pacific Northwest National Laboratory and Argonne National Laboratory. The original intent in this project was to use high-energy EXAFS to obtain information on the chemical state of the {sup 137}Ba in pollucite without opening the stainless steel capsules. Using this approach, the authors hoped to avoid changing the chemical state of the {sup 137}Ba. To evaluate the extent to which high-energy EXAFS data can be interpreted, the authors analyzed a number of Cs and Ba standards in addition to Ba-doped pollucite samples. The standards included a variety of structures from simple oxides and halides to titanates and silicates. While the EXAFS signal from the simple oxides and halides were low in amplitude the analysis of the EXAFS and the Fourier transforms resulted in reasonable data. The authors obtained extremely weak EXAFS signals from the more complex silicates and titanates with distant first neighbor atoms. In addition, the amplitudes of the Cs K-edge EXAFS are about half as intense as the corresponding Ba K-edge EXAFS (Figure 1). Several factors may have contributed to the apparent differences between the Cs and Ba K-edge data, such as core-hole lifetime broadening, weak photoelectron backscatters, and low charge density of the large low-valence cations. Also, long interatomic distances appear as low frequency oscillations in the XAS and these features could have been inadvertently removed when they tried to extract the EXAFS. Artifacts that have no possible structural origin often dominated the Fourier transforms from these compounds. A number of signal processing techniques were employed in an attempt to minimize these artifacts but they generally resulted in severe distortions of the weak EXAFS signal. Regardless of the specific origin, these factors reduce the extent to which the Cs K-edge EXAFS data can be interpreted. The authors conclude that Cs and Ba K-edge EXAFS can be used successfully for materials where the structure is relatively simple and the material is well ordered. However, in materials with low atomic number backscatterers and low symmetry such as pollucite, it is not possible to determine the effects of {sup 137}Cs beta decay and transmutation on the pollucite structure. However, one can reasonably hope to identify the presence of metallic Ba clusters or BaO, if either are the result of transmutation. To overcome the shortcomings with the high-energy EXAFS, they have explored the use of nuclear magnetic resonance (NMR) spectroscopy to examine the local structure of the cesium in some laboratory-prepared pollucite. Small quantities, typical of what they expect to recover from the sealed capsules, proved to be sufficient material to obtain spectra with both magic-angle spinning and static NMR techniques (Figure 2). The chemical shift is expected to be sensitive to local structure and to disorder. They expect to prepare a sample from the {sup 137}Cs pollucite when the authors open a capsule.'

  7. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 1, Autopsy and In Vivo Data

    SciTech Connect

    Watson, David J.; Strom, Daniel J.

    2011-02-25

    This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports were obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.

  8. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    SciTech Connect

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  9. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent; Proctor, Larry Duane

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  10. A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design

    SciTech Connect

    Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

    2010-11-01

    Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

  11. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    SciTech Connect

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of /sup 31/P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and /sup 31/P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500/sup 0/C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750/sup 0/C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750/sup 0/C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200/sup 0/C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750/sup 0/C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750/sup 0/C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included.

  12. Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Beauvy, Michel; Dalmasso, Chrystelle; Thiriet-Dodane, Catherine; Simeone, David; Gosset, Dominique

    2006-01-01

    Inert matrices are proposed for advanced nuclear fuels or for the transmutation of the actinides that is an effective solution for the nuclear waste management. The behaviour of inert matrix ceramics like MgO, MgAl2O4 and cubic ZrO2 oxides under irradiation is presented in this study. The alumina Al2O3 has been also studied as a reference for the ceramic materials. These oxides have been irradiated with swift heavy ions at CIRIL/GANIL to simulate the fragment fission effects. The irradiations with the different heavy ions (from S to Pb) with energy between 91 and 820 MeV, have been realised at room temperature or 500 C. The fluencies were between 5 1010 and 5 1015 ions/cm2. The polished faces of sintered polycrystalline disks or single crystal slices have been characterized before and after irradiation by X-ray diffraction and optical spectroscopy. The apparent swelling evaluated from surface profile measurements after irradiation is very important for spinel and zirconia, comparatively with those of magnesia or alumina. The amorphisation seems to be at the origin of this swelling, and the electronic stopping power of the ions is the most influent parameter for the irradiation damages. The point defects characterized by optical spectroscopy show a significant amount of damage on the oxygen sub-lattice in the irradiated oxides. F+ centres are present in all irradiated oxides. However, new absorption bands are observed and cation clusters cannot be excluded in magnesia and spinel after irradiation.

  13. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    PubMed

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region. PMID:16381683

  14. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control

  15. Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{sup 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon the oxygen retention of the tissue and the significantly greater retention amounting in hypoxic tissue. This hypothesis was confirmed in a series of animal studies. Cu-64 can be used both as an imaging radionuclide and a therapeutic radionuclide. The therapeutic efficacy of Cu-64 ATSM was proven in hamsters bearing the CW39 human colorectal tumors. The administration of Cu-64 ATSM significantly increased the survival time of tumor-bearing animals with no acute toxicity. This copper agent therefore shows promise for radiotherapy. The flow tracer Cu-64 PTSM also demonstrates therapeutic potential by inhibiting cancer cells implanted in animal models. Again, this inhibition occurred at doses which showed no sign of toxicity to the animals. Cu-ATSM was translated to humans, under other support a series of tumors were investigated; these included head and neck cancer, non-small cell lung cancer, cervical cancer and renal cancer. Another radionuclide that was investigated was titanium 45. This radionuclide was successfully produced by radiation of a scandium foil with 15 MeV protons. The titanium 45 was processed and separated from residual scandium by high exchange chomotrophy. Titanium titanocene has been utilized as a therapeutic agent; this compound was prepared and studied in vitro and in vivo. Another project was the preparation of cyclodextrin dimers as a new pre-targeting approach for tumor uptake. Beta-cyclodextradin and two other dimers were synthesized. These dimers were studied for the in vivo application. Work continued on the application of the radionuclide already discussed. Technetium 94m, a positron emitting radionuclide of the widely used 99m Tc nuclide was also prepared. This allows the quantification of the uptake of technetium radiopharmaceuticals. In collaboration with Professor David Piwnica-Worms, technetium 94m, sestamibi was studied in animal models and in a limited number of human subjects.

  17. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  18. Summary Report on New Transmutation Analysis for the Evaluation of Homogeneous and Heterogeneous Options in Fast Reactors

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope; B. Forget; W. Skerjanc; M. Asgari

    2008-08-01

    A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design was selected as the baseline in this scenario study. Traditional approaches to Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) transuranic waste (TRU) burning in a fast spectrum system have typically focused on the continual homogeneous recycling (reprocessing) of the discharge fast reactor fuel. The effective reduction of transuranic inventories has been quantified through the use of the transuranics conversion ratio (TRU CR). The implicit assumption in the use of this single parameter is a homogeneous fast reactor option where equal weight is given to the destruction of transuranics, either by fission or eventual fission via transmutation. This work explores the potential application of alternative fast reactor fuel cycles in which the minor actinide (MA) component of the TRU is considered ‘waste’, while the plutonium component is considered as fuel. Specifically, a set of potential designs that incorporate radial heterogeneous target assemblies is proposed and results relevant to transmutation and system analysis are presented. In this work we consider exclusively minor actinide-bearing radial targets in a continual reprocessing scenario (as opposed to deep-burn options). The potential use of targets in a deep burn mode is not necessarily ruled out as an option. However, due to work scope constraints and material limit considerations, it was preferred to leave the target assemblies reach either the assumed limit of 200 DPA at discharge or maximum allowable gas pressure caused by helium production from transmutation. The number and specific design of the target assemblies was chosen to satisfy the necessary core symmetry and physical dimensions (available space for a certain amount of mass in an assembly based on an iterated mass density).

  19. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  20. Idaho radionuclide exposure study: Literature review

    SciTech Connect

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.

    1987-10-01

    Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily /sup 210/Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report.

  1. Radionuclide Mobility at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

    2003-11-13

    Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

  2. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  3. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  4. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  5. Transmutation of Radioactive Nuclear Waste — Present Status and Requirement for the Problem-Oriented Nuclear Database: Approach to Scheduling the Experiments (Reactor, Target, Blanket)

    NASA Astrophysics Data System (ADS)

    Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.

    2005-05-01

    Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.

  6. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  7. 2014 LANL Radionuclide Air Emissions Report

    SciTech Connect

    Fuehne, David Patrick

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  8. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized. PMID:15640792

  9. Therapeutic radionuclides: Making the right choice

    SciTech Connect

    Srivastava, S.C.

    1996-08-01

    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article.

  10. Peptide-Targeted Radionuclide Therapy for Melanoma

    PubMed Central

    Miao, Yubin; Quinn, Thomas P.

    2011-01-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1R and melanin. The promising therapeutic efficacies of 188Re-(Arg11)CCMSH (188Re-[Cys3,4,10, d-Phe7, Arg11]-α-MSH3-13), 177Lu- and 212Pb-labeled DOTA-Re(Arg11)CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys3,4,10, d-Phe7, Arg11)]-α-MSH3-13) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  11. Data Authentication Demonstration for Radionuclide Stations

    SciTech Connect

    Harris, Mark; Herrington, Pres; Miley, Harry; Ellis, J. Edward; McKinnon, David; St. Pierre, Devon

    1999-08-03

    Data authentication is required for certification of sensor stations in the International Monitoring System (IMS). Authentication capability has been previously demonstrated for continuous waveform stations (seismic and infrasound). This paper addresses data surety for the radionuclide stations in the IMS, in particular the Radionuclide Aerosol Sampler/Analyzer (RASA) system developed by Pacific Northwest National Laboratory (PNNL). Radionuclide stations communicate data by electronic mail using formats defined in IMS 1.0, Formats and Protocols for Messages. An open message authentication standard exists, called S/MIME (Secure/Multipurpose Internet Mail Extensions), which has been proposed for use with all IMS radionuclide station message communications. This standard specifies adding a digital signature and public key certificate as a MIME attachment to the e-mail message. It is advantageous because it allows authentication to be added to all IMS 1.0 messages in a standard format and is commercially supported in e-mail software. For command and control, the RASA system uses a networked Graphical User Interface (GUI) based upon Common Object Request Broker Architecture (CORBA) communications, which requires special authentication procedures. The authors have modified the RASA system to meet CTBTO authentication guidelines, using a FORTEZZA card for authentication functions. They demonstrated signing radionuclide data messages at the RASA, then sending, receiving, and verifying the messages at a data center. They demonstrated authenticating command messages and responses from the data center GUI to the RASA. Also, the particular authentication system command to change the private/public key pair and retrieve the new public key was demonstrated. This work shows that data surety meeting IMS guidelines may be immediately applied to IMS radionuclide systems.

  12. On the lognormality of radionuclide deposition.

    PubMed

    Grubich, Andry

    2015-05-01

    The influence of the variation of soil density and the uncertainty of activity measurements on the statistical distribution of radionuclide concentrations on a site is considered. It is demonstrated that the influence of these factors adequately explains the observed deviation of radionuclide empirical probability distribution functions (empirical PDFs) from lognormal. In all probability lognormality of activity density distributions is the consequence of the atmospheric fallout process, as observed for deposition from Chernobyl and Fukushima. The results obtained are in no way specific to radioactive contaminants, and are consequently applicable for depositions of non-radioactive pollutants as well. PMID:25725453

  13. External accumulation of radionuclide in hepatic hydrothorax

    SciTech Connect

    Albin, R.J.; Johnston, G.S.

    1989-05-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax.

  14. Radionuclide imaging of the urinary tract

    SciTech Connect

    Velchik, M.G.

    1985-11-01

    This article describes the role of nuclear medicine in the evaluation of the genitourinary tract. The technical aspects of radionuclide imaging (radiopharmaceuticals, radiation dosimetry, instrumentation, and method) are briefly presented, and each of the indications for renal scintigraphy--including the evaluation of differential renal function, hypertension, obstruction, renal transplants, masses, trauma, congenital anomalies, vesicoureteral reflux, and infection--are discussed. The relative advantages and disadvantages of radionuclide imaging with respect to alternative radiographic examinations (such as intravenous urography, ultrasonography, CT, angiography, and magnetic resonance imaging) are emphasized wherever applicable. 136 references.

  15. Microbiological Transformations of Radionuclides in the Subsurface

    SciTech Connect

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-04

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  16. Thermal-hydraulic analysis of graphite tubes for the non-aqueous system of accelerator transmutation of nuclear waste

    SciTech Connect

    Potter, R.C.; Venneri, F.; Trujillo, D.A.

    1993-10-01

    Accelerator transmutation of nuclear waste offers exciting possibilities for the disposal of nuclear waste by converting it into more benign Species. The non-aqueous system discussed here contains the materials to be transmuted within a lithium-fluoride salt. The system consists of bundles of graphite tubes containing the salt Solution. The tubes are cooled as lithium flows across their exterior. These circular graphite tubes have an inner circular passage and an outer annulus. Natural convection within the tubes causes the salt to circulate. This paper deals with the thermal-hydraulics of the system; it does not consider the neutronics in detail. Heat transfer and fluid flow were modeled using a custom computer program the system behavior of an graphite tube. Different geometries were tried, while keeping the system volume the same, to determine an optimize graphite tube geometry. I considered both the parallel flow and the counterflow of the lithium coolant, and allowed limited boiling to occur to facilitate circulation. I achieved power densities as high as 200 W/cm{sup 3} for the overall blanket.

  17. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768

  18. Assessment of Radionuclides in the Savannah River Site Environment Summary

    SciTech Connect

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  19. Flibe blanket concept for transmuting transuranic elements and long lived fission products.

    SciTech Connect

    Gohar, Y.

    2000-11-15

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful, which established the technical bases for this application. This paper provides the technical analyses and the performance of the Flibe blanket concept as an example of this class of blankets.

  20. Measuring and Modeling Naturally Occurring Radioactive Material: Interpreting the Relationship Between the Natural Radionuclides Present

    SciTech Connect

    Lombardo, A.J.; Mucha, A.F.

    2008-07-01

    The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil and structure radionuclide concentration guidelines are necessarily simplified representations of complex processes. A conceptual site model is often developed to present a reasonable and somewhat conservative representation of the physical and chemical properties of the impacted material. Dose modeling software is then used to estimate resulting dose and/or radionuclide specific acceptance criteria (activity concentrations). When the source term includes any or all of the uranium, thorium or actinium natural decay series radionuclides the interpretation of the relationship between the individual radionuclides of the series is critical to a technically correct and complete assessment of risk and/or derivation of radionuclide specific acceptance criteria. Unlike man-made radionuclides, modeling and measuring naturally occurring radioactive material (NORM) and technologically enhanced NORM (TENORM) source terms involves the interpretation of the relationship between the radionuclide present, e.g., secular equilibrium, enrichment, depletion or transient equilibrium. Isotopes of uranium, radium, and thorium occur in all three natural decay series. Each of the three series also produces a radon gas isotope as one of its progeny. In nature, the radionuclides in the three natural decay series are in a state that is approaching or has achieved secular equilibrium, in which the activities of all radionuclides within each series are nearly equal. However, ores containing the three natural decay series may begin in approximate secular equilibrium, but after processing, equilibrium may be broken and certain elements (and the radioactive isotopes of that element) may be concentrated or removed. Where the original ore may have contained one long chain of natural decay series radionuclides, the resulting TENORM source term may contain several smaller decay chains, each headed by a different longer lived member of the original series. This paper presents the anatomy of common TENORM source terms and the pitfalls of measuring, interpreting and modeling these source terms. Modeling TENORM with common software such as RESRAD is discussed. In summary: RESRAD modeling (dose assessments) to derive single radionuclide, dose based acceptance criteria, requires a good understanding of the physical, chemical and biological factors/input parameters applicable to the selected exposure scenario(s). When NORM or TENORM source terms are modeled, an additional understanding of the status of equilibrium, is necessary to accurately perform a dose assessment in support of dose based acceptance criteria. Historical information about the site processes/ores, selection of appropriate analytical analyses to identify key decay series radionuclide and a comprehensive review of the characterization data are needed to understand the equilibrium status of the decay series present. Once the source term has been characterized (in regards to relative activities of the radionuclides within a decay series) the source term must be input into RESRAD to reflect that status of equilibrium at time zero, or at the time since placement, if the characterization data reflects the equilibrium status of dated material. When the RESRAD output file is reviewed, depending on the time of maximum dose, DCGL values may be artificially high in value. Sum of fraction calculations, based on the status of equilibrium of each decay series, can also be used to assess the RESRAD results and develop an appropriate MARSSIM final status survey protocol. (authors)

  1. Migration of radionuclides in geologic media: Fundamental research needs

    SciTech Connect

    Reed, D.T. ); Zachara, J.M.; Wildung, R.E. ); Wobber, F.J. )

    1990-01-01

    An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes. 64 refs., 1 fig., 1 tab.

  2. Determination of radionuclide exchangeability in freshwater systems.

    PubMed

    Bunker, D J; Smith, J T; Livens, F R; Hilton, J

    2000-12-18

    Two freshwater sediments were spiked with 57Co, 85Sr and 134Cs and left for adsorption times ranging from 1 day to over 60 days. Following adsorption, the 'exchangeable' pool of each radionuclide was measured using ammonium acetate extractions and a sequential leach procedure (Tessier et al., 1979), and the results were compared. Exchangeability was found to depend upon the sediment, radionuclide, sorption time and the identity of extracting agent. All three radionuclides showed a shift with increasing adsorption time from regular exchange sites to sites which are sterically hindered, but a fixation within the sediment was only observed for 57Co and 134Cs, with similar ammonium acetate extraction yields for both radionuclides. Misleading results were obtained during the sequential leach procedure due to redistribution and, therefore, the inclusion of a NH4+ leach after the MgCl2 extraction step was suggested. A mathematical model of element speciation was fairly successful at defining the 'exchangeable' fraction, suggesting that the chemically- and mathematically-defined fractions were similar. PMID:11194151

  3. PROGRESS REPORT. RADIONUCLIDE SENSORS FOR WATER MONITORING

    EPA Science Inventory

    The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors a...

  4. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively. PMID:6693264

  5. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  6. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  7. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.

    PubMed

    Lanconelli, N; Pacilio, M; Lo Meo, S; Botta, F; Di Dia, A; Aroche, A Torres; Pérez, M A Coca; Cremonesi, M

    2012-01-21

    The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it. PMID:22217735

  8. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions

    NASA Astrophysics Data System (ADS)

    Lanconelli, N.; Pacilio, M.; Lo Meo, S.; Botta, F.; Di Dia, A.; Torres Aroche, L. A.; Coca Pérez, M. A.; Cremonesi, M.

    2012-01-01

    The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.

  9. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide rebreathing system. 892.1390 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing system. (a) Identification. A radionuclide rebreathing system is a device intended to be used to contain...

  10. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of...

  11. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  12. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide rebreathing system. 892.1390 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing system. (a) Identification. A radionuclide rebreathing system is a device intended to be used to contain...

  13. Scientific Analysis Cover Sheet for Radionuclide Screening

    SciTech Connect

    G. Ragan

    2002-08-09

    The waste forms under consideration for disposal in the proposed repository at Yucca Mountain contain scores of radionuclides (Attachments V and VI). It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from the proposed nuclear waste repository at Yucca Mountain. The remaining nuclides (those screened in) are recommended for consideration in TSPA modeling for license application. This analysis also covers radionuclides that are not screened in based on dose, but need to be included in TSPA modeling for other reasons. For example, U.S. Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission (NRC) regulations require consideration of the combined activity of Ra-226 and Ra-228 in groundwater (40 CFR 197.30, 10 CFR 63.331). Also, Cm-245, Pu-241, and U-235 decay indirectly to potentially important radionuclides, and are not identified by the screening analysis as important. The radionuclide screening analysis separately considers two different postclosure time periods: the 10,000-y regulatory period for the proposed repository at Yucca Mountain and the period after 10,000 y up to 1 million y after emplacement. The incremental effect of extending the screening for the regulatory period to 20,000 y is also addressed. Four release scenarios are considered: (1) the nominal scenario, which entails long-term degradation of disposal containers and waste forms, (2) a human-intrusion scenario, (3) an intrusive igneous event, and (4) an eruptive igneous event. Because the first three scenarios require groundwater transport, they are called groundwater scenarios below. The screening analysis considers the following waste forms: spent boiling water reactor (BWR) fuel, spent pressurized water reactor (PWR) fuel, U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), and high-level waste (HLW). Average and outlying (high burnup, high initial enrichment, low age, or otherwise exceptional) forms of each waste-form type are considered. This analysis has been prepared in accordance with a technical work plan (BSC 2002c). In a review of Revision 00 of this radionuclide screening analysis, the NRC found that ''processes that affect transport in the biosphere, such as uptake by plants and bioaccumulation are not accounted for'' and that ''the direct exposure pathway is not accounted for'' (Beckman 2001, Section 5.3.2.1). The NRC also found that the solubility and sorption classes were too broadly defined, noting, for example, that Se is in the same solubility and sorptivity groups as Np and U, yet is ''more soluble than Np and U by several orders of magnitude'' (Beckman 2001, Section 5.3.2.1). This revision seeks to build upon the strengths of the earlier screening method while responding to the specific concerns raised by the NRC and other reviewers. In place of simple inhalation and ingestion dose conversion factors, the revised radionuclide screening uses screening factors that also take into account soil accumulation, uptake by plants, exposure to contaminated ground, and other features of the biosphere that were neglected in the previous screening. Whereas the previous screening analysis allowed only two solubility classes (soluble and insoluble), the revised screening introduces an intermediate solubility class to better segregate the radionuclides into transport groups.

  14. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  15. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  16. Feasibility of short-lived radionuclide production at Fermilab

    SciTech Connect

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1982-04-29

    The feasibility of establishing a facility for short-lived radionuclide production hinges on the availability of the Fermilab injector linac and on how such a program would fit in with the primary mission of the laboratory. The linac is available 168 hours per week except for scheduled maintenance, which typically does not exceed one to two shifts per week, and HEP requirements. The laboratory may be reluctant to make a commitment for the routine production of SLRs however, due to its understanding of the requirements for reliable scheduled delivery of targets. But, the laboratory is also quite interested in establishing industrial liaisons. It would be willing to explore feasible industrial proposals, especially with regards to developing a research-type facility where the technology and methods developed at Fermilab could be utilized elsewhere.

  17. Targets and methods for target preparation for radionuclide production

    DOEpatents

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  18. Subsurface radionuclide investigation of a nuclear test

    NASA Astrophysics Data System (ADS)

    Mathews, M.; Hahn, K.; Thompson, J.; Gadeken, L.; Madigan, W.

    1994-08-01

    This paper reports on an environmental investigation into the vertical distribution of radionuclides from a nuclear test. Dalhart is the name of an underground nuclear test that was executed at the Nevada Test Site at a depth of 2100 ft on October 13, 1988. The test occurred below the static water level of 1667 ft and created multiple radioactive isotopes or fission products. These radioactive isotopes penetrated the surrounding formations and chimney region above the test and were retained there. A 19° 9- {7}/{8}-inch diameter slant hole was drilled to sample the geologic material in the chimney region above the Dalhart test for the purpose of assessing the distribution of radioactivity in and around the shot site. A 30-ft core recovered from a vertical depth of 1628 ft in the collapsed zone or chimney region and above the original static water level was found to be free of radionuclides. Drilling was completed to a vertical depth of 2156 ft with the present static water level at a vertical depth of 1644 ft. Gamma-ray spectroscopy log measurements, made within the drill pipe while drilling fluid was pumped through this pipe, indicate that radioactive material produced by the test was present from the vertical depth interval of 1746-2156 ft. Side-wall samples acquired from the vertical depth interval of 1721-2089 ft and analyzed in the field contained radionuclides such as 137Cs, 125Sb, 106Ru, plus the natural radioactive background of potassium, uranium, and thorium. These samples were sent to Los Alamos to determine the complete radionuclide content at each depth. These analyses were used with the gamma-ray spectroscopy logging data to determine the subsurface vertical radionuclide distribution at the Dalhart site.

  19. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  20. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  1. Targeted radionuclide therapy--an overview.

    PubMed

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors. PMID:24059327

  2. Source inversion for the CTBTO radionuclide network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2013-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  3. TECHNOLOGY EVALUATION REPORT: BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    The Babcock & Wilcox (B&W) Cyclone Furnace Vitrification Technology is a treatment process for contaminated soils. he process was evaluated to determine its ability to destroy semivolatile organics and to isolate metals and simulated radionuclides into a non-leachable slag materi...

  4. Biohydrometallurgical technologies

    SciTech Connect

    Torma, A.E.; Wey, J.E.; Lakshmanan, V.I.

    1993-01-01

    The theme of the International Biohydrometallurgy Symposium held in Jackson Hole, Wyoming, August 22-25, 1993, is Biohydrometallurgy: An Industry Matures.'' This is a developing technology which made important contributions to the minerals industry. Biohydrometallurgical technology was first introduced into the copper industry and subsequently to the uranium industry for the production of metal values from low-grade mineral resources. Currently, biotechnology has advanced a step further. It is now commercially applied for the treatment of high-grade refractory gold ores in aerated stirred reactors to liberate precious metals for cyanidation. In addition, the industrial applications of biotechnology involve bioenhanced tertiary oil recovery processes, which contribute to an increase in oil production from previously exhausted wells. Furthermore, many bioremediation technologies are being developed for the removal of toxic heavy metals and radionuclides from contaminated soils and aqueous mining and industrial effluents. This volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  5. FIRST-PRINCIPLES CALCULATIONS OF CHARGE STATES AND FORMATION ENERGIES OF Mg, Al, and Be TRANSMUTANTS IN 3C-SiC

    SciTech Connect

    Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

    2014-08-28

    The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.

  6. Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

    SciTech Connect

    Recker, M. C.; McClory, J. W. Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-28

    Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  7. Uptake by plants of radionuclides from FUSRAP waste materials

    SciTech Connect

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  8. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    SciTech Connect

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions).

  9. Mapping Biological Behaviors by Application of Longer-Lived Positron Emitting Radionuclides

    PubMed Central

    Zhou, Yang; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2012-01-01

    With the technological development of positron emission tomography (PET) and the advent of novel antibody-directed drug delivery systems, longer-lived positron-emitting radionuclides are moving to the forefront to take important roles in tracking the distribution of biotherapeutics such as antibodies, and for monitoring biological processes and responses. Longer half-life radionuclides possess advantages of convenient on-site preparation procedures for both clinical and non-clinical applications. The suitability of the long half-life radionuclides for imaging intact monoclonal antibodies (mAbs) and their respective fragments, which have inherently long biological half-lives, has attracted increased interest in recent years. In this review, we provide a survey of the recent literature as it applies to the development of nine-selected longer-lived positron emitters with half-lives of 9–140 hours (e.g., 124I, 64Cu, 86Y and 89Zr), and describe the biological behaviors of radionuclide-labeled mAbs with respect to distribution and targeting characteristics, potential toxicities, biological applications, and clinical translation potentials. PMID:23123291

  10. Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives

    USGS Publications Warehouse

    Landa, Edward

    1980-01-01

    Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

  11. Mapping biological behaviors by application of longer-lived positron emitting radionuclides.

    PubMed

    Zhou, Yang; Baidoo, Kwamena E; Brechbiel, Martin W

    2013-07-01

    With the technological development of positron emission tomography (PET) and the advent of novel antibody-directed drug delivery systems, longer-lived positron-emitting radionuclides are moving to the forefront to take important roles in tracking the distribution of biotherapeutics such as antibodies, and for monitoring biological processes and responses. Longer half-life radionuclides possess advantages of convenient on-site preparation procedures for both clinical and non-clinical applications. The suitability of the long half-life radionuclides for imaging intact monoclonal antibodies (mAbs) and their respective fragments, which have inherently long biological half-lives, has attracted increased interest in recent years. In this review, we provide a survey of the recent literature as it applies to the development of nine-selected longer-lived positron emitters with half-lives of 9-140h (e.g., (124)I, (64)Cu, (86)Y and (89)Zr), and describe the biological behaviors of radionuclide-labeled mAbs with respect to distribution and targeting characteristics, potential toxicities, biological applications, and clinical translation potentials. PMID:23123291

  12. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges

    PubMed Central

    Nayak, Tapan K.; Brechbiel, Martin W.

    2012-01-01

    Radioimmunoimaging and therapy has been an area of interest for several decades. Steady progress has been made towards clinical translation of radiolabeled monoclonal antibodies for diagnosis and treatment of diseases. Tremendous advances have been made in imaging technologies such as positron emission tomography (PET). However, these advances have so far eluded routine translation into clinical radioimmunoimaging applications due to the mismatch between the short half-lives of routinely used positron-emitting radionuclides such as 18F versus the pharmacokinetics of most intact monoclonal antibodies of interest. The lack of suitable positron-emitting radionuclides that match the pharmacokinetics of intact antibodies has generated interest in exploring the use of longer-lived positron emitters that are more suitable for radioimmunoimaging and dosimetry applications with intact monoclonal antibodies. In this review, we examine the opportunities and challenges of radioimmunoimaging with select longer-lived positron-emitting radionuclides such as 124I, 89Zr and 86Y with respect to radionuclide production, ease of radiolabeling intact antibodies, imaging characteristics, radiation dosimetry and clinical translation potential. PMID:19125647

  13. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  14. Air kerma rate constants for radionuclides.

    PubMed

    Wasserman, H; Groenewald, W

    1988-01-01

    Conversion to SI units requires that the exposure rate constant which was usually quoted in R.h-1.mCi-1.cm2 be replaced by the air kerma rate constant with units m2.Gy.Bq-1.s-1. The conversion factor is derived and air kerma rate constants for 30 radionuclides used in nuclear medicine and brachytherapy are listed. A table for calculation of air kerma rates for other radionuclides is also given. To calculate absorbed dose to tissue, the air kerma rate has to be multiplied by approximately 1.1. A dose equivalent rate constant is thus listed which allows direct calculation of dose equivalent rate to soft tissue without resorting to exposure rate constants tabulated in the special units R.m2.mCi-1.h-1 which should no longer be used. PMID:3208786

  15. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  16. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary vasculature resulting in intrapulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggregated albumin labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cuntaeous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  17. Radionuclide demonstration of intrapulmonary shunting in cirrhosis

    SciTech Connect

    Bank, E.R.; Thrall, J.H.; Dantzker, D.R.

    1983-05-01

    The association of hepatic cirrhosis and severe arterial hypoxemia has been well described. Although alterations in ventilatory function may partially account for the hypoxemia, the principal mechanism is thought to be a microangiopathic change in the pulmonary arteriovenous shunting with resultant systemic desaturation. Whole-body radionuclide scans with technetium-99m macroaggrregated albumin (/sup 99m/Tc MAA) labeling have been diagnostic of right-to-left shunting by their demonstration of tracer accumulation within the extrapulmonary circulation. A case of severe pulmonary arteriovenous shunting in an alcoholic patient in whom hepatic disease had not been of apparent clinical significance before radionuclide scanning is reported. He did not have cutaneous angiomata as have all other patients with alcoholic cirrhosis and hypoxemia.

  18. [Radionuclide therapy for bone metastases: new opportunities].

    PubMed

    Krylov, V V; Kochetova, T Yu; Voloznev, L V

    2015-01-01

    Treatment of patients with multiple bone metastases accompanied by pain syndrome is a complicated clinical task. Radionuclide therapy is one of its solutions, which is used to achieve long reduction of pain syndrome and significant improvement the quality of patients' life. However mechanism of action of bone-seeking radiopharmaceuticals suggests not only pain control but antitumor effect as well. In early clinical studies of safety and efficacy of the most common bone-seeking radiopharmaceuticals in single administration there were not any preferences in overall survival but individual clinical cases with extraordinary tumor regression after radionuclide therapy were reported. Repeated bone targeted therapy and combination with other treatment modalities can help to gain statistical significant increase in overall survival of patients. PMID:26016139

  19. Radionuclide containment in soil by phosphate treatment

    SciTech Connect

    Lee, S.Y.; Francis, C.W.; Timpson, M.E.; Elless, M.P.

    1995-04-01

    Radionuclide transport from a contaminant source to groundwater and surface water is a common problem faced by most US Department of Energy (DOE) facilities. Containment of the radionuclide plume, including strontium-90 and uranium, is possible using phosphate treatment as a chemical stabilizer. Such a chemical process occurs in soils under natural environmental conditions. Therefore, the concept of phosphate amendment for radiostrontium and uranium immobilization is already a proven principle. In this presentation, results of bench-scale experiments and the concept of a field-scale demonstration are discussed. The phosphate treatment is possible at the source or near the advancing contaminant plume. Cleanup is still the ideal concept; however, containment through stabilization is a more practical and costeffective concept that should be examined by DOE Environmental Restoration programs.

  20. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  1. Radionuclide Air Emission Report for 2008

    SciTech Connect

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  2. Radionuclide Air Emission Report for 2007

    SciTech Connect

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  3. Radionuclide kinetics in MIRD dose calculations

    SciTech Connect

    Wooten, W.W.

    1983-07-01

    A recent case report is reviewed and an alternative model for the radionuclide kinetics is presented; it estimates in an absorbed dose differing by a factor of two from the published calculation. Both models are consistent with observed data. Within a compartment model, one may choose to monitor a compartment of interest directly, or to monitor another compartment and (indirectly) solve for the activity in the compartment of interest. Advantages and disadvantages are reviewed.

  4. Radionuclide Air Emission Report for 2009

    SciTech Connect

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  5. Radionuclide bone scintigraphy in pediatric orthopedics

    SciTech Connect

    Conway, J.J.

    1986-12-01

    Radionuclide bone scintigraphy is highly sensitive and specific for diagnosing the musculoskeletal disorders of childhood. Conditions such as neonatal osteomyelitis, septic arthritis, diskitis of childhood, Legg-Calve-Perthes disease, the osteochondroses, the toddler's fracture, sports injuries, spondylolysis, myositis ossificians, and reflex sympathetic dystrophy are readily defined. High-quality state-of-the-art scintigraphy is essential in infants and young children. 64 references.

  6. Radionuclide cisternography in the preterm neonate.

    PubMed

    Keyes, J W; Donn, S M; Roloff, D W; Meyers, L J

    1983-10-01

    A technique is presented for the bedside performance of radionuclide cisternography in the preterm neonate. Using a portable gamma camera, with a low energy, converging collimator, high quality diagnostic images were obtained in 31 infants, following the lumbar subarachnoid injection of 100 micro Ci In-111 DTPA. The technique is safe, and provides valuable information about CSF dynamics unavailable by any other method. PMID:6653001

  7. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. PMID:26834101

  8. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. PMID:24508949

  9. Actinide partitioning-transmutation program final report. VI. Short-term risk analysis of reprocessing, refabrication, and transportation: summary

    SciTech Connect

    Fullwood, R.; Jackson, R.

    1980-03-01

    A Partitioning-Transmutation (PT) fuel cycle is being compared to a Reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted thereby reducing the waste toxicity. This report compares the two fuel cycles on the basis of the short-term radiological and nonradiological risks. The accidental radiological risk to the public is analyzed by estimating the probabilities of sets of accidents; the consequences are calculated using the risk, which is RAC code. Routine radiological risks to the public are estimated from the calculated release amounts, also using the CRAC code. Radiological occupational risks are determined from prior experience, projected standards, and estimates of accident risk. Nonradiological risks are calculated from the number of personnel involved, historical experience, and epidemiological studies. Result of this analysis is that the short-term risk of PT is 2.9 times greater than that of the Reference cycle, primarily due to the larger amount of industry. The nonradiological risk which is about 150 times greater than the radiological risk. If the radiological risk is consdered alone, the ratio of PT to Reference risk is 3, composed as follows: radiological operations affecting the public 5, radiological operations affecting the workers 1.7, and radiological accidents affecting the public 1.4, all in the order of decreasing risk. The absolute risk as estimated for the fuel cycle portions considered in this report is 0.91 fatality/GWe-year for the PT cycle and 0.34 fatality/GWe-year for the reference cycle; this compares with 1.5 for nuclear and 150 for coal. All of the risks assumed here are associated with the production of one billion watts of electricity (GWe) per year.

  10. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  11. Leaching of accelerator-produced radionuclides

    SciTech Connect

    Baker, S.; Bull, J.; Goss, D.

    1994-05-01

    Leaching of radionuclides produced in soil and rock by high energy proton-induced radiation was studied for the SCC and CEBAF sites. Comparison was made with predictions of a Monte-Carlo code CASIM and previous results for the Fermilab site. The principal long-lived radionuclides were {sup 3}H and {sup 22}Na in agreement with Fermilab results. A few other radionuclides were present at lower concentrations in a subset of the samples. For example, {sup 134}Cs was detected in a few SSC water samples and {sup 7}Be and {sup 54}Mn were present at higher concentrations in a CEBAF sample. Leaching from SSC chalk was dependent on previous weathering and on leaching time. The more soil-like marl and shale were leached more rapidly. Results of this study in conjunction with the SSC ground-water model show that adequate ground-water protection would result for loss of the entire proton beam in the SSC Collider tunnel.

  12. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    PubMed

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment. PMID:26197592

  13. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  14. Targeted radionuclide therapies for pancreatic cancer

    PubMed Central

    Shah, M.; Da Silva, R.; Gravekamp, C.; Libutti, S. K.; Abraham, T.; Dadachova, E.

    2016-01-01

    Pancreatic malignancies, the 4th leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a five-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. While a lot progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled with 90Y and 177Lu somatostatin peptide analogues, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas. PMID:26227823

  15. Radionuclide transport and retardation in tuff

    SciTech Connect

    Vine, E.N.; Bayhurst, B.P.; Daniels, W.R.; DeVilliers, S.J.; Erdal, B.R.; Lawrence, F.O.; Wolfsberg, K.

    1980-12-31

    Batch measurements provide an understanding of which experimental variables are important. For example, sorption ratios vary little with particle size (and surface area); however, groundwater composition and rock composition are quite important. A general correlation has been identified between mineralogy (major phases) and degree of sorption for strontium, cesium, and barium. Although these are approximate, a more detailed analysis may be possible as more samples are studied and the data base increased. Data from crushed tuff columns indicate that, except in simple cases where sorption coefficients are relatively low, and ion-exchange equilibria not only exist but are the dominant mechanism for removal of radioisotopes from solution, the simple relation between the sorption ratio R/sub d/ (or K/sub d/) and the relative velocity of radionuclides with respect to groundwater velocity may be insufficient to permit accurate modeling of the retardation of radionuclides. Additional work on whole core columns and larger blocks of intact material is required to better understand radionuclide sorption and transport through rock.

  16. Fieldable instrument for waterborne radionuclide detection

    NASA Astrophysics Data System (ADS)

    Barshick, Christopher M.; Turner, Mary L.; Smith, David H.; Patch, Keith D.

    1997-01-01

    In monitoring effluent water leaving its sites, the United States Department of Energy (DOE) assays for alpha-emitting radionuclides (uranium and the transuranics) to ensure compliance with regulatory limits. Because alpha emissions can only be detected over a short range in water (approximately 40 micrometers), the conventional approach is to collect samples for processing in a central laboratory; a time-consuming and costly procedure ensures to separate and measure the radionuclides. Because of the sporadic nature of sampling processes, there is the possibility that a release may go undetected. We are addressing this issue by developing a real-time, field-deployable instrument. This device incorporates a proprietary film that selectively binds radionuclides from dilute aqueous samples. By combining the film with an appropriate alpha spectrometer, we have developed a fieldable system that can operate as an autonomous monitor in a batch or continuous manner. Laboratory results to date have been encouraging. Positive identification of uranium and plutonium has been made by resolving the energy spectrum of emitted alphas. Sensitivity for uranium is at the 10 part per trillion level (15 femtocuries per liter).

  17. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    SciTech Connect

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  18. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    SciTech Connect

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an overview of the basic microbial processes that occur in bioremediation. The fifth section looks at specific in situ bioremediation processes that can be used on these contaminant mixtures. The primer concludes with examples of field research on bioremediation of metals and radionuclides.

  19. Radionuclide decay data base - index and summary table

    SciTech Connect

    Kocher, D C

    1980-05-01

    This report provides an index and summary table for an extensive data base of evaluated radioactive decay data for approximately 500 radionuclides of potential importance in assessing radiological impacts on the general public or occupationally exposed individuals. For each radionuclide, the summary table gives the radionuclide name, half-life, and the average energy per decay for the emitted alpha particles, electrons, and photons. 8 refs., 1 tab.

  20. Radiation doses to members of the U.S. population from ubiquitous radionuclides in the body: Part 1, autopsy and in vivo data.

    PubMed

    Watson, David J; Strom, Daniel J

    2011-04-01

    This paper is Part 1 of a three-part series investigating steady-state effective dose rates to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling (222)Rn, (220)Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. In this work, it is assumed that instantaneous dose rates in target organs are proportional to steady-state radionuclide concentrations in source regions. The goal of Part 1 of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports were obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the (238)U series (14 nuclides), the actinium series (headed by (235)U; 11 nuclides), and the (232)Th series (11 nuclides); primordial radionuclides (87)Rb and (40)K; cosmogenic and fallout radionuclides (14)C and (3)H; and purely anthropogenic radionuclides (137)Cs-(137m)Ba, (129)I, and (90)Sr-(90)Y. Measurements judged to be relevant were available for only 15 of these radionuclides: (238)U, (235)U, (234)U, (232)Th, (230)Th, (228)Th, (228)Ra, (226)Ra, (210)Pb, (210)Po, (137)Cs, (87)Rb, (40)K, (14)C, and (3)H. Recent and relevant measurements were not available for (129)I and (90)Sr-(90)Y. A total of 11,741 radionuclide concentration measurements were found in one or more tissues or organs from 14 states. Data on age, gender, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements, so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series. PMID:21350344

  1. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  2. Transuranic radionuclides from resuspension in the environment, a bibliography

    SciTech Connect

    Stoker, A.C.; Shinn, J.H.; Noshkin, V.E.

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions. An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is an unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides. This bibliography is a compilation of the references containing studies of plutonium and americium in the environment as a result of resuspension.

  3. Mathematical simulation of sediment and radionuclide transport in estuaries

    SciTech Connect

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.

  4. Application of pet radionuclides for nuclear medicine targeted therapies

    SciTech Connect

    Finn, R.D.; Macapinlac, H.; Humm, J.; Pentlow, K.; McDevitt, M.; Tjuvajev, J.; Blasberg, R.; Scheinberg, D.; Larson, S.; Zweit, J.

    1997-02-01

    Nuclear medicine is the specialty of medical imaging which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts in this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radio-labeled tracers necessary to achieve the time-dependent molecular image. Preliminary results from our laboratory directed at oncologic applications include the preparation of specific PET radionuclides which allow an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. Illustrative examples and operational considerations of specific accelerator-produced radionuclides are presented. {copyright} {ital 1997 American Institute of Physics.}

  5. Transuranic radionuclides dispersed into the aquatic environment, a bibliography

    SciTech Connect

    Noshkin, V.E.; Stoker, A.C.; Wong, Kai M.

    1994-04-01

    The purpose of this project was to compile a bibliography of references containing environmental transuranic radionuclide data. Our intent was to identify those parameters affecting transuranic radionuclide transport that may be generic and those that may be dependent on chemical form and/or environmental conditions (i.e., site specific) in terrestrial, aquatic and atmospheric environments An understanding of the unique characteristics and similarities between source terms and environmental conditions relative to transuranic radionuclide transport and cycling will provide the ability to assess and predict the long term impact on man and the environment. An additional goal of our literature review, was to extract the ranges of environmental transuranic radionuclide data from the identified references for inclusion in a data base. Related to source term, these ranges of data can be used to calculate the dose to man from the radionuclides, and to perform uncertainty analyses on these dose assessments. On the basis of our reviews, we have arbitrarily outlined five general source terms. These are fallout, fuel cycle waste, accidents, disposal sites and resuspension. Resuspension of the transuranic radionuclides is a unique source term, in that the radionuclides can originate from any of the other source terms. If these transuranic radionuclides become resuspended into the air, they then become important as a source of inhaled radionuclides.

  6. Advances in Peptide Receptor Radionuclide Therapy.

    PubMed

    Sabet, Amir; Biersack, Hans-Jürgen; Ezziddin, Samer

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) is a very effective treatment modality for advanced neuroendocrine tumors (NETs), representing a teaching model for truly targeted antitumor therapy. With the growing cumulative evidence of PRRT in various treatment settings, we are witnessing increased perception of this modality as a potent treatment option in advanced disease. Although most data derives from retrospective analyses, results from prospective comparative evaluations, such as the NETTER-1 trial, are eagerly awaited and should help to raise PRRT to a higher level of evidence. At the same time, as increased levels of evidence are anticipated by prospective evaluations, further methodological improvements are going on in different ways and aspects of radionuclide therapy, mainly regarding the radiopharmaceuticals, the combination with other radionuclides or cytotoxic drugs, and the route of administration. Although diversity of PRRT increases-not supporting cumulative evidence as opposed to uniform treatment-it is very likely to achieve significant increase of efficacy by these efforts in the near future. As the intraarterial administration of PRRT agents in liver-dominant metastatic disease has the potential to improve outcome, it would have to be shown as to which patients would benefit from this approach, to what extent the benefit would be, and to when it would justify the increased efforts for patients and treating institutes. The approach of combining cytotoxic or radiosensitizing drugs with the PRRT agents seems to trigger a major boost of efficacy in pancreatic NET. The midterm future would show the extent of benefit in terms of long-term outcome and would probably lead to inclusion into clinical routine for this particular NET entity. The translation of somatostatin-receptor antagonists into human application represents another major source of significant improvement in terms of PRRT's benefit-toxicity ratio. Eventually, it may not be completely unlikely to see another radiopharmaceutical being regarded as the PRRT agent of choice in the midterm future. PMID:26687856

  7. COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The CPFM technology is designed to remove trace to moderate levels of nontritium radionuclides and heavy metal pollutants from water. he technology uses a proprietary compound that consists of inorganic, oxide-based granules. his mixed is designed to remove heavy metals and radio...

  8. COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The CPFM technology is designed to remove trace to moderate levels of nontritium radionuclides and heavy metal pollutants from water. The technology uses a proprietary compound that consists of inorganic, oxide-based granules. This mixed is designed to remove heavy metals and rad...

  9. Preparation of radiopharmaceuticals labeled with metal radionuclides

    SciTech Connect

    Welch, M.J.

    1992-06-01

    We recently developed a useful zinc-62/copper-62 generator and are presently evaluating copper-62 radiopharmaceuticals for clinical studies. While developing these copper-62 radiopharmaceuticals, in collaboration with the University of Missouri Research Reactor, Columbia we have also explored copper-64 radiopharmaceuticals. The PET images we obtained with copper-64 tracers were of such high quality that we have developed and evaluated copper-64 labeled antibodies for PET imaging. The major research activities described herein include: the development and assessment of gallium-68 radiopharmaceuticals; the development and evaluation of a new zinc-62/copper-62 generator and the assessment of copper-62 radiopharmaceuticals; mechanistic studies on proteins labeled with metal radionuclides.

  10. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2 x 10(2). Although these are hypothetical risks, they show that the radiologic impact of man-made sources is very small compared to the effects of normal background radiation. PMID:8635444

  11. Radionuclide evaluation of nonmalignant bone disorders

    SciTech Connect

    Winzelberg, G.G.

    1983-02-01

    Recent advances in nuclear imaging have improved the noninvasive evaluation of patients with nonmalignant bone disorders. When bone scanning agents are combined with bone marrow scanning agents and gallium-67 scintigraphy, a more accurate diagnosis can be obtained. By selecting the appropriate imaging sequence, it is often possible to distinguish cellulitis from underlying osteomyelitis. In patients with total hip replacements, it may be possible to separate postsurgical changes from prosthetic loosening or infection. Stress fractures in joggers may be detected by radionuclide bone scintigraphy before radiographs become abnormal. These nuclear imaging procedures can be done in most hospitals.

  12. Radionuclides at Descartes in the central highlands

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.

    1973-01-01

    Throium, uranium, potassium, aluminium-26, and sodium-22 were measured by nondestructive gamma ray spectrometry in six soil and two rock samples gathered by Apollo 16 in the lunar central highlands. The soil samples probably include both major geologic formations in the vicinity, the Cayley and Descartes Formations, although it is possible that the Descartes Formation is not represented. The rock samples have low concentrations of primordial radionuclides. The Al concentrations were lower than could be expected from the high abundance of alumina in the Apollo 16 soils reported earlier, but this could be due to lower concentrations of target elements in these soils, sampling depth variations, or regolithic mixing (exposure age variations).

  13. Research remote laser methods for radionuclides monitoring

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, Valentin V.; Grishkanich, Alexander S.; Bespalov, V. G.; Vasil'ev, Sergey K.; Zhevlakov, A. P.

    2014-05-01

    Laser sensing can serve as a highly effective method of searching and monitoring of radioactive contamination. The first method is essence consists in definition the Sr90 and Сs137 concentration by excitation and registration of fluorescence at wavelength of λ = 0.347÷7.0 μm at laser sounding. The second method experiments were carried out under the Raman-scattering circuit. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 108÷109 сm-3 on a safe distance from the infected object.

  14. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  15. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  16. The IAEA CRP on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste

    SciTech Connect

    Maschek, W.; Chen, X.; Rineiski, A.; Schikorr, M.; Stanculescu, A.; Arien, B.; Malambu, E.; Bai, Y.; Li, J.; Wu, Y.; Zheng, S.; Chabert, C.; Peneliau, Y.; Chebeskov, A.; Dekoussar, V.; Vorotyntsev, M.; da Cruz, D.F.; Devan, K.; Gopalakrishnan, V.; Harish, R.; Mohanakrishnan, P.; Pandikumar, G.; Dulla, S.; Ravetto, P.; Feynberg, O.; Ignatiev, V.; Subbotin, V.; Surenkov, A.; Zakirov, R.; Kophazi, J.; Szieberth, M.; Morita, K.; Srivenkatesan, R.; Taczanowski, S.; Tucek, K.; Wider, H.; Vertes, P.; Uhlir, J.

    2007-07-01

    In 2003, the IAEA has initiated the Coordinated Research Project (CRP) on 'Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste'. The overall objective of the CRP, performed within the framework of IAEA's Nuclear Energy Department's Technical Working Group on Fast Reactors, is to increase the capability of Member States in developing and applying advanced technologies in the area of long-lived radioactive waste utilization and transmutation. Twenty institutions from 15 Member States and one international organization participated in this CRP. The CRP concentrated on the assessment of the dynamic behavior of various transmutation systems. The reactor systems investigated comprise critical reactors, sub-critical accelerator driven systems with heavy liquid metal and gas cooling, critical molten salt systems, and hybrid fusion/fission systems. Both fertile and fertile-free fuel options have been investigated. Apart from the benchmarking of steady state core configurations (including the investigation of transmutation potential, burn-up behavior and decay heat of minor actinide (MA) bearing fuels), the CRP participants determined the safety coefficients for the individual systems and, in a second stage, performed transient analyses which reflected the generic safety related behavior of the various reactors types. (authors)

  17. Technologies using accelerator-driven targets under development at BNL

    SciTech Connect

    Van Tuyle, G.J.

    1994-08-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications.

  18. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L.

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  19. The effect of gravel size fraction on the distribution coefficients of selected radionuclides radionuclides

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Glossbrenner, Ellwood T.

    2009-06-26

    This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (Kd) construct can be estimated from laboratory tests on < 2mm fraction of sediments. As shown within the use of this common assumption can lead to inaccurate estimates of the mobility and sorption capacity of key radionuclides (Tc, U, and Np) at the Hanford Site where gravel dominates the lower Hanford formation and upper Ringold Formation. Batch sorption and column experiments showed that the distribution coefficient measured using only < 2mm fraction were not in agreement with those obtained from the bulk sediments depending on the radionuclide. The least reactive radionuclide, Tc showed the lowest effects from the presence of gravel. However, differences between measured Kds using < 2mm fractions of the sediment and the Kds measured on the bulk sediment were significant for strongly reactive radionuclides such as Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxides coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the Kd,<2 mm and Kd,>2 mm values to estimate the Kd for the bulk sediment were found to best describe Kds for radionuclides on the bulk sediment. However, more detailed characterization of gravel surfaces should be also conducted to identify those gravels with higher reactive sorbents, if present. Gravel correction factors should be considered to predict precisely the sorption capacity of bulk sediments that contain more than 10% gravel and to estimate the mobility of contaminants in subsurface environments.

  20. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure the improvement in accuracy and precision of measurement as demanded by the stringent requirements of the user community, such as the correct calibration of nuclear instrumentation. This leads into the need for traceability to national measurement standards maintained by the national metrology institutes. As part of the radioactivity traceability chain, as for all areas of metrology, it is vital that systems are in place to ensure that national standards can be checked for worldwide uniformity and measurement equivalence. Many of the resulting areas are covered by the topics in this special issue, although specifically excluded from the scope of the publication are topics that are widely covered in other publications due to their application in applied metrology—for example, radiochemistry, environmental gamma spectrometry and alpha spectrometry. There are three sections to this issue, starting with papers on how the CIPM Mutual Recognition Arrangement has been implemented for radionuclide metrology, following into the bulk of the publication with articles on the `state of the art' in radionuclide metrology and ending with traceability to national/international standards in nuclear medicine, environmental monitoring, radiation protection and decommissioning. This special issue in essence follows on from earlier BIPM Monographies that were published in order to provide the base information for radionuclide metrology. In many respects they complement the special issue since much of their content is still valid today, particularly those published more recently as an aid to ensuring consistency of method and data. The BIPM Monographies are freely available to download from the BIPM website at http://www.bipm.org/en/publications/monographies-ri.html. The papers in the special issue draw on the experience of radionuclide metrologists who have been involved in their area of expertise for many years. The authors give readers an insightful account of the selected topics through in-depth review articles. We are indeed indebted to them for accepting this difficult and time-consuming task and also thank the many researchers recognized in the articles who have contributed to expanding the field over many years. The considerable effort put into this issue would not have been possible without input from the appointed referees, as well as the project team also comprising Yoshio Hino, Jose-Marie Los Arcos, Mike Unterweger and Brian Zimmerman. Thanks are also due to the Metrologia Editor, Jeffrey Williams, and the editorial staff for their sterling efforts in keeping the issue on track and the publication on schedule. Last, but not least, we thank Prof. Georgio Moscati, President of the CCRI, and Dr Penny Allisy-Roberts, Executive Secretary of the CCRI, for their continuous interest and support for the project.

  1. Traces of natural radionuclides in animal food

    SciTech Connect

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  2. Current status of radionuclide scrotal imaging

    SciTech Connect

    Holder, L.E.; Melloul, M.; Chen, D.

    1981-10-01

    Scrotal imaging with technetium-99m sodium pertechnetate consists of a radionuclide angiogram and static scrotal scans. Utilization of this study in patients presenting with an acute scrotum can dramatically reduce the number of surgical explorations for acute epididymitis. It can also aid in other aspects of differential diagnosis in patients presenting with either an acutely enlarged and/or painful scrotum or a scrotal mass. Ambiguities in previous descriptions of perfusion through the spermatic and extraspermatic cord vessels are described and distinguished from scrotal perfusion. The clinical and scintigraphic spectrum of testicular torsion, including spontaneous detorsion, early acute testicular torsion, midphase testicular torsion, and late phase or ''missed testicular torsion,'' is discussed and illustrated. The variety of patterns seen in acute epididymitis, including lateral and medial epididymal location, and focal epididymitis are described, as is the appearance of hydrocele as both a primary and secondary entity. The relationship of scrotal imaging to the overall clinical presentation and evaluation of these patients is emphasized in testicular torsion, torsion of the testicular appendages, epididymitis, abscess, trauma, tumor, spermatocele, and varicocele. The techniques, clinical utility, and relationship to radionuclide imaging of Doppler ultrasound and gray scale ultrasound scanning are reviewed. Doppler ultrasound results in many false negative studies in testicular torsion. Gray scale ultrasound is useful in clarifying the nature of scrotal masses.

  3. Application of radionuclide ventriculography to cardiac screening

    SciTech Connect

    Lindsay, J. Jr.; Milner, M.R.; Chandeysson, P.L.; Rodman, D.J.; Okin, P.M.; Goldstein, S.A.

    1989-05-01

    Screening asymptomatic individuals for latent coronary disease often requires sequential testing because exercise electrocardiography typically produces more false positive than true positive results in a population with a low prevalence of coronary disease. Cardiac scintigraphy is a technique that may be employed as a confirmatory test in lieu of coronary arteriography to further evaluate the significance of a positive exercise electrocardiogram. Radionuclide ventriculography was employed in 98 asymptomatic individuals who were considered to be at moderate risk of heart disease after risk factor analysis and exercise electrocardiography. Seventeen (17%) patients had an abnormal study and underwent cardiac catheterization. Seven had coronary artery disease, two had cardiomyopathy, and eight were normal. Eighty-one (83%) patients had a normal study. Because the sensitivity of radionuclide ventriculography is 63-80%, it was postulated that 2 to 5 individuals with disease were missed. Thus, from a population with an 11-14% prevalence of disease, two subsets were identified. A large subset in which a prevalence of 2-6% could be estimated was separated from a much smaller one in which a prevalence of approximately 50% was demonstrated.

  4. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  5. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  6. Natural radionuclides in bottled water in Austria.

    PubMed

    Kralik, C; Friedrich, M; Vojir, F

    2003-01-01

    Concentration levels of 226Ra, 222Rn and 210Pb were analyzed in domestic bottled waters commercially available in Austria. Concentrations up to 0.23 Bq/l, with a geometric mean of 0.041 Bq/l were found for 226Ra. Concentrations for 222Rn ranged from <0.12-18 Bq/l, the geometric mean being 0.54 Bq/l. Lead-210 was analyzed in selected samples, the concentrations ranging from <2 to 34 mBq/l, with a geometric mean of 4.7 mBq/l. Ingestion doses resulting from consumption of these waters were calculated for the geometric mean and the maximum concentrations of the three radionuclides. The effective dose equivalents for different age groups of the population due to the intake of 226Ra range from 0.001 to 0.22 mSv/y and of 210Pb from 0.0003 to 0.05 mSv/y. Ingestion doses from 222Rn are low compared to those from 226Ra and 210Pb, ranging from 0.0001 to 0.011 mSv/y for adults and children, respectively. The doses are compared to the total ingestion dose from dietary intake of natural radionuclides on an annual basis. PMID:12527238

  7. Radionuclide complexation in xylem exudates of plants

    SciTech Connect

    Cataldo, D.A.; McFadden, D.M.; Garland, T.R.; Wildung, R.E.

    1985-04-01

    The plant xylem is the primary avenue for transport of nutrient and pollutant elements from the roots of aerial portions of the plant. It is proposed that the transport of reactive or hydrolyzable ions is facilitated by the formation of stable/soluble complexes with organic metabolites. The xylem exudates of soybean (Glycine max cv. Williams) were characterized as to their inorganic and organic components, complexation patterns for radionuclides, both in vivo and in vitro, and for class fractions of exudates using thin-layer electrophoresis. The radionuclides Pu-238 and Fe-59 were found primarily as organic acid complexes, while Ni-63 and Cd-109 were associated primarily with components of the amono acid fraction. Technetium-99 was found to be uncomplexed and transported as the pertechnetate ion. It was not possible to duplicate fully complexes formed in vivo by back reaction with whole exudates or class fractions, indicating the possible importance of plant induction processes, reaction kinetics and/or the formation of mixed ligand complexes. 28 refs., 4 figs.

  8. Radionuclide release from research reactor spent fuel

    NASA Astrophysics Data System (ADS)

    Curtius, H.; Kaiser, G.; Müller, E.; Bosbach, D.

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO 2 fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in 235U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO 2-fuel (LWR fuel, enrichment in 235U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Jülich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl 2-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl x-Al and U 3Si 2-Al) was studied in 400 mL MgCl 2-rich salt brine in the presence of Fe 2+ under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH) 3(s) and Eu(OH) 3(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu(IV) oxyhydroxides species due to radiolytic effects cannot completely be ruled out. Solution concentrations of U were within the range of the solubility limits of the solid phase U(OH) 4(am). The determined concentrations of U and Am in solution were about one order of magnitude higher for the U 3Si 2-Al fuel sample. Here, the formation of U/Si containing secondary phase components and their influence on radionuclide solubility cannot be ruled out. Results of this work show that the U 3Si 2-Al and UAl x-Al dispersed research reactor spent fuel samples dissolved completely within the test period of 3.5 years in MgCl 2-rich brine in the presence of Fe 2+. In view of final disposal this means that these fuel matrices represent no barrier. The radionuclides will be released instantaneously. Cs (the long-lived isotope 135Cs is of special concern with respect to final disposal) and Sr were classified as mobile radionuclide species. For U, Am, Pu and Eu, a reimmobilization was observed. Sorption is the process which is assumed to be responsible for the reimmobilization of the long-lived actinide Am and the lanthanide Eu. Solution concentrations of U and Pu seem to be controlled by their solubility controlling solid phases.

  9. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to apply a radionuclide source into the body or to the surface of the body for radiation...

  10. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to apply a radionuclide source into the body or to the surface of the body for radiation...

  11. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to apply a radionuclide source into the body or to the surface of the body for radiation...

  12. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to apply a radionuclide source into the body or to the surface of the body for radiation...

  13. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to apply a radionuclide source into the body or to the surface of the body for radiation...

  14. Sources of anthropogenic radionuclides in the environment: a review.

    PubMed

    Hu, Qin-Hong; Weng, Jian-Qing; Wang, Jin-Sheng

    2010-06-01

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides (99)Tc and (129)I, as well as geochemical behavior for radionuclides (99)Tc, (129)I, and (237)Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides. PMID:18819734

  15. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator....

  16. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy...

  17. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern...

  18. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing...

  19. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy...

  20. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  1. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  2. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator....

  3. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator....

  4. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy...

  5. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern...

  6. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing...

  7. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern...

  8. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern...

  9. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  10. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy...

  11. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1390 Radionuclide rebreathing...

  12. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy...

  13. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern...

  14. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  15. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator....

  16. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator....

  17. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    SciTech Connect

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.; Palacios, M.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  18. Selection and manipulation of immunoglobulins for radionuclide delivery

    SciTech Connect

    Steplewski, Z.; Curtis, P.; Hainfeld, J.; Mausner, L.; Mease, R.; Srivastava, S.

    1992-12-31

    This report describes a collection of monoclonal antibodies that are candidates for use in radioimmunotherapy towards neoplasms of the gastrointestinal tract, breast, or of astrocytomas. In addition a large series of candidate radionuclides to conjugate to antibodies for therapeutic uses are discussed with respect to potential therapeutic utility and to means of radionuclide production.

  19. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ({sup 238}Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  20. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ([sup 238]Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  1. Radionuclide concentrations in white sturgeon from the Columbia River

    SciTech Connect

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy`s Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  2. Radionuclide concentrations in white sturgeon from the Columbia River

    SciTech Connect

    Dauble, D.D.; Price, K.R.; Poston, T.M.

    1992-09-01

    Although radioactive releases from the US Department of Energy's Hanford Site have been monitored in the environment since the reactors began operating in 1945, recent information regarding historical releases of radionuclides has led to renewed interest in estimating human exposure to radionuclides at Hanford. Knowledge of the fate of radionuclides in some fish species may be important because of the potential for food-chain transfer to humans. White sturgeon (Acipenser transmontanus) were selected for study because they are long-lived, reside year-round in the Hanford Reach, are benthic, and are an important commercial and sport species in the Columbia River. They also have a greater potential for accumulating persistent radionuclides than shorter-lived species with pelagic and/or anadromous life histories. The purpose of our study was to summarize data on historical concentrations of industrial radionuclides in white sturgeon and to collect additional data on current body burdens in the Columbia River.

  3. Radionuclide migration in groundwater. Annual progress report for 1982

    SciTech Connect

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Brodzinski, R.L.

    1984-01-01

    Research has continued at a low-level waste disposal facility to characterize the physicochemical species of radionuclides migrating in groundwater. This facility consists of an unlined basin and connecting trench which receives effluent water containing low levels of a wide variety of fission and activation products and trace amounts of transuranic radionuclides. The effluent water percolates through the soil and a small fraction of it emerges at seepage springs located some 260 meters from the trench. The disposal basin and trench are very efficient in retaining most of the radionuclides, but trace amounts of a number of radionuclides existing in mobile chemical forms migrate in the groundwater from the trench to the springs. This facility provides the opportunity for characterizing the rates and mechanisms of radionuclide migration in groundwaters, identifying retardation processes, and validating geochemical models. 13 references, 25 figures, 23 tables.

  4. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Fan Liu, Sau; Allen, B J

    2006-09-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226. PMID:16806950

  5. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  6. Predicting thermo-mechanical behaviour of high minor actinide content composite oxide fuel in a dedicated transmutation facility

    NASA Astrophysics Data System (ADS)

    Lemehov, S. E.; Sobolev, V. P.; Verwerft, M.

    2011-09-01

    The European Facility for Industrial Transmutation (EFIT) of the minor actinides (MA), from LWR spent fuel is being developed in the integrated project EUROTRANS within the 6th Framework Program of EURATOM. Two composite uranium-free fuel systems, containing a large fraction of MA, are proposed as the main candidates: a CERCER with magnesia matrix hosting (Pu,MA)O 2-x particles, and a CERMET with metallic molybdenum matrix. The long-term thermal and mechanical behaviour of the fuel under the expected EFIT operating conditions is one of the critical issues in the core design. To make a reliable prediction of long-term thermo-mechanical behaviour of the hottest fuel rods in the lead-cooled version of EFIT with thermal power of 400 MW, different fuel performance codes have been used. This study describes the main results of modelling the thermo-mechanical behaviour of the hottest CERCER fuel rods with the fuel performance code MACROS which indicate that the CERCER fuel residence time can safely reach at least 4-5 effective full power years.

  7. A measurement of actinide neutron transmutations with accelerator mass spectrometry in order to infer neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Bauder, William K.

    Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.

  8. Radionuclides and the birds at Ravenglass.

    PubMed

    Lowe, V P

    1991-01-01

    Since 1983, concern has been expressed about the apparent decline in numbers of birds in the Ravenglass estuary in west Cumbria, particularly of the black-headed gull colony on the Drigg dunes, and suggestions have been made that this decline might be due to excessive radiation in the birds' food and their general environment. Twelve species of marine invertebrates from Ravenglass, most of them known to be important foods for birds, were analysed, and further samples were taken from sites along the west Cumbrian coast. None of these samples showed excessive contamination with any of the radionuclides analysed. Analysis of a sample of bird carcasses from the areas showed oystercatchers (Haematopus ostralegus) and shelduck (Tadorna tadorna) to have some of the highest concentrations of (137)Cs in their tissues; yet their breeding success and populations were not affected. Black-headed gulls, on the other hand, were found to be feeding mainly inland, and were the least contaminated with radionuclides of all the birds at Ravenglass, yet this species and its breeding success were in decline. Calculations of the total dose equivalent rate to the whole body of the most contaminated black-headed gull amounted to 9.8 x 10(-4) mSvh(-1) (approximately equal to 8.4 x 10(-4) mGy h(-1), whole body absorbed dose rate), and the background exposure dose was of the order of 8.3 x 10(-4) mGy h(-1). As a minimum chronic dose of 1000 mGy day(-1) has been found necessary to retard growth of nestling birds, and 9600 mGy over 20 days of incubation to cause the death of 50% of embryos in black-headed gulls' eggs, the concentrations of radionuclides in the foods, body tissues and general environment were at least three orders of magnitude too low to have had any effect. The more likely cause of the desertion of the gullery was the combination of an uncontrolled fox population, the severest outbreak of myxomatosis amongst the rabbits since 1954 and the driest May-July period on record, all in the same year (1984). PMID:15092143

  9. Accumulation of radionuclides by plants as a monitor system.

    PubMed Central

    Koranda, J J; Robison, W L

    1978-01-01

    The accumulation of radionuclides by plants acting as a monitoring system in the environment may occur by two modes; foliar absorption by the leaves and shoot of the plant, or by root uptake from the soil. Data on plant accumulation of radionuclides may be obtained from studies of fission product radionuclides deposited as worldwide fallout, and from tracer studies of plant physiology. The epidermal features of plant foliage may exert an effect upon particle retention by leaves, and subsequent uptake of radionuclides from the surface. The transport of radionuclides across the cuticle and epidermis of plant leaves is determined in part by the anatomy of the leaf, and by physiological factors. The foliar uptake of fallout radionuclides, 99Sr, 131I, and 137Cs, is described with examples from the scientific literature. The environmental half-life of 131I, for example, is considerably shorter than its physical half-life because of physical and biological factors which may produce a half-life as short as 0.23/day. 99Sr and 137Cs are readily taken up by the leaf, but 137Cs undergoes more translocation into fruit and seeds than 99Sr which tends to remain in the plant part in which it was initially absorbed. Soil-root uptake is conditioned primarily by soil chemical and physical factors which may selectively retain a radionuclide, such as 137Cs. The presence of organic matter, inorganic colloids (clay), and competing elements will strongly affect the uptake of 99Sr and 137Cs by plants from the soil. The role of plants as monitors of radionuclides is twofold: as monitors of recent atmospheric releases of radionuclides; and as indicators of the long-term behavior of aged deposits of radionuclides in the soil. PMID:367767

  10. Accelerator mass spectrometry analyses of environmental radionuclides: sensitivity, precision and standardisation

    PubMed

    Hotchkis; Fink; Tuniz; Vogt

    2000-07-01

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. AMS allows an isotopic sensitivity as low as one part in 10(15) for 14C (5.73 ka), 10Be (1.6 Ma), 26Al (720 ka), 36Cl (301 ka), 41Ca (104 ka), 129I (16 Ma) and other long-lived radionuclides occurring in nature at ultra-trace levels. These radionuclides can be used as tracers and chronometers in many disciplines: geology, archaeology, astrophysics, biomedicine and materials science. Low-level decay counting techniques have been developed in the last 40-50 years to detect the concentration of cosmogenic, radiogenic and anthropogenic radionuclides in a variety of specimens. Radioactivity measurements for long-lived radionuclides are made difficult by low counting rates and in some cases the need for complicated radiochemistry procedures and efficient detectors of soft beta-particles and low energy x-rays. The sensitivity of AMS is unaffected by the half-life of the isotope being measured, since the atoms not the radiations that result from their decay, are counted directly. Hence, the efficiency of AMS in the detection of long-lived radionuclides is 10(6)-10(9) times higher than decay counting and the size of the sample required for analysis is reduced accordingly. For example, 14C is being analysed in samples containing as little as 20 microg carbon. There is also a world-wide effort to use AMS for the analysis of rare nuclides of heavy mass, such as actinides, with important applications in safeguards and nuclear waste disposal. Finally, AMS microprobes are being developed for the in-situ analysis of stable isotopes in geological samples, semiconductors and other materials. Unfortunately, the use of AMS is limited by the expensive accelerator technology required, but there are several attempts to develop compact AMS spectrometers at low (< or = 0.5 MV) terminal voltages. Recent advances in AMS will be reviewed with highlights from the scientific programs at Lucas Heights and other AMS centres. PMID:10879834

  11. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    SciTech Connect

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.

  12. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Requirements for determining basic radionuclide values, and for the listing of radionuclides on shipping papers and labels. 173.433 Section 173.433 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  13. The influence of a coal-fired power plant operation on radionuclide concentrations in soil.

    PubMed

    Flues, M; Moraes, V; Mazzilli, B P

    2002-01-01

    Fifty-two soil samples in the vicinity of a coal-fired power plant (CFPP) in Figueira (Brazil) were analyzed. The radionuclide concentration for the uranium and thorium series in soils ranged from <9 to 282 Bq kg(-1). The range of 40K concentration in soils varied from <59 to 412 Bq kg(-1). The CFPP (10 MWe) has been operating for 35 years and caused a small increment in natural radionuclide concentration in the surroundings. This technologically enhanced natural radioactivity (TENR) was mainly due to the uranium series (234Th, 226Ra and 210Pb) and was observable within the first kilometer from the power plant. The CFPP influence was only observed in the 0-25 cm soil horizon. The soil properties prevent the radionuclides of the 238U-series from reaching deeper soil profiles. The same behavior was observed for 40K as well. No influence was observed for 232Th, which was found in low concentrations in the coal. PMID:12440517

  14. Strontium and cesium radionuclide leak detection alternatives in a capsule storage pool

    SciTech Connect

    Larson, D.E.; Crawford, T.W.; Joyce, S.M.

    1981-08-01

    A study was performed to assess radionuclide leak-detection systems for use in locating a capsule leaking strontium-90 or cesium-137 into a water-filled pool. Each storage pool contains about 35,000 L of water and up to 715 capsules, each of which contains up to 150 kCi strontium-90 or 80 kCi cesium-137. Potential systems assessed included instrumental chemical analyses, radionuclide detection, visual examination, and other nondestructive nuclear-fuel examination techniques. Factors considered in the assessment include: cost, simplicity of maintenance and operation, technology availability, reliability, remote operation, sensitivity, and ability to locate an individual leaking capsule in its storage location. The study concluded that an adaption of the spent nuclear-fuel examination technique of wet sipping be considered for adaption. In the suggested approoch, samples would be taken continuously from pool water adjacent to the capsule(s) being examined for remote radiation detection. In-place capsule isolation and subsequent water sampling would confirm that a capsule was leaking radionuclides. Additional studies are needed before implementing this option. Two other techniques that show promise are ultrasonic testing and eddy-current testing.

  15. Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste

    SciTech Connect

    Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.; Wood, D.J.

    1999-06-01

    The presence of long-lived radionuclides presents a challenge to the management of radioactive wastes. Immobilization of these radionuclides must be accomplished prior to long-term, permanent disposal. Separation of the radionuclides from the waste solutions has the potential of significantly decreasing the costs associated with the immobilization and disposal of the radioactive waste by minimizing waste volumes. Several solvent extraction processes have been developed and demonstrated at the Idaho National Engineering and Environmental Laboratory for the separation of transuranic element (TRUs), {sup 90}Sr, and/or {sup 137}Cs from acidic radioactive waste solutions. The Transuranic Extraction (TRUEX) and phosphine oxide (POR) processes for the separation of TRUs, the Strontium Extraction (SREX) process for the separation of {sup 90}Sr, the chlorinated cobalt dicarbollide (ChCoDiC) process for the separation of {sup 137}Cs and {sup 90}Sr, and a universal solvent extraction process for the simultaneous separation of TRUs, {sup 90}Sr, and {sup 137}Cs have all been demonstrated in centrifugal contactors using actual radioactive waste solutions. This article summarizes the most recent results of each of the flowsheet demonstrations and allows for comparison of the technologies. The successful demonstration of these solvent extraction processes indicates that they are all viable for the treatment of acidic radioactive waste solutions.

  16. Development of Monte Carlo Methods for Investigating Migration of Radionuclides in Contaminated Environments

    SciTech Connect

    Avrorin, E. N.; Tsvetokhin, A. G.; Xenofontov, A. I.; Kourbatova, E. I.; Regens, J. L.

    2002-02-26

    This paper presents the results of an ongoing research and development project conducted by Russian institutions in Moscow and Snezhinsk, supported by the International Science and Technology Center (ISTC), in collaboration with the University of Oklahoma. The joint study focuses on developing and applying analytical tools to effectively characterize contaminant transport and assess risks associated with migration of radionuclides and heavy metals in the water column and sediments of large reservoirs or lakes. The analysis focuses on the development and evaluation of theoretical-computational models that describe the distribution of radioactive wastewater within a reservoir and characterize the associated radiation field as well as estimate doses received from radiation exposure. The analysis focuses on the development and evaluation of Monte Carlo-based, theoretical-computational methods that are applied to increase the precision of results and to reduce computing time for estimating the characteristics the radiation field emitted from the contaminated wastewater layer. The calculated migration of radionuclides is used to estimate distributions of radiation doses that could be received by an exposed population based on exposure to radionuclides from specified volumes of discrete aqueous sources. The calculated dose distributions can be used to support near-term and long-term decisions about priorities for environmental remediation and stewardship.

  17. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    SciTech Connect

    Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  18. Graphene oxide for effective radionuclide removal.

    PubMed

    Romanchuk, Anna Yu; Slesarev, Alexander S; Kalmykov, Stepan N; Kosynkin, Dmitry V; Tour, James M

    2013-02-21

    Here we show the efficacy of graphene oxide (GO) for rapid removal of some of the most toxic and radioactive long-lived human-made radionuclides from contaminated water, even from acidic solutions (pH < 2). The interaction of GO with actinides including Am(III), Th(IV), Pu(IV), Np(V), U(VI) and typical fission products Sr(II), Eu(III) and Tc(VII) were studied, along with their sorption kinetics. Cation/GO coagulation occurs with the formation of nanoparticle aggregates of GO sheets, facilitating their removal. GO is far more effective in removal of transuranium elements from simulated nuclear waste solutions than other routinely used sorbents such as bentonite clays and activated carbon. These results point toward a simple methodology to mollify the severity of nuclear waste contamination, thereby leading to effective measures for environmental remediation. PMID:23296256

  19. Prospects for the methods of radionuclide production

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Dmitriev, S. N.

    2015-03-01

    In the present report, methods of radionuclide production for the nuclear-medicine purposes are described. In a budget approach, the application of low-energy accelerators is especially advantageous. Intense flux of bremsstrahlung at electron accelerators or high-current cyclotron beams of alpha particles must supply a great yield for many isotopes. The choice of a target material and of the projectile energy provides enough variation for concrete species formation. The innovating procedures are here proposed for optimizing of methods, for instance, application of the noble-gas target for production and transport of activities. The known and new variants of the "generator" scheme are discussed. Many isotopes are listed as promising in the context of the therapeutic and theragnostic applications. Among them are isotopes/isomers emitting soft radiation for the selective and careful body treatment, also the positron emitters for PET, and the halogen and alkali-metal species convenient for chemical separation.

  20. Prospects for the methods of radionuclide production

    SciTech Connect

    Karamian, S. A. Dmitriev, S. N.

    2015-03-30

    In the present report, methods of radionuclide production for the nuclear-medicine purposes are described. In a budget approach, the application of low-energy accelerators is especially advantageous. Intense flux of bremsstrahlung at electron accelerators or high-current cyclotron beams of alpha particles must supply a great yield for many isotopes. The choice of a target material and of the projectile energy provides enough variation for concrete species formation. The innovating procedures are here proposed for optimizing of methods, for instance, application of the noble-gas target for production and transport of activities. The known and new variants of the “generator” scheme are discussed. Many isotopes are listed as promising in the context of the therapeutic and theragnostic applications. Among them are isotopes/isomers emitting soft radiation for the selective and careful body treatment, also the positron emitters for PET, and the halogen and alkali-metal species convenient for chemical separation.